Development and Execution of Collaborative
Application on the ViroLab Virtual Laboratory

Marek Kasztelnik®, Tomasz Gubata®3, Maciej Malawski', and Marian Bubak®'3

! Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Krakéw, Poland
2 Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands
3 ACC CYFRONET AGH, Krakéw, ul. Nawojki 11, 30-950 Krakéw, Poland
emasil: m.kasztelnik@cyfronet.pl

Abstract

Creating applications that use distributed Grid resources is a com-
plex and time-consuming process. To help developers and end users
to create, test and execute this kind of applications, the integrated en-
vironment is needed. This paper shows how to develop and execute
collaborative applications on the ViroLab virtual laboratory. Further-
more, the collaboration tools which allow to communicate between end
users (scientists) and developers are presented.

Keywords: virtual laboratory, collaborative applications, collabora-
tive environment, ViroLab, e-Science experiments, grid

1 Introduction

Modern practices of science in such area as investigation of HIV virus drug
resistance require collaborative sharing, processing and analysing of virological,
immunological, clinical and experimental data, as well as advanced tools for
(bio) statistical analysis, visualization, modelling and simulation [1]. A process
integrating these computational tools and data, which leads to obtaining results
relevant to the application domain, is called in-silico experiment. An experiment
in virtual laboratory combines data and activities which are available on the
distributed Web- and Grid-based infrastructure and it needs to orchestrate them
in possibly complex scenarios.

A common approach to experiment orchestration is to use one of many sci-
entific workflow systems available for the Grid, such as Pegasus [2], Triana [3]
and K-W{Grid [4] systems. They are intended to assist non-programmer users
in developing applications, however, in the case of workflows with many com-
ponents and complex interactions, they can become difficult to understand and
use.

To overcome the limitations of workflow systems, we decided to define an ex-
periment plan notation based on a high-level scripting language, namely Ruby [5].
An experiment plan is a Ruby script which features a concise and clear syntax
combined with a full set of control structures, allowing expressing experiments
of arbitrary complexity level.

Application
development

Get user
feedback
and start
new iteraction

Commit
new application

Application Scanario

Feedback lifecycle repository

Browse
application
repository

Submit
user feedback

Application
execution

Fig. 1: Application lifecycle

The process of experiment planning and execution in the ViroLab virtual
laboratory is collaborative in the sense that the virtual laboratory supports
cooperation of multiple experiment developers and users (see Fig. 1).

2 Experiment planning

When a developer prepares an experiment script, it can be published in the
experiment repository and thus become available to others. Then, a scientist,
who does not intend to get into the details of scripting, can access the virtual
laboratory through a portal, and execute the published experiments using Web
browser, providing only input data when necessary. The main idea is that the
experiment in the repository can be shared and reused what is a very efficient
way of promoting collaboration between scientists. Provenance data related to
the experiment is also recorded and available for queries thus making the results
more reliable, reproducible and scientifically relevant.

The first stage of experiment lifecycle is performed by the experiment devel-
oper, whose task (with the assistance of the domain researcher) is to develop
an experiment plan using a scripting notation. To hide sophisticated details of
the underlying grid infrastructure, a high level object-oriented API has been
introduced. It allows to define ”which” computational functionality is required,
without a need to specify "how” to access it with available middleware. Uniform
access to computational resources in a Grid environment is possible due to three
levels of abstraction that describe resources, namely Grid Object Class, Grid
Object implementation and Grid Object Instance. While creating experiment,
only the highest level of resources description may be used — on the other hand,
however, if the developer needs to retain a full control over the experiment plan,
it is possible to specify all the technical details on one of the lower levels of ab-
straction. When a resource is registered in the virtual laboratory, it is available
for the whole community and other developers can reuse it in new applications.

Another feature, provided by the ViroLab virtual laboratory, which is useful

during development, is the high-level API that allows to connect and query
various databases. Thanks to OGSA-DAT [9] system, that is accessible through
this API, applications are able to query for the data located in distributed data
sources. It is a very important tool that allows users to share the experiment
results with the whole community.

When preparing the experiment plan, the experiment developer uses the
Experiment Planning Environment (EPE) [10] based on the Eclipse [11] platform
which offers user-friendly, integrated with a set of tools, editor for writing scripts.
The developer can use the semantic-web based Domain Ontology Store graphical
browser to discover available data and computational services, coupled with
Grid Resources Registry which provides the available operations that can be
invoked directly from a script. To facilitate collaboration, EPE is integrated
with the Experiment Repository based on the Subversion (SVN) version control
system — as a result many developers can work on single experiment or share
experiment codes. When the experiment is ready (it fulfills all requirements
of an end user) the developer uses dedicated EPE wizard to release it. When
it is released, it instantly becomes available through the web interface for the
scientific communitie. Moreover, clear releasing and versioning policy is very
important for provenance data that has to be connected with specific version of
the experiment.

3 Experiment execution

A script can be executed during development phase from the EPE which is
integrated with the GridSpace Engine [12] (GSEngine, Fig. 2) which acts as a
core of the runtime system. GSEngine includes the Grid Operation Invoker [13,
14] which translates high-level operations specified in the script into concrete
invocations on computational resources using appropriate technologies.

After an experiment plan is developed, tested and released, a scientist can
use a dedicated web interface (Experiment Management Interface - EMI [10])
for executing the experiment. The main advantage of the web based interface is
that the scientist does not have to have any additional software installed (only
a web browser with Java Script support is required). This tool hides the whole
complexity of technology used underneath. Scientists may browse released appli-
cations, can see their documentation and execute them. EMI is also connected
with the Gridspace Engine that is able to connect to SVN repository, download
the experiment and run it. While application executes, data for the PROToS
provenance system [15, 16] is recorded and stored into a dedicated provenance
storage. This information can be searched by scientists through QUery TRansla-
tion tOols (QUaTRO) [16, 17] - web interface dedicated for searching provenance
data.

Commit Update

experiment experiment (* Aoocas

. Service

w| Experiment Data Remote
/1y . Access Relational
Repository Client Data Base

ta T éata sources
pnse

S
on

Application
Optimizer

Browse .
experimentsl| Commit || Execution,
feedback || T eq% d

>

hilable
purces

Resource
choice

Grid

- - S R
Query for Opg:;?ion Te:hV I::;:;i;s
PFO\&e@ance Experirlll”l_ent ')> ko pecific info
ata results >\)
Invoke !!
operation
PROToS

Experiment script execution

Provenance Grid

System Operation
Generate (& Invoker Computational
provenance 4 resources
data

GSEngine

\ J

Fig. 2: Execution of a collaborative application on ViroLab virtual laboratory

4 Feedback from the end user to the experiment developer

Experiment development is a long-lasting process: bugs may occur in the
code, not every user’s requirement works correctly, additional enhancements
should be implemented, etc. These problems, in most cases, are discovered by the
end user of the application during its execution. The ViroLab virtual laboratory
supports solving this kind of problems by simplifying process of communication
between the experiment user and its developer. EMI allows the end user to
submit feedback that can be useful for the developer who is able to browse it using
EPE, respond to it and take it into account when creating a new version of the
experiment. Scientists can track progress of the new version of the experiment
development using simple SVN client (as a standalone or web based application)
and help developer during this phase (with e.g. further comments).

5 Conclusions and future work

The unique feature of the virtual laboratory developed for ViroLab is that
by providing a set of user friendly tools, both advanced experiment developers
and domain scientists can productively collaborate and conduct their research

in modern highly distributed environment. Thanks to scripting language it is
possible to define even complex experiments easily, still remaining on a high-level
of abstraction and concealing the details of underlying grid middleware.

Currently the first prototype of the integrated virtual laboratory is released,
installed and accessible by the experiment developers and the scientists (see [18]
for software download and access to the Experiment Management Environment)
who start to set up communities that share the data, resources, created experi-
ments scripts and the knowledge.

Future work will concentrate on providing additional methodologies and tools
that allow to create applications based on the data, resources and experience of
the community. It is worth mentioning that those applications are created by
many developers and are available for many scientists. Currently the work on
management of results produced by experiments is in progress. Afterwards, data
will be connected with ontological description of the environment. Consequently,
finding interesting information will be easy and connecting it with provenance
data will allow to track back the origin of this data. This functionality is very
important for the virologists who are the main end users of the ViroLab virtual
laboratory.

Acknowledgements This work was partially funded by the European Com-
mission, Project ViroLab IST-027446, the related Polish grant SPUB-M and the
Foundation for Polish Science.

References

1. Peter M.A. Sloot, Ilkay Altintas, Marian Bubak, Charles A. Boucher: From
Molecule to Man: Decision Support in Individualized E-Health; IEEE Computer
Society, vol 39, no.11, pp. 40-46, Nov., 2006

2. Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Sonal Patil, Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scien-
tific workflows onto the grid. In Grid Computing: Second European AcrossGrids
Conference, AxzGrids, volume 3165 of Lecture Notes in Computer Science, pages
11-20. Springer, 2004.

3. Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison: Visual grid work-
flow in Triana. Journal of Grid Computing, 3(3-4):153-169, September 2005.

4. Tomasz Gubala and Andreas Hoheisel: Highly dynamic workflow orchestration
for scientific applications. In CoreGRID Intergation Workshop 2006 (CIWO06),
pages 309-320. ACC CYFRONET AGH, 2006.

5. Ruby programming language http://www.ruby-lang.org

6. Web Service http://www.w3.org/2002/ws

7. Web Service Resource Framework http://www.oasis-open.org/committees/
wsrf

8. Maciej Malawski, Marian Bubak, Michal Placek, Dawid Kurzyniec, and Vaidy
Sunderam: Experiments with distributed component computing across grid
boundaries. In Proceedings of the HPC-GECO/CompFrame workshop in con-
junction with HPDC' 2006, Paris, France, 2006.

9. OGSA-DAI homepage http://www.ogsadai.org.uk

10.

11.
12.

13.

14.

15.

16.

17.

18.

Wilodzimierz Funika, Daniel Harezlak, Dariusz Krol,Piotr Pegiel, Marian Bubak
Developer and User Interfaces to the Virolab Virtual Laboratory. In Proceedings
of Cracow Grid Workshop 2007, This volume.

Eclipse - an open development platform www.eclipse.org

Eryk Ciepiela, Joanna Kocot, Tomasz Gubala, Maciej Malawski, Marek Kasztel-
nik, Marian Bubak: Virtual Laboratory Engine - GridSpace Engine. In Proceed-
ings of Cracow Grid Workshop 2007, This volume.

Tomasz Bartyriski, Marian Bubak, Tomasz Gubala, Maciej Malawski: Universal
Grid Client: Grid Operation Invoker In Proc. PPAM 2007, Seventh International
Conference on Parallel Processing and Applied Mathematics, LNCS, Gdansk,
Poland, Sept. 2007. Springer. In print.

Maciej Malawski, Tomasz Bartynski, Marian Bubak: Invocation of Grid Opera-
tions in the ViroLab Virtual Laboratory. In Proceedings of Cracow Grid Workshop
2007, This volume.

Bartosz Balis, Marian Bubak, and Jakub Wach: Provenance Tracking in the
ViroLab Virtual Laboratory. In Proc. PPAM 2007, Seventh International Con-
ference on Parallel Processing and Applied Mathematics, LNCS, Gdansk, Poland,
Sept. 2007. Springer. In print.

Bartosz Bali, Marian Bubak, Michal Pelczar, Jakub Wach: Provenance Tracking
and Querying in ViroLab. In Proceedings of Cracow Grid Workshop 2007, This
volume.

Bartosz Balis, Marian Bubak, Jakub Wach: User-Oriented Querying over Repos-
itories of Data and Provenance. In Proc. 3rd IEEE International Conference on
e-Science and Grid Computing, e-Science 2007, IEEE Computer Society, Banga-
lore, India, Dec. 2007.

The ViroLab Project Consortium. The ViroLab Virtual Laboratory Website,
2007. http://virolab.cyfronet.pl

