
AGH University of Science and Technology
in Krakow, Poland

Faculty of Electrical Engineering, Automatics, Computer Science
and Electronics

Institute of Computer Science

Master of Science Thesis

Recording application executions
enriched with domain semantics of

computations and data

Michał Pelczar

Major: Computer Science
Specialization: Computer Systems and Databases Engineering

Matricula: 120576

Supervisor

Marian Bubak, Ph.D.
Consultancy

Bartosz Baliś, M.Sc.

Cracow 2008

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że
niniejszą pracę dyplomową wykonałem osobiście i samodzielnie i że nie korzystałem
ze źródeł innych niż wymienione w pracy.

Akademia Górniczo-Hutnicza
im. Stanisława Staszica

w Krakowie
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Katedra Informatyki

Praca magisterska

Zapisywanie przebiegu wykonania
aplikacji wzbogacone o semantykę

dziedzinową obliczeń i danych

Michał Pelczar

Kierunek: Informatyka
Specjalność: Inżynieria systemów komputerowych i baz danych

Nr albumu: 120576

Promotor

dr inż. Marian Bubak
Konsultacja

mgr inż. Bartosz Baliś

Kraków 2008

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że
niniejszą pracę dyplomową wykonałem osobiście i samodzielnie i że nie korzystałem
ze źródeł innych niż wymienione w pracy.

Abstract

Provenance, perceived as derivation history of data or recorded application execu-
tion, is considered to be a critical part of all modern e-Science infrastructures. It serves
as guarantee of data reliability and quality, regulatory mechanism of data protection
and mean of efficiency optimization. On the basis of properly represented and collected
provenance, reproducibility of scientific results is provided.

This thesis introduces a provenance ontology model covering workflow execution
tracking, data items dependency, resources availability, performance issues and se-
mantics of medical tools. The work is focused on a managable process of information
building, in which provenance ontology is created based on low level monitoring events
and data sets from distributed repositories. Semantically valuable representation, good
adaptivity to the evolving ontologies and schemas as well as support for different levels
of computation and data semantics are the main issues examined in this work. Within
the scope of this thesis also a user-oriented querying tool, dedicated for virologists
and clinicians, is presented. QUaTRO enables intuitive mining over both provenance
information and medical data by the means of abstract language and mapping ontolo-
gies. Presented approach is validated on geno2drs application supporting HIV virus
treatment and integrated into the ViroLab virtual laboratory.

Contents of this thesis is organized as follows. Chapter 1 gives motivation and
problem survey. Chapter 2 contains overview of basic aspects of Semantic Web, sci-
entific workflows, provenance and ViroLab. System requirements and overall solution
are investigated in chapter 3. Chapter 4 introduces the provenance information model
and the monitoring data model. The process of information building is discussed in
chapter 5, while the technical aspects of how the process is implemented are explained
in chapter 6. In chapter 7 the approach is validated against geno2drs application. The
practical usage of created information is presented in chapter 8. Finally, conclusion
and outcomes are described in chapter 9.

Keywords: e-Science, Semantic Web, ontologies, provenance, Grid, monitoring,
scientific workflows, virtual laboratories, ViroLab.

1

Acknowledgements

I wish to express my deepest gratitude and thanks to my supervisor Marian Bubak,
Ph.D., for his encouregment, expert guidance and invaluable commitment during the
work of this thesis.

I am also most grateful to Bartosz Baliś, M.Sc., for his time, meaningful criticisms
and very helpful collaboration.

This work was made possible thanks to the ViroLab project (http://www.virolab.
org).

http://www.virolab.org
http://www.virolab.org

Contents

Chapter 1. Introduction . 5

1.1. Motivation . 5

1.2. Objectives . 7

1.3. Organization of this thesis . 8

Chapter 2. Background: Semantic Web, provenance and applications 9

2.1. Semantic Web . 9

2.2. Scientific workflows . 12

2.3. Provenance . 13

2.4. ViroLab virtual laboratory . 14

Chapter 3. Concept of system for provenance recording 18

3.1. Overall requirements . 18

3.2. From requirements management to provenance mining 20

Chapter 4. Provenance model . 23

4.1. Monitoring data model . 23

4.1.1. Generic monitoring events . 23

4.1.2. Domain monitoring events . 26

4.2. Provenance ontology . 27

Chapter 5. Semantic Event Aggregator . 30

5.1. Main idea behind Semantic Event Aggregator 30

5.2. Monitoring events correlation . 32

5.3. Ontology Extension . 35

5.3.1. Derivation Concepts . 35

5.3.2. Concept of Delegates . 38

5.3.3. Aggregation Rules . 44

5.4. Experiment transaction support . 47

3

Contents

5.5. Semantic associations discovery . 52

5.5.1. Hashing individuals naming . 52

5.5.2. Knowledge history tracking . 54

5.5.3. Context association . 57

Chapter 6. Design and implementation of Aggregator 61

6.1. Aggregator architecture . 61

6.2. Aggregator deployment . 66

Chapter 7. Proof of concept: A drug resistance case study 70

7.1. Geno2drs scientific landscape . 70

7.2. Geno2drs ontology . 71

7.3. Geno2drs information building . 72

Chapter 8. Querying over provenance . 75

8.1. User-oriented querying approach . 75

8.2. Abstract query language . 76

8.3. Query processing . 79

8.3.1. Ontological queries . 82

8.3.2. Data base queries . 85

8.3.3. Relational queries . 85

8.3.4. Transient queries . 86

8.3.5. Inverse transient queries . 87

8.3.6. WebDAV queries . 87

Chapter 9. Summary and future work . 88

9.1. Outcomes . 88

9.2. Research outlook . 89

Appendix 1. Creation of monitoring events 91

Appendix 2. Logging of monitoring events 94

Appendix 3. GEMINI monitoring system . 96

Bibliography . 103

List of Figures . 106

List of Tables . 108

Publications . 109

Chapter 1

Introduction

This chapter briefly presents the scientific context of provenance. Idea of semantic de-

scription of information building process is presented together with main issues motivating

this approach. Finally, organization of this thesis is given.

1.1. Motivation

It is commonly agreed that the computer systems has a great impact on todays bi-
ological science. It must also be emphasized that the scientific discoveries pace heavily
rely on the capabilities offered by modern computational infrastructures. In the past,
computer support was limited to the appliance of desktop applications supporting
the creation of scientific models through preparing some mathematic and statistic
computations on data sets collected in local base. However, this situation has changed
dramatically with the rapid evolution of computers and internet. Development of
a vision of infrastructure providing the integration of numberous data repositories,
computational resources and communication channels as well as the support of collab-
oration among scientists would dramatically change the nature of science. Ideally, the
researcher would be able to design a scientific research at a high level by describing
the data sets he wishes to work with and the relationships he wishes to traverse by
using a graphical tool or a high level description language [10]. This leads to the idea
of e-Science.

5

1.1. Motivation

The main goal of science is to posses knowledge explaining natural phenomena
through the means of experiments. Similarly, the essential aspect of e-Science are
sophisticated virtual experiments, which integrate scientific code at a high modelling
level and may be executed in a distributed way, both in terms of computation and
data distribution. In such an approach, a scienfitic task is virtualized as workflow
describing the data processing stages and the data dependencies between these stages
[9]. Generally, the activities applied by workflow management system leads to the
achievement of two possible outcomes: solution of a particular problem or definition
of a new service [8]. From the other side, the pure results obtained through the
workflow execution are insufficient in scientific environment.

In e-Scientists community must exist a possibility to reproduce the scientific anal-
ysis in order to evaluate its validity [9]. Because of this, each piece of data must
be associated with its provenance, describing how this data was produced, in what
services and when it was trasformed, by who and it what context [7]. Moreover,
the provenance tracking system may record the entire experiment execution. The
data mining of workflows lifecycle history gives the possibilities to their optimizations
[9], what is especially valuable because high performance is essential in large-scale
computing.

As for now, provenance was analyzed in many terms: what is its purpose and
scope, what is the suitable model, in what way it should be stored and what are
the requirements for provenance accessing components. However, the aspect of how
provenance information is extracted is still on the research state. Therefore, it is
reasonable to define an experiment information building process that is semantically
described and conveniently manageable. This is justified for several reasons.

Firstly, in order to enable the provenance dissimination, there must be agreed a
common provenance understanding. That would be enable through the incorporation
of provenance into Semantic Web, in which all accessible information is given a well
defined meaning. This can be achieved by the development of provenance ontology
[5]. However, the ontology may be unstable so the building process must be easily
adaptive to the evaluating information model. In a desirable situation, the scientist
who augments the provenance ontology should be able to effortlessly redefine the
building process. He is expected to be familiarized with information modelling, so the
ontological description of building principles would be most convenient in management.

What is more, the provenance information is built on the basis of data sets accessi-
ble somewhere in the computational infrastructure. The most suitable infrastructures
for e-Science, providing data scaling, high performance computing and specialized sci-
entific instrumentation are grid systems [4]. The studies of essential grid components
leads to the conclusion, that the only existing source of data created transparently

6

1.2. Objectives

for the end-user and accurately reflecting the experiment course is monitoring in-
frastructure [3]. Therefore, there is a need to provide generic mapping between low
level monitoring data and high level provenance information. Generic design provides
the reusability of information building infrastructure, because it may be adapted to
another grid system differing in monitoring data model and provenance ontology.

Moreover, the building process should be easily extendable by the means of queries
adressing remote data sources. In such an approach, the high level ontology might be
extracted not only from low level monitoring data, but also from data bases and file
systems content. Translation of monitoring data model combined with another data
schemas to information would be a sophisticated and complex process. In order to
enable querying of distinct, distributed data storages implemented in different tech-
nologies and based on different models, there should exists possibility to integrate into
the building process middleware additional software mining the remote repositores.
Principles of this software usage would be described semantically.

Another aspect of provenance tracking is that not all computational resources
are incorporated into Semantic Web. Many services are not described semantically,
however, it should not be a reason to depreciate their magnitude in scientific workflows.
The same refers to the data sets with undefined meaning. The information building
component must be able to integrate, in a single provenance record, information about
data as well as computations modelled at different levels of semantic. That would also
serve as encouragement for the appliance of presented approach in grid systems where
semantics enrichment is at immature stage of development.

1.2. Objectives

The problem described in section 1.1 may be specified as the reconciliation of
abstract modules related to provenance. Main objective is to design and implement
a Provenance Creation Process, while the Provenance Model ontologically describes
its meaning. The provenance information is created from low level data delivered
from Data Producers by the means of Monitoring Infrastructure. Created information
should be recorded in Provenance Storage, which enables easy way of exploration by
Provenance Access component. Furthermore, this process may be augmented by the
usage of separate Data Access integrating distributed Data Bases. Requirements and
activities related with provenance system implementation are specified in chapter 3.
In comparison to the existing provenance systems, this project presents more flexi-
ble approach. Principles of provenance extraction are manageable by the means of
ontologies. What is more, this approach is truly semantic - ontologies are not only
used to annotate the provenance concepts expressed on lower level, but are directly
and explicitly built through their individuals. Moreover, provenance is well integrated

7

1.3. Organization of this thesis

with data, what enables more expressive and meaningful queries. Last but not least,
provenance is not built in grid middleware, but by a separate, dedicated service.

1.3. Organization of this thesis

Contents of this thesis is organized as follows. Chapter 1 gives motivation and
problem survey. Chapter 2 contains overview of basic aspects of Semantic Web, sci-
entific workflows, provenance and ViroLab. System requirements and overall solution
are investigated in chapter 3. Chapter 4 introduces the provenance information model
and the monitoring data model. The process of information building is discussed in
chapter 5, while the technical aspects of how the process is implemented are explained
in chapter 6. In chapter 7 the approach is validated against geno2drs application. The
practical usage of created information is presented in chapter 8. Finally, conclusion
and outcomes are described in chapter 9.

Chapter 2

Background: Semantic Web, provenance
and applications

This chapter characterizes more precisely the context of application execution recording.

Two aspects of e-Science are discussed: Semantic Web, together with its basic elements –

XML, RDF and OWL languages, and grid computing dedicated for workflow execution. OWL

features are illustrated by examples from ViroLab provenance ontology. There is also given

explanation of why provenance is so important for scientists. Finally, the architecture of

ViroLab virtual laboratory, in which scope this work is realized, is briefly described.

2.1. Semantic Web

Semantic Web is an extension of the current one, in which data is given well-defined
meaning [5]. Thanks to the formal description of data types, particular data items
accessible in the Web are understand in the same way by people exchanging the Web
resources. This is crucial because of interoperability issue. In order to share something
in a distributed way, for example a virus gene, there must be agreement about what
a gene is, how genes are named and what pieces of data can be attached to a gene
[10]. The data associated with taxonomy describing its semantics is called informa-
tion. Besides inter-community coooperation, semantic information also enables the
cooperation between people and computers. Data items present in computer systems
are not abstract for human, as row from a data base table or file, but are named with a

9

2.1. Semantic Web

taxonomy comprises concepts coming from the real world surrounding people in their
everyday life.

Many technologies has been developed in order to meet the Semantic Web chal-
lenge [46]. Most of them are regulated and recommended by The World Wide Web
Consortium (W3C) [45].

XML (eXtensible Markup Language) [31] enables arbitraly structural organization
of documents, however, without defining their meaning. XML data model is specified
by tree-based XML Schema [18, 17]. Basically, XML serves as serialization language
for languages being at higher level of abstraction, as RDF.

RDF (Resource Description Framework) [48] is dedicated for description of Web
resources metadata in a form of statements about them. Statement is represented
as RDF triple comprises two Web resources: the subject and the predicate, uniquely
identified by URI (Universal Resource Identifier), and the predicate specifying relation
between them. In such approach, particular Web resources have properties with certain
values. RDF data model is specified by graph-based RDF schema (RDFS) [47].

Applying of taxonomy to RDF resources provides a commonly agreed understand-
ing of RDF assertions. OWL (Ontology Web Language) [19, 20, 21], built upon RDFS,
models the Web resources description vocabulary trough ontologies. Ontology may
be perceived as specification of a conceptualization [1], it serves as Semantic Web
inter-lingua.

There exist some similarities between OWL ontology model and typical object
model. Essential OWL features are depicted below:

• Class – a general concept, abstract set of individuals which share the same prop-
erties, but can differ in these properties values.

• Individual – a concrete instance of a given class.
• Sub-class relation – introduces an element of taxonomy, indicates that one class

derives all properties from another one, namely, one class is a more specific kind
of another class.

• Object Property – defines relationship between classes, the individuals may be as-
sociated with each other by concrete object propety values. Each object property
has particular range class and domain class.

• Datatype Property – defines some data attributes of a class. Each datatype property
has particular domain class and range data type.

• Sub-property – introduces relationship between properties, indicates that one prop-
erty is a more specific kind of another property.

A simple example of OWL specification of a virtual experiment concept is presented

10

2.1. Semantic Web

below. The class is modeled through RDF resource. Typically, all names within a
concrete ontology are augmented with its name space:

1 <ow l :C la s s rd f : about=” h t t p : //www. v i r o l a b . org / onto /exp−protos /Experiment”>

Class properties are defined as RDF triples:

1 <owl :DatatypeProperty
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos /name”>
3 <rd f s :domain
4 r d f : r e s o u r c e=” h t t p : //www. v i r o l a b . org / onto /exp−protos /Experiment”/>
5 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>
6 </ owl:DatatypeProperty>

The next piece of code presents how to introduce a new concept – ExecutionStage,
which is an abstract part of the experiment, and define, through object property, new
relationship:

1 <ow l :C la s s
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos / ExecutionStage ”/>
3

4 <owl :ObjectProperty
5 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos / executedIn ”>
6 <r d f s : r a n g e
7 r d f : r e s o u r c e=” h t t p : //www. v i r o l a b . org / onto /exp−protos /Experiment”/>
8 <rd f s :domain
9 r d f : r e s o u r c e=” h t t p : //www. v i r o l a b . org / onto /exp−protos / ExecutionStage ”/>
10 </ owl :ObjectProperty>

The relation of generalization is introduced in a ditinct RDF triple:

1 <ow l :C la s s
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos /Computation”>
3 <rd f s : subC la s sO f>
4 <ow l :C la s s
5 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos / ExecutionStage ”/>
6 </ rd f s : subC la s sO f>
7 </ owl :C la s s>

Besides meta-data, ontology may also include conrete data item, which is called
ontology individual. This is equivalent to classes and its objects in the object model.
Individuals are uniquely identified by URIs:

1 <exp−ns:Experiment rd f : ID=” h t t p : //www. v i r o l a b . org / onto /exp−protos /Exp1”>
2 <exp−ns:name r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
3 geno2drs
4 </exp−ns:name>
5 </ext−n s : Experiment >

11

2.2. Scientific workflows

It is a good practice to put some restraints on the allowed OWL constructions, sim-
ilar to contraints in the data bases or object models, what forces the ontology author
to create individuals making more sense, and therefore more accurately representing
the modeled domain. A sample restraint is construction which states that a concrete
property must be functional:

1 <owl :ObjectProperty
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos / executedIn ”>
3 <r d f : t y p e
4 r d f : r e s o u r c e=” h t t p : //www. w3 . org /2002/07/ owl#Funct ionalProperty ”/>
5 </ owl :ObjectProperty>

Another OWL contraints as well as another, more advanced, OWL features applied
in the designed ontologies are described in the next chapters.

W3C distinguishes three dialects of OWL language:

• OWL Lite has the lowest formal complexity and supports only generalization hier-
archy with the simplest constraints.

• OWL DL is more expressive, it enables almost all language constructs, however,
the reasoning over OWL DL is more complex.

• OWL Full is the most expressive dialect, in which all OWL features are supported,
but the conclusions based on ontologies are not guaranteed to be computable.

Due to performance reasons, OWL Lite is used, cause both the Semantic Web
frameworks, as Jena [34], as well as the reasoning software, as Pellet [35], are still at
a very immature state of development.

There is no commonly used standard of ontology visualization. Therefore, a rep-
resentation similar to the UML model is used, extended with circular coloured shapes
indicating the ontology affiliation, as in Fig. 4.3.

Ontologies support reasoning, which is based on sub-class and sub-property rela-
tions and reflects basic rules of deduction realized by human brain in the perception
of surrounding concepts. In the preceding example, reasoning software is able to
presume that a Computation is an ExecutionStage. On the basis of this deduction,
some more sophisticated reasoning may be applied. Ontological information together
with reasoning rules may be perceived as knowledge.

2.2. Scientific workflows

Scientific experiments are often very complicated – they include various steps of
analysis and are based on huge amounts of data. In order to support the scientists,
there were introduced a workflow – a virtualization of experiment, which cover all steps

12

2.3. Provenance

of data analysis. The steps representing processes and computations are linked accord-
ing to the data flow and dependencies among them [9]. The workflow management
systems must provide automatic execution, covenient management and provenance
recording. Morever, it must enable high-performance computing and large-ditributed
databases. These requirements are met in Grid technologies [3]:
• Thanks to the collaboration between different institutions in virtual organizations

(VO), the resources used in workflows may be shared and reused. Grid systems
include mechanisms providing management and usage of well-ditributed computa-
tional units, data storages, network resources and code repositories.

• Workflows optimization is supported by software discovery services, which select
the best sotfware implementation and execution platform on the basis of some
particular workflow task parameters.

• Data access realized by workflows is efficient thanks to the data replication services,
what refers to many performance metrics such as response time, reliability and cost.

• Monitoring services control resources availability and deliver events about workflow
enactment status. Monitoring events may reflect the experiment course, informing
about Web Services invocations as well as queries adressing data storages and
transformations applied to the fetched data sets.

The reconciliation of grid computing, which provides computation scalability with Se-
mantic Web, providing high level data scalability, constitutes the idea of Semantic
Grid, essential part of e-Science.

2.3. Provenance

Provenance may be defined as metadata that pertains to the derivation history of
a data product starting from its original sources [6].

As provenance refers to many aspects of metadata (the seven W’s : Who, What,
Where, Why, When, Which, hoW), there is a need for taxonomy defining provenance
scope. Basically, four types of provenance may be distinguished [7]:
• Process provenance Unambiguous workflow execution trac specyfing what ser-

vices were invoked respecting their orchestration.
• Data provenance Graph of data items, describing how concere data objects de-

pend on other data sets, from the input parameters and partial results to final
workflow results.

• Contextual provenance Context of enactment. Information of who is the work-
flow executor, in what project the experiment is developed and what is the hy-
pothesis being validated.

• Organization provenance Circumstances in which the contextual information
were created and how they evolved.

13

2.4. ViroLab virtual laboratory

This complete data lineage serves in many fields of data usage:

• Incorporation of provenance into Semantic Web, constituting the idea of provenance
web [7], significantly extends the provenance information interoperability. That
enables a meaningful collaboration within the research community. Publicated
scientific results are possible to be validated through the reproducing of conditions,
in which a concrete piece of data was obtained, in similar environment.

• Scientists are able to reuse the results obtained by others and draw their own
hypothesis as well as utilize the results in their own experiments. In this cases,
credibility of data is crucial. It is especially important due to the scale of obtained
results quantity. A researcher is interested only in data stored in trusted reposito-
ries and published by trusted people, being sure of its reliability and quality.

• Provenance may also serve as a regulatory mechanism of sensitive data protection.
For example, having a convenient insight into how medical data is used in experi-
ments, by who and in what services, data managers from clinics and hospitals might
be more willing to share their data with another virtual laboratory participants.

2.4. ViroLab virtual laboratory

ViroLab virtual laboratory (VLvl) [23, 2, 24] constitutes an idea of unifying the
medical scientific community, computer science community and healthcare profession-
als in the activity on the field of infectious diseases treatment. Its goal is to integrate
data bases storing information about patients from European hospitals, provide a
modern environment for development and execution of medical experiments within
a grid infrastructure and expose decision support systems that would be valuable in
treatment process.

From the practical point of view, three main classes of VLvl users may be identified:

• Experiment Developers People who write the experiments using the develop-
ment environments offered by VLvl. They are expected to posses strong program-
ming skills as well as basic medical knowledge sufficient to understand the meaning
of virological data and the requirements of clinic researchers.

• Scientists People doing some research in the field of infectious diseases. They
execute the experiments prepared by the developers. Their responsibility is to
design scenarios of how to execute concrete experiments as well as to decide what
data the experiments should be parameterized with and how to use their results
in other experiments. Additionally they prepare, in cooperation with developers,
prototypes of new experiments.

• Clinical Virologists People who search through all data available within the
VLvl, including the experiment results. They apply some data mining to the

14

2.4. ViroLab virtual laboratory

integrated data in order to support their decisions during a treatment process.
From their point of view, the most valuable aspects of VLvl are the integration of
the information from many hospital data bases into a unified schema accessible in
a single point and mixing of the original data with the experiment results.

It seems clear that the Experiment Developers will be interested mostly in pro-
gramming tools, while the Scientists in experiments enactment environments and the
Clinical Virologist in data and results exploration tools. It also has to be emphasized,
that, since all their activities are somehow related to data, all of them will be somehow
involved in data provenance. It is also strongly believed, that the ontologies are a great
mean to serve as inter-lingua between these three kinds of specialist, because a high
level of abstraction provide the understandability by all of them.

Main layers of VLvl grid infrastructure are conceptualized in Fig. 2.1.

Figure 2.1: VLvl layers. Laboratory enables the cooperation between three kinds of
users. Figure source: http://virolab.cyfronet.pl.

Overall system architecture is presented in Fig. 2.2.
Vlvl components listed below are directly related with provenane. Please note, that

understanding of the purpose of these components and of how they function within
VLvl is crucial for the following studies.

• Grid Resources Registry (GRR) A registry storing information about services
accessible from experiments. All computational units are virtualized as so-called
Grid Object (GO) and must be registered in GRR before farther usage. These
resources are classified in a triple hierarchy. A Grid Object is defined only by
the methods specification. It has one or more Grid Object Implementations

15

http://virolab.cyfronet.pl

2.4. ViroLab virtual laboratory

Figure 2.2: VLvl grid architecture. Provenance tracking is realized by a separate
component. Figure source: http://virolab.cyfronet.pl.

(GOI), which differ in the implementating technology. GRR supports the wrap-
ping of Web Services, MOCCA components, WSRFs and local jobs. A particular
implementation has one or more Grid Object Instances , which are concrete,
deployed services with a known and accessible endpoint.

• Experiment Planning Environment (EPE) A development environment based
on Eclipse. The experiments are developed in script JRuby language [40]. By the
usage of EPE platform, it is possible to write scripts, synchronize them with SVN
repository, develop new services and deploy the services as Grid Objects. The
functionality of EPE can by easily extended by writing new plugins, dedicated, for
example, for ontology browsing.

• Experiment Management Interface (EMI) An environment devoted for the
experiments management, versioning and execution. It also display the experiment
results and gain feedback from the user. EMI is integrated in a web portal.

• Grid Application Optimizer (GrAppO) A component responsible for the
most optimal selection of concrete Grid Object Implementation and Grid Object
Instance, on the basis of some historial and current performance data, in order
to provide the highest possible experiment evaluation efficiency. It is especially
important when dealing with medical services, which offer long term computations.

• Grid Space Engine (GSEngine) An enactment engine executing the experi-

16

http://virolab.cyfronet.pl

2.4. ViroLab virtual laboratory

ment scripts. In can be installed on a local machine, or, optionally, experiments
may be executed remotely on a server. The main important, from the provenance
point of view, GSEngine parts, are Runtime component which directly interprets
the script and Invoker which executes the grid operations on Grid Object Instances
selected by GrAppO.

• Data Access Client (DAC) A VLvl client for the more generic Data Access
Service (DAS). It integrates all the data bases accessible within the VLvl in a
single, accessible point. DAC is independent from the underlying technologies and
supports basic SQL constructions. One of the most important VLvl challange is
the migration of all clinical data bases into the unified schema.

• Provenance Tracking System (PROToS) A provenance XML data base. It
stores ontological information in an optimized, distributed way and provide a num-
ber of algorithms guarantying a high performance of ontological queries processing.
It may be perceived as an event-driven component, because the pieces of informa-
tion are delivered to PROToS in a form of events passed by Web Services.

• Query Translation Tool (QUaTRO) A provenance access component. It ex-
poses a graphical interface for the construction of queries accessing both PROToS
and DAC components, providing the ability of mining both over provenance infor-
mation and data. Some aspects of the QUaTRO implementation are explained in
details in chapter 8.

Chapter 3

Concept of system for provenance
recording

In this chapter, provenance infrastructure is conceptualized on high abstraction level.

Overall requirements addressing provenance recording and querying are specified. There is

also presented solution overview.

3.1. Overall requirements

Provenance system architecture is conceptualized in Fig. 3.1. Components directly
included in the scope of this thesis are marked with yellow color.

Implementation of the provenance system includes following activities:

• Design information model for provenance,
• Design data model for monitoring system,
• Adapt existing monitoring infrastructures to the provenance requirements,
• Define ontology creation process,
• Design and implement component realizing the process,
• Incorporate the component into system grid infrastructure,
• Design and implement provenance access component.

Both the information model as well as the data model are expected to:

• Be understandable by the human user, especially by a non-IT specialist,

18

3.1. Overall requirements

Figure 3.1: Abstract provenance architecture. Provenance information model influ-
ences the creation process, defines the semantics of stored provenance data and regu-
lates the expresiveness of provenance queries.

• Captures possibly many details of modelling domain,
• Introduces series of contraints in order to provide data integrity,
• Avoids data redundancy,
• Uses expressive modeling relationships like generalization, association and aggre-

gation,
• Be easy to evaluate in a sense of fast storing and querying.

It is justified, that the ontology creation process should meet following require-
ments:

19

3.2. From requirements management to provenance mining

• Be provenance-model-independent, i.e. well adaptive to the evaluating provenance
ontologies,

• Be data-model-independent, i.e. well adaptive to the evaluating monitoring data
model,

• Be reconfigurable,
• Be augmentable trough accessing additional information from distributed data

bases,
• Be easy to integrate with end-user’s pieces of software, regardless of implementation

technology,
• Provides integrity and coherency of created information,
• Presents high level of performance,
• Supports different levels of data granularity,
• Supports different levels of information semantics.

The expectations addressing the provenance accessing component are as follows:

• Be convenient to use by non-IT specialists,
• Be extendable, through providing the ability to increase the provenance queries

expressiveness,
• Be independent from the underlying querying technologies,
• Provides optimizations of query evaluation,
• Provides the transparency of data sources distribution,
• Enables accessing both provenance storage and data bases, as well as another data

repositories,
• Be easy to integrate in Web portal.

3.2. From requirements management to provenance mining

There were identified all activities in ViroLab, both the ones existing earlier and the
ones newly intruduced, that are somehow related to the undertaken problem. The 13
abstract steps constitute the whole process leading from monitoring data to knowledge
mining. Some of these steps, not yet mentioned, are explained in details in the next
chapters. All of them, integrated with each other, provide the solution for the problem
presented in chapter 1. The steps are presented in Fig. 3.2

1. Requirements Management Some information from the end-users, the clini-
cians and virologists, is collected, in order the get to know their exeptations ad-
dressing the provenance querying. On the basis of the outcomes, after the feasibility
study, some requirements for QUaTRO are specified.

20

3.2. From requirements management to provenance mining

Figure 3.2: 13 abstract steps leading from provenance requirements management to
provenance mining. Most of them are included in this thesis scope.

2. Models Design A proper XSD model for monitoring system and OWL models
for data, experiment and medical scenarios are designed.

3. Libraries Generation On the basis of the XSD model, there are generated, either
automatically or by hand, libraries enabling convenient interaction with monitoring
infrastructure.

21

3.2. From requirements management to provenance mining

4. Services Deployment Services used in experiments are developed, deployed and
registered as Grid Objects. During this, GRR publishes monitoring events referring
to resources availability.

5. Experiment Development Experiments supporting concrete scenarios are im-
plemented. The author of the script may publish additional monitoring events in
order to augment the provenance semantics.

6. Experiment Execution The experiment is executed within the VLvl enactment
engine.

7. Events Publication During the experiment execution, some monitoring events
are published by Runtime, Invoker and, possibly, another components.

8. Events Correlation All the events referring to the same activities, components
or types of data are correlated.

9. Events Aggregation The correlated events are aggregated, that means, basing on
the low-level monitoring events containing pure data, they are generated high-level,
semantically valuable ontological events.

10. Events Translation The aggregated ontological events are translated into
PROToS-specific events that can be delivered directly by its Web Services.

11. Query Construction A query addressing PROToS as well the relational data
bases behind the DAC is constructed with the support of Graphical User Interface.

12. Query Execution The constructed query is effectively executed by a sophisti-
cated processing engine.

13. Result Rendering The obtained results are rendered in a way understandable
by the user.

Chapter 4

Provenance model

In this chapter models for monitoring and provenance are presented. XSD schema of

monitoring events is explained, including generic events comprises pure XML data and

domain events describing OWL individuals. Also the requirements addressing provenance

ontology are specified. Finally, ontology model meeting these requirements is visualized and

commented.

4.1. Monitoring data model

4.1.1. Generic monitoring events

Several events that may occur in VLvl were identified. Events describing the
experiment course and the appearance of new available services were incorporated
into the monitoring data model:

• ApplicationStarted, ApplicationFinished refer to experiment enactment
• GridOperationInvoking, GridOperationInvoked refer to computations
• DataAccessQuerying, DataAccessQuered refer to Data Access calls
• GridObjectRegistered, GridObjectImplementationRegistered, GridObjectInstanceReg-

istered refer to resources availability

All events are enclosed in abstract event of type MonitoringData. This type is
associated with comprised event type and resource in which a concrete event was
generated:

23

4.1. Monitoring data model

1 <xsd:complexType name=” MonitoringData ”>
2 <xsd : sequence>
3 <xsd :e l ement name=” a p p l i c a t i o n S t a r t e d ” type=” App l i ca t i onSta r t ed ”
4 minOccurs=”1” maxOccurs=”1”/>
5 </ xsd : s equence>
6 <x s d : a t t r i b u t e name=”dataTypeID” type=”xsd:NMTOKEN”
7 f i x e d=” events . app l i c a t i on−s t a r t e d ”/>
8 <x s d : a t t r i b u t e name=” resourceID ” type=” x s d : s t r i n g ”/>
9 </xsd:complexType>

Monitoring schema includes also Application Correlation Identifier (ACID), de-
scribed in details in section 5.2. XSD conceptual model is presented in Fig. 4.1.

Figure 4.1: Monitoring XSD schema. The events reflect basic experiment activities.
ACID identifier enables the correlation of events sharing application context.

Also the computational resources: Grid Objects, Grid Object Implementations and
Grid Object Instances are represented on the XSD-schema level, as in Fig. 4.2.

As for the events describing the beginning and the end moments of some activities,
to avoid the data redundancy, most of the data entities is collected in the beginning

24

4.1. Monitoring data model

Figure 4.2: XSD schema for events informing about resources availability. Resources
removal is not included because of the provenance information immutability.

event, while the finish event stores only its time and the ACID needed to correlation,
as in following example:

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <MonitoringData dataTypeID=” events . app l i c a t i on−s t a r t e d ”>
3 <a p p l i c a t i o n S t a r t e d
4 time=” 1216142825504 ”
5 executedBy=”JohnDoe”
6 s o u r c e F i l e=” repo1 / geno2drs ”
7 version=” 4 .1 ”
8 name=” geno2drs ”>
9 <ac id>

10 <a p p l i c a t i o n id=”app1”/>
11 </ ac id>

12 </ a p p l i c a t i o n S t a r t e d>

13 </ MonitoringData>

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <MonitoringData dataTypeID=” events . app l i c a t i on−f i n i s h e d ”>
3 <a p p l i c a t i o n F i n i s h e d
4 time=” 1216142855505 ”>
5 <ac id>

6 <a p p l i c a t i o n id=”app2”/>
7 </ ac id>

8 </ a p p l i c a t i o n F i n i s h e d>

9 </ MonitoringData>

25

4.1. Monitoring data model

4.1.2. Domain monitoring events

Besides the generic events, the model includes also the events related to a concrete
medical domain. The main difference between the generic event and the domain ones
is that the domain event directly reflects the domain ontology and therefore it can be
mapped almost 1:1 to ontology individual. This approach is motivated with the fact
that the domain ontology exactly specified the type of event that may be published in
monitoring system.

There does not exist a method of transferring the OWL individuals. In fact, the
individuals usually reside frozen in an immutable ontology storage. This is typical
for OWL model structure, in which individuals may be recorded only in the context
describing their domain ontology. However, there is a need for a method of trans-
fering only small pieces of ontology represented by single individuals. Therefore, the
individual specification is enclosed in the existing generic events model. All properties
should be specified explicitly in the MonitoringData object. Thanks to this, the do-
main individual description may be augmented with its time and the ACID number,
what is justified for several reasons, described in the following chapters. There were
introduced dedicated tags, class and property containing the ontological class URI as
well as the properties URIs with the associated values.

Sample domain event structure is presented below. The event reflects domain ontol-
ogy class that models invocation of a particular medical service. Functional properties
are recorded explicitly. Object properties, which refer to data ontology individuals
describing data sets that were used or obtained, are recorded implicitly. That means,
instead of the individual identifiers, the identifiers specifying localization of reference
objects in Data Access are recorded. Thanks to this, the reponsibility of data individ-
uals instantiation is shifted from the component which publishes monitoring event to
the component aggregating this event.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <MonitoringData dataTypeID=” events . domain . newDrugRanking”>
3 <NewDrugRanking time=” 1216165279568 ”>
4 <ac id>

5 <a p p l i c a t i o n id=”appID”/>
6 </ ac id>

7 <c l a s s name=” h t t p : //www. v i r o l a b . org / onto / drs−protos /NewDrugRanking”/>
8 <property name=” h t t p : //www. v i r o l a b . org / onto / drs−protos / resu l tRanking ”
9 value=”324623”/>
10 <property
11 name=” ht t p : //www. v i r o l a b . org / onto / drs−protos / testedMutat ion ”

26

4.2. Provenance ontology

12 value=”138421”/>
13 <property name=” h t t p : //www. v i r o l a b . org / onto / drs−protos / r eg i on ”
14 value=”RT”/>
15 <property name=” h t t p : //www. v i r o l a b . org / onto / drs−protos / usedRuleSet ”
16 value=”ANRS”/>
17 </NewDrugRanking>
18 </ MonitoringData>

4.2. Provenance ontology

The experiment provenance ontology, visualized in Fig. 4.3, was designed in order
to meet the exceptations of all components and users and cover several aspects of
VLvl, with respect to requirements desribed in section 1.2.

• Experiment re-execution The experiment is virtualized as a sequence of ab-
stract execution stages. Currently, two kinds of stages are realized in experiments:
invocation of a grid operation of a particular grid objects or a query addressing
the DAC. When the experiment is being executed, its next stages are continously
recorded. Each stage is situated in a concrete moment of time – thanks to this,
they can be ordered and there appears a complete, unequivocal experiment trace.
Thanks to that trace, it is possible to execute the experiment once again, the whole
experiment, in a case it has failed or only some parts of it in more complicated use
cases.

• Data dependencies Each execution stage is associated with its input and output
data. The input data is usually read from DAC or created in one of the earlier
stages. The output data is a newly created piece of information. After the as-
sociation of output data from some stages with input data of another stages it
is possible to determine a complete provenance graph, expressing exactly how a
concrete piece of data was obtained, from what information, in which operations,
by usage of what resources, when, by who, in context on what experiment. It is a
complete provenance information, which is called a fine-grained provenance.

• Results management Besides the fine-grained provenance, also a so-called
coarse-grained provenance is recorded. It does not refer to the results of concrete
stages, but rather to the results of complete experiments. An experiment result
is, unlike a computation result, a more complicated entity, saved in one of the
separate data storages, such as as WebDAV [37], and augmented with more detailed
technical and security-related information.

• Performance The ontology includes historical performance information. For each
computation, some technical data is recorded, such the duration, the processor us-
age and the memory usage. This information may be used in the algorithms offered

27

4.2. Provenance ontology

by GrAppO for the selection of the most efficient Grid Object Implementation and
Grid Object Instance.

• Resources availability The ontology directly reflects the triple computational
resources hierarchy, including Grid Object, Grid Object Implementation and Grid
Object Instance. GRR is responsible for providing the current information about
newly registered Grid Objects and Grid Object Implementations, as well as newly
deployed Grid Object Instances.

Principles of ontology experiment building are described in chapter 5. Experiment
ontology is linked with a series of domain ontologies, which describe the contexts
of particular medical workflows. There is an assumption, that there exists exactly
one domain ontology per one medical scenario. The ontology describes the semantics
of computations realized in this scenario. Domain ontologies are linked with a data
ontology, which describes data sets analyzed or produced by medical services.

4.2. Provenance ontology

Figure 4.3: Experiment ontology reflects 5 aspects of provenance in ViroLab: ex-
periment trace, results metadata, data dependencies, performance optimization and
services availability.

29

Chapter 5

Semantic Event Aggregator

Detailed description of provenance information building is given in this chapter. The

purpose of component Semantic Event Aggregator is presented. It is explained, why corre-

lation of monitoring events is important. Idea of ontology extension, which annotates the

experiment ontology, is introduced, together with its main elements – concepts describing the

derivation of information, delegates incorporating separate pieces of code and aggregation

rules. Next, experiment transaction is defined. Also the principles of associating of created

individuals are depicted.

5.1. Main idea behind Semantic Event Aggregator

As described in the preceding chapters, in VLvl exist: PROToS reponsible for the
ontology storage, the infrastructure responsible for the generation and transferring
of the monitoring data, the ontologies describing metadata and the data producers.
There is high need for the one missing component – the one responsible for the building
of ontologies from the monitoring data. This component should satisfy the following
requirements:

• Ontology Independence Because ontology is a model of a specific real-world
domain, it is expected to be constantly extended and modified, so that it would
reflect the modeled domain in a better way. At the mature state of an ontology
life cycle it is expected to contain more detailed information and more associations

30

5.1. Main idea behind Semantic Event Aggregator

addressing another related ontologies. After the refinement of an ontology, the new
component should be able to create the new information details.

• XSD Schema Independence The continuously changes applied to laboratory
components make them able to provide more specific technical information. So the
XSD schema may be also extended, similar like the ontologies. After the refinement
of the XML events model, the new component should be able to make use of the
additional available data.

• Configurable The information building process should be extendible and easily
reconfigurable. As far it is possible, the building manners should be described in a
semantically valuable way.

The proposed component is Semantic Event Aggregator, serving as a mediator
between monitoring infrastructure and the ontology storage, as in Fig. 5.1

Figure 5.1: Semantic Event Aggregator builds the provenance information on the
basis of monitoring events. It is configurable by ontology describing the semantics
of aggregation principles. External data sources may be queries in order to augment
information expressiveness.

31

5.2. Monitoring events correlation

5.2. Monitoring events correlation

The monitoring events hierarchy, with respect to the origin granularity, comprises:

• upper-level events that correspond to concrete application
• middle-level events that correspond to concrete stage of a particular application
• low-level events that correspond to concrete sub-stage of a particular stage within

a particular application

A stage is an abstract concept. In general, all experiments may be decomposed into
many stages, in most cases Grid Object Calls and Data Access Queries. However, the
stages may be also constituted by some computations defined explicite in the scripts,
for example concrete regions of experiment code.

A sub-stage is also an abstract concept. The current event model does not include
low-level events, however, the extension of granularity is possible to implement. For
example, a Grid Object Call might be decomposed into computations executed on an-
other, transparently called grid objects (what constitutes a typical workflow approach)
or regions of code implementing the Web Service logic layer.

Tab. 5.1 presents a sample VLvl experiment execution context:

Appli App1 App2
cation
Stage 1 2 3 1 2 3

GO DA GO GO DA DA
Call Query Call Call Query Query

Region 1 2 3 1 2 3 4 5 1 2 1 1 2 3 1 2 3 4 5 6

Table 5.1: Sample experiment execution context.

In this example two applications, App1 and App2 are executed in parallel. Both of
them have three stages, executed sequentially. As in this example, a monitoring event
origin may be localized as point in a multidimensional, hierarchical space (one of the
rectangular areas within the table). What is more, the monitoring events come from
different VLvl components and occurred in different moments of time.

Because of the described issues, there is a need to provide the correlation of the
monitoring data. This correlation must be organized in a hierarchical way to enable
the association of different pieces of monitoring data at their different origin levels.
This is provided with Application Correlation Identifier (ACID). In order to provide
a convenient extension of XML monitoring events, ACID is also organized as an XML
tag:

32

5.2. Monitoring events correlation

1 <xsd:complexType name=”ACID”>
2 <xsd : sequence>
3 <xsd :e l ement name=” a p p l i c a t i o n ” type=” Appl i ca t ion ” minOccurs=”1”
4 maxOccurs=”1”/>
5 </ xsd : s equence>
6 </xsd:complexType>

At the top level of the ACID structure, there exists Application tag, identified with
a unique string value:

1 <xsd:complexType name=” Appl i ca t ion ”>
2 <xsd : sequence>
3 <xsd :e l ement name=” task ” type=”Task” minOccurs=”0” maxOccurs=”1”/>
4 </ xsd : s equence>
5 <x s d : a t t r i b u t e name=” id ” type=” x s d : s t r i n g ”/>
6 </xsd:complexType>

In this approach ACID is designed in a generic way. It enables the decomposition
of some experiment stages into more granular sub-stages continuously, introducing as
many granularity levels as needed. Sub-stages are defined in a recursive way:

1 <xsd:complexType name=”Task”>
2 <xsd : sequence>
3 <xsd :e l ement name=” subtask ” type=”Task” minOccurs=”0” maxOccurs=”1”/>
4 </ xsd : s equence>
5 <x s d : a t t r i b u t e name=” id ” type=” x s d : s t r i n g ”/>
6 </xsd:complexType>

That enables farther decomposition, as in the Fig. 5.2

Figure 5.2: Experiment decomposition. Monitoring event may be published in the
context of experiment stage, local invocation or code region.

33

5.2. Monitoring events correlation

All event producers are responsible for the augmentation of the created events with
ACID. It can be easily done by incorporation of ACID tag into event XML structure,
as in following example:

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <MonitoringData dataTypeID=” events . gr id−opera t ion invok ing ”>
3 <gr idOperat ionInvok ing
4 time=” 1215338465487 ”
5 name=” drs ”
6 endpoint=” h t t p : // v i r o l a b . cy f r one t . p l : 8 080 ”>
7 <ac id>

8 <a p p l i c a t i o n id=”app1”>
9 <task id=” tsk1 ”/>
10 </ a p p l i c a t i o n>

11 </ ac id>

12 </ gr idOperat ionInvok ing>

13 </ MonitoringData>

All components participating in experiment execution generate their own parts
of ACID on a proper granularity level. GSEngine generates the application iden-
tifier while Invoker generates unique identifiers for all Grid Object Calls. In such
an approach all workflow components are aware of the ACID temporal structure
and each component is responsible for the passing of already augmented ACID to
sub-components, as in Fig. 5.3

Figure 5.3: Passing of ACID between VLvl components. At each execution level,
ACID is augmented with newly generated identifier.

The technical problem of how to pass ACID parts to the Web Service context (see
arrow with Task ID in the above figure) remains unsolved , however, it is necessary to
enable the correlation of events that would be published directly in Web Services.

34

5.3. Ontology Extension

The described hierarchical ACID structure additional benefit is that it, assuming
appropriate monitoring infrastructure support, enables sophisticated, structural events
subscriptions, as in following use cases:

• subscribe for all upper-level events
• subscribe for all events concerning a concrete application
• subscribe for all upper-events concerning a concrete application
• subscribe for all middle-level events
• subscribe for all middle-level events concerning a concrete application
• subscribe for all middle-level events concerning a concrete application and a con-

crete Grid Object Call context
• subscribe for all middle-level events concerning a concrete Grid Object Call context

5.3. Ontology Extension

The significant problem to be solved is how to transform the collected and cor-
related raw XML data into ontological information. There should be provided a
well-defined and convenient mapping between XML data and OWL data. What is
more, also the data describing the mapping principles should be represented and stored.
Three approaches to that problem were considered:

• Enclose mapping information in ontology
• Enclose mapping information on XML data
• Enclose mapping information in a distinct representation

The first solution was choosen to be applied, so that the mapping principles would
have a well-defined semantic and remains understandable by a human being. In fact,
in such approach, the Aggregator is configurable by an ontology.

Therefore, an ontology extension was defined – a dedicated ontology which de-
scribes how to build another ontology from the correlated XML data. There is an
assumption that there exists exactly one ontology extension per one ontology built be
the Aggregator. Moreover, the extension must not influence the ontology itself.

The extension is designed to consist of three kinds of content – aggregation rules,
derivations concepts and semantic annotations.

5.3.1. Derivation Concepts

It is of high importance then, when dealing with a well-defined semantic, all kinds
of information should be classified in an ontological concepts hierarchy. It also refers to
the information describing how to create the ontology. At a high level of abstraction,
derivation concept is proposed. This is an individual describing how a concrete onto-

35

5.3. Ontology Extension

logical property derives from collected XML data – namely, it describes the derivation
of an ontological property. This part of ontology extension is presented in the Fig. 5.4

Figure 5.4: Ontology extension is a separate ontology annotating the ontology being
built. It comprises derivation objects, which specify how values of properties should
be established and aggregaton rules describing the principles of monitoring events
processing.

In a trivial case, an XML element is mapped directly to a functional property. A
concept describing such a mapping was called an XMLDerivation. This concept has
only one functional property called element:

1 <ow l :C la s s rd f : ID=”XMLDerivation”/>
2 <rd f s : subC la s sO f r d f : r e s o u r c e=”#Der ivat ion ”/>
3 </ owl :C la s s>

1 <owl :DatatypeProperty rd f : ID=” element ”>
2 <rd f s :domain r d f : r e s o u r c e=”#XMLDerivation”/>
3 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>
4 </ owl:DatatypeProperty>

The element property defines how a concrete value is placed within the XML
document, what is recorded in XPath [22] format.

All the derivation concepts are associated with the ontological properties by OWL
AnnotationProperty structure. The annotations are defined in ontology extension. The
example in the next figure presents the Experiment class and some of its annotations,
as in Fig. 5.5

36

5.3. Ontology Extension

Figure 5.5: Each property of newly created individual is annotated. Each annotation
describes value localization in XML file or invocation of a separate piece of code.

There is an assumption that all the annotated properties are established in Aggre-
gator. If some annotations are missed, the created information may be incomplete. A
sample definition of a derivation concept is presented below:

1 <r d f : D e s c r i p t i o n
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto / expprotos /ownerLogin”>
3 <ext−n s : d e r i v a t i o n>

4 <ext−n s : D e r i v a t i o n>

5 <ext−ns : e l ement
6 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
7 MonitoringData / a p p l i c a t i o n S t a r t e d /ownerLogin
8 </ext−ns : e l ement>
9 </ext−n s : D e r i v a t i o n>

10 </ext−n s : d e r i v a t i o n>

11 </ r d f : D e s c r i p t i o n>

It indicated that the value of ownerLogin experiment property should be copied
from the MonitoringData/applicationStarted/ownerLogin localization in XML file.

37

5.3. Ontology Extension

5.3.2. Concept of Delegates

During the further, advanced studies it appeared that the simple mapping between
XML data and OWL individuals is insufficient and that the knowledge collected in
this way is not valuable enough to apply the desirable data mining.

The knowledge creation process was organized in a most generic and extendible
way. The suitable solution is to provide the ontology extension author with the ability
to design and implement his own computational units that would be utilized during
the processing of collected data. In such an approach, there are no restrictions on
how the information creation complicated would be, it depends only on the ontology
extension author’s development skills.

A concept of delegates is proposed. Delegate is a distinct, independent computa-
tional unit whose usage may be defined in ontology extension. Thanks to this, the
creation of information may be delegated from Aggregator to a separate component.
The delegate is identified by its unique name and offers a number of methods accessible
within the Aggregator context.

Thanks to such an approach, many crucial problems regarding the transforma-
tion between XML data and OWL data may be solved. Delegates would enable the
following functionality:

• Transformation between data formats Some data entities included in XML
events may be represented in a format that is not suitable in OWL language. The
data types built in XML Schema recommended for use with OWL are xsd:string,
xsd:long, xsd:double, xsd:time, xsd:date, xsd:dateTime, xsd:boolean. A dedicated
delegate is responsible for the conversion to the above formats.

• Aggregation of the collected data The differences between ontology models
and XML models are present also in data granularity. Some pieces of XML da-
tums are not mapped directly to the ontological pieces of information, therefore,
they should be aggregated. In this case, a single piece of information is derived
from several pieces of data. This may be an implication of some events-related
issues. To exemplify this, let us put into consideration events referring to the
beginning and to the end of a concrete activity. The collected data determines
only the moments of beginning and the end of this activity. But the valuable
information about this activity might be only the duration time. In this case, the
duration must be calculated so that the information about the beginning and the
end moments is no longer need to be stored. All the time moments are represented
as number of in milliseconds between the events and midnight, January 1, 1970
UTC. The converted time information is represented in one of the xsd:dateTime
correct formats:

38

5.3. Ontology Extension

<Year>-<Month>-<Day>T<Hours>:<Minutes>:<Seconds>
Duration information is represented also as a xsd:duration data type.

• Generation of individuals identifiers All individuals created in the ontology
are identified in an unique way. This is provided by rdf:ID tag. Instead of leaving
the identifier generation to the semantic framework it is more reasonable to take
control of the identifiers, and through this have an unambiguous access to all of
the created individuals. The motivation for such an approach, as well as practical
implementation and usage is described in following chapters.

• Querying PROToS Delegate may search through the concepts instantiated in
the past in order to associate them with already instantiated individual.

• Querying Data Access Delegate may extract information, that augment XML
data, for example data origin, from data bases.

It is of high importance that the implementation of delegates should be as simple as
possible so it would be convenient to develop them for the ontology extension author.
The ontology extension designer is expected to be a specialist in ontologies, XML
and OWL languages but, furthermore, he should be also familiarized with delegates
implementation technology. For that reason, the best approach would be to design the
delegates in technology-independent way. However, it is extremely hard to achieve,
mostly from the technological issues. In this situation, the ontological description of
the delegates usage should be language-independent and through this it will be easily
extendable, but the support for some additional implementation languages will be
provided in the future.

To provide the language-independence an abstract delegate specification is in-
troduced. A delegate can by unequivocally identified by its name. It should be a
fully-qualified name, containing package names, because the localization of a compu-
tational unit name inside a concrete name space is a commonly used approach, present
in many modern programming languages.

A delegate is constituted by a set of methods. To access a concrete method, it
is necessary to specify the method name and its parameters, which are restrained to
string types. Also, the method return value should be of string type, for two reasons.
Firstly, it is better not to support some advanced data types, because some data
formats may be unavailable in some programming languages, so such an approach
leads to the loss of language-independence. Secondly, the return values are expected
to be translated directly to OWL property values, the one that is annotated with this
concrete delegate. As for string type, this transformation is fast and simple, it is only
the way of placing the return value into the XML tag.

The invocation of delegate methods is described semantically in ontology:

39

5.3. Ontology Extension

1 <ow l :C la s s rd f : ID=” De legateDer ivat ion ”/>
2 <rd f s : subC la s sO f r d f : r e s o u r c e=”#Der ivat ion ”/>
3 </ owl :C la s s>

1 <owl :Funct iona lProper ty rd f : ID=” de l e ga t e ”>
2 <r d f : t y p e
3 r d f : r e s o u r c e=” h t t p : //www. w3 . org /2002/07/ owl#DatatypeProperty ”/>
4 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>
5 <rd f s :domain r d f : r e s o u r c e=”#Der ivat ion ”/>
6 </ owl :Funct iona lProperty>

1 <owl :Funct iona lProper ty rd f : ID=” delegateMethod ”>
2 <r d f : t y p e
3 r d f : r e s o u r c e=” h t t p : //www. w3 . org /2002/07/ owl#DatatypeProperty ”/>
4 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>
5 <rd f s :domain r d f : r e s o u r c e=”#Der ivat ion ”/>
6 </ owl :Funct iona lProperty>

The conceptual problem is how to semantically describe the parameters passed to
the called delegate. OWL language does not support a structural primitive data types,
while, in this case, there is a need to specify a list of parameters. The OWL data type
properties are only conceptual associations – they are defined and analyzed regardless
of their order. In fact, there is no semantic description of order-sensitive list data type,
what is justified, because a list is a technical programming concept, not a conceptual
value present in a real world, hence should not be represented in ontology.

However, the order of delegate parameters should be somehow represented. Five
approaches to that problem were examined:

1. RDF list notation [15] RDF language supports the list properties. To describe
list-like structure, one should use rdf:List tag, which defines a special instance of
rdf:Class. The properties used to specify the position of a concrete item on the list
are rdf:first and rdf:rest. This is done in a notation of three kinds of triples:
L rdf:first I indicates that item I is the first resource on list L
L rdf:rest L2 indicates that the rest elements of list L (omitting the first item) are
placed on list L2
L rdf:rest rdf:Nil indicates that list L has only one item, it functions as terminator
In this notation, the specification of three sample method invocation parameters
param1, param2, param3 is relatively complicated:

1 <r d f : L i s t
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto / extens i on / DelegateParameters ”>
3 < r d f : f i r s t
4 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>

40

5.3. Ontology Extension

5 param1
6 </ r d f : f i r s t>
7 < r d f : r e s t>
8 <r d f : L i s t>
9 < r d f : f i r s t
10 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
11 param2
12 </ r d f : f i r s t>
13 < r d f : r e s t>
14 <r d f : L i s t>
15 < r d f : f i r s t
16 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
17 param3
18 </ r d f : f i r s t>
19 < r d f : r e s t r d f : r e s o u r c e=”&rd f ;# n i l ”/>
20 </ r d f : L i s t>
21 </ r d f : r e s t>
22 </ r d f : L i s t>
23 </ r d f : r e s t>
24 </ r d f : L i s t>

2. RTF shorted list notation, numbered [16] In a shorten notation, the list
items may be specified in tags rdf: n, where n is the position of the node element
on the list. The method parameters might be specified be the definition of RDF
sequence, as in the following example:

1 <r d f : S e q
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto / extens i on / DelegateParameters ”>
3 <r d f : \ 1 r d f : r e s o u r c e=”param1”/>
4 <r d f : \ 2 r d f : r e s o u r c e=”param2”/>
5 <r d f : \ 3 r d f : r e s o u r c e=”param3”/>
6 </ r d f : S e q>

3. RDF shorten list notation, unnumbered [16] RDF defines also a property
rdf:li that is equivalent to rdf: n. The difference is that the list element ordered
number must not be specified, however, the order that this properties appear in
XML documents is relevant. A corresponding RDF sequence is presented below:

1 <r d f : S e q
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto / extens i on / DelegateParameters ”>
3 < r d f : l i r d f : r e s o u r c e=”param1”/>
4 < r d f : l i r d f : r e s o u r c e=”param2”/>
5 < r d f : l i r d f : r e s o u r c e=”param3”/>
6 </ r d f : S e q>

41

5.3. Ontology Extension

4. OWL list OWL does not support ordering, however, it would be possible to model
a list-liked structure in a new ontology or adopt an existing ontology containing
such model. The conceptual model of list class would be similar like in the approach
adapted in RDF, as in Fig. 5.6

Figure 5.6: List conceptual model. Its structure is defined recursively.

There should be defined a List class, possibly derived from more generic Collec-
tion concept. The connectors between list items should be modeled as ontological
properties, as in Fig. 5.7
hasFirst – object, functional, non-transitive property
hasRest – object, functional, non-transitive property

Figure 5.7: List structure description expressed in OWL language.

Some cardinality restrictions should be imposed on these properties. Actually,
OWL supports such restrictions – their specification should be enclosed in separated
tags:

42

5.3. Ontology Extension

1 <o w l : R e s t r i c t i o n>

2 <owl :onProperty r d f : r e s o u r c e=”#hasF i r s t ”/>
3 <owl :maxCardina l i ty
4 r d f : d a t a t y p e=”&xsd ; nonNegat iveInteger ”>1</ owl :maxCardina l i ty>

5 </ o w l : R e s t r i c t i o n>

1 <o w l : R e s t r i c t i o n>

2 <owl :onProperty r d f : r e s o u r c e=”#hasRest ”/>
3 <owl :maxCardina l i ty
4 r d f : d a t a t y p e=”&xsd ; nonNegat iveInteger ”>1</ owl :maxCardina l i ty>

5 </ o w l : R e s t r i c t i o n>

5. OWL properties not supported semantically The last considered solution is
to specify the parameters as simple functional properties, as in the following piece
of code:

1 <owl :Funct iona lProper ty rd f : ID=” delegateParameter ”>
2 <r d f : t y p e
3 r d f : r e s o u r c e=” h t t p : //www. w3 . org /2002/07/ owl#DatatypeProperty ”/>
4 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>
5 <rd f s :domain r d f : r e s o u r c e=”#Der ivat ion ”/>
6 </ owl :Funct iona lProperty>

This approach is not order-sensitive. It means that the parameters order is not
described semantically, so, if some reasoning is applied to this ontology, the order
is transparent for the reasoner and therefore cannot be checked. However, it is
reasonable to make assumption that the ontology parser built in Jena framework
will always parse the properties in the specified order. That means the information
about the order is lost during the ontology processing, as in Fig. 5.8

Figure 5.8: Parameters order information incoherency. OWL model is parameters
order insensitive.

This may lead to the information inconsistency. In order to apply this solution,
two assumptions have to be taken:
• (*) The ontology storage does not apply changes in OWL file structure so that

it remains unchanged from the moment it was designed by user

43

5.3. Ontology Extension

• (**) The Semantic Web Framework used in ontology parsing parse the func-
tional properties in the order they are specified in OWL file.

The solutions (1), (2), (3) have beed dismissed, as RDF triples are not semantically
valuable, so there are no advantages in comparison with the (5). The (4) approach is
too complicated and may cause that the ontologies will not be understandable by the
user. The (5) is not ideal solution, however, the requirements (*), (**) are possible to
be satisfied. The ontologies after their designing are deployed as OWL files on HTTP
service and do not undergo farther changes. Furthermore, the only used Semantic
Web Framework is Jena, which parser is properties order sensitive.

At the current stage of development, the delegates are implemented in Java tech-
nology. A sample delegate usage refers to the experiment duration. It can be computed
by the invocation of method getDuration exposed by ExperimentPlugin delegate:

1 <r d f : D e s c r i p t i o n
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos / durat ion ”>
3 <ext−n s : d e r i v a t i o n>

4 <ext−n s : D e r i v a t i o n rd f : ID=” Durat ionDer ivat ion ”>
5 <ext−n s : d e l e g a t e
6 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
7 cy f r one t . g r id space . mring . aggregator . d e l e g a t e s . ExperimentPlugin
8 </ext−n s : d e l e g a t e>
9 <ext−ns :de legateMethod
10 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
11 getDurat ion
12 </ext−ns :de legateMethod>

13 <ext−ns :de l egateParameter>
14 MonitoringData / a p p l i c a t i o n S t a r t e d / time
15 </ext−ns :de l egateParameter>
16 <ext−ns :de l egateParameter>
17 MonitoringData / a p p l i c a t i o n F i n i s h e d / time
18 </ext−ns :de l egateParameter>
19 </ext−n s : D e r i v a t i o n>

20 </ext−n s : d e r i v a t i o n>

21 </ r d f : D e s c r i p t i o n>

The list of currently used delegates and their responsibilities is presented in Tab.
5.2.

5.3.3. Aggregation Rules

While the derivation concepts describe how to create ontological individual from
correlated XML data, the aggregation rules define when the process of aggregation
should be initiated, what subset of gathered XML data should be used and what

44

5.3. Ontology Extension

Delegate Method Result
ExperimentPlugin getExperimentID Experiment individual identifier

getGOID GridObject individual identifier
getGOIID GridObjectInstance individual identifier
getGOpInvocationID Computation individual identifier
getXSDTime time converted to xsd:dateTime format
getDuration the duration of experiment

the duration of computation

GOIPlugin findGOIByEndpoint GridObjectInstance individual identifier

Table 5.2: Delegates.

ontological class should be instantiated. Like the derivation concepts, the aggregation
rule is modeled semantically as an ontological concept.

An aggregation rule comprises following information:

• What event type should be correlated The aggregated event types typically
refer to the same activity. When all the related events type are registered in
Aggregator, the information creation process may be triggered, because all the
monitoring data related to this concrete aspect of VLvl is collected. Typical cor-
related events pair refers to the beginning and to the end of some activity – for
example ApplicationStarted and ApplicationFinished.

• The ACID number correlation level The existence of two events of correlated
types is not enough to trigger the aggregation process, because these events may
differ in the origin context – for example, ApplicationStarted and ApplicationFin-
ished events may come from different applications. Therefore, aggregation rule
contains also information of how the correlated events ACID identifiers should be
related. If the correlation level is 1, it means that the events must have the same
application identifiers thus must come from the same application. If the correlation
level is 2, they additionally must have the same task identifier thus must come from
the same application stage. The correlation level 3 indicates the same sub-stage.
An exception is the correlation level set to 0. Events of this type are not correlated
with each other but are processed directly after the appearance in aggregator. The
examples of such directly-aggregated events are the registration of a new Grid
Object, Grid Object Implementation or Grid Object Instance.

• What ontological classes should be instantiated when an aggregation
rule is satisfied This is the implementation of declarative programming approach.
When the aggregation process begins and the related XML data is provided, the
Aggregator engine creates an individual of a particular class and then studies all

45

5.3. Ontology Extension

of the annotations of its properties. Proper values of these properties are estab-
lished on the basis of derivation concepts and the available XML data. Therefore,
the shape of created information depends on how many ontological properties are
annotated and how valuable is the XML data from already correlated monitoring
events. Also, the created information may be extended by the querying the Data
Access for additional data, what should be implemented in a delegate dedicated
for the accessing of data bases.

The rule definition in OWL language is presented below:

1 <ow l :C la s s rd f : ID=” AggregationRule ”/>
2

3 <owl :DatatypeProperty rd f : ID=”eventType”>
4 <rd f s :domain r d f : r e s o u r c e=”#AggregationRule ”/>
5 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>
6 </ owl:DatatypeProperty>

7

8 <owl :DatatypeProperty rd f : ID=” i n s t a n t i a t e d C l a s s ”>
9 <rd f s :domain r d f : r e s o u r c e=”#AggregationRule ”/>
10 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”/>
11 </ owl:DatatypeProperty>

12

13 <owl :Funct iona lProper ty rd f : ID=” acidCoherency ”>
14 <r d f : t y p e
15 r d f : r e s o u r c e=” h t t p : //www. w3 . org /2002/07/ owl#DatatypeProperty ”/>
16 <rd f s :domain r d f : r e s o u r c e=”#AggregationRule ”/>
17 <r d f s : r a n g e r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#i n t ”/>
18 </ owl :Funct iona lProperty>

The aggregation rules are defined on the basis of the above schema, as in following
example:

1 <ext−ns :Aggregat ionRule rd f : ID=” ExperimentAggregation ”>
2 <ext−ns:eventType
3 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
4 Appl i ca t i onSta r t ed
5 </ext−ns:eventType>
6 <ext−ns:eventType
7 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
8 Appl i ca t i onF in i shed
9 </ext−ns:eventType>
10 <ext−n s : i n s t a n t i a t e d C l a s s
11 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
12 h t t p : //www. v i r o l a b . org / onto /exp−protos /Experiment
13 </ext−n s : i n s t a n t i a t e d C l a s s>
14 <ext−ns :ac idCoherency

46

5.4. Experiment transaction support

15 r d f : d a t a t y p e=” h t t p : //www. w3 . org /2001/XMLSchema#i n t ”>
16 1
17 </ext−ns :ac idCoherency>

18 </ext−ns :Aggregat ionRule>

This rule states that the events ApplicationStarted and ApplicationFinished should
be aggregated with each other in a case they have the same application identifier.
When such an aggregation does take place, an Experiment class should be instantiated
on the basis of the XML data from these two events.

Another examples of aggregation rules addressing the experiment ontology are
presented in Tab. 5.3

Event types ACID Instantiation
coherency
level

ApplicationStarted 1 http://www.virolab.org/onto/exp-protos/
ApplicationFinished Experiment

GridOperationInvoking 2 http://www.virolab.org/onto/exp-protos/
GridOperationInvoked Computation

DataAccessQuerying 2 http://www.virolab.org/onto/exp-protos/
DataAccessQuered DataAccessCall

GridObject 0 http://www.virolab.org/onto/exp-protos/
InstanceRegistered GridObjectInstance

GridObject 0 http://www.virolab.org/onto/exp-protos/
ImplementationRegistered GridObjectImplementation

GridObjectRegistered 0 http://www.virolab.org/onto/exp-protos/
GridObject

Table 5.3: Aggregation rules.

5.4. Experiment transaction support

In the presented events processing model, the ontology individuals may be classi-
fied, with respect to correlation time, into three groups:

• Individuals created immediately after the appearance of new event in Aggregator
• Individuals created after the appearance of two events, which appear one-by-one
• Individuals created after the appearance of two events, which are distant in time

There exists only one ontological class from the third group – Experiment, instan-
tiated after the appearance of ApplicationStarted and ApplicationFinished events. In

47

5.4. Experiment transaction support

the period of time between these two moments there appear many events related to this
experiment, what results in instantiation of individuals describing experiments stages,
despite the fact the Experiment individual does not yet exist. This is presented on
the figure below. Above the time-line are situated the events delivered to Aggregator
while under the time-line are situated the created individuals, as in Fig. 5.21

Figure 5.9: Time relation between events. Events describing individuals are delivered
to PROToS directly after aggregation of corresponding monitoring events.

This may lead to the information-inconsistency, because, in a given moment in
time, in the ontology storage there exist individuals Computation and DataAccessCall
but there do not exists individual Experiment they are related to. The experiment
stages without their context are semantically invaluable, therefore, the association
between a stage and its experiment is obligatory. In a fact, there is no guarantee that
the Experiment individual will be instantiated, because of two reasons:

• The experiment may fail
• Due to the monitoring infrastructure failure, the event ExperimentFinished may

not be delivered

This problem was solved by the implementation of the experiment transaction
support mechanism. An experiment may be perceived as a transaction in a sense
that all the individuals related to this experiment are recorded, together with the

48

5.4. Experiment transaction support

experiment individual, or no individual is recorded. In order to realize this idea, there
should exists a third individual processing layer, a buffer storing all individuals related
to concrete experiment. This conception is presented in the Fig. 5.10

Figure 5.10: Time relation between events in transactional processing. Events de-
scribing individuals are temporarily buffered. They are delivered to PROToS when
experiment is successfully finished.

It is possible to determine two classes of experiment failure:

• High-level failure In this case, one of the experiment stages fails and the execu-
tion cannot proceed because the next steps are dependent on the failure stage. It
may refer to several kinds of situations:
— Computation being realized by Grid Object fails
— Grid Object is temporarily unavailable
— Data Access querying is not successful

49

5.4. Experiment transaction support

— Required user-feedback is not gained
In that case, the continuation of experiment is possible, but makes no sense.

• Low-level failure In this case, the experiment continuation is not possible at all.
In high-level failure the continuation is impossible due to dependencies of workflow
stages , while in low-level failure is impossible due to technical issues, such as:
— Script enactment engine failure
— Invoker failure

The experiment re-execution issue may be considered in the two described failure
classes. It is of high importance especially when dealing with long-time computations
– assuming that a concrete service is stateless (in a sense that the obtained result does
not depend on the time of the service call but only on the input data), the output
from this service may be recorded and used in the future.

The experiment re-execution depends on two important aspects:

• Stages linear execution order
• Stages dependency

In following simple example, an experiment consists of 5 stages executed one-by-one
in the order (Stage1, Stage2, Stage3, Stage4, Stage5), as in Fig. 5.11

Figure 5.11: Dependencies between stages in sample experiment. All successfully
executed stages are recorded.

After the failure of Stage4, the experiment cannot be continued because there
exists a data-dependency between (Stage3, Stage4) and Stage5. However, based on
the Stage3 output data (the outputs of Stage1, Stage2 storage is not necessary), in
the experiment re-execution only the Stage4 and Stage5 should be performed in order
to gained final results, as in Fig. 5.12.

As for technical issues concerning the implementation of described idea, there
should be recorded information about experiment stages, even in a case the exper-

50

5.4. Experiment transaction support

Figure 5.12: Experiment re-execution. Only failed stages and stages depending on
them have to be executed.

iment does not finish successfully. It is reasonable that only the high-level failure will
be supported in this way.

To implement this kind of re-execution, crucial question must be answered: What
is an experiment transaction from the aggregation point of view?. Or, more precisely:
What are the moments of the experiment transaction beginning and the transaction
commitment from the aggregation point of view? What is the transaction context?.

The following definitions may be introduced:

• transaction beginning is the appearance of event ApplicationStarted in Aggre-
gator

• transaction context are all individuals that are associated with the application
that is in progress

• transaction commitment is the appearance of event that aggregates with Appli-
cationStarted and has a suitable application identifier

It is easy to extend the aggregation process to realize the support of transaction
perceived in this way. An additional aggregation rule should be introduced for the
Experiment class, which associates events (ApplicationStarted, ApplicationFailed). In
this case, the instantiation of a particular class may be triggered after the correla-
tion of two possible sets of events – ApplicationStarted may be correlated both with
ApplicationFinished or ApplicationFailed.

It must be emphasized that the Aggregator component responsible for the aggre-
gation rules monitoring is transaction-transparent. It means that the transaction is
not described semantically, what is justified, because transaction processing is a pure
technical issue, as in Fig. 5.13

51

5.5. Semantic associations discovery

Figure 5.13: Events aggregation conceptual model. Already gathered XML events
contents is being monitored in terms of aggregation rules fulfilment. Already created
individuals are being monitored in terms of experiment transaction commitment.

5.5. Semantic associations discovery

The methodology described in section 5.3 is well-adapted to the datatype onto-
logical properties. However, while the creation of a concrete individual and filling its
functional properties is a simple process, the establishment of the object properties is
significantly more complicated.

In OWL language, the association between individuals is defined by providing a
value of object property. The class of associated object and individual identifier:

1 <Experiment rd f : about=” ht t p : //www. v i r o l a b . org / onto /exp−protos /Exp1”>
2 <hasStage>
3 <Computation
4 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos /Cmp1”/>
5 </ hasStage>
6 </Experiment>

In order to discover the associated individual identifiers, several approaches were
undertaken. They are described in the following sections.

5.5.1. Hashing individuals naming

The first approach was inspired by the observation of events structures. It leads
to the conclusion that the contexts of created individuals, constituted by the pieces of
data from monitoring events, may share the same kind of information. For example,
the pieces of information associated with Computation and Experiment share the
experiment id, as in Fig. 5.14.

In this situation, assuming that the experiment id is unique for all the Experiment
instances, the Experiment individual identifier may be computed as a result of hashing
function applied to the experiment id, as in Fig. 5.15.

52

5.5. Semantic associations discovery

Figure 5.14: Sets of XML data items correlated before aggregation to Computation
individual and before aggregation to Experiment individual have experiment have
common subset.

Figure 5.15: Experiment individual URI is computed as result of a hash function
applied to data items from the common subset.

In such an approach, it is possible to determine the identifier of the associating
object – the only requirement is that all the information that should passed to the
hashing function is accessible in the context of created individual. In the presented
example, the hashing is applied at least twice:

• the moment the Experiment individual is created

53

5.5. Semantic associations discovery

• the moment the Computation individual is created and the Experiment identifier
is searched in order to create the executedIn association

The natural place of the hashing function implementation is a delegate. The dele-
gate method responsible for identifier generation is called every time a new association
is created. So, in the ontology extension, this delegate derivation is associated both
with experiment (defining its identifier) and object property (defining its value). The
following figure presents the Computation class neighborhood and derivations of one
of its object properties, as in Fig. 5.16

Figure 5.16: Object defining derivations of Experiment URI and executedIn property
of Computation point to the same hash function implemented in a delegate. Due to
different correlated XML data contexts, they differ in XPath value.

Another examples of the usage of this kind of delegates are collected in Tab. 5.4.

5.5.2. Knowledge history tracking

In a more complex case the association cannot be established as simply as described
in the preceding section. However, the data collected in the context of the individual
that is being created, is sufficient to construct a query addressing already created
ontology that will return the identifier of the individual that is being searched. This
solution is inefficient, because it would include five performance-intensive steps, as in
Fig. 5.17.

54

5.5. Semantic associations discovery

Delegate Method Usage
Experiment generatedExperimentID Experiment individual identifier
Plugin hasStage property of

Computation individual
generateGOIID GridObjectInstance individual identifier

usedInstance property of
Computation individual
hasInstance property of
GridObjectImplementation individual

generateGOImplID GridObjectImplementation individual
identifier
hasImplementation property of
GridObject individual

generateGOID GridObject individual identifier

Table 5.4: Usage of delegates in individuals naming.

1. XQuery construction
2. Accessing PROToS via Web Service interface
3. Processing the query in PROToS
4. Returning the XML file
5. Parsing the XML file

Figure 5.17: Unoptimal events history tracking. Aggregator creates xquery, invokes
Web Service and parses the results.

A more effective approach would be to implement individuals buffering inside the
Aggregator, as in Fig. 5.18.

55

5.5. Semantic associations discovery

Figure 5.18: Optimized events history tracking. Aggregator temporarily stored created
individuals in a separate buffer. The individuals do not have to be serialized and
transfer through network.

It is natural that the local buffer should not store all the individuals passed to
PROToS through all over the time – it would be extremely inefficient. The motivation
for events buffering is to store events that are temporarily needed to establish associa-
tion. From this point of view, PROToS may be perceived as a long-term data storage,
while the Aggregator buffer may be perceived as a short-term partial data storage.

It is an important issue to provide a definition of what individuals should be buffered
and what should be the buffering time. With respect to the buffer component efficiency,
two types of buffering should be applied:

• buffer all individuals related to a concrete experiment in the time this particular
experiment is being executed

• buffer all individuals not related to a concrete experiment in a long period of time

This approach is justified, because the need to query for experiment-related individ-
uals, such Computation, DataAccessCall or domain event is present only during the
experiment execution time – the association addressing experiment-related individual
is created only in a moment of instantiation of another experiment-related individual.
Furthermore, this kind of buffering may be directly used in the transaction processing.

On the other side, as for the experiment-unrelated individuals, they may be buffered
efficiently in a long-term period of time, because of their limited number. Basically,
they describe some aspects of computational services, which are not as frequent as
the experiment-related individuals, mostly because of the great number of experiment
stages and created pieces of data. An additional aspect related to this type of individu-
als is that, from some technical reasons, Grid Resources Registry component publishes
events describing all the available services every time it is activated. Therefore, the

56

5.5. Semantic associations discovery

services information may be redundant. To avoid a situation in which there exist many
identical individuals describing the same service, the Aggregator controls if a concrete
experiment-unrelated individual was buffered in the past.

The described buffer-querying should be implemented, similar as the identifiers
hashing described in the previous chapter, in delegates, and formally specified in on-
tology extension, as in Fig. 5.19

Figure 5.19: Object defining derivation of usedInstance property of Computation
points to delegate, which searches the individuals buffer. Buffer reference is passed to
the constructor in the moment of delegate instantiation.

The only difference is that an extended kind of delegate has to be introduced – a
plugin that have access to the Aggregator buffer. The buffer reference is passed to this
buffer-related delegate in the moment of its creation. A sample delegate working in this
way is GOIPlugin, which exposes method findGOIByEndpoint. This function searches
through the buffered individuals of class GridObjectInstance for the one that have an
endpoint address identical as the one specified in GridOperationInvoking event.

5.5.3. Context association

The observation of the relation between created individuals leads to the conclusion
that some associations may be created in an automatic, intelligent way. That means,
without a special, separated specification in ontology extension. This observation
refers to the individuals existing within the context of a concrete experiment.

As an example, let us consider following ontological association, as in Fig. 5.20

57

5.5. Semantic associations discovery

Figure 5.20: Sample relation between experiment and domain ontology. Generic Com-
putation is associated with domain event describing its meaning.

In a context of a particular experiment, there exist individuals created in different
moments of time, presented in Fig. 5.21

Figure 5.21: Sample experiment context. Domain individuals are created directly after
the generic invididuals. They probably refer to the same events.

In this experiment, some generic and some domain events were generated sepa-
rately. Generic events were published in Invoker, while domain events were published
directly in experiment script. In this situation, it is reasonable to associate the events
that occurred nearly in the same time, because they probably refer to the same ac-
tivities. The implementation of this idea requires the integration of a new, additional
layer in the individual flow – a component responsible for the establishment of object
properties within a particular experiment, as in Fig. 5.22

58

5.5. Semantic associations discovery

Figure 5.22: Relation between transaction processing and associations discovery. As-
sociation strategy implements principles describing how a set of individuals created in
the same experiment should be analysed in terms of object properties.

The AssociationResolver should offer a high level of lability. That means, it should
be possible to define many strategies describing how to associate individuals with each
other – a new version of ontology possibly requires a new strategy of association.
Therefore, an AssociationStrategy is used – a concrete implementation of the strategy
interface injected into the AssociationResolver.

For the presented shape of ontology, a desirable strategy would be to associate all
Computation individuals with the domain individuals nearest in the time. Naturally,
this is justified only assuming that a domain event is published in script directly after
the corresponding generic event is published by Invoker. It is possible to implement
more sophisticated strategies that would searching for individuals situated nearest
in time minimizes the complete, summarized time distance between all associated
individuals.

There were also implemented strategies supporting the ontological generalization
hierarchy. For all of the collected general concepts, such as Computation, the instances
of sub-classes, such domain events, are searched within the experiment context. This
is a support for the kind if relation presented in Fig. 5.23.

If there is present a corresponding sub-class individual, it is augmented with the
information from the super-class individual (in this case, the attribute values are sim-
ply copied from Computation instance to the domain event instance, and then the
Computation instance can be removed). In another case, only a more generic sub-class
instance is sent to PROToS.

5.5. Semantic associations discovery

Figure 5.23: Sample relation between experiment and domain ontology. Domain event
is a more specific kind of generic Computation.

60

Chapter 6

Design and implementation of Aggregator

Semantic Event Aggregator architecture is presented in this chapter. Implementation

details of main components – AggregationCore, EventHandler and XMLDataContext are

described. There are also discussed issues of Aggegator deployment.

6.1. Aggregator architecture

The decomposition of Semantic Event Aggregator into modules is presented in the
component diagram in Fig. 6.1

The central part of Aggregator is AggregatorCore module. It provides the ba-
sic functionality offered by Aggregator. Two interfaces of AggregatorCore are used
only in the moment of its initialization. The Aggregator is configurable by ontolo-
gies, which processing is realized the means of Jena API, as the most commonly
used ontologies-processing framework. Therefore, the core configuring interface is
parameterized by Jena OntModel, which is parsed from all the ontologies utilized by
Aggregator.

The core was designed to be used in a listener-model conventions. In this approach,
it exposes exactly one interface accessible in runtime, handleEvent which is used to
gather the delivered monitoring events. It acts as a mediator, which passes the events
to the EventHandler , directly responsible for the gathered events processing. The
created part of ontology, in a form of sets of ontological individuals, is passed to
all the actors interested in aggregated knowledge. These information consumers are

61

6.1. Aggregator architecture

Figure 6.1: Semantic Event Aggregator architecture. Whenever new individual is
created, all AggregationListeners are notified. Aggregator may be integrated with any
monitoring technology by dedicated adapter.

62

6.1. Aggregator architecture

expected to implement the AggregationListener interface. That makes the aggregation
process convenient in implementation and extendible.

There exists a separated component responsible for the initialization and configu-
ration of AggregationCore, AggregationCoreManager. It creates two information con-
sumers. ProvenanceAggregationListener converts the created individuals into
PROToS-specific events and accesses its data gathering interface. At the current
stage of development, communication with PROToS Web Service is realized by XFire
framework [27], however, migration to CXF [27] is being considered. , and LoggingAg-
gregationListener, which logs the information about the aggregation using the standard
log4j API.

The described components are monitoring infrastructure independent. That means,
their functionality may be used independently of the monitoring system technology.
There exists an AggregationCoreAdapter which adapts the Aggregator to the remote
log4j logging architecture. It is possible to developer another adapters, that would
enable the incorporation of Aggregator into another monitoring system, for example
into the JMX.

The most important parts of the EventHandler component, is presented in details
in Fig. 6.2

The central part of the EventHandler is XMLDataContext. It is a storage for the
XML data that were collected, but not yet correlated. It should offer a convenient and
well-effective access to XML documents addressing by ACID number and event type,
because, during the correlation of monitoring events, the document are searched on
the basis of experiment identifier, task identifier and event type. The most effective
solution that enable such navigation through the collected data it to organize the
context in a hierarchical, structural tree-form, with tree kinds of nodes, presented in
Fig. 6.3 :

• ACID part, such as experiment or task identifier, connected to a node with the
higher-level part of ACID

• Event type, connected to a node indicating ACID element which is shared by all
of the events localized in a local tree branch

• XML document, connected to a node indicating its type

Every time a new XML document is added to this tree structure, all the aggregation
rules referring to this event type and having proper ACID coherency level are checked.
In a case aggregation rule is satisfied, the correlated data is removed from the context
and undergo farther processing in individual factories.

The XML events delivered by EventHandler are partially parsed. The information

63

6.1. Aggregator architecture

Figure 6.2: EventHandler architecture. Collected XML data is monitored in terms
of aggregation rule fulfilment. Whenever new experiment transaction is committed,
associations between individuals are established by the means of strategy implementing
RelationResolver interface.

about their type, time of creation and associated ACID is extracted. Based on this
metadata, the event is served in a proper way in the XML context.

The context is associated with the components realizing functionality described in
sections 5.4 and 5.5: Buffer and TransactionManager.

64

6.1. Aggregator architecture

Figure 6.3: XML Data Context comprises all data that have been collected and corre-
lated but not yet aggregated. Tree structure provides efficient access, in which XML
documents are addressed through ACID identifier.

Buffer is organized as a set of separated internal buffers, each one dedicated for
another ontological class, to provide a high efficiency of navigation through the col-
lected individuals. It should store all needed individuals not only in memory, but also,
in a serialized form, in separated data storage. Thanks to this, the Aggregator can be
restarted and still have up-to-date information about ontology collected in PROToS.

Another important issue is that the buffer may be accessed both by XMLDataCon-
text, as well as by the delegates, what is explained in section 5.5.2. However, having
on mind that the delegates are organized as separated pieces of code which origin
is untrusted, the buffer is designed to implement two separate interfaces dedicated
for individuals producer and consumer, mostly for the security reasons. They are
presented in Fig. 6.4 The consumer interface is accessible by delegate, so it uses the

65

6.2. Aggregator deployment

buffer in read-only mode, while both producer and consumer interface are accessible
by the XMLDataContext.

Figure 6.4: Individual buffer interfaces. All individuals sent to PROToS are stored
locally using BufferProducer. BufferConsumer is accessed by delegates.

The next Fig. 6.5 presents some lower-level aspects of individual creation:
There exist tree factories creating individuals from three difference sources:

• XMLInstanceFactory creates individuals from generic events
• OntologicalInstanceFactory created individuals from domain events
• DataInstanceFactory creates additional data ontology individuals. In a case a do-

main event contains identifiers of its input and output pieces of data, there should
be created separated mapping individuals having dasID property pointing to the
localizations in Data Access or WebDAV and this data individuals must be asso-
ciated with the domain individual. This feature is explained in more details in
section refsc:query-processing.

The ValueResolver is responsible for the establishment of a single individual prop-
erty. It is associated with the property derivation and searches the XML documents
or calls the proper delegate. The delegates are instantiated and invoked in runtime,
utilizing Java Reflection [29] API capabilities. If a particular delegate uses the buffer,
it is constructed with buffer reference as a parameter.

6.2. Aggregator deployment

Aggregator, unlike most services in VLvl, does not function as a web application.
The only existing dependency is that it must be accessible by monitoring system in

66

6.2. Aggregator deployment

Figure 6.5: Factories create individuals from three different sources of data: generic
events, domain events and DAS identifiers. All delegates are instantiated and invoked
in ValueResolver. At the current stage of development, only Java implementation is
supported.

a P/S consumer mode. As for a standalone application, the best approach to deploy
Aggregator is the usage of One-JAR framework [26]. One-JAR applications utilize a
dedicated classloader, which accesses JAR files and resources from inside an application
JAR file. Thanks to this, the Aggregator may be delivered as a single JAR, what is
convenient in terms of deployment and mimimizes the problem of libraries dependency.

A significant problem to be solved was the integration of One-JAR application with
the remote Log4j infrastructure. The Aggregator and the Log4j TCP service ought to
be activated separately. The run command for the One-JAR application would be:

1 java j a r aggregator −1 . 0 . 0 . j a r

while the run command for the Log4j socket server would be slightly different:

67

6.2. Aggregator deployment

1 java −c l a s s pa t h < l i b r a r i e s > org . apache . l o g 4 j . net . SocketServer <port>

2 <arguments>

However, based on the attributes defined in a configuration file, the Log4j server
may instantiate all appenders, including the AggregatorCoreAdapter class. Thanks
to this, the TCP server and the Aggregator would share the same virtual machine.
Nonetheless, classloader used by Log4j is not able to read JAR files from inside the
Aggregagor JAR.

Therefore, there were applied a hybrid solution using the role delegation pattern.
A main method executed by One-JAR classloader does not instantiate Aggregation-
CoreAdapter, but explicitly runs the Log4j server passing all command arguments. In
such an approach, the Aggregator may be initialized as One-JAR application, but in
a manner the Log4j server is initialized. All the executing command are enclosed in
ANT [32] script, integrated with Maven framework [33]. All steps, from development
to activation, are presented in Fig. 6.6.

6.2. Aggregator deployment

Figure 6.6: Semantic Event Aggregator deployment. Sources are compiled by Maven to
One-JAR application. When ANT script initializes the application, Log4j SocketServer
starts listening. This is one of the possible deployment scenarios, in which Log4j
adapter is used.

69

Chapter 7

Proof of concept: A drug resistance case
study

This chapter is devoted for feasibility study. There are discussed main aspects of HIV

virus treatment. Geno2drs, a prototype experiment scenario integrated in ViroLab, is pre-

sented together with medical tools involved in this research. Next, domain ontology is vi-

sualized and commented. Finally, there is given a comprehensive explanation of how the

provenance infrastructure works during the geno2drs script execution.

7.1. Geno2drs scientific landscape

Prototype scenario that this paper is based on and which defines this thesis scope,
concerns the HIV virus treatment. HIV virus therapy is a very complicated and
vulnerable process. The first activity applied to infected patient is to take his blood
sample and then extract from this sample RNA code of virus mutation. RNA code is
equivalent for DNA code in human body and decodes the virus genotype. Then, based
on this genotype, patient undergoes a therapy in which he is given a combinations of
drugs. Each kind of antiretroviral drug suppresses the virus for father spreading,
however, efficiency of a drug depends on the virus mutation, because viruses differing
in genotype presents different levels of resistance for a particular drug. It is crucial
to select the best combinations of drugs for two significant reasons - therapy is very
invasive for the human body and very expensive. The situation is even more com-
plicated, because a concrete kind of virus continuously evolves, therefore a virologist

70

7.2. Geno2drs ontology

must permanently control new mutations and react as quickly and accurately as possi-
ble. Fortunately, there exist many implementations of algorithms which compute the
resistance of a particular mutation for a particular drug. Virus genotype is constituted
by the sequence of nucleotides. It is represented in data bases as a combination of
four basic elements: adenine (A), cytosine (C), guanine (G) or thymine (U). Unlike
the genotype, a mutation is represented as a list of dissimilarities between a particular
genotype and a generally known genotype serving as a kind of pattern. Each disparity
is decoded as a triple– the position on which the difference occurs, a original aminoacid
and its substitute. Typically, only a concrete sub-sequence, decoding a concrete pro-
tein, such as Reverse Transciptase (RT), is relevant in terms of resistance. This is
commonly called a region.

Grid Objects deployed in VLvl, which concern the described HIV virus treatment
area of concern, are depicted below:

• Rega Subtyping Tool Computes a virus sub-type based on its genotype.
• Rega Alignment Tool Aligns a virus genotype and computes a mutation.
• Drug Ranking System (DRS) Computes the resistance of a particular muta-

tion concerning a concrete region. There exist many algorithms doing this compu-
tation, commonly known as rule sets, such as ANRS, HIVDB, HIVDB2. Naturally,
they slightly differ in terms of performance and obtained results.

A prototype experiment is called geno2drs. In this experiment, virus genotype
is read from DAC. Nucleotide sequence is sub-typed and aligned. Then, obtained
mutation is examined by DRS concerning the region RT. Results of the experiment
are the virus sub-type and a report of resistances against several most popular drugs.

7.2. Geno2drs ontology

Described scenario require two domain ontologies. The first one describes Drug
Ranking System, while the second one describes alignment and subtyping tools. In
fact, there is no agreed approach of how to design domain ontologies for newly adapted
experiments. They can be designed by the scientist who the script was developed by.
Alternatively, they might be created by the services provider, by the people responsible
by Semantic Event Aggregator maintanance or generated automatically.

Ontologies, visualized in Fig. 7.1, include three concept, referring to three workflow
steps: NucleotideSequenceAlignment, and , derived from generic Computation class.
The fourth workflow step, DataAccessCall, in which sequence is obtained from data
base, is modelled by experiment ontology. In order to record the provenance of all types
of data sets, the data ontology, already containing VirusNucleotideSequence class, was
augmented with VirusNucleotideMutation and DrugRanking concepts.

71

7.3. Geno2drs information building

It has to be emphasized that, as postulated in section 1.2, the deployed system sup-
ports different levels of data semantics. This is possible because of the generalization
hierarchy used in ontologies. Thanks to this, both development of domain ontology
as well as augmentation of data ontology were not necessary. If the domain ontology
were missing, there would be recorded abstract Computation workflow step instead of
domain event. If the data ontology did not contain additional data types, abstract
ViroLabDataEntity, pointing to WebDAV localization of string data set representation,
would be recorded.

7.3. Geno2drs information building

Medical services used in geno2drs experiment are virtualized as Grid Objects spec-
ified in Tab. 7.1.

Grid Object Operation Input parameters Output parameters
regadb.RegaHivSubtype subtype nucleotide sequence virus subtype

regadb.RegaAlignment align nucleotide sequence mutations
region

org.virolab. drs rule set drugs resistances
DrugRankingSystem2 region

mutations

Table 7.1: Grid Objects used in geno2drs experiment.

At the moment of services registration, GRR publishes series of events GridOb-
ject, GridObjectImplementation and GridObjectInstance. These events are delivered
to Semantic Event Aggregator, translated into ontological individuals and passed to
PROToS, so that complete semantic description of available resources is present. Be-
fore the geno2drs script enactment, GSEngine publishes event ApplicationStarted. In
the first workflow step, the nucleotide sequences of given patient are obtained from
remote data base:

1 rdb = DACConnector .
2 new(”mysql” , ” v i r o l a b . cy f r one t . p l ” , ” t e s t ” , ” t e s t u s e r ” , ””)
3 sequences = rdb . executeQuery (” s e l e c t n u c l e o t i d e s from nt sequence ; ”)#)
4 where p a t i e n t i i=#{pat ientID . t o s } ; ”)

Simultaneously, GSEngine should publish events DataAccessQuerying and DataAc-
cessQuered. In the second step, alignment is applied to a particular sequence:

1 regaDBMutationsTool = GObj . c r e a t e (’ regadb . RegaAlignment ’)
2 mutations = regaDBMutationsTool . a l i g n (sequences [1] , ’RT’)

72

7.3. Geno2drs information building

Figure 7.1: DRS and Geno2DRS ontologies. Domain events derive from abstract
Computation. Dependencies of workflow steps are determined by input and output
data types. Partial and final results are modeled through data ontology individuals
pointing to WebDAV or Data Access localizations.

Similarly like in the next two steps, two events are generated, at the beginning and
at the end moment of Grid Object call, GridOperationInvoking and GridOperationIn-
voked, respectively. These two events are correlated, according to ACID coherency.
After the aggregation they are translated into Computation ontology individual. How-

73

7.3. Geno2drs information building

ever, this event is not delivered to PROToS, but temporarily stored in Aggregator
buffer. In the third workflow step, virus subtype is detected:

1 regaDBSubtypingTool = GObj . c r e a t e (’ regadb . RegaHivSubtype ’)
2 subtype = regaDBSubtypingTool . subtype (sequences [0])#sequences [0])

In the last step, drug ranking concerning the obtained mutation is computed:

1 drs = GObj . c r e a t e (’ org . v i r o l a b . DrugRankingSystem ’)
2 puts drs . drs (’ retrogram ’ , reg ion , 100 , mut)

When the experiment finishes, GSEngine publishes event ApplicationFinished. The
events ApplicationStarted and ApplicationFinished are correlated and aggregated. Af-
ter this, Experiment individual is created and delivered to PROToS, together with four
associated individuals. That results in presence of a complete experiment provenance.
Addtionally, if the method markAsResult is applied to result drug ranking, in order to
store the ranking in WebDAV repository as experiment result, individual is created
and associated with the experiment.

Naturally, it is possible to augment the semantics of experiment record. There
should be used a library automatically generated from the domain ontologies (the
library generation process is described in chapter 9.2):

1 r e q u i r e ’ java ’
2 newDrugRanking =
3 cy f r one t . g r id space . mring . dr . c r e a t i o n . ont . drs . NewDrugRanking . new ()
4 newDrugRanking . setNucleot ideMutat ionID (mutationDAV id)

After delivering of events NewDrugRanking, NucleotideSequenceAlignment and Nu-
cleotideSequenceSubtyping, corresponding domain individuals as well as data individu-
als VirusNucleotideSequence, VirusNucleotideMutation, DrugRanking are created and
recorded. Domain individuals replace Computation individuals and inherit all prop-
erties, including experiment association. A signicant simplification of this process is
planned. Both storage of partial results in WebDAV and obtaining their identifiers as
well as generation of domain events should be realized automatically, transparent for
the script developer.

Chapter 8

Querying over provenance

This chapter presents QUaTRO – Query Translation Tool, which enables mining over

provenance information mixed with medical data. Requirements for QUaTRO are discussed

in terms of importance and feasibility. There is defined Abstract Query Language partially

meeting these requirements. Query processing algorithm is explained in details.

8.1. User-oriented querying approach

Capabilities of querying over provenance are tightly related with the requirements
collected from the potential end-users. QUaTRO was designed in order to provide the
ability of data mining over both provenance describing virological experiments as well
as all medical data integrated within VLvl. Virologists and clinicians usually use some
query visualization tools or, in a case these tools expressiveness is insufficient, hire data
managers preparing some advanced SQL [41] queries. Studies that were undertaken
lead to the conclusion, that there is no a tool that would be expressive enough to
enable valuable data mining queries, and simple enough to be understandable by
non-IT specialists. QUaTRO mission is to become such a tool. Sample provenance
queries valuable for the end-users are presented below:

• How experiment result has changed in time? What was the impact of volatile
medical data on the obtained results? How quick and in what way does it evolve?
What would be the results of experiments applied to the altered data?

75

8.2. Abstract query language

• How data from a particular hospital were used? In what experiment, how often,
in what medical services, by what scientists?

All of the sample queries are extremely important and cannot be realized by ex-
isting, accessible tools. The first group seems to be relevant because of the nature of
medical data that is still evaluating during the treatment process. The second group
concern clinicians suspectiveness. Medical data is vulnerable and sensitive, therefore
a better control of its usage would emphase the hospital doctors to share data with
other VLvl participants.

QUaTRO graphical user interface was implemented in portlets technology and
integrated in GridSphere portal container [39]. The screenshot in Fig. 8.1 shows
how to express, be means of text fields and check boxes, a sample query: Select all
experiments executed by John Doe, in which the tested virus nucleotide sequence was
taken from the patient in 2007-04-27 and the computed subtype was A.

Figure 8.1: Tree-based GUI integrated in GridSphere portlet container. User is able
to select ontology classes and properties as well as data base tables and attributes.
Query expressiveness may be augmented by the means of logical operators.

Next section explains what query language is reflected be GUI presented in Fig.
8.1.

8.2. Abstract query language

An abstract query language is proposed, which goal is to satisfy criteria presented
below:

• Data representation and storage transparent The language must support
all means of data representation and storage present in VLvl. It should inte-
grate provenance data base, regardless of the underlying technology, relational
data bases, regardless of their implementation technologies (for example MySQL
[42], PostgreSQL [43]) and file systems, like WebDAV,

• Understandable by non-IT specialist Commonly used query languages, those
dedicated for relational data bases, as well as those dedicated for XML data bases,
such as XQuery [13], RDQL [12], SPARQL [14] present a high level of complexity.

76

8.2. Abstract query language

What is more, to construct the queries that are valuable for the researches, one
should create a complicated, structural query using advanced language construc-
tions. A higly abstractive query language would be understandable by non-IT
specialist and would cover the complexity of low-level languages. Such a language
should by comprised of well-known terms: a concept, instead of ontological class,
rdf node or data base table and a relation, instead of object property, rdf tag or
data base foreign key,

• Configurable by ontologies Because the form of information collected in VLvl
highly bases on the ontologies structure, the capabilities of information querying
also should depend on metadata. It would be a justified and desirable situation,
if appliance of some changes in ontologies directly resulted in altering of the query
constructions that can be formed. By the means of ontologies, QUaTRO expres-
siveness would be, in a semantical way, regulated and adjusted respecting the users
community,

• Easy to integrate with Graphical User Interface It would be a smart solution,
if the query language reflected the Graphical User Interface reasonably accurate.
That is valuable from two reasons. Firstly, the query executed by a user is exactly of
a form visible in portal, so that the user is aware of how the query terms are related
with each other during processing. Secondly, the query model in presentation layer
and the query model in business layer are in relation 1:1, what significantly increases
the performance, as no additional convertions between these models are needed,
and simplifies the QUaTRO architecture, making it more convenient to maintain
and less sensitive for the implementation mistakes,

• Extendible The language should enable convenient augmentations in farther QUa-
TRO releases. This feature seems to be especially important, because the collected
requirements are still evaluating so the ability of changing the language expressive-
ness, mostly trough adding some extensions, e.g. additional operators, like JOIN,
would make the tool functionality more accurate and reasonable.

QUaTRO user, before formulating more sophisticated queries, is probably inter-
ested in a single, particular concept, for example Experiment or Virus Nucleotide
Sequence. Query constructions would start by selecting an ontological class indicating
this concept. Such a query would results in all concept individuals present in PROToS.
In the next steps of query construction, the user might put some restrictions on the
results. For example, he specify some attribute values that he is interested in, such
as a virus type for the nucleotide sequence. Similarly, he might restraint the results
only to the sequences being at some particular relationships with another concepts.
In this way, the query would be extended in order to reflect more precisely user’s

77

8.2. Abstract query language

area of concern. That leads to a conclusion, that a most natural, convenient and
understandable form of a query is a tree.

The initial concept is a tree root. The nodes refer to ontological classes or concrete
literal values, while the edges refer to properties, either ontological or relational. Be-
cause of that, both the node and the edge must contain information about the name
of the concept or the property, and, additionally, the ontology name. Moreover, in
order to make the language more expressive, introduction of some logical operators if
justified.

An example of a query expressed in the described language is presented in Fig. 8.2.
The tree reflects a typical virology provenance area of concern: Select all experiments
executed by a concrete clinician (e.g. John Doe), in which subtyping operation was
applied, and where the nucleotide sequence comes from a blood sample taken in a
concrete moment of time (e.g. 2007-04-27) and with a concrete detected virus subtype
(e.g. A).

Figure 8.2: Sample abstract query. Let us assume, that a clinician stores in data
base HIV genotypes taken for patients one month ago. He is interested how often his
colleage from another institution, John Doe, made use of those data. Moreover, he is
wondering how the results obtained by John, who uses newly deployed service, differ
from earlier experiments’ results, in terms of frequency of a concrete subtype in this
particular set of samples.

78

8.3. Query processing

8.3. Query processing

The main idea of proposed algorithm is to decompose the whole query tree into
some sub-queries. In general, each edge generates a separate sub-query. In the first
algorithm step, all terminal sub-queries are detected. Terminal sub-queries are those
which refer to tree leafs, hence can be processed immediately, because do not depend
on the results of another sub-queries. Terminal sub-queries of a sample abstract query
are presented in Fig. 8.3.

Figure 8.3: Query processing: step 1. Tree leafs contain query parameters. Four
terminal sub-quries are detected and evaluated.

In the first step, all terminal sub-queries are executed. The order of execution is
irrelevant. In fact, trough providing a proper implementation, all sub-queries may be
executed in parallel, what provides a possibility of performance optimization. After
this phase, all obtained results are temporarily stored in tree nodes, as in Fig. 8.4.

Please note, that in the ontological nodes complete results are stored, so these nodes
are marked as evaluated and may be perceived as new tree leafs. Unlike the ontological
nodes, the operator nodes store only the sets of results currently transferred from the
connected nodes. The operation of logical AND is applied when all sets are present,
that means, when all connected sub-queries are evaluated. In the example, exactly two
terminal sub-queries are detected. One of the query is ontological, while the second

79

8.3. Query processing

Figure 8.4: Query processing: step 2. Class node contains complete results of sub-tree
query. Operator node contains partial results.

one is a logical and computation. After their evaluation, in the third algorithm stage,
one terminal sub-query is detected, as in Fig. 8.5.

In the last, fourth stage of evaluation, and operation is applied to the collected
final results, as in Fig. 8.6.

After query evaluation, all tree nodes contain the sub-query results, while the tree
root contains result of the whole query, as in Fig. 8.7.

In this approach, one may introduce as many types of logical nodes, as he need,
what makes possible a very complicated query constructions, as in the example in Fig.
8.8.

A main component realizing the described algorithm is Subquery Extractor. It
manages the query tree and utilizes a sub-query stack. In the beginning, all terminal
sub-queries are placed on the stack. In the next steps, they are taken from the stack
and executed. When a concrete sub-query is finally evaluated, a neighbour of this
query upwards the tree hierarchy is put on the stack as a new terminal sub-query. In
this way, the whole tree is evaluated recursively. A query processing conceptualization
is presented in Fig. 8.9.

The extracted sub-queries are continously passed to Scheduler. This component is
responsible for detecting of the sub-query type and passing it to a proper Executor.
Each sub-query type is related with another, dedicated executor. In fact, there might

80

8.3. Query processing

Figure 8.5: Query processing: step 3. The next query may be evaluated when it is no
longer blocked by sub-query.

Figure 8.6: Query processing: step 4. In order to evaluate the entire query result,
AND operation is applied to three sets of partial results.

exist an executors pool containing many instances of the same executors, what would

81

8.3. Query processing

Figure 8.7: Query processing: step 5. At the end of processing, tree root contains
result of the whole query.

enable a parallel execution of self-independent sub-queries. Basically, distinguish six
types of sub-queries are distinguished. All of this sub-queries must be processed in a
different way and through accessing different data repositories. They are described in
details in the next sections.

8.3.1. Ontological queries

Ontological queries address only the provenance ontologies. Therefore, the quered
concepts come only from the experiment ontology and related domain ontologies. The
abstract query language supports several querying languages, enabling optimization
through the selection of a language most suitable for the querying domain.

For the first implementation, XQuery language was chosen. XQueryGenerator
component generates xqueries reflecting the corresponding sub-query. Query results
are expected to be sets of identifiers, indicating the individuals satisfying the query
criteria. Query construction relies on the XML flat data structure used by PROToS.
A sample piece of ontology is given below:

1 <j . 1 :Nucleot ideSequenceAl ignment
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto / geno2drs / nsa1 ”>
3 <al ignmentRegion>RT</ al ignmentRegion>

4 <executedIn>

5 <j . 0 :Experiment

82

8.3. Query processing

Figure 8.8: Query language operators may be linked with each other forming cascades
of nodes. Model may be conveniently extended through addition of new operator node
type and implementation of its functionality.

6 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto /exp−protos /exp1”/>
7 </ executedIn>

8 </ j . 1 :Nucleot ideSequenceAl ignment>

According to the ontology structure, the generated queries adressing object and
datatype properties are slightly different:

Select all alignments with a region RT

1 //∗ [l o c a l−name () eq ’ Nucleot ideSequenceAlignment ’ and
2 ((c h i l d : : ∗ [name () = ’ al ignmentRegion ’ and . eq ’RT’]))]

Select all alignments executed in a concrete experiment (e.g. exp1)

1 //∗ [l o c a l−name () eq ’ Nucleot ideSequenceAlignment ’ and
2 ((c h i l d : : ∗ [name () = ’ executedIn ’ and (@∗ [name()= ’ r d f : r e s o u r c e ’ and
3 ((. eq http: //www. v i r o l a b . org / onto / experiment /exp1))])])]

Naturally, the shape of a generated query depends on the property direction. From
the other side, the direction must be transparent for the end-user. There should be

83

8.3. Query processing

Figure 8.9: Query processing conceptualization. Stack contains all terminal
sub-queries, that are not yet accomplished. Query executors differ in terms of what
data storage is accessed and what kind of information is retrieved.

possible both type of queries: Select all experiments in which a concrete alignment
was applied or Select all alignments applied in a concrete experiment. However, the
executedIn property, like all OWL properties, has concrete domain and range, which
together determine its direction. Therefore, before the query execution, the property
direction is checked. If a sub-query root is the property domain, then the query is
generated as in the presented example. Otherwise, the property must be inversed, in
order not to query the root concept, but the concepts from sub-query leaf. For query
Select all experiments with a concrete alignment (e.g. nsa1) the generated xquery
would be:

1 //∗ [l o c a l−name () eq ’ Nucleot ideSequenceAlignment ’ and
2 ((c h i l d : : ∗ [name () = ’ ID ’ and . eq ’ nsa1 ’]))]

The retuned individuals undergo farther processing in Jena environment. The
identifiers of experiments are extracted and set as query results.

84

8.3. Query processing

8.3.2. Data base queries

DAC queries address, unlike the ontological queries, values stored directly in data
bases. As described in section 2.4, all data bases accessible in VLvl are integrated
upon a unified relational schema. Basically, two levels of data storage addressing are
distinguished – a data source, which is a set of all data bases managed by a single VO
member, and a concrete data base name working in a particular technology, such as
MySQL, MSSQL or PostgreSQL.

Queries concerning data base values, either relations or attributes, must address all
data sources accessible by DAC. Therefore, the query is distributed – a separate query
is executed over each data base. In order to provide correct farther processing, query
results stored in tree nodes are not individual identifiers, but dasID values. A Data
Access Client IDentifier (dasID) unequivocally describes a localization of a piece of
data inside Data Access and is defined as a triple <data source>:<data base>:<key>.
Please note, that including of table name in dasID would lead to redundancy, because
a mapping ontology already defines what data ontology concepts is stored in what
table.

Generated DAC queries are expressed in quasi-SQL language. Its construction de-
pends on the tree structure. To exemplify a difference between ontological sub-queries
and DAC sub-queries, let as assume, that the sub-query root contains RuleSet class,
the edge contains version property and the leaf contains value 4.2.8. Naturally, it
refers to a query Select all rule sets of version 4.2.8.

If a RuleSet individual was a part of DRS domain ontology, the generated query
would be:

1 //∗ [l o c a l−name () eq ’ RuleSet ’ and
2 ((c h i l d : : ∗ [name () = ’ ve r s i o n ’ and . eq ’ 4 . 2 . 8 ’]))]

In a case RuleSet is a part of data ontology, the processing engine fetches from
the mapping ontology information, that RuleSet concept is mapped to table called
rulesets. Hence, the generated query is:

1 SELECT id FROM r u l e s e t s WHERE v e r s i on = 4 . 2 . 8

8.3.3. Relational queries

Relational queries are most simple to process. Some logical operations, such as
and, or, are applied to partial results stored in sub-query leafs. As explained in two
preceding sections, the results being compared may be in a form of either individuals
or dasIds.

85

8.3. Query processing

The relation sub-query is extendable. Depending on operator type, query process-
ing manner may differ and some additional optimization means may be applied. To
provide a high level of expressiveness, the supported set of operators must contain,
besides the logical operators AND, OR, NOT, also relational operators LESS THAN,
GREATER THAN, LESS THAN OR EQUAL, GREATER THAN OR EQUAL, as
well as some advanced operators such as CONTAINS, LIKE, significantly augmenting
QUaTRO functionality.

8.3.4. Transient queries

Concepts coming from data ontologies are terminal. That means, they does not in-
troduce any additional object or data type property values. The only defined property
is dasID, a unique identifier which points to a concrete localization in DAC service.
Because of this, each query tree may be easily decomposed into sub-trees, trough which
some refer to ontologies and some others refer to data bases. As described earlier, they
differ in a way they are processed. The relation between ontologies and other data
storages is presented in Fig. 8.10.

Figure 8.10: Relation beetween ontologies. Individuals from data ontology map data
items retrieved, transformed and created in application to localizations in different
kind of storages.

86

8.3. Query processing

Based on this observation, two additional types of queries should be introduced.
When a tree node contains a concept, which farther processing addresses ontologies,
an individual describing this concept is needed. Alternatively, if the farther processing
addresses DAC, dasID value is needed. Individual identifier and dasId value describe
the same physical object, however, an individual specifies its localization in ontology,
while dasID specifies its localization in data base. Therefore, each data individual is
described by two unrelated identifiers:

1 <j . 1 :V i rusNuc l eot ideSequence
2 rd f : abou t=” h t t p : //www. v i r o l a b . org / onto / geno2drs /vns1”>
3 <dasID>r ega :mysq l : 1310</dasID>

4 </ j . 1 : VirusNucleot ideSequence>

Because of that reasons, in a case a tree node stores dasID and farther processing
addresses the ontologies, a transition must be realized. During this transition, based
on dasId, a corresponding individual is fetched from PROToS. These kind of query is
called a transient query.

8.3.5. Inverse transient queries

Similarly to the transient query, an inverse transient query is introduced. In a
case a tree node stores individual and farther processing addresses the data bases, an
em inverse transition is realized. Based on individual identifier, dasID is fetched from
PROToS.

8.3.6. WebDAV queries

As presented in Fig. 8.10, the individuals from data ontology define mapping to
data base or, optionally, to WebDAV. WebDAV is dedicated for a storage for simple
files, hence it is utilized for terminal concept, having no additional relations or at-
tributes. The examples of WedDAV usage are experiment results or partial results
collecting. In same cases, if the final results of a query is saved directly in WebDAV,
another sub-query must be executed. This concerns another technology, hence an-
other, dedicated executor is needed. In order to support this kind of data repository,
dasID has to be augmented with a storage-specific prefix. For the DAC entities, it
is extended with DAC prefix: DAC:<data source>:<data base>:<key>, while for the
DAV entities, it is extended with DAV prefix: DAV:<uniqure identifier>. Adding of
yet another type of data storage is convenient and relatively past. There should be
introduced a new protocol prefix, besides DAC and DAV, and implemented a new
kind executor.

Chapter 9

Summary and future work

In this chapter the work outcomes are presented and related to the initial requirements.

Also, there are discussed plans of how to extend the existing funcionality in future.

9.1. Outcomes

Goals addressed by this work were succesfully achieved in the scope of ViroLab
project. They are briefly commented below.

• Developed experiment provenance ontology includes both data provenance and
process provenance. It also supports performance optimization and advanced re-
sults management. Its design enables easy and convenient extending by domain
ontologies.

• Designed monitoring data model includes all data necessary for building complete
provenance ontology. There was developed provenance ontology extension and
proper aggregation rules were defined.

• Sematic Event Aggregator was deployed and integrated into the monitoring in-
frastructure. It aggregates monitoring events and creates individuals with proper
relationships. Experiment transaction is supported. Some of the associations are
determined through the appliance of implemented association strategy while some
of them are established by delegates.

88

9.2. Research outlook

• Development process proofs that events aggregation is easily adaptive to evaluating
ontologies. Provenance ontology was continuously evolving due to frequent changes
of requirements addressing its contents. In spite of this, it was convenient and
relatively fast to alter the ontology extension and reconfigure the aggregation proces
in order to build new version of ontology.

• Libraries supporting the creation of monitoring events were generated, deployed
and are used by several VLvl components. Moreover, monitoring infrastructure
dedicated for events transfering was applied.

• Different levels of semantics are supported. Provenance is recorded both for ex-
periments in which domain events are published as well as for experiments whose
domain ontology is not yet developed or meaning of utilized data types is not
specified.

• Implemented and deployed QUaTRO tool supports complex queries, which include
the context of experiment enactment, dependencies between data items, data base
attributes and used services. QUaTRO GUI was presented to potential end-users
gaining their interest. Available queries are commonly perceived as intuitive and
partially meet the requirements presented by clinicians and virologists.

9.2. Research outlook

Future work focuses on augmentation of QUaTRO query model, domain ontologies
transparency and extensions of collected provenance ontology, what is explained in
more details in following points.

• The most significant QUaTRO disadvantage is the absence of support for join
operator. It is crucial, because some scientists expect that the query result will
not be a single concept, but two or probably more concepts associated with each
others. For example, the expected result is a triple (drug, therapy in which this
particular drug was used, patient which this particular therapy was applied to).
Joining should support both ontological concepts and data base tables.

• Delegates should be used in order to query separate services for additional infor-
mation. Currently created ontology does not include technical information about
services execution. The performance properties of computations should be com-
puted by delegates, which would query monitoring componets for some metrics,
such CPU or memory usage, characterizing concrete invocations. It would valu-
able information for application optimizer enabling more sophisticated algorithms
of software selection. Furthermore, information about origin of data items may be

89

9.2. Research outlook

collected. When a concrete piece of data is fetched in experiment, its identifier is
sent with corresponding domain event. This identifier may be used by delegate to
construct complex SQL query returning, for example, clinic name.

• It would be covenient, if both development and building of domain ontologies would
be realized in automatic way transparent to the user. This revers to two cases of
ViroLab usage. In the first case, whenever new Grid Object is registed, semantic
types of operation input and output parameters are specified. They are selected by
the means of data ontology browser. Separate domain event, derived from abstract
Computation is generated for each operation. Semantic service description might be
also passed from resource registry to operation invoker. In another case, operation
invoker fetches the description of service semantics from registry. Whenever new
invocation is realized, operation invoker stores all input and output parameters
in partial results storage, for example WebDAV. Then it creates data individual
of particular type for each parameter. Also domain event individual is generated
and associated with data objects. Thanks to such approach, the responsibility of
domain ontology building would be shifted from script to operation invoker.

Appendix 1. Creation of monitoring events

Creation of monitoring events is supported by Castor framework [25], which pro-
vide generation of Java classes from XSD model and mapping between these two
representations. Castor is used mostly for historical reasons, since the monitoring
system GEMINI and its data representation libraries highly bases on this framework.
However, migration to JAXB [36] is considered.

For each complex type defined in XSD file, Castor generates a pair of Java classes.
The first class serves as a bean – it exposes setter and getter methods to access all the
attributes associated with this type, as well as provides the functionality of marshalling
the java object into XML file and parsing the java object from an XML file. The second
class is a descriptor being used in the processes of marshalling and unmarshalling.
Castor is well-integrated with ANT framework. Thanks to this, the whole process,
from the design of XSD data model to the generation of Java API may be utterly
automatic and configurable, as in Fig. 9.1

Because during the VLvl maintanance new medical scenarios may be supported
It may be inconvenient to create the domain events described in the preceding

chapter. Therefore, there wes implemented a configurable tool dedicated for the auto-
matic generation of helpers API from the ontologies. These helpers are used directly
in experiment scripts. The helpers generation and usage process is depicted in the
Fig. 9.2

The responsibility of The Event Generation Tool is to process the ontology and for
each ontological concept generate Java classes of two types:

• Helper than can be used to generate a XML domain event in a setter-usage manner.
• Meta-class containing semantic annotations [30] used in PROToS component in

order to determine the relation between ontological classes, as well as their prop-

91

Appendix 1. Creation of monitoring events

Figure 9.1: Castor framework. Based on XSD schema, it generates helper classes
providing serialization and deserialization capabilities. Castor is well integrated with
ANT framework.

erties, and the PROToS-specific events passed as parameters to its Web Service
interface.

Appendix 1. Creation of monitoring events

Figure 9.2: Event Generation Tool generates from ontologies two kinds of Java classes.
Semantic classes are augmented with semantic annotations used by PROToS during
events processing. Helper classes are used in creation of monitoring events.

93

Appendix 2. Logging of monitoring events

Log4j is a commonly used implementation of logging, that means, reporting some
events that have occurred in application. This is a natural choice of the simplest and
fastly-implementable way of the VLvl components instrumentation.

Log4j architecture comprises two cooperating classes of components: loggers, re-
sponsible for the creation and sending of logging events and appenders, which collect
the events and serve them in a way desirable by the user. Both loggers and appenders
may by defined either in a configuration file or programmatically. Each new introduced
logger is related with some appenders to which it reports the generated events. The
most commonly used appenders are ConsoleAppender printing the events in the console
and FileAppender writing the events on a file. It is also a good programming practice
to create a separate logger for each Java class.

Logging events can be reported at several severity levels: trace, debug, info, warn,
error. There is no commonly agreed convention when to use a particular level. It is a
good practice to debug the information needed only in the phase of system develop-
ment, indicating the correct system working, info the information relevant during the
system usage, warn some problems which does not disable the farther system func-
tioning and error the unignorable failures. Thanks to the severity levels, there can be
defined a treshhold, assigned both to loggers and appenders, what makes communica-
tion more structural. There was defined logger dedicated for monitoring infrastructure:

1 Log4j . l o g g e r . mring = INFO, Console , Socket

that can be directly accessed by the VLvl components:

1 Logger . getLogger (\ ”mring \”) . i n f o (he lpe r . createMarshaledEvent ()) ;

Besides the monitoring logger, there must be also defined a monitoring appender.
There was developed a RemoteAppender based on the Log4j SocketAppender, which

94

Appendix 2. Logging of monitoring events

logs the events via TCP sockets. It introduces a crucial improvement in comparison
with the original appender, which does not guarantee a successful event deliverance.
Therefore, the remote developed appender throws an exception in a case event was not
deliver successfully. From the client’s point of view, catching of monitoring exception
means that the event should be published once again. The second socket is integrated
by a Log4j ServerSocket. From the server side, there may be defined additional appen-
ders, that would receive the messages and pass them to separate system components,
as in Fig. 9.3.

Figure 9.3: Remote logging architecture. Both on the client side and on the server side
must be implemented a dedicated appender. Log4j remote communication is realized
via TCP sockets.

In the final implementation, the Log4j-specific API is covered by monitoring facade
adapting it to the monitoring API.

Appendix 3. GEMINI monitoring system

GEMINI system was developed in the scope of K-Wf Grid project [44]. It provides
a generic monitoring infrastructure dedicated for knowledge-based workflow grid sys-
tems. It integrates all the described monitoring usage scenarios: querying, streaming
and P/S. Because GEMINI does not distinguish monitoring data and monitoring event,
the subscribe use case may be perceived as an equivalent of the request streaming use
case.

The general architecture of GEMINI is presented in Fig. 9.4
GEMINI infrastructure is organized as a network of services called monitors. The

monitors are connected in a P2P network. Each monitor adapts some sensors, which
extract monitoring data from different system components. In practice, a monitor
is accessible by Web Service and associates a Sensor Controller, which integrates all
sensors residing within a single JVM. Each sensor serves as a producer of monitoring
data of a concrete data type and a concrete resource.

Basically, three kinds of sensors are distinguished:

• sensor exposing interface for data querying, providing the current value of moni-
tored metric, used in Querying scenario

• sensor pushing the data value in a concrete period of time, used in Streaming
scenario

• duplex sensors providing both types of functionality

GEMINI clients realize a concrete scenario trough the subscribing expressed in Per-
formance Data Query and Subscription (PDQS) language, which simplified structure
is presented in Fig. 9.5.

In K-Wf Grid monitoring data was described semantically and published in Grid
Organizational Memory (GOM). The ontology fragment related with monitoring is
presented in Fig. 9.6.

96

Appendix 3. GEMINI monitoring system

Figure 9.4: GEMINI overall architecture. Each monitor is accessible by client trough
its Web Service interface. Monitors, connected with each other via ICE channels,
integrate sensors residing on remote machines.

It is easy to notice, that the expressiveness of presented semantics is poor, and
this is another reason for the separation of a non-semantic monitoring data from the
full-semantic ontologies created from this data.

The inter-communication in GEMINI is realized in ICE [38], a modern object-oriented
middleware platform. Like another advanced distributed programming framework,
such as CORBA, it presents OO-language-independence, through supporting C++,
Java, Python, PHP, C and Visual Basic. However, ICE, comparing to CORBA, is
more efficient, better supports the security and offers more advanced functionality.

A significant part of undertaken studies was to investigate the capabilities of adapt-
ing GEMINI P/S functionality to the VLvl monitoring clients requirements. In the
solution proposed and implemented in K-Wf Grid, IceStorm [11] is used, a P/S service
dedicated for the ICE communication channels. Every Sensor Controller is associated
with a particular IceStorm instance. Thanks to this, when a monitoring client sub-
scribes for events of a concrete pair (dataTypeID, resourceID), there is created an ICE
connection with the corresponding IceStrom. This approach make the P/S infrastruc-

97

Appendix 3. GEMINI monitoring system

Figure 9.5: PDQS schema. Each piece of monitoring data has concrete type and comes
from concrete resource. Schema also supports subscriptions and filtering of delivered
data.

Figure 9.6: Each piece of monitoring data may be described semantically. This ap-
proach was dismissed because monitoring data serves only as a temporal representation
used in building of highly expressive information.

ture well distributed. In this case, the network efficiency is maximized, because there
are created only two ICE channels. The first channel links the Sensor Controller with
the nearest IceStorm. The second one links the P/S client directly with this IceStorm
instance, as in Fig. 9.7.

Two problems related to this infrastructure were identified. Firstly, it is not op-

98

Appendix 3. GEMINI monitoring system

Figure 9.7: Inefficient P/S architecture in GEMINI. There is created a separate ICE
channel for each client subscription.

timal in a case a concrete Sensor Controller manages several Sensors which data is
especially popular, because there might exist several ICE channels linking the same
pair (Sensor Controller, IceStorm). In a similar case, a single client is interested in data
of many types, so there might exist several ICE channels linking the same pair (client,
IceStorm). To significantly improve the communication efficiency, there were imple-
mented two additional GEMINI components, ICE multiplexer and ICE demultiplexer,
transparently coordinating the passing of events on a client side and Sensor Controller
side, respectively. The communication benefits of this approach are presented in Fig.
9.8.

The second significant problem is resource-independent subscription. That would
be suitable for the clients interested with data of concrete type but regardless of its
origin, it means, the resourceID would be irrelevant. In fact, such a case is most
popular, because it is a typical sutation when P/S client is not aware of the data
producers existence and localization. In a moment of subscription, the consumer has

99

Appendix 3. GEMINI monitoring system

Figure 9.8: ICE channels multiplexing. Events of all types are transfered via a single
ICE channel.

no guarantee that a concrete data producer does even exist. To solve this problem,
the next two GEMINI additional components should be engaged:

• IceStorm Consumer Proxy All subscriptions are applied by this proxy com-
ponent. It may have more than one instance, however, all instances must have a
complete information about the localization of all IceStorm services. Thanks to
this, the proxy service may be distributed and clients may access the proxies of near-
est localization, however, some means providing the coherent IceStorm addressing
must be provided. The proxy must pass subscriptions to all P/S services, because a
concrete data type may be accessible in each sensor, what is inpredictable, mostly
because of the runtime sensors plugining capability. Naturally, between each pair
(P/S Consumer Proxy, IceStorm) should exist exact one ICE channel, what is
supported by ICE Multiplexer and ICE Demultiplexer, as in Fig. 9.9.

• IceStorm Producer Proxy IceStorm Consumer Proxy is not aware of what pairs

100

Appendix 3. GEMINI monitoring system

Figure 9.9: IceStorm consumers proxying. Client is not aware of which P/S service is
associated with sensor producing events of particular type. Proxy is connected with
all IceStorm instances.

(dataTypeID, resourceID) topics were created in a concrete IceStorm instance. The
studies of IceStorm functionality leads to the conclusion that a suitable approach to
this problem is to utilize the functionality of topics federation. Inside a federation
of some topics, events of several types are passed together to a single channel. A
single P/S Producer Proxy is responsible for the creation of topic dataTypeID in a
moment a first subscription adressing the given type. It also automatically creates
a federation of topics sharing the data type, connecting all of the (dataTypeID,
resourceID) topics with a topic dataTypeID, regardless of the resourceID. Please
note, that events linking is not realized in proxy, but in IceStorm. Thanks to this,
there is still possible a subscription for events coming from a concrete resource
(dataTypeID, resourceID). Sample topics federation are presented in Fig. 9.10.

The appliance of ICE Multiplexer, ICE Demultiplexer, IceStorm Consumer Proxy
and IceStorm Producer Proxy components provides a scalable, extendable, efficient
and structural adapting of GEMINI P/S to the VLvl infrastructure.

Appendix 3. GEMINI monitoring system

Figure 9.10: IceStorm producers proxying. Proxy dynamically and transparently
manages federation of topics. Events sharing the same types are joined in IceStorm,
regardless of their origin.

102

Bibliography

[1] T. R. Gruber, A translation approach to portable ontologies, Knowledge Acquisi-
tion, 1993.

[2] P. M. A. Sloot, A. Tirado-Ramos, I. Altintas, M. Bubak, Ch. Boucher, From
Molecule to Man: Decision Support in Individualized E-Health, IEEE Computer,
2006.

[3] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid International Jour-
nal of Supercomputer Applications, 2001.

[4] D. De Roure, J. A. Hendler, E-Science: The Grid and the Semantic Web, Intel-
ligent Systems, IEEE, 2004.

[5] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American,
2001.

[6] Y. L. Simmhan, B. Plale, D. Gannon, A Survey of Data Provenance in e-Science,
SIGMOD Record, 2005.

[7] J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, M. Greenwood, Using Seman-
tic Web Technologies for Representing E-science Provenance, Lecture Notes in
Computer Science, 2004, Springer.

[8] G. C. Fox, D. Gannon, Special Issue: Workflow in Grid Systems, Concurrency
and Computation: Practice Experience, 2006.

[9] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M.
Livny, L. Moreau, J. Myers, Examining the Challenges of Scientific Workflows,
IEEE Computer, 2007.

[10] L. D. Stein, Towards a cyberinfrastructure for the biological sciences: progress,
visions and challenges, Nature Reviews Genetics, 2008.

103

Bibliography

[11] M. Henning, M. Spruiell, Distributed Programming with Ice, Revision 3.2, March
2007. http://www.zeroc.com/Ice-Manual.pdf. Downloaded 13 March 2007.

[12] A. Seaborne, RDQL - A Query Language for RDF, W3C Member Submission, 9
January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109.

[13] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon,
XQuery 1.0: An XML Query Language, W3C Recommendation, 23 January 2007.
http://www.w3.org/TR/xquery.

[14] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language for RDF, W3C Rec-
ommendation, 15 January 2008. http://www.w3.org/TR/rdf-sparql-query.

[15] D. Brickley, R. V. Guha, B. McBride, RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Recommendation, 10 February 2004. http://www.w3.org/
TR/rdf-schema.

[16] D. Beckett, B. McBride, RDF/XML Syntax Specification (Revised), W3C Recom-
mendation, 10 February 2004. http://www.w3.org/TR/rdf-syntax-grammar.

[17] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation, 28 October 2004. http://www.w3.org/TR/xmlschema-2.

[18] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, XML Schema Part
1: Structures Second Edition, W3C Recommendation, 28 October 2004. http:
//www.w3.org/TR/xmlschema-1.

[19] D. L. McGuinness, F. van Harmelen, OWL Web Ontology Language
Overview, W3C Recommendation, 10 February 2004. http://www.w3.org/TR/
owl-features.

[20] D. L. McGuinness, F. van Harmelen, OWL Web Ontology Language Overview,
W3C Recommendation, 10 February 2004. http://www.w3.org/TR/owl-guide.

[21] M. Dean, G., Schreiber , eds.: OWL Web Ontology Language Reference, W3C
Recommendation, 10 February 2004. http://www.w3.org/TR/owl-ref.

[22] J. Clark, S. DeRose, XML Path Language (XPath) Version 1.0, W3C Recom-
mendation, 16 November 1999. http://www.w3.org/TR/xpath.

[23] ViroLab. http://www.virolab.org.

[24] ViroLab trac. http://virolab.cyfronet.pl.

[25] Castor Project. http://www.castor.org.

[26] One-JAR. http://one-jar.sourceforge.net.

[27] Apache CXF. http://cxf.apache.org.

[28] XFire. http://xfire.codehaus.org.

[29] Java Reflection. http://java.sun.com/j2se/1.5.0/docs/guide/reflection.

104

http://www.zeroc.com/Ice-Manual.pdf
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109
http://www.w3.org/TR/xquery
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl-guide
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/xpath
http://www.virolab.org
http://virolab.cyfronet.pl
http://www.castor.org
http://one-jar.sourceforge.net
http://cxf.apache.org
http://xfire.codehaus.org
http://java.sun.com/j2se/1.5.0/docs/guide/reflection

Bibliography

[30] Java Annotations. http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html.

[31] Extensible Markup Language (XML). http://www.w3.org/XML.

[32] Apache Ant Project. http://ant.apache.org.

[33] Apache Maven Project. http://maven.apache.org.

[34] Jena Framework. http://jena.sourceforge.net.

[35] Pellet reasoner. http://pellet.owldl.com.

[36] JAXB Reference Implementation Project https://jaxb.dev.java.net.

[37] WebDAV. http://www.webdav.org.

[38] Internet Communications Engine (ICE). http://www.zeroc.com.

[39] GridSphere Portal Framework. http://www.gridsphere.org.

[40] JRuby. http://www.ruby-lang.org/en.

[41] SQL. http://www.sql.org.

[42] MySQL. http://www.mysql.com.

[43] PostgreSQL. http://www.postgresql.org.

[44] K-Wf Grid. http://www.kwfgrid.eu.

[45] The World Wide Web Consortium (W3C). http://www.w3.org.

[46] W3C Semantic Web Activity. http://www.w3.org/2001/sw.

[47] RDFS. http://www.w3.org/TR/rdf-schema.

[48] RDF. http://www.w3.org/RDF.

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://www.w3.org/XML
http://ant.apache.org
http://maven.apache.org
http://jena.sourceforge.net
http://pellet.owldl.com
https://jaxb.dev.java.net
http://www.webdav.org
http://www.zeroc.com
http://www.gridsphere.org
http://www.ruby-lang.org/en
http://www.sql.org
http://www.mysql.com
http://www.postgresql.org
http://www.kwfgrid.eu
http://www.w3.org
http://www.w3.org/2001/sw
http://www.w3.org/TR/rdf-schema
http://www.w3.org/RDF

List of Figures

2.1 VLvl layers. 15

2.2 VLvl grid architecture. 16

3.1 Abstract provenance architecture. 19

3.2 From provenance requirements management to provenance mining. 21

4.1 Monitoring XSD schema. 24

4.2 Computation resources XSD schema. 25

4.3 Experiment ontology. 29

5.1 Semantic Event Aggregator. 31

5.2 Experiment decomposition. 33

5.3 Passing of ACID. 34

5.4 Ontology extension. 36

5.5 Derivation concepts. 37

5.6 List conceptual model. 42

5.7 OWL list. 42

5.8 Parameters order information incoherency. 43

5.9 Time relation between events. 48

5.10 Transactional processing. 49

5.11 Dependencies between experiment stages. 50

5.12 Experiment re-execution. 51

5.13 Events aggregation conceptual model. 52

5.14 Aggregation XML context. 53

5.15 Hashing of individual name. 53

5.16 Delegate with hashing function. 54

5.17 Unoptimal events history tracking. 55

5.18 Optimized events history tracking. 56

5.19 Delegate accessing Aggregator buffer. 57

106

5.20 Domain event association. 58

5.21 Sample experiment context. 58

5.22 Association discovery module. 59

5.23 Domain event generalization. 60

6.1 Semantic Event Aggregator architecture. 62

6.2 EventHandler architecture. 64

6.3 XML Data Context. 65

6.4 Individual buffer interfaces. 66

6.5 Individual factories. 67

6.6 Semantic Event Aggregator deployment. 69

7.1 DRS and Geno2DRS ontologies. 73

8.1 QUaTRO GUI. 76

8.2 Sample abstract query. 78

8.3 Query processing: step 1. 79

8.4 Query processing: step 2. 80

8.5 Query processing: step 3. 81

8.6 Query processing: step 4. 81

8.7 Query processing: step 5. 82

8.8 Query language operators. 83

8.9 Query processing conceptualization. 84

8.10 Relation beetween ontologies. 86

9.1 Castor framework. 92

9.2 Event Generation Tool. 93

9.3 Remote logging architecture. 95

9.4 GEMINI overall architecture. 97

9.5 PDQS schema. 98

9.6 Semantics of monitoring data. 98

9.7 P/S architecture in GEMINI. 99

9.8 ICE channels multiplexing. 100

9.9 IceStorm consumers proxying. 101

9.10 IceStorm producers proxying. 102

List of Tables

5.1 Sample experiment execution context. 32

5.2 Delegates. 45

5.3 Aggregation rules. 47

5.4 Usage of delegates in individuals naming. 55

7.1 Grid Objects used in geno2drs experiment. 72

108

Publications

1. B. Balis, M. Bubak, M. Pelczar, From Monitoring Data to Experiment Information
– Monitoring of Grid Scientific Workflows. In G. Fox, K. Chiu, and R. Buyya,
editors, Third IEEE International Conference on e-Science and Grid Computing,
e-Science 2007, Bangalore, India, 10-13 December 2007, pages 187-194. IEEE
Computer Society, 2007.

2. B. Balis, M. Bubak, M. Pelczar, J. Wach, Provenance Tracking and Querying in
ViroLab. In Cracow Grid Workshop 2007 Workshop Proceedings, pp.71-76, ACC
CYFRONET AGH 2008.

3. B. Balis, M. Bubak, M. Pelczar, J. Wach, Provenance Querying for End-Users: A
Drug Resistance Case Study. In: Bubak, M., Albada, G.D.v., Dongarra, J., Sloot,
P.M.A. (Eds.), Proceedings ICCS 2008, Kraków, Poland, June 23-25, 2008, LNCS
5103, pp. 80-89, Springer 2008.

109

	Chapter 1. Introduction
	Motivation
	Objectives
	Organization of this thesis

	Chapter 2. Background: Semantic Web, provenance and applications
	Semantic Web
	Scientific workflows
	Provenance
	ViroLab virtual laboratory

	Chapter 3. Concept of system for provenance recording
	Overall requirements
	From requirements management to provenance mining

	Chapter 4. Provenance model
	Monitoring data model
	Generic monitoring events
	Domain monitoring events

	Provenance ontology

	Chapter 5. Semantic Event Aggregator
	Main idea behind Semantic Event Aggregator
	Monitoring events correlation
	Ontology Extension
	Derivation Concepts
	Concept of Delegates
	Aggregation Rules

	Experiment transaction support
	Semantic associations discovery
	Hashing individuals naming
	Knowledge history tracking
	Context association

	Chapter 6. Design and implementation of Aggregator
	Aggregator architecture
	Aggregator deployment

	Chapter 7. Proof of concept: A drug resistance case study
	Geno2drs scientific landscape
	Geno2drs ontology
	Geno2drs information building

	Chapter 8. Querying over provenance
	User-oriented querying approach
	Abstract query language
	Query processing
	Ontological queries
	Data base queries
	Relational queries
	Transient queries
	Inverse transient queries
	WebDAV queries

	Chapter 9. Summary and future work
	Outcomes
	Research outlook

	Appendix 1. Creation of monitoring events
	Appendix 2. Logging of monitoring events
	Appendix 3. GEMINI monitoring system
	Bibliography
	List of Figures
	List of Tables
	Publications

