
Faculty of Physics and Applied Computer Science

Master thesis

Marek Pomocka
major: applied computer science

specialisation: computer techniques in science and technology

Data source registration in the Virtual
Laboratory

Supervisor: Marian Bubak, Ph.D.
Consultants: Piotr Nowakowski, M.Sc.

Daniel Harężlak, M.Sc.

Cracow, September 2009

Aware of criminal liability for making untrue statements I decleare that the following thesis
was written personally by myself and that I did not use any sources but the ones mentioned in
the dissertation itself.

2

Cracow, September 2009

The subject of the master thesis and the internship by Marek Pomocka, student
of 5th year major in Applied Computer Science, specialisation in computer

techniques in science and technology

The subject of the Master Thesis: Data source registration in the Virtual Laboratory

Supervisor: Marian Bubak, Ph.D.
Reviewer: Piotr Gronek, Ph.D.

A place of the internship: Academic Computer Centre Cyfronet AGH, Cracow

Programme of the Master Thesis and the Internship

1. Discussion with the supervisor and consultants on realization of the thesis.

2. Collecting and studying the references relevant to the thesis topic.

3. The internship:

• getting to know the environment of Virtual Laboratory and the problem to be solved
• learning the necessary programming languages
• identifying project requirements and possible implementation technologies
• drafting the design
• discussion with the supervisor on the proposed design
• preparation of the Internship report.

4. Specifying detailed software requirements.

5. Prototyping possible solutions.

6. Making decisions regarding the implementation.

7. Creating complete design plan.

8. Implementing the solution.

9. Correctness tests, measuring performance and software limits.

10. Final analysis of the problem and to what extend the created software solves it, conclusions
– discussion and final approval by the thesis supervisor.

11. Typesetting the thesis.

Dean’s office delivery deadline: 30 September 2009

3

Acknowledgements

I would like to express my thanks to Marian Bubak and Piotr
Nowakowski for their invaluable help, guidance, advice and thought-
fulness. Furthermore, I would like to thank David and Gillian
Crowther for their language help. I dedicate this thesis to my
mother who was always with me.

4

Contents

1 Definitions, acronyms and abbreviations 11
1.1 Acronyms and abbreviations . 11
1.2 Definitions . 12

2 Introduction 17
2.1 Motivation . 17
2.2 Objectives . 23
2.3 Organization of the thesis . 24

3 Background 26
3.1 The GridSpace platform . 26
3.2 GridSpace Engine deployment . 32
3.3 The Virtual Laboratory . 36
3.4 Data access in ViroLab . 41
3.5 Other projects based on GridSpace platform . 50
3.6 Storage services in gLite . 56

4 Needs to be addressed / Problems to be solved 65
4.1 Providing access to EGEE/WLCG data sources 65
4.2 Integration with the GridSpace Engine . 65
4.3 Automation of certificate management . 66
4.4 Extending the DSR plug-in to enable registration of LFC data sources 66

5 Related work 67
5.1 Other virtual laboratories . 67
5.2 Attempts to make the Grid service-oriented . 73
5.3 Data access and persistence in Grid projects . 75
5.4 Libraries providing access to gLite data resources 77

6 General software requirements 79
6.1 Scope . 79
6.2 Product perspective . 79
6.3 Product functions . 81
6.4 User characteristics . 81
6.5 Constraints . 82
6.6 Assumptions and dependencies . 82

5

7 Detailed requirements 83
7.1 Functional requirements . 83
7.2 User interfaces . 85
7.3 Software interfaces . 86
7.4 Performance requirements . 95
7.5 Software system attributes . 95

8 Design description 98
8.1 Design decisions . 98
8.2 Organization of Design description . 100
8.3 Identified stakeholders and design concerns . 101
8.4 Design views . 101

8.4.1 Composition . 103
8.4.2 Logical . 105
8.4.3 Dependency . 118
8.4.4 Information . 123
8.4.5 Interface . 124
8.4.6 Interaction . 127

9 Verification and validation 131
9.1 Functional tests . 131
9.2 Performance tests . 140

10 Conclusions 149
10.1 Summary . 149
10.2 Future work . 149

11 References 151

A LFC Data Source – User guide 176
A.1 Data access workflow: registering the data source, storing credentials, using the

data source from a script . 176
A.2 DACConnector LFC DS specific constructors 177
A.3 LFC Data Source methods . 178

CGW’09 abstract 183

6

List of Tables
1 Acronyms and abbreviations . 11
2 Definitions . 12
3 Examples of Grid computing applications . 19
4 Functional requirements . 84
5 User interface requirements . 85
6 Software interface requirements . 88
7 Synopsis of LFC DS non-functional requirements 96
8 Design concerns and views addressing them . 102
9 Identified stakeholders and their design concerns 102
10 Design viewpoints specifications . 102
11 LFCDS Java client library↔LFCDS server performance test 145
12 GScript LFC connector↔LFCDS server performance test 146
13 GScript LFC connector↔LFCDS server performance test over WAN 148

List of Figures
1 GridSpace Engine in Virtual Laboratory environment 27
2 A process of executing an experiment from Experiment Repository 28
3 Three levels of Grid Operation Invoker abstraction [33]. 30
4 Grid Operation Invoker architecture and external components, with which it

communicates [33]. 31
5 GrAppO architecture [152]. 31
6 agiLe MONitoring ADherence Environment (leMonAdE) architecture divided

into two parts: Infrastructure monitoring and Application Monitoring [152]. . . 32
7 Virtual Laboratory framework conceptual components. 38
8 Experiment pipeline – one of the central ideas behind Virtual Laboratory [108]. 39
9 PROToS architecture [27]. 40
10 Layered view onto ViroLab architecture. On top there are three kinds of users:

experiment developers, scientists and clinical virologists using dedicated inter-
faces that, in turn, communicate with runtime components that manage com-
putational and data resources located in Grid, clusters or individual computers
[198]. 41

11 A more technical view of the ViroLab structure with all main constituents illus-
trated [108]. 41

12 Cooperation model between experiment (application) creators and users of these
experiments [46, 109]. 42

7

13 Interactions between components during execution of a sample experimental
plan with source code was provided from listing 1 [46]. 42

14 Architecture of data access in ViroLab. 44
15 DAC2 data access workflow as described in the text. 45
16 A DSR form that appears when adding a new data source. 45
17 DSR form for providing data source credentials. 46
18 Data source connector hierarchy in DAC2. 47
19 DAS security mechanisms [16, 19]. 49
20 Data integration scenarios in ViroLab Data Access Services [18]. 50
21 Structure of GREDIA middleware [133]. 51
22 Architecture of Appea platform [44]. 52
23 An overview of GREDIA data management services [14]. 53
24 ChemPo architecture [202]. 54
25 Structure of PL-Grid . 55
26 Filenames in gLite . 58
27 Catalogues in gLite [138] . 59
28 Client tools for interacting with gLite storage [1] 63
29 Execution of gfal_open function [1] . 64
30 Virtual Laboratory for e-Science architecture (figure from [238]) 67
31 myExperiment architecture – figure shared on myExperiment website by David

de Roure, myExperiment director, using Creative Commons Attribution-Share
Alike 3.0 Unported License . 69

32 Grid File Sharing System (GFISH) architecture [232] 74
33 Inferno namespace exporting and importing (figure created on basis of present-

ation from Inferno website) . 76
34 gLite data management application and command line interfaces – blue color

indicates those that are depreciated [47] . 78
35 LFC DS (indicated by yellow color) in the context of Virtual Laboratory 80
36 LFC DS in the realm of EGEE/WLCG Grid 80
37 LFC DS Use Case diagram . 81
38 Conceptual view onto proposed design of LFC DS 101
39 Composition of LFC DS system. DACConnector, DAC2 DSRConnectivity, DSR

EPE Plugin, DSR Plugin DSRConnectivity and DSR are components that ex-
isted before creation of LFC DS . 104

40 Logical view onto LFCDS server component . 110
41 Logical view onto LFCDS client library . 110
42 Class diagram DSR EPE Plugin LFCDS Form. Classes not directly connected

to operation of LFC DS were excluded from diagram. 111

8

43 DAC2 class diagram after integration with LFC DS. Classes not directly related
to LFC DS are omitted. 111

44 Class diagrams: LfcDsProperties, LongOutputBean, PathInputBean, LfcDsItem,
StoreFileBean, LfcDsOutputStream, UserProxyDetails, DacLfcCommands and
ILfcCommands. 112

45 Class diagrams: LfcCommonParametersBean, LfcDsException and LfcDsServer. 113
46 Class diagram: LfcDsClient . 114
47 Class diagram: LfcDsEditForm and PasswordDialog. For LfcDsEditForm private

attributes were omitted for brevity. 115
48 Class diagram: DSR Plugin DSRConnectivity – private attributes were omitted

for brevity. In addition, only added methods are shown; modified methods or
those that existed previously are excluded. 116

49 Class diagrams: DACConnector, DACConnector, SourceParameters, and DAC2
DSRConnectivity . 117

50 LFCDS client library – dependency graph . 119
51 Component diagram depicting dependencies between system components 120
52 LFCDS server – dependency graph . 121
53 DAC2 – dependency graph . 122
54 DSR – database schema . 123
55 User interface for registering LFC data sources 124
56 Demonstration of DSR EPE Plugin LFC DS Edit Form validation mechanisms . 125
57 Tree view onto data sources registered in Virtual Laboratory 126
58 Data source selection form . 126
59 Initialization of LFC DS connector – sequence diagram 127
60 A sample LFC command – in this case, listFiles command 128
61 Reading file from Grid – sequence diagram . 129
62 Sending file to Grid – sequence diagram . 130
63 Verification tests – TestNG report . 138
64 Test log from verification tests . 139
65 LFCDS Java client library↔LFCDS server performance test: sending and re-

trieving file from Grid – linear scale . 144
66 LFCDS Java client library↔LFCDS server performance test: sending and re-

trieving file from Grid – logarithmic scale . 144
67 GScript LFC connector↔LFCDS server performance test: sending and retriev-

ing file from Grid – linear scale . 145
68 GScript LFC connector↔LFCDS server performance test: sending and retriev-

ing file from Grid – logarithmic scale . 146

9

69 GScript LFC connector↔LFCDS server performance test over WAN: sending
and retrieving file from Grid – linear scale . 147

70 GScript LFC connector↔LFCDS server performance test over WAN: sending
and retrieving file from Grid – logarithmic scale 147

10

1 Definitions, acronyms and abbreviations
Note: If you have not found the term you are looking for, please check one of these glossaries: [63,
116–119, 234], the Abbreviations and acronyms chapter of [150] or the glossary chapter of [47].

1.1 Acronyms and abbreviations

Below, the table of acronyms used throughout the thesis is presented. Some definitions can be
found in the subsequent section.

Table 1: Acronyms and abbreviations

Acronym Meaning

BDII Berkeley Database Information Index
DAC Data Access Client
DAC2 Data Access Client 2
DAS VL Data Access Services
DSR Data Source Registry
DSS Decision Support System
EGEE Enabling Grids for E-sciencE
EPE Experiment Planning Environment
ExpRepo Experiment Repository
GREDIA GRid enabled access to rich mEDIA content
GScript GridSpace Script
GSEC GSEngine Client
GSEngine GridSpace Engine
GSES GSEngine Server
GSI Grid Security Infrastructure
GUID Grid Unique Identifier
HLA High Level Architecture
LCG LHC Computing Grid
LFC LCG File Catalog
LFCDS LFC Data Source
LHC Large Hadron Collider
OGSA Open Grid Services Architecture
OGSA–DAI Open Grid Services Architecture Data Access and Integration
PKI Public Key Infrastructure
RFIO Remote File Input/Output
SRS Software Requirements Specification

11

Table 1: Acronyms and abbreviations (continued)

Acronym Meaning

SURL Storage URL
TURL Transport URL
URL Uniform Resource Locator
VDT Virtual Data Toolkit
ViroLab “ViroLab” Virtual Laboratory project
VL Virtual Laboratory
VO Virtual Organization
WLCG Worldwide LHC Computing Grid

1.2 Definitions

Table 2: Definitions

Term Abbr. Definition or explanation

Berkeley Database
Information Index

BDII Metadata service used in EGEE. It is an equival-
ent to Globus Metadata Directory Service (MDS) [85].
The BDII service is based on catalogue service using
LDAP [235] protocol and a database backend. The
structure of the BDII is hierarchical. At the lowest
level, information providers deliver service-related data
which then is consolidated into a site BDII service. The
site BDII service is queried by Top Level BDIIs (TL
BDIIs) to create a complete view of the whole infrastruc-
ture. Each TL BDII exposes information about entire
Grid. [22, 83]

ChemPo “The ChemPo project develops a computational chem-
istry portal which facilitates the use of numerous pack-
ages (e.g. Gaussian or NAMD) deployed on the Grid
infrastructure.” from [61]

Clinician (in ViroLab
terminology)

A healthcare professional who executes a ViroLab ex-
periment or uses the DSS in order to decide how to treat
a particular patient. [177, section 2.4]

12

Table 2: Definitions (continued)

Term Abbr. Definition or explanation

Data Access Client DAC First generation of data access component for the
GSEngine. At the time of writing this document, the
DAC component is being upgraded to a version that
takes advantage of Data Source Registry [18, 20, 108].

Data Access Client
2

DAC2 “A complete rebuild of the Data Access Client, tak-
ing into account the capabilities provided by the Data
Source Registry.” [60]

Data Source Re-
gistry

DSR Registry of data sources used by GSEngine DAC2. In-
formation stored in the registry include type of the data
source, its technology (e.g. DAS, MySQL [227], Web-
DAV [75] or PostgreSQL [229]), the URL, credentials
and user access rights.

DSR plug-in EPE plug-in that enables the developer to manage data
sources registered in the DSR.

Enabling Grids for E-
sciencE

EGEE A series of projects (EGEE-I, EGEE-II and EGEE-III)
funded by European Commission whose purpose is to
construct production Grid infrastructure for researchers
of many scientific disciplines along with a lightweight
Grid middleware (gLite) for this infrastructure. [13, 98]

Experiment (in Viro-
Lab terminology)

Experiment or in-silico experiment is a process that
combines data and computations in order to obtain res-
ults [63]. In other words a dynamic scenario (See [150,
section 1.1.2])

E x p e r i m e n t d e -
veloper (in ViroLab
terminology)

A computer science professional who creates exper-
iment plans - often with the help of domain scient-
ists. [177, section 2.4], [63]

Experiment Plan-
ning Environment

EPE The ViroLab EPE is an Eclipse based tool for managing
development process of experiment plans. It is on of
the two main components of ViroLab presentation layer
- the second one is the ViroLab portal. [96, 97]

gLite gLite is a Grid middleware produced by EGEE project.
It integrates several distributions, including LCG and
VDT. Currently, it can be installed on Scientific Linux
3, 4 and 5. [47, 138, 140]

13

Table 2: Definitions (continued)

Term Abbr. Definition or explanation

Globus Toolkit GT Globus Toolkit is an open source software toolkit de-
veloped by Globus Alliance. It is intended for building
Grid systems and applications. [88, 89]

Grid A few definitions of the Grid are recognized [150, sec.
1.2.1], i.e. two definitions produced by Foster and Kes-
selman: “A Grid is a system that coordinates resources
that are not subject to centralized control using stand-
ard, open, general-purpose protocols and interfaces to
deliver nontrivial qualities of service.” [87]
“A computational Grid is a hardware and software infra-
structure that provides dependable, consistent, pervas-
ive, and inexpensive access to high-end computational
capabilities.” [91]
and IBM’s definition: “Grid computing enables the vir-
tualization of distributed computing and data resources
such as processing, network bandwidth and storage ca-
pacity to create a single system image, granting users
and applications seamless access to vast IT capabilit-
ies.” [150, sec. 1.2.1]

Grid enabled access
to rich media con-
tent

GREDIA A project funded by EC whose objective is to create
a Grid application development platform with support
to design, implementation and deployment of secure
Grid business applications. Its two prototype applica-
tions are in the field of banking and journalism. [14, 15,
31, 44, 45, 133, 136, 137, 212]

GridFTP GridFTP is a protocol based on the FTP protocol, de-
veloped by the Globus Alliance. It is GSI enabled and
optimized for usage in the Grid environment. [4]

GridSpace Engine GSEngine GridSpace Engine is the main component of the Viro-
Lab Virtual Laboratory. It is responsible for executing
experiments and resource orchestration. It is the back-
end of Virtual Laboratory. [58, 107]

GridSpace Script GScript Script executed by GSEngine written in JRuby lan-
guage [86, sec. 1.2.1]. In ViroLab a GScript is the main
part of an experiment plan. [96, 153, 154]

14

Table 2: Definitions (continued)

Term Abbr. Definition or explanation

GSIFTP Former name for GridFTP. [215]
LCG File Catalog LFC File catalog that maintains mappings between LFN(s),

GUID and SURL(s). [1, 205], [47, chapter 7.4]
LFC Data Source LFCDS Software developed as part of this thesis.
LHC Computing
Grid

LCG LCG is a middleware system whose original purpose
was to allow scientists involved in Large Hadron Col-
lider experiments to efficiently run their programs in a
distributed environment. It is a complete set of software
for creating Grid systems. [38, 139]

Open Grid Services
Architecture

OGSA-
DAI

An architecture build on concepts and technologies
from the Grid and Web services communities. It
defines a uniform exposed service semantics – a
Grid service; defines standard mechanisms for creat-
ing, naming, and discovering transient Grid service in-
stances. OGSA also defines, in terms of WSDL inter-
faces, mechanisms required for creating and compos-
ing sophisticated distributed systems, including lifetime
management, change management, authorization, and
notification. [92–94, 208]

Open Gr id Ser -
vices Architecture
Data Access and
Integration

OGSA-
DAI

Globus Alliance project that produces a web ser-
vices framework for accessing and integrating data re-
sources. The OGSA-DAI web services can be de-
ployed within a Grid environment. [10, 129]

Proxy Certificate From the RFC: “The term Proxy Certificate is used to
describe a certificate that is derived from, and signed
by, a normal X.509 Public Key End Entity Certificate or
by another Proxy Certificate for the purpose of providing
restricted proxying and delegation within a PKI based
authentication system.” [220]

Remote F i le In-
put/Output

RFIO Protocol used to access CASTOR Mass Storage Sys-
tem. [47, sec. 7.2.1]

15

Table 2: Definitions (continued)

Term Abbr. Definition or explanation

V i r o L a b V i r t u a l
Laboratory

VL, Viro-
Lab

The thesis author found two definitions:
ViroLab is a Grid-based decision-support system for in-
fectious diseases. It is intended for individualized drug
ranking in human immunodeficiency virus (HIV) dis-
eases. [196]
“The virtual laboratory is a set of integrated components
that, used together, form a distributed and collaborative
space for science. Multiple, geographically-dispersed
laboratories and institutes use the virtual laboratory to
plan, and perform experiments as well as share their
results.
The term experiment in this context means a so-called
in-silico experiment - that is, a process that combines
data and computations in order to obtain new know-
ledge on the subject of an experiment.” [213]

Virtual Data Toolkit VDT VDT is a collection of Grid software (Condor-G, Globus,
VOMS) along with its dependencies. It also includes
Tomcat, MySQL and Apache plus many other software
components. [104]

VL Data Access Ser-
vices

DAS ViroLab specific type of data source. It is an aggreg-
ation of hospital data accessed using OGSA-DAI. [17,
18, 20]

VLRuntime Former name of GSEngine.

16

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

Donald Knuth

When we had no computers, we had no programming problem either.
When we had a few computers, we had a mild programming problem.
Confronted with machines a million times as powerful,
we are faced with a gigantic programming problem.

Edsger W. Dijkstra

2 Introduction

2.1 Motivation

The work of a contemporary scientist no longer resembles the work of a scientist of the beginning
of the twentieth century. Mathematicians very rarely use pen and paper to solve mathematical
equations, tending to use programs like Mathematica [228], Mapple, Matlab (though, it is more
oriented towards engineers) or their open source counterparts like Octave, Maxima1. Further-
more, proving mathematical theorems is not a pure intellectual work. An example would be the
four color theorem [11, 12] which was proved in 1976 using a computer program that checked
all special cases of 1936 maps. An increasing number of both general purpose and dedicated
programs are applied in researcher’s everyday work. I gave the example of mathematics, but
this trend applies to almost all fields of science and technology with physicists seldom analyz-
ing data on paper, preferring to utilize data analysis software such as ROOT. Engineers rarely
crash cars, to check their safety; usually the simulation is more than satisfactory. Moreover,
it can sometimes provide more detailed information than the actual crash test, together with
considerations such as visualization, computer stress analysis, computational fluid dynamics
(CFD), computer aided design (CAD) or more general computer aided engineering (CAE).
From the perspective of telecommunication, the work with the research tools at a distance

is becoming increasingly widespread. The thesis author recalls his personal experience during
the first beam day at CERN, where he had the pleasure of being in this remarkable place. He
was in a large conference room where employees not directly related to the main event could
observe its progress on a large screen. Many observers were watching remote consoles on their
laptops to see the results from research facilities, while the team in the CERN Control Center
(CCC) was conducting the first beam trial. A significant example of remote usage of scientific
apparatus is the use of satellites as indicated by Hey and Trefethen [113] stating that European

1My former mathematics professor was very fond of Maxima. I suppose he used some kind of GUI, like
WxMaxima, as it is very hard to use from the command line, in my opinion.

17

Space Agency (ESA) satellites generate 100 Gigabytes of data per day. However, the document
cited is relatively old, so that figure may be even larger. The Hubble Space Telescope can also
be mentioned here, because none of the research facilities used until now gave so much insight
into our universe from the astrophysics point of view. Let us mention the Hubble Ultra Deep
Field photograph just one of its breakthrough results, but probably even more can be expected
from the Webb Space Telescope which is planned to be more advanced.
As industry and research centers have advanced, computer technique has stabilized. Nowadays,

it is difficult to imagine that integrated circuits were designed by using large masks. However,
today, hardware description languages, like Verilog and VHDL are used for this purpose and
additionally analog electronics are often checked using programs like SPICE before building.
Even historians whose discipline may seem a very humanistic, use of statistical tools (quant-
itative history) and employ computer technology for collaboration and sharing of documents.
An example can be the project Codex Sinaitucus [211], which includes the oldest preserved
complete copy of New Testament – handwritten 1600 years ago, which has been published col-
laboratively on the Internet by The British Library, National Library of Russia, St. Catherines
Monastery and Leipzig University Library.
This phenomenon is called ‘application pull’ [196]: the computer technology becomes ubi-

quitous in the world of science and scientists strive to solve more and more problems with the
help of these technologies. If we take into account an experimental discipline, such as physics,
we can note that the simulation, in addition to theory and experiment, has become a third
way to practice science. On the other hand, in medicine, a predominantly empirical discipline,
which is such because of the extreme complexity of systems it deals with, next to the terms in
vivo and in vitro, yet another term, appears: in silico [196, 230]. The practice of science through
computing is the essence of today’s buzz word: e-Science. The interest in computer technology
among researchers from different disciplines is a natural consequence of the possibility of pro-
cess automation and rapid processing of large amounts of data, with a possibility of reaching
goals that could not have been achieved using the available technology. With the increasing
computerization of equipment and the large rise in accuracy, it follows, that the amount of
data to be processed by computers will grow dramatically [113]. The existing classical model
of computing is not able to meet these tasks. Very few supercomputers in the world are able
to process data of such a huge size as human genome, though greater sizes may be required
to be handled if there are more dimensions of data. The increasing efficiency of computers in
accordance with Moore’s law, which pleases everyone, is not able to provide the CPU resources,
memory, disk and bandwidth required for processing an escalating amount of research data due
to the volume growing much faster [113].
Fortunately, many researchers have anticipated this problem and have developed middleware

that facilitates virtualization of resources in spite of administrative barriers, allowing collabor-
ative use of processing and disk resources belonging to various institutions in different countries

18

and continents. These technologies have been named ‘Grid technologies’ from electrical grid,
where by plugging a plug into an outlet we have access to electricity without worrying where
it comes from and who provides it. Similarly, ‘Grid technologies’ aim to provide a researcher
computing power and storage resources, services, data from sensors, research results and know-
ledge. A scientist does not need to worry who delivers them2; his concern is the importance
of the service provided. Thanks to virtualization of resources, ‘Grid technologies’ have enabled
the use of the infrastructure of many different institutions and individuals (desktop Grids), to
solve some problems of enormous complexity [115]. Usefulness of ‘Grid technologies’ has been
confirmed by a number of applications from various fields of science and technology. Some
examples are presented in table 3.

Table 3: Examples of Grid computing applications

Application Projects

AEC3 InteliGrid [69, 70], Conflet Framework [176]
Air polution simulation int.eu.grid4 [195], LSAPM5 [210]
Astrophysics simulations MUSE6 [183], G-HLAM [115]
Bioinformatics myGrid [90, 203, 204, 230], LITBIO7 [142], GADU8 [186],

SigWin-detector [120], The Virtual Instrument [52], HIPCAL
and HUGOREP [39], Taverna [167], EUChinaGrid [148,
149, 179, 180]

Climate modeling The Earth System Grid (ESG) [37]
Creating computer films Big Buck Bunny9 [157], VirtualRenderer10 [182]
Design and optimization of
casting processes

PartnerGrid [30]

Design of drugs, biopolymers,
biomaterials and pesticides

CancerGrid [81], OpenMolGRID [193]

2Although it may not be completely true for research results and knowledge as we need to know their
provenance.

3Architecture, engineering and construction
4Interactive European Grid
5Large Scale Air Pollution Model
6Multiscale Multiphysics Scientific Environment
7Laboratory for Interdisciplinary Technologies in Bioinformatics
8Genome Analysis and Database Update system
9The “Big Buck Bunny” was rendered using network.com, Sun Grid compute utility service. However, Foster

[87] does not qualify Sun Grid Engine as a Grid due to its centralized control of the hosts it manages. See the
Grid defintion in the table 2

10Grid renderer based on SunFlow [84, section 5], MOCCA [147] and Java Media Framework (JMF). The
software was created by the thesis author for the Students’ Scientific Association Session; section Applied
Computer Science, in 2008. Do not confuse with other software with the same name [219].

19

Table 3: Examples of Grid computing applications (con-
tinued)

Application Projects

Data mining GridMiner [40–42], DataMiningGrid [200], DMGA [207],
ESSE11 [239]

Earth sciences DEGREE [218]
FEM analysis ParallelNuscaS [170, 171]
Flood forecasting CROSSGRID [155]
Forest fire simulation Medigrid [175]
General technical computing GBPM12 [126]
Heat Transfer Simulation Grid Approach to Heat Transfer Simulation in Atomistic-

continuum Model [2]
HEP13 ATLAS14 [74, 100, 178], int.eu.grid [76], RMOST15 [143]
Life and medical sciences VL-e16 [169, 226], MediGRID [79], Interactive Grid-Access

for Ultrasound CT [111], G-HLAM17 [189]
N-body simulation G-HLAM [188]
Neural simulation System of Parallel and Biologically Realistic Neural Simu-

lation [187], Liquid State Machines and Large Simulations
of Mammalian Visual System [145]

Parameter study Saleve [77], P-GRADE [128], AppLeS [51]
Predictive maintenance DAME18 [121]
Searching large data sets DAME [23], Ant-Home [125]
Videoconferencing GlobalMMCS19 [222], DiProNN [185]
Visualization GVK20 [135], River Soca Project [221], Medigrid [175], Mul-

timodal Grid Visualization Framework [225], GVid [181],
UniGrids21 [36]

Grid infrastructure available today is impressive with many having been established. These
include EGEE, DEISA, Grid’5000, TeraGrid, Open Science Grid, National Grid Service, D-

11Environmental Scenario Search Engine
12GRID Based Parallel MATLAB
13High Energy Physics
14A Toroidal LHC ApparatuS
15Remote Monitoring and Online Steering Tool
16Virtual Laboratory for e-Science
17Grid HLA Management System
18Distributed Aircraft Maintenance Environment
19Global Multimedia Collaboration System
20Grid Visualization Kernel
21Uniform Interface to Grid Services

20

Grid, NAREGI, China Grid [150, sec. 1.2.2]. In addition to traditional Grids there are desktop
Grids, e.g. BOINC22 [7], XtremWeb [82], SZTAKI Desktop Grid [127], DG-ADAJ23 [172, 173]
and Entropia [55]. Some of them have attracted a large community of volunteers who share their
computer resources, particularly BOINC – 330,000 hosts [8] and SZTAKI DG – 12000 users
donating more than 23,000 desktop machines [24]. Applications running on these machines
have an impact on equally important disciplines of science as the traditional grids, with some
examples being the search for cancer drugs [80], climate prediction [199] or research in digital
signal processing [209] etc. The progress in setting up the infrastructure for e-Science, Grid
software and hardware has been named the ‘technology push’. This advancement in computer
technology resulted in the possibility, that today’s infrastructure, at least in theory, will allow
to meet some of the greatest challenges of science. But to dream of solving the problems of the
scale, “from biological cells made of thousands of molecules, the immune systems built from
billions of cells, to our society of more than 6 billion individuals interacting” [196] or simulating
complex systems such as a galaxy made up of hundreds of billions of the stars [115], there is a
need for integration of scientific applications and databases with the Grid infrastructure. This
is a huge integration problem. Sloot et al. Sloot et al. [196] argue that a system-level approach
is needed. The authors say that the bottom-up approach, i.e. creating applications that are
independent and non-compatible with each other, and then integrating them, is definitely a
wrong path. They justify their opinion by the fact, that in the latter case, even if we succeed
integrating the applications, the problem of collaboration and interaction will remain. For the
purpose of bridging the gaps between ‘application push’ and ‘technology pull’, i.e. to utilize the
great prospects of Grid technology, the ViroLab Virtual Laboratory was created which is a joint
effort of several universities, hospitals, research institutes and companies (for more information,
see [213]).
Its pilot application is a collaborative decision support system (DSS) for the treatment

of infectious diseases, with an emphasis on HIV infections. The DSS system is already in a
production stage and will soon be implemented in hospitals. A vision of this system has been
widely presented in [196], while the results are contained in [198].
To effectively manage the data stored in heterogeneous EGEE / WLCG grid resources,

the following data catalogs have been developed in recent years: European Data Grid Replica
Location Service (RLS EDG) [35, 160], File Replica Manager (FiReMan) [163] and LCG File
Catalog (LFC) [35]. Experimental data challenges show limitations and performance problems
in EDG RLS, which was the motivation to create the latter two catalogues and withdrawal
of RLS. Creators of FiReMan, and the LFC, as target users, took into account the HEP
and biomedical community. Kunszt et al. [138] admitted: “Most importantly, the initial two
application groups to work with gLite are the High Energy Physics and Biomedical communities,

22Berkeley Open Infrastructure for Network Computing
23Desktop GRID – Adaptive Distributed Application in Java

21

for whom data are stored mostly in files.”24

An example of efforts made to adapt the Grid storage to the requirements of grid medical
users is the introduction of Encrypted Data Storage (EDS) [1, 95]. Its design can be summarized
as follows: ARDA Metadata Catalogue (AMGA) is used to store relational data of medical
images, along with patient information. HYDRA library encodes and decodes files and is also
responsible for producing and storing security keys. A special extended version of Storage
Resource Manager (SRM) interface has been developed – SRM DICOM, which is compatible
both with the EGEE / WLCG grid and with the DICOM25 protocol. The EDS allows safely
storing and transferring medical DICOM images retrieved from computer tomography (CT) or
nuclear magnetic resonance (NMR) machines 26.
However, these solutions do not solve the “difficulty of use” problem that affects gLite

storage services. FiReMan provides web-services interface, which cannot be said for the LCG
File Catalog. LFC interfaces of the highest abstraction level are: the LCG-utils Command
Line Interface (CLI), Python and Perl GFAL27 and LCG-utils bindings along with related C
application interfaces. No service-oriented API is available at the highest abstraction level in
the case of LFC. Web-services APIs are available only at Storage Resource Manager (SRM)
interface level28. Abadie et al. [1] argue that “Regardless of whether a grid user is a physicist,
physician or an engineer, they should all be able to use the client utilities to access the gLite
services and in particular the storage system”. Surprisingly, there are scientific disciplines not
normally related to computer science which have the most enormous storage and processing
demands when it comes to computational research. These include computational chemistry and
biology. Computational scientists as opposed to computer scientists do not necessarily have a
broad information technology background, especially in the field of grid computing. They are
experts in their discipline, e.g. physics, human physiology, pharmacy, biology, chemistry or
environmental sciences. Nevertheless, these experts would benefit most from grid technology.
Therefore, it is essential to help them employ grid resources in their fieldwork for the benefit
of science and humanity.
Nonetheless, scientific users encounter many obstacles in accessing Grid services, which

in the first instance is trying to obtain a Grid certificate. It is an intricate and error prone
procedure which requires both patience (the certificate will not arrive immediately) and some

24The authors probably thought of DICOM26 images stored in files. Experiences with ViroLab project showed,
that biomedical information stored in relational databases is equally pervasive [18].

25Digital Image and Communication in Medicine
26TeleDICOM [48] project is worth mentioning here. It has been developed by students and alumni of the

AGH University “Grupa.NET” scientific circle. TeleDICOM, although not a Grid project, shares some of the
Grid ideas. It is a distributed system, allowing for interactive and collaborative work on medical documentation
in the form of image files.

27Grid File Access Library
28An LFC SOAP API called Data Location Interface (DLI) is available. Still, it does not include authentic-

ation, is read only and not intended for end-users, but for Workload Management service.

22

technical skills, e.g. generation of PKCS#12 certificates to be used in a browser requires know-
ledge of openssl command line parameters. A second complication is the management of grid
certificates, generation of proxy certificates and keeping user credentials secure. Finally, the
data handling through the command line interface is somewhat cumbersome, requiring remote
login to an UI29, sending files to storage elements (SE), publishing them in the LFC catalog
and downloading files to the UI in order to be able to perform operations on these files. The
mentioned operations incorporate unnecessary burdens. gLite data services are difficult to use
for non-computer scientists.
The purpose of this thesis project is to relieve some strain from medical and scientific

users by providing service-oriented API for the LFC catalog, managing user grid certificates
and integrating the created API with the Virtual Laboratory, which is a comfortable grid
environment that was designed especially for them.

2.2 Objectives

These four constituents can abridge the ambitions of the dissertation and the related project:

Adding support for data sources available through LFC catalogue. This will involve
creating an API for experiment developers, that will allow effortless manipulation of these
data sources, in particular reading and writing data, browsing directories, deleting files and
directories and retrieving some of the document attributes – specifically their sizes30. This is
the main aspiration of the thesis entailing several accompanying goals being enumerated in the
ensuing items.

Reorganization of Data Source Registry (DSR) so that it will be possible to store all
requisite information about data sources of the new type along with apposite user credentials.

Extending the DSR EPE plug-in, to enable browsing of data sources with the support
of new data source type and to allow registering further data sources accompanied by relevant
user credentials.

Integration with GridSpace Engine, in whose context, the DAC2 data access layer op-
erates.

29Computer from which the Grid can be accessed.
30Dr. Maciej Malawski proposed the retrieving of these file properties.

23

2.3 Organization of the thesis

Chapter 3. Background In chapter 3 I will outline what has been done by the ViroLab
team within this project and other endeavours that employ GSEngine: GREDIA and ChemPo.
The section “The GridSpace Engine” will discuss the architecture of the GSEngine – an engine,
on which the Virtual Laboratory experiments are performed, revealing what led the system
designers to the selection of particular computer language for the expression of experiments,
elucidating the techniques GSEngine brings to bear for the execution and optimization of remote
operations on the Grid, together with the strategy it uses to conceal specifics of implementation
technologies. The section 3.3 – “The Virtual Laboratory” delineates the conceptual vision of
Virtual Laboratory and identifies modules directly related to its operation being Provenance
Tracking System (PROToS), Query Translation Tool (QUaTRO), Experiment Management
Interface (EMI) and Experiment Planning Environment (EPE). The section 3.5 portrays the
GREDIA and ChemPo, i.e. further undertakings making use of the GridSpace Engine, while
section 3.4 comments on the ViroLab data access layer, including VL Data Access Services
(DAS), Data Resource Registry and Data Access Client 2 (DAC2).

Chapter 4. Needs to be addressed / Problems to be solved Chapter 4 presents the
challenges that must be tackled by the thesis author together with their perspective. Never-
theless, section 4.1 portrays the organization of data access in gLite, taking into account LFC
catalogue with 4.2, demonstrating various alternatives to provision access to LFC and to files
published in it. The clause 4.3 illustrates difficulties with the management of users’ grid certi-
ficates, their protection and usage, with an accompanying discussion on feasible resolutions of
these problems. Finally, section 4.4 will demonstrate the current shape of EPE DSR plug-in
and new requirements it needs to fulfil. In brief, chapter 4 sketches project requirements as an
informal discussion. Formalized description will be delivered in chapters 6 and 7.

Chapter 5. Related work Chapter 5 alludes to miscellaneous projects, which touch upon
comparable substance mooted in the dissertation. Section 5.1 refers to other Virtual Laborat-
ories, such as myExperiment, Triana, Kepler and more low-level gLite, whereas 5.2 talks talks
about undertakings that strive for making Grid more service-oriented, for instance Open Grid
Services Architecture (OGSA) and Semantic OGSA (S-OGSA). Thereupon the clause 5.3 will
shed light on how diverse Grid projects read and write data, which is noteworthy in the analysis
of scientific literature31, which was carried out by the thesis author. An overwhelming majority
of projects still store data in relational, XML or occasionally, object databases located outside
of Grid. However, it is of no interest from the thesis point of view and therefore will not be
discussed. Nevertheless, projects of interest in the thesis are those which store and read on
Grid and several such projects will be discussed. Besides these projects sundry grid file systems

31Cracow Grid Workshop 2004 – 2007 (CGW’04 – CGW’07)

24

will be identified alongside cloud computing file systems, as cloud computing is an area to a
certain extent linked to grid computing. Eventually, section 5.4 will elucidate diverse librar-
ies providing access to gLite storage resources such as, LFC C/C++ API, Grid File Access
Library (GFAL), some low-level application interfaces and wrappers in assorted programming
languages.

Chapters 6. General software requirements 7. Detailed requirements present re-
quirements to be met by software developed within the thesis.

Chapter 8. Design description – this illuminates the chosen architecture of LFC Data
Source, highlights decomposition into design entities and illustrates dependencies between the
entities together with their internal structure and interaction patterns. Furthermore, it com-
municates component interfaces: everything designers, programmers and testers need to know
which will allow correct use of the functions delivered by the entities.

Chapter 9. Verification and validation Chapter 9 describes the testing approach for
functional and performance tests. Both types of tests are divided into those that assess LFC DS
connector and those that test LFC DS client library.

Chapter 10. Conclusions Section 10.1 summarizes achievements of the thesis project and
how they were achieved, while section 10.2 is an analysis of potential extensions of LFC DS
presenting possible improvements, such as ‘fine grained role-based security’. An additional
important aspiration would be to provide superior performance and scalability. An element
that could also be taken into consideration when envisioning further enhancement, is a more
generic API and accessible from languages other than Java. Ancillary refinements are also
deliberated.

25

Computer science is no more about computers
than astronomy is about telescopes.

Edsger W. Dijkstra

3 Background
I gave an overview of grid computing and motivation to develop virtual laboratories in the
Motivation section of the former chapter. This chapter will focus on our Virtual Laborat-
ory and software developed by ViroLab consortium, especially three of its members: ACC
Cyfronet32 (GSEngine, EPE, EMI, GRR, DSR, AppRepo, GrAppO, MOCCA, security com-
ponents), GridwiseTech (ViroLab Portal, VO management, security components) and HLRS33

(VL Data Access Services - DAS).

3.1 The GridSpace platform

GridSpace Engine [58, 107], abbreviated GSEngine, is a runtime environment for the Virtual
Laboratory. Indeed, it was formerly termed the Virtual Laboratory Runtime (VLRuntime). At
the release of version 0.2.6 its name was changed to GridSpace Engine, to reflect generality of
this software, i.e. that it can be used in a broader spectrum of problems than those related to
Virtual Laboratory.
The aim of the GSEngine is to enable access to computing and storage resources and to

coordinate the execution of experiments written in GScript language, i.e. JRuby extended with
capabilities provided by specialized GSEngine components. Thanks to dedicated libraries,
GSEngine facilitates interactive execution and monitoring of dynamic execution scenarios, oth-
erwise called experiments. There are different methods of providing the source of an experiment
to the GSEngine (see figure 1):

• Executing the experiment code line by line using a dedicated API.

• Passing the whole source code using the API.

• Using a command line client to pass the experiment code.

• Finally, one can load an experiment script from the experiment repository [109], which is
a software component based on Subversion (see figure 2). It is the most common way of
executing experiments when they reach production stage.

32Academic Computer Centre Cyfronet AGH
33High Performance Computing Center Stuttgart

26












 




















































































Figure 1: GridSpace Engine in Virtual Laboratory environment. The figure illustrates the
role of GSEngine Server, which orchestrates access to data and computational resources. In
addition, GSE various client tools are portrayed, cf. figure 1 in [58].

As Ciepiela et al. [58] indicate, the main goal of creating GSEngine was to separate the
client programs that assist in planning and executing experiments, from the engine that actu-
ally effectuates them. It allows the GSEngine to be shared independent of the users’ machines,
empowering it to conduct long-running experiments on user’s behalf, taking advantage of grid
resources. Such an approach to performance of ‘in silico’ experiments gives the opportun-
ity to carry out calculation-intensive experiments to the dispersed groups of users, probably
connecting to the GSEngine from mobile devices.
Projects, such as Triana, Kepler, myGrid, made workflows available to the users, as a means

to specify the experiment execution plan. An alternative approach would be to use scripting
language for that purpose which was a choice for projects Athena34 [100], where as a ‘glue’
language Python is used, and Geodise, which employs Matlab and Jython scripts.
The Virtual Laboratory authors, by contrast, chose JRuby language. There are several

reasons that led them to this decision:

• The JRuby project is distributed under CPL/GPL/LGPL licenses, which makes it suitable
34ATLAS software framework

27













 














Figure 2: A process of executing an experiment from Experiment Repository. Application
Repository, in ViroLab terminology termed ‘Experiment Repository’ or ‘ExpRepo’, is used to
share subsequent versions of experiments. After experiment submission by an experiment de-
veloper (1), the experiment becomes available to experiment users and other developers. When
they pass an experiment execution request to GSEngine (2), the experiment code is downloaded
(3), evaluated (4a) and the results are streamed to the client tool during execution (4b). Even-
tually, the experiment ends and GSEngine sends its status and response to the client (5) [58].

for the GSEngine being issued under the GPL licence. Bubak et al. [43] emphasised that
because of project research character, they preferred FLOSS software35.

• Numerous libraries written for Java platform are accessible from JRuby language.

• JRuby is a very expressive and purely object-oriented programming language allowing for
articulation of any logic complexity with additions of new functionalities being simplified
by developed metaprogramming [86].

GSEngine, as previously mentioned, contains modules providing access to grid resources
with Grid Operation Invoker (GOI) facilitating execution of remote operations on Grid and
Data Access Client a façade for access to typical data resources, for instance MySQL and Post-
greSQL relational databases, unstructured data sources, e.g. WebDAV and atypical, specialized
resources, e.g. Data Access Service (DAS) aggregations [18]. Apart from the GOI and DAC
libraries, there is a component making possible run parameter requests during the script ex-
ecution, for instance, a request for patient ID. From the developer’s point of view it allows
for dynamically creating forms from the script code, which is a very convenient feature. In
addition, libraries for streaming results to the client tools exist.

35Free Libre/Open Source Software

28

Outside of GSEngine, in the context of Virtual Laboratory, client tools have been de-
veloped with Experiment Planning Environment (EPE) helping design the experimental plans,
Experiment Management Interface (EMI) serving the purpose of performing and managing
experiments by end users. These are present only in the case of Virtual Laboratory. Other
projects, that employ the GSEngine, provide disparate tools, e.g. in the GREDIA project the
role of EPE is occupied by Application Execution Planning Tool – abbreviated AEPT or the
Developer GUI.
Among other responsibilities, an important GSEngine task is to manage user sessions, which

allow a Single Sign On (SSO) access to computational and data resources. Apart from these fea-
tures, GSEngine monitors access to data and execution of grid operations, collects log messages
and status of the performed experiments, so as to convey this information to the monitoring
tools and client programs.

Grid Operation Invoker After this short introduction to the GSEngine I will present the
Grid Operation Invoker [32, 34, 154]. DAC will be discussed in section 3.4.
The goal that VL team members endeavoured to achieve when envisioning GOI was raising

grid operations to a similar high level of abstraction as found in ordinary JRuby methods [33],
which is a complicated matter due to the diversity of grid middlewares. Bubak et al. [43] admit,
that apart from the support of divergent types of users and heterogeneity of resources it was
one of the biggest challenges to be unravelled. Despite the difficulties, the creators of GOI
succeeded and delivered experiment developer, a high-level object-oriented API leveraging the
following technologies:

1. WebServices based

• Stateless based on SOAP and WSDL purely

• Stateful extension of WebServices: Web Services Resource Framework (WSRF)

2. Component technologies: MOCCA [151], ProActive [50]

3. Job-oriented systems: EGEE and DEISA

The GOI authors tackled the assortment of grid technologies by introducing 3 levels of ab-
straction (see figure 3). Every grid object is an abstract entity, which can perform a set of
operations36 which are invocated from the GScript, but executed on remote machines located
somewhere on or outside Grid. Every Grid Object can have a number of implementations in
a variety of technologies, with each implementation representing the same function. Similarly,
each implementation may have an assortment of instances running on grid resources. Machine
load, class of equipment, as well as speed of network connection may be dissimilar; consequently,

36In object-oriented programming ‘an operation’ is sometimes described as an act of sending a message to an
object. Ruby also supports such a mean of operation invocation using the ‘send’ method semantics.

29

discrete instances of the given Grid Object possibly will work with disparate performance. To
relieve the user from the dilemma of deciding which instance to choose, the Grid Application
Optimizer (GrAppO) selects the best instance for executing operations, with the user needing
to know only the characteristics of a Grid Object that they use, i.e.:

1. Whether it is stateful or stateless.

2. If the method invocations are synchronous or asynchronous

3. If the objects are shared by other users or solely by the user.

 








































 

















Figure 3: Three levels of Grid Operation Invoker abstraction [33].

GOI is a light library creating Grid Object proxies that in turn maintain remote method
invocations in appropriate technologies. The GOI adapters are written in JRuby language and
call relevant Java libraries for specialized operations. Analogous approach has been chosen in
DAC with another similarity being the usage of external Data Source Registry, which contains
information about data sources and user credentials. GOI, on the other hand, uses Grid Re-
source Registry (GRR) that provide Grid Object technology particulars (figure 4). The role
of GRR and DSR can be likened to the role of Enterprise Service Bus of business applications
developed in conformity with Service Oriented Architecture model. Apart from high-level APIs
to Grid Objects, experiment developers have the possibility to use lower-level application inter-
faces. They can bypass the GrAppO by passing an instance ID or choosing a technology adapter
without the help of GrAppO, which in the case of higher-level API is selected automatically.

30

 
  

  

 





Figure 4: Grid Operation Invoker architecture and external components, with which it com-
municates [33].

Grid Application Optimizer [132, 152] or GrAppO is an optimization engine for the Grid-
Space Engine responsible for making most effective use of grid resources. GrAppO is under-
pinned by systems for monitoring [26, 57] and collecting provenance data, with its decisions
being taken on the basis of information retrieved from Grid Resource Registry (GRR), agiLe
MONitoring ADherence Environment (leMonAdE) and Provenance Tracking System (PRO-
ToS) [223]. GrAppO offers 3 modes of optimization: short-, medium-, and far-sighted (fig-
ure 5). leMonAdE is illustrated in figure 6. Data Access Client, which is also one of the core



 





















Figure 5: GrAppO architecture [152].

GridSpace platform elements, will be discussed in section 3.4.

31


















Figure 6: agiLe MONitoring ADherence Environment (leMonAdE) architecture divided into
two parts: Infrastructure monitoring and Application Monitoring [152].

3.2 GridSpace Engine deployment

The engine of GridSpace Platform may be incorporated into a user’s application, started from
command line as a local instance or can be launched as a remote accessible server, which can
be contacted by using a dedicated client library or a client command line tool. Each of these
possibilities will be discussed in this section.

GSEngine command line tools Shell scripts that fall into this category are

• gsel – GSEngine Evaluate Locally

• gseql – GSEngine Entity Query Local

• gsdql – GSEngine Data Query Local

• maketrusted

• gses – GSEngine Server

• gsec – GSEngine Evaluation Client

• dotrust

• gseqc – GSEngine Entity Query Client

• gsdqc – GSEngine Data Query Client

• gsep – GSEngine Proxy

Commands above are available for both Windows and Linux and are contained in three packages
(‘xxx’ indicates version number):

gsengine-client-vl-xxx: gsec, gseqc, gsdqc, dotrust – The main component of this bundle
is client command line application gsec that connects to remote GSEngine Server passing
GScript code. Additionally commands (gseqc, gsdqc) that utilize data access façade of a
remote GSEngine Server are provided. Before running the client, it is necessary to add a
server certificate to trust store – this is the purpose of dotrust script.

gsengine-vl-xxx: gses, gsel, gseql, gsdql, maketrusted – Package that ships with GSEngine

32

Server, a local embedded version (gsel) and a remote, accessible server (gses), together
with an utility (maketrusted) to generate server key pairs with self-signed certificate and
tools to access data access façade of a local GSEngine Server (gseql and gsdql).

gsengine-proxy-vl-xxx: gsep, maketrusted, dotrust – GSEngine Proxy (gsep) is a module
that acts like a server from the point of view of client and like a client, enables the passing
of messages between actual client and server. Package also contains maketrusted and
dotrust scripts that have an identical purpose that as in bundles above, i.e. before using
GSEngine Proxy server key pair together with certificate needs to be generated (using
maketrusted) for use with actual client. Furthermore, adding actual server certificate
(i.e. certificate of a server that is the destination of messages) to trust store using dotrust
is obligatory in order to enable communication with this server. Execution of these two
scripts: dotrust and maketrusted is required as GSEngine Proxy communicates with both
client and server.

Installation of the bundles above first involves extraction of bundle archive into a directory of
user’s choice, while the subsequent steps depend upon what package user wants to install.
If the user wishes to install a local embedded GSEngine, there is a need to configure

Java-style properties file config/engine.properties adjusting values such as path to JRuby
interpreter, RMI registry port where GSEngine JMX37 server will be registered, application
correlation id (acid) prefix and credentials to stores containing results and metadata. A user
wanting to utilize their own GridSpace infrastructure, i.e. security providers, data, metadata,
result and ontology stores, resource registries, application repositories etc., must modify
config/gridspace.properties.xml appropriately, usually substituting URLs from this file to
those pointing to their own services.
If GSEngine server is to be used remotely, in addition to steps above, a generating key pair

with certificate is requisite. maketrusted is used for this purpose – the only parameter needed
is a name to be used for subject of certificate and file name.
On the other hand, when installing a GSEngine client, apart from extracting the bundle,

the only step required to make installation valid is to execute dotrust script adding a server
certificate to GSEngine Client trust store. No additional configuration is required. GSEn-
gine Client bundle is compact compared with GSEngine Server package with 1.7 MB size
compared to 50.4 MB (as of version 0.8.1_5) – this is because the client ships only with ne-
cessary libraries. Therefore, an end-user does not have to install heavyweight software with
many configuration options. Moreover, and most importantly, such an installation solves
problems with server certification – as it was mentioned, the only mandatory step for cli-
ent is to add server certificate to trust store using simple dotrust command. It is a very
modest requirement compared to analogous collaborative virtual laboratory engines, e.g. my-

37Java Management Extensions

33

Experiment [67]. In myExperiment, a user wanting to connect to myExperiment service is
equipped with OAuth library, whose configuration incorporates many steps and prerequisites.
Particularly, a user has to unpack oauth4myexp.tar bundle into a web folder of a web server
that supports PHP38. Then a user has to determine URL of the deployed web application,
e.g. http://<someserver>/<somefilepath>/oauth4myexp/. Subsequently, user logs into myEx-
periment server, opens OAuth page and clicks Register Client Application, enters its details, spe-
cifically Name, Main Application URL, Callback URL and optionally Support URL and chooses
which API calls the client application, which will be able to perform in Permissions section [162].
After completing the form and achieving successful registration of client application, user gets so
called Consumer Key and Consumer Secret. The next step is configuration of recently deployed
OAuth PHP application – this is done by going to its URL followed by config_generator.php
suffix, e.g. http://<someserver>/<somefilepath>/oauth4myexp/config_generator.php, pasting
Consumer Key together with Consumer Secret, and clicking Get Access Token button, which
will redirect back to myExperiment website so as to authorize access token for client applica-
tion. After accessing myExperiment website for the second time, user checks Authorize Access
checkbox and clicks Save Changes, which redirects him or her back to configuration generator
page. On the resulting page, user is presented with Base64 encoded configuration, which is
pasted into configuration file Config.php in directory of PHP client application. Afterwards,
user loads again the PHP application – on successful connection to myExperiment server, the
Connected to Server field will be displayed, which indicates that the client PHP application can
make API calls. Having in mind this procedure, it is not an exaggeration, to say that GSEngine
Client deployment is straightforward compared to other solutions.
As regards installation of GSEngine Proxy, it incorporates generation of server key pair and

certificate, which will be added to clients’ trust stores connecting to this proxy. Additionally,
dotrust must be invoked with destination server certificate, so that the proxy will be able
connect to it. GSEngine Proxy passes messages back and forth from client to server. Moreover,
it manages a set of GSEngine Servers acting as workers.
With regard to executables provided by the aforementioned packages, there are scripts to

pass GScript code to GSEngine Server or to invoke GSEngine commands interactively; there
are commands to approach data access façade and already discussed scripts to generate key
pair and certificates and acceptance of certificates. Commands enabling evaluation of code
by GSEngine are gsel and gsec. The former executes GScript in a local embedded version
of GSEngine while gsec connects to a remote GSEngine Server. GScript code is provided
either using a local file name, by specifying application URI to be downloaded from application
repository or passed interactively using system console. On the other hand, gseql, gsdql, gseqc
and gsdqc are used for querying GSEngine data access façade either locally (gseql, gsdql) or
remotely (gseqc, gsdqc). Finally, to launch a remotely accessible GSEngine Server instance

38Hypertext Preprocessor

34

gses is used. For more information, in particular regarding command line arguments of these
scripts, the reader is advised to consider [62].

GSEngine API Another option of GSEngine deployment is to incorporate it into user’s
application and to use its capabilities programmatically. If the application dependencies are
managed using Maven, it is sufficient to add certain Maven artifacts to pom.xml, particularly
gsengine-api and depending on the mode of operation, gsengine-core for local embedded
version of GSEngine or gsengine-client for a GSEngine client connecting to a server. Maven
repository location and complete XML code snippets can be found in [62]. Otherwise, if a
developer does not use Maven, they can add GSEngine dependencies manually by downloading
GSEngine bundles: gsengine-vl-xxx in the case of local embedded server or gsengine-client-vl-
xxx when accessing a remote server, and afterwards, adding the content of lib directories into
project CLASSPATH.
After adding dependencies, developer has access to GSEngine interpreter using

cyfronet.gridspace.engine.impl.interpreter.EmbeddedInterpreter class for embedded in-
terpreter and cyfronet.gridspace.engine.client.RemoteInterpreter for remote interpreter
respectively, while both are subclasses of cyfronet.gridspace.engine.AbstractInterpreter,
which defines evaluate method. As with command line client, when using a client library
that connects to a remote GSEngine server, appropriate server certificates must be present
in trust store, which is as an argument to RemoteInterpreter constructor or a constructor
of remote data access façade, depending on what class developer uses. API for execution of
GScript applications accepts similar parameters as its command line counterparts, i.e. among
obvious server URL and port, there are user handle, applications URI, global constants,
arguments, log-level and several more (although for optimization policy there is no coun-
terpart parameter in command line tool). What differs from command line tools mostly,
is the ability to receive evaluation callbacks. These include notifications about completion
of application, about event of application setting its status, writing data to output or er-
ror stream (data is passed to callback method as an argument) and notifications of stor-
ing results or about exceptions being raised. Additionally, GSEngine expresses various re-
quests by invoking a callback, e.g. demand for providing input, displaying content, provid-
ing a file or additional script. Furthermore, interactive mode of GSEngine operation re-
trieves GScript source code by means of a callback. Another capability of GSE API is to
abort a running GScript application. In order to do this, developer passes application cor-
relation id returned by evaluate method of cyfronet.gridspace.engine.AbstractInterpreter.
Apart from the ability to invoke script code, developer has access to data access façade using
cyfronet.gridspace.engine.dataaccess.DataAccessFacade class, which enables queries over
data sources and retrieving entities from a data source schema (a table in relational database)
– for more information the reader is counselled to take [62] into consideration.

35

API mentioned above is a Java API. As far as JRuby GSEngine API is concerned, some
information, especially about dynamically generating forms and about runtime objects and
properties, can be found in [62] while detailed information about GSEngine JRuby API can be
found in RDoc documentation.

3.3 The Virtual Laboratory

Virtual Laboratory – advancing treatment and research on HIV39 One of the reas-
ons, why the HIV-1 virus is pernicious to humans, is the fact that it kills the T-helper cells
(Th), holding CD4 antigen (more than 90% lymphocytes possess CD4 glycoprotein). In the
absence of treatment, the disease may lead to diminution in number of Th lymphocytes to a
level below 200 cells per µL. As a result, human immune system loses its ability to defend from
pathogens, leading to Acquired Immunodeficiency Syndrome – AIDS. “The human immunodefi-
ciency virus (HIV) and other retroviruses show extensive genomic variation, which is primarily
due to error-prone replication by the viral reverse transcriptase (RT) enzymes.” [64]. This is the
root stumbling block in finding drugs and vaccines against HIV virus and other retroviruses40.
Despite this complication, there have been divers attempts to treat HIV infections:

• Disruption of virus replication process by inhibiting the reverse transcriptase (RT) enzyme
activity, which is the principle action of drugs such as AZT41. Unfortunately, impervious
mutations spawn promptly.

• Taking advantage of extensive genomic variation of retroviruses which has the potential
to cause an error catastrophe [78]. This phenomenon of error catastrophe occurs, when
the quantity of virus mutations is so enormous, that it loses its genetic identity and
effectiveness with KP-1212, a drug that tries to exploit it [112].

• Nowadays, the most successful HIV therapy is HAART – Highly Active Antiretroviral
Therapy. It combines at least 3 antiretroviral drugs; the initial stage will usually include
“favirenz or a ritonavir-boosted protease inhibitor plus 2 nucleoside reverse transcriptase
inhibitors (tenofovir/emtricitabine or abacavir/lamivudine)” [110]. The amalgamation of
medication inhibits the creation of drug-resistant virus mutations.

• Attempts to boost Th production by averting physiological42 involution of thymus in
HIV-infected patients by administering growth hormone (GH). Napolitano et al. [161]
report, that their therapy caused upsurge in Th production by 30%.

39Human Immunodeficiency Virus
40Retrovirus is an RNA virus that replicates itself using reverse transcriptase – RT creating DNA from its

RNA. One of the major known retroviruses is HIV-1.
41Cluster of differentiation 4
42i.e. being in accord with and characteristic of the normal functioning human organism.

36

The HAART therapy, though the most effective at the moment, must be matched individually to
a person receiving treatment. Wrong choice of medication may cause susceptibility to drugs and
immunity to further treatment. Wrong choice of medication may cause reduced susceptibility
of HIV to drugs and immunity to further treatment. Moreover, according to Stoica et al. [206]
“The development of new antiretroviral therapies for HIV is at an impasse”. At this point,
ViroLab project overcame the aforementioned difficulties by alleviating the risk of wrongly
prescribed drugs, not only in the context of a single person but also in the perspective of
complex human interactions.
ViroLab Virtual Laboratory [108, 197] delivers a platform for cooperation between scient-

ists of different disciplines, located in distinct distant places around the world, but of the same
scientific ambitions. The main goal in establishing this platform, which brings together ef-
forts of computer scientists, virologists, epidemiologists and experiences physicians, is to help
advancing HIV research. The system integrates biomedical information on viruses, i.e. facts
on proteins and mutations, patients (what virus mutation are they infected with), treatment
(drugs admitted) and literature (interpretations of drug resistance).
ViroLab copes with HIV medicine decision processes on all levels of detail [198]: from mo-

lecular [190], through the molecule groups, cell-level and the whole immune system to networks
of human interactions (see figure 7). For instance, at the molecular level, there are molecular
dynamics (MD) simulations performed concerning how drug compositions behave in the pres-
ence of virus proteins with binding affinities being calculated to estimate reactions to drugs and
an ‘individual transmission parameter’43. Sloot et al. present the successes of their simulations
in [198], asserting that they can model all phases of infection: from acute, through chronic,
drug treatment to onset of AIDS and that their results correspond to clinical data. Similarly,
they reported that their simulations of human interactions by means of complex networks, very
accurately recreated the development of HIV infections in United Stated. Without doubts, it
is an example of conducting simulations at all scales as it was formulated in [115]. Based upon
precision of these simulations, the authors of [198] formulated a supposition that models they
elaborated on, will help making advised decisions regarding treatment and impeding the prolif-
eration of HIV virus. They have provided virology scientists with powerful tools to investigate
the impact of various avowed strategies and drug therapies.

Virtual experiments One of the central ideas behind Virtual Laboratory is the process
of conducting experiments – experiment pipeline (see figure 8). An experiment (or in-silico
experiment) is a process that combines data and computation in order to obtain results; in
other words a ‘dynamic scenario’. In the profession of biologist or chemist, experiment is carried
out using available substrates and processes to acquire new knowledge. Likewise, in an in-silico
experiment, an experiment creator exploits available data sources and computational resources,

43Probability of infection during sexual contact.

37



































 


 






Figure 7: Virtual Laboratory framework conceptual components. They can be used separ-
ately or through ViroLab drug ranking decision support system that integrates them into one
application [198, 217].

the result of which is new knowledge similar to traditional experiments. In contrast to typical
computer programs, such as knowledge gained from experiments, in vivo, in vitro or in silico,
we must know where it comes from. In order to apply knowledge in important life threatening
matters in question, e.g. which combination of drugs will be able to cease replication of a
given virus mutation that a patient is infected with, a clinician must be able to verify origin of
information. For that purpose, within ViroLab project Provenance Tracking System (PROToS)
has been brought into being, storing provenance data together with QUery TRanslation tOols
(QUaTRO), enabling medical users to perform provenance queries on clinical data integrated
with ViroLab, along with Semantic Event Aggregator – a component for building ontologies
from monitoring data [25–29, 177, 223]. The PROToS architecture has been depicted on figure 9.

Types of users Users, according to Virtual Laboratory concept [46, 156], are divided into:

• Clinicians employing DSS in their clinical practise to better treat HIV-positive patients.

• Scientists, i.e. clinical researchers, virologists and epidemiologists, who are both creators
and users of experiments, which analyse federated datasets, to obtain new knowledge
which is useful when making recommendations for clinical decisions and to support their
research.

38
































Figure 8: Experiment pipeline – one of the central ideas behind Virtual Laboratory [108].

• Experiment developers – computer scientists, whose role is to support research scientists
in implementing experimental plans, produce new computational services and integrate
multifarious computational and data services into ViroLab infrastructure which create
new tools that take advantage of this infrastructure.

Groups of users in a company with software used have been shown in figure 10.

Architecture The VL structure is presented by figure 11. Some of the components shown
in diagram will be described, beginning with Experiment Planning Environment (EPE). EPE
was created as an aid for experimental plans. It is based on Eclipse Rich Client Platform
(Eclipse RCP) [96, 97] and combines the following components: Domain Ontology Browser,
Grid Resource Registry Plug-in, Data Source Registry Plug-in and GScript Editor. Domain
Ontology Browser assists in searching an appropriate grid service that can fulfil particular user
need. GRR plug-in enables browsing for accessible Grid Objects which can be used in exper-
imental code; in addition it is capable of generating a code snipped that accesses the Grid
Object selected by user. DSR Plug-in, on the other hand, enables browsing, modifying and
adding new data sources together with credentials, utilized to access them. Lastly, GScript
Editor [96] provides syntax highlighting and code completion with support of specific ViroLab
features, such as support for Grid Objects. ViroLab portal, also termed the Patient Treatment
Support tool [46] – PTS, is based on GridSphere portal, providing the below mentioned user
interfaces: Experiment Management Interface (EMI) [97], Database Browser [21] (see section
3.4), Grid Resource Registry (GRR) Browser, VO management portlet, Drug Ranking Sys-
tem, Literature Mining, QUery TRanslation tOols (QUaTRO) [25, 28] and Binding Affinity
Calculator (BAC) [190], some of which I will explain. Firstly, using EMI user can load an
experiment, execute it and download results. As clause 3.1 indicated, Experiment Repository
(ExpRepo) supports storing and sharing subsequent versions of experiment. An example of

39































Figure 9: PROToS architecture [27].

this experiment has been shown in listing 1 – the experimental code is from [46] with figure 13
illustrating interactions between ViroLab components during its execution. Access to data is
implemented using an older version of Data Access Client. Newer, currently used notation that
exploits Data Source Registry (DSR) features will be reviewed in clause 3.4. The cooperation
model [109] between experiment creators and users of these experiments has been shown in
figure 12 with precise investigation of collaboration aspect given by Tirado-Ramos [216]. Drug
Ranking System (DRS), in some documents [46] termed the Decision Support Ranking Service,
provides algorithms and databases to study HIV drug resistance, such as Retrogram, REGA,
Stanford HIV DB and ANRS, which allow for predicting drug interactions within specific re-
gions of virus: reverse transcriptase or protease. Patient data is drawn from DAS component
(see section 3.4).

Security With regard to security, ViroLab provides Single Sign On mechanism. In the case of
ViroLab, it is based on Shibboleth framework with suitable extensions developed by ViroLab
team to support non-web applications. Implementation of security mechanisms in ViroLab
has been covered extensively by Jan Meizner et al. [156]. The author of this paper asserts
that security of valuable ViroLab resources must be protected from theft or devastation. This
will include medical databases, trust stores with user credentials, source codes of experiments
together with their results (also intellectual property, probably obtained after months of research
and simulations), as well as computational power and network bandwidth.

40












  




























        
       

   
    

Figure 10: Layered view onto ViroLab architecture. On top there are three kinds of users:
experiment developers, scientists and clinical virologists using dedicated interfaces that, in
turn, communicate with runtime components that manage computational and data resources
located in Grid, clusters or individual computers [198].

3.4 Data access in ViroLab

Data access in ViroLab is possible using varied means, both from ViroLab portal and from
GScript, which is used for expressing experimental code. The ensuing components, implemented
as portlets, allow for data access from ViroLab portal:

• QUaTRO [25, 28], provides means for executing queries to data repositories and proven-
ance collection systems, using terms from virology domain. It can be used to express
queries in respect of PROToS (Provenance Tracking System) and Virtual Laboratory
Data Access Services (DAS).

• Database Browser [21], to aid users browsing databases of patients, drugs and virus















 

 




 
 
 
 
 























































































Figure 11: A more technical view of the ViroLab structure with all main constituents illus-
trated [108].

41






























Figure 12: Cooperation model between experiment (application) creators and users of these
experiments [46, 109].












 






















































Figure 13: Interactions between components during execution of a sample experimental plan
with source code was provided from listing 1 [46].

mutations. In addition, they can look through database schemas, execute SQL queries,
sort results returned using assortment of criteria, as well as save data as XML, HTML,
CSV or print the records. Database Browser is a user interface for DAS, the former being
covered further in this section.

An alternative means in accessing data, as it was mentioned above, is to use GScript; this
is plausible using Data Access Client (now in version 2). DAC is a library written in JRuby
language, which additionally utilizes libraries coded in Java to obtain access to miscellaneous
data sources, including databases, data sources available using WebDAV interface and data
accessible through Virtual Laboratory Data Access Services – DAS. DAC is underpinned by
Data Source Registry – DSR, currently implemented as MySQL database. A graphical front-end
to DSR is the DSR plug-in of EPE environment. Architecture of data access in ViroLab has been
presented in figure 14. I will begin broaching data access from browsing data sources, registering

42

Listing 1: Sample experimental plan (from [46]). See figure 13 illustrating interactions between
ViroLab components during its execution.
patientID = DataRequester.new.getData(”Provide patient\’s ID”) #1a
region = DataRequester.new.getData(”Region (\”rt\” or \”pro\”)”) #1b

nucleoDB = DACConnector.new(”das”,
”virolab.hlrs.de:8081/wsrf/services/virolab/DataAccessService”,””,””,””)

sequences = nucleoDB.executeDistributedQuery(
”select nucleotides from nt_sequence where
patient_ii=#{patientID.to_s};”) #2
mutationsTool = GObj.create(”RegaDBMutationsTool”)

mutationsTool.align(sequences, region) #3
mutations = mutationsTool.getResult #4

drs = GObj.create(”DrugResistanceService”)
result = drs.drs(”retrogram”, region, 100, mutatations) #5
puts result #6

a new data source and then using those from GScript level. Programming environment of
experiment developers – let us name them for brevity ‘programmers’ – is Experiment Planning
Environment (EPE). A programmer uses EPE for coding experiments in GScript language,
searching for grid services, cooperation with other developers and experiment users by correcting
inaccuracies or errors they identify and taking into account suggestions they submit using
Experiment Management Interface (EMI) feedback form. In addition, EPE allows for publishing
experiments in Experiment Repository. As it was mentioned before, EPE contains a plug-in,
which enables browsing of data sources, registering new ones and storing user credentials.

Data access workflow In order to be able to look through DSR records and add new entries,
the programmer needs to login to Virtual Laboratory using EPE login form. After successful
authentication and choosing the DSR-plug-in view, a categorized list of data sources appears.
Programmer, by clicking particular data source may edit or view information, together with
changing credentials that are linked to this data source. In the list view, they also have the
possibility of adding a new source. A diagram illustrating the data access workflow has been
provided in figure 15. By adding a new data source, programmer chooses its type (‘structured’
or ‘unstructured’), then data source technology (e.g. PostgreSQL), as it is shown in figure 16,
presenting one of the DSR plug-in forms. Depending on technology, programmer has the
opportunity to provide varied information on particular data source. Some of it is typical and
occurs often, e.g. URL or schema name. A field, that is always and will be always required
with every data source, unless DAC architecture changes, is the data source ‘handle’, which is a
symbolic name utilized when initiating a data source in experiment code. It is a means by which

43





































































Figure 14: Architecture of data access in ViroLab.

a programmer makes a reference to data source in code. Furthermore, a programmer has the
option of providing his or her credentials that are needed to access a particular data source (see
figure 17). What’s more, the interface allows for specifying whether the credentials supplied
by user can be shared with other authenticated users. In DAC terminology, such credentials
are called ‘static’. After accepting changes, recently added data source becomes visible to other
programmers. They can choose a data source from list and supply their own credentials, if
they want to use it, but other programmers did not make their credentials static. A question
arises: how to utilize a data source in experiment code? To this end, a programmer adds the
following line:

require ’cyfronet/gridspace/dac2/dac_connector.rb’

at the beginning of their script. This gives programmers access to DACConnector class, which
is exploited for instantiation of data sources. Using DACConnector.new method, programmer
passes the data source handle, thus creating a new instance of specific data source connector.
Virtual Laboratory, as a grid project, takes steps to make data access occur on Single Sign
On (SSO) basis. Therefore, as it was mentioned earlier, programmer stores their credentials
in the DSR and does not have to provide them when running a script. It suffices, that the
programmer is logged in and the DSRConnectivity DAC module will download credentials
from DSR. Conversely, if programmer did not provide particular data source credentials, when

44













Figure 15: DAC2 data access workflow as described in the text.

Figure 16: A DSR form that appears when adding a new data source.

credentials are required, the DACConnector checks if static credentials for this data source exist,
i.e. if someone made their credentials available to other authenticated users. If such credentials
subsist, DACConnector instantiates a connection to data source; otherwise an exception is
thrown saying that static credentials have not been found and that programmer should provide
their credentials as DACConnector.new method parameters. As the exception says; instead of
using credentials stored in DSR, programmer, after providing data source handle in the first
argument may pass login as second and password as third argument of the new method. In
this way, data source instantiation is carried out in most cases. Additional API, taking into
consideration LFC DS component developed as part of this thesis, is presented in appendix A.
In the case of Data Access Services (DAS) data source, Single Sign On (SSO) is not provided

by DSR, but by DAS itself [21], i.e. it is sufficient, that a user holds a valid Shibboleth handle.
Policy Decision Point (PDP) service decides whether an authenticated user may execute opera-
tions or query data. Programmer, as a second argument of DAS data source initialization, may
provide alternative Shibboleth handle, if they want to perform operations on behalf of another

45

Figure 17: DSR form for providing data source credentials.

user. Apart from 1, 2 and 3-argument constructor, a 4-argument constructor is available when
instantiating an LFC DS data source and the reader may peruse it in appendix A.2.
The DACConnector class, aside from constructor, provides methods that render operations

on instantiated data source. Before the conception of LFC DS, the list of methods appeared
as follows:

• executeQuery(query)

• executeUpdate(query)

• storeFile(payload, filename)

• getFile(filename)

• deleteFile(filename)

Devising LFC DS required adding new methods, which are discussed in detail in appendix A.3.
DACConnector instantiates a data source on basis of handle supplied by user and information
on the data source represented by handle that is returned by DSR. If it is, for instance, a
WebDAV source, DACConnector creates an object of DAVDataSource type, which serves as a
role of connector to WebDAV data source, i.e. translates invocations of DACConnector methods
into invocations of WebDAV specific libraries that connect to WebDAV server. If it is a MySQL
data source, a MySQLDataSource object is instantiated, which in turn is a connector to MySQL
database, etc.

46

DACConnector, while instantiating a data source connector, passes to it information re-
ceived from DSR. As a consequence, user does not have to supply this information in method
invocations, as it occurred in previous Data Access Client version. After DACConnector.new
method finishes successfully, reference to connector object is then preserved in @source object
variable for further method invocations. If a user sends DACConnector an executeQuery(query)
message (or in other words, executes executeQuery(query) method of DACConnector instance),
the instance of DACConnector object will send that message to data source connector, whose
reference, as mentioned before, it holds in @source variable. If the data source connector poin-
ted by @source supports such a message, it performs appropriate operations and returns results
or throws an exception, if operation failed for some reason. On the contrary, if connector does
not support such a message, an exception is thrown indicating this. Connector hierarchy has
been illustrated in figure 18.












































Figure 18: Data source connector hierarchy in DAC2.

Data Access Services (DAS) Virtual Laboratory Data Access Services deserve detailed
explanation. Its mission is to provide integrated, secure access to patient databases of hospitals
participating in the ViroLab consortium.
The DAS authors, while conceiving this component, faced a dilemma of how to render

integrated access to databases belonging to different organizations. Paweł Płaszczak [184]
asserts that volume of data was massive, not in terms of gigabytes, but in terms of its delicacy,
since leakage of patient data would be undoubtedly a legal threat for hospitals. On the other
hand, creating one central database was not considered, because, as Plaszczak asserted, medical
institutions are equally possessive about their data, as software corporations are about their
intellectual rights. Federated Single Sign On [156] was chosen as an alternative to Public
Key Infrastructure (PKI). In Federated SSO, every organization is responsible for granting or
revoking access to its data and for confirming identity of their members. Firstly, it allows

47

many organizations to join a project. Secondly, every organization has full control over its
data. Nevertheless, the Federated SSO solution has advantages, but also some shortcomings,
one of which is a possibility of data being stolen by a member of a trusted organization.
Assel and Kanyocu [16, 19] considered this issue and to avert situations of this kind, they
formulated a security policy which can be defined very precisely. They employed Access Control
Markup Language (XACML)44 for the purpose of managing data access policy and created a
user-friendly interface for generating, uploading and modifying access policies. Apart from
graphical interface dedicated to DAS it is relevant to mention ViroLab component for virtual
organization management, which is available as a portlet through the ViroLab portal, whose
graphical interface has been implemented by GridwiseTech [105], using Adobe Flex, thus taking
advantage of capabilities provided by contemporary 3D graphics. The interface is based on
virtual organization (VO) idea, which makes management of permissions more efficient.
For managing data access policies to DAS data sources, a modified version of Policy Decision

Point (PDP) is utilized, which is is a product of TrustCoM, another European project [68].
PDP has been implemented as a web service and is responsible for controlling every data access
request to DAS data. In addition, PDP makes decisions based on access policies, deciding
whether a particular user can be given access to a particular resource or whether the user can
question queries raised in this resource. The overall plan of this mechanism has been portrayed
in figure 19. Meizner et al. [156] asserts that securing data access to DAS follows a two-step
approach: a user interested in accessing DAS must first pass through ViroLab security policy
defined by Security Assertion Markup Language (SAML), then through policy delineated in
XACML. The dissertation author, based upon his knowledge, is of the opinion that in securing
DAS data sources there should be mentioned an additional step in-between, i.e. aside from the
steps mentioned in [156] and [16, 19] – identification by Identity Provider (IdP), authorization
by ShibAuthAPI and consent of Policy Decision Point. Additionally, another need requires
permission to access the data given by Data Source Registry. At present, DSR access policy is
quite primitive: access to data source can be given only to its owner or to every authenticated
ViroLab user with no intermediate access granting levels. Perhaps, in the future, capabilities of
security policies of DSR will be extended. Furthermore, the dissertation author recommends any
reader interested in security aspects of ViroLab, to take into account the publication of Meizner
et al. [156] which describes this in detail. DAS has been based on Globus Toolkit [88], Open Grid
Services Architecture Data Access Integration (OGSA—DAI) [10, 129] and the aforementioned
security architecture of ViroLab. A challenge that DAS successfully unravelled, was integrating
into ViroLab dispersed and heterogeneous data resources belonging to different institutions.
One of the problems was the fact that data was stored in relational databases whose format
was dissimilar, even though they were concerned with the same entities, i.e. patients and virus

44Access Control Markup Language (XACML) is a language standardized by Organization for the Advance-
ment of Structured Information Standards (OASIS).

48














 



 









 












  



Figure 19: DAS security mechanisms [16, 19].

genotyp which patients are infected with. For instance, Catholic University of Rome in Italy,
which has been involved in HIV resistance research since 1999, stores patient examination
results and essays regarding drug invulnerability in dedicated relational databases based on
Microsoft Access.
According to Assel et al. [18], the process of transforming databases could be very complex.

In order to minimize the complexity, a common database scheme was chosen to be installed in
every hospital participating’ RegaDB HIV Data and Analysis Management Environment were
chosen and the solution envisioned by DAS authors can be delineated as follows:
A hospital may use both private RegaDB installed behind its firewall, in a so called Demil-

itarized Zone (DMZ) or utilize collaborative RegaDB located with some trusted partner using
encrypted connection (see figure 20). DAS consists of 3 subsystems responsible for the ensuing
points: Data Resource Discovery, Data Access and Data Transformation. Data Resource Dis-
covery virtualizes locations of data resources – applications reference data sources by logical
names using Meta Query Language (MQL), so called by DAS authors. The Data Access Module
provides interfaces enabling usage of relational and XML databases. A noteworthy fact is that
access to relational and XML databases is possible using DAS component and using GSEngine
Data Access Client (DAC). The choice is at the discretion of a user, although the thesis author
recommends DAC, as it is a more general interface not limited to Virtual Laboratory, but
useful in every project that employs GSEngine. A reader interested in DAS architecture can
find more information in [18].

Data Source Registry DSR is a solution that aims at relieving programmers from re-
membering particulars of access to various data sources and strives to provide Single Sign On

49








































































 




















Figure 20: Data integration scenarios in ViroLab Data Access Services [18].

mechanism to these sources. In the first generation of DAC, the programmer had to provide
every detail regarding a data source with which they wished to connect and can be seen in
listing 1. DAC2 is a second version of DAC that was completely rebuilt to take advantage of
DSR and was created by Piotr Nowakowski, the main author of DAC. Ideally, using DAC2 and
DSR is sufficient to provide data source handle in order to be able to use a particular data
source. On the other hand, DACConnector enables programmers to override some data that is
stored in DSR during data source initialization or to provide this data in the case of its absence.
An example of such data overriding can be seen in appendix A.2, where it is done using LFC
DS constructors. With regard to DSR implementation, currently it is a secured MySQL data-
base, although it may possibly be implemented as a software component in the future. Access
to DSR is clearly divided in DAC source code and is performed only in dsr_connectivity.rb
file, which makes the probable change of DSR implementation, in terms of source code update
required, less costly.

3.5 Other projects based on GridSpace platform

Two undertakings can be referenced here: GREDIA and ChemPo.

GREDIA The aims of GREDIA are firstly, creation of middleware intended for business
grid applications and secondly, production of two pilot applications: domain of journalism and
area of banking [212]. The devised middleware comprises the following components: Applic-
ation Execution Assistant – Appea [44, 45], Framework for Intelligent Virtual Organisations
(FiVO) [137] and a data management layer, so called ‘virtual work space’ that binds together

50



































 

























































































Figure 21: Structure of GREDIA middleware [133].

nodes participating in the project. This virtual workspace is a form secured from intrusion of
Data Grid, in which there are written and annotated multimedia files, spreadsheets etc. that
can be then discovered by users. Moreover, every user being a part of this virtual space is able
to specify who can access data that he or she makes accessible. Thanks to the absence of central
server and basing infrastructure on peer-to-peer architecture, the system has no single point of
failure and provides fast data transfers. This is possible, because every node can not only be a
consumer of services, such as data searching, but may also contribute storage capacity and data
services [133]. The structure of GREDIA has been illustrated on figure 21. A reader interested
in specifics of implementation can find further information in the publication of Asiki et al.
[14].
The dissertation author believes the Appea framework previously mentioned has many com-

mon characteristics with Virtual Laboratory software. Let us look at its architecture shown
in figure 22; similarity to figure 11 representing ViroLab structure is obvious. In place of Ex-
periment Repository we can see Scenario Repository, also noticing existence of Grid Resource
Registry. However, GREDIA accentuates supporting grid data management services with im-
portant points being, Distributed Replica Location Service (DRLS), which maps logical file

51







 












































 


















































































 






   





























Figure 22: Architecture of Appea platform [44].

names to physical ones, Metadata Overlay, which is a P2P DHT45-based based overlay storing
metadata files, a Metadata Service, which assigns metadata files to peers from the Metadata
Overlay and processes Appea or web-client queries and finally Data Service, which stores data
in Storage Overlay and returns streams enabling downloading data with GridTorrent protocol
(see figure 23). Those services have been detailed in the article of Konstantinou et al. [133].

ChemPo According to Sterzel, Szepieniec and Harężlak [201, 202], Grid can be applied
directly to conformational analysis, numerical frequency computations, zero point vibrational
averaging, determination of chemical reaction paths or potential energy surfaces (PES) etc. all
being computation intensive tasks or tasks that operate on large data sets. In order to help
scientists make effective use of Grid resources, they built an environment for performing such
chemical calculations on the Grid. The environment manages computational processes together
with experimental data and strives not to distract scientists with technology and not to change
their way of thinking. The project has a web portal front-end based on Web 2.0 techniques,
e.g. Google Web Toolkit (GWT). The portal character of the project is also the origin of its
name: ChemPo – Grid Web Portal for Chemists. Besides usage of GWT as a user interface
technology, ChemPo makes extensive use of GSEngine for job management. Architecture of
the project has been presented in figure 24. Currently, ChemPo enables usage of Gaussian,
one of the most popular commercial chemical packages, although authors plan integration with

45Distributed Hash Table

52































































Figure 23: An overview of GREDIA data management services [14].

GAMESS and NAMD.

PL-Grid – Polish Infrastructure for Supporting Computational Science in the
European Research Space PL-Grid is an emerging project throughout Poland whose pur-
pose is to create a grid-computing infrastructure for scientists, besides local needs enabling
future international collaboration. In the scope of the project, there are tools being created
that allow for design and execution of scientific applications on computational resources using
dispersed data. Inception of PL-Grid is an answer to e-IRG (e-Infrastructures Reflection Group)
resolutions, which was established in 2003 by the European Commission to promote consistent
formation of European Grid. Moreover, e-IRG objectives and PL-Grid realizes goals of national
plans regarding the informatization and development of Poland [159]. Currently, the project
is progressing into production stage – information on its website (http://www.plgrid.pl/) in-
dicates that PL-Grid operation portal will be open soon (operation portal is a place where
among other services, user account creation will be possible). Furthermore, PL-Grid repres-
ents Poland in European Grid Initiative (EGI), which is a stratagem and goal for a long-term
sustainability of grid infrastructures in Europe [123]. Its approach is an establishment of a
federated model bringing together National Grid Initiatives (NGI) to build a common Grid
infrastructure, which will replace EGEE when its third phase ends in 2010. Planned computa-
tional power is 215 Tflops (about 5000 processors) while disk space provided by PL-Grid will

53

http://www.plgrid.pl/
























 








Figure 24: ChemPo architecture [202].

be 2500 TB. Moreover, two additional separate infrastructures are provided: for testing and
development [131, 159]. Additionally, integration with local computer clusters belonging to
various research establishments is possible.
As regards realization of this project, tasks are distributed among several Polish universities

and research institutions that already manage main computing centres and with experienced
personnel who have gained from earlier grid computing projects, with apportionment as follows:

• Project management – ACC CYFRONET AGH (Krakow)

• Hardware infrastructure – TASK46 (Gdansk)

• Operations centre – ACC CYFRONET AGH (Krakow)

• Development of e-infrastructure software and user’s tools – PSNC47 (Poznan)

• Training and users’ support – ICM48 (Warsaw)

• Security of the infrastructure – WCSS49 (Wroclaw)

From inception, PL-Grid is integrated with Worldwide Grid and in particular with systems
being the result of EGEE and DEISA projects. Software of PL-Grid encloses (see figure 25):

• User tools, such as portals, systems for application monitoring, results visualization etc.
Importantly they include

46Academic Computer Centre in Gdansk (CI TASK)
47Poznan Supercomputing and Networking Centre
48Interdisciplinary Centre for Mathematical and Computational Modelling
49Wroclaw Centre for Networking and Supercomputing

54










































Figure 25: Structure of PL-Grid

– Migrating Desktop – environment for job and file management together with results
visualization.

– Grid Commander – a file manager.

– g-Eclipse – environment for operators and developers.

– Vine Toolkit – tools for creating web applications.

– The aforementioned GridSpace platform, which is used for constructing applications
using a high-level scripting language. It will be one of the most supported user and
developer tools. Furthermore, another Virtual Laboratory based on this platform
is being built for PL-Grid project with many functionalities being similar to those
found in ViroLab, e.g. provenance tracking system, portal, grid resource registry
etc., although certain differences exist. An example is security system – at the time
of writing the dissertation, it has not been decided whether it will be based on
Shibboleth or on a different security system.

• Programming libraries.

• Virtual Organizations system: certificate and account subsystem, resources usage ac-
counting and security subsystem. Particularly, FiVO - Grid Virtual Organisation Se-
mantic Framework – software enabling VO contract negotiations. FiVO is one of the
results of GREDIA project.

55

• Data management systems: metadata catalogues, replica management catalogues, file
transfer service.

• Systems for managing jobs, monitoring of services and infrastructure, handling software
licenses and administering local resources. Some of which include

– GEMINI2 – a system for monitoring applications in a Grid environment.

– X2R – a system for integration of relational database management systems, LDAP
data sources and XML databases into an integrated semantic knowledge base.

– StorMon – a system monitoring performance parameters of mass storage.

– ACARM (Alert Correlation, Assessment and Reaction Module) whose purpose is
collecting and correlating security alerts gathered by Intrusion Detection Systems
(IDS) located in network infrastructure.

Specialized scientific software packages that are planned, will be supported and include those
in the field of physics (Meep), numerical computations and simulations (MATLAB), biology
(AutoDock, Gromacs, NAMD) and from the domain of quantum chemistry (ACES II, ADF,
Dalton, GAMESS, Gaussian, Molcas, Molpro, NWChem, Siesta, TURBOMOLE).

3.6 Storage services in gLite

gLite data storage approach The initial user groups of gLite storage and catalogue services
that authors of these services targeted, were High Energy Physics50 and Biomedical communit-
ies [138]. They deemed that these communities store their data primarily in files, which, as
already noticed in Motivation, may not be true due to many biomedical communities storing
genomic data in relational databases. In the second rationale of providing file semantics to
Grid storage, they put forward a view that these semantics are well understood by prospective
consumers and providers of storage services as opposed to generic data objects, which can have
many definitions among varied application groups.
They discarded an option of imposing distributed world-wide file system like AFS51 on

each site participating in EGEE grid; since they were of the opinion that gLite middleware
should work with locally available hardware and software. As an alternative, Kunszt et al.
[138] declared that to deal with peculiarities of an individual storage system, they required
all Grid-aware storage to implement Storage Resource Manager (SRM) interface [194]. The
collection of services providing file access and storage forms a ‘gLite Storage Element’ (SE).
The ensuing constituents can summarize SE functionalities [138]:

50Abadie et al. [1] assert that Large Hadron Collider project, which is expected to be one of the main
consumers of EGEE/WLCG Grid infrastructure, will generate 15Pb of data per year. Normally 1Pb/s generated
by detectors will be reduced to ca. 100Mb/s by multi-level trigger systems. However, velocity of data generation
may be up to 1.5Gb/s.

51Andrew File System

56

1. Storage back-end with related hardware and drivers

2. Implementation of Storage Resource Manager service

3. A transfer service

4. gLite File I/O service

5. Supplementary logging and security services.

File names Files can be replicated at many sites to hasten file access operations. Therefore
a need for location-independent logical file names (LFN) arose, which can be assigned by users.
Ideally, users would refer only to those logical names and never to physical names which contain
location dependent information, such as which storage element holds a particular file or what
protocol to use when accessing the file. The second requirement that became apparent from
usage of replicas, was the necessity to have a mechanism that identifies which replicas represent
the same file. A central service, managing unique identifiers could be employed. Nevertheless,
authors provided a better decentralized solution: upon creation, each file obtains a unique,
unalterable ID, termed Grid Unique ID (GUID). As a result, many replicas may represent the
same file identified by a GUID. Applications may use either GUID or LFN to identify files.
Replicas are identified by Site URLs (SURL) [138], by some sources, e.g. [1, 47], termed

the Storage URLs, although [138] uses StURL abbreviation for that purpose. SURL specifies
which Storage Element to contact when accessing data and can be passed to SRM interface as
an argument. Finally, Transport URL (TURL) is a filename giving necessary information to
obtain or write to a particular replica, including protocol, hostname, port, path. TURLs are
valid for a very short period of time after they have been retrieved.
To recapitulate, the following file names exist in gLite Grid:

• LFN – Logical File Name. LFNs are mutable, human readable names and exist in global,
hierarchical namespace with each Virtual Organization having its own namespace.

• GUID – Global Unique Identifier. GUIDs are

– constructed using UUID mechanism [141], which guarantee their uniqueness.

– immutable – once a file obtains a GUID, neither GUID nor the file can be modified.
If not, consistency will be lost.

• SURL – Site URL. SURLs, also denoted as Physical File Names (PFNs), indicate an
instance of a replica and are accepted by SRM interface. According to Kunszt et al. [138]
Storage URL (StURL) is a term used for an actual file name inside storage system, whilst
Site URL (SURL) is a logical name.

57

• Symlinks – Symbolic links that point to another LFN. They have weak consistency,
i.e. may point to nonexistent LFN and can create cycles. In addition, operations on
target LFN do nothing to update symlinks.

• TURL – Transport URL. TURLs are valid URIs with all requisite information to access
a physical file on a storage element.

One-to-many relationship exists between GUID and LFN, GUID and SURL and between LFN
and Symlinks (see figure 26).
Formats of each file name in gLite according to [47] are as follows:

LFN lfn:<any_string>, e.g. lfn:importantResults/Test1240.dat
In the case of LCG File Catalogue, the filename format is
lfn:/grid/<MyVO>/<MyDirs>/<MyFile>

GUID guid:<36_bytes_unique_string>, e.g. guid:38ed3f60-c402-11d7-a6b0-f53ee5a37e1d

SURL <sfn|srm>://<SE_hostname>/<some_string>
In the case of sfn prefix, the format is
sfn://<SE_hostname><SE_Accesspoint><VO_path><filename>,
for instance sfn://tbed0101.cern.ch/data/dteam/doe/file1
On the other hand, SRM managed storage element (SE) often maintain a virtual file
system, so such an assumption cannot be taken. An example of SURL of SRM managed
SE could be: srm://srm.cern.ch/castor/cern.ch/grid/dteam/doe/file1

TURL <protocol>://<some_string>, e.g. gsiftp://tbed0101.cern.ch/data/dteam/doe/file1




























 

 

Figure 26: Filenames in gLite

Catalogue types Although most catalogues provide services coupled in one server, there are
conceptually four types of catalogues (see figure 27):

58














 





 






Figure 27: Catalogues in gLite [138]

1. File Catalogue – exposes operations such as creating directories, symlinks, renaming or
deleting files and folders and registering grid files under logical file names. In brief,
provides operations on LFN namespace.

2. Metadata Catalogue (MC) – MC interface provides operations to set, get and query
metadata, i.e. some data connected with LFNs.

3. Replica Catalogue (RC) – RC manages list of replicas of a file identified by GUID.

4. Combined Catalogue – Unites operations on several catalogues to provide higher-level
functionality, e.g. creating or deleting files. For instance, creating a new file involves
storing replicas in storage elements, associating replicas’ Site URLs to a particular GUID
in replica catalogue and finally, creating a logical file name and connecting it with GUID
in file catalogue. Combined catalogues must maintain a consistent state during all oper-
ations.

Usually, it makes sense not to divide these catalogues into separate entities. Therefore, com-
bined catalogues are most often used. As regards security supported by catalogues, Access
Control List (ACL) can be associated with files.

Catalogue implementations One of the results of European Data Grid (EDG) [192] project
was a Replica Location Service (EDG RLS) [49], which is a catalogue based on web services
model that enables management of distributed replicated data and related services. An example
is enabling movement and replication of data, optimization of access etc. Architecture of RLS
is divided into Local Replica Catalogue (LRC) and Replica Location Index (RLI). The former
maintains information about replicas at a single site while the latter contains information
retrieved from various LRCs that are updated occasionally and thus may not be up to date.
An additional constituent, Metadata Catalogue Service allows users to define mapping between

59

LFNs and GUIDs. In addition, it stores information, such as file size, owner and creation date.
Replica Optimization Service concentrates on the selection of best replica of file for a given
job with regard to location, storage, latencies etc. Cameron et al. [49] admitted that they did
not test their software under heavy load from concurrent clients – they narrowed down their
performance tests to single LRC. Further testing [9] demonstrated that EDG RLS suffered from
slow insertion and query rates which limit performance of the entire system [160].
Two projects were introduced to supersede EDG RLS due to its performance limitations:

LCG File Catalogue (LFC) [1] produced by Data Management team at CERN for Worldwide
LHC Computing Grid (LCG) project and File and Replica Management (FiReMan) [163] cata-
logue launched by Enabling Grid for E-sciencE (EGEE), an European Commission funded
endeavour.
LFC is stateful and connection-oriented and offers increased performance compared to EDG

RLS as Munro et al. [160] indicated. It supplies transactions API, which allows transactions to
be started, committed or aborted. Furthermore, it allows for sessions to reduce the overhead of
establishing SSL connection before each operation. Implementation of LFC has been done solely
in C using multi-threading [1]. It was shown [160] that LFC is faster for single operations than
FiReMan, probably due to its modest communication overhead compared to FiReMan SOAP
API. Santos and Koblitz [191] argue that SOAP is 2 to 5 times slower than corresponding TCP
implementation. On the other hand, when operations are executed in bulk, FiReMan comes
first, which is most possibly caused by efficient use of Oracle database functionalities. LFC
appears not to use specifics of particular database management systems, since tests using both
Oracle and MySQL yield comparable results. On the contrary, FiReMan – a catalogue server
whose logic is written mainly in Oracle PL/SQL stored procedures [163] sustains much better
performance when its database back-end is Oracle than when it is MySQL [160], i.e. since stored
procedures are written for Oracle, the usage of MySQL causes the whole logic to be executed
within Tomcat servlet container. Another difference between the two catalogue implementa-
tions is that FiReMan, in contrast to LFC, follows a service-oriented approach – clients convey
messages via SOAP over HTTP(S) with Axis application running inside Tomcat.
With regard to security, authentication to both catalogues is performed using X.509 grid

certificates, which is acceptable as these certificates are standard security mechanism of gLite
middleware. With respect to file permissions, both Access Control Lists (ACLs) and UNIX
style file permission are supported by each of the two catalogues. In addition, the mentioned
catalogues expose virtual hierarchical filesystem namespace, operations and file semantic as
described in paragraphs earlier. Abadie et al. [1] report that LFC uses Virtual Organization
Membership Service (VOMS) [53] for authorization; the same is true for FirReMan. Partic-
ularly, using ACLs a user can grant access for users and services specified by Distinguished

60

Name (DN)52 or VOMS attributes (VO membership or groups)53. A comparison of authoriza-
tion services in several grid middlewares, namely Globus Toolkit 4, gLite and UNICORE, can
be found in [106].
With respect to means of access, LFC can be contacted using a C library with Python

and Perl bindings or using a command line interface (CLI) somewhat analogous to UNIX shell
commands [1]. As it was mentioned in Motivation, a web service Data Location Interface (DLI)
is also available, although it does not support authentication and is read only – that is because
it is not intended for end users but for Workload Management Service.

Storage elements As previously mentioned in gLite data storage approach paragraph, Stor-
age Resource Manager (SRM) interface was conceived to make storage technologies transpar-
ent to VOs. In addition, SRM brings a web service interface to storage, providing function-
ality to upload files to a storage element, extract or delete them, e.g. srmPut(), srmGet(),
srmAdvisoryDelete() [205]. Moreover, five constituents that make a storage element have been
identified. There are at least 4 SE implementations: CASTOR 2, dCache, DPM and Medical
Data Manager (MDM) [158].

‘CASTOR 2’ abbreviation identifies with CERN Advanced STORage manager. As Stewart
et al. [205] indicate, it was designed around a mass storage tape system, and therefore is
not appropriate for exploitation at sites without this facility. CASTOR 2 provides a single
namespace for file management; supports rfio, root protocols for LAN access while SRM and
gridftp are used with Wide Area Networks. A key component of CASTOR 2 is a stager that
administers disk pools of tape system and facilitates access by using a scheduler plugin – LSF
batch system scheduler is utilized for this purpose. A valuable feature of CASTOR is its
capability to dynamically replicate frequently used files and to switch access to a less busy
replica on a current open file. As regards CASTOR monitoring, it is performed using both
LEMON (LHC Era Monitoring) and Oracle database management system logging features.

dCache is a storage element implementation developed by Deutsches Elektronen-Synchrotron
(DESY) in collaboration with Fermilab. It endeavours to provide means for storing and re-
trieving large amounts of data among a number of heterogeneous server nodes. dCache exposes
a single namespace view of all files under its administration. When a tape backend is connec-
ted to dCache, it becomes a hierarchical storage manager (HSM), i.e. when frequently used,
it moves data from tape to disk and then back to tape. Former namespace used by dCache
was PNFS (Perfectly Normal File System) while the current filesystem implementation used
by dCache is Chimera. File access is possible using dcap (dCache access) protocol or xroot.
WAN access is possible using GridFTP and SRM protocols. dCache load balances system by
replicating frequently used files. An interesting feature from a reliability perspective is the
ability for an administrator to control a number of replicas of each file, e.g. state that it must

52Distinguished Names (DNs) are found in the subject of a grid certificate.
53These attributes are found in VOMS enabled grid certificates.

61

be between n and m replicas available in each separate pool. With regard to installation of
dCache, significant integration with WLCG YAIM54 has been provided.

Disk Pool Manager (DPM), introduced by LCG project at CERN, puts emphasis on the
ease of configuration and maintenance, with Tier-2 centres in mind. DPM is written entirely in
C and shares much of nameserver code with CASTOR and it exposes gridftp for WAN transfers
and rfio for LAN access. A database backend is required for DPM to operate. Both MySQL
and Oracle are supported. Since DPM is mostly envisaged as storage element software with
ease of installation and administration in mind, support for YAIM is provided.
In 2007, CASTOR was installed in CERN and 4 WLCG Tier-1 centres managing 50 million

files and 5PB of storage and dCache was used in approximately 40 WLCG sites while DPM in
70 [205].
The last storage element software mentioned, theMedical Data Manager (MDM), is a bridge

between DICOM compliant storage and gLite middleware translating grid file read operations
into DICOM transactions. The use of grid services enables unified view of data stored in
dispersed DICOM servers [158].

File transfer service gLite File Transfer Service (FTS) is an infrastructure service intended
to facilitate data movements. Users’ transfers are assigned to channels, which are unidirectional
links between sites. Channels may be dedicated or non-dedicated. A dedicated channel is a
point-to-point link between sites while non-dedicated channel links group of sites. As regards
data transfer requests, SOAP over HTTPS interface is provided to clients enabling submission
of transfer jobs and polling for their statuses. FTS is backed by a MySQL or Oracle database,
which is a central and critical component for it to operate as the state of the service is kept there.
On the other hand, A SOAP server is stateless and can be load balanced. Other constituents
of FTS are VO agents, which are daemons that apply VO-specific policies to transfer jobs,
e.g. apply retry policy in case of transfer failure. Finally channel agents carry out actual
transfers interacting with SRM and gridftp servers.

Information systems Information and monitoring service for gLite storage is provided by
Berkeley Database Information Index (BDII), which keeps track of both static information,
e.g. existing storage and computing elements, number of available CPUs, supported Virtual
Organizations and dynamic information, for instance how much free space is available on a
specified storage element or how many free CPUs a given computing element possesses. BDII
is an LDAP-based information system, with services on the Grid publishing information about
hosts under their administration in LDAP. Site BDII (SBDII) aggregates this information at

54YAIM – YAIM Ain’t an Installation Manager. As http://yaim.info/ indicates, “The aim of YAIM is to
provide a simple installation and configuration method that can be used to set up a simple Grid Site but can
be easily adapted and extended to meet the need of larger sites.”

62




 
















 






Figure 28: Client tools for interacting with gLite storage [1]

site level. Finally, Top Level BDIIs (TL BDII) query lower-level Site BDIIs creating com-
plete view over the whole infrastructure. Unlike components mentioned in earlier paragraphs,
communication with BDII does not require authentication – every client has read-only access.

Client utilities Figure 28 shows client tools for interacting with gLite storage, in particular

• LCG-utils: CLI interface, C library and Python and Perl module – highest level of ab-
straction enabling storing, replication, deletion and copying files.

• Grid File Access Library (GFAL) – a C library providing POSIX interface to storage on
the Grid.

• File Transfer Service (FTS)

• SRM SOAP interface

Figure 29 depicts various operations performed with gLite components on execution of gfal_open
function from GFAL library. Firstly, LFC catalogue is contacted to obtain list of replicas for
a given GUID. Secondly, BDII is queried to acquire a version of SRM interface to use. Sub-
sequently, TURL is taken from DPM storage element using SRM interface. Finally, file can be
opened using one of the access protocols, e.g. gsirfio – a secure RFIO.

63

























































































Figure 29: Execution of gfal_open function [1]

64

4 Needs to be addressed / Problems to be solved
The content of chapter 3, as recounted by the dissertation author, refers to achievements of
Virtual Laboratory, its philosophy, concepts, middleware, components, services and architec-
ture. Furthermore, some introductory information regarding addressed storage services, namely
gLite data services, has been provided. This chapter will state the challenges that are to be
addressed by the thesis author.

4.1 Providing access to EGEE/WLCG data sources

Access to EGEE storage services may be useful to projects, such as ViroLab or PL-Grid Virtual
Laboratory, ChemPo and other Grid projects. However, it creates many difficulties and pre-
requisites. Firstly, in order to use the mentioned client utilities, a so-called gLite User Interface
is required, i.e. a computer with gLite installed, configured and connected to EGEE/WLCG
Grid. Furthermore, gLite is available only to certain distributions of Linux (e.g. Scientific
Linux). Secondly, configuration of this software is not an easy task and requires substantial
administrative and procedural work when attaching a computer to EGEE/WLCG grid. On the
other hand, it is not possible to access EGEE/WLCG storage from computers without a valid
gLite installation. Therefore, users usually obtain shell accounts on some gLite UI server in
order to use EGEE services and use these services remotely, logging through SSH. Similarly, in
order to programmatically access gLite storage services, software making use of these services
must also be executed on gLite UI which is a restricted requirement. Additionally, every user
needs to go through a long and error-prone procedure of obtaining a grid certificate, generating
key pair and completing several request forms. This deters users from employing Grid services
in their research work and additionally imposes a learning curve needed to work from Linux
console and to use gLite command line interface
To paraphrase the Jargon File; from user’s perspective, these actions may be perceived as

a “pointless activity, which is actually necessary to solve a problem which solves a problem
which, several levels of recursion later, solves the real problem you’re working on.” Therefore, it
would be beneficial, if users could use these services without satisfying so many prerequisites.
Moreover, since many powerful end-user tools exist inside Virtual Laboratories [122], integration
with EGEE storage services would be useful, as there would be no need to switch between two
environments: gLite command line and Virtual Laboratory tools.

4.2 Integration with the GridSpace Engine

Integration with the existing DAC2 infrastructure is one of the main requirements and the
solution should be consistent with existing GridSpace Engine data access approach.
Further complexity occurs with the integration of new data source type into existing Data

Source Registry schema, which does not take into account so many configuration options or

65

specific needs, regarding access to catalogues and storage elements, together with managing
certificate information. Examination showed that DSR schema had to be reorganized to enable
integration with EGEE/WLCG data sources. Nonetheless, merely altering database schema is
only a small part of the work to be done, since database access layer had to be rewritten so as
to take advantage of new schema. Changes to be made in database access layer were apparent
in both DAC2 and DSR-plugin.
A supplementary need to be addressed was reorganization of DAC2 data access API, as it

did not allow typical catalogue operations that were to be provided by new data source, nor did
DAC2 supply constructors that could initialize new data source with a variety of credentials in
case they are not downloaded from DSR. Therefore, modules that dispatch data access requests
to diverse data source connectors had to be revised and altered.

4.3 Automation of certificate management

Management of users’ certificates was a complex issue and difficult decisions had to be taken, so
as not to compromise security. Another issue was automation of generation of proxy certificates,
so that users would not have to create them manually. Additionally, credentials must be stored
in DSR and proper credential must be provided when a Grid operation invocation occurs – a
grid certificate, private key and private key passphrase must be conveyed if operation is the
generation of a proxy certificate. On the contrary, if it is a Grid operation e.g. accessing LFC
catalogue or accessing a file, proxy certificate must be sent; when proxy is not present or is
expired, it should be generated and saved in DSR.
Finally, an important issue regarding certificate management is the need for communication

encryption and maximum security of user files, especially private keys and certificates if they
are stored temporarily.

4.4 Extending the DSR plug-in to enable registration of LFC data
sources

A number of core requirements of the solution have already been identified, although satisfying
all the mentioned requirements still will not make the solution usable if there is no means
of adding, deleting and updating data source information. Of course, one could edit Data
Source Registry contents directly using database utilities. Nevertheless, if we want to have a
user-friendly solution, a graphical user interface to DSR LFC data sources is mandatory.

66

5 Related work
In chapter 4, the dissertation author put forward several goals that are to be achieved by this
thesis project, together with discussion on possible solutions that could satisfy these require-
ments. This chapter will mention several projects that touch upon comparable substance as
stated in this paper. In particular, 5.1 will recount other Grid-based virtual laboratories that
were created, 5.2 tries to present various efforts that endeavor to make Grid service-oriented
and 5.3 on the other hand, describes ways of how some Grid-projects handle data access and
storage. Finally, 5.4 touches upon libraries providing access to gLite storage.

5.1 Other virtual laboratories



 

 


  











Figure 30: Virtual Laboratory for e-Science architecture (figure from [238])

Virtual Laboratory for e-Science (VL-e) VL-e [238] is a project, which aims at providing
generic functionalities that support a wide range of specific e-Science application environments
and the setting up of research infrastructure for evaluating diverse ideas. VL-e consortium is
composed of a number of Dutch scientific and business partners. Some usage VL-e scenarios
include modeling and managing workflow templates, browsing distributed resources, integrating
third-party workflow systems and composing and executing application workflows. VL-e tools
have been presented on figure 30 and they comprise of Virtual Resource Browser (VBrowser) to
interactively access miscellaneous distributed resources, manipulate data, start applications and
monitor resources. Furthermore it includes a FRIPS tool that supports interactive execution of
parameter sweep applications, WS-VLAM workflow system, which enables scientists to design
and monitor workflow execution and a server-side engine for scheduling and enactment of
workflows – the workflow bus [237]. Some applications of VL-e include Real Time Monitor,

67

which tracks projects, participating in EGEE andWLCG grid, medical visualization application
for planning shoulder replacement, Virtual Lab for functional MRI (VL-fMRI) applications to
facilitate storage, analysis and sharing of fMRI data, Bird Avoidance Model that helps avoid
collisions with birds by aircraft..

VLAB VLAB [168] virtual laboratory is a research project, which has been developed by
Poznań Supercomputing and Networking Center since 2002. VLAB enables users to access
scientific instruments connected using PIONEER optical network. Currently, this apparatus
includes:

• 2 NMR spectrometers located in Institute of Bioorganic Chemistry of Polish Academy of
Sciences and at Adam Mickiewicz University in Poznań

• a 32m radio telescope situated in Piwnice near Toruń possessed by Radio Astronomy
Department of the Nicolaus Copernicus University in Torun, Poland and a second radio
telescope positioned in Mexico City

• Freeze Atmospheric Dryer, which is a custom device built by Faculty of Process and
Environmental Engineering of the Technical University of Łódz, Poland.

VLAB design is composed of 3 layers: Access, Grid and Monitoring. Access Layer encompasses
components responsible for user interaction, including a web portal and a data input interface.
Grid Layer communicates with grid middleware; in particular, delegates computational tasks to
Globus toolkit and collects results together with response messages. Monitoring layer contains
a scheduler, user account module and system monitoring component.
VLAB allows for so-called dynamic measurement scenarios, which are workflows specifying

a set of computational tasks and experiments performed using remote accessible apparatus.
Such a workflow is designed and submitted using Scenario Submission Application (SSA) and
executed by Scenario Management Module. In addition to remote access to equipment, VLAB
encompasses Digital Science Library (DSL) – a product of PROGRESS project. DSL is a dis-
tributed data management system allowing users to store results of experiments and associated
materials. Apart from basic remote access to instruments, the ambition of VLAB is to give
added value by combining results from several devices, e.g. radio telescopes, to provide higher
resolution of the entire measurement.

myExperiment myExperiment Virtual Research Environment for collaboration and shar-
ing of experiments [65, 67] was launched in November 2007, a project lead by University of
Southampton and University of Manchester, which endeavors to provide “workflow bazaar” for
workflow management systems and for other scientific assets, such as academic papers, Power-

68

 





















 



















 



 

 

 



 

  









 















































 

Figure 31: myExperiment architecture – figure shared on myExperiment website by David de
Roure, myExperiment director, using Creative Commons Attribution-Share Alike 3.0 Unported
License

Point slides, input and output data, service invocation logs, Visio diagrams55 and other various
types of files. Authors of myExperiment anticipate that workflows will become part of a schol-
arly knowledge cycle, i.e. a process of publishing scientific results and reusing these results
by the scientific community. Community noticed scientists moving from writing stand-alone
applications into reusable workflows; then, sharing workflows using emails, wikis, publishing
them on personal websites, which was thought to be quite cumbersome. In order to streamline
the sharing process, they created a collaborative environment, where scientists can distribute
their workflows. myExperiment authors perceive workflows not only as a way of describing

55e.g. the figure 31 with myExperiment architecture is produced from a Visio drawing that has been shared
by David de Roure, myExperiment director, using Creative Commons Attribution-Share Alike 3.0 Unported
License

69

computational processes, but also as a means of communicating methodology and know-how
and a method to avoid reinvention and propagation of best practices [66]. In order to convince
scientists to publish their research work in myExperiment online system, they put emphasis on
attributes that are important to them, namely credit, attribution and license. With regard to
the design approach, a system was created that combines social networking, wikis and workflow
sharing with reviewing and recommendation capabilities. In addition, users can inspect work-
flows by extracting their metadata, identifying services used and previewing these workflows
graphically. A distinguishing feature of myExperiment is support for packs, which are groups
of workflows, together with related files that are prepared for sharing. myExperiment service
is both accessible using web pages and by utilizing its API. The usage of the latter enabled
creation of Google Gadgets and Facebook applications. Additionally, researchers are equipped
with a capability of enacting their workflows ‘in the cloud’ by submitting a collection of research
objects to be processed remotely by myExperiment. An interesting feature of the project is
‘social metadata’, which is composed of attributions, creditations, favorites, ratings, reviews,
citations, comments, tags and policies.
With regard to implementation, the main application of myExperiment is built using Ruby

on Rails framework, while workflow enactment engines, database server, search server and mail
server are external – main application connects to them. Authentication can be done by both us-
ing username/password method or via OpenID services. As regards interfaces, HTML, RESTful
XML, RSS and ATOM interfaces are supplied with REST authentication being provided by
OAuth library. Ruby on Rails application is deployed on Mongrel Cluster, while static content
is served by Apache. The database system used is MySQL while search server is Solr. In
addition, Nagios tools are employed for monitoring. Furthermore, myExperiment functionality
has been extended by several projects, such as BioCatalogue, SKUA astronomy project and
NEMU music analysis project, which was possible thanks to the open source character of the
project. Usage statistics by De Roure et al. [66] show that over the period January–July 2008
myExperiment site received 60000 page views in 13500 visits by 8581 unique visitors, with
workflows being downloaded 50934 times. Some other interesting figures are also presented in
the referenced publication. myExperiment is definitely a successful endeavor that has attracted
a quite large scientific community, especially from the field of bioinformatics.

myGrid myGrid is a middleware for Semantic Grid lead by University of Manchester, which
enables biologists to perform and manage in silico experiment, and thereafter explore and
exploit experiment results. myGrid goals are similar to those of ViroLab Virtual Laboratory,
namely management of personal biological data and co-ordination of resources to manage virtual
organizations of people, data, tools and machines. Research practice in which myGrid may be
helpful, is where there is a need to repeatedly co-ordinate tools to produce results – “tasks that
take minutes of computational time, actually take days to run manually”[204]. Stevens et al.

70

[204] presented their solution by a pilot application to explore William-Beuren syndrome (WBS)
which is a rare disorder, a microdeletion in a region of human chromosome 7 characterized by
a unique set of physical and behavioral features. As authors recall, before applying myGrid,
results were obtained by manually interacting with bioinformatics services on theWeb, manually
copying results in order to form input of a subsequent task. Intermediate results were saved
on a local file system, while their origin, relevance and status were noted by hand in a lab
book. However, such an approach resulted in a rapid growth of files which are difficult to track
manually and myGrid ambition is to solve this problem.
In order to shift the manual procedure into myGrid environment, several steps need to be

followed. Firstly, all bioinformatics applications employed must be made available as a web
service. Secondly, a user represents a bioinformatics process in a declarative way using Simple
Conceptual Unified Flow Language (Scufl) in Taverna environment, which is a workbench
enabling edition of Scufl workflows – both are projects created as part of myGrid endeavor.
Thirdly, created workflows are enacted using Freefluo workflow enactment engine. Intermedi-
ate and final results are saved either in local file system or in myGrid information repository
(mIR). In order support verification of origin or provenance of large sets of results, common
experimental information model and automated provenance recording are utilized. The former
adopts life science identifier (LSID), which is a class of universal resource name (URN). Work-
flow inputs, intermediate results and outputs; all are allocated an LSID. Afterwards, retrieval
of metadata associated with items is possible. Alternatively, automatic provenance recording
module records process provenance, which is a log describing which services were employed to
generate data. Additionally, relationships between data are identified. For viewing and min-
ing results, Haystack desktop application for browsing multiple views of Resource Description
Framework (RDF) information is employed.

Linked Environments for Atmospheric Discovery (LEAD) LEAD [73] is a US National
Science Foundation (NSF) funded venture whose objective is to create cyber infrastructure in
mesoscale meteorology allowing for grid-based on-demand design and enactment of dynamic
workflows in the domain of meteorology with ability of dynamic adaptation to changing require-
ments e.g. rapidly moving tornado or a flood. Foundations of LEAD are Web Portal, which
is a major entry point to the applications, ARPS Data Assimilation System (ADAS) for data
quality control and assimilation, myLEAD metadata catalogue service, Weather Research and
Forecast (WRF) – atmospheric prediction and simulation model, ADaM (Algorithm Develop-
ment and Mining) for mining data and Integrated Data Viewer (IDV) – a desktop application
for visualization of a variety of multidimensional geophysical data. Principal components of
LEAD built are the following subsystems: user, data, tools, orchestration, and grid; each re-
sponsible for one aspect of the system.

71

Kepler Kepler [5, 224] is a scientific workflow management system which allows for design,
execution and deployment of workflows. Kepler equips a user with a library of reusable com-
ponents, called actors, which perform computations e.g. signal processing or to provide access
to data, for instance a relational database actor facilitates access to relational database. In-
put and output ports are defined for each actor and can be linked to a direct acyclic graph
which specifies data flow between actors. A graphical user interface empowers users with an
easy workflow construction mechanism. Generic Web service actors allow for utilization of
services defined using Web Service Description Language (WSDL), while Grid service actors
provide means for certificate-based authentication, Grid job submission and Grid-based data
access using OGSA interfaces. Additionally, support for specialized data transformation actors,
e.g. XSLT, XQuery, has been enabled while a harvester capability provides means of import-
ing a whole set of related services from web pages or Universal Description Discovery and
Integration (UDDI) repository.

Triana Triana [56, 224], a part of GridLab [130] project, is a graphical Problem Solving En-
vironment (PSE) with basic unit of operation being a component – a Java class representing an
algorithm or process with an identifying name, input and output ports, a number of optional
name/value arguments and a single process method [224]. In order to write components in lan-
guages other than Java, apposite wrapping code must be provided. Triana is flow based – data
arriving on the component input which triggers its execution. Multiple inputs indicate that
execution will be suspended until all inputs arrive at the component, or if developer wishes, the
execution will trigger immediately. Execution in Triana is decentralized with data and control
flow messages being sent through communication pipes. Internal workflow representation is
object based – each component or task has an accompanying Java object. Instead of common
Directed Acyclic Graph model, Directed Cyclic Graph (DCG) model is used, i.e. cyclic connec-
tions are allowed within Triana language. As with many workflow engines, external format is
an XML file. Triana provides interoperability with external workflow language representations
such as BPEL4WS through pluggable language readers and writers.

Other workflow systems Aforementioned systems are only a few of the many workflow
design and enactment environments. Some alternative implementations include [224]:

• Condor DAGMan, which uses Direct Acyclic Graph (DAG) to represent a set of tasks –
nodes symbolize tasks while edges symbolize the dependencies. DAGMan submits jobs to
Condor in an order specified by DAG and processes results. DAGMan is base workflow
scheduler used by other Grid workflow systems, for instance Chimera, Pegasus and P-
GRADE.

• UNICORE. In this project launched by the German Ministry for Education and Research,
DAG model is used for job description. UNICORE has 3-tier architecture: user, server

72

and batch subsystem level. In user level, users create jobs independent from system where
jobs will run. UNICORE server level tackles managing resources, execution of jobs and
returning results to users while batch subsystem tier tackles destination systems with
their batch systems and storage.

• Chimera and Pegasus in GriPhyN. GriPhyN is a US National Science Foundation project
to support large-scale data management in physics experiments, for instance gravitational
wave physics or high energy physics. GriPhyN proposes concepts of an abstract workflow
and a concrete workflow. Chimera is a virtual data system combining virtual data cata-
logue with Virtual Data Language (VDL) interpreter that translates user requests into
data definition and query operation on database. Chimera is used to produce Abstract
Workflows (AW) that are specified using DAG XML description (DAX) language. Pe-
gasus, on the other hand, is exploited to map AW onto computational Grids, therefore
creating a Concrete Workflow (CW). Subsequently, CWs, which are executables combined
with runtime information, are submitted to DAGMan for enactment.

• Many more workflow systems not discussed here exist, e.g. GridAnt, ASKALON, Grid-
Flow, GSFL, BPEL, McRunJob, Symphony, P-GRADE, ScyFlow, GALE, WebFlow,
Collaborative Application Specification Tool (CAST), Grid-WFS. For a comprehensive
list and comparison of grid workflow systems, the reader is counseled to consider [233].

gLite gLite [47] is software of EGEE and WLCG projects. Both share much of the infra-
structure with former, aiming to create a geographically distributed computing infrastructure
available to computational scientists, while latter aspires to provide infrastructure for simula-
tion, analysis and processing of data of Large Hadron Collider (LHC) experiments. Authentic-
ation is provided using X.504 certificates, while authorization services are supported by Virtual
Organization Membership Service (VOMS). gLite is job-oriented – jobs are specified using Job
Description Language (JDL) which is based on Classified Advertisement (ClassAd) language.
Jobs are submitted to resource brokers that route them to particular computing elements, which
are usually cluster farm. User may interrogate status of a job, cancel it or retrieve results after
its completion. Data management has already been discussed in section 3.6 of chapter 3.
Projects recounted in this section are just examples of virtual laboratories that enable

performing of in-silico experiments. They range by degree in which they support computational
scientist with their job; many are workflow-based, since numerous Grid practitioners believe
that workflow-based software is the best way of utilizing Grid capabilities.

5.2 Attempts to make the Grid service-oriented

Historically, Grid was not service-oriented, but rather job-oriented. Modern approaches try to
follow service-oriented paradigm, since it decreases costs of integration of software components

73

that were developed in isolation from each other and enables faster adaptation to changing
requirements by employing on-demand computing model. In addition, wrapping legacy systems
with service-oriented interfaces helps avoid rewriting of existing code.

Open Grid Services Architecture (OGSA) OGSA [92, 144] is composed of 3 main ele-
ments: Open Grid Services Infrastructure (OGSI), OGSA services and OGSA schemas. A basic
building block of OGSA Grid is a Grid Service, which is a Web service that conforms to a set of
conventions regarding its interface definition and behavior defined by OGSA. Grid Services are
addressable, potentially stateful and transient. Grid Services are created using createService
factory method which returns an invariant Grid Service Handle (GSH) and initial Grid service
reference (GSR), which may change over service’s lifetime.

Open Grid Services Architecture Data Access and Integration (OGSA-DAI) The
goal of OGSA-DAI [10] is to bring a consistent service interface for data access and integration
to databases exposed to Grid, concealing dissimilarities of these systems such as database driver
technology, formatting and delivery mechanisms. OGSA-DAI achievements include consistent
access to multiple database paradigms: relational and XML, support for incremental and bulk
data delivery from services and files, full integration with existing Grid authentication and data
transport as well as ongoing standardization. OGSA-DAI facilitates easier design of federation
middleware hiding much of heterogeneity of underlining data resources. On top of OGSA-DAI,
OGSA-DQP (distributed query service) has been built which enables distributed queries over
nodes obtained from the Grid.
































Figure 32: Grid File Sharing System (GFISH) architecture [232]

Grid File Sharing System (GFISH) Yaodong et al. [232] have developed GFISH (Grid
File Sharing system), which includes a server providing a web service API for the LFC catalogue
and a related Java client with Grid user credentials retrieved from a MyProxy server. They

74

implemented the server using gSOAP, while utilizing Axis on the client side, thus introducing
significant transmission overhead. GFISH [231, 232] is a noteworthy project, because its goals
are similar to objectives of this thesis project. In particular, GFISH ambition is to provide
pseudo LCG file access commands, such as lcg-cp, lcg-cr etc. (see figure 32). A more recent
paper [231] indicates that the authors enhanced their solution by dividing communication into
two channels and currently metadata operations, e.g. listing directories, moving or replicating
files and locating physical file address is performed through GFISH WS server, while actual
data transfer is achieved using GridFTP protocol embedded in CoG jglobus tool.

5.3 Data access and persistence in Grid projects

As previously mentioned in ‘Organization of the thesis’ section of chapter 2.3, an overwhelming
majority of Grid projects still store data in relational, XML or occasionally, object databases
located outside of Grid, which is of no interest from the thesis point of view. Nevertheless,
some projects take advantage of Grid-enabled storage and data management services with
a few examples being broached in this section.

ATLAS experiment ATLAS project has developed its own distributed data management
system, termed Don Quijote (DQ2) [100, 205] which manages file-based data of all types. In
particular event data, conditions data together with user-defined file sets and groups file-based
data into datasets with a set of catalogues storing information of their location, constituent files
and metadata. These include the following catalogues: dataset repository, which is a catalogue
of datasets, dataset selection catalogue, dataset content catalogue and data location catalogue.
Datasets posses a changeability state – they can be open or frozen (locked permanently) with
data subscription service enabling users and sites to acquire data updates in an automated way
via ‘subscriptions’ to mutable datasets. In addition to the catalogues mentioned, according to
Stewart et al. [205] LFC is queried very frequently. Don Quijote is deployed in Tier-0 and 10
Tier-1 sites that participate in ATLAS experiment.

EUChinaGrid One of the ambitions of EUChinaGrid was to find proteins of potential phar-
macological application. Genomic part of this project had an objective to identify stretches of
genomic sequences of potential biological function that are not present in known protein and
genetic databases. Piwowar et al. [179] report that they used LFC catalogue available for their
VO to store input data for experiment in order to enable access to this data on all machines
participating in computation. Sequences being the focus of experiment were grouped in sets
of about 100000, stored on a storage element and registered in LFC catalogue. Main script
automated the necessary work, including data transformation, execution of BLAST and copy-
ing output files to destination. A dedicated portal was developed as a user interface enabling
selection of appropriate files and job submission. Piwowar et al. [179] assert that they were able

75

to carry out the whole experiment in 38 hours with average resource consumption of 126 CPUs.

InteliGrid Within the scope of InteliGrid project, a Document Management System has
been developed [71], which is based on grid middleware services, namely OGSA-DAI and Grid
Authorization Service (GAS). OGSA-DAI has been employed to integrate various back-end
document storage systems: relation database management systems and WebDAV based servers.

PALADIN Paladin [101–103] project is interesting from this dissertation point of view, since
it addresses the issue of dynamic data source integration in Grid environment and more im-
portantly, because it developed a data source registry, a component that is difficult to find in
existing projects, but is also apparent in our Virtual Laboratory architecture. In particular,
Göres and Dessloch [103] developed a Paladin data source registry for registration and dis-
covery of data sources. Paladin DSR implements Paladin Metamodel (PMM) [101], which is
based on “typed, attributed multigraphs to represent atomic and complex features, types and
relationships” [103] of data source schemas. Paladin DSR stores information on data sources to
be exploited in schema matching process, which is performed by ScheMaF framework, which is
also a part of Paladin project. On the other hand, our Virtual Laboratory Data Source Registry
(DSR) is intended for storing data source information together with accompanying credentials,
in order to automate access to these data sources. Although, purposes and realizations of both
solutions are different, the general idea of storing structured information on data sources is
similar.

!""#$ %&'()&

*+$,")-
+'&.($%,/

'(0+(1&/ '"0()2&2%+(2,

%"3-

%,/ +'&.($

*+$,")-

*+$,")-

&2%+(2, '(0+(1&/ '"0()2

&2%+(2, '-,*+%&/ !"#$!%&'(%$)&%*'+$,,,-./"*#$0112+$3)+41(5$%6!)'64

Figure 33: Inferno namespace exporting and importing (figure created on basis of presentation
from Inferno website)

Grid, cloud computing and distributed file systems Apart from LFC and FiReMan
that may be perceived as a distributed file system, several others provide file or replica catalogue
functionality. These include DFSgc [3], Globus Data Replication Service (DRS), Giggle [54],

76

IGOR file system [6] and Grid Virtual Directory System (VDS) [59]. In addition, numerous
large scale distributed file systems exist, e.g. Lustre filesystem, Hadoop Distributed File System,
Google File System [99], IBM General Parallel File System [124], Microsoft DFS and Sun
ZFS. An interesting example of distributed file system is the file system of Inferno operating
system [72], which enables single-rooted namespace over a variety of resources connected to the
network, specifically computers, databases, cameras and others.

5.4 Libraries providing access to gLite data resources

lcg_util C API This is a C library that provides the same functionality as LCG command
line programs, which in fact, invoke lcg_util API functions. According to Burke et al. [16],
it should cover most needs of user applications. lcg_util API interacts with LFC catalogue
and is independent from underlying technology. lcg_util API functions begin with lcg_ prefix,
e.g. lcg_cp, lcg_cr. In addition to simple command, there are lcg_util functions that use
buffer for complete error messages – they are formed by following function name with an ‘x’,
e.g. lcg_cpx, functions with timeout – formed by following function name with ‘t’ or functions
with both functionalities – their names are followed by ‘xt’.

Grid File Access Library (GFAL) GFAL C is high-level library bringing POSIX style in-
terface for input/output operations on Grid files, concealing interactions with Storage Resource
Managers, Storage Elements and LFC catalogue. However, it is lower-level that lcg_util.
GFAL function names begin with gfal prefix, e.g. gfal_read, gfal_close. A user can supply
GUID, LFN, SURL and TURL names as arguments to GFAL.
Both GFAL and lcg_util API need certain environment variables to be set, if they are

to contact storage elements and LFC catalogue: LCG_GFAL_VO – a Virtual Organization name,
LCG_GFAL_INFOSYS – list of BDII hostnames and ports separated by commas, LFC_HOST – LFC
server address.

Lower-lever APIs gLite also provides some lower-level APIs, although their use is discour-
aged [47]. They include LFC_client API, RFIO API, gsidcap API, edg-gridftp Globus API,
SRM API, edg-rm, edg-rmc and edg-rlc APIs (see figure 34).

Java lcg_util and GFAL API wrappers SEE-Grid and Gilda project developed wrap-
pers to aforementioned C libraries using Java Native Interface (JNI). Gilda GFAL Java API
(also termed APIGFAL) provides GFAL functionalities through three classes: GFalDirectory,
GFalFile and GFalUtilities, while File Management Java API provides means to interact with
gLite storage on higher level allowing not only for data access, but also for LFC catalogue
manipulation. SEE-Grid File Management Java API exposes LFC operations with following

77















































Figure 34: gLite data management application and command line interfaces – blue color indic-
ates those that are depreciated [47]

classes: LFCDataStorage, LFCAliasItem, LFCDirectoryItem, LFCFileItem and a few helper
classes, such as LFCFileMode, SEList and ItemIterator.

ChemPo LFC command wrappers ChemPo [202] project provided wrappers for SEE-Grid
Java File Management API calls. ChemPo executes every data access or data management
command in a separate Java Virtual Machine (JVM), thus enabling commands to run with
different set of environment variables, which in turn enables to act on behalf of another user.

78

6 General software requirements
This chapter provides background for chapter 7 – Detailed requirements and following chapters
of dissertation. It defines the environment in which component being designed will have to
operate, external modules and software it will need to communicate and users it will serve.
Furthermore, it contains an overview of the component functions. However, it does not provide
information about its decomposition to modules nor implementation. This is the purpose of
chapter 8.

6.1 Scope

The thesis concerns the LFC Data Source (LFC DS) component, which will enable Virtual
Laboratory users to access and manage data administered by EGEE/WLCG storage services
and in particular LCG File Catalogue and storage elements, by using GScript Virtual Laborat-
ory language. Moreover it will manage their EGEE/WLCG credentials and provide means for
registering EGEE/WLCG data sources. LFC DS is intended to provide only core functionality
leaving out advanced gLite features, such as replication.
Benefits of using LFC DS for GScript developers can be abbreviated as follows:

• short learning curve

• interoperability with other JRuby code

• less effort put into programming EGEE/WLCG data access

• integration with Virtual Laboratory software

The main advantage for Virtual Laboratory users is support for large storage infrastructure
and access to files that are present on gLite storage currently.

6.2 Product perspective

As the Recommended Practice for Software Requirements Specifications [236] suggests, this
subsection should connect requirements of a larger system with functionality of component
being developed. Therefore, it is noteworthy that access to EGEE infrastructure is one of the
design goals for Virtual Laboratory project (see figure 10). Most of the envisaged components
have already been created. However, one of the very few features that still needs to be added
is integrated access to EGEE/WLCG data sources and this is the focal purpose of LFC Data
Source component. With regard to components and modules and systems with which LFC
DS will have to be integrated, in the scope of Virtual Laboratory include (see figure 35):

• Data Access Client, version 2 (DAC2)

79










 



























 







Figure 35: LFC DS (indicated by yellow color) in the context of Virtual Laboratory






























Figure 36: LFC DS in the realm of EGEE/WLCG Grid

• Data Source Registry

• One of user interfaces if there is a decision that an integrated LFC DS user interface is
desirable

• Security system

Furthermore, LFC DS will have to operate in the realm of EGEE/WLCG Grid (see fig-
ure 36), performing data management and data access operations. Virtual Laboratory and
EGEE/WLCG Grid are separate systems and the choice how to carry out simultaneous oper-
ation in these two distinct worlds is a design decision to be considered.

80

6.3 Product functions

Use case diagram on figure 37 which summarizes foreseen functions of LFC DS.

































 











 


























Figure 37: LFC DS Use Case diagram

6.4 User characteristics

Final users of LFC DS are mostly computational scientists, who have some programming know-
ledge. However, their main field of expertise is their scientific domain, such as bioinformatics
or computational chemistry. They know fundamentals of JRuby programming syntax and are
acquainted with Virtual Laboratory environment. In addition, they are often in contact with
a professional computer scientist, who helps them solve encountered technical problems, e.g. if

81

they come across an exception they do not understand. On the other hand, GridSpace Engine
software and an accompanying LFC DS component are installed by a system administrator
who has considerable knowledge on Virtual Laboratory, GSEngine environment, UNIX com-
mand line and networking. Nevertheless, interaction of system administrator with LFC DS is
limited to installing and configuring the software, starting services and unraveling problems
encountered during its operation.

6.5 Constraints

Interview with Virtual Laboratory team members identified several restrictions LFC DS must
follow:

• LFC DS module must not incorporate too many dependencies into GSEngine

• LFC DS should not store temporary files on a server where GSEngine operates

• Devised API must be simple

• LFC DS must automatically manage user credentials

Another consideration that is beyond question, is that the transfer of private keys and other
sensitive data must be encrypted and any temporary files containing sensitive data should be
kept no longer than are needed. Furthermore, a legal constraint the software must follow is
that the libraries used by the project must fall under FLOSS56 category in order to conform to
copyright policy of GridSpace Engine, as mentioned in section 3.1.

6.6 Assumptions and dependencies

Assumptions of the following requirement specifications are as follows:

• Access to gLite UI with all gLite libraries in place is provided.

• Virtual Laboratory infrastructure is established, in particular there is access to Data
Source Registry, security components and DAC2 data access layer.

• Finally, an imperative assumption is that at least some users possess a valid Grid creden-
tials enabling them to use EGEE/WLCG Grid.

56Free Libre Open Source

82

7 Detailed requirements
The following chapter provides detailed requirements for LFC DS component with each re-
quirement holding a unique ID composed of string UI, SI, FR, SC, NF indicating user interface
requirement (UI), software interface requirement (SI), functional requirement (FR), a user
scenario (SC) or a non-functional requirement (NF) respectively, followed by ‘-’ and a number.

7.1 Functional requirements

With regard to functionalities of EGEE storage services that need to be provided to Virtual
Laboratory, the dissertation author had several discussions with Cyfronet development team
members and came to the conclusion that paramount goals of the devised API for accessing
EGEE/WLCG storage resources have simplicity and accessibility. This is also an approach
used in DAC2 data access architecture, where configuration of data sources is required only
once and can be done by a qualified person. Such a configured data source can then be used
by a number of computational scientists who do not need to specify every detail concerning
the data source as this information is downloaded from DSR – this mechanism eliminates
the burden of remembering various endpoint URLs and technology dependent information.
Similar ideas should be employed when designing services for accessing EGEE/WLCG grid.
Moreover, actual file operations that need to be supported include, obtaining a file represented
by logical file name from Grid, storing a file in Grid filesystem, obtaining the size of a file,
creating a directory in a file catalogue and deleting a file or directory. File permissions are
not required to be supported, as they may intimidate users – a transparent access without file
permissions is a better solution in this case. Additionally, the user should not be required to
specify which storage element is used for accessing a replica or saving a file. If there is no
automatic optimization mechanism employed, there needs to a default storage element used for
each EGEE/WLCG data source.
Another step in collecting requirements was a review of existing code accessing EGEE stor-

age resources within ChemPo project which gave the author valuable information on actual
servers being contacted and services being used and in particular, our VO uses LCG File Cata-
logue as a grid file catalogue. Additionally, VOMS enabled grid certificates are employed.
Requisite configuration parameters that were used by ChemPo software were location of certi-
ficate repositories, VOMS directory, VOMS server, Site Berkeley Database Information Index
host, LFC host, storage element URL to be used, locations of user private keys, grid certificates,
proxy certificates, passwords and Virtual Organization name to be used. The usage of LFC
implied that FiReMan web-service interface could not be used and another solution would have
to be envisaged. In chapter 8, various possibilities of integration of these services using existing
gLite client utilities into GridSpace Engine are discussed.
As already mentioned in chapter 4, one of the issues is automation of generation of proxy

83

certificates, so that users would not have to create them manually together with managing
users’ credentials. Therefore, software requirements must address this issue.
However, this does not limit the requirements of certificate management. Many users wish-

ing to take advantage of Grid resources will not want to go to the trouble of generating proper
key pair, applying for a certificate or waiting several weeks or even months for a certificate
to arrive. Often, the need to perform computation is urgent and there is no time for these
activities. Furthermore, many non-computer scientists are intimidated by procedures when
applying for and receiving grid certificates which creates doubts as to whether users will follow
the procedure correctly. A solution in such a situation would be for GridSpace data access
system to allow authenticated user to perform Grid operations without the need to provide
a certificate; the system would use other user’s certificate who had agreed that their certificate
could be used by other members of the group involved. Of course, this is a security comprom-
ise; however when used within VO boundaries and only to authenticated users, any tracing of
damage caused by data operations on behalf of user who shared the certificate will be limited to
authenticated users. Therefore, such a mode of operation makes sense only when the number
of scientists within a collaboration is small. To scale this solution into larger user quantity,
a tight control over who can perform operations using a particular certificate is of paramount
importance. However, due to complications of the whole DAC2 infrastructure that would be
implied by such a modification and because such a feature is not essential to the goals that are
to be achieved by thesis project, these functionalities are left for future work as this facet is
only necessary if adaptation of the solution to larger virtual organizations is mandatory.

Table 4: Functional requirements

REQ ID Requirement Description

FR-1 Provision access to EGEE/WLCG storage resources
FR-1.1 Support obtaining a file represented by logical file name from Grid
FR-1.2 Support storing a file in Grid filesystem
FR-1.3 Support obtaining the size of a file
FR-1.4 Support creating a directory in a file catalogue
FR-1.5 Support deleting a file or directory
FR-1.6 Support listing directories
FR-1.7 Support checking for existence of files and directories
FR-1.8 Omit support for file permissions
FR-1.9 User should not be required to provide storage element name in

method invocations – it should be remembered by system for each
LFC data source.

FR-1.10 Let users refer to files only using logical file names (LFN)
FR-1.11 Use LCG File Catalogue for catalogue operations

84

Table 4: Functional requirements (continued)

REQ ID Requirement Description

FR-1.12 Support standard gLite storage elements: dCache, CASTOR and
DPM

FR-2 Create a mechanism that eliminates the burden of remembering
various endpoint URLs and technology dependent information.

FR-3 Manage users’ credentials using Data Source Registry (DSR)
FR-4 Allow for credentials sharing
FR-4.1 Allow to mark credential as being available to other authenticated

users
FR-4.2 If credentials are not found for current user, automatically search

and use credentials marked for sharing
FR-5 Automate Grid proxy generation

7.2 User interfaces

Users are will be able to interact with LFC DS using a GScript based interface, which is
described in 7.3 and a graphical user interface (GUI) that satisfies requirements delineated in
table 6. Their rationale includes management of user Grid credentials and management of
information regarding LFC data sources. The following terms are used within a list of user
interface requirements:

• private key – a user private key that can be used to generate a Grid proxy certificate

• proxy certificate – a temporarily generated certificate that allows for authentication and
authorization in gLite environment

• grid certificate – a certificate signed by Certificate Authority (CA) confirming particular
user’s identity and that he or she is entitled to use Grid services

All requirements presented in table 5 are to be verified by manual examination of GUI.

Table 5: User interface requirements

REQ ID Requirement Description

UI-1 Ability to upload or remove a private key or to check whether it
has been uploaded.

UI-2 Ability to upload or remove a grid certificate or to check whether
it has been uploaded.

85

Table 5: User interface requirements (continued)

REQ ID Requirement Description

UI-3 Ability to upload or remove a proxy certificate or to check whether
it has been uploaded.

UI-4 Ability to set passphrase that can be used to decrypt private key,
remove it from system or check whether it has been set.

UI-5 Ability for the user to decide whether his or her credentials can be
used for data access by other authenticated users.

UI-6 Capability to add new LFC data source with necessary information
enabling other LFC DS components to utilize it.

UI-7 Capability to edit or delete existing LFC data sources.
UI-8 Checking for simple errors in fields provided by user, before sub-

mitting them to system
UI-8.1 checking whether user has provided mandatory fields
UI-8.2 verifying that host names provided by user are valid
UI-8.3 checking validity of fields for input of numbers
UI-10 Providing contextual help.
UI-11 Capability of browsing the list of LFC data sources.
UI-12 Securing user interface by Virtual Laboratory security system.
UI-13 Integration with existing Virtual Laboratory components for regis-

tering and updating of data source information.

7.3 Software interfaces

Software interface requirements are listed in table 6 and they refer to DACConnector methods
that will be accessible from GScript code. When perusing these requirements, the reader is
advised to note the following statements and conventions:

• When a requirement refers to a path, it is meant to be an LFC catalogue path without
“/grid/vo_name/” part (last “/” may or may not be left out) as specified in SI-0.

• A convention for distinguishing class and instance methods from Programming Ruby:
The Pragmatic Programmers’ Guide, Second Edition [214] has been employed, namely
ClassName.method_name is used to indicate a class method while ClassName#method_name
is used to denote an instance method.

• DACConnector instance method invocations presented here apply only to DACConnector
class instances initialized with a data source handle that refers to an LFC data source.

86

• If a requirement makes reference to a user, it denotes a user who executes GridSpace
script invoking DACConnector methods or a script developer depending on context

• handle-name is a data source handle referring to an LFC data source

All requirements presented in table 6 are to be verified using test methods created using a chosen
testing framework.

87

Ta
bl
e
6:
So
ftw
ar
e
in
te
rfa
ce
re
qu
ire
m
en
ts

R
EQ

ID
R
eq
ui
re
m
en
t
D
es
cr
ip
tio
n

R
at
io
na
le
&
C
om
m
en
ts

SI
-1

LF
C
D
S
m
et
ho
ds
re
pr
es
en
t
pa
th
s
by
pr
ov
id
in
g
on
ly
th
e
te
xt
af
te
r
“/

gr
id

/v
o_

na
me

/”
pa
rt
,
w
he
re

vo
_n

am
e
is
th
e
LF
C
ca
ta
lo
gu
e
of
da
ta
so
ur
ce
be
in
g
us
ed
.
La
st
“/
”
of

“/
gr

id
/v

o_
na

me
/”
te
xt
m
ay
be
pr
es
en
t
or
om
itt
ed
.

A
llo
w
s
us
er
s
to
ty
pe
le
ss
w
he
n

w
rit
in
g
sc
rip
t
by
re
us
in
g
in
fo
rm
-

at
io
n
st
or
ed
by
LF
C
D
S.

SI
-2

If
a
va
lid
cr
ed
en
tia
l
is
st
or
ed
fo
r
a
us
er
or
so
m
e
ot
he
r
us
er
of
V
irt
ua
l
La
bo
ra
to
ry
ha
d

ag
re
ed
th
at
th
ei
r
ce
rt
ifi
ca
te
co
ul
d
be
us
ed
by
ot
he
r
m
em
be
rs
of
co
lla
bo
ra
tio
n,
in
vo
ca
tio
n

of
m
et
ho
d
DA

CC
on

ne
ct

or
.n

ew
(h

an
dl

e-
na

me
)
sh
ou
ld
in
iti
al
iz
e
D
A
C
C
on
ne
ct
or
ob
je
ct
w
ith

a
re
fe
re
nc
e
to
an
LF
C
D
S
co
nn
ec
to
r
en
ab
lin
g
a
sc
rip
t
to
pe
rfo
rm

su
bs
eq
ue
nt
LF
C
D
S

m
et
ho
d
in
vo
ca
tio
ns
.

If
us
er
cr
ed
en
tia
ls
ar
e
no
t
pr
es
en
t,
an
ex
ce
pt
io
n
sh
ou
ld
be
th
ro
w
n
an
d
D
A
C
C
on
ne
ct
or

sh
ou
ld
no
t
be
in
iti
al
iz
ed
.

En
ab
le
s
in
iti
al
iz
at
io
n
of
LF
C
D
S

in
a
fu
lly
au
to
m
at
ed
wa
y
w
ith
ou
t

ex
pl
ic
itl
y
sp
ec
ify
in
g
cr
ed
en
tia
ls

by
a
us
er
.

SI
-3

DA
CC

on
ne

ct
or

.n
ew

(h
an

dl
e-

na
me

,
pa

ss
wo

rd
),
w
he
re
pa
ss
wo
rd
is
a
pa
ss
ph
ra
se
to
G
rid

pr
iv
at
e
ke
y
st
or
ed
fo
r
a
us
er
,s
ho
ul
d
in
iti
al
iz
e
D
A
C
C
on
ne
ct
or
ob
je
ct
w
ith
a
va
lid
re
fe
r-

en
ce
to
an
LF
C
D
S
co
nn
ec
to
ri
fa
ll
cr
ed
en
tia
ls,
w
ith
po
ss
ib
le
ex
ce
pt
io
n
of
pa
ss
ph
ra
se
an
d

pr
ox
y
ce
rt
ifi
ca
te
,
ar
e
st
or
ed
fo
r
a
us
er
.
If
th
ey
ar
e
no
t
st
or
ed
,
an
ex
ce
pt
io
n
sh
ou
ld
be

th
ro
w
n
an
d
D
A
C
C
on
ne
ct
or
sh
ou
ld
no
t
be
in
iti
al
iz
ed
.

En
ab
le
s
sc
rip
t
to
us
e
cr
ed
en
tia
ls

pr
ev
io
us
ly
pr
ov
id
ed
by
us
er
w
he
n

pa
ss
ph
ra
se
to
pr
iv
at
e
ke
y
ha
sn
ot

be
en
pr
ov
id
ed
.

88

Ta
bl
e
6:
So
ftw
ar
e
in
te
rfa
ce
re
qu
ire
m
en
ts
(c
on
tin
ue
d)

R
EQ

ID
R
eq
ui
re
m
en
t
D
es
cr
ip
tio
n

R
at
io
na
le
&
C
om
m
en
ts

SI
-4

DA
CC

on
ne

ct
or

.n
ew

(h
an

dl
e-

na
me

,
pr

ox
y)
,w
he
re
pr
ox
y
co
nt
ai
ns
co
nt
en
ts
of
a
va
lid
us
er
’s

pr
ox
y
ce
rt
ifi
ca
te
re
pr
es
en
te
d
by
JR
ub
y
st
rin
g,
sh
ou
ld
in
iti
al
iz
e
D
A
C
C
on
ne
ct
or
ob
je
ct
w
ith

a
va
lid
re
fe
re
nc
e
to
an
LF
C
D
S
co
nn
ec
to
ro
bj
ec
tr
eg
ar
dl
es
sw
he
th
er
cr
ed
en
tia
ls
ar
e
st
or
ed

fo
r
a
us
er
or
no
t.

A
llo
w
s
sc
rip
t
to
in
iti
al
iz
e
da
ta

so
ur
ce
co
nn
ec
to
r
us
in
g
a
pr
ox
y

ce
rt
ifi
ca
te
,
so
th
at
th
er
e
is
no

ne
ed
to
ha
ve
us
er
’s
G
rid
cr
ed
en
-

tia
ls
pr
ev
io
us
ly
pr
ov
id
ed
to
LF
C

D
S
in
or
de
rt
o
us
e
its
fu
nc
tio
na
l-

ity
.

SI
-5

DA
CC

on
ne

ct
or

.n
ew

(h
an

dl
e-

na
me

,
us

er
ke

y,
us

er
ce

rt
,

ke
y-

pa
ss

ph
ra

se
),
w
he
re
us
er
ke
y

co
nt
ai
ns
pr
iv
at
e
ke
y
us
ed
fo
r
G
rid

pr
ox
y
ce
rt
ifi
ca
te
ge
ne
ra
tio
n,
us
er
ce
rt
is
us
er
’s
G
rid

ce
rt
ifi
ca
te
an
d
ke
y-
pa
ss
ph
ra
se
is
pa
ss
ph
ra
se
to
de
cr
yp
tu
se
rk
ey
,s
ho
ul
d
in
iti
al
iz
e
D
A
C
C
on
-

ne
ct
or
ob
je
ct
w
ith
a
va
lid
re
fe
re
nc
e
to
an
LF
C
D
S
co
nn
ec
to
r
ob
je
ct
re
ga
rd
le
ss
w
he
th
er

cr
ed
en
tia
ls
ar
e
st
or
ed
fo
r
a
us
er
or
no
t.
us
er
ke
y,
us
er
ce
rt
an
d
ke
y-
pa
ss
ph
ra
se
ar
e
re
pr
es
-

en
te
d
by
JR
ub
y
st
rin
gs
.

En
ab
le
s
sc
rip
t
to
ut
ili
ze
LF
C

D
S
fu
nc
tio
na
lit
y
in
ca
se
of
cr
e-

de
nt
ia
ls
no
t
be
in
g
pr
ev
io
us
ly

pr
ov
id
ed
by
us
er
,
bu
t
w
he
n
ac
-

ce
ss
to
th
es
e
cr
ed
en
tia
ls
is
po
s-

sib
le
fro
m
G
rid
Sp
ac
e
Sc
rip
t.

SI
-6

DA
CC

on
ne

ct
or

#c
re

at
eD

ir
ec

to
ry

(p
at

h)
or

DA
CC

on
ne

ct
or

#c
re

at
e_

di
re

ct
or

y(
pa

th
),
w
he
re

pa
th
is
a
st
rin
g
be
in
g
co
ns
tr
uc
te
d
by
co
nc
at
en
at
in
g
ex
ist
in
g
di
re
ct
or
y
na
m
e
fo
llo
we
d
by
a

sla
sh
“/
”
an
d
by
a
di
re
ct
or
y
to
be
cr
ea
te
d,
sh
ou
ld
at
te
m
pt
to
cr
ea
te
di
re
ct
or
y
sp
ec
ifi
ed
by

pa
th
in
da
ta
so
ur
ce
’s
LF
C
ca
ta
lo
gu
e
in

“/
gr

id
/v

o_
na

me
“
di
re
ct
or
y,
w
he
re

vo
_n

am
e
is
da
ta

so
ur
ce
’s
V
irt
ua
lO
rg
an
iz
at
io
n,
re
tu
rn
in
g
tr
ue
on
su
cc
es
s
an
d
fa
lse
ot
he
rw
ise
.

En
ab
le
sc
re
at
io
n
of
LF
C
di
re
ct
or
-

ie
s.

89

Ta
bl
e
6:
So
ftw
ar
e
in
te
rfa
ce
re
qu
ire
m
en
ts
(c
on
tin
ue
d)

R
EQ

ID
R
eq
ui
re
m
en
t
D
es
cr
ip
tio
n

R
at
io
na
le
&
C
om
m
en
ts

SI
-7

DA
CC

on
ne

ct
or

#c
re

at
eD

ir
ec

to
ry

(p
at

h,
ch

il
d_

di
re

ct
or

y)
or

DA
CC

on
ne

ct
or

#c
re

at
e_

di
re

ct
or

y(
pa

th
,c

hi
ld

_d
ir

ec
to

ry
),

w
he
re
pa
th

is
an

ex
ist
in
g

di
re
ct
or
y
an
d
ch

il
d_

di
re

ct
or

y
is
a
di
re
ct
or
y
to
be
cr
ea
te
d
in
pa
th
fo
ld
er
,s
ho
ul
d
at
te
m
pt

to
cr
ea
te
di
re
ct
or
y
sp
ec
ifi
ed
by

pa
th

+”
/”

+c
hi

ld
_d

ir
ec

to
ry
in
da
ta
so
ur
ce
’s
LF
C
ca
ta
lo
gu
e

un
de
r

“/
gr

id
/v

o_
na

me
“
fo
ld
er
,
w
he
re

vo
_n

am
e
is
da
ta
so
ur
ce
’s
V
irt
ua
l
O
rg
an
iz
at
io
n,

re
tu
rn
in
g
tr
ue
on
su
cc
es
s
an
d
fa
lse
ot
he
rw
ise
.

En
ab
le
sc
re
at
io
n
of
LF
C
di
re
ct
or
-

ie
s.

SI
-8

DA
CC

on
ne

ct
or

#d
el

et
e(

pa
th

)
or

DA
CC

on
ne

ct
or

#d
el

et
eF

il
e(

pa
th

)
at
te
m
pt
st
o
de
le
te
fil
e
or

di
re
ct
or
y
sp
ec
ifi
ed
by
pa
th
re
tu
rn
in
g
tr
ue
on
su
cc
es
s
an
d
fa
lse
ot
he
rw
ise
.

A
llo
w
s
fo
r
de
le
tio
n
of
fil
es
an
d

di
re
ct
or
ie
s.

SI
-9

DA
CC

on
ne

ct
or

#i
sD

ir
ec

to
ry

(p
at

h)
,

DA
CC

on
ne

ct
or

#i
s_

di
re

ct
or

y(
pa

th
)

an
d

DA
CC

on
ne

ct
or

#d
ir

ec
to

ry
?(

pa
th

)
ch
ec
k
w
he
th
er
di
re
ct
or
y
de
no
te
d
by

pa
th
ex
ist
s
in

da
ta
so
ur
ce
’s
LF
C
ca
ta
lo
gu
e
an
d
re
tu
rn
tr
ue
or
fa
lse
re
sp
ec
tiv
el
y.

En
ab
le
s
ch
ec
ki
ng

fo
r
di
re
ct
or
y

ex
ist
en
ce
w
ith
ou
t
lis
tin
g
pa
re
nt

fo
ld
er
an
d
te
st
in
g
w
he
th
er
th
e

di
re
ct
or
y
in
qu
es
tio
n
co
nt
ai
ne
d
in

re
tu
rn
ed
lis
tin
g.

SI
-1
0

DA
CC

on
ne

ct
or

#e
xi

st
?(

pa
th

),
DA

CC
on

ne
ct

or
#e

xi
st

(p
at

h)
,

DA
CC

on
ne

ct
or

#e
xi

st
s(

pa
th

)
an
d
DA

CC
on

ne
ct

or
#e

xi
st

s?
(p

at
h)
ch
ec
k
w
he
th
er
an
ite
m
de
no
te
d
by
pa
th
ex
ist
s
in
da
ta

so
ur
ce
’s
LF
C
ca
ta
lo
gu
e
an
d
re
tu
rn
tr
ue
or
fa
lse
re
sp
ec
tiv
el
y.

En
ab
le
s
ch
ec
ki
ng

fo
r
di
re
ct
or
y

ex
ist
en
ce
w
ith
ou
t
lis
tin
g
pa
re
nt

fo
ld
er
.

SI
-1
1

DA
CC

on
ne

ct
or

#f
il

e?
(p

at
h)
,

DA
CC

on
ne

ct
or

#i
s_

fi
le

(p
at

h)
an
d

DA
CC

on
ne

ct
or

#i
sF

il
e(

pa
th

)
ch
ec
k
w
he
th
er
an

ite
m
de
no
te
d
by

pa
th
ex
ist
s
in
da
ta

so
ur
ce
’s
LF
C
ca
ta
lo
gu
e
an
d
re
pr
es
en
ts
a
fil
e
re
tu
rn
in
g
tr
ue
or
fa
lse
re
sp
ec
tiv
el
y.

En
ab
le
s
ch
ec
ki
ng

fo
r
di
re
ct
or
y

ex
ist
en
ce
w
ith
ou
t
lis
tin
g
pa
re
nt

fo
ld
er
an
d
te
st
in
g
w
he
th
er
th
efi
le

in
qu
es
tio
n
is
co
nt
ai
ne
d
in
re
-

tu
rn
ed
lis
tin
g.

90

Ta
bl
e
6:
So
ftw
ar
e
in
te
rfa
ce
re
qu
ire
m
en
ts
(c
on
tin
ue
d)

R
EQ

ID
R
eq
ui
re
m
en
t
D
es
cr
ip
tio
n

R
at
io
na
le
&
C
om
m
en
ts

SI
-1
2

DA
CC

on
ne

ct
or

#g
et

_f
il

e(
pa

th
)
an
d
DA

CC
on

ne
ct

or
#g

et
Fi

le
(p

at
h)
ob
ta
in
sa
fil
e
de
no
te
d
by

pa
th
fro
m
G
rid
st
or
ag
e
re
tu
rn
in
g
it
as
a
Ja
va
by
te
ar
ra
y.
M
et
ho
ds
th
ro
w
an
ex
ce
pt
io
n
in

ca
se
of
fil
e
un
av
ai
la
bi
lit
y.

1.
A
llo
w
s
fo
r
lo
ad
in
g
a
fil
e

di
re
ct
ly
in
to
a
va
ria
bl
e
in

G
Sc
rip
t
co
de
.

2.
T
he
re
is
no
ne
ed
to
re
m
em
-

be
r
to
cl
os
e
th
e
fil
e
w
he
n

w
rit
in
g
G
Sc
rip
t
co
de
.

SI
-1
3

DA
CC

on
ne

ct
or

#l
is

t_
fi

le
s(

pa
th

)
an
d
DA

CC
on

ne
ct

or
#l

is
tF

il
es

(p
at

h)
re
tu
rn
a
lis
t
of
di
r-

ec
to
ry
ite
m
s
of
di
re
ct
or
y
de
no
te
d
by
pa
th
al
lo
w
in
g
fo
r:

•
ge
tt
in
g

ite
m

na
m
e

by
Cl

as
sO

fD
ir

ec
to

ry
It

em
#g

et
_n

am
e

an
d

Cl
as

sO
fD

ir
ec

to
ry

It
em

#g
et

Na
me
m
et
ho
ds

•
ch
ec
ki
ng

w
he
th
er

an
ite
m

is
a

di
re
ct
or
y

or
a

fil
e

by
us
in
g

Cl
as

sO
fD

ir
ec

to
ry

It
em

#i
s_

di
re

ct
or

y
an
d

Cl
as

sO
fD

ir
ec

to
ry

It
em

#i
sD

ir
ec

to
ry

m
et
ho
ds

w
he
re

Cl
as

sO
fD

ir
ec

to
ry

It
em
is
so
m
e
in
te
rn
al
cl
as
s
re
pr
es
en
tin
g
di
re
ct
or
y
ite
m
s
w
hi
ch
is

no
t
re
qu
ire
d
to
be
ex
po
se
d
to
th
e
us
er
.

A
llo
w
s
fo
r
di
re
ct
or
y
lis
tin
gs
.

91

Ta
bl
e
6:
So
ftw
ar
e
in
te
rfa
ce
re
qu
ire
m
en
ts
(c
on
tin
ue
d)

R
EQ

ID
R
eq
ui
re
m
en
t
D
es
cr
ip
tio
n

R
at
io
na
le
&
C
om
m
en
ts

SI
-1
4

DA
CC

on
ne

ct
or

#o
pe

n(
pa

th
,m

od
e)
,

DA
CC

on
ne

ct
or

#o
pe

n_
fi

le
(p

at
h,

mo
de

)
an
d

DA
CC

on
ne

ct
or

#o
pe

nF
il

e(
pa

th
,m

od
e)

ea
ch

w
ith

an
op
tio
na
l
Ru
by

bl
oc
k
w
ith

on
e

bl
oc
k
ar
gu
m
en
t
at
te
m
pt
to
op
en
a
pa
rt
ic
ul
ar
G
rid
fil
e
fo
r
re
ad
in
g
or
w
rit
in
g
de
pe
nd
in
g

on
m
od
e,
w
hi
ch
m
ay
be
on
e
of
th
e
fo
llo
w
in
g
va
lu
es

•
:r

,
:r

ea
d,

”r
”,

“r
ea

d”
in
di
ca
te
op
en
in
g
fo
r
re
ad
in
g

•
:w

,
:w

ri
te

,
”w

”,
“w

ri
te

”
de
no
te
op
en
in
g
fo
r
w
rit
in
g.

If
an
op
tio
na
lb
lo
ck
is
su
pp
lie
d,
a
Ru
by
IO
ob
je
ct
is
pa
ss
ed
to
co
de
co
nt
ai
ne
d
in
a
bl
oc
k.

A
fte
r
co
de
is
ex
ec
ut
ed
,
G
rid

fil
e
is
cl
os
ed
.
O
n
th
e
ot
he
r
ha
nd
,
if
bl
oc
k
ha
s
no
t
be
en

su
pp
lie
d,
m
et
ho
d
sh
ou
ld
re
tu
rn
Ru
by
IO
ob
je
ct
to
th
e
ca
lle
r
le
av
in
g
re
sp
on
sib
ili
ty
of

cl
os
in
g
th
e
fil
e
to
in
vo
ki
ng
sc
rip
t.
If
fil
e
is
op
en
ed
fo
rr
ea
di
ng
,d
at
a
is
st
re
am
ed
to
m
ac
hi
ne

in
vo
ki
ng
G
rid
Sp
ac
e
sc
rip
t
as
a
re
su
lt
of
in
vo
ca
tio
n
of
Ru
by
IO
st
re
am

re
ad
in
g
m
et
ho
ds
.

C
on
ve
rs
el
y,
in
vo
ca
tio
ns
Ru
by
IO
st
re
am
w
rit
in
g
m
et
ho
ds
on
a
fil
e
op
en
ed
fo
r
w
rit
in
g
w
ill

ca
us
e
da
ta
to
be
st
re
am
ed
ou
t
of
G
SE
ng
in
e
m
ac
hi
ne
.

1.
A
llo
w
sf
or
Ru
by
-li
ke
fil
e
ac
-

ce
ss
.

2.
En
ab
le
sa
cc
es
st
o
la
rg
efi
le
s.

92

Ta
bl
e
6:
So
ftw
ar
e
in
te
rfa
ce
re
qu
ire
m
en
ts
(c
on
tin
ue
d)

R
EQ

ID
R
eq
ui
re
m
en
t
D
es
cr
ip
tio
n

R
at
io
na
le
&
C
om
m
en
ts

SI
-1
5

DA
CC

on
ne

ct
or

#s
to

re
_f

il
e(

pa
yl

oa
d,

pa
th

)
an
d
DA

CC
on

ne
ct

or
#s

to
re

Fi
le

(p
ay

lo
ad

,
pa

th
)

at
te
m
pt
to
st
or
e
co
nt
en
ts
of
Ja
va
by
te
ar
ra
y
pa
yl
oa
d
in
to
a
G
rid

fil
e
de
no
te
d
by
pa
th

re
tu
rn
in
g
tr
ue
on
su
cc
es
s
an
d
fa
lse
ot
he
rw
ise
.

1.
A
llo
w
s
fo
r
st
or
in
g
co
nt
en
ts

of
a
va
ria
bl
e
in
a
G
rid
fil
e.

2.
T
he
re
is
no
ne
ed
to
re
m
em
-

be
r
to
cl
os
e
th
e
fil
e
w
he
n

w
rit
in
g
G
Sc
rip
t
co
de
.

SI
-1
6

DA
CC

on
ne

ct
or

#z
er

o?
(p

at
h)
ch
ec
ks
w
he
th
er
a
fil
e
de
no
te
d
by
pa
th
ex
ist
sa
nd
ha
sl
en
gt
h
of

ze
ro
by
te
s
re
tu
rn
in
g
tr
ue
or
fa
lse
re
sp
ec
tiv
el
y.

SI
-1
7

DA
CC

on
ne

ct
or

#s
iz

e?
(p

at
h)
,
DA

CC
on

ne
ct

or
#s

iz
e(

pa
th

)
an
d

DA
CC

on
ne

ct
or

#g
et

Si
ze

(p
at

h)
re
tr
ie
ve
siz
e
of
a
G
rid
fil
e
sp
ec
ifi
ed
by
pa
th
.

A
llo
w
s
fo
r
re
tr
ie
vi
ng
fil
e
siz
es
.

SI
-1
8

En
ab
lin
g
co
ns
ist
en
ce
be
tw
ee
n
LF
C
D
S
an
d
D
A
C
2
da
ta
ac
ce
ss
in
fra
st
ru
ct
ur
e,
i.e
.m
ak
in
g

su
re
th
at
D
A
C
2
da
ta
so
ur
ce
do
no
tu
se
di
ffe
re
nt
m
et
ho
d
na
m
es
fo
rs
im
ila
ro
pe
ra
tio
ns
th
at

LF
C
D
S
pr
ov
id
es
.

93

Ta
bl
e
6:
So
ftw
ar
e
in
te
rfa
ce
re
qu
ire
m
en
ts
(c
on
tin
ue
d)

R
EQ

ID
R
eq
ui
re
m
en
t
D
es
cr
ip
tio
n

R
at
io
na
le
&
C
om
m
en
ts

SI
-1
9

U
se
r
sh
ou
ld
no
t
be
ex
po
se
d
to
fu
nc
tio
ns
pr
ov
id
in
g
G
rid
cr
ed
en
tia
lm
an
ag
em
en
t,
w
ith
th
e

ex
ce
pt
io
n
of
pr
ov
id
in
g
th
em

w
ith
in
sp
ec
ifi
c
co
ns
tr
uc
to
rs
(s
ee
SI
-2
,
SI
-3
an
d
SI
-4
).
In

pa
rt
ic
ul
ar
,p
ro
xy
ce
rt
ifi
ca
te
ss
ho
ul
d
be
ge
ne
ra
te
d
an
d
m
an
ag
ed
w
ith
ou
tu
se
ri
nt
er
ve
nt
io
n.

T
he
re
fo
re
,
G
Sc
rip
t
so
ftw
ar
e
in
te
rfa
ce
s
pr
ov
id
in
g
cr
ed
en
tia
l
m
an
ag
em
en
t
sh
ou
ld
no
t
be

cr
ea
te
d.

1.
C
on
ce
al
in
g
pa
rt
ic
ul
ar
s
of

G
rid

cr
ed
en
tia
l
m
an
ag
e-

m
en
t.

2.
R
ed
uc
in
g
nu
m
be
r
of
st
ep
s

re
qu
ire
d
to

ac
ce
ss

G
rid

da
ta
.

94

7.4 Performance requirements

Communication overhead If network communication needs to be employed, protocols
which introduce significant performance overhead, such as SOAP, should be avoided for trans-
mission of file contents. On the other hand, they are acceptable for sending commands to be
invoked, since such operations are less costly in terms of data transmitted.

Command execution overhead Because execution of data management commands, espe-
cially access to storage elements, is time consuming and no significant requirements regarding
command execution overhead must to be met. Furthermore, even a small execution overhead
will not make an entire command execution much faster.

Number of simultaneous data access requests to be supported Quantity of simul-
taneous data access requests should only be limited by hardware capabilities. However, for the
purpose of system validation, this figure should be at least 5.

Ability to access large files Support for filesize of at least 1Gb must be provided by LFC DS
server with no constraints by available memory.

7.5 Software system attributes

Security An important issue regarding certificate management is maximum security of user
files, especially private keys and certificates if they are stored temporarily or sent over network.
In particular, if a need for storing temporary files arises, access rights should be set appro-
priately, and sensitive files deleted as soon as they are not required. Furthermore, if sensitive
data, such user credentials, needs to be sent over network, strong encryption should be used.

Maintainability Since the system is meant to be used and extended in the context of emer-
ging Grid projects, such as PL-Grid, complete documentation of its design and functions is
expected. However, this requirement is mostly met by the dissertation itself. Moreover, it
would be beneficial, if certain components of the system were reusable. Such functionality
would be helpful for other projects, if only some part of LFC DS functions would be of their
interest, e.g. only access to EGEE/WLCG storage without automatic credentials management.
In addition, a proven solution for managing project dependencies would be helpful to ease

incorporating LFC DS into other projects or to adapt LFC DS when the environment in which
it operates changes. Furthermore, logging of operations should also be possible to track any
problems that may occur.

Portability Most importantly, LFC DS must not compromise portability of GridSpace En-
gine which is platform-independent. If portability across platforms is not possible, LFC DS

95

should be split into parts that are portable and parts that are platform-reliant, so that those
that are not portable would be external to GridSpace Engine.

Testability Tests should be provided in order to check validity of software installation.

Summary of non-functional requirements Sections 7.4 and 7.5 identified non-functional
requirements of the project. They are abridged in table 7.

Table 7: Synopsis of LFC DS non-functional require-
ments

REQ ID Requirement Description Verification
Method

NF-1 Efficient communication protocol used for data stream-
ing, if a need to employ network communication arises.

Verification test
& code inspection

NF-2 At least 5 simultaneous data access requests supported Verification test
NF-3 Ability to access large files (at least 1Gb) must be sup-

ported by LFC DS server.
Verification test

NF-4 Strong communication encryption if sensitive data is sent
over network

Code inspection

NF-5 If temporary files are used, the system should

• set appropriate file permissions if they contain sens-
itive data

• delete them as soon as they are not required

Code inspection

NF-6 Complete documentation Documentation
inspection

NF-6.1 Software requirements specification
NF-6.2 Design description
NF-6.3 Documentation of user interfaces
NF-6.4 Documentation of software interfaces
NF-6.5 Documentation of reusable components that are artifacts

of the project
NF-6.6 Installation guide
NF-7 Logging of operations Code inspection
NF-8 Support for managing dependencies Code inspection
NF-9 Not to compromise portability of GridSpace Engine Code inspection

96

Table 7: Synopsis of LFC DS non-functional require-
ments (continued)

REQ ID Requirement Description Verification
Method

NF-10 Provide some modularity and reusability enabling incor-
poration of only some parts of the functionality into other
projects.

Code inspection

NF-11 Tests enabling verifying validity of LFC DS installation Code inspection

97

8 Design description
Firstly, this chapter examines various design decisions that could satisfy requirements stated
in chapters 6 and 7 together with considerations on their applicability and value. After identi-
fying advantages and disadvantages of each solution, decisions are made on which to use.
Subsequently, section 8.4 shows how the software will be structured and how it will operate.

8.1 Design decisions

With regard to providing access to EGEE storage resources an uncomplicated service-oriented
access to these services could be the solution. However, it is not provided with default gLite
installation. A service-oriented approach has been successfully applied to a number of legacy
applications, e.g. COBOL, CL, ILE or RPG programs on IBM i (formerly known as IBM Sys-
tem i or iSeries) saving many man-hours invested in these applications. If such an approach had
not been employed, these applications would have to be rewritten from scratch imposing im-
mense development cost. Therefore, it is highly probable that such a solution will also succeed
in the scope of our projects. However, SOAP protocol involves too much overhead commu-
nication and perhaps its usage would be arguable if transferred data were highly structured
and small in volume. Nevertheless, when dealing mostly with files, which may be quite large,
a more compact protocol is advised as already indicated in requirement NF-1.
With respect to integration with GridSpace Engine and the placement of LFC DS in data

source hierarchy, after a consultation with Cyfronet members, it was decided that the new
GScript data source connector would fall under Unstructured data sources category in DAC2
data access layer (see figure 18). With regard to configuration previously mentioned in sec-
tion 4.2; all data source configuration will be stored in Data Source Registry.
An interesting issue, is the means of access to gLite storage services – several alternatives

were considered that finally led to decision of employing service-oriented paradigm – this para-
graph presents the reasoning. Firstly, data access could be performed directly from a library
which is a dependency of DAC2 connector. Although simple in realization, it would impose
unacceptable requirements onto GridSpace Engine and would limit its installation environment
to Linux with gLite installed, which would definitely be too high a compromise (see NF-9).
Another option would be to require the user to possess a valid account on a gLite UI and to
provide some means of remote command execution, e.g. a user would upload a private key
generated to allow access to their account. GridSpace Engine would then execute gLite com-
mands, logging into user’s account using the uploaded credentials. Although SSH provides
means for limiting available commands, when logging using a particular key, so that in the
case of a private key being stolen, actions that are possible would be restricted and many users
would show reluctance. Furthermore, users still would have to perform some intricate proced-
ures of obtaining access to gLite UI, generating and adding private keys (see FR-3 and FR-5)

98

not only to access the Grid, but also to utilize envisaged Virtual Laboratory gLite data ac-
cess service. Although it is an advancement compared with formerly mentioned work-around,
it is not the ultimate solution for satisfying prospective users. An architectural choice that
could satisfy the needs, without compromising GridSpace portability and usability, would be
to create a dedicated server installed on a gLite UI that would act as a data server. However,
it involves many implementation complications, an example of which would be the sending of
large files which would induce the need to incorporate some kind of streaming which would
avoid OutOfMemory errors (NF-3). Additionally, there should be a utility to concurrently gen-
erate certificates without access to actual users’ accounts, i.e. only one account on a gLite UI
would be utilized. However, many distinct certificates belonging to various users would have to
be generated and managed, which is impossible from a single process, since certificate locations
are controlled using environment variables – therefore, a multi-process application is the only
option to implement this idea. Furthermore, tracing errors will be difficult as with any remote
application accessing native functionality which is composed of multiple processes. Despite
implementation difficulties, it appears to be the only plausible choice of solving all concerns.
With regard to credentials management, initially MyProxy [134, 164] server was considered

as a solution. Nevertheless, it was discarded by other team members and it was decided
that certificate information will be stored in Data Source Registry (see 4.3 and FR-3). As
already denoted in 4.3 and by FR-5 one of the issues was automation of generation of proxy
certificates, so that users would not have to create them manually. Normally, they are produced
using voms-proxy-init command with Virtual Organization name provided with –voms options.
Locations of user private key, grid certificate and path where generated proxy certificate will be
stored, are specified using environment variables. It is impossible to produce proxy certificates
concurrently from the same process and it is also impossible to invoke commands that access
gLite data sources within a single process. Therefore, as already mentioned, a multi-process
application had to be created which executed Grid operations in separate processes. Moreover,
a supervising process will have to take care of file locations where certificates will be stored and
proper environment variables set for each new process spawned and each variable pointing to
valid user credentials, i.e. existing certificate and private key files.
Additionally, proper credentials must be provided when a Grid operation invocation occurs

– a grid certificate, private key and private key passphrase must be conveyed if operation is
the generation of a proxy certificate. On the contrary, as Grid operation is e.g. accessing LFC
catalogue or accessing a file, proxy certificate must be sent; when proxy is not present or is
expired, it should be generated and saved in DSR (FR-5).
In order to satisfy requirement NF-4, Transport Layer Security (TLS) or tunnelling may be

used. Nevertheless, an inherent feature of TLS is the necessity to manage server certificates.
Therefore, tunnelling was chosen as a solution providing communication encryption. Mech-
anism implemented to fulfill NF-5 requirement is planned to restrict UNIX file permissions

99

immediately after creation of a temporary file and deletion of the file when a server method
that is using it finishes.
Since integration with existing infrastructure is a key requirement (UI-13), instead of writing

a standalone application, one of the Virtual Laboratory user interfaces ought to be extended.
A portlet in Virtual Laboratory portal could satisfy this need but on the other hand, portal
is mostly indented for the final end-users, so presenting them with somewhat obscure options
would confuse rather than help them. Another option is to extend Experiment Planning Envir-
onment, which is intended for experiment developers who are acquainted, to a certain extent
with computer science. However, since they are often computational and not computer scient-
ists, any possible means of providing simiplicity and complicity should be pursued. Moreover,
integrating graphical interface of registry of LFC data sources into EPE will bring this interface
close to the environment where experimental code employing LFC data sources is produced,
making this user interface helpful when searching for existing LFC data sources, updating,
deleting or adding new ones during a development cycle. Additionally, existing DSR-plugin
that already manages existing data sources of various kinds, mostly relational databases and
sources accessible using WebDAV interface, is a most promising target of integration. Never-
theless, wizards for adding and updating the aforementioned data sources are quite monolithic
and therefore not easy to extend. Furthermore, they manage information, such as host name,
port, schema name, username and password, but these values are totally different for LFC data
sources. Therefore, alternatives for consideration are, rewriting these wizards from scratch
taking into account new data source type or creating a separate wizard with distinct invoca-
tion mechanism. The former is time consuming while the latter will compromise consistency.
Therefore, a hybrid approach is needed: to maintain invariable invocation mechanism while
amending monolithic design into a modular one, so that rewrite of already created wizards
will not be necessary. Apart from changes in user interface, many changes must be done to
database layer of DSR-plugin in order to sustain current capabilities of managing existing types
of data sources, since DSR schema need to be changed, as already indicated in earlier sections.
Additionally, new methods in database access layer must be added to supply functionalities
necessary to new LFC data source wizard.
With regard to documentation requirements, NF-6.1, NF-6.2, NF-6.4 and NF-6.5 will be

satisfied by respective chapters of dissertation, while NF-6.3 and NF-6.6 will be fulfilled both
by dissertation and by appropriate wiki pages on Virtual Laboratory website.
To summarize, figure 38 delineates conceptual view onto proposed design.

8.2 Organization of Design description

Subsequent chapter is organized by means of views57 and viewpoints as recommended by [114].
At first, design stakeholders and their concerns are identified. Each viewpoint specifies design

57The terms design concern, design element, design stakeholder, view and viewpoint were defined by [114].

100





























































  




  



 

 
  







Figure 38: Conceptual view onto proposed design of LFC DS

concerns being its topic, design elements that are defined or used by the viewpoint and a set
of conventions stating how design will be conveyed, including design language. Consequently,
design views address design concerns from a specified design viewpoint. Maier et al. [146] allude
to analogy of a view from civil engineering domain – buildings have several views: front, top,
side, electrical, plumbing, floor plans etc.

8.3 Identified stakeholders and design concerns

Design concerns are identified by DC-number strings. Tables 8 and 9 indicate design stake-
holders, design concerns and addressing viewpoints.

8.4 Design views

Design views are governed by apposite design viewpoints, each defined in relevant sections
of [114] as shown in table 10.

101

Identification Design concern Addressing view

DC-1 Composition and modular assembly of
systems in terms of sybsystems and
components

Composition

DC-2 Static structure, reuse of types and
implementations

Logical

DC-3 Interconnection, sharing, and para-
meterization

Dependency

DC-4 Persistent information Information
DC-5 Service definition, service access Interface
DC-6 Object communication and messaging Interaction

Table 8: Design concerns and views addressing them

Stakeholder Design concern

Developer who wants to modify or extend LFC DS all provided
Developer wanting to incorporate some of the reusable
components into their work

DC-1, DC-3, DC-4 and
DC-5

Developer adapting LFC DS to different environment DC-3 and DC-4

Table 9: Identified stakeholders and their design concerns

Viewpoint Specification

Composition [114, section 5.3]
Logical [114, section 5.4]
Dependency [114, section 5.5]
Information [114, section 5.6]
Interface [114, section 5.8]
Interaction [114, section 5.10]

Table 10: Design viewpoints specifications

102

8.4.1 Composition

LFC DS solution (figure 39) is composed of DACConnector (figure 43), which is a GSEngine
component that enables data access and management from GScript code, EPE DSR Plugin
(figures 42, 55, 56, 57 and 58) – an EPE plugin that allows for browsing and registration of
data sources and user Grid credentials, Data Source Registry (DSR) (figure 54) which stores
information on data sources and credentials, and LFCDS Server (figure 40), which is a gateway
enabling access to EGEE/WLCG Grid.
Moreover, DACConnector includes a reference to LFCDS library (figure 41) which connects

to LFCDS server, a reference to LFCDS connector represented by JRuby class LFCDataSource
(figure 49), which is a class dedicated to managing access to LFC data sources and usage of Grid
credentials, and to DSRConnectivity instance, that encapsulates methods for communicating
with DSR. Both DACConnector and DSRConnectivity were extended with methods specific to
LFC DS.
In a similar instance, EPE DSR Plugin exploits its own DSRConnectivity module also

dedicated to communications with DSR; EPE DSRConnectivity was expanded with a richer
set of methods than DAC2 DSRConnectivity. In particular, DAC2 DSRConnectivity is mostly
responsible for reading data – with one exception being updating proxy certificates. On the
other hand, EPE DSRConnectivity must handle not only reading data, but also data updates
and registering new data sources and credentials. A distinct part of EPE DSR Plugin is LFCDS
Form – a dedicated form for registering LFC data sources and uploading Grid credentials.
As far as DSR is concerned, its additional constituent is LFCDS Schema, i.e. a schema that

is dedicated to storing information regarding Grid data sources and credentials.
Figure 39 depicts the aforementioned components with relationships of inclusion and usage.

103













































































 





















Figure 39: Composition of LFC DS system. DACConnector, DAC2 DSRConnectivity, DSR
EPE Plugin, DSR Plugin DSRConnectivity and DSR are components that existed before cre-
ation of LFC DS

104

8.4.2 Logical

This clause presents the division of components into classes and then depicts their internal
subdivision into methods. Firstly, class diagram on figure 40 shows the structure of LFCDS
server. As illustration suggests, LfcDsServer class (also see figure 45) plays the main role in the
operation of LFCDS server. LfcDsServer is a consumer of services provided by other entities.
In particular, it uses LfcDsProperties for reading values of properties stored in standard Java
properties files. In the case of LFCDS server the properties file name is server.properties.
However, in current implementation server administrator, who is the only person who will
modify it, provides its values by substituting appropriate values in lfcds.properties file read
by Maven [166], which propagates these changes to two configuration files: server.properties
and test.properties saving administrator the encumbrance of keeping both files up to date,
since many properties they use are common.
On the other hand, DacLfcCommands (see figure 44) class is a class extending LfcCommands

type from ChemPo project. LfcCommands, not presented on the drawing, supplies wrappers with
specific Grid operations, such as downloading a file or sending a file to storage element and
registering same in LFC catalogue. LfcCommands class achieves it by using LfcExecutor class
from ChemPo project, that executes each command in a separate Java Virtual Machine (JVM)
with specific UNIX environment (see figures 61 and 62). In addition to extending LfcCommands,
DacLfcCommands class provides two methods that were not provided by LfcCommands, in partic-
ular delete, getSize and exists.

LfcDsServer implements ILfcCommands interface (see figure 44) which specifies a set of
operations that LFCDS server provides. Apart from data access and management commands,
ILfcCommands is used for generation of proxy certificates and retrieving certificate attributes.
These attributes are stored in UserProxyDetails object and sent to calling client. StoreFileBean,
PathInputBean and LongOutputBean are Java beans that transfer specific data when sent by
LfcExecutor to DacLfcCommands, whereas LfcCommonParametersBean is used to encapsulate
common data that may be useful in most data access and management Grid commands; namely
the user proxy certificate, which is used by Grid software for authentication and authorization
purposes, LFC host, indicating LCG File Catalogue server to be contacted, Site BDII (see sec-
tion 3.6), which is a server that informs Grid File Access Library (GFAL)58 about particulars
of storage elements (see figure 29), Virtual Organization Name and path which is a common
argument of data management commands. Furthermore, LfcDsItem class envelops information
about items retrieved from LFC directory, their path and whether they are files or directories
– other information, such as file permissions is omitted as it is required by FR-1.8.
An important component in LFCDS server structure is LfcDsOutputStream, which was

developed as a part of larger data streaming scheme. Its role is to remotely invoke a LFCDS
server method that sends file to Grid and deletes temporary file on server when streaming

58GFAL works underneath software exploited by LFCDS server

105

file to LFCDS server finishes. If it is not possible, it throws an LfcDsException from client
library, which in turn passes it to LFCDS connector notifying user about the problem. If
LfcDsOutputStream had not been used and default callback of RMIIO library had been utilized,
a message about the problem would have not been conveyed – when callback executes, there
is no way of returning information. LfcDsOutputStream is utilized on client side; however, it is
present in the server class hierarchy, because it is one of the contents of StoreFileBean sent to
client library when it invokes storeFileInit method of the server (see figure 62 that addresses
client↔server interaction during writing file to Grid).

LfcDsException is not only raised when sending a file to Grid fails, but it is instantiated
whenever a problem with input data occurs that was not detected by LFCDS client or a server
side method which encounters difficulties performing requested action. The aforementioned
exception is also raised by LfcDsClient, a principal class of LFC client library, if it meets some
impediments connecting LFCDS server or it detects a mistake in user’s request. As can be
seen in figure 41, ILfcCommands interface is used by both LfcDsOutputStream (the connection
with ILfcCommands has not been shown on figure 40) and LfcDsClient. For these two classes
ILfcCommands defines methods which can be remotely invoked on LfcDsServer. LFCDS client
library does not define any additional classes. However, there is an enormous difference between
LFCDS client and LFCDS server, when it relates to dependencies required (compare figures 50
and 52 illustrating dependencies of these two components in terms of Maven artifacts). Because
of LFCDS lightweight library, it can be incorporated into software that could benefit from
a communication with LFCDS server – LFCDS solution is not limited to GSEngine and its
DAC2 data access layer. In fact, it can be used by any Java application.
Figure 42 depicts EPE DSR-Plugin classes that play a role in the operation of LFC DS

solution. LfcDsEditForm is a graphical user interface form created using Visual Editor [174] user
interface builder with several other functionalities added manually. These include validation
of inputs, dynamically disabling and enabling buttons, changing group and button captions
depending on the context in which the form was invoked, i.e. whether it was a request for
edition of existing LFC data source or addition of a new data source of this type and naturally,
application logic. Initially, the form was invoked with separate buttons and menu commands.
However, Piotr Nowakowski, main developer of EPE DSR-Plugin, replaced previous design
which composed of one wizard into “two-form” approach, i.e. when user request registering
a new file (figure 57) or edition of existing one, the SelectSourceTypeDialog form enabling a user
to choose a data source type (structured or unstructured) and technology appears (figure 57).
This form, in turn, invokes apposite form responsible for managing registration of concrete data
sources and credentials. Thus, he enabled inclusion of other data source wizards in an integrated
way and only one button and menu item suffices to invoke registration dialog of any type of data
source that emerges. PasswordDialog pops up when user clicks [Set] button near the password
label (it would be visible on screenshots if Grid credentials were not loaded). A reference to

106

DSRConnectivity is passed by SelectSourceTypeDialog to LfcDsEditForm, which then uses it for
searching, updating, deleting and adding new entries of LFC data sources, Grid credentials and
server connections. Methods added to EPE DSR Plugin DSRConnectivity in order to enable
these operations are delineated in figure 48. On the other hand, ShibConnectivity plays a role
in LFC DS operation by providing a user handle to LfcDsEditForm, which enables identification
of the user in context of DSR.
DAC2 (see figure 43), a data access layer of Virtual Laboratory is logically decomposed into

several classes, each yielding autonomous functionalities – in particular, similar to EPE DSR Plu-
gin, it delegates connectivity responsibilities to DSRConnectivity (figure 49) and ShibConnectiv-
ity or ChempoConnectivity classes, this time written in JRuby language [86]. ChempoConnectivity
was added as part of the dissertation to enable access to DAC2 data access layer within ChemPo
custom built GSEngine. Methods provided by both ChempoConnectivity and ShibConnectivity
are as follows: getParams, getRawHandle and getUserHandle. While getParams is the necessary
initialization of ShibConnectivity, in ChempoConnectivity that method does nothing – the
common interface was left untouched in order to decrease code changes necessary, so that
getParams method is invoked regardless of security provider. A careful reader may discern sim-
ilarity between DACConnector methods shown in figure 49 and those specified in table 6. Indeed,
this is the same set of methods – DACConnector is the central class of DAC2, which provides
GScript developers interface for data access. As part of the thesis project, DACConnector inter-
face was significantly expanded. In particular, all methods and aliases specified for LFC DS
component in table 6, with the exception of initialize, getFile, storeFile and deleteFile
(which remained for compatibility) were added. Earlier, when the majority of data sources were
relational, most operations were performed using executeQuery and executeUpdate methods,
and therefore, such a rich API had not been mandatory. However, with the introduction of
LFC connector operations, such as directory creation, deletion of directories and files (achieved
using single delete method), together with methods to be used for data streaming, such a need
arose and DACConnector API was extended. In addition, several alias methods with Ruby style
notation, such as exist?, file? and zero? with a question mark at the end which indicates that
a method returns logical value or methods with an underscore instead of usual Java camel-
CaseNotation. This makes the API more Ruby-like. However, a change that made LFC DS
method invocations most Ruby-oriented was the introduction of block argument into openFile
method. In consequence, DACConnector#open method gives the impression of being standard
Ruby open invocation executed on a Ruby File. Moreover, since DACConnector#open method
returns a subclass of Ruby IO converted from Java InputStream or OutputStream depends
upon whether a file was opened for reading or writing. Therefore, a complete impression of
standard Ruby IO is given; thus shortening the learning curve significantly for developers or
computational scientists already knowing Ruby.

SourceParameters, another class of DAC2, is a bean containing data that is passed by

107

DACConnector to connector objects. SourceParameters methods relevant to LFC DS have been
depicted in figure 49. On the other hand, for DAC2 DSRConnectivity all methods have been
shown, since only getCertData, updateProxy and getStaticCertData have been appended. On
the other hand, both EPE DSR Plugin and DAC2 DSRConnectivity class method set required
not only augmentation, but also refactoring. This is the result of changing DSR structure.
However, such change was mandatory in order to enable registration of LFC data source, which
had totally dissimilar information needs, a fact that can be observed by analyzing the current
DSR schema illustrated on figure 54. Finally, LFCDataSource supplies concrete implementation
of LFC DS connector. A feature built into LFCDataSource component is a mechanism for
checking whether a certificate is valid – it uses LFC DS server getProxyDetails method for
this purpose. If a proxy Grid certificate is present in DSR and valid (it is assumed no longer
valid, if it has less than an hour to expire), the LFCDataSource utilizes it for Grid operations.
Otherwise, a new proxy is generated and saved in DSR using DACConnector#generateProxy
method, as shown in figure 59.
With regard to internal logical organization of each of the aforementioned design entit-

ies, in terms of methods they provide and private variables they contain, the simplest organ-
ization is of bean files: StoreFileBean, LongOutputBean, PathInputBean, UserProxyDetails,
LfcCommonParametersBean and SourceParameters – they contain a single private field with ac-
companying get and set methods for these variables. On the other hand, LfcDsOutputStream
implements methods defined by itsOutputStream superclass. DacLfcCommands is a class, whose
functionality is mostly provided by a class higher in inheritance hierarchy – LfcCommands. How-
ever, as it was mentioned, three specific methods are implemented in it – as with LfcCommands,
LfcExecutor from ChemPo project has been utilized to achieve the functionality of execut-
ing commands in separate JVM. LfcDsException is a standard exception class extending Java
Exception. In contrast to these Java classes, LfcDsServer has a more complex structure. It was
designed in such a way, that it should not impose any threading problems. In particular, the
only variable its methods share, is the log used for logging its functions (see NF-7). Sev-
eral private auxiliary static methods: getTempProxyFile, parametersBeanToLfcConfiguration,
createTempDirectory, cleanAfterOperations and restrictFilePermission serve other meth-
ods by providing them with common functionality. Because log is the only object-level variable,
LfcDsServer may be safely shared by many clients without worrying about concurrency prob-
lems. The methods exposed to clients are those that were specified by ILfcCommands interface.
Each of them has its own logic, but a common scheme of operation is creating DacLfcCommands
instance and invoking one of its methods, catching exceptions, logging them and wrapping
by LfcDsException. Often temporary files are stored during execution of these methods with
createTempDirectory, restrictFilePermissions and cleanAfterOperations static methods be-
ing used. Most often, temporary files and directories are deleted when methods finish (regard-
less of exceptions that occur). However, with getFile, storeFileInit and StoreFileFinish,

108

i.e. methods that incorporate streaming; the responsibility to delete temporary file is transfered
to callback – such a method was used for getFilemethod, or a Java special purpose OutputStream,
namely LfcDsOutputStream, whose close method causes associated temporary file to be sent to
Grid; subsequently directory and files that are no longer required are deleted. The main method
of LfcDsServer configures Cajo library class Remote with endpoints specified in server.properties
file. Later on, the main method binds a newly created instance of LfcDsServer so that its
methods can be invoked by remote clients. The parametersBeanToLfcConfiguration is a static
method executed by many other LfcDsServer methods – it translates an LFC DS bean with
configuration: LfcCommonParameters into ChemPo LfcCommands valid LfcConfiguration. One
of its roles is to create temporary files with proxy certificates, that were passed to server as byte
arrays and store filenames in LfcConfiguration, which can be used by ChemPo LFC command
wrappers.
As regards LfcDsClient, its main responsibility is to abstract server communication. A long

constructor provides LfcDsClient with information on server endpoints and specific data access
configuration, that will not have to be provided with each method invocation. During its
initialization carried out by LfcDsClient constructor, it creates a TransparentItemProxy item
from Cajo framework that enables communication with LFC DS server. Subsequent method
invocations utilize both LfcDsClient data stored in its private field and parameters supplied by
user. It is noteworthy that client library automatically translates the path provided by calling
object (e.g. user’s script) into valid LFC path, i.e. when user specifies some_path as path, then
LfcDsClient adds /grid/vo_name/ to this path. If user supplied path begins with a slash - ‘/’,
the character is removed.
The internal structure of LfcDsEditForm is quite simple. It contains many user-interface

private building methods, such as createCredentialGroup, createServersGroup or
createComboConnList, some utility methods, such as isHandleUnique, isDataSourceNameUnique,
validateConnData, connExists, but the main logic is contained in button callback methods,
which are created during building user interface and therefore, they are not visible on the
diagram. Public methods of LfcDsEditForm class are intended for communication with calling
code, e.g. the showDialog method causes LfcDsEditForm dialog to be created and displayed.
The method returns 0 on success, and other values otherwise – it is a convention used by other
wizards in DSR EPE Plugin.
Both EPE and DAC2 DSRConnectivity are classes that were extended to satisfy need of

LFC DS and new DSR schema. DSRConnectivity in either case is a class encapsulating SQL
code in several methods, each dedicated to one purpose. Private methods of this class are
utilities used to make other methods’ bodies shorter by reusing some functionality.
Hopefully, this clause gave the reader deep insight into logical decomposition of LFC DS

into components→ classes→ and methods and how they are reused among the design entities.
The next clause will present how LFC DS design entities depend on each other and on external

109

resources, mainly software libraries.

!"#$%#&'((")*+ ,$%#&'((")*+

$%#!+,-.(

$%#!+/0-10-2-3."(

$%#!+43'1.3-5.+

$%#!+2.36.3

7+.343'89!.-"5:+

$%#!+;8#.1-5')

$%#&'((')4"3"(.-.3+<.")$')=/0-10-<.") 4"->,)10-<.") 2-'3.?5:.<.")

Figure 40: Logical view onto LFCDS server component



 















Figure 41: Logical view onto LFCDS client library

110











Figure 42: Class diagram DSR EPE Plugin LFCDS Form. Classes not directly connected to
operation of LFC DS were excluded from diagram.

















  





Figure 43: DAC2 class diagram after integration with LFC DS. Classes not directly related to
LFC DS are omitted.

111






































































































Figure 44: Class diagrams: LfcDsProperties, LongOutputBean, PathInputBean, LfcDsItem,
StoreFileBean, LfcDsOutputStream, UserProxyDetails, DacLfcCommands and ILfcCommands.

112


















































Figure 45: Class diagrams: LfcCommonParametersBean, LfcDsException and LfcDsServer.

113




























Figure 46: Class diagram: LfcDsClient

114























































Figure 47: Class diagram: LfcDsEditForm and PasswordDialog. For LfcDsEditForm private
attributes were omitted for brevity.

115










































































































































































































































































































































































































































































































































































































































































































































































































































































Fi
gu
re
48
:
C
la
ss
di
ag
ra
m
:
D
SR
Pl
ug
in
D
SR
C
on
ne
ct
iv
ity
–
pr
iv
at
e
at
tr
ib
ut
es
we
re
om
itt
ed
fo
r
br
ev
ity
.
In
ad
di
tio
n,
on
ly
ad
de
d
m
et
ho
ds
ar
e

sh
ow
n;
m
od
ifi
ed
m
et
ho
ds
or
th
os
e
th
at
ex
ist
ed
pr
ev
io
us
ly
ar
e
ex
cl
ud
ed
.

116
































































































Figure 49: Class diagrams: DACConnector, DACConnector, SourceParameters, and DAC2
DSRConnectivity

117

8.4.3 Dependency

Figure 51 illustrates dependencies among design entities and services they provide to each
other. A component diagram notation [165] has been chosen. Going from the left the reader
may notice two communication libraries: Cajo and RMIIO both being RMI-based frameworks.
During prototyping phase, Cajo library was chosen for overall communication, since it was
discovered that using this library it is relatively simple to have communicating applications run
behind firewalls. RMIIO is used for the same purpose, i.e. in order to facilitate communication
through firewalls. Note, that on figures 61 and 62 there are no server→client callbacks – all
communication is initiated by client; even when server sends data to client (figure 61), this
functionality is accomplished by pulling data by client, not by sending it by server. Another
rationale for using RMIIO is that it provides fault tolerant streaming, a valuable feature which
RMIIO achieves by multiple retry requests in case of communication errors. Both libraries are
Open Source, which makes them suitable for integration with LFC DS project.
An interesting fact shown in figure 51 is that ShibConnectivity instance connects to ShibRPC

while ChempoConnectivity – an alternative implementation of security mechanism does not com-
municate with any ChemPo specific security mechanism. This is because ChempoConnectivity
uses GS_USER_ID which holds a unique user identifier that is used to distinguish users.
The main interest of figure 51 are interfaces that each component requires and provides and

how the fulfillment of these needs is attained by interconnecting components.
On the other hand, figures 50, 52 and 53 represent dependency graphs of components

in terms of requisite Maven artifacts from Cyfronet Maven repository and their scope (com-
pilation or test). EPE DSR Plugin has been omitted, since it does not use Maven for de-
pendency management. However, it also has dependencies, which include the following plu-
gins: cyfronet.gridspace.api – version 0.4.0, cyfronet.gridspace.gisde.auth – version 1.1.3,
cyfronet.gridspace.voconfig.plugin.preferences – version 0.6.0, org.eclipse.ui, and
org.eclipse.core.runtime.
In particular, artifacts related to JSAGA, CoG and VOMS Java API shown in figure 52

are utilized for manipulating Grid certificates, while LFC API from ChemPo project wraps
SEE-Grid Java File Management library providing means for accessing Grid data sources and
managing entries in LFC Catalogue.
DAC2 dependencies portrayed in figure 53 are mostly those related to accessing various

types of data sources, including Virtual Laboratory Data Access Service (DAS), eXist Native
XML Database, MySQL, HSQLDB, PostgreSQL. Dependencies added by LFC DS client are
also apparent. However, they are not many, as can also be seen on figure 50 – small number of
dependencies incorporated into GSEngine is required 4-th constraint listed in section 6.5. None
of artifacts required by LFC DS client library is platform dependent. Thus, requirement NF-9
has been met. Furthermore, by using Maven for compilation and dependencies management in 3
of 4 LFC DS collaborating components: DAC2, LFC DS server and LFC DS client requirement

118

NF-8 is partly met. Taking into consideration the fact that Eclipse, which is a platform of
EPE DSR-Plugin, has its own mechanism of managing dependencies, it can be said, that the
requirement NF-8 has been fulfilled in its entirety.






















Figure 50: LFCDS client library – dependency graph

119
































































































































































































































































































































































































































































































































































































































































































































































































































































Fi
gu
re
51
:
C
om
po
ne
nt
di
ag
ra
m
de
pi
ct
in
g
de
pe
nd
en
ci
es
be
tw
ee
n
sy
st
em
co
m
po
ne
nt
s

120
























































































































































































































































































 


































































































Fi
gu
re
52
:
LF
C
D
S
se
rv
er
–
de
pe
nd
en
cy
gr
ap
h

121















































































































































































































































































































































































































































Fi
gu
re
53
:
D
A
C
2
–
de
pe
nd
en
cy
gr
ap
h

122

8.4.4 Information

This clause contains specification of data that is stored for the purpose of LFC DS operation.
In particular, figure 54 delineates Data Source Registry database schema. Before introduction
of LFC DS, DataSources table contained all the information needed by data sources. During
adaptation of DSR for incorporation of new data source type, the DataSources table has been
split into RelationalDataSource and LFCDataSources which incorporated some reorganization
of primary and foreign key relationship. However, data movement from earlier to newer schema
has been successful. Moreover, in order to be consistent with naming, DataSourceCredentials
table has been renamed to RelationalDataSourceCredentials.
Furthermore, LFCDSConnections table has been added which maintains information about

various database servers. Additionally, LFCCertData stores user Grid credentials.



 









 







 





 


 


 





 






 



 








 
 







 





Figure 54: DSR – database schema

123

8.4.5 Interface

Figure 55 illustrates a user interface that enables registration of LFC data sources. It is invoked
by DSR-EPE Plugin, when a user requests creation or edition of LFC data source. Explanation
of meaning of “LFC data source parameters” fields, namely “LCG File Catalogue”, “Berkeley
Database Information Index” and ”Storage element” has been provided in 3.6. “Your creden-
tials” group allows for uploading and removing grid user credentials from DSR together with
specifying whether they are available to other authenticated users. LFC DS Server connection
is a connection to LFC DS Server running somewhere on gLite UI. Normally, user chooses the
server to use from a list. If there is no server he or she intends to use, they can add a new
entry. LFC DS Server connection information is usually conveyed to user by administrator who
installed LFC DS. Figure 56 demonstrates validation mechanisms incorporated into the form,
figure 57 illustrates DSR EPE Plugin view onto data sources registered in Virtual Laboratory.
Finally, 58 presents data source type selection form that is invoked when user requests adding
a new data source. User interface forms shown in 57 and 58 were created by Piotr Nowakowski.
With regard to software interfaces, they have already been specified in 7.3.

Figure 55: User interface for registering LFC data sources

124

Figure 56: Demonstration of DSR EPE Plugin LFC DS Edit Form validation mechanisms

125

Figure 57: Tree view onto data sources registered in Virtual Laboratory

Figure 58: Data source selection form

126

8.4.6 Interaction

Interaction is one of the more interesting aspects of LFC DS. Before performing data access
and management operations, LFC DS connector must initialize with Grid credentials. If a Grid
proxy certificate is present in DSR, it is used for LFC and data access operations. If it is not
it is generated and stored in DSR (see figure 59).
Subsequently, a user may execute commands listed in table 6. Figure 60 depicts interaction

of LFC DS components when a command does not require streaming. On the other hand, when
executing one of the open methods, the interaction scheme is different. Figure 61 presents sim-
plified sequence diagram of getFile method execution, while figure 62 addresses the case of send-
ing a file to Grid. All classes, with the exception of RemoteOutputStream, RemoteInputStream,
and LfcWorker have been discussed in Logical design view. RemoteOutputStream
and RemoteInputStream are classes of RMIIO library providing streaming functionalities while
LfcWorker is a ChemPo class that effectuates actual Grid data access code that it receives from
LfcCommands that communicates with it via a socket.

 



 
































Figure 59: Initialization of LFC DS connector – sequence diagram

127























































































































































































































































































































Fi
gu
re
60
:
A
sa
m
pl
e
LF
C
co
m
m
an
d
–
in
th
is
ca
se
,l

ist
Fi

les
co
m
m
an
d

128















































































































































































































































































































 

















































































































Fi
gu
re
61
:
R
ea
di
ng
fil
e
fro
m
G
rid
–
se
qu
en
ce
di
ag
ra
m

129











































































































































































































































































































































































 















































Fi
gu
re
62
:
Se
nd
in
g
fil
e
to
G
rid
–
se
qu
en
ce
di
ag
ra
m

130

9 Verification and validation
Verification and validation has been performed both using client library and using GScript
client code. GScript client was tested both as a standalone library and in conjunction with
GSEngine, i.e. by executing code using GSEngine interpreter. LFCDS server, LFCDS connector
and client Java library were run on ChemPo server (chempo.grid.cyfronet.pl). A test over
WAN connection has also been performed with the following configuration: LFCDS server
running on EGEE CESNET gLite UI in Czech Republic (host: ui1.egee.cesnet.cz), tunneling
commands were executed on GREDIA server (gredia.cyfronet.pl) and GScript client was run
on ChemPo machine.

9.1 Functional tests

Approach Functional tests with high granularity were possible only when testing LFC DS
client Java library using TestNG testing framework, which enables specifying test dependencies.
In the case of LFC connector it was not possible. Therefore, one large test was executed instead.
Listing included below provides code used for testing LFC connector interaction with LFC DS
server.

LFC connector functional test
1 # Author: Marek Pomocka
2
3 require ’cyfronet/gridspace/dac2/dac_connector.rb’
4
5 ###
6 ### This is a test file for LFC Data Source connector.
7 ###
8
9 def LFCDSTest(ds)

10 # File names can start with or without a slash. Both are mapped to /grid/vo_name/path
11 puts ”delete ’mpomocka/test_lfcds’ = #{ds.delete(’mpomocka/test_lfcds’)}”
12 #puts ”createDirectory ’/’,’mpomocka’ = #{ds.createDirectory(’/’,’mpomocka’)}”
13 puts ”createDirectory(’mpomocka/test_lfcds’) finished ”+(ds.createDirectory(”mpomocka/

test_lfcds”)==true ? ”successfully”:”unsuccessfully”)
14 puts ”directory? ’/mpomocka/test_lfcds’ = #{ds.directory? ”/mpomocka/test_lfcds”}”
15 puts ”createDirectory(’/mpomocka/test_lfcds’,’test_dir) finished ”+(ds.createDirectory(”/

mpomocka/test_lfcds”,”test_dir”)==true ? ”successfully”:”unsuccessfully”)
16 puts ”directory? ’/mpomocka/test_lfcds’ = #{ds.directory? ”/mpomocka/test_lfcds”}”
17 puts ”file? ’/mpomocka/test_lfcds/test_file1.txt’ = #{ds.file? ”/mpomocka/test_lfcds/

test_file1.txt”}”
18 puts ”storeFile ’mpomocka/test_lfcds/test_file1.txt’ command finished ”+(ds.storeFile(”

TEST file 1 cOnTeNtS”.to_java_bytes, ”mpomocka/test_lfcds/test_file1.txt”)==true ? ”
successfully”:”unsuccessfully”)

19 puts ”file? ’/mpomocka/test_lfcds/test_file1.txt’ = #{ds.file? ”/mpomocka/test_lfcds/
test_file1.txt”}”

20 puts ”file? ’/mpomocka/test_lfcds/test_file2.txt’ = #{ds.file? ”/mpomocka/test_lfcds/
test_file2.txt”}”

131

21 f = ds.open(”/mpomocka/test_lfcds/test_file2.txt”,:write)
22 f.puts ”First line of the file file 2”
23 f.puts ”Second line of the file file 2”
24 f.close
25 ds.open(”/mpomocka/test_lfcds/test_file3.txt”,:w) do |f|
26 f.puts ”Another way to write to a file”
27 f.puts ”Note that close is not necessary”
28 end
29 puts ”exist? ’/mpomocka/test_lfcds/test_file2.txt’ = #{ds.exist? ”/mpomocka/test_lfcds/

test_file2.txt”}”
30 puts ”getFile ’/mpomocka/test_lfcds/test_file1.txt’ = #{String.from_java_bytes ds.getFile(

”mpomocka/test_lfcds/test_file1.txt”)}”
31 puts ”test_file2.txt contents:”
32 f = ds.open(”/mpomocka/test_lfcds/test_file2.txt”, :read)
33 f.each {|line| puts line}
34 f.close
35 ds.open(”/mpomocka/test_lfcds/test_file3.txt”, ”r”) do |file|
36 file.each {|line| puts line}
37 end
38 puts ”getSize /mpomocka/test_lfcds/test_file1.txt ”+ds.getSize(”mpomocka/test_lfcds/

test_file1.txt”).to_s
39 puts ”getSize /mpomocka/test_lfcds/test_file2.txt ”+ds.getSize(”mpomocka/test_lfcds/

test_file2.txt”).to_s
40 l=ds.listFiles(”/mpomocka/test_lfcds/”)
41 l.each do |item|
42 puts item.get_name + ” is a ” + if item.is_directory then ”directory” else ”file” end
43 end
44 puts ”delete command executed on a file finished ”+(ds.delete(”mpomocka/test_lfcds/

test_file2.txt”)?”successfully”:”unsuccessfully”)
45 puts ”delete command executed on a directory finished ”+(ds.delete(”mpomocka/test_lfcds”)?

”successfully”:”unsuccessfully”)
46 end
47
48 begin
49 # 1 argument: handle - obvious
50 # 2 arguments: handle and password to the private key - useful if a user does not want to
51 # keep password in the DSR
52 # 2 arguments: handle and proxy - if someone has not provided their credentials
53 # in the DSR, but want to use the data source.
54 # Note: these two method above are distinguished by the length of the second argument
55 # (if more than 300 bytes, it is assumed to be a proxy)
56 # 4 arguments: handle, private key, grid certificate and password to the private key
57 # - useful if one wants to use the LFC data source, but not registered their
58 # credentials in the DSR _and_ has not generated the proxy - proxy is being saved
59 # in the DSR if the user has an entry in the database
60
61 ### One argument constructor - everything is in the DSR
62 ds = DACConnector.new(”lfcds-test”);
63 puts ”Successfully instantiated LFC data source (1 arg)”
64 LFCDSTest(ds)
65
66 ## 2 argument constructor - handle and password to the private key
67 ds = DACConnector.new(”lfcds-test”,”your_password”)

132

68 puts ”Successfully instantiated LFC data source (2 args)”
69 LFCDSTest(ds)
70
71 ## 2 argument constructor - handle and proxy
72 ds = DACConnector.new(”lfcds-test”,IO.read(”C:/Users/Marek/Documents/cert/x509up_u506”))
73 puts ”Successfully instantiated LFC data source (2 args - 2nd one a proxy)”
74 LFCDSTest(ds)
75
76 ## 4 argument constructor - handle, private key, grid certificate and password to the

private key
77 ds = DACConnector.new(”lfcds-test”,IO.read(”C:/Users/Marek/Documents/cert/userkey.pem”),
78 IO.read(”C:/Users/Marek/Documents/cert/usercert.pem”), # change to file names stored in

your computer
79 ”your_password”)
80 puts ”Successfully instantiated LFC data source (4 args)”
81 LFCDSTest(ds)
82 end

Output of this script is as follows (for brevity product of lines 66-81 has been omitted):

Successfully instantiated LFC data source (1 arg)
delete ’mpomocka/test_lfcds’ = false
createDirectory(’mpomocka/test_lfcds’) finished successfully
directory? ’/mpomocka/test_lfcds’ = true
createDirectory(’/mpomocka/test_lfcds’,’test_dir) finished successfully
directory? ’/mpomocka/test_lfcds’ = true
file? ’/mpomocka/test_lfcds/test_file1.txt’ = false
storeFile ’mpomocka/test_lfcds/test_file1.txt’ command finished successfully
file? ’/mpomocka/test_lfcds/test_file1.txt’ = true
file? ’/mpomocka/test_lfcds/test_file2.txt’ = false
exist? ’/mpomocka/test_lfcds/test_file2.txt’ = true
getFile ’/mpomocka/test_lfcds/test_file1.txt’ = TEST file 1 cOnTeNtS
test_file2.txt contents:
First line of the file file 2
Second line of the file file 2
Another way to write to a file
Note that close is not necessary
getSize /mpomocka/test_lfcds/test_file1.txt 20
getSize /mpomocka/test_lfcds/test_file2.txt 61
test_dir is a directory
test_file1.txt is a file
test_file2.txt is a file
test_file3.txt is a file
delete command executed on a file finished successfully
delete command executed on a directory finished successfully

133

On the other hand, the subsequent listing includes TestNG test case that was utilized for
functional test of LFC DS client interacting with the server.

Functional test of LFC DS client library interacting with LFC DS server
1 package cyfronet.gridspace.dac2.lfcds;
2
3 import java.io.ByteArrayOutputStream;
4 import java.io.File;
5 import java.io.FileInputStream;
6 import java.util.List;
7 import org.apache.log4j.Logger;
8
9 import cyfronet.gridspace.dac2.lfcds.client.LfcDsClient;

10 import cyfronet.gridspace.dac2.lfcds.exceptions.LfcDsException;
11 import org.testng.annotations.*;
12
13 /**
14 * @author Marek Pomocka
15 *
16 */
17 public class LfcDsServerTest {
18 private static final Logger log = Logger.getLogger(LfcDsServerTest.class);
19 private static final String USER_CERT = TestProperties.getInstance().getProperty(”

user.cert”);
20 private static final String USER_KEY = TestProperties.getInstance().getProperty(”

user.key”);
21 private static final String CERT_PASSWORD = TestProperties.getInstance().getProperty

(”cert.password”);
22 private static final String USER_DIR = TestProperties.getInstance().getProperty(”

user.directory”);
23 private static final String TEST_DIR = TestProperties.getInstance().getProperty(”

test.directory”);
24 private static final String TEST_PATH = USER_DIR+”/”+TEST_DIR;
25 private static final String TEST_FILE_CONTENTS = ”TEST file contents”;
26 static LfcDsClient cl;
27
28 private ByteArrayOutputStream certBytes;
29 private ByteArrayOutputStream keyBytes;
30
31 @BeforeSuite
32 void setUp() throws Exception {
33 FileInputStream certFile=new FileInputStream(new File(USER_CERT));
34 FileInputStream keyFile=new FileInputStream(new File(USER_KEY));
35 certBytes=new ByteArrayOutputStream();
36 keyBytes=new ByteArrayOutputStream();
37 LfcDsClient.copyLarge(certFile,certBytes);
38 LfcDsClient.copyLarge(keyFile,keyBytes);
39 certFile.close();
40 keyFile.close();
41 }
42
43 @Test

134

44 public void testServerConnection() throws LfcDsException {
45 log.info(”Testing server connection”);
46 log.info(”Connection parameters:”);
47 log.info(” user.host = ”+TestProperties.getInstance().getProperty(”client.

host”));
48 log.info(” user.port = ”+TestProperties.getInstance().getProperty(”client.

port”));
49 cl = new LfcDsClient(”//”+TestProperties.getInstance().getProperty(”client.

host”)+”:”+
50 TestProperties.getInstance().getProperty(”client.port”)+”/

LfcDsServer”,
51 TestProperties.getInstance().getProperty(”streaming.port”),
52 TestProperties.getInstance().getProperty(”user.vo”),
53 TestProperties.getInstance().getProperty(”lfc.host”),
54 TestProperties.getInstance().getProperty(”sbdii.host”),
55 TestProperties.getInstance().getProperty(”se.url”),
56 keyBytes.toByteArray(), certBytes.toByteArray(), null);
57 // First method to try whether connection works.
58 // Furthermore, it deletes earlier test artifacts if there are any
59 log.info(”Trying to remove earlier test directory (if exists)”);
60 log.info(”Directory ” +(cl.delete(TEST_PATH)?””:”not”)+” removed”);
61 log.info(”Server connection working”);
62 }
63 @Test (dependsOnMethods={”testServerConnection”})
64 public void testProxyGeneration() throws LfcDsException {
65 log.info(”Testing proxy generation”);
66 assert cl.checkProxyValidity() == false;
67 cl.generateProxy(CERT_PASSWORD);
68 assert cl.checkProxyValidity() == true;
69 log.info(”Proxy generation passed”);
70 }
71 @Test (dependsOnMethods={”testProxyGeneration”})
72 public void testDirectoryExists() throws LfcDsException {
73 log.info(”Testing ’directoryExists’ method”);
74 assert cl.directoryExists(USER_DIR) == true;
75 assert cl.directoryExists(”asojdfioasjfrpFASKFAJSLDFJA/FASIDFJAS324234”) ==

false;
76 log.info(”’directoryExists’ method test passed”);
77 }
78 @Test (dependsOnMethods={”testProxyGeneration”})
79 public void testExists1() throws LfcDsException {
80 log.info(”Testing method ’exists’ -- test 1”);
81 assert cl.exists(USER_DIR) == true;
82 assert cl.exists(”asojdfioasjfrpFASKFAJSLDFJA/FASIDFJAS324234”) == false;
83 log.info(”’exists’ method test 1 passed”);
84 }
85 @Test (dependsOnMethods={”testDirectoryExists”})
86 public void testCreateDirectory() throws LfcDsException {
87 log.info(”Testing directory creation”);
88 assert cl.createDirectory(USER_DIR, TEST_DIR) == true;
89 assert cl.createDirectory(USER_DIR, TEST_DIR) == false;
90 assert cl.directoryExists(TEST_PATH) == true;
91 log.info(”Directory creation test passed”);

135

92 }
93 @Test (dependsOnMethods={”testCreateDirectory”,”testExists1”})
94 public void testStoreFile() throws LfcDsException {
95 log.info(”Testing file creation”);
96 assert cl.storeFile(TEST_PATH, ”test_file1.txt”, TEST_FILE_CONTENTS.getBytes

()) == true;
97 assert cl.directoryExists(TEST_PATH+”/”+”test_file1.txt”) == false;
98 assert cl.exists(TEST_PATH+”/”+”test_file1.txt”) == true;
99 log.info(”File creation test passed”);

100 }
101 @Test (dependsOnMethods={”testStoreFile”})
102 public void testFileExists() throws LfcDsException {
103 log.info(”Testing method ’fileExists’”);
104 assert cl.fileExists(TEST_PATH+”/”+”test_file1.txt”) == true;
105 assert cl.fileExists(TEST_PATH) == false;
106 assert cl.fileExists(”asfjaskfjaskdfjRRU3242394/FASDKFczxlkcjz/asfasd”) ==

false;
107 log.info(”’fileExists’ method test passed”);
108 }
109 @Test (dependsOnMethods={”testStoreFile”})
110 public void testExists2() throws LfcDsException {
111 log.info(”Testing method ’exists’ -- test 2”);
112 assert cl.exists(TEST_PATH+”/”+”test_file1.txt”) == true;
113 log.info(”’exists’ method test 2 passed”);
114 }
115 @Test (dependsOnMethods={”testStoreFile”})
116 public void testGetFile() throws LfcDsException {
117 log.info(”Testing method ’getFile’”);
118 String s=new String(cl.getFile(TEST_PATH+”/”+”test_file1.txt”));
119 assert s.equals(TEST_FILE_CONTENTS);
120 log.info(”’getFile’ method test passed”);
121 }
122 @Test (dependsOnMethods={”testStoreFile”})
123 public void testGetSize() throws LfcDsException {
124 log.info(”Testing method ’getSize’”);
125 long l=cl.getSize(TEST_PATH+”/”+”test_file1.txt”);
126 assert l == TEST_FILE_CONTENTS.length();
127 log.info(”’getSize’ method test passed”);
128 }
129 @Test (dependsOnMethods={”testStoreFile”})
130 public void testListFiles() throws LfcDsException {
131 log.info(”Testing method ’listFiles’”);
132 cl.storeFile(TEST_PATH, ”test_file2.txt”, ”Test 2 file -- contents”.getBytes

());
133 cl.createDirectory(TEST_PATH, ”test_dir1”);
134 List<LfcDsItem> l=cl.listFiles(TEST_PATH);
135 assert l.size() == 3;
136 for(LfcDsItem item: l) {
137 assert item.getName().equals(”test_file1.txt”) || item.getName().

equals(”test_file2.txt”) ||
138 item.getName().equals(”test_dir1”);
139 if (item.getName().equals(”test_file1.txt”))
140 assert item.isDirectory()==false;

136

141 if (item.getName().equals(”test_file2.txt”))
142 assert item.isDirectory()==false;
143 if (item.getName().equals(”test_dir1”))
144 assert item.isDirectory()==true;
145 }
146 log.info(”’listFiles’ method test passed”);
147 }
148 @Test (dependsOnMethods={”testListFiles”,”testGetSize”,”testGetFile”,
149 ”testExists2”,”testFileExists”})
150 public void testDeleteFile() throws LfcDsException {
151 log.info(”Testing method ’deleteFile’”);
152 assert cl.fileExists(TEST_PATH+”/”+”test_file2.txt”) == true;
153 assert cl.delete(TEST_PATH+”/”+”afasdfasdfr243142”) == false;
154 assert cl.delete(TEST_PATH+”/”+”test_file2.txt”) == true;
155 assert cl.fileExists(TEST_PATH+”/”+”test_file2.txt”) == false;
156 log.info(”’deleteFile’ method test passed”);
157 }
158 @Test (dependsOnMethods={”testListFiles”})
159 public void testDeleteEmptyDirectory() throws LfcDsException {
160 log.info(”Testing deletion of empty directory”);
161 assert cl.directoryExists(TEST_PATH+”/”+”test_dir1”) == true;
162 assert cl.delete(TEST_PATH+”/”+”test_dir1”) == true;
163 assert cl.directoryExists(TEST_PATH+”/”+”test_dir1”) == false;
164 log.info(”Deletion of empty directory succeeded”);
165 }
166 @Test (dependsOnMethods={”testDeleteFile”,”testDeleteEmptyDirectory”})
167 public void testDeleteDirectoryWithContents() throws LfcDsException {
168 log.info(”Testing deletion of directory with contents”);
169 assert cl.directoryExists(TEST_PATH) == true;
170 assert cl.delete(TEST_PATH) == true;
171 assert cl.directoryExists(TEST_PATH) == false;
172 log.info(”Deletion of directory with contents succeeded”);
173 }
174 @AfterSuite
175 void tearDown() throws Exception {
176 cl.delete(TEST_PATH);
177 cl.disconnect();
178 log.info(”Client disconnected”);
179 }
180 }

Results

137






  










     

  










  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

 

Figure 63: Verification tests – TestNG report

138

T E S T S

Running TestSuite
0 INFO LfcDsServerTest - Testing server connection
3 INFO LfcDsServerTest - Connection parameters:
3 INFO LfcDsServerTest - user.host = chempo.grid.cyfronet.pl
4 INFO LfcDsServerTest - user.port = 2000
204 INFO LfcDsServerTest - Trying to remove earlier test directory (if exists)
891 INFO LfcDsServerTest - Directory not removed
892 INFO LfcDsServerTest - Server connection working
900 INFO LfcDsServerTest - Testing proxy generation
9791 INFO LfcDsServerTest - Proxy generation passed
9798 INFO LfcDsServerTest - Testing ’directoryExists’ method
12300 INFO LfcDsServerTest - ’directoryExists’ method test passed
12302 INFO LfcDsServerTest - Testing directory creation
15779 INFO LfcDsServerTest - Directory creation test passed
15781 INFO LfcDsServerTest - Testing method ’exists’ -- test 1
18280 INFO LfcDsServerTest - ’exists’ method test 1 passed
18282 INFO LfcDsServerTest - Testing file creation
30551 INFO LfcDsServerTest - File creation test passed
30553 INFO LfcDsServerTest - Testing method ’exists’ -- test 2
32071 INFO LfcDsServerTest - ’exists’ method test 2 passed
32075 INFO LfcDsServerTest - Testing method ’fileExists’
36123 INFO LfcDsServerTest - ’fileExists’ method test passed
36125 INFO LfcDsServerTest - Testing method ’getFile’
44777 INFO LfcDsServerTest - ’getFile’ method test passed
44779 INFO LfcDsServerTest - Testing method ’getSize’
46048 INFO LfcDsServerTest - ’getSize’ method test passed
46053 INFO LfcDsServerTest - Testing method ’listFiles’
57734 INFO LfcDsServerTest - ’listFiles’ method test passed
57736 INFO LfcDsServerTest - Testing deletion of empty directory
62497 INFO LfcDsServerTest - Deletion of empty directory succeeded
62500 INFO LfcDsServerTest - Testing method ’deleteFile’
69758 INFO LfcDsServerTest - ’deleteFile’ method test passed
69762 INFO LfcDsServerTest - Testing deletion of directory with contents
77190 INFO LfcDsServerTest - Deletion of directory with contents succeeded
78179 INFO LfcDsServerTest - Client disconnected
Tests run: 14, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 78.869 sec

Figure 64: Test log from verification tests

139

9.2 Performance tests

Approach Performance of LFC DS was assessed using client Java library and LFCDS GScript
connector. Listing below presents the test code exploited when testing interaction of client Java
library with LFCDS server.

Performance test of LFC DS client library interacting with LFC DS server
1 package cyfronet.gridspace.dac2.lfcds;
2
3 import java.io.ByteArrayOutputStream;
4 import java.io.File;
5 import java.io.FileInputStream;
6 import java.io.InputStream;
7 import java.io.OutputStream;
8 import java.io.PrintStream;
9 import java.util.Random;

10
11 import org.apache.log4j.Logger;
12
13 import cyfronet.gridspace.dac2.lfcds.client.LfcDsClient;
14 import org.testng.annotations.*;
15
16 /**
17 * @author Marek Pomocka
18 *
19 */
20 public class PerformanceTest {
21 private static final Logger log = Logger.getLogger(LfcDsServerTest.class);
22 private static final String USER_CERT = TestProperties.getInstance().getProperty(”

user.cert”);
23 private static final String USER_KEY = TestProperties.getInstance().getProperty(”

user.key”);
24 private static final String CERT_PASSWORD = TestProperties.getInstance().getProperty

(”cert.password”);
25 private static final String USER_DIR = TestProperties.getInstance().getProperty(”

user.directory”);
26 private static final String TEST_DIR = TestProperties.getInstance().getProperty(”

test.directory”);
27 private static final String TEST_PATH = USER_DIR+”/”+TEST_DIR;
28 static LfcDsClient cl;
29
30 private ByteArrayOutputStream certBytes;
31 private ByteArrayOutputStream keyBytes;
32
33 @Test
34 public void testPerformance() throws Exception {
35 FileInputStream certFile=new FileInputStream(new File(USER_CERT));
36 FileInputStream keyFile=new FileInputStream(new File(USER_KEY));
37 certBytes=new ByteArrayOutputStream();
38 keyBytes=new ByteArrayOutputStream();
39 LfcDsClient.copyLarge(certFile,certBytes);
40 LfcDsClient.copyLarge(keyFile,keyBytes);

140

41 certFile.close();
42 keyFile.close();
43 log.info(”Connection parameters:”);
44 log.info(” user.host = ”+TestProperties.getInstance().getProperty(”client.

host”));
45 log.info(” user.port = ”+TestProperties.getInstance().getProperty(”client.

port”));
46 cl = new LfcDsClient(”//”+TestProperties.getInstance().getProperty(”client.

host”)+”:”+
47 TestProperties.getInstance().getProperty(”client.port”)+”/

LfcDsServer”,
48 TestProperties.getInstance().getProperty(”streaming.port”),
49 TestProperties.getInstance().getProperty(”user.vo”),
50 TestProperties.getInstance().getProperty(”lfc.host”),
51 TestProperties.getInstance().getProperty(”sbdii.host”),
52 TestProperties.getInstance().getProperty(”se.url”),
53 keyBytes.toByteArray(), certBytes.toByteArray(), null);
54 cl.generateProxy(CERT_PASSWORD);
55 cl.delete(TEST_PATH);
56 assert cl.createDirectory(USER_DIR, TEST_DIR) == true;
57
58 PrintStream ps=new PrintStream(new File(”performance_test_results.txt”));
59 ps.println(”# LFCDS performance test results”);
60 ps.println(”# file size, sending time, downloading time”);
61 for (int sz=1;sz<=2048;sz*=2) {
62 ps.print(””+sz+” ”);
63 log.info(”Sending file -- ” + sz + ”MB”);
64 Random r = new Random();
65 byte[] mb=new byte[1024*1024];
66 long start = System.currentTimeMillis();
67 OutputStream os=cl.storeFileAsStream(TEST_PATH, ”test_big_file”);
68 long totalRandTime=0;
69 for (int i=0;i<sz;++i) {
70 long t1=System.currentTimeMillis();
71 r.nextBytes(mb);
72 long t2=System.currentTimeMillis();
73 totalRandTime+=t2-t1;
74 os.write(mb);
75 }
76 os.close();
77 long elapsedTimeMillis = System.currentTimeMillis()-start;
78 log.info(”” + sz + ”MB file sent in ”+elapsedTimeMillis+”

miliseconds, total rand time ”+
79 totalRandTime);
80 log.info(”Downloading file -- ” + sz + ”MB”);
81 ps.print(””+elapsedTimeMillis+” ”+totalRandTime+” ”);
82 start = System.currentTimeMillis();
83 InputStream is=cl.getFileAsStream(TEST_PATH +”/”+”test_big_file”);
84 byte[] buffer = new byte[4*1024];
85 long count = 0;
86 int n = 0;
87 while (-1 != (n = is.read(buffer))) {
88 count += n;

141

89 }
90 is.close();
91 elapsedTimeMillis = System.currentTimeMillis()-start;
92 log.info(”” + sz + ”MB file retrieved in ”+elapsedTimeMillis+” miliseconds”)

;
93 ps.print(””+elapsedTimeMillis);
94 ps.println();
95 cl.delete(TEST_PATH +”/”+”test_big_file”);
96 }
97 ps.close();
98 }
99 }

On the other hand, the following listing presents code used for assessing performance of GScript
connector interacting with LFCDS server.

LFC connector performance test
1 # Author: Marek Pomocka
2
3 require ’cyfronet/gridspace/dac2/dac_connector.rb’
4 include Java
5
6 def test_streaming_performance(ds)
7 test_dir=”mpomocka_temp”
8 test_file=”test_big_file”
9 ds.delete test_dir

10 ds.create_directory test_dir
11 file_sizes=(0..11).collect {|x| 2**x }
12 bytes = Java::byte[1024*1024].new
13 r=java.util.Random.new()
14 buf=String.new
15 File.open(”performance_test_results.txt”,”w”) do |test_results|
16 test_results.puts ”file format: size in MB, sending time, ”+
17 ”random text generating time, downloading time”
18 file_sizes.each do |file_size|
19 test_results.print file_size.to_s + ” ”
20 start_time = Time.now
21 text_generating_time=0
22 ds.open(test_dir+”/”+test_file, ”w”) do |f|
23 file_size.times do
24 t1=Time.now
25 r.nextBytes(bytes)
26 s=String.from_java_bytes bytes
27 t2=Time.now
28 text_generating_time+=(t2-t1)
29 f.write s
30 end
31 end
32 end_time = Time.now
33 test_results.print((end_time - start_time).to_s + ” ”)
34 test_results.print(text_generating_time.to_s + ” ”)
35 start_time = Time.now

142

36 ds.open(test_dir+”/”+test_file, ”r”) do |f|
37 file_size.times { f.read(1024*1024,buf) }
38 end
39 end_time = Time.now
40 ds.delete(test_dir+”/”+test_file)
41 test_results.print((end_time - start_time).to_s + ” ”)
42 test_results.puts
43 test_results.flush
44 end
45 end
46 end
47
48 ds = DACConnector.new(”lfcds-test”);
49 puts ”Successfully instantiated LFC data source”
50 test_streaming_performance(ds)

Java client library test results Figures 65, 66 together with table 11 illustrate results of
Java client library↔LFCDS server performance tests. Both client and server were located on
ChemPo machine.

GScript LFC connector test results Figures 67, 68 and table 12 show results of GScript
LFC connector↔LFCDS server performance tests. As with Java client library test, both client
and server were located on ChemPo machine. It is noteworthy, that upload and download times
of both Java client library and GScript LFC connector are comparable.

Communication over WAN An additional performance test of LFC connector has been
performed over Wide Area Network. In particular, LFCDS server was located in CESNET
networking center in Czech Republic, while GScript client was run on ChemPo machine situated
in ACC Cyfronet. Tunneling was performed by GREDIA server also situated in ACC Cyfronet.
Figures 69 and 70 together with table 13 demonstrate results of the tests.

143

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

T
im
e
[s]

File size [MB]

Upload
Download

Figure 65: LFCDS Java client library↔LFCDS server performance test: sending and retrieving
file from Grid – linear scale

10

100

1000

10000

1 10 100 1000 10000

T
im
e
[s]

File size [MB]

Upload
Download

Figure 66: LFCDS Java client library↔LFCDS server performance test: sending and retrieving
file from Grid – logarithmic scale

144

File size [MB] Upload time [s] Download time [s]

1 17.169 14.669
2 18.261 15.990
4 20.763 16.460
8 26.184 18.751
16 38.035 21.047
32 61.108 27.929
64 103.873 41.050
128 187.853 62.932
256 379.492 114.283
512 709.921 216.484
1024 1491.528 420.444
2048 3016.697 820.362

Table 11: LFCDS Java client library↔LFCDS server performance test

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

T
im
e
[s]

File size [MB]

Upload
Download

Figure 67: GScript LFC connector↔LFCDS server performance test: sending and retrieving
file from Grid – linear scale

145

1

10

100

1000

10000

1 10 100 1000 10000

T
im
e
[s]

File size [MB]

Upload
Download

Figure 68: GScript LFC connector↔LFCDS server performance test: sending and retrieving
file from Grid – logarithmic scale

File size [MB] Upload time [s] Download time [s]

1 10.705 8.925
2 11.842 9.537
4 15.173 10.170
8 19.859 12.483
16 31.093 14.865
32 51.466 22.100
64 92.058 34.960
128 175.523 62.315
256 341.087 116.957
512 695.070 245.934
1024 1458.043 493.427
2048 2714.133 936.395

Table 12: GScript LFC connector↔LFCDS server performance test

146

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

0 200 400 600 800 1000 1200

T
im
e
[s]

File size [MB]

Upload
Download

Figure 69: GScript LFC connector↔LFCDS server performance test over WAN: sending and
retrieving file from Grid – linear scale

10

100

1000

10000

100000

1 10 100 1000 10000

T
im
e
[s]

File size [MB]

Upload
Download

Figure 70: GScript LFC connector↔LFCDS server performance test over WAN: sending and
retrieving file from Grid – logarithmic scale

147

File size [MB] Upload time [s] Download time [s]

1 27.451 20.121
2 46.827 32.728
4 80.361 62.482
8 158.904 108.517
16 229.096 250.209
32 586.697 414.049
64 1222.293 949.451
128 2549.077 1904.185
256 4831.703 3650.851
512 9588.798 7237.884
1024 18226.778 14857.206

Table 13: GScript LFC connector↔LFCDS server performance test over WAN

148

10 Conclusions

10.1 Summary

Nearing to the end of this dissertation, it is noteworthy that goals delineated in chapters 6 and 7
have been successfully achieved and that a significant level of usability has been attained. Tests
shown that file upload and download time depends linearly on file size, with scalability up to
2Gb and probably more, although larger file uploads and downloads have not been tested.
In addition, validation tests supplied with LFC DS product may help system administrators
validate their installation of LFC DS software detecting problems early, before their installation
is deployed into production.
LFC DS adds high value to GridSpace Engine allowing for comfortable and efficient ac-

cess to Grid data sources, eliminating the burden of managing various technology dependent
information and automatically managing user credentials. At the moment, LFC DS software
is being integrated by ChemPo computational chemistry team into their in-silico experiments
utilizing Gaussian software package. The role of LFC DS in this project is to enable searching
Gaussian catalogue, processing of Grid files that are results of experiments, and downloading
them in order to be visualized in GridSpace environment. More applications among the sci-
entific community are anticipated since LFC DS software has shown to be efficient and reliable
while at the same time not compromising simplicity; LFC DS promises to make scientific work
more productive by helping researchers focus on real scientific problems, not the technology
they use.

10.2 Future work

Future extensions of LFC DS and DAC2 layer should address expressiveness of security polices,
in order to make the software suitable for larger collaborations as the current “all or nothing”
security policy is limited only to small groups, probably up to 10 persons as already mentioned
in chapter 7. In addition, providing Web Service API could be beneficial to projects written
in languages other than Java, since current communication mechanism is available to Java
platform exclusively. Although performance is satisfactory, some scalability and performance
improvements may also be pursued.
Another feature, may not be completely necessary, but fascinating in terms of functionalities,

would be a provision of pseudo memory-mapped files (abbreviated mmap). A native memory
mapped file feature for local files has already been provided by MMAP Ruby gem, which is only
available on UNIX machines. An example of distributed filesystem implementation in which
memory-mapped file support has been supplied is IBM General Parallel File System (GPFS).
In the case of LFC DS, a pseudo mmap is feasible, since Ruby allows for operator overloading.
Such an implementation would use [] operator to access remote Grid in a similar way as local

149

memory. Depending on chosen architecture and client→server→Grid interaction mechanism,
it could also provide means for simpler construction of parallel applications, communicating by
using the same files – in such a case a server would host file chunks or entire file downloads from
Grid, while clients would access the file caching its contents in local memory and propagating
changes of fragments of this file that are shared by other clients. On file closed by all clients, the
file would be propagated back to Grid storage. Parallel applications that could take advantage
of this technique would be, for instance, cellular automata and differential equations solvers
communicating boundary data to each other. Probably, performance would not be able to
compete with HPC machines, but with careful design the solution could scale to very large
files. Another application of such functionality would be database management systems that
access data files mostly in record manner and frequently use mmap function if it is provided by
operating system.

150

Stand on the shoulders of giants
11 References

[1] L. Abadie, P. Badino, J.-P. Baud, J. Casey, A. Frohner, G. Grosdidier, S. Lemaitre,
G. Mccance, R. Mollon, K. Nienartowicz, D. Smith, and P. Tedesco. Grid-Enabled
Standards-based Data Management. In Mass Storage Systems and Technologies, 2007.
MSST 2007. 24th IEEE Conference on, pages 60–71, Sept. 2007. doi: 10.1109/MSST.
2007.4367964.

[2] W. Alda, M. Białoskórski, R. Górecki, and J. Rybicki. Grid Approach to Heat Transfer
Simulation in Atomistic-continuum Model. In Marian Bubak, Michał Turała, and Kazi-
mierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’04, December 2004,
Krakow, Poland, 2004. ACC-Cyfronet AGH.

[3] Carlos de Alfonso, Miguel Caballer, José V. Carrión, and Vicente Hernández. DFSgc:
Distributed File System for Multipurpose Grid Applications and Cloud Computing. In
Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid
Workshop - CGW’08, October 2008, Krakow, Poland, 2008. ACC-Cyfronet AGH.

[4] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link, Catalin Du-
mitrescu, Ioan Raicu, and Ian Foster. The Globus Striped GridFTP Framework and
Server. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
page 54, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 1-59593-061-2.
doi: http://dx.doi.org/10.1109/SC.2005.72.

[5] I. Altintas, E. Jaeger, Kai Lin, B. Ludaescher, and A. Memon. A Web service composition
and deployment framework for scientific workflows. In Web Services, 2004. Proceedings.
IEEE International Conference on, pages 814–815, July 2004. doi: 10.1109/ICWS.2004.
1314956.

[6] B. Amann, B. Elser, Y. Houri, and T. Fuhrmann. IgorFs: A Distributed P2P File System.
In Peer-to-Peer Computing , 2008. P2P ’08. Eighth International Conference on, pages
77–78, Sept. 2008. doi: 10.1109/P2P.2008.19.

[7] David P. Anderson. BOINC: A System for Public-Resource Computing and Storage. In
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Comput-
ing, pages 4–10, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-
2256-4. doi: http://dx.doi.org/10.1109/GRID.2004.14.

151

[8] David P. Anderson, Eric Korpela, and Rom Walton. High-Performance Task Distribu-
tion for Volunteer Computing. In E-SCIENCE ’05: Proceedings of the First International
Conference on e-Science and Grid Computing, pages 196–203, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2448-6. doi: ttp://dx.doi.org/10.1109/
E-SCIENCE.2005.51.

[9] J. Andreeva, A. Anjum, T. Barrass, D. Bonacorsi, J. Bunn, P. Capiluppi, M. Corvo,
N. Darmenov, N. DeFilippis, F. Donno, G. Donvito, G. Eulisse, A. Fanfani, F. Fanzago,
A. Filine, C. Grandi, J.M. Hernandez, V. Innocente, A. Jan, S. Lacaprara, I. Legrand,
S. Metson, H. Newman, D. Newbold, A. Pierro, L. Silvestris, C. Steenberg, H. Stockinger,
L. Taylor, M. Thomas, L. Tuura, T. Wildish, and F. VanLingen. Distributed Computing
Grid Experiences in CMS. Nuclear Science, IEEE Transactions on, 52(4):884–890, Aug.
2005. ISSN 0018-9499. doi: 10.1109/TNS.2005.852755.

[10] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N.P.C. Hong, B. Collins, N. Hard-
man, A.C. Hume, A. Knox, M. Jackson, et al. The Design and Implementation of Grid
Database Services in OGSA-DAI. Concurrency and Computation: Practice & Experience,
17(2):357–376, 2005.

[11] K. Appel and W. Haken. A proof of the four color theorem. Discrete Math, 16(2):179–180,
1976.

[12] K. Appel and W. Haken. The solution of the four-color-map problem. Scientific American,
237(4):108–121, 1977.

[13] Owen Appleton and Diter Kranzlmüller. EGEE - Status and Future of the World’s Largest
Multi-Science Grid. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’05, November 2005, Krakow, Poland,
2005. ACC-Cyfronet AGH.

[14] Athanasia Asiki, Katerina Doka, Ioannis Konstantinou, Antonis Zissimos, and Nectarios
Koziris. A Distributed Architecture for Multi-Dimensional Indexing and Data Retrieval
in Grid Environments. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007.
ACC-Cyfronet AGH.

[15] Athanasia Asiki, Katerina Doka, Ioannis Konstantinou, Antonis Zissimos, Dimitrios Tsou-
makos, Nectarios Koziris, and Panayiotis Tsanakas. A grid middleware for data manage-
ment exploiting peer-to-peer techniques. Future Gener. Comput. Syst., 25(4):426–435,
2009. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2008.09.005.

[16] Matthias Assel and Onur Kalyoncu. Dynamic Access Control Management for Distrib-
uted Biomedical Data Resources. In Paul Cunningham and Miriam Cunningham, editors,

152

eChallenges e-2008 Conference, Collaboration and the Knowledge Economy: Issues, Ap-
plications, Case Studies, pages 1592–1599. IOS Press, October 2008.

[17] Matthias Assel, Bettina Krammer, and Aenne Loehden. Management and Access of
Biomedical Data in a Grid Environment. In Marian Bubak, Michał Turała, and Kazimierz
Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’06, October 2006, Krakow,
Poland, 2006. ACC-Cyfronet AGH.

[18] Matthias Assel, Bettina Krammer, and Aenne Loehden. Data Access and Virtualiza-
tion within ViroLab. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007.
ACC-Cyfronet AGH.

[19] Matthias Assel, Onur Kalyoncu, and Yi Pan. Approaching Fine-grain Access Control
for Distributed Biomedical Databases within Virtual Environments. In Marian Bubak,
Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop -
CGW’08, October 2008, Krakow, Poland, 2008. ACC-Cyfronet AGH.

[20] Matthias Assel, Piotr Nowakowski, and Marian Bubak. Integrating and Accessing Medical
Data Resources within the ViroLab Virtual Laboratory. In ICCS ’08: Proceedings of the
8th international conference on Computational Science, Part III, pages 90–99, Berlin,
Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-69388-8. doi: http://dx.doi.org/10.
1007/978-3-540-69389-5_12.

[21] Matthias Assel, David van de Vijver, Pieter Libin, Kristof Theys, Daniel Harężlak,
Breanndann O Nuallain, Piotr Nowakowski, Marian Bubak, Anne-Mieke Vandamme,
Stijn Imbrechts, Raphael Sangeda, Tao Jiang, Dineke Frentz, and Peter Sloot. A
Collaborative Environment Allowing Clinical Investigations on Integrated Biomedical
Databases. In Tony Solomonides, Martin Hofmann-Apitius, Mathias Freudigmann, Se-
bastian Claudius Semler, Yannick Legré, and Mary Kratz, editors, Proceedings of Health-
Grid 2009, Studies in Health Technology and Informatics, volume 147, pages 51–61. IOS
Press, 2009. doi: 10.3233/978-1-60750-027-8-51.

[22] J. Astalos, Ł. Flis, M. Radecki, and W. Ziajka. Performance Improvements to BDII -
Grid Information Service in EGEE. In Marian Bubak, Michał Turała, and Kazimierz
Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow,
Poland, 2007. ACC-Cyfronet AGH.

[23] J. Austin, R. Davis, M. Fletcher, T. Jackson, M. Jessop, B. Liang, and A. Pasley. DAME:
Searching Large Data Sets Within a Grid-Enabled Engineering Application. Proceedings
of the IEEE, 93(3):496–509, March 2005. ISSN 0018-9219. doi: 10.1109/JPROC.2004.
842746.

153

[24] Zoltán Balaton, Gabor Gombás, Péter Kacsuk, Adam Kornafeld, József Kovács,
Csaba Attila Marosi, Gabor Vida, Norbert Podhorszki, and Tamás Kiss. SZTAKI Desktop
Grid: a Modular and Scalable Way of Building Large Computing Grids. In IPDPS, pages
1–8. IEEE, 2007.

[25] Bartosz Baliś, Marian Bubak, Michał Pelczar, and Jakub Wach. Provenance Query-
ing for End-Users: A Drug Resistance Case Study. In ICCS ’08: Proceedings of the
8th international conference on Computational Science, Part III, pages 80–89, Berlin,
Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-69388-8. doi: http://dx.doi.org/10.
1007/978-3-540-69389-5_11.

[26] Bartosz Baliś, Marian Bubak, and Michał Pelczar. From Monitoring Data to Experiment
Information - Monitoring of Grid Scientific Workflows. In E-SCIENCE ’07: Proceedings
of the Third IEEE International Conference on e-Science and Grid Computing, pages
77–84, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3064-8. doi:
http://dx.doi.org/10.1109/E-SCIENCE.2007.36.

[27] Bartosz Baliś, Marian Bubak, Michał Pelczar, and Jakub Wach. Provenance Tracking and
Querying in ViroLab. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007.
ACC-Cyfronet AGH.

[28] Bartosz Baliś, Marian Bubak, and JakubWach. User-Oriented Querying over Repositories
of Data and Provenance. In E-SCIENCE ’07: Proceedings of the Third IEEE International
Conference on e-Science and Grid Computing, pages 187–194, Washington, DC, USA,
2007. IEEE Computer Society. ISBN 0-7695-3064-8. doi: http://dx.doi.org/10.1109/
E-SCIENCE.2007.81.

[29] Bartosz Baliś, Marian Bubak, Michał Pelczar, and Jakub Wach. Provenance Tracking
and Querying in the ViroLab Virtual Laboratory. In CCGRID ’08: Proceedings of the
2008 Eighth IEEE International Symposium on Cluster Computing and the Grid, pages
675–680, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3156-4.
doi: http://dx.doi.org/10.1109/CCGRID.2008.83.

[30] J. Bart and A. Weisbecker. Services in Fraunhofer Enterprise Grids. In Marian Bubak,
Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop -
CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[31] Bartosz Kryza and Łukasz Dutka and Renata Słota and Jacek Kitowski. Supporting
Knowledge-based Dynamic Virtual Organizations with Contracts. In Paul Cunningham
and Miriam Cunningham, editors, Expanding the Knowledge Economy: Issues, Applica-
tions, Case Studies, Amsterdam, The Netherlands, 2007. IOS Press.

154

[32] Tomasz Bartyński. Remote execution of delegated operations with support for automatic
selection among multiple communication protocols. Master’s thesis, AGH University of
Science and Technology in Krakow, Poland, 2008.

[33] Tomasz Bartyński, Maciej Malawski, and Marian Bubak. Invocation of Grid Operations
in the ViroLab Virtual Laboratory. In Marian Bubak, Michał Turała, and Kazimierz
Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow,
Poland, 2007. ACC-Cyfronet AGH.

[34] Tomasz Bartyński, Maciej Malawski, Tomasz Gubała, and Marian Bubak. Universal
grid client: Grid operation invoker. In Roman Wyrzykowski, editor, Parallel Processing
and Applied Mathematics, 7th International Conference, PPAM 2007, Gdansk, Poland,
September 2007, Revised Selected Papers, Lecture Notes in Computer Science. Springer,
2007.

[35] Jean-Philippe Baud, James Casey, Sophie Lemaitre, Caitriana Nicholson, David Smith,
and Graeme Stewart. LCG Data Management: From EDG to EGEE . In UK eScience
All Hands Meeting Proceedings, Nottingham, UK, 2005.

[36] K. Benedyczak, A. Nowiński, K. S. Nowiński, and P. Bała. Interactive Visualization
Using the UNICORE Grid Middleware. In Marian Bubak, Michał Turała, and Kazimierz
Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’04, December 2004, Krakow,
Poland, 2004. ACC-Cyfronet AGH.

[37] D. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen, A. Chervenak, L. Cinquini,
B. Drach, I. Foster, P. Fox, et al. The Earth System Grid: Supporting the Next Generation
of Climate Modeling Research. Proceedings of the IEEE, 93(3):485–495, 2005.

[38] I. Bird and R.W.L. Jones. LHC computing grid: Technical design report. Technical
report, CERN. Geneva. LHC Experiments Committee; LHCC, 2005.

[39] Christophe Blanchet, Alexis Michon, Krystyna Zakrzewska, and Richard Lavery. Grid
Solving a Bioinformatics Challenge: a First Step to Anchoring the Nucleosome. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[40] P. Brezany, I. Janciak, A. Wöhrer, and A M. Tjoa. GridMiner: A Framework for Know-
ledge Discovery on the Grid – from Vision to Design and Implementation. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’04, December 2004, Krakow, Poland, 2004. ACC-Cyfronet AGH.

[41] P. Brezany, I. Janciak, and A. M. Tjoa. Data Mining on the Grid: Perspective from the
GridMiner Experience. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,

155

Proceedings of Cracow Grid Workshop - CGW’05, November 2005, Krakow, Poland, 2005.
ACC-Cyfronet AGH.

[42] P. Brezany, I. Janciak, and A. Min Tjoa. GridMiner: a Fundamental Infrastructure for
Building Intelligent Grid Systems. In Web Intelligence, 2005. Proceedings. The 2005
IEEE/WIC/ACM International Conference on, pages 150–156, Sept. 2005. doi: 10.1109/
WI.2005.68.

[43] Marian Bubak, Tomasz Gubała, Marek Kasztelnik, Maciej Malawski, Piotr Nowakowski,
and P.M.A. Sloot. Collaborative virtual laboratory for e-health. In P. Cunningham and
M. Cunningham, editors, Expanding the Knowledge Economy: Issues, Applications, Case
Studies, eChallenges e-2007 Conference Proceedings, pages 537–544, Amsterdam, 2007.
IOS Press. ISBN 978-1-58603-801-4. URL http://www.science.uva.nl/research/scs/
papers/archive/Bubak2007a.pdf.

[44] Marian Bubak, Daniel Harężlak, Piotr Nowakowski, Tomasz Gubała, and Maciej
Malawski. Appea: A Framework for the Design and Development of Business Applic-
ations on the Grid. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007.
ACC-Cyfronet AGH.

[45] Marian Bubak, Daniel Harężlak, Piotr Nowakowski, Tomasz Gubała, and Maciej
Malawski. Appea: A Platform for Developments and Execution of Grid Applications.
In P. Cunningham and M. Cunningham, editors, Expanding the Knowledge Economy:
Issues, Applications, Case Studies, eChallenges e-2007 Conference Proceedings, pages
123–130, Amsterdam, 2007. IOS Press. ISBN 978-1-58603-801-4.

[46] Marian Bubak, Tomasz Gubała, Maciej Malawski, Bartosz Baliś, Włodzimierz Funika,
Tomasz Bartyński, Eryk Ciepiela, Daniel Harężlak, Marek Kasztelnik, Joanna Kocot,
Dariusz Król, Piotr Nowakowski, Michał Pelczar, Jakub Wach, Matthias Assel, and
Alfredo Tirado-Ramos. Virtual Laboratory for Development and Execution of Bio-
medical Collaborative Applications. In CBMS ’08: Proceedings of the 2008 21st
IEEE International Symposium on Computer-Based Medical Systems, pages 373–378,
Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3165-6. doi:
http://dx.doi.org/10.1109/CBMS.2008.47.

[47] Stephen Burke, Simone Campana, Elisa Lanciotti, Patricia Méndez Lorenzo, Vincenzo
Miccio, Christopher Nater, Roberto Santinelli, and Andrea Sciabà. gLite 3 User Guide.
Manual Series, Worldwide LHC Computing Grid, 2009.

[48] J. Cala, L. Czekierda, M. Nowak, and K. Zieliński. The Practical Experiences with De-
ployment of Advanced Medical Teleconsultation System over Public IT Infrastructure. In

156

http://www.science.uva.nl/research/scs/papers/archive/Bubak2007a.pdf
http://www.science.uva.nl/research/scs/papers/archive/Bubak2007a.pdf

Computer-Based Medical Systems, 2008. CBMS ’08. 21st IEEE International Symposium
on, pages 349–354, June 2008. doi: 10.1109/CBMS.2008.130.

[49] D. Cameron, J. Casey, L. Guy, P. Kunszt, S. Lemaitre, G. McCance, H. Stockinger,
K. Stockinger, G. Andronico, W. Bell, et al. Replica management in the european datagrid
project. Journal of Grid computing, 2(4):341–351, 2004.

[50] D. Caromel, C. Delbe, A. Di Costanzo, and M. Leyton. ProActive: an integrated platform
for programming and running applications on grids and P2P systems. Computational
Methods in Science and Technology, 12(1):69–77, 2006.

[51] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS Parameter Sweep
Template: User-level middleware for the Grid\ m {1}. Scientific Programming, 8(3):
111–126, 2000.

[52] H. Casanova, F. Berman, T. Bartol, E. Gokcay, T. Sejnowski, A. Birnbaum, J. Don-
garra, M. Miller, M. Ellisman, M. Faerman, et al. The Virtual Instrument: Support for
Grid-Enabled Mcell Simulations. International Journal of High Performance Computing
Applications, 18(1):3, 2004.

[53] Alfieri Cecchini, R. Alfieri, R. Cecchini, V. Ciaschini, Á. Frohner, A. Gianoli, K. Lőrentey,
and F. Spataro. VOMS, an Authorization System for Virtual Organizations. In In
Proceedings of the 1st European Across Grids Conference, Santiago de Compostela, pages
13–14, 2003.

[54] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kes-
selman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger, K. Stockinger, and
B. Tierney. Giggle: A Framework for Constructing Scalable Replica Location Ser-
vices. In Supercomputing, ACM/IEEE 2002 Conference, pages 58–58, Nov. 2002. doi:
10.1109/SC.2002.10024.

[55] A. A. Chien. Architecture of a commercial enterprise desktop Grid: the Entropia system.
Grid Computing: Making the Global Infrastructure a Reality, pages 337–350, 2003.

[56] David Churches, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig Robinson,
Matthew Shields, Ian Taylor, and Ian Wang. Programming scientific and distributed
workflow with Triana services: Research Articles. Concurr. Comput.: Pract. Exper., 18
(10):1021–1037, 2006. ISSN 1532-0626. doi: http://dx.doi.org/10.1002/cpe.v18:10.

[57] Eryk Ciepiela. Monitoring of Component-Based Applications. Master’s thesis, AGH
University of Science and Technology in Krakow, Poland, 2007.

157

[58] Eryk Ciepiela, Joanna Kocot, Tomasz Gubała, Maciej Malawski, Marek Kasztelnik, and
Marian Bubak. GridSpace Engine of the ViroLab Virtual Laboratory. In Marian Bubak,
Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop -
CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[59] M. Ciglan, B. Simo, M. Maliska, P. Slizik, and L. Hluchy. Grid Virtual Directory System
(VDS) – User Centric Approach to Data Management in Medigrid Project. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’05, November 2005, Krakow, Poland, 2005. ACC-Cyfronet AGH.

[60] ACC Cyfronet. DAC2 GForge site. https://gforge.cyfronet.pl/projects/dac2/, July
2009.

[61] ACC Cyfronet. GridSpace. http://gs.cyfronet.pl/, June 2009.

[62] ACC Cyfronet. GSEngine User Manual for version 0.8.x. http://virolab.cyfronet.pl/
trac/vlruntime/wiki/GSEngineUserManual-0.8, June 2009.

[63] ACC Cyfronet. ViroLab Glossary. http://virolab.cyfronet.pl/trac/vlvl/wiki/
Glossary, July 2009.

[64] A. T. Das and B. Berkhout. Efficient extension of a misaligned tRNA-primer during
replication of the HIV-1 retrovirus. Nucleic Acids Res., 23:1319–1326, Apr 1995.

[65] D. De Roure, C. Goble, and R. Stevens. Designing the myExperiment Virtual Research
Environment for the Social Sharing of Workflows. In e-Science and Grid Computing, IEEE
International Conference on, pages 603–610, Dec. 2007. doi: 10.1109/E-SCIENCE.2007.
29.

[66] D. De Roure, C. Goble, J. Bhagat, D. Cruickshank, A. Goderis, D. Michaelides, and
D. Newman. myExperiment: Defining the Social Virtual Research Environment. In
eScience, 2008. eScience ’08. IEEE Fourth International Conference on, pages 182–189,
Dec. 2008. doi: 10.1109/eScience.2008.86.

[67] David De Roure, Carole Goble, and Robert Stevens. The design and realisation of
the myexperiment virtual research environment for social sharing of workflows. Fu-
ture Generation Computer Systems, 25(5):561–567, May 2009. ISSN 0167739X. doi:
10.1016/j.future.2008.06.010.

[68] T. Dimitrakos, M. Wilson, and S. Ristol. TrustCoM-A Trust and Contract Management
Framework enabling Secure Collaborations in Dynamic Virtual Organisations. ERCIM
News, 59:59–60, 2004.

158

https://gforge.cyfronet.pl/projects/dac2/
http://gs.cyfronet.pl/
http://virolab.cyfronet.pl/trac/vlruntime/wiki/GSEngineUserManual-0.8
http://virolab.cyfronet.pl/trac/vlruntime/wiki/GSEngineUserManual-0.8
http://virolab.cyfronet.pl/trac/vlvl/wiki/Glossary
http://virolab.cyfronet.pl/trac/vlvl/wiki/Glossary

[69] M. Dolenc, V. Stankovski, and Z. Turk. InteliGrid Project: A Vision of Engineering on
the Grid. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of
Cracow Grid Workshop - CGW’04, December 2004, Krakow, Poland, 2004. ACC-Cyfronet
AGH.

[70] M. Dolenc, Z. Turk, P. Katranuschkov, K. Kurowski, and M Hannus. Towards Grid
Enabled Engineering Collaboration Environment. Proceedings of the Tenth International
Conference on Civil, Structural and Environmental Engineering Computing, B.H.V. Top-
ping (Editor), Civil-Comp Press, 2005.

[71] M. Dolenc, K. Kurowski, M. Kulczewski, and A. Gehre. InteliGrid Document Man-
agement System: an Overview. In Marian Bubak, Michał Turała, and Kazimierz Wiatr,
editors, Proceedings of Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland,
2006. ACC-Cyfronet AGH.

[72] S. Dorward, R. Pike, D.L. Presotto, D. Ritchie, H. Trickey, and P. Winterbottom. Inferno.
In Compcon ’97. Proceedings, IEEE, pages 241–244, Feb 1997. doi: 10.1109/CMPCON.
1997.584718.

[73] K.K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda, T. Baltzer, K. Brew-
ster, R. Clark, B. Domenico, S. Graves, E. Joseph, D. Murray, R. Ramachandran,
M. Ramamurthy, L. Ramakrishnan, J.A. Rushing, D. Weber, R. Wilhelmson, A. Wilson,
M. Xue, and S. Yalda. Service-oriented environments for dynamically interacting with
mesoscale weather. Computing in Science & Engineering, 7(6):12–29, Nov.-Dec. 2005.
ISSN 1521-9615. doi: 10.1109/MCSE.2005.124.

[74] G. Duckeck and Roger W. L. Jones. ATLAS computing: Technical design report. Tech-
nical report, CERN. Geneva. LHC Experiments Committee; LHCC, 2005.

[75] L. Dusseault. RFC 4918: HTTP Extensions for Web Distributed Authoring and Version-
ing 11 (WebDAV). Technical report, RFC, IETF, June 2007.

[76] L. Dutka, K. Korcyl, K. Zieliński, J. Kitowski, R. Słota, W. Funika, K. Bałos, L. Skital,
and B. Kryza. Interactive European Grid Environment for HEP Application with Real
Time Requirements. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2006.
ACC-Cyfronet AGH.

[77] P. Dóbé, R. Kápolnai, and I. Szeberényi. Saleve: Supporting the Deployment of Para-
meter Study Tasks in the Grid. In Marian Bubak, Michał Turała, and Kazimierz Wiatr,
editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland,
2007. ACC-Cyfronet AGH.

159

[78] M. Eigen. Error catastrophe and antiviral strategy. Proc. Natl. Acad. Sci. U.S.A., 99:
13374–13376, Oct 2002.

[79] J. Falkner, , and A. Weisbecker. Integration of Applications in MediGRID. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’06, October 2006, Krakow, Poland, 2006. ACC-Cyfronet AGH.

[80] Zoltan Farkas, Robert Lovas, and Peter Kacsuk. CancerGrid: Enterprise Desktop Grid
Solution with Workflow Support for Anti-Cancer Drug Design. In Marian Bubak, Michał
Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07,
October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[81] Zoltan Farkas, Robert Lovas, and Peter Kacsuk. CancerGrid: Enterprise Desktop Grid
Solution with Workflow Support for Anti-Cancer Drug Design. In Marian Bubak, Michał
Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07,
October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[82] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb: a generic global comput-
ing system. In Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on, pages 582–587, 2001. doi: 10.1109/CCGRID.2001.923246.

[83] Laurence Field. Berkeley Database Information Index V5. https://twiki.cern.ch/
twiki//bin/view/EGEE/BDII, July 2009.

[84] Travis Fischer, John Hughes, and Andy van Dam. Milton. Master’s thesis, Brown
University, Providence, R.I., 2009.

[85] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A Directory Service for Configuring High-performance Distributed Computations. In
Proceedings of the 6th IEEE Symposium on High Performance Distributed Computing,
pages 365–375. IEEE Computer Society Press, 1997.

[86] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language. O’Reilly,
2008. ISBN 9780596516178.

[87] I. Foster. What is the grid? a three point checklist. GRID today, 1(6):22–25, 2002.

[88] I. Foster. Globus toolkit version 4: Software for service-oriented systems. Journal of
Computer Science and Technology, 21(4):513–520, 2006.

[89] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Interna-
tional Journal of High Performance Computing Applications, 11(2):115, 1997.

160

https://twiki.cern.ch/twiki//bin/view/EGEE/BDII
https://twiki.cern.ch/twiki//bin/view/EGEE/BDII

[90] I. Foster and C. Kesselman. Knowledge Integration: In Silico Experiments in Bioinform-
atics. In The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann,
2004.

[91] I. Foster, C. Kesselman, et al. The grid: blueprint for a future computing infrastructure,
1999.

[92] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. In Open Grid Service
Infrastructure WG, Global Grid Forum, June 2002.

[93] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,
F. Siebenlist, R. Subramaniam, et al. The open grid services architecture. The Grid2:
Blueprint for a New Computing Infrastructure, pages 215–257, 2004.

[94] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,
F. Siebenlist, R. Subramaniam, et al. The open grid services architecture, version 1.0. In
Global Grid Forum, volume 29, 2005.

[95] Ákos Frohner on behalf of the Grid DM Team. Medical Data Management. In CERN -
JRA1 All Hands meeting, 2007. Presentation slides.

[96] Włodzimierz Funika and Piotr Pęgiel. GScript Editor as Part of the ViroLab Presentation
Layer. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of
Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2006. ACC-Cyfronet
AGH.

[97] Włodzimierz Funika, Daniel Harężlak, Dariusz Król, Piotr Pęgiel, and Marian Bubak.
User Interfaces of the Virolab Virtual Laboratory. In Marian Bubak, Michał Turała,
and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October
2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[98] F. Gagliardi and M.-E. Begin. EGEE - providing a production quality grid for e-science.
In LGDI ’05: Proceedings of the 2005 IEEE International Symposium on Mass Storage
Systems and Technology, pages 88–92, Washington, DC, USA, 2005. IEEE Computer
Society. ISBN 0-7803-9228-0. doi: http://dx.doi.org/10.1109/LGDI.2005.1612472.

[99] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google file system. ACM SIGOPS
Operating Systems Review, 37(5):29–43, 2003.

[100] Santiago Gonzalez de la Hoz, Luis March Ruiz, and Dietric Liko. Experience with Atlas
Distributed Analysis Tools. In Marian Bubak, Michał Turała, and Kazimierz Wiatr,
editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland,
2007. ACC-Cyfronet AGH.

161

[101] Jürgen Göres. Pattern-based information integration in dynamic environments. In Data-
base Engineering and Application Symposium, 2005. IDEAS 2005. 9th International,
pages 125–134, July 2005. doi: 10.1109/IDEAS.2005.42.

[102] Jürgen Göres. Towards dynamic information integration. Lecture Notes in Computer
Science, 3836:16, 2005.

[103] Jürgen Göres and Stefan Dessloch. Discovering data sources in a dynamic Grid envir-
onment: Research Articles. Concurr. Comput. : Pract. Exper., 19(16):2109–2124, 2007.
ISSN 1532-0626. doi: http://dx.doi.org/10.1002/cpe.v19:16.

[104] Open Science Grid. Virtual Data Toolkit. http://vdt.cs.wisc.edu/, July 2009.

[105] GridwiseTech. GridwiseTech in the ViroLab Project. http://www.gridwisetech.com/
virolab, 2009.

[106] C. Grimm and M. Pattloch. Use Cases for Authorization in Grid-Middleware. D-Grid
Technical Report, Version, 1.3, September 2006.

[107] T. Gubała and M. Bubak. GridSpace – Semantic Programming Environment for the
Grid. In Roman Wyrzykowski, Jack Dongarra, Norbert Meyer, and Jerzy Wasniewski, ed-
itors, Parallel Processing and Applied Mathematics: 6th International Conference, PPAM
2005 Poznan, Poland, September 11-14, 2005 Revised Selected Papers (Lecture Notes in
Computer Science), Secaucus, NJ, USA, 2006. Springer-Verlag New York, Inc. ISBN
3540341412.

[108] Tomasz Gubała, Bartosz Baliś, Maciej Malawski, Marek Kasztelnik, Piotr Nowakowski,
Matthias Assel, Daniel Harężlak, Tomasz Bartyński, Joanna Kocot, Eryk Ciepiela, Dari-
usz Krol, Jakub Wach, Michał Pelczar, Wlodzimierz Funika, and Marian Bubak. ViroLab
Virtual Laboratory. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007.
ACC-Cyfronet AGH.

[109] Tomasz Gubała, Marek Kasztelnik, Maciej Malawski, and Marian Bubak. Development
and execution of collaborative application on the virolab virtual laboratory. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[110] S.M. Hammer, J.J. Eron Jr, P. Reiss, R.T. Schooley, M.A. Thompson, S. Walmsley,
P. Cahn, M.A. Fischl, J.M. Gatell, M.S. Hirsch, et al. Antiretroviral treatment of adult
HIV infection: 2008 recommendations of the International AIDS Society-USA panel.
Jama, 300(5):555, 2008.

162

http://vdt.cs.wisc.edu/
http://www.gridwisetech.com/virolab
http://www.gridwisetech.com/virolab

[111] M. Hardt, N.V. Ruiter, and M. Zapf. Interactive Grid-Access for Ultrasound CT. In
Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow
Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[112] K. S. Harris, W. Brabant, S. Styrchak, A. Gall, and R. Daifuku. KP-1212/1461, a
nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res., 67:
1–9, Jul 2005.

[113] Tony Hey and Anne Trefethen. The Data Deluge: An e-Science Perspective. Grid
computing-making the global infrastructure a reality, pages 809–824, 2003.

[114] Rich Hilliard (editor). IEEE Standard for Information Technology—-Systems Design—-
Software Design Descriptions. IEEE STD 1016-2009, pages c1–40, 2009. doi: 10.1109/
IEEESTD.2009.5167255.

[115] A. G. Hoekstra, S. F. Portegies Zwart, M. Bubak, and P. M. A. Sloot. Towards Distributed
Petascale Computing. Arxiv preprint astro-ph/0703485, 2007.

[116] Stephen J. Huffman (Editor). IEEE Standard Glossary of Computer Networking Termin-
ology. IEEE Std 610.7-1995, Jun 1995.

[117] IEEE Standards Board. IEEE Standard Glossary of Computer Applications Terminology.
ANSI/IEEE Std 610.2-1987, May 1987.

[118] IEEE Standards Board. IEEE Standard Glossary of Data Management Terminology.
IEEE Std 610.5-1990, Aug 1990.

[119] IEEE Standards Board. IEEE Standard Glossary of Software Engineering Terminology.
IEEE Std 610.12-1990, Dec 1990.

[120] M.A. Inda, A.S.Z. Belloum, M. Roos, D. Vasunin, C. de Laat, L.O. Hertzberger, and
T.M. Breit. Interactive Workflows in a Virtual Laboratory for e-Bioscience: The SigWin-
Detector Tool for Gene Expression Analysis. In e-Science and Grid Computing, 2006.
e-Science ’06. Second IEEE International Conference on, pages 19–19, Dec. 2006. doi:
10.1109/E-SCIENCE.2006.261103.

[121] T. Jackson, J. Austin, M. Fletcher, and M. Jessop. Delivering a grid enabled distributed
aircraft maintenance environment (DAME). In Proceedings of the UK e-Science All Hands
Meeting, 2003.

[122] Tomasz Jadczyk. Bioinformatics Applications in the Virtual Laboratory. Master’s thesis,
AGH University of Science and Technology in Krakow, Poland, 2009.

[123] Bob Jones. EGEE status and plans. In HEPiX Spring 2008, CERN, Geneva, Switzerland,
May 2008. Presentation slides.

163

[124] T. Jones, A. Koniges, and R.K. Yates. Performance of the IBM general parallel file system.
In Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th
International, pages 673–681, 2000. doi: 10.1109/IPDPS.2000.846052.

[125] U. Jovanovič, J. Močnik, M. Novak, G. Pipan, and B. Slivnik. Using Ant Colony Optim-
ization for Collaborative (Re)Search in Data Grids. In Marian Bubak, Michał Turała,
and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’06, October
2006, Krakow, Poland, 2006. ACC-Cyfronet AGH.

[126] K. Shechtman and M. Vainstein and M. Bercovier. Matlab on grid: a progress report.
In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow
Grid Workshop - CGW’05, November 2005, Krakow, Poland, 2005. ACC-Cyfronet AGH.

[127] P. Kacsuk, A. Marosi, J. Kovács, Z. Balaton, G. Gombás, G. Vida, and Á. Kornafeld.
SZTAKI Desktop Grid - a Hierarchical Desktop Grid System. In Marian Bubak, Michał
Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’06,
October 2006, Krakow, Poland, 2006. ACC-Cyfronet AGH.

[128] P. Kacsuk, G. Sipos, A. Tóth, Z. Farkas, G. Kecskeméti, and G. Hermann. Defining
and Running Parametric Study Workflow Applications by the P-GRADE Portal. In
Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow
Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2006. ACC-Cyfronet AGH.

[129] K. Karasavvas, M. Antonioletti, M.P. Atkinson, N.P.C. Hong, T. Sugden, A.C. Hume,
M. Jackson, A. Krause, and C. Palansuriya. Introduction to OGSA-DAI Services. Lecture
Notes in Computer Science, 3458:1–12, 2005.

[130] Gabrielle Allen Kelly, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis, Tom
Goodale, Thilo Kielmann, André Merzky, Jarek Nabrzyski, Juliusz Pukacki, Thomas
Radke, Michael Russell, John Shalf, and Ian Taylor. Enabling Applications on the Grid
– A GridLab Overview. International Journal of High Performance Computing Applica-
tions, 17:449–466, 2003.

[131] Jacek Kitowski. Structure and Status of National Grid Initiative in Poland. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’08, October 2008, Krakow, Poland, 2008. ACC-Cyfronet AGH.

[132] Joanna Kocot and Iwona Ryszka. Optimization of Grid Application Execution. Master’s
thesis, AGH University of Science and Technology in Krakow, Poland, 2007.

[133] Ioannis Konstantinou, Katerina Doka, Athanasia Asiki, Antonis Zissimos, and Nectarios
Koziris. Gredia Middleware Architecture. In Marian Bubak, Michał Turała, and Kazi-

164

mierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007,
Krakow, Poland, 2007. ACC-Cyfronet AGH.

[134] D. Koufil and J. Basney. A credential renewal service for long-running jobs. In Grid
Computing, 2005. The 6th IEEE/ACM International Workshop on, pages 6 pp.–, Nov.
2005. doi: 10.1109/GRID.2005.1542725.

[135] D. Kranzlmüller, H. Rosmanith, P. Heinzlreiter, and M. Polak. Interactive Virtual Reality
on the Grid. In Distributed Simulation and Real-Time Applications, 2004. DS-RT 2004.
Eighth IEEE International Symposium on, pages 152–158, Oct. 2004. doi: 10.1109/
DS-RT.2004.25.

[136] Bartosz Kryza, Łukasz Dutka, Renata Słota, Jan Pieczykolan, and Jacek Kitowski.
GVOSF: Grid Virtual Organization Semantic Framework. In Marian Bubak, Michał
Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’06,
October 2006, Krakow, Poland, 2006. ACC-Cyfronet AGH.

[137] Bartosz Kryza, Łukasz Dutka, Renata Słota, and Jacek Kitowski. Supporting Manage-
ment of Dynamic Virtual Organizations in the Grid through Contracts. In Marian Bubak,
Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop -
CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[138] P. Kunszt, P. Badino, A. Frohner, G. McCance, K. Nienartowicz, R. Rocha, and
D. Rodrigues. Data storage, access and catalogs in gLite. In LGDI ’05: Proceedings
of the 2005 IEEE International Symposium on Mass Storage Systems and Technology,
pages 166–170, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7803-
9228-0. doi: http://dx.doi.org/10.1109/LGDI.2005.1612487.

[139] M. Lamanna. The LHC computing grid project at CERN. Nuclear Inst. and Methods in
Physics Research, A, 534(1-2):1–6, 2004.

[140] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo, F. Pacini,
F. Prelz, J. White, et al. Programming the Grid with gLite. Computational Methods in
Science and Technology, 12(1):33–45, 2006.

[141] P.J. Leach and R. Salz. UUIDs and GUIDs. IETF draft specification, 1998.

[142] LITBIO. Laboratory for Interdisciplinary Technologies in Bioinformatics. http://www.
litbio.org/, July 2009.

[143] D. Lorenz, P. Buchholz, C. Uebing, W. Walkowiak, and R. Wismüller. Online Steering of
HEP Grid Applications. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2006.
ACC-Cyfronet AGH.

165

http://www.litbio.org/
http://www.litbio.org/

[144] Z. Luo, J. Zhang, and R.M. Badia. Service Grid for Business Computing. In M. P.
Bekakos, G. A. Gravvanis, and H. R. Arabnia, editors, Grid Technologies Emerging from
Distributed Architectures to Virtual Organizations. WIT Press, 2006.

[145] Grzegorz M. Wójcik and Wiesław A. Kamiński. Liquid State Machines and Large Simula-
tions of Mammalian Visual System. In Marian Bubak, Michał Turała, and Kazimierz Wi-
atr, editors, Proceedings of Cracow Grid Workshop - CGW’04, December 2004, Krakow,
Poland, 2004. ACC-Cyfronet AGH.

[146] M.W. Maier, D. Emery, and R. Hilliard. Software architecture: introducing IEEE Stand-
ard 1471. Computer, 34(4):107–109, Apr 2001. ISSN 0018-9162. doi: 10.1109/2.917550.

[147] M. Malawski, D. Kurzyniec, and V. Sunderam. MOCCA - Towards a Distributed CCA
Framework for Metacomputing. In Proceedings of 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - Joint Workshop on High-Performance
Grid Computing and High-Level Parallel Programming Models - HIPS-HPGC, April 4-8,
2005, Denver, Colorado, USA, page 174a. IEEE Computer Society Press, 2005.

[148] M. Malawski, T. Szepieniec, M. Kochanczyk, M. Piwowar, and I. Roterman-Konieczna.
The Quest for Pharmacology Active Never Born Proteins within the EUChinaGRID
Project. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of
Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2006. ACC-Cyfronet
AGH.

[149] M. Malawski, T. Szepieniec, M. Kochanczyk, M. Piwowar, and I. Roterman. An approach
to protein folding on the grid – EUChinaGrid experience. Bio-Algorithms & Med-Systems
– BAMS, 2007.

[150] Maciej Malawski. Component-based methodology for programming and running scientific
applications on the grid. PhD thesis, AGH University of Science and Technology in
Krakow, Poland, 2008.

[151] Maciej Malawski, Marian Bubak, Michał Placek, Dawid Kurzyniec, and Vaidy Sunderam.
Experiments with distributed component computing across Grid boundaries. In Proceed-
ings of the HPC-GECO/CompFrame workshop in conjunction with HPDC 2006, pages
109–116, Paris, France, June 2006. URL http://www.icsr.agh.edu.pl/mambo/docman/
task,doc_download/gid,17/Itemid,69/.

[152] Maciej Malawski, Joanna Kocot, Eryk Ciepiela, Iwona Ryszka, and Marian Bubak. Op-
timization of application execution on the virolab virtual laboratory. In Marian Bubak,
Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop -
CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

166

http://www.icsr.agh.edu.pl/mambo/docman/task,doc_download/gid,17/Itemid,69/
http://www.icsr.agh.edu.pl/mambo/docman/task,doc_download/gid,17/Itemid,69/

[153] Maciej Malawski, Tomasz Gubała, Marek Kasztelnik, Tomasz Bartyński, Marian Bubak,
Francoise Baude, and Ludovic Henrio. High-Level Scripting Approach for Building
Component-Based Applications on the Grid. In Marco Danelutto, Paraskevi Fragopoulou,
and Vladimir Getov, editors, Making Grids Work. Springer Publishing Company, Incor-
porated, 2008.

[154] Maciej Malawski, Tomasz Bartyński, and Marian Bubak. Invocation of operations from
script-based Grid applications. In Future Generation Computer Systems. Elsevier, 2009.
doi: 10.1016/j.future.2009.05.012. In Press, Accepted Manuscript.

[155] Martin Maliska, Branislav Simo, and Ladislav Hluchý. The Workflow Engine for the
CROSSGRID Flood Forecasting Application. In Marian Bubak, Michał Turała, and
Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’04, December
2004, Krakow, Poland, 2004. ACC-Cyfronet AGH.

[156] Jan Meizner, Maciej Malawski, Eryk Ciepiela, Marek Kasztelnik, Daniel Harężlak, Piotr
Nowakowski, Dariusz Król, Tomasz Gubała, Włodzimierz Funika, Marian Bubak, Tomasz
Mikołajczyk, Paweł Płaszczak, Krzysztof Wilk, , and Matthias Assel. ViroLab Security
and Virtual Organization Infrastructure. In Y. Dou, R. Gruber, and J. Joller, editors,
APPT 2009, Advanced Parallel Processing Technologies 8th International Symposium,
Rapperswil, Switzerland, Proceedings, LNCS 5737, pages 230–245. Springer-Verlag Berlin
Heidelberg, August 24-25 2009.

[157] Sun Microsystems. Sun’s Network.com Renders Computer-Animated Movie “Big
Buck Bunny”. http://www.sun.com/aboutsun/pr/2008-06/sunflash.20080602.1.xml,
July 2009.

[158] J. Montagnat, D. Jouvenot, C. Pera, A. Frohner, P. Kunszt, B. Koblitz, N. Santos, and
C. Loomis. Bridging clinical information systems and grid middleware: a Medical Data
Manager. Studies in health technology and informatics, 120:14, 2006.

[159] Zofia Mosurska and Kazimierz Wiatr. PL-Grid - Koncepcja budowy ogolnopolskiej in-
frastruktury Gridowej [PL-Grid - building the Polish grid infrastructure - in Polish].
Biuletyn Informacyjny Pracowników AGH, 170, October 2007.

[160] C. Munro, B. Koblitz, N. Santos, and A. Khan. Measurement of the LCG2 and Glite
File Catalogue’s Performance. Nuclear Science, IEEE Transactions on, 53(4):2228–2232,
Aug. 2006. ISSN 0018-9499. doi: 10.1109/TNS.2006.877857.

[161] L. A. Napolitano, D. Schmidt, M. B. Gotway, N. Ameli, E. L. Filbert, M. M. Ng, J. L.
Clor, L. Epling, E. Sinclair, P. D. Baum, K. Li, M. L. Killian, P. Bacchetti, and J. M.
McCune. Growth hormone enhances thymic function in HIV-1-infected adults. J. Clin.
Invest., 118:1085–1098, Mar 2008.

167

http://www.sun.com/aboutsun/pr/2008-06/sunflash.20080602.1.xml

[162] David Newman. OAuth – myExperiment. http://wiki.myexperiment.org/index.php/
Developer:OAuth, September 2008.

[163] Krzysztof Nienartowicz. gLite FiReMan. In Very Large Data Bases – VLDB, 2006.
Presentation slides.

[164] J. Novotny, S. Tuecke, and V. Welch. An online credential repository for the Grid:
MyProxy. In High Performance Distributed Computing, 2001. Proceedings. 10th IEEE
International Symposium on, pages 104–111, 2001. doi: 10.1109/HPDC.2001.945181.

[165] Object Management Group. Unified Modeling Language (OMG UML), Superstruc-
ture. V. 2.2. Object Management Group, 2009.

[166] T. O’Brien, J. Casey, B. Fox, B. Snyder, J. Van Zyl, and E. Redmond. Maven: The
Definitive Guide. Sonatype, 2008.

[167] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Green-
wood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna:
a tool for the composition and enactment of bioinformatics workflows. Bioinformatics, 20
(17):3045–3054, 2004. ISSN 1367-4803. doi: http://dx.doi.org/10.1093/bioinformatics/
bth361.

[168] M. Okon, D. Kaliszan, M. Lawenda, D. Stoklosa, T. Rajtar, N. Meyer, and M. Stroinski.
Virtual Laboratory as a Remote and Interactive Access to the Scientific Instrumentation
Embedded in Grid Environment. In e-Science and Grid Computing, 2006. e-Science
’06. Second IEEE International Conference on, pages 124–124, Dec. 2006. doi: 10.1109/
E-SCIENCE.2006.261057.

[169] S.D. Olabarriaga, A.J. Nederveen, and B.O. Nuallain. Parameter Sweeps for Functional
MRI Research in the ”Virtual Laboratory for e-Science” Project. In Cluster Computing
and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on, pages
685–690, May 2007. doi: 10.1109/CCGRID.2007.82.

[170] T. Olas and R. Wyrzykowski. Method for Mapping FEM Computations onto Cluster
Grid Architectures. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2006.
ACC-Cyfronet AGH.

[171] Tomasz Olas and Roman Wyrzykowski. Porting Thermomechanical Applicationsto
CLUSTERIX Environment. In Marian Bubak, Michał Turała, and Kazimierz Wiatr,
editors, Proceedings of Cracow Grid Workshop - CGW’04, December 2004, Krakow, Po-
land, 2004. ACC-Cyfronet AGH.

168

http://wiki.myexperiment.org/index.php/Developer:OAuth
http://wiki.myexperiment.org/index.php/Developer:OAuth

[172] Richard Olejnik, Bernard Toursel, Marek Tudruj, Eryk Laskowski, and Iyad Alshabani.
Optimized Java Computing as an Application for Desktop Grid. In Marian Bubak, Michał
Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’04,
December 2004, Krakow, Poland, 2005. ACC-Cyfronet AGH.

[173] Richard Olejnik, Bernard Toursel, Marek Tudruj, Eryk Laskowski, Iyad Alshabani, and
Lukasz Maśko. DG-ADAJ: a Java Computing Platform for Desktop Grid. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’05, November 2005, Krakow, Poland, 2005. ACC-Cyfronet AGH.

[174] D. Orme and J. Winchester. The Eclipse Visual Editor. Creating Eclipse-based GUI
builders. Dr Dobb’s Journal-Software Tools for the Professional Programmer, pages 73–75,
2006.

[175] Eva Pajorová, Ladislav Hluchý, and Ján Astalos̆. 3D Geo-visualization Service for Grid-
oriented Applications of Natural Disasters. In Marian Bubak, Michał Turała, and Kazi-
mierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007,
Krakow, Poland, 2007. ACC-Cyfronet AGH.

[176] Daniel Pasztuhov and Imre Szeberenyi. New Approach to Design UI for Grid Applications.
In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow
Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[177] Michał Pelczar. Recording application executions enriched with domain semantics of
computations and data. Master’s thesis, AGH University of Science and Technology in
Krakow, Poland, 2008.

[178] Jan Pieczykolan, Lukasz Dutka, Krzysztof Korcyl, Tomir Kryza, and Jacek Kitowski.
Grid support for A Toroidal LHC ApparatuS (ATLAS). In Marian Bubak, Michał Turała,
and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October
2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[179] Monika Piwowar, Tomasz Szepieniec, Ewa Matczyńska, and Irena Roterman. Identific-
ation of “Never Born” Protein Traces in Human Chromosome 1 with Using Grid Envir-
onment – Preliminary Analysis. In Marian Bubak, Michał Turała, and Kazimierz Wiatr,
editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland,
2007. ACC-Cyfronet AGH.

[180] Monika Piwowar, Tomasz Szepieniec, and Irena Roterman. Massive Identification of
Similarities in DNA Materials Organized in Grid Environment. Bio-Algorithms & Med-
Systems – BAMS, 2007.

169

[181] Martin Polak, Dieter Kranzmüller, and Jens Volkert. GVid – A Dynamic Grid Video-
service for Advanced Visualization. In Marian Bubak, Michał Turała, and Kazimierz Wi-
atr, editors, Proceedings of Cracow Grid Workshop - CGW’04, December 2004, Krakow,
Poland, 2004. ACC-Cyfronet AGH.

[182] Marek Pomocka. System “VirtualRenderer” do Renderowania Filmów Komputerowych
Oparty o Technologie Gridowe – [“VirtualRenderer” – a System for Rendering Com-
puter Films based on Grid Technologies]. In Leszek Kurcz and Andrzej Gołdasz, editors,
Sesje Studenckich Kół Naukowych. Materiały XLV Sesji Pionu Hutniczego: streszczenia
referatów; program Sesji; informacje o kołach naukowych – [Sessions of Students’ Sci-
entific Circles], Krakow, Poland, May 2008. AGH University of Science and Technology,
Wydawnictwo Studenckiego Towarzystwa Naukowego.

[183] S. Portegies Zwart, S. McMillan, S. Harfst, D. Groen, M. Fujii, B.Ó. Nualláin, E. Gleb-
beek, D. Heggie, J. Lombardi, P. Hut, et al. A multiphysics and multiscale software
environment for modeling astrophysical systems. New Astronomy, 14(4):369–378, 2009.

[184] Paweł Płaszczak. Securing highly distributed data collections. http://bigdatamatters.
com/bigdatamatters/2009/07/web-applications-security.html, July 2009.

[185] Tomás̆ Rebok. DiProNN: Distributed Programmable Network Node Architecture. In
Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow
Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[186] A. Rodriguez, D. Sulakhe, E. Marland, V. Nefedova, N. Maltsev, M. Wilde, and I. Foster.
A Grid-enabled service for high-throughput genome analysis. In Workshop on Case Stud-
ies on Grid Applications, 2004.

[187] Jan Ruthe, Grzegorz M. Wójcik, Wiesław A. Kamiński, Dorota Stanisławek, Michał
Żukowski, and Marek Falski. New System of Parallel and Biologically Realistic Neural
Simulation. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceed-
ings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-
Cyfronet AGH.

[188] K. Rycerz, M. Bubak, M. Malawski, and P. Sloot. A Framework for HLA-based Interactive
Simulations on the Grid. Simulation, 81(1):67, 2005.

[189] K. Rycerz, M. Bubak, M. Malawski, and P. Sloot. Grid Support for HLA-Based Col-
laborative Environment for Vascular Reconstruction. In e-Science and Grid Computing,
2006. e-Science ’06. Second IEEE International Conference on, pages 48–48, Dec. 2006.
doi: 10.1109/E-SCIENCE.2006.261132.

170

http://bigdatamatters.com/bigdatamatters/2009/07/web-applications-security.html
http://bigdatamatters.com/bigdatamatters/2009/07/web-applications-security.html

[190] S. K. Sadiq, D. Wright, S. J. Watson, S. J. Zasada, I. Stoica, and P. V. Coveney. Auto-
mated molecular simulation based binding affinity calculator for ligand-bound HIV-1
proteases. J Chem Inf Model, 48:1909–1919, Sep 2008.

[191] N. Santos and B. Koblitz. Metadata services on the Grid. Nuclear Inst. and Methods in
Physics Research, A, 559(1):53–56, 2006.

[192] B. Segal, L. Robertson, F. Gagliardi, and F. Carminati. Grid computing: the European
Data Grid Project. In Nuclear Science Symposium Conference Record, 2000 IEEE,
volume 1, pages 2/1 vol.1–, 2000. doi: 10.1109/NSSMIC.2000.948988.

[193] Sulev Sild, Andre Lomaka, and Uko Maran. OpenMolGRID: QSAR/QSPR Application
in Grid Environment. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’04, December 2004, Krakow, Poland, 2004.
ACC-Cyfronet AGH.

[194] A. Sim, A. Shoshani, P. Badino, O. Barring, JP Baud, F. Donno, M. Litmaath,
T. Perelmutov, D. Petravick, E. Corso, et al. The Storage Resource Manager Interface
Specification Version 2.2. In Open Grid Forum, 2007.

[195] Branislav Simo, Viera Sipkova, Martin Gazak, and Ladislav Hluchý. Interactive Air
Pollution Simulation in int.eu.grid. In Marian Bubak, Michał Turała, and Kazimierz
Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow,
Poland, 2007. ACC-Cyfronet AGH.

[196] Peter M. A. Sloot, Alfredo Tirado-Ramos, Ilkay Altintas, Marian Bubak, and Charles
Boucher. FromMolecule to Man: Decision Support in Individualized E-Health. Computer,
39(11):40–46, 2006. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/MC.2006.380.

[197] Peter M.A. Sloot, Alfredo Tirado-Ramos, Gokhan Ertaylan, Breanndan O Nuallain,
D. Van de Vijver, Charles A. Boucher, and Marian Bubak. VIROLAB: a Distributed
Decision Support System for Viral Disease Treatment. In Marian Bubak, Michał Turała,
and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07, October
2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[198] PMA Sloot, P.V. Coveney, G. Ertaylan, V. Müller, CA Boucher, and M. Bubak. HIV
decision support: from molecule to man. Philosophical Transactions A, 367(1898):2691,
2009.

[199] DA Stainforth, T. Aina, C. Christensen, M. Collins, N. Faull, DJ Frame, JA Kettlebor-
ough, S. Knight, A. Martin, JM Murphy, et al. Uncertainty in predictions of the climate
response to rising levels of greenhouse gases. Nature, 433(7024):403–406, 2005.

171

[200] V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, M. Rohm, J. Trnkoczy,
M. May, J. Franke, A. Schuster, and W. Dubitzky. Digging Deep into the Data Mine
with DataMiningGrid. Internet Computing, IEEE, 12(6):69–76, Nov.-Dec. 2008. ISSN
1089-7801. doi: 10.1109/MIC.2008.122.

[201] Mariusz Sterzel and Tomasz Szepieniec. Enabling Commercial Chemical Software on
EGEE Grid – Gaussian VO. In Marian Bubak, Michał Turała, and Kazimierz Wiatr,
editors, Proceedings of Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland,
2006. ACC-Cyfronet AGH.

[202] Mariusz Sterzel, Tomasz Szepieniec, and Daniel Harężlak. Grid Web Portal for Chemists.
In EGEE User Forum, Catania, Italy, March 2009. Presentation slides.

[203] R. D. Stevens, A. J. Robinson, and C. A. Goble. myGrid: personalised bioinformatics on
the information grid. Bioinformatics, 19 Suppl 1:i302–304, 2003.

[204] RD Stevens, H.J. Tipney, CJ Wroe, TM Oinn, M. Senger, PW Lord, CA Goble, A. Brass,
and M. Tassabehji. Exploring Williams-Beuren Syndrome Using myGrid, 2004.

[205] Graeme A Stewart, David Cameron, Greig A Cowan, and Gavin McCance. Storage
and data management in EGEE. In ACSW ’07: Proceedings of the fifth Australasian
symposium on ACSW frontiers, pages 69–77, Darlinghurst, Australia, Australia, 2007.
Australian Computer Society, Inc. ISBN 1-920-68285-X.

[206] Ileana Stoica, S Kashif Sadiq, Catherine V Gale, and Peter V Coveney. Virtual Physiolo-
gical Human research initiative: the future for rational HIV treatment design? Fu-
ture HIV Therapy, 2(5):419–425, 2008. doi: 10.2217/17469600.2.5.419. URL http:
//www.futuremedicine.com/doi/abs/10.2217/17469600.2.5.419.

[207] Alberto Sánchez Jr., María S. Pérez Jr., Pierre Gueant, and José M. Peńa Pilar Herrero.
DMGA: A Generic Brokering-Based Data Mining Grid Architecture. In Werner Dubitzky,
editor, Data Mining Techniques in Grid Computing Environments, pages 201–219. Wiley,
2008. doi: 10.1002/9780470699904.ch12.

[208] D. Talia. The Open Grid Services Architecture: where the grid meets the Web. Internet
Computing, IEEE, 6(6):67–71, Nov/Dec 2002. ISSN 1089-7801. doi: 10.1109/MIC.2002.
1067739.

[209] Andrzej Tarczyński, Tamas Kiss, Gabor Tersztyanszki, Thierry Delaitre, Dongdong Qu,
and Stephen Winter. Application of grid computing for designing a class of optimal
periodic nonuniform sampling sequences. Future Gener. Comput. Syst., 24(7):763–773,
2008. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2008.02.005.

172

http://www.futuremedicine.com/doi/abs/10.2217/17469600.2.5.419
http://www.futuremedicine.com/doi/abs/10.2217/17469600.2.5.419

[210] A. Thandavan, C. Sahin, and V. N. Alexandrov. Experiences with the Globus Toolkit
on AIX and Deploying the Large Scale Air Pollution Model as a Grid Service. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’04, December 2004, Krakow, Poland, 2004. ACC-Cyfronet AGH.

[211] The British Library, Leipzig University Library, St Catherine’s Monastery, and The
National Library of Russia. Codex Sinaiticus. http://www.codexsinaiticus.org/, July
2009.

[212] The GREDIA Consortium. The GREDIA Project Grid Enabled Access to Rich Media
Content. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of
Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet
AGH.

[213] The ViroLab Consortium. ViroLab, a Virtual Laboratory for Decision Support in Viral
Diseases Treatment. http://www.virolab.org/, July 2009.

[214] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby: The Pragmatic Pro-
grammers’ Guide, Second Edition. Pragmatic Bookshelf, October 2004. ISBN 0974514055.

[215] Keith Thomson. RE: [Globus-discuss] “gsiftp” vs. “gridftp”. http://www.globus.org/
mail_archive/discuss/2003/04/msg00380.html, 2003.

[216] A. Tirado-Ramos. Collaboratories on the Grid, Collaborative Software Architectures for
Interactive Biomedical Applications. PhD thesis, University of Amsterdam, 2007.

[217] A. Tirado-Ramos, P.M.A. Sloot, and M. Bubak. Grid-based Interactive Decision Support
in BioMedicine. Grid Computing for Bioinformatics and Computational Biology, page
225, 2007.

[218] Viet D. Tran and Ladislav Hluchý. Application Management in Earth Science. In Marian
Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Work-
shop - CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[219] TrueArt. Products – Plug-ins – VirtualRender. http://www.trueart.pl/?URIType=
Directory&URI=Products/Plug-ins/VirtualRender, July 2009.

[220] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X. 509 public
key infrastructure (PKI) proxy certificate profile. RFC3820, June, 2004.

[221] M. S̆terk, I. Leben, E. Milos̆ev, and G. Pipan. “River Soca Project” – Interactive Visual-
ization of Massive Amount of Data with a Grid-based Engine. In Marian Bubak, Michał
Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’06,
October 2006, Krakow, Poland, 2006. ACC-Cyfronet AGH.

173

http://www.codexsinaiticus.org/
http://www.virolab.org/
http://www.globus.org/mail_archive/discuss/2003/04/msg00380.html
http://www.globus.org/mail_archive/discuss/2003/04/msg00380.html
http://www.trueart.pl/?URIType=Directory&URI=Products/Plug-ins/VirtualRender
http://www.trueart.pl/?URIType=Directory&URI=Products/Plug-ins/VirtualRender

[222] A. Uyar, W. Wu, H. Bulut, and G. Fox. Service-oriented architecture for a scalable video-
conferencing system. In Pervasive Services, 2005. ICPS ’05. Proceedings. International
Conference on, pages 445–448, July 2005. doi: 10.1109/PERSER.2005.1506564.

[223] JakubWach. Collection and Storage of Provenance Data. Master’s thesis, AGH University
of Science and Technology in Krakow, Poland, 2008.

[224] L. Wang, W. Jie, and H. Zhu. State-of-the arts: workflow management for Grid comput-
ing. In M. P. Bekakos, G. A. Gravvanis, and H. R. Arabnia, editors, Grid Technologies
Emerging from Distributed Architectures to Virtual Organizations. WIT Press, 2006.

[225] R. Watson, S. Maad, , and B. Coghlan. Multiscale Multimodal Visualization on a Grid.
In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow
Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2006. ACC-Cyfronet AGH.

[226] Adianto Wibisono, Zhiming Zhao, Adam Belloum, and Marian Bubak. Towards a Virtual
Laboratory for Interactive Parameter Sweep Applications on the Grid. In Marian Bubak,
Michał Turała, and Kazimierz Wiatr, editors, Proceedings of Cracow Grid Workshop -
CGW’07, October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH.

[227] M. Widenius, D. Axmark, and P. DuBois. MySQL reference manual. O’Reilly & Asso-
ciates, Inc. Sebastopol, CA, USA, 2002.

[228] Stephen Wolfram. The Mathematica Book, Fifth Edition. Wolfram Media, 2003.

[229] J.C. Worsley and J.D. Drake. Practical PostgreSQL. O’Reilly Media, Inc., 2002.

[230] C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and L. Moreau.
Automating Experiments Using Semantic Data on a Bioinformatics Grid. Intelligent
Systems, IEEE, 19(1):48–55, Jan-Feb 2004. ISSN 1541-1672. doi: 10.1109/MIS.2004.
1265885.

[231] Cheng Yaodong, Gang Chen, Yongjian Wang, and Shuaijie Wang. Deploying HEP
Applications on Multiple Grid Infrastructures. In Grid and Cooperative Computing,
2008. GCC ’08. Seventh International Conference on, pages 632–641, Oct. 2008. doi:
10.1109/GCC.2008.78.

[232] Cheng Yaodong, Wang Lu, Liu Aigui, and Cheng Gang. Sharing LCG files across different
platforms. In Journal of Physics: Conference Series, volume 119, page 062024. Institute
of Physics Publishing, 2008.

[233] Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management Systems for Grid
Computing. Technical report, Journal of Grid Computing, 2005.

174

[234] Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow Systems For Grid
Computing. SIGMOD Rec., 34(3):44–49, 2005. ISSN 0163-5808. doi: http://doi.acm.
org/10.1145/1084805.1084814.

[235] Kurt D. Zeilenga. Lightweight Directory Access Protocol (LDAP): Technical Specification
Road Map. RFC4510, June, 2006.

[236] Valerie E. Zelenty (Editor). IEEE Recommended Practice For Software Requirements
Specifications. IEEE Std 830-1998, Oct 1998.

[237] Zhiming Zhao, S. Booms, A. Belloum, C. de Laat, and B. Hertzberger. VLE-WFBus: A
Scientific Workflow Bus for Multi e-Science Domains. In e-Science and Grid Computing,
2006. e-Science ’06. Second IEEE International Conference on, pages 11–11, Dec. 2006.
doi: 10.1109/E-SCIENCE.2006.261095.

[238] Zhiming Zhao, A. Belloum, M. Bubak, and B. Hertzberger. Support for Cooperative
Experiments in VL-e: From Scientific Workflows to Knowledge Sharing. In eScience,
2008. eScience ’08. IEEE Fourth International Conference on, pages 329–330, Dec. 2008.
doi: 10.1109/eScience.2008.120.

[239] Mikhail Zhizhin, Eric Kihn, Vassily Lyutsarev, Sergei Berezin, Alexey Poyda, Dmitry
Mishin, Dmitry Medvedev, and Dmitry Voitsekhovsky. Environmental Scenario Search
and Visualization. In GIS ’07: Proceedings of the 15th annual ACM international sym-
posium on Advances in geographic information systems, pages 1–10, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-914-2. doi: http://doi.acm.org/10.1145/1341012.1341047.

175

A LFC Data Source – User guide
The LFC Data Sources allow you to access EGEE / WLCG storage resources with a simple
Ruby API.

A.1 Data access workflow: registering the data source, storing cre-
dentials, using the data source from a script

The data access workflow is as follows:

1. Register data source in Data Source Registry. Information needed includes

a Connection details to the LFC Data Source server – a gateway to EGEE/WLCG
data resources

b Addresses and ports of following servers: LCG File Catalog (LFC) server, Berkeley
Database Information Index (BDII) and default storage element, which will be used
to store new files.

c Your Virtual Organization name.

2. Optionally, you can store your credentials in the DSR. This will allow you and other users
(if you permit) to access the data sources without specifying credentials in the script. In
order to make your credentials usable by other users, you must specify your credentials
as static. Information needed to enable credential-free access from the script is either:

a Your grid proxy certificate – note that proxy certificate is usually valid for only one
day, so this is a short-term solution. On the other hand, it allows you to use Single
Sign On authentication when accessing data sources without the need to store your
private key, grid certificate and password in the DSR.

b Another option is to store your complete credentials in the DSR. These include
private key, password to private key, and grid certificate. If your private key is
encrypted with a passphrase that you do not want other people to see (e.g. system
administrator), you may encrypt your private key with another passphrase of your
choice for this purpose:

openssl rsa -in userkey.pem -des3 -out userkey.pem.new

c The third option is to store only the grid certificate and private key in the DSR, but
without the passphrase. In order to use the data source, you will have to provide
the password in the constructor of DACConnector.

3. Once you have provided information about the data source and credentials (or if someone
else has done it for you) you may access the LFC data sources in your GScript files by
providing data source handle and optionally credentials.

176

A.2 DACConnector LFC DS specific constructors

LFC Data Source provides the constructors shown below. They are usually called by the
DACConnector.new command. Note that every argument passed to the new method is a String.
In the following examples the lfc-voce or lfc-egee string will be used as an example of a
handle. ds will be a local variable holding the reference to the instantiated LFC DS connector.

1-argument constructor You provide only the data source handle. Grid credentials must
be stored in the DSR in order to use this constructor. As noted before, the credentials may be
yours or other users who declared them static, i.e. permitted other authenticated users to use
them. For example:

ds = DACConnector.new(”lfc-voce”)

2-argument constructor, second argument: password The first parameter is the data
source handle. The second is the private key passphrase. This is useful when you choose the
option 2.c, i.e. stored only the private key and grid certificate but did not save the private key
passphrase.

ds = DACConnector.new(”lfc-voce”, ”your_passphrase”)

2-argument constructor, second argument: proxy certificate You may also provide
a String with a proxy certificate as a second argument. The LFC Data Source connector will
distinguish passwords from proxy certificates by their length. Anything that is longer than 300
characters will be assumed to be a proxy certificate. Example:

ds = DACConnector.new(”lfc-egee”, IO.read(”C:/x509up_u506”))
IO.read used to load a file into a String

or
ds = DACConnector.new(”lfc-egee ”, IO.read(”/tmp/x509up_u506”))

4-argument constructor: handle, private key, grid certificate and private key pass-
phrase You will probably use this constructor if you do not have a valid proxy or credentials
stored in the DSR. You may also be interested in this method if you want to override your DSR
credentials. Note, that if some or all your credentials are stored in the DSR, the “side effect”
of using this method will be storage of a new generated proxy in the DSR. However, if your
credentials are not stored in the DSR, the created proxy certificate will not be stored there.
All of the arguments are Strings. To easily load contents of a file into a String, you may use
the IO.read method shown before as in this example:

ds = DACConnector.new(”lfc-voce”, IO.read(”C:/userkey.pem”), \
IO.read(”C:/usercert.pem”) ”your_password”)

177

or
ds = DACConnector.new(”lfc-voce”, \

IO.read(”/home/username/.globus/userkey.pem”), \
IO.read(”/home/username/.globus/usercert.pem”), \
”your_password”)

A.3 LFC Data Source methods

At this stage, we have created an instance of the LFC Data Source. Now we can invoke methods
that operate on files and LCG File Catalog. A useful point worth noting is that with the LFC
data source connector, all paths begin with /grid/vo_name/. However, you do not have to
provide this prefix in your commands. For instance, this path

/grid/voce/username/important_project/experiment_data

would be expressed as follows (there are two possibilities):

username/important_project/experiment_data

or

/username/important_project/experiment_data

The beginning slash is optional.
The LFC methods are accessible both using the camelCase notation and ruby_notation.

They also have numerous aliases listed here and you are welcome to use whichever name you
prefer. Methods may return a DAC2Exception if the LFC DS connector detects an error in
the invocation parameters. If the LFC DS connector does not see any problems with the
parameters, it passes the invocation to LFC DS client – a Java library used to connect to the
LFC DS Server. If this java client cannot connect to the LFC DS server or receives an exception
from the server, it returns this exception to you as an LfcDsException. The LFC DS server will
throw an exception if for some reason it cannot execute the requested operation, e.g. it cannot
retrieve contents of a file. You may prevent some exceptions by checking the existence of files
or directories. This checking is not done on the client side as the communication with the LFC
catalog, although faster than access to storage elements, is still a noticeable performance hit.
Knowing the constructors used by the LFC DS connector, path specification convention and

exceptions that may be thrown, let us move onto the description of methods implemented by
LFC DS connector.

178

LFC DS connector methods

createDirectory(path)
createDirectory(path, child_directory)
Aliases: create_directory

Creates a new directory specified by path (one argument version) or creates a directory
of the name child_directory in the parent_directory. Returns true on success, false
otherwise. Examples:

use of an alias
ds.create_directory ”some_directory/another_directory”
use of the beginning slash ‘/’
ds.createDirectory ”/some/lengthy/path/some_directory”
two argument example
ds.create_directory ”some/lengthy/path”, ”some_directory”
two argument example with parentheses
ds.create_directory(”some/long/path”, ”some_directory”)

delete(path)
Aliases: deleteFile – for backward compatibility with scripts that use deleteFile

Deletes file or directory. Returns true on success, false otherwise. Example:
ds.delete(”some/long/path/some_directory”)
ds.delete ”some/long/path/some_file”

directory?(path)
Aliases: isDirectory, is_directory

Returns true if the item denoted by the path exists and is a directory; false otherwise.
ds.directory?(”some/path/file”) # would return false
ds.isDirectory ”some/path/directory” # would return true if the directory

exists

exist?(path)
Aliases: exist, exists, exists?

Returns true if the item represented by the path passed as an argument exists; false
otherwise.

file?(path)
Aliases: isFile, is_file

Returns true if the item indicated by the path passed as an argument exists and is a file;
false otherwise.

179

getFile(path)
Aliases: get_file

Returns a Java byte array representing the contents of a file. If the file does not exist an
exception is thrown. In order to convert the java byte array to string you may use the
String.from_java_bytes method as in the following example:

String.from_java_bytes \
ds.getFile(”some/directory/test_lfcds/test_file1.txt”)

Although streaming is used to download the contents of the file, creation of large byte
array objects may cause OutOfMemory errors. If you are accessing files of several hundreds
of megabytes, you are advised to use the openFile method, which is, on the other hand,
very convenient as it returns Ruby IO object.

Note that changes in the array returned will not be reflected in the file unless you save
them using storeFile method (although such a functionality called memory mapped file
might be very useful).

getSize(path)
Aliases: size?, size, get_size

Returns the size of the file represented by path – this information is retrieved from the
LFC catalog. Examples:

ds.size? ”/some/path/some_big_file.dat”
ds.getSize(”some/long/path/some/other/file.mov”)

listFiles(path)
Aliases: list_files

Returns a list of LfcDsItem objects. Each of these items respond to is_directory (or
isDirectory) method which allows you to get information whether the item represents
a directory or a file. In addition, each of the items responds to getName (or get_name)
method which returns the base name of a file, i.e. without the directory part. You may
iterate through the returned list in order to list available files in a directory. Example:

l=ds.listFiles(”/foo/bar/test_lfcds/”)
l.each do |item|

puts item.get_name + ” is a ” + \
if item.is_directory then ”directory” else ”file” end

end

The execution of the script above might yield the following results:

Test_file1.txt is a file
Test_dir is a directory
Test_file2.txt is a file

180

openFile(path, mode) { optional block }
Aliases: open, open_file

The mode parameter can be one of the following values:

• :r, :read, ”r”, ”read” – indicate that the file will be opened in a read mode

• :w, :w, ”w”, ”write” – means that the file will be opened in a write mode

Neither the LFC DS connector nor the LFC DS server do not support read-write mode.
You must choose whether you would prefer read from a file or write to a file. If the file
denoted by the path already exists, an exception is thrown. You must delete the previous
version of a file before you attempt to write a new version.

The path indicates the location of file to open. In the case of opening file to be read, the
file you requested is downloaded from Grid into the LFC DS server (not the same server
which runs GSEngine, but another that could be installed on an alternative machine).
This method returns a remote input stream for this file, which is converted to a Ruby IO
stream by the LFC connector. After you finish reading the file, you release it by invoking
the close method of the returned Ruby stream. The close method causes the temporary
file stored in the temporary directory on LFC DS server to be deleted. If you forget to
do this, it will be removed when LFC DS is restarted some time in the future. If you use
optional block, the file will be closed for you automatically, when the block ends; so it
may be preferred option to use the openFile method with a block. Example:

the openFile method used with the alias ”open” and a block argument
ds.open(”/foo/bar/test_lfcds/test_file3.txt”, ”r”) do |file|

file.each {|line| puts line}
end
example of a file opened and closed explicitly
f = ds.open(”/foo/bar/test_lfcds/test_file2.txt”, :read)
f.each {|line| puts line}
f.close

The file is streamed to you by the LFC DS server, after downloading from the Grid so you
should be able to access very large files using the methods described above. Nevertheless,
the machine on which LFC DS server runs must have enough storage in order to hold the
file in a temporary directory.

As regards writing a file, the commands are similar. The difference is that, as opposed
to a file opened for reading, a file opened for writing is first streamed to LFC DS server.
The LFC DS server then writes the stream to a file temporary directory. When you close
remote stream, the file is sent to the Grid and registered in the LFC catalog. If for some
reason, the file cannot be stored or registered in LFC, an LfcDsException is thrown. A
typical situation when this may occur is when you attempt to write to a file that is already

181

registered in the LFC catalog. As with a file opened for reading, the return value of the
openFile method opened for writing is a reference to a remote stream you can use to
manipulate the file. An example:

f = ds.open_file ”foo/bar/test_lfcds/test_file2.txt”, :write
f.puts ”First line of the file file 2”
f.puts ”Second line of the file file 2”
f.close # remember to close the stream
openFile invoked with a block
ds.openFile(”foo/bar/test_lfcds/test_file2.txt”, :w) do |f|

f.puts ”Another way to write to a file”
f.puts ”Note that close is not necessary”

end # here you do not have to close the stream - it is done for you

As you can see in the example above, you do not have to close the file explicitly if you use
a block argument, i.e. in this example the code between do and end. You could also use {
and } if you prefer; although the curly braces are often used for one line block argument:

ds.open(”foo/bar/test_lfcds/test_file2.txt”,”w”) \
{ |file| file.puts(”A short file”) }

storeFile(payload, path)
Aliases: store_file

This method stores a file whose contents are passed as java bytes in a payload parameter.
As with the openFile method, contents of file are first streamed to the LFC DS server
and stored in a temporary directory; next they are sent to the Grid and registered in
LFC catalog using the path specified by the client. True is returned when all of those
operations succeed, false otherwise. Examples:

Note the ”to_java_bytes” method which enables you
to turn a Ruby String into Java bytes array
ds.storeFile(”TEST file 1 contents”.to_java_bytes, \

”foo/bar/test_lfcds/test_file1.txt”)
ds.store_file ”TEST file 2 contents”.to_java_bytes, \

”foo/bar/test_lfcds/test_file2.txt”

If you are sending large files to the Grid the openFile method may be more suitable, as
creating large byte arrays may cause OutOfMemory errors.

zero?(path)

Returns true if file indicated by the path exists and has length of 0 bytes. Example:
ds.zero? ”/foo/bar/some/path/empty_file.txt”

182

 Abstract accepted for Cracow Grid Workshop 2009 (CGW'09) Conference

Integrating EGEE Storage Services with the Virtual Laboratory

Marek Pomocka (1), Piotr Nowakowski (2), Marian Bubak (3,4)
(1) Faculty of Physics and Applied Computer Science AGH, Krakow, Poland

(2) ACC CYFRONET AGH, Krakow, Poland

(3) Institute of Computer Science AGH, Krakow, Poland

(4) Informatics Institute, University of Amsterdam, The Netherlands

The advent of Grid technologies has enabled research at a pace not achievable using earlier methods,

which facilitates easier access to high-end computing and data resources. However, employing Grids

in scientific work is still a domain of highly skilled researchers, able to tackle the complexity of the Grid

environment. Although there have been successful endeavors that strive to provide a mature scientific

environment [1, 2, 3, 4] for scientific disciplines not normally related to computer science, fundamental

obstacles still prevent scientific communities from adopting Grids. These include the complexity of Grid

security solutions, such as Grid Security Infrastructure (GSI) and intricate access to core Grid

services, e.g. data catalogues and storage resources.

Our work aims to minimize the learning curve for access to Grid data services, specifically to LCG

File Catalogue (LFC) storage elements and GSI, concealing most technical details. The API we have

devised creates an abstraction of working with local files with no intervening GSI, i.e. with no Grid

certificate-related operations, although the user works with files stored on the Grid with all GSI

mechanisms in place. As regards other projects that deal with comparable issues, the Credential

Mapping Service [5] allows mapping one security system onto another, e.g. Kerberos authentication

tokens onto GSI certificates. Similarly, in our solution, Shibboleth handles are automatically mapped to

GSI certificates, relieving users from the burden of managing their own credentials. Furthermore,

Yaodong et al. [6] have developed GFISH (Grid File Sharing system), which includes a server

providing a web service API for the LFC catalogue and a related Java client with Grid user credentials

retrieved from a MyProxy server. They implemented the server using gSOAP, while utilizing Axis on

the client side, thus introducing significant transmission overhead. Our approach is also service-

oriented, however we relied on RMI-based protocols and libraries, namely the Cajo library for overall

communication and RMIIO for streaming. To provide secure transmission, our solution employs SSH

tunneling; thus we avoid the need to generate server certificates and to manage keystores (which is

an inherent feature of Transport Layer Security). Our development effort did not commence from

scratch. Instead, we build on previous work, such as ChemPo [1] LFC command wrappers and the

data access infrastructure prepared for the ViroLab [3, 4] project, specifically DAC2 [7] and Data

Source Registry (DSR). We have extended DSR so that it is able to store Grid user credentials and

information on new data source types, prepared a server that acts as a gateway between DAC2 and

EGEE/WLCG, developed a client library that communicates with this server and, finally, developed a

new DAC2 GScript [8] interface which makes use of the aforementioned components.

The result of our work is a new convenient API for managing and accessing files on the Grid, which

automates certificate management and mimics local file access and directory operations, e.g. the user

requesting a file from the Grid is handed a Ruby IO reference that points to a remote input or output

stream. Last but not least, the client API is independent of the gLite software, which makes it more

accessible to end users and does not impose additional dependencies on the GridSpace Engine [8] –

the Virtual Laboratory [3, 4] runtime. Future work might include providing fine-grained security. In

addition, further tailoring of the API to specific scientific scenarios may prove very valuable.

Acknowledgements

This work has been partly supported by the European Commission ViroLab Project [43] Grant 027446,

Polish SPUB-M grant, the AGH grant 11.11.120.777, and ACC CYFRONET-AGH grant 500-08, as

well as the Polish national PL-Grid project.

References
1. Mariusz Sterzel, Tomasz Szepieniec, and Daniel Harężlak. Grid Web Portal for Chemists. In

EGEE User Forum, Catania, Italy, March 2009. Presentation slides.
2. Mariusz Sterzel and Tomasz Szepieniec. Enabling Commercial Chemical Software on EGEE Grid

– Gaussian VO. In Marian Bubak, Michał Turała, and Kazimierz Wiatr, editors, Proceedings of
Cracow Grid Workshop - CGW’06, October 2006, Krakow, Poland, 2007. ACC-Cyfronet AGH.

3. PMA Sloot, P.V. Coveney, G. Ertaylan, V. Müller, CA Boucher, and M. Bubak. HIV decision
support: from molecule to man. Philosophical Transactions A, 367(1898):2691, 2009.

4. Marian Bubak et al., Virtual Laboratory for Collaborative Applications, In: M. Cannataro (Ed.)
Handbook of Research on Computational Grid Technologies for Life Sciences, Biomedicine and
Healthcare, Information Science Reference, 2009, IGI Global

5. Mehran Ahsant, Esteban Talavera Gonzalez, Jim Basney, "Security Credential Mapping in Grids,"
ares, pp.481-486, 2009 International Conference on Availability, Reliability and Security, 2009

6. C. Yaodong, W. Lu, L. Aigui, and C. Gang. Sharing LCG files across different platforms. In Journal
of Physics: Conference Series, volume 119, page 062024. Institute of Physics Publishing, 2008.

7. Matthias Assel, David van de Vijver, Pieter Libin, Kristof Theys, Daniel Harezlak, Breanndann O
Nuallain, Piotr Nowakowski, Marian Bubak, Anne-Mieke Vandamme, Stijn Imbrechts, Raphael
Sangeda, Tao Jiang, Dineke Frentz, and Peter Sloot: A Collaborative Environment Allowing
Clinical Investigations on Integrated Biomedical Databases. In Tony Solomonides, Martin
Hofmann-Apitius, Mathias Fredigmann, Sebastian Caludius Semler, Yannick Legre, and Mary
Kratz: Healthgrid Research, Innovation and Business Case; Proceedings of HealthGrid 2009,
Studies in Health Technology and Informatics, vol 147, IOS Press, ISSN 0926-9630, pp 51 -61

8. M. Malawski, T. Bartynski, and M. Bubak, "Invocation of operations from script-based grid
applications," Future Generation Computer Systems, vol. In Press, Accepted Manuscript, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.future.2009.05.012

EGEE/WLCG

CASTOR

dCache

LCG Disk pool manager

LFC server

Temporary

storage

Internet

LFC DS Server

gLite UI

GSEngine

DAC2

DACConnector

LFC DS

connector

DSR

Connectivity

commands

data streaming

LFC DS

client library

Experiment

Planning

Environment

(EPE)DSR

plugin

Data Source

Registry

Experiment

developer

ShibConnectivity

ShibRPC

GSEngine

Client
GScript

ds = DACConnector.new("lfc-voce")
ds.delete('test/test_lfcds')
ds.createDirectory("test/test_lfcds")
ds.directory? "test/test_lfcds"
ds.file? "test/test_lfcds/test_file1.txt"
ds.open("test/test_lfcds/test_file2.txt",) |f|

f.puts "First line"
f.puts "Second line"

ds.open("test/test_lfcds/test_file2.txt",) |file|
file.each {|line| puts line}

l=ds.listFiles("test/test_lfcds/")
l.each |item|
puts item.get_name + ' is a ' +

item.is_directory 'directory' 'file'

Sample script

Figure 1: Conceptual view of our solution together with a sample script accessing data and operating

on LFC catalogue

	Definitions, acronyms and abbreviations
	Acronyms and abbreviations
	Definitions

	Introduction
	Motivation
	Objectives
	Organization of the thesis

	Background
	The GridSpace platform
	GridSpace Engine deployment
	The Virtual Laboratory
	Data access in ViroLab
	Other projects based on GridSpace platform
	Storage services in gLite

	Needs to be addressed / Problems to be solved
	Providing access to EGEE/WLCG data sources
	Integration with the GridSpace Engine
	Automation of certificate management
	Extending the DSR plug-in to enable registration of LFC data sources

	Related work
	Other virtual laboratories
	Attempts to make the Grid service-oriented
	Data access and persistence in Grid projects
	Libraries providing access to gLite data resources

	General software requirements
	Scope
	Product perspective
	Product functions
	User characteristics
	Constraints
	Assumptions and dependencies

	Detailed requirements
	Functional requirements
	User interfaces
	Software interfaces
	Performance requirements
	Software system attributes

	Design description
	Design decisions
	Organization of Design description
	Identified stakeholders and design concerns
	Design views
	Composition
	Logical
	Dependency
	Information
	Interface
	Interaction

	Verification and validation
	Functional tests
	Performance tests

	Conclusions
	Summary
	Future work

	References
	LFC Data Source � User guide
	Data access workflow: registering the data source, storing credentials, using the data source from a script
	DACConnector LFC DS specific constructors
	LFC Data Source methods

	CGW'09 abstract

