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Abstract

Today, scientific computations undeniably play very important role in research, engineering and business appli-

cations. Their increasing adoption and capabilities are also driven by exponential growth of available computing

power and disk storage. Researchers are able to execute very complex simulations and experiments which involve

processing petabytes of data using clusters consisting of thousands of machines. Already established solutions for

storing and accessing data like relation databases become bottleneck in such situations and create demand for more

scalable solutions.

In the scope of this thesis aim to answer whether using new, modern databases such as MongoDB and Riak

could help in designing and executing large scale scientific computations. As a result we analyzed real biological

experiment to create new benchmark tool set that could simulate it and generate comparable scores. Multiple

tests were executed using AWS EC2 to try different configurations of load and databases. We carefully examined

obtained figures trying to show strengths and weaknesses of both databases.

The results show that new, different types of database engines can take advantage of modern computing en-

vironments and accelerate creating scientific computations. However most of their performance and scalability

features brings certain limitations in other areas which makes choosing right data store a hard decision that needs

to be backed up by proper study of a given use case and a database.
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1. Introduction

This chapter introduces purpose and background of this thesis. In section 1.1 we explain requirements of

scientific computations. In section 1.2 we explain problems regarding accessing computational data. In section 1.3

we present our reference application. Section 1.4 formulates goals of this thesis.

1.1. Scientific computations

Computing undeniable plays big role in today’s science and engineering. The advanced mathematical models

analyzed by computers help scientists to understand, verify, simulate and overcome many difficult problems. Often

they are so complex that require vast amount of computational power and data storage. The demand for faster,

cheaper computations seems be limitless and for years it has driven development of supercomputers in research

centers around the world. In the Figure ?? we can see that in 19 years amount of computational power was increas-

ing exponentially leaving us with capacity that is more then 10000 times bigger then what we had in 1993 when

TOP500 ranking was established.
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Figure 1.1: Expotential growth of supercomputers performance, based on data from top500.org site.

The logarithmic y-axis shows performance in GFLOPS. The “Sum” series combines performance of 500 largest supercomput-

ers. The “Top” shows the fastest supercomputer. The “#500” shows power of a last computer on the list (source: [1]).
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1.2. Processing large volumes of data 4

The disk storage size has also been growing exponentially in recent years. In 1993 a disk with 1500 MBytes

costed 1459 USD but today we can buy similar device with 3000000 MBytes for about 110 USD [28].

Such fast development enables us processing much bigger volumes of data in more complex ways. Currently

researchers try to collect and process petabytes of data in their experiments. Such ideas could not be even consid-

ered couple years ago.

However hardware capabilities are not the only requirement for such such computations. The software that

that runs experiments also needs to be able to take full advantage of all additional capacity. Even after years

of developing applications, libraries and other tools it is very difficult to create such computations. It requires

researchers to write and test many complicated custom programs and procedures. One of their biggest problem is

accessing large volumes of data in distributed environment where many nodes need to get random pieces of input

data very fast and being able to write results to one place so they don’t wait wasting time and power.

1.2. Processing large volumes of data

The most common approach for accessing large data sets was to persist data in form of binary or text files

which were directly consumed by computation programs directly from file system.

The file system approach has significant advantages like simplicity and scalability. It is usually built-in in

operating systems and offers raw performance for writing and reading data.

However it lacks any advanced data management, validation, partitioning, querying forcing user to choose

between writing custom programs and procedures or using database management systems (DBMS).

The choice isn’t that obvious as most popular, mature and widely adopted DBMS in both scientific and com-

mercial applications are relational databases (RDBMSs). They are designed to offer consistency and availability

sacrificing ability to work in highly distributed, heterogeneous environments. It usually means that they require

architecture in which multiple concurrent workers must be connected to one data store which quickly becomes a

bottleneck. This makes them very difficult to use in grid or cloud environment where large scale computation is

often performed on thousands of independent nodes.

Nowadays alternative databases were introduced by NoSQL movement [41] engineered to deal with problem

of scaling. They seem to be able to take full advantage of clouds and clusters. However they achieve it by limiting

some of the features like consistency or availability. They are not standardized and each one has different strength

and weaknesses. Right now there there is not enough information available on how they behave when used for

large scale computations.

1.3. Motivating application

There are many types of scientific applications that involve processing large volumes of data. Some disciplines

like bioinformatics completely rely on such experiments. In this thesis we focused on single biological experiment

that would serve us as a reference of such computation and provide us requirements and realistic sample data.

In this experiment then 40 000 RNA fragments were compared against genes CDS from 23 human chromo-

somes. The computation used SSEARCH program from FASTA [35] suite which implements Smith-Waterman

algorithm and as a result it produced more then 1 000 000 files containing thousands of positions. Such large

number of results is useless without further processing which filters and returns most interesting scores.

Researchers were facing problem how to extract useful information fast without having to traverse all these

files repeatedly. Inserting such data into database which could index it and preprocess allowing fast searching and

M. Nieć Bazy danych NoSQL w aplikacjach naukowych



1.4. Goal 5

aggregations seemed like a good idea but question was raised what type of database engine could be used and if

NoSQL solutions that could take advantage of distributed environment would be suitable.

1.4. Goal

The goals of this thesis is to review possibilities given by selected NoSQL data stores available today in terms of

scientific research. It aims to provide answers to questions like: when to use NoSQL databases? What are benefits

and what are the drawbacks? The goal will be accomplished by:

– studying existing data stores to understand their purpose, advantages and drawbacks,

– examining benchmarks, workload generators and test results available today,

– designing test procedure, implementing it and preparing execution environment,

– evaluating results,

– formulating conclusions.

1.5. Summary

In this chapter we described motivation and goals for this thesis. We discussed briefly scale related challenges to

scientific computations. We introduced our reference experiment and explained potential benefits of using NoSQL

databases in it.

M. Nieć Bazy danych NoSQL w aplikacjach naukowych



2. Comparison of database management systems

In this chapter we describe systems for managing data as this thesis focuses mostly on them. In section 2.1 we

present history of databases and try to explain their purpose and origin. Later in section 2.2 we discuss the NoSQL

movement. Next section 2.3 presents in detail two databases chosen for the experiment.

2.1. Evolution of database engines

2.1.1. Early database management systems

The need for systems specialized in managing data have been present since early days of computing. The

constantly growing data that needs to be persisted and accessed through various programs requires more and more

complex algorithms and approaches.

History of computer databases begun in 1960’ with availability of direct-access storage devices which allowed

shared, interactive use in opposite to daily batch processing offered by tape systems.

First database engines used navigational approach in which records or objects are searched by following refer-

ences from other object. Through many systems using this pattern two solutions had biggest influence - the IBM

Information Management System and General Electric Integrated Data Store. The IMS used hierarchical model

and was designed at first for the Apollo program and then adopted for civil usage. It is still used around the world

and available to buy. The second was designed by Charles Bachman who received A.M. Turing in 1973 for his

work [2] on navigational databases. The biggest advantage of these databases was raw performance for transactions

on large-scale data sets. It was superior to relational DBMSs invented later. To date these systems are used to help

DBMSs in most throughput demanding scenarios.

2.1.2. Relational databases

Second generation of database engines are relational DBMSs. They are based on relational model invented by

PhD Edgar Codd - IBM employee who wanted to mostly improve search capabilities of DBMSs used then [11]. He

proposed to organize data in many different tables consisting of fixed-length records. In Figure 2.1 relation (table)

is shown where a single column represents set of attributes and a row defining the dependency between values

in columns. Every record which is always identified by key can relate to others in one-to-many relations (like

in hierarchical model) and many-to-many relation (navigational model). Development of relational databases in

1970’ also led to invention of SQL language. This special-purpose language was designed to provide a convenient

interface for all data manipulation (inserting, updating) and browsing. As a result of these innovations IBM and

Oracle released first commercial RDBMSs in the late 1970s which started to replace old navigational systems.

From 1980s to today RDBMSs dominated data stores market being an automatic choice for people developing

new systems. What is more before started to gain popularity databases often acted as a integration layer between

diffrent systems in for example company. The monolithic system design do not assume any communication with

6
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Tuple

Attribute
Relation

Figure 2.1: Codd’s Relational Model

external services and systems. All components and layers are tightly coupled so that introducing such interface is

never easy. For years many system architect were using databases for that. The RDBMS has a few advantages in

such configuration:

Strong consistency
The RDBMSs come with strict schema and support for different validation techniques of records being in-

serted or modified. This guarantees that many different subsystems will coexists using the same data without

interrupting and breaking each other.

Availability of connectors/drivers
Most RDBMSs have grow with many libraries and connectors allowing wide range of programming lan-

guages and middlewares (linke ODBC) to work with them. Therefore systems really different in architecture

and technologies used were able to communicate with the same database.

Business logic
The databases allowed to implement Stored Procedure which could be used to implement operations on

data that many DB users can access. This allowed to implement business logic that written once could be

available for every application that is using DB.

Qualified staff
As the SQL language and relational database model became a common skill for an average software engineer.

Almost every programmer knew concepts behind it and had knowledge how to build systems on top of it.

Therefore specialists building different systems were able to integrate their systems through database easily.

Today still relational databases are most popular DBMSs (figure ??). Both commercial (Oracle, MS SQL

Server, IBM DB2) and open-source (MySQL, PostgreSQL) solutions gained wide adoption. Being developed

through out many years they become stable, reliable and grew in community and tools.

2.1.3. Object databases

In 1980s object oriented programming gained wider adoption so that software engineers started to treat data

stored in databases as objects. The problems of object-relational mismatch were mostly seen in data types differ-

ences and supporting polymorphism and inheritance. This lead to research and development of object databases,

object-relational databases object query language (OQL). The object databases have never gained wider adop-

tion while object-relational features were introduced to almost all major RDBMSs by becoming part of the

M. Nieć Bazy danych NoSQL w aplikacjach naukowych



2.1. Evolution of database engines 8

Rank Database Score

1 Oracle Relational DBMS 1544.44

2 MySQL Relational DBMS 1324.83

3 Microsoft SQL Server Relational DBMS 1304.96

4 PostgreSQL Relational DBMS 182.22

5 DB2 Relational DBMS 162.94

6 MongoDB Document store 155.99

7 Microsoft Access Relational DBMS 150.88

8 Sybase Relational DBMS 81.59

9 SQLite Relational DBMS 79.44

10 Teradata Relational DBMS 53.83

Table 2.1: Top 10 most popular databases according to DB-engines.org (2013-09-01).

SQL:1999 [19]. On the programming side ORM (Object Relational Mapper) libraries were developed to bridge

gap between objects and RDBMSs.

2.1.4. NoSQL movement

Next generation of DBMSs started to be known as NoSQL databases [41]. This name refers to databases that

do not use relational model and do not use SQL query language to operate on them. The NoSQL label does not

stand for any specific model of storing and operation on data. However databases which claim to belong to this

category are usually key-value stores and document-oriented databases where there is no schema, joins are avoided

and data is stored in denormalized state. Most of them were designed to tackle problem of massive scale which

is a problem of many web oriented companies. Therefore they offer advanced horizontal scaling and replication

mechanisms.

Popular NoSQL databases nowadays are MongoDB, Riak, CouchDB, Cassandra, HBase, Redis, Memcache.

They are becoming more and more popular (see figure 2.4 but they are still shadowed by most popular RDBMSs

engines (figure 2.3). Nevertheless the whole NoSQL movement constantly gain more and more attention (fig-

ure 2.2).

2.1.5. NewSQL relational databases

Another interesting breed of new DBMSs is called NewSQL. These databases use relational model but claim

to provide almost the same scalability as NoSQL DBs. This movement is quite new and it seems like it is driven

mostly by commercial DB producers for now. Browsing technical blogs and journals on web we might found

attempts to describe and categorize such databases.

Michael Stonebraker (MIT, co-creator of VoltDB) published blog post [40] in which he points out that leading

NoSQL databases do not offer strong consistency of data which is crucial for many applications. Without them

NoSQL are not able to replace relational databases so new SQL databases are required guaranteeing consistency

but also scalability and one-node performance.

On other technical blog [44] there is article trying to justify NewSQL as beineg a solution to constantly increas-

ing volume of data handled by classical OLTP which cannot be easily replaced by NoSQL and cannot be scaled

by today RDBMSs. Authors also try to divide NewSQL databases into 3 categories.

M. Nieć Bazy danych NoSQL w aplikacjach naukowych
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Figure 2.2: Chart showing how often term ‘nosql’ was searched in Google search engine over last few years

New databases
Designed from scratch to provide scalability and performance. Delivered as software or appliances. Exam-

ples: VoltDB1, NuoDB2, Drizzle3.

New MySQL storage engines
They replace the original MySQL engines (InnoDB, MyISAM and others) to overcome performance and

scalability issues maintaining same interface as MySQL. Examples: TokuDB4, MySQL NDB5.

Transparent clustering
Systems which retaining OLTP in original shape adding pluggable features for transparent clustering and

scalability. Examples: dbSchards6, ScaleBase7 MemSQL8.

To sum up, the NewSQL databases aim to solve performance and scalability issues of today’s OLTP. They are

RDBMSs with completely redesigned internals maintaining the same interface (SQL language) and ACID trans-

actions. They are most suitable for:

– extending current applications that need to operate on bigger volumes of data,

– developing new systems that require OLTP features,

– taking advantage of developers skilled in SQL and OLTP.

1http://www.voltdb.com
2http://www.nuodb.com
3http://www.drizzle.org
4http://www.tokutek.com/products/tokudb-for-mysql/
5http://dev.mysql.com/doc/ndbapi/en/index.html
6http://www.codefutures.com/dbshards/
7http://www.scalebase.com/
8http://www.memsql.com
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Figure 2.3: Chart showing how interest in one of the leading RBMS engine is dropping compared to leading

NoSQL database engine

2.2. NoSQL Databases

2.2.1. Genesis of NoSQL term and it’s meaning

The origins of NoSQL data stores are hard to define. Rick Cattel translates term “NoSQL” to “Not Relational”

or “Not Only SQL” saying also that there is no generally agreed definition [8]. J. Sadalage and M. Fowler in their

book about NoSQL [36] claim that NoSQL term began its career by accident in 2009. Johan Oskarsson was trying

to find short, memorable name for a meeting regarding alternative to RDBMSs data stores. The meeting was held to

discuss Voldemort, Cassandra, Dynomite, HBase, Hypertable, CouchDB, and MongoDB. Each of databases share

some concepts and ideas but they are far from compatible between each other and they serve different purpose.

What they all had in common was the time they were created and the fact that they were very different from SQL

solutions. Therefore term once used in Twitter9 started becoming more and more popular in IT world and now

refers not only to them but also to other similar solutions. It is imporatant to know that event if it is quite wide set

it does not include other not relational databases which were created in before 2000.

2.2.2. Purpose

Figure 2.5 shows the data collected by Cisco company. The charts shows estimation of average monthly traffic

that was generated in global internet. There is no doubt that after year 2000 there was major increase in internet

adoption. The constantly increasing number of people connected to Internet alongside with new concept of WWW

called Web 2.0 created completely new challenges for IT industry.

As co-author of Web 2.0 term Tim O’reilly said in one of this presentations “The key to competitive advantage

in internet applications is the extent to which users add their own data to that which you provide.” [33]. That meant

that servers and systems delivering the data to user via Internet had to change dramatically. They needed not only

to sent published content to the user but also to receive, validate and store data from the user. Allowing the same

data to be accessed by other users. This task required usage of databases capable of processing many concurrent

9http://www.twitter.com
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Figure 2.4: Chart showing interest some of the most popular NoSQL database engines

requests each second. At first RDBMS as leading industry standard were used rather succeeding and maintaining

strong position in web development to date. Nevertheless they showed a few drawbacks which were quite relevant

for some systems facing constantly growing number of users and requests.

The RDBMSs were designed to run of single computer. Scaling database could have been done only in so

called vertical way - meaning buying better hardware (CPU, Memory) to database node. Increasing throughput or

availability horizontally - by adding more nodes to cluster was not available. The vertical scaling worked well for

many solutions. Also problem of scaling could have been solved by decomposing systems to smaller subsystems

having separate databases and working with each other using SOA architecture.

Nevertheless web companies which gained enormous popularity among the globe (such as Google, Amazon)

could not satisfy their need for persisting and accessing data with RDBMS. Therefore they started to research

solutions possessing following features:

Distibuting load horizontally
Multiple nodes automaticly split the incoming request so that each one server only part of the requests.

Replication to many nodes
Data is partitioned and replicated to multiple cooperating nodes.

Simple interface
Removing SQL language layer in RDBMS.

Weaker concurrency model
Ability to execute operations more parallel using modern multicore CPU.

Efficient use of hardware
Taking advantage of modern hardware rich in large volumes of fast memory and many fast CPU cores.

No strict schema
Ability to add new attributes and record types without changing database schema.

M. Nieć Bazy danych NoSQL w aplikacjach naukowych
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Figure 2.5: Rapid growth of the Internet

As a results many products were created. The most significant ones that inspired many others were Google

BigTable [9], Amazon Dynamo[17] and open source project - memcached10.

BigTable showed ways of storing petabytes of data spread accross thousands of nodes.

Dynamo introduced concept of eventual consistency which is way of achieving high availability sacrificing strong

consistency. Data fetch might not be up to date but the changes are guaranteed to be propagated to all nodes

when it is possible.

memcached showed how scalable simple key-value stores can be.

These concepts and products became a foundations for many later popular data stores such as Riak, Cassandra,

Voldemort - implementations of Dynamo white paper [17]. Hypertable11, Accumulo12, HBase13 - modeled after

BigTable. Couchbase14, Redis15 - inspired by concepts of memcached.

Alongside with these data stores graph databases emerged (such as Neo4j16) being included as NoSQL because

of solving data releated problems that current SQL database engines cannot. Most

2.2.3. CAP theorem

In 2000 Eric A. Brewer in his presentation “Towards Robust Distributed Systems” [5] at Symposium on Princi-

ples of Distributed Computing formulated conjecture based on his experiences with large scale systems. He stated

that if distributed system is meant run in a environment that allow situations like:

– disk and computer hardware failure,

– software upgrade/maintenance time off,
10http://www.memcached.org/
11http://hypertable.org/
12http://accumulo.apache.org/
13http://hbase.apache.org
14http://www.couchbase.com
15http://redis.io
16http://neo4j.org
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2.2. NoSQL Databases 13

– operating system upgrades,

– power failures,

– network outages,

– need to relocate hardware.

It can only posses maximum two features from:

Consistency - all nodes in system access the same data.

Availability - system always can report back if operation was successful or not.

Partition tolerance - system is able to operate when there is failure in communication between parts of the system.

In 2002 Seth Gilbert and Nancy Lynch proposed formal model and prof of the Brewer’s theorem [21]. There-

fore we can use CAP theorem to divide distributed systems into 3 categories for each different combinations o 2

qualities mentioned earlier. Next sections try to describe systems belonging to each category using databases as

an specific example of DS. However note must be taken that most of the NoSQL databases given in examples are

highly configurable in terms of qualities described here. By putting them to one of 3 categories we take into the

consideration their default parameters and use case.

Forfeit Partitions

This is category which includes all “classic” RDBMS, cluster databases, some distributed file systems. In order

to achieve consistency in distributed environment the write or read operation must be done exclusively. This means

that all nodes must take part and in such operation. Such property excludes the database being able to operate in

face of network split when hosts cannot communicate between each other. Node or network split in cluster mean

that database is unavailable.

Forfeit Availability

Systems like scalable NewSQL databases, Google’s BigTable, HBase or specific distributed databases (for

example Mnesia17) are designed to run on many nodes while always accessing the same data. Nevertheless they

cannot guarantee the consistency while running when one of hosts is down. In such conditions some operations on

database might be successful while some which need disconnected node to participate might fail.

Forfeit Consistency

To this category belong systems like DNS, World Wide Web (WWW) caching and highly available data stores

like Dynamo. These systems cannot promise consistency because they allow clients to read and write data even

when communication between nodes is down. This leads to conflicts which are not rejected during write but are

promised to be resolved as soon as it’s possible after communications is back again.

In Figure 2.6 popular databases were linked to the CAP features they posses. All SQL data stores are placed in

consistency-availability zone while NoSQL databases are placed in every combination of three features.

2.2.4. NoSQL database types

There is no officially agreed taxonomy for NoSQL database however in vast amount of sources following

categories could be spotted.

17http://www.erlang.org/doc/man/mnesia.html
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2.3. NoSQL databases selected for this thesis 14

Figure 2.6: Popular databases in context of CAP theorem

Key-Value
Allow the application to store any data in any format under specified key.

Document oriented
Operates on data encapsulated and encoded to document. ‘

Wide-column
Stores data into multidimensional sorted map.

Graph
Focuses on storing rich relations between data units.

2.3. NoSQL databases selected for this thesis

There is vast number of NoSQL data stores available nowadays. In this thesis two of them were analyzed and

tested: MongoDB and Riak, for the following reasons. These databases are quite different in concept and features.

Their tests and deep comparison should point out advantages and shortcomings in terms of scientific applications.

Also having tested these NoSQL data stores alongside popular, open-source member of RDBMS family – MySQL

should help answer the question: under what circumstances NoSQL are better option then traditional database

engines?
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2.3.1. MongoDB

The creators of MongoDB present it [32] as world’s leading NoSQL database. They claim [29] that Mon-

goDB posses features such as “full index support”, “replication & high availablity”, “automatic sharding”, “rich

document-based queries”, “fast in-place updates”, “map/reduce”.

All these things together promise scalability and flexibility of an NoSQL database while maintaining consis-

tency and advanced querying mechanisms known from RDBMS engines.

Advanced indexing

Despite the fact that MongoDB is schema-less database it supports creating various types of indexes that should

dramatically fasten searching large number of documents. There are different types of indexes:

Main – the main unique index on _id field which is mandatory to every document. If new document does not

posses this field the data store generates it.

Secondary – an index creted by user that can be based on any field in document. It can be created anytime however

adding new index to a large collection could start long lasting indexing operation.

Unique – an index that causes MongoDB to reject a document that posses duplicated value for the indexed field.

Sub-document – an index holding sub-documents. Allows queries that select documents comparing whole em-

bedded documents.

Embedded fields – an index based on a field of a sub-document.

Compound – an single index but based on two or more fields of a document.

Multikey – an index on a field that contains an array. Supports querying for documents that posses specified keys

in these arrays.

Sparse – an index containing entries only for documents possessing the indexed field.

Hashed – an index containing entries which are hashed values of the indexed field. Used for equality comparison

and for partitioning.

Replication and Partitioning

MongoDB defines Replica Set and Shard. Both solutions assumes running mongodb in distributed environment

where each node is a mongod instance running exclusively on one machine.

Replica Set aims to provide redundancy and increased availability [30] by managing a group of mongod in-

stances and replicating data between them. The replica set consists of one primary instance, one or more secondary

instances and optional arbiter.

The primary node is responsible for handling all write operations to replica set. It writes data to disk and to

oplog.

Secondaries are nodes which mirror data that primary is writing. The repliation is done in asynchronus way.

The operations from oplog are streamed from primary to secondaries.

Arbiter nodes are optional nodes that help in election of the primary. Whenever primary is not reponding to

heartbeat requests the Replica Set elects new primary from secondaries.

All read operations goes to primary node by default. Therefore without changes on client side introducing

replica set helps only to make service more fault tolerant and prevent data loss in case of primary node crashes,
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power failures etc. The client can configure driver when it comes write/read operations. By manipulating with

write/read concerns levels it can trade performance for durability and fault tolerance.

Write concern levels are:

Errors Ignored – the write operations are not acknowledged and all connectivity errors are ignored.

Unacknowledged – the write operations are not acknowledged but the driver reports all connectivity related errors.

Acknowledged – driver wait for the write operation to be successfully written to database. This allows to detect

errors like duplicated key.

Journaled – the write operation returns after write completes and the operation is written to oplog.

Replica Acknowledged – the write is acknowledged by specified number of secondary nodes.

Read concerns levels are:

Primary – all reads are performed using primary node.

Primary preferred – if primary is unavailable, operations red from secondaries.

Secondary – all reads are performed using secondaries nodes.

Secondary Preferred – only if secondaries are occupied primary is used.

Nearest – all reads are performed using the nearest node.

If MongoDB clients turn on reading from secondaries nodes the throughput of read operations is greatly im-

proved at cost of data no longer guarantees to be up to date. If this is unacceptable the client can configure the write

operation to succeed only if all replicas are acknowledged. This however affects the write performance since each

operation need to wait for all replicas to acknowledge write. This configuration might be find itself really useful in

application when number of reads out-spaces number of writes.

Setting Primarry preferred on the other hand causes the MongoDB to always use primary guarrainting consis-

tency while also ensuring that if primary crashes the reads will be served by secondaries.

Another example of read/write configuration tighten to application need is nearest level which works really well

in database distributed across distant geographical locations. The mongos instances ran usually alongside client

applications measure the latency to particular nodes and choose the nearest. This ensures optimal performance

while retaining fault tolerance and automatic syncing between data centers.

Journaled level is very desired if highly valuable data is stored. Writing to the journal ensures that even if

nodes crashes and corrupts database state the data can be recovered from oplog. Nevertheless the journaled level

waits only for primary node to complete oplog writing. It cannot be configured to wait for secondaries to write to

oplog as well.

Despite many configuration options for read and write operations, MongoDB was criticized [39] for not being

sufficient in some failure scenarios. For example user cannot set write concern that results in data being persisted

on disk on more then one node. It’s because journaled concern affects only primary node no matter now many

replicas we have.

Shard in terms of MongoDB is a partition taking care of only part of data set. MongoDB claims that use of

shards lets achive high throughput of read/write operations and allow to handle very large data sets [31].

In theory each document in sharded collection is stored only on one shard. Therefore client who write it or

access it operates on only one instance of mongod without even knowing. The decision to which shard particular
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Figure 2.7: Single collection evenly divided into 3 shards running on separate machines.

document belongs is based on sharding key which is a MongoDB index. It is performed in mongos processes that

are also responsible for configuring shard in config server and maintaining it (balancing).

Figure 2.7 shows a typical setup in which 3 nodes run mongod instances which together host single dataset.

The data is distributed evenly meaning that MongoDB always tries to achive state in which each shard holds equal

portion of data. Internals try to dynamically split items into equal partitions and distribute them between shards.

The database allows users to choose the field which will be used to make decision to didvede the data. This field is

called shard key and it needs to be a indexed field.

Figure 2.8: Diagram of a shard with a chunk that exceeds the default chunk size of 64 MB and triggers a split of

the chunk into two chunks.

18

18http://docs.mongodb.org/manual/core/sharding-introduction
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At first all items go to single chunk on a single shard. As soon as chunk exceeds globally set limit 64 MB19

the MongoDB attempts to split the chunk into two. Each one contains items that are within calculated key range

which guarentees same size for both newly created chunks. Figure 2.8 shows example split.

According to documentation20 whole mechanisms works best when three conditions are fulfilled:

1. The collection already consists of chunks located on different hosts.

2. Consecutive inserts contain keys from different partitions.

3. Key values are distributed uniformly.

Assuming that DB MongoDB is using default settings, if there is only one chunk in collection (less then 64

MB of documents) all inserts will go to only one shard until chunk splits and data can migrate to remaining shards.

When subsequent writes are very similar they are can be usually handled only by single node which also limits

ability to fully utilize power of every host in cluster.

If keys are not distributed uniformly (for example there is big probability of items having the same id) some

chunks are overloaded. Therefore on single host occur lots of of expensive splits and migrations.

The problems mentioned above are important when designing and tuning the performance of a particular ap-

plication that uses MongoDB, and during the work on this thesis we had to deal with them and find solutions.

2.3.2. Riak

Riak is open-source, distributed database that was designed to provide maximum data availability. It was very

inspired by concepts described in Amazon’s Dynamo white-paper [17].

It is designed to run in distributed environment on a number of hosts. The documentation [25] highlights its

four main goals: availability, operational simplicity, scalability, masterless.

Masterless, distributed architecture

Riak database is designed to run as a distributed system, using more then one host. Their creators advise

running at least 5 nodes to achieved desired performance under default, safe settings21.

The cluster consists of nodes which are instances of riak program – usually one per host. Cluster is very

uniform, meaning that each node is equal and perform same tasks as rest of the nodes. This architecture in threory

has following advantages.

No single points of failure
Each node in cluster is equal and performs same tasks, cooperating with the others. Although cluster mem-

bers do not depend on each other which means that failure of one node or a network split does not stop

database from functioning.

Simplified maintenance
All Riak hosts are configured in very similar way. Also whole database does not require complicated startup

procedure. Therefore configuration and maintenance can be simplified and streamlined lowering probability

of operator’s error.

Extendibility
Due to usage of gossip protocol all nodes in the cluster communicate with each other exchanging information

19http://docs.mongodb.org/manual/core/sharding-chunk-splitting/
20http://docs.mongodb.org/manual/core/sharding-introduction/
21http://docs.basho.com/riak/latest/theory/why-riak/
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about database state and actual members of the cluster. This allows new hosts to be join or leave cluster

automatically without any manual configurations.

Keys and consistent hashing
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Figure 2.9: Diagram of Riak’s key space divided into 64 partitions assigned to 5 distinct nodes.

Riak is key-value store therefore unlike traditional RDBMSs or MongoDB it doesn’t put any constraint on data

being stored nor examine it’s content. It requires only each data item to be associated with a unique key.

The unique key is a string used to access the object and also to determine it’s actual location inside the database.

It is transformed to 160 bit long value out of it using SHA-1 algorithm. This value indicates object’s position in

the ring which is a continuous space divided into 64 equal partitions. As presented in Figure 2.9 every partition in

the rings managed by one of the Riak node’s. These partitions are called virtual nodes or vnode. Information about

vnode mapping is stored on every node and kept in sync.

Such architecture enables efficient routing because every node knows where exactly documents are physically

stored so it can route directly a request from client to target node.

It also simplifies any migration of data between Riak nodes as partitions are fairly even and have fixed bound-

aries.
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Replication and Partitioning

One of the main features of Riak is strong, configurable fault tolerance which can be configured by changing

replication and querying parameters known as N, R, W.

N – defines how many hosts should store single value. Upon write algorithm always stores object in node that

is assigned to item’s partition. Additional nodes are the ones that are responsible for consecutive partitions.

Because adjacent partitions are always assigned to distinct nodes there is no risk that 2 or more replicas are

stored on one physical host that could go down and irreversibly lose data.

R – defines how many replicas should be successfully fetched before read operation is considered successful and

returns to client with result.

W – defines how many replicas should acknowledge writing item before write successfully returns to client.

Different combinations of parameters above allow to do trade between latency, availability, partition tolerance

and level of consistency.

Storage backends

One of Riak’s unique features are pluggable storage backends which allow to choose different method of

persisting data on a node. The database comes with 3 backends built-in.

Bitcask
This is default option for storing data on Riak node. This engine is integrated with Riak as it is Erlang

application which coexists with Riak inside one Erlang virtual machine.

Information about position of specified document in disk file is stored in fast hashtable. Each read operation

requires constant lookup in hashtable, one seek call to operating system and reading bytes. Write operations

consist of hashtable operations and appending a file. These are all operations that are considered optimal in

such scenario.

Therefore it’s possible to achive low latency and predictable performance. Also thanks to append only

method of writing database file backups are greatly simplified.

Weakness of descried solution lies in hashtable that stores positions associated with keys. It must fit in the

host memory otherwise it terminates abnormally.

LevelDB
The backend that uses an open source key-value store LevelDB22 written by Google Inc. It performs fast

compression using Snappy23 algorithm so it can save significant amount of space when storing large doc-

uments containing lots of redundant information. It is not limited by host’s memory as Bitcask. It is also

proven to be very fast when it comes to both read and write operations [26].

Memory
Memory backend is very simple engine that stores all data in memory. Disk is not used at all therefore

performance is greatly improved but available space is very limited and node failure always results in data

being lost.
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Table 2.2: Comparison of key characteristics for MySQL, MongoDB and Riak

Database Type Consistency Availability Clustering Indexing
MySQL RDBMS Strong consis-

tency achieved

by transactions.

High availability,

no dependencies

on remote hosts.

Master-slave

replication only,

cannot divide

data into parti-

tions handled by

separate hosts.

B-tree indexes on

columns, R-tree

spatial indexes

MongoDB Document store Strong consis-

tency achieved

by readers-writer

locking.

Low availability,

only primary

nodes can alter

data set

Supports parti-

tioning, “Replica

sets” mechanism

for increasing

fault tolerance

and availability.

B-tree indexes

on fields of

document

Riak Key–value store Eventually

consistent, mul-

tiple conflicting

version of data

might occur. Uses

vector clocks.

Always available,

no primary hosts.

Failure of single

host doesn’t af-

fect delivery.

Distributes

and replicates

data uniformly

between all

available host.

Secondary in-

dexes appended

to key-value pair

2.4. Summary

In this chapter we presented history of databases and explained how they evolved during last 50 years into very

essential component of current systems. Later we described and compared in detail different types of databases

explaining their purpose and principles. Next we choose two NoSQL products to be take part in our test and we

described them in detail. Finally in table 2.2 we tried to summarize their key features and compare them against

SQL database.

22https://code.google.com/leveldb/
23https://code.google.com/snappy/
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3. Related Work

Section 3.1 presents transactional benchmarks maintained for years by TPC organization. Section 3.2 describes

newer approach taken in Yahoo Labs that was tailored for NoSQL solutions. Last section 3.3 tries to discuss results

described in different research papers.

3.1. TPC

The Transaction Processing Performance Council is a non-profit organization that delivers independent, reli-

able, transparent benchmarks for transaction processing and databases. It was founded in 1988 and today it gathers

many IT companies alongside researchers and independent experts. Together they work on defining test procedures

and conducting tests of different data stores.

All maintained test procedures require database that posses Atomicity, Consistency, Isolation, Durability

(ACID) properties and their specifications often operate on terms specific to relational databases.

Currently the organization has number of benchmarks types and specifications. They are defined in detail and

try to recreate conditions known from typical business applications. They aim to provide reliable info not only

about the performance but also about cost and energy efficiency.

The results are available online1 and they contain hundreds of test runs conducted on different databases,

hardware and operating systems.

3.1.1. TCP-C

The TCP-C [15] benchmark is simulating computer environment used for managing warehouses or stocks

where large population on independent clients executes transactions against several databases simulating placing

orders, entering products etc. Such conditions are rather common for a system that is involved into managing,

selling or distributing products and services.

The primary result of this benchmark is number of transactions per minute (tpmC) and associated price per

transaction ($/tpmC).

3.1.2. TCP-DS

Another benchmark TCP-DS [16] which models load that is generated by typical decision support systems

used in business. In scenario like this user operates on large data set executing reporting, ad hoc, iterative OLAP

and data mining queries.

The result of benchmark is QphDS@SF which is a metric that is calculated from scale factor, number of queries

divided by total time of tests.

1http:/www.tpc.org/information/results.asp
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3.1.3. TCP-E

The TCP-E suite simulates the workload typical for brokerage firm. The test driver simulates customers of the

firm and stock exchange that performs transactions on the same data. The goal here is to measure the performance

of a single, central database that holds customer accounts information.

The performance is measured in transactions per second (tpsE).

3.1.4. Others

Remaining specifications define standards for measuring performance in virtual environments (TPC-VMS),

cost effectives (TPC-Pricing) and energy efficiency (TPC-Energy).

3.2. YCSB

One of the most notable tool used to measure the performance of NoSQL system is the Yahoo! Cloud Serving

Benchmark written by Brian F. Cooper. It was described for the first time in [14] providing also performance

figures for a few databases that were available for use at that time. The tool tried to establish a standard routine for

checking most important characteristics of distributed databases used in general web development. It consists of a

two tiers: Performance and Scalability.

The Performance tier focuses on mean response time for each request because it assumes that typically in web

applications database drives the responsiveness of whole application seen from user perspective. If requests to

database take very long user might be unsatisfied or it will not receive any response due to timeout in higher layers.

It answers what is maximum throughput under which database is still reasonably responsive.

The Scalability tier is oriented around measuring performance and elasticity in regards of number of nodes in

a cluster. First, the same test runs are executed against database cluster with different number of hosts to establish

the benefit of adding new nodes to cluster. Second, the database is added a node during the test to measure how

fast it will take advantage of additional host.

The benchmark presented in [14] was testing Cassandra 0.5.0, HBase 0.20.3, 2 MySQL based solutions. Cluster

consisted of six server-class machines and it revealed differences in performance under different work loads and

more interestingly showed what are limits for throughput they can handle.

The scalability results showed good horizontal scalability when it comes to read performance. It also high-

lighted Cassandra’s issue with adding new database host to cluster under load. This operation worsen the perfor-

mance mostly due to inefficient replication mechanism which was moving data to new host.

The YCSB project is still actively developed and available open source at [13]. It has became a popular tool

used to perform benchmark. For example [7] is a benchmark published in 2012 which used newer version of YCSB

and tested more recent versions of databases mentioned above and also Riak 1.1.1 and MongoDB 2.0.5. The test

was conducted using 4 Amazon AWS2 instances of type m1.xlarge and highlighted impact of different databases

setting and features such as deferred log flushing or mapping files in memory.

3.3. Studies regarding NoSQL databases

In [27] researchers use YCSB and their custom framework to measure impact of adding new hosts to database

cluster in cloud environment. Authors were using from 8 to 24 virtual machines from private OpenStack instance

2http://aws.amazon.com/ec2
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to run HBase, Cassandra and Riak cluster. They measured time that it takes for the cluster to rebalance and the

impact of this rebalance to latency and other metrics. Interestingly they showed differences in amount of data that

was moved during rebalance highlighting the the strengths and weaknesses of different implementations.

Another interesting research [18] studied MongoDB as a backend for Hadoop, comparing it to it’s default

storage HDFS. Elif Dede at al. established a number of different tests for single and 2 node configuration of

MongoDB. First they tested it as storage for Hadoop workers checkpoints measuring how many concurrent workers

can write every 10s large data (1MB or 64KB) without causing any overhead on Hadoop job. Next test compared

HDFS and MongoDB performance in writing and reading small documents. The results showed that HDFS is faster

in both read and writes by 3:1 and 24:1 ratio. Third test reveled that MongoDB built in MapReduce functionality

is on average five times slower then a setup consisted of 2 Hadoop workers that use MongoDB as data store.

Following tests tried to compare this setup against Hadoop using HDFS. Again the results showed that MongoDB

is much slower compared to competitor. Interestingly study showed that there was almost no difference in the

performance when using one or two MongoDB host in sharding setup.

3.4. Summary

In the past there were successful attempts to obtain objective, comparable performance figures for SQL

database. The TPC organization still maintains benchmarks and rankings of transactional systems helping IT ex-

perts in making important design decisions.

Unfortunately those tools cannot be used to measure NoSQL databases. Subject of comparing NoSQL per-

formance and capabilities gains more attention as the adoption of these databases constantly grows. Number of

studies is still low and they show big differences in results. Because there is no standard for these type of databases

they often show big difference in the way they try to deliver the same functionality to client. Often implementation

and configurations details have big effect on the results leading to confusion and wrong conclusions.

It seems that almost every decision whether to use NoSQL solution or not should be made after careful and de-

tailed studies. These can be very difficult to conduct without proper literature and well documented tests. Therefore

until industry accepts well defined and accepted standards for implementing and benchmarking NoSQL databases

it’s worth to conduct experiments similar to this thesis.
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4. Design of the experiment

In section 4.1 we analyze requirements of scientific computation that we used as reference and design bench-

marking procedure based on them. Section 4.2 describes test environment that was used. Last section 4.3 describes

how we gathered various metrics of systems under test.

4.1. Benchmark application and workload

To find if and how NoSQL databases can be used in scientific applications benchmarking involves using actual

scientific data that was acquired due to courtesy of Mr Tomasz Gubała from ACC Cyfronet. The data is part of a

research that included finding matches between 46655 RNA fragments and of all human genes.

In this study each RNA fragment was compared to every sequence from each of 24 human chromosomes by

running SSEARCH program from FASTA [35] framework. The result of SSEARCH program is stored in single file

(PASTA format, described later) which has size between 9-12MB. Whole available data set consists of 1,119,820

files and weights almost 13TB.

Such large data set of results requires a lot of computations in order to extract informations that could be used

to formulate some conclusions about the whole experiment. This could be achieved by running many parallel tasks,

executed against these files on a cluster using PBS queuing system. Such procedure returns single results after all

documents are read. The biggest drawback of this solution is that a single change in map reduce procedure requires

running it against all input files.

4.1.1. Requirements for experiment

The goal of these tests was to simulate a job that would insert all the documents to database first and then

access it directly from there. This should be much more efficient then accessing data by directly reading it from

files. The job should a single, simple program that could be executed in any grid or cloud environments.

To get the requirements for such job a number of tests and manual checks were done using real grid Zeus which

is a supercomputer ranked in TOP500 list [43] and operated by Academic Computer Center CYFRONET.

In environments like this user usually don’t allow direct access to shell and underlying operating system. User

has to submit a shell script that is then executed by a scheduler on random nodes. The API and environment

variables are very limited especially when it comes to running many concurrent jobs that need to be coordinated.

The test procedures should address the following problems we faced when running the experiments in a dis-

tributed environment such as the Zeus cluster:

Synchronization - The database nodes requires to be initialized first, before workers are started. Also reading test

shouldn’t begin when there are some workers that still hasn’t finish writing the data.

Communication - Workers responsible for reading and writing data need to be provisioned with database end-

points which are hostname or ip addresses. In grid or cloud environment they are assigned randomly.
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Different hardware requirements - Workers and database nodes require different nodes. Databases utilize CPU,

RAM and disk differently but in general the performance can be greatly improved by using increasing nodes

specification. Also discrepancy in nodes specification can lead to bottlenecks and benchmark unreliability.

On the other hand, worker’s script usually doesn’t have such requirements and it’s meant to be ran on any

available hardware which reduces costs or speed up time spent in the job queue.

The testing procedure described in next section was designed to tackle these problems. It is very modular,

consisting of stand alone components that are highly configurable, written in Python and delivered as a single

package. It includes benchmark program that reads input and writes and then reads, monitoring which gathers

information about system under test, test executor which schedules execution of right steps on different hosts and

provider which creates and configures hosts in the cloud.

4.1.2. FASTA files

The test procedure involves operations on real scientific data. In this case these are results of genome related

computation conducted in order to find which RNA fragments.

For the sake of experiment random 500 of these were chosen and placed on disk. So that each machine taking

part in experiment had access to them no matter which role it played in experiment.

The FASTA output is in PASTA format and posses well defined structure containing results of a computation

that need to be loaded, processed, filtered and then put to database by benchmarking programs.

Listing 4.1 shows the beginning of such file. It contains information regarding target RNA sequence and pa-

rameters received by SSEARCH program – values prefixed with pg_ and mp_.

Listing 4.1: Begening of FASTA results file. Contains information about parameters and examined fragment.

1 >>> g i | 1 0 0 4 1 3 1 0 0 | r e f | NR_003084 . 1 | , 1641 n t vs c d s _ c h r 1 . f a l i b r a r y

2 ; pg_name : / f a s t a −36/ b i n / s s e a r c h 3 6

3 ; pg_ver : 36 .06

4 ; pg_argv : /ARGUMENTS/

5 ; pg_name_alg : Smith−Waterman ( SSE2 , Michae l F a r r a r 2006)

6 ; p g _ v e r _ r e l : 7 . 1 Aug 2009

7 ; p g _ m a t r i x : +5/−4 ( 5 : −4 )

8 ; pg_open−e x t : −12 −4

9 ; mp_ext rap : 60000 7949

10 ; m p _ s t a t s : E x p e c t a t i o n _ n f i t : rho ( l n ( x ) ) = 9 . 4 7 2 0 + / −0 . 0 0 1 5 6 ; mu= 26.9838+/ − 0 .103 ⤦

Ç mean_var =198 .4934+/ −36 .994 , 0 ’ s : 0 Z− t r i m ( 1 1 5 . 5 ) : 3 B− t r i m : 0 i n 0 /51 Lambda= ⤦

Ç 0 .091034

11 ; mp_KS : −0.0000 (N=0) a t 20

12 ; mp_Algori thm : Smith−Waterman ( SSE2 , Michae l F a r r a r 2006) ( 7 . 1 Aug 2009)

13 ; mp_Parameters : +5/−4 m a t r i x ( 5 : −4 ) , open / e x t : −12/−4

For each compared Coding DNA Sequence there is an entry (see Listing 4.2) describing similarity between

Coding DNA Sequence and target RNA. An entry contains score (line 7) which informs how good matched frag-

ments are. After that their exact location (line 11) is given alongside with fragments themselves.

Listing 4.2: Fragment of a file containing FASTA results

1 >> g s _ s e q u e n c e | 5 4 1 2 | gs_gene | 5 4 1 2 | chromosome | 1

2 ; sw_frame : f

3 ; sw_s−w o p t : 219

4 ; sw_z− s c o r e : 145 .2

5 ; s w _ b i t s : 3 7 . 9

6 ; sw_expec t : 0 . 053
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7 ; sw_score : 219

8 ; s w _ i d e n t : 0 . 673

9 ; sw_sim : 0 .673

10 ; s w _ o v e r l a p : 147

11 > g i |100413100 . .

12 ; s q _ l e n : 1641

13 ; s q _ o f f s e t : 1

14 ; s q _ t y p e : D

15 ; a l _ s t a r t : 432

16 ; a l _ s t o p : 574

17 ; a l _ d i s p l a y _ s t a r t : 432

18 AAAGTATATGTGTGTGT−−GTGTGGAGCTGAGACAGGCTCGGCAGCGGCA

19 CAGAATGAGGGAAGACGAGAAAGAGAGTGGGAGAGAGAGAGGCAGAGAGG

20 GAGAGAGGGAGAGTGACAGCAGCGCTCGAGAC−GGACGGCA−AGCGG

21 > g s _ s e q u e n c e | 5 4 1 2 | gs_gene | 5 4 1 2 | chromosome | 1 . .

22 ; s q _ l e n : 453

23 ; s q _ o f f s e t : 1

24 ; s q _ t y p e : D

25 ; a l _ s t a r t : 161

26 ; a l _ s t o p : 303

27 ; a l _ d i s p l a y _ s t a r t : 161

28 AAAGTAAGAGAGAGAGAAAGAGAGGAAGAGAGAGAGGAGAGGAAGGGGGG

29 GTGGA−GAGG−AAGAC−AGAGAGGAAGAGGGAGAGGGAGAGGAAGAGAGA

30 GAGAGAGGGAGAGGAAGAG−AGAGAGGGAGACAGGAAGAGAGAGCGG

4.1.3. Benchmark program

The benchmark application is a program which loads pasta file, parses its content from FASTA format and

converts it to JSON (see Listing 4.3) that is accepted by both databases, and writes it to desired database. It also

saves document ids that will be randomly picked during read test that follows write test. The program counts how

many separate documents were written or read in each second.
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Figure 4.1: Write and read characteristics of benchmark program running without any database connected.

M. Nieć Bazy danych NoSQL w aplikacjach naukowych



4.1. Benchmark application and workload 28

The application was designed with speed in mind so that it has minimal impact on database performance mea-

surement while still being realistic example of scientific computation. Results of benchmark without any database

connected presented in Figure 4.1 shows that single program was able to process 100 input files in 233s creating

5017837 documents. This gives average speed of 21444 writes/s that is maintained during whole run. In read phase

program showed that it’s capable of doing more then 60000 requests/s. This proves that these program run concur-

rently on many machines is able to generate load that will be sufficient to overload desired databases. The test was

conducted in the same environment as real tests described in chapter 5.

Listing 4.3: Example documents created by benchmark program from pasta files

1 / / t a s k s

2 {

3 " _ i d " : O b j e c t I d ( " 536426579182 bf0b79da7954 " ) ,

4 " t " : " 601 " ,

5 " mp_Parameters " : " +5/−4 m a t r i x ( 5 : −4 ) , open / e x t : −12/−4\ n " ,

6 " pg_name " : " / p e o p l e / ymgubala / f a s t a / f a s t a − 3 6 . 2 . 7 / b i n / s s e a r c h 3 6 \ n " ,

7 " pg_open−e x t " : "−12 −4\ n " ,

8 " p g _ m a t r i x " : " +5/−4 ( 5 : −4 ) \ n " ,

9 " pg_ver " : " 3 6 . 0 6 \ n " ,

10 " mp_Algori thm " : " Smith−Waterman ( SSE2 , Michae l F a r r a r 2006) ( 7 . 1 Aug 2009) \ n " ,

11 "mp_KS" : " −0.0000 (N=0) a t 2 0 \ n " ,

12 " m p _ s t a t s " : " E x p e c t a t i o n _ n f i t : rho ( l n ( x ) ) = 1 1 . 3 4 0 8 + / −0 . 0 0 1 6 5 ; mu= 21.4283+/ − 0 .108 ⤦

Ç mean_var =227 .0713+/ −43 .292 , 0 ’ s : 0 Z− t r i m ( 1 1 5 . 5 ) : 81 B− t r i m : 0 i n 0 /51 Lambda= ⤦

Ç 0 . 0 8 5 1 1 2 \ n " ,

13 " mp_ext rap " : " 60000 7878 \ n " ,

14 " pg_argv " : " / p e o p l e / ymgubala / f a s t a / f a s t a − 3 6 . 2 . 7 / b i n / s s e a r c h 3 6 −Q −H −m 10 −W 0 −E ⤦

Ç 1000000000 1 . 0 / s c r a t c h − l u s t r e / ymgubala / p a s t a / s e q s / i n p u t −34801. f a s t a ⤦

Ç / s c r a t c h − l u s t r e / ymgubala / p a s t a / c d s _ c h r 1 . f a \ n "

15 }

16

17 / / rna

18 {

19 " _ i d " : O b j e c t I d ( " 536426579182 bf0b79da7955 " ) ,

20 " t " : " 602 " ,

21 " b " : 3369 ,

22 " e " : 3797 ,

23 " l " : 428 ,

24 " s " : ⤦

Ç "GCTCGCCAGCCCCAAGGT−CTGCAGCATCTCTCTCTGGTCTTTGT−−CC−CCAGGGCC−−GATGTGCCTCCGAGCGAAGTCGTCGTGTCTGGGCAGAAGCGCTCCAGGAGGCGCGAGGCCCCAGCCGCGGCGCTGTCCCCGCCGCCATGCTGCTGTCCCGGCTCCGCGGCGCCCAGCACGGCCCCGATCCCCCAGCAGGCGGCGGCCGCCCCCGACC−CCGCGGCCCAGGCGCAGCC−−−CCCACCCCTGGCACAGGACTGCATGGCCGCGGCCACCGTCCCCTGCCCCGGCCCCAAGGGTCAGCCGCGCTCTTGGCCCCTC−−TCCTGGCCTCGGTCCC−−CGGGTGGCGGCTGCGCCCGGCCTGGAGCCCCTTTCGC−TGGAC−AGTCGGCGGACAGATGGATGGACGCTCGCGGGCAATGAATGGGCGCTGCGC" ,

25 " t i " : O b j e c t I d ( " 536426579182 bf0b79da7954 " )

26 }

27

28 / / gs

29 {

30 " _ i d " : O b j e c t I d ( " 536426579182 bf0b79da7956 " ) ,

31 " t " : " 603 " ,

32 " b " : 1922 ,

33 " e " : 2351 ,

34 " l " : 429 ,

35 " s " : ⤦

Ç "GCAGGCCATCGAGCAGGTGCTGAACCACCACCGTGGGGGCCTGGCGGCCGCCTGGGCCCTGCGGCGCCCCCAGATAAGGCCGCCGTGGGTG−−CTGCACAGCTGCAGACGACGCGTGGCCC−AGCCGCGTCGACGCCGCCGCCGCCGCGCCGC−−−−−CGCCGCCGGGGGGCCTGGGCTGCCTGCG−−−CCGCTGCAGGCGGGGCCCGCCGC−−ACCTCCGCACCACAGACCCTTGCTGGCCGGCCCATGGCGCCTGGGGCGCTGGGCTCGCTGAGCAGCCGCTCGGCCTTCTCCC−GCTGCAGCCCAACGCCAGTCACTTCGGTGCCGACGCGGGCGCCTACCGCTGGGCGCGCCGCTCGGCCTC−AGCCCCCTGCGCCTGGCCTACTCCGGGCGGCGGCGCACAGCCGCGGTCTGGCCTTCATGGCGCCCTACTC" ,

36 " s e q i d " : ">> g s _ s e q u e n c e | 1 5 6 9 | gs_gene | 1 5 6 9 | chromosome | 1 " ,

37 " t i " : O b j e c t I d ( " 536426579182 bf0b79da7954 " )

38 }

39

40 / / a l i g n o b j e c t
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Document Average size
Header doc 750B

RNA doc 201B

DNA doc 258B

Align doc 122B

Table 4.1: Average size of all stored documents

41 {

42 " _ i d " : O b j e c t I d ( " 536426579182 bf0b79da7957 " ) ,

43 " t " : " 604 " ,

44 " b " : 4 3 . 4 ,

45 " e " : " 0 .0028 " ,

46 " s_w " : 268 ,

47 " f " : " r " ,

48 " i " : 0 .5649999999999999 ,

49 " r n a " : O b j e c t I d ( " 536426579182 bf0b79da7955 " ) ,

50 " o " : 446 ,

51 " p " : " " ,

52 " s i " : 0 .5649999999999999 ,

53 " t i " : O b j e c t I d ( " 536426579182 bf0b79da7954 " ) ,

54 " gs " : O b j e c t I d ( " 536426579182 bf0b79da7956 " ) ,

55 " z " : 154 .7

56 }

Formats of documents are almost identical for all databases with exception to some additional metadata re-

quired by specific DBs. It also tires to be as similar to original document as possible. Sample documents are

shown in listing 4.3. The fields were shorten to save space for databases that doesn’t use any compression (such as

MongoDB). In table 4.1 all documents have size less then 1kB.

The program has two modes - one for writing and one for reading. First phase in each run is writing data to

database in following steps:

1. Get database endpoint from command line arguments.

2. Get input files locations from command line arguments.

3. Get output file location from command line.

4. Connect to database.

5. Open files that need to be read.

6. Parse them and write data to database, saving ids of all entities to disk by using pickle1 protocol.

Second run is executed after all instances writing document finish working. During this phase programs load

files containing ids written in previous phase and start to read random ids.

4.1.4. Test scenario

A single test run in terms of this thesis means completing tasks shown in Figure 4.2. Each test run involves

creating from scratch every virtual machine using predefined VM image that contains all needed libraries and tools.

After each run all VMs are destroyed completely leaving only logs and results that were uploaded to S3.
1https:/docs.python.org/2łibrary/pickle.html
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Figure 4.2: Tasks executed during single test run.

All machines in cluster were split into 2 basic groups

Database – database nodes.

Workers – responsible for all parsing and operations on database.

Thanks to that, database and workers processes were not competing for the same resources. It also introduced

normal network related latency in communication between server and client.

Boot
At first all needed machines were spawned in cloud. The script waited until all of them were booted properly

and every one of them was accessible via SSH.

Provision
After all the machines were started properly, the script started to upload the benchmark programs and con-

figuration files needed for the experiment. It was also starting the databases connecting each other. At the

end it was ensuring that whole cluster works together in a desired way.

Write test
During this phase worker machines start parsing and writing data from files to databases. Each instance is

writing log containing information of how many documents were written during specified period of time.

Read test
After all data is inserted to data store a constant number of random documents is fetched from database to

record access speed.

Tear down
After all benchmarks are done each machine uploads data to S3 storage tagging it appropriately.

4.1.5. Test variants

Each database was tested several times using different setup and environment to see how different variables

affect the performance. The main focus was on 3 scenarios: horizontal scaling, vertical scaling and how increasing

data volume affects performance.

Horizontal scaling
In these test scenario number of workers and volume of data is kept constant. However in each test run

additional database nodes are added. Intention of this test scenario is to measure how horizontal scaling is

affecting performance.

Vertical scaling
This scenario assumed constant data volume and number of nodes. The goal here was to see the speedup

generated by more powerful database nodes.
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4.2. Test environment

As this thesis focuses on experimenting on large, horizontally scalable databases it required grid or cloud envi-

ronment to conduct experiments. Thanks to courtesy of Amazon the experiments could be executed using Amazon

Web Services one of the biggest cloud providers. Nevertheless it is worth mentioning here that experiments use

open source middleware which can execute them using other than Amazon’s cloud.

4.2.1. Amazon AWS

Amazon AWS is a collection of commercial web services designed to offer computational power for all sort

commercial applications and also for scientific computations.

Officially launched in 2006 gained instantly popularity among people searching for on-demand cloud com-

puting and accompanying services. Thanks to AWS in Education Grant from Amazon we were able to utilize

following products in this thesis:

– EC2 supplying hosts

– EBS providing persistent storage for data

– S3 storing the results of each run

Therefore the experiments were not tightly coupled to any custom, unique services like SWF, Elastic Load

Balancing.

Elastic Compute Cloud

The Amazon Elastic Compute Cloud is one of the core services. It can deliver many virtualized hosts as

available almost instantly from the Internet. They can be chosen from wide range of instance types that differ in

CPU power, amount of memory or IO performance. From the experiment and thesis point of view the EC2 had

following advantages:

Popularity
As previous chapters describe most NoSQL databases were developed with cloud computing in mind. EC2

is one of the most popular clouds in the world used for deploying all sorts of distributed systems. Testing

there ensured us that we face the same conditions as many other cloud related experiments.

Availability
The instances are available almost instantly as requested. This is very convenient compared to classical grid

environment where experiments described in this thesis would need to be scheduled to a queue as batch jobs

and wait for execution for unspecified amount of time.

Scalability
The Amazon AWS is one of the largest clouds in the world and it’s capable of delivering up to 100 or more

instances at once.

Flexibility
The virtual machines provided by Amazon are highly configurable and come in many different flavors (as

shown in table 4.2). They can run many various operations systems allowing the experiments to configure

the environment according to it’s needs.

From various configurations available (as shown in table 4.2) tests were conducted using m1.xlarge instance

type as it offers moderate performance typical for common commodity hardware used in large scale deployments.
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Family Instance Type Architecture vCPU ECU Memory (GB) Network Performance
General m1.small 32-bit or 64-bit 1 1 1.7 Low

General m1.medium 32-bit or 64-bit 1 2 3.75 Moderate

General m1.large 64-bit 2 4 7.5 Moderate

General m1.xlarge 64-bit 4 8 15 High

General m3.xlarge 64-bit 4 13 15 Moderate

General m3.2xlarge 64-bit 8 26 30 High

Compute c1.medium 32-bit or 64-bit 2 5 1.7 Moderate

Compute c1.xlarge 64-bit 8 20 7 High

Compute cc2.8xlarge 64-bit 32 88 60.5 10 Gigabit

Memory m2.xlarge 64-bit 2 6.5 17.1 Moderate

Memory m2.2xlarge 64-bit 4 13 34.2 Moderate

Memory m2.4xlarge 64-bit 8 26 68.4 High

Memory cr1.8xlarge 64-bit 32 88 244 10 Gigabit

Storage hi1.4xlarge 64-bit 16 35 60.5 10 Gigabit

Storage hs1.8xlarge 64-bit 16 35 117 10 Gigabit

Micro t1.micro 32-bit or 64-bit 1 Variable 5 Very Low

GPU cg1.4xlarge 64-bit 16 33.5 22.5 10 Gigabit

Table 4.2: Amazon EC2 instance types available 12th September 2013.

Elastic Block Store

The Elastic Block Store is another core service of Amazon’s Web Services. It’s tightly coupled with EC2

aiming to provide very flexible storage system for virtual machines spawned in Amazon’s cloud. It persist and

manages virtual block disk devices which can be dynamically attached and detached to hosts appearing as normal

hard drives from operation system perspective.

The biggest advantage of using EBS were

Replication
All data and configration that was needed by every host taking part in experiment could be stored in one EBS

snapshot which could be replicated to many EBS volumes attached to every dynamically spawned machine.

Snapshots
Ability to capture storage content as a snapshot and then use it as a new EBS volume replicated to every host

speed the development of experiments a lot. Also allowed to eaisly manage diffrent versions and variants of

experiments.

Figure 4.3 shows how EBS volumes were used in the experiment. In almost every single run the same EBS

volume image was used. This volume stored

– configuration files for each experiment variant,

– specially prepared directory structure for database files and configurations,

– experiment input data which were meant to be stored in databases in the experiment.

The volume image had fixed size of 50 GiB of which only 8GiB was used. Therefore a lot of space was left for

any computation result.
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Figure 4.3: EBS Storage image used to provision all hosts in experiment.

Simple Storage Service

Amazon Simple Storage Service (S3) is yet another core service of AWS. It excels in storing and serving files

via simple HTTP calls.

In the experiment S3 is used to store all experiment results such as Coma Separated Values (CSV) files with

timings. Compared to EBS that also is used for storing files the S3 is

– easy accessible due to simple HTTP API available from Internet,

– allows to store huge amount of data without any concerns about running out of disk space.

Each experiment is stored as directory with name based on current time, configuration and custom name.

4.2.2. PRECIP cloud middleware

This thesis assumed using multiple nodes to run database and simulate workers using it. Therefore there was

need for a tool that allows to start and prepare whole cluster for each test given just a configuration. As a result

a set of programs in python was developed to execute such experiments in very controlled manner ensuring that

each results can be repeatable and comparable to others.

Almost each cloud provider offers some kind of Software Development Kit containing Application Program-

ming Interface for programmable resource management. Ussually these are mature tools that enable users taking

advantage of every feature of particular platform. However the drawback of such tools is that they can only manage

vendor’s platform and as a result force users to stay with particular cloud provider. In this thesis experiments were

expected to be vendor independent as possible so that they could be also run on other clouds in the future.
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PRECIP2 - python library were used as a foundation for experiment scripts. As it’s documentation says “Precip

is a flexible exeperiment management API for running experiments on clouds. Precip was developed for use on Fu-

tureGrid infrastructures such as OpenStack, Eucalyptus (>=3.2), Nimbus, and at the same time commercial clouds

such as Amazon EC2.”. Alongside from being cloud provider independent PRECIP offers many features regarding

provisioning such as: syncing machines, executing shell commands, transferring files, grouping machines, easy

authenticating and others.

MongoDB

VM

mongod

VM

mongos worker

VM

mongod

VM

mongoconf

VM

mongod

User's PC
Precip 

User's 
script

Cloud

Data

Workers

VM

mongos worker

VM

mongos worker

Figure 4.4: Experiment running in cloud, supervised by PRECIP script.

Figure 4.4 shows how sample experiment which uses all components mentioned previously. The whole exper-

iment code is encapsulated in one python module which depends on PRECIP library. An user on it’s computer can

runs it. PRECIP communicates with Amazon AWS API to dynamically spawn machines, attach EBS volumes and

then waits for them until they are booted. After that it configures each machine in parallel according to it’s role.

Next it runs shell commands which start monitoring and the experiment itself. In the end it uploads the result to S3

storage and removes instances from the cloud.

4.3. Measuring performance

To answer which database offers better performance and how it achieves this it is required to analyze many

different metrics and variables. The sole numbers showing number of read or written objects are not sufficient as

they cannot show many vital informations.

The focus was to capture as many informations as possible about the running database and operating system.

Such data can be used to describe:

CPU utilization – showing how well database uses multiple cores and computation power in general.

Memory consumption – which tells how well database manages available memory and how much does it need

to operate.

Network utilization – exposing amount of traffic directed to particular hosts.

2http:/futuregrid.org
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01:06:17 AM CPU %user %nice %system %iowait %steal %idle

01:06:18 AM all 0.00 0.00 0.00 0.00 0.00 100.00

01:06:19 AM all 0.00 0.00 0.00 0.00 0.25 99.75

01:06:20 AM all 0.00 0.00 0.00 0.00 0.00 100.00

01:06:21 AM all 0.00 0.00 0.00 0.00 0.00 100.00

01:06:22 AM all 0.00 0.00 0.00 0.00 0.00 100.00

Figure 4.5: Listing showing output of sar command displaying mean CPU utilization for every second

In order to capture information listed above and many more useful statistics the SYSSTAT3 project was used. It

is a collection of performance monitoring tools for Linux operating system originally created by Sebastien Godard

in 2002 [22]. It was designed as counterpart to Solaris’s sar utility and it’s mostly compatible with its it.

The package consists of many utilities. Amongst them the most notable from thesis points of view were:

sar – main executable collecting all data from the system and displaying it to user as shown in Figure 4.5.

sadc – program that runs as daemon, collects statistics and store them in binary format in desired location.

sadf – program that loads binary data from sadc, filter it and output in desired format.

During every test run sadc was configured to capture all possible metrics every second and write it to file. When

test run was examined sadf converted binary data to CSV files which were matched against other results.

4.4. Summary

This chapter provided detailed information regarding test design and procedure. First we looked at an example

of real scientific computation and tried to design simulation based on it. Next we explained all details regarding

implementation. Later we described the AWS cloud that we used as test environment. We explained it’s key features

and presented PRECIP middleware which enabled us to dynamically recreate testing infrastructure. In the end we

showed how we gathered useful metrics using SYSSTAT project.

3http://sebastien.godard.pagesperso-orange.fr
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5. Results

This chapter presents the results of running benchmark procedure against target databases (MongoDB and

Riak) with different configurations and number of hosts. In section 5.1 we explain in detail how and why we

configured databases for these tests. Next sections describe each test series focused on different aspects of scaling.

In section 5.5 we recap the results to show advantages and drawback of chosen NoSQL databases.

5.1. Test configuration

Both databases were configured to provide possibly similar capabilities. In all MongoDB tests data was written

to single database called bio_test that had 4 collections. Riak setup used 4 buckets that are more or less equivalents

of MongoDB’s collections. Each of these containers was dedicated for storing one document type.

– tasks – storing information about SSEARCH64 input parameters that are RNA and DNA ids

– rna – maintaining matched RNA fragments

– gs – maintaining matched DNA fragments

– align – saving information about position and quality of match between RNA and DNA

5.1.1. MongoDB sharding preferences

During the tests sharding was configured to optimize write operations therefore it used hashed sharding key

described in section 2.3.1 that guarantees that data is distributed uniformly between the all hosts. Without this,

MongoDB tried to divide sharding key space dynamically which sometimes crippled the performance depending

on data values, especially when tests start with empty database as in our case.

5.1.2. Riak NRW settings

Riak tests were ran in configuration which tried to offer the same functionality as MongoDB configuration.

Each bucket was configured to write documents to one node only (no replicas). Therefore the same level of redun-

dancy was achieved as in MongoDB. For the configurable backend the LevelDB was chosen as it provides caching

in memory that is most similar to how MongoDB caches it’s data.

5.2. Number of concurrent workers

First series of tests was designed to establish the limits and the performance impact of running many parallel

clients. All concurrent programs were started on a single machine. In case of the MongoDB they all used single,

local instance of mongos program that was routing requests to actual cluster.
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During each test run different number of workers spawned on a single host (called “Worker 0”) attempted to

process content of 80 FASTA files which resulted in writing 4014329 to a database running on a single host (called

“DB 0”). After writing workers tried to read 80000 random documents.
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Figure 5.1: Mean throughput when running different number of concurrent workers against single MongoDB

instance.

The results presented in the Figure 5.1 indicate that best average number of operations per second: 4593 for

write and 10126 for read was achieved when using 20 concurrent workers. Increasing this number to 40 resulted

in decrease of throughput by about 16% for both read and write. Further adding of concurrent connections didn’t

have any significant impact.

Riak database in this test was more predictable but slower for every number of workers as shown in Figure 5.2.

With each new worker added to database write and read throughput was improved until 10 workers were running

in parallel when average number of read and write ops/s was accordingly 4705 and 3141.

Further analysis of CPU usage shows that in case of MongoDB using 40 workers caused database to spend

much more time on waiting for disk operation to finish (higher iowait) which leads to conclusion that too many

concurrent writes lead to less optimal way of accessing hard drives. Also CPU graphs for Worker 0 shows lots of

pauses which are probably result of workers waiting for DB to finish long lasting IO.

What is more in all tests the CPU could not reach 50% remaining around 25% for best runs. The most likely

reason for this is the fact that MongoDB has global write lock which acts as single point of serialization allowing

only one document to be written at the same time in one database. As 100% equals full load on all 4 cores 25%

indicates that only single core was utilized.

Riak on the other hand can utilize all cores regardless of numbers of buckets and clients. It reached maxi-

mum usage when 10 workers were reading and writing as presented in Figure 5.4. The usage pattern and scores

looks almost exactly the same for 10 and 80 workers suggesting that number of workers has minimal impact on

performance.

Overall in this test MongoDB used far less resources achieving better performance for each number of con-

current workers. Also both databases didn’t collapsed or showed big drop in performance due to large number of

simultaneous writes and read.
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Figure 5.2: Mean throughput when running different number of concurrent workers against single instance Riak

cluster.

5.3. Number of independent mongos

Second round of tests were executed only for MongoDB as it tried to answer what is the impact of using

multiple mongos instances in comparison to using only one. In Riak all clients communicate with all the nodes

directly and routing happen on all Riak hosts. Therefore there is no difference if using many distinct hosts or not.

The results presented in Figure 5.5 show that using multiple hosts decrease write performance linearly by about

5% for each additional mongos. The best write speed achieved for single host 4450 ops/s dropped to 4071 for 2

hosts and to 2731 for 8 hosts.

On the contrary, read speed was greatly improved by each additional mongos. Tested MongoDB database was

able to deliver up to 38000 documents per second when using 8 independent mongos compared to 9090 for single

worker setup. It seems that database can really take advantage of caching it’s content in RAM and the bottleneck

for read operation is number of mongos with their workers.

5.4. Horizontal scaling

Next series tested horizontal scalability of both databases. In each run 4 virtual machines with 30 workers each

writing and then reading from MongoDB and Riak databases consisting of different number of nodes. Previous

tests indicated that this number of workers and nodes seems to be optimal for achieving best results.

We expect that ideal horizontal scalability is when each host added to cluster increases performance by 100%

of it’s capabilities measured in single node mode. However in the real world it is almost impossible to achieve

because of overhead that is added by things like synchronization and other communication occurring between

database hosts. exchanged between database hosts.

The write throughput of MongoDB shown in Figure 5.6 scaled up when additional nodes were added. Second

node improved scores from 4142 ops/s to 7032 which is 70,74% better. Adding 3rd and 4th node did not have as

good impact but the performance divided by number of nodes showed that each node delivered 62% and 56% of
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single node performance. When 13 nodes were cooperating in one MongoDB cluster the write throughput went up

to 11642 ops/s which is 22% of a ideal throughput.

While write performance was greatly improved the read throughput was dropping with each shard added to

database. The optimal number of ops/s was the same as best result in previous series of tests 32429. Adding

second node decreased this number by 12% to 28568 ops/s. 3rd and 4th also decreased overall read performance

by similar factor. During test with 13 hosts the read performance dropped to 14999 ops/s which is 4,5% decrease

per additional node.

The reason for this behavior is that main id used to fetched the object didn’t have any information about which

shard is storing this document. In this case all shards are requested to fetch the document. Each shard added to

database increases number of operations needed for retrieving each document.

To verify this assumption second series of tests was conducted using primary key as sharding key. In Figure 5.7

the read performance is still best for a single node setup 32429 reads/s but drops very little about 28000 reads/s

when additional shards are added.

As presented in Figure 5.8 Riak database showed very stable, linear growth of throughput with each node added

to the cluster. The 3291 ops/s achieved for single node was improved by 67% when second node was added. When

13 nodes configuration was tested the performance went up to 16312 ops/s which means that each node gave the

38% of single node throughput.

When it comes to read performance Riak databases also showed that each additional node can improve the

throughput. The single node performance was 4938 ops/s and it was improved by 87% with second node. 3rd

node added 44% of single node performance and 4th gave next 32%. For 13 nodes the read performance was best

and it reached 25000 reads/s. Adding one more node lowered the write speed which might suggest that for this

configuration 13 nodes is the optimal number of nodes.

5.5. Outcome

Tests presented above showed that both databases can be used for storying and accessing big data sets when

using multiple hosts to increase their capacity. During tests we were able to run each database in configuration

consisting of 12 hosts achieving up to 14 000 inserts/s, 30 000 reads/s for MongoDB and 16 000 inserts/s, 25 000

reads/s when using Riak.

We saw that adding number additional host to database can improve. In case of the Riak speed up is 495% for

both reads and writes when using 14 nodes. When it comes to MongoDB the write speedup is 306% when using

12 nodes and read performance remains the same but it still much higher then Riak best score.

This leads to question if Riak and MongoDB are using multiple nodes efficiently enough to justify their usage.

When we used Riak throughput per node was 35% of values achieved when running with single instance. When

it comes to MongoDB this figure was even lower for write operations (26% with 12 nodes) and read performance

couldn’t be improved without using additional mongos which increases further complexity and resources needed

to use MongoDB.

The Riak database proved to be very predictable that seemed to utilize 100% of given hardware and thanks to

very uniform architecture which implies that all nodes play the same role in cluster and simple configuration which

didn’t rely on predefining almost any settings.

The worse speed of Riak is probably due to number of reasons. First, routing occurs on database nodes that

clients are connected to. In MongoDB architecture there is separate program mongos for routing requests to specific

database nodes. Thanks to that if we run mongos on the same machine with client we always communicate with

host responsible for data. Also Riak is written in Erlang and in Erlang virtual machine which can add overhead

compared to native implementation like MongoDB.
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The biggest advantages of Riak database had no use here. This database specializes in high availability and

fault tolerance which achieves by replicating data between hosts and being able to survive transparently to user

many nodes failures.

The MongoDB showed overall better performance for simple read and writes but getting correct configuration

to achieve satisfying performance was problematic. Also its performance during test was not quite uniform with

periods of high and slow speed which are probably caused by operating system that tried to cache MongoDB files

into memory or was preallocating next disk file. Also in these tests we didn’t encounter problem of global database

lock that lowers greatly write performance but would be also visible when doing queries and interleaving read and

write operations.

5.6. Summary

In this chapter, we explained in detail the MongoDB and Riak configurations that were used to run the tests.

Later we analyzed results of each single test run commenting most interesting figures and scores. In the end, we

compared databases based on performance figures and studies described in previous chapters.
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Figure 5.3: Mongo CPU utilization for 1 (above), 20 (middle) and 40 workers (below).
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Figure 5.4: Riak CPU utilization for 1, 10 and 80 workers.
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Figure 5.7: Mean throughput using different number of MongoDB nodes using the primary key also as sharding
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Figure 5.8: Mean throughput using different number of Riak nodes.
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6. Conclusions and future work

6.1. Conclusions

Presented work analyzed many aspects of design and implementation challenges regarding storing and process-

ing large volumes of data in scientific computations using NoSQL databases. The goal of this thesis was to gain

theoretical knowledge about their capabilities and put them under test to obtain useful performance figures which

could be used by researchers to implement their next experiments. To achieve it we needed to deeply analyze and

compare currently available solutions and come up with adequate method of testing.

First we looked at evolution of data stores trying to capture the most important aspects and features of all types

of databases. We mostly focused on SQL solutions which became the industry standard and compared them against

data store from new families NewSQL and NoSQL. Thanks to that we were able to evaluate results of different

benchmarks, workloads and test scenarios that were created by others. We designed our own method of testing that

was based on real scientific experiment and allowed us to conduct fully automated, configurable and repeatable

tests which use real scientific data to generate load on databases.

We conducted series of tests which helped us to understand and compare read and write performance of two

NoSQL databases MongoDB and Riak under the same workloads and in identical environment (Amazon EC2).

The tests were executed in various different configurations which allowed to measure how number of clients and

number of database hosts affect the performance and scalability.

We conclude that both databases can be useful in scientific applications. They offer good write and read perfor-

mance and also horizontal scalability which is unique feature compared to standard SQL solutions. The MongoDB

proven to be generally faster then Riak, especially when it comes to read speed. However it is also much more

complicated and problematic to setup and use. Riak, on the other hand, proven to be very predictable, easy to

configure and when using large number of nodes it even showed better write performance then MongoDB.

6.2. Future work

The implemented testing framework proven to be a good solution for testing databases for scientific compu-

tations. Extending its test methods and adding support for new databases could produce very interesting results

that would definitely help researches in making good decisions when designing software for computational exper-

iments.

In addition to measuring write and read performance, testing framework could also check performance and

capabilities of built-in MapReduce, queries and indexes, interleaving writes and reads.

When it comes to databases we could consider benchmarking other NoSQL databases such as: Apache Cas-

sandra, Apache CouchDB, Apache HBase alongside NewSQL solutions.

Last, but not least, it would be interesting to conduct the same tests on different set of hardware and even using

other cloud provider than AWS to compare their quality and cost effectiveness. quality and cost effectiveness.
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