
AGH UNIVERSITY OF SCIENCE AND

TECHNOLOGY

IN CRACOW, POLAND

FACULTY OF ELECTRICAL ENGINEERING, AUTOMATICS,
COMPUTER SCIENCE AND ELECTRONICS

INSTITUTE OF COMPUTER SCIENCE

Security in Component

Grid Systems

Master of Science Thesis

Michał Dyrda

Matricula: 120525

Computer Science

Supervisor: Marian Bubak, PhD

Advice: Maciej Malawski, MSc

CRACOW, JUNE 2008

- 2 -

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie

nieprawdy, że niniejszą pracę dyplomową wykonałem osobiście i

samodzielnie i że nie korzystałem ze źródeł innych niż wymienione w

pracy.

 - 3 -

AKADEMIA GÓRNICZO-HUTNICZA

IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI,

INFORMATYKI I ELEKTRONIKI

KATEDRA INFORMATYKI

Bezpieczeństwo

w komponentowych

systemach gridowych

Praca magisterska

Michał Dyrda

Nr albumu: 120525

Kierunek: Informatyka

Promotor: dr inż. Marian Bubak

Konsultacja: mgr inż. Maciej Malawski

KRAKóW, CZERWIEC 2008

`

- 4 -

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie

nieprawdy, że niniejszą pracę dyplomową wykonałem osobiście i

samodzielnie i że nie korzystałem ze źródeł innych niż wymienione w

pracy.

 - 5 -

Abstract

The subject of this thesis is a detailed analysis and development of security in

grid component systems on the example of MOCCA, a CCA-compliant framework

build over H2O distributed computing platform.

The work is focused on providing H2O with an authentication mechanism that

will be both secure and compliant with solutions commonly used in grid systems

nowadays. The created authenticator is based on asymmetric cryptography with

additional features provided by Globus Security Infrastructure. It reuses existing

external libraries and architecture provided by H2O, employing required Public Key

Infrastructure.

Within the scope of this work, existing authentication mechanisms of H2O with

some related aspects of authorization as well as communication security were analyzed

and described. A complete process of authenticator development was carried out.

Finally, the created authenticator as well as the overall system were brought under tests,

which proved their safeness and usability.

The thesis is organized as follows:

In Chapter 1 target environment and motivation for security, especially in the

target systems, are introduced. Then the objective subset of security issues and goals of

this thesis are stated. Chapter 2 presents background – it recalls key security concepts

and describes current security architecture provided by the target system, emphasizing

its missing features. Related work, with emphasis on GSI, is presented in Chapter 3. In

Chapter 4 detailed requirements of the solution are specified and the general concept of

the GSI Authenticator is outlined. Chapter 5 is devoted to implementation aspects of the

solution. Chapter 6 provides an exhaustive description of example usage of the

authenticator in target systems together with required configuration and Public Key

Infrastructure. Moreover, it gives an answer on how the authenticator meets the

usability requirements by performing execution and performance tests as well as a

detailed threat analysis of the overall system. Chapter 7 concludes the work by

enumerating achieved goals and providing some suggestions for future development.

Keywords:

Grid Computing, H2O, MOCCA, components, Common Component Architecture,

security, authentication, Public Key Cryptography, PKI, certificates, Globus Toolkit,

GSI, delegation, proxy certificates

- 6 -

 - 7 -

Acknowledgements

I would like to express my gratitude to Marian Bubak – supervisor of this work,

for his guidance and advices, Maciej Malawski, for valuable consultations, commitment

and time, as well as Dawid Kurzyniec – main H2O author, for the support received

during development of the system.

This work was made possible owing to the ViroLab and CoreGrid projects.

http://www.virolab.org/ http://www.coregrid.net/

- 8 -

 - 9 -

Table of contents

Abstract .. - 5 -

Acknowledgements .. - 7 -

List of Figures .. - 13 -

Abbreviations ... - 15 -

Chapter 1. Introduction .. - 17 -

1.1 Target environment ... - 17 -

1.1.1 Component-based approach ... - 17 -

1.1.2 CCA as a standard for component-based approach - 19 -

1.1.3 H2O as the underlying platform for MOCCA - 19 -

1.1.4 MOCCA as an example of CCA-compliant Framework - 20 -

1.1.5 Summary .. - 21 -

1.2 Motivation for security .. - 21 -

1.2.1 Security concepts in Grid systems ... - 21 -

1.2.2 Security concepts on the example of H2O ... - 23 -

1.2.3 Summary .. - 24 -

1.3 The MSc Thesis goals ... - 24 -

1.4 Summary ... - 25 -

Chapter 2. Background .. - 27 -

2.1 Key concepts ... - 27 -

2.1.1 Transport Layer Security ... - 27 -

2.1.2 Public Key Cryptography .. - 28 -

2.1.3 Public Key Infrastructure ... - 29 -

2.2 Architecture provided by H2O .. - 32 -

2.2.1 Communication mechanisms ... - 33 -

- 10 -

2.2.2 Connection sessions and transport layer parameters - 33 -

2.2.3 Tunneled authentication ... - 34 -

2.2.4 Client authentication .. - 34 -

2.2.5 Server authentication .. - 39 -

2.2.6 Authorization .. - 39 -

2.3 Missing features ... - 42 -

2.4 Summary .. - 43 -

Chapter 3. Related work .. - 45 -

3.1 GSI .. - 45 -

3.1.1 Proxy certificate ... - 45 -

3.1.2 Single sign-on ... - 46 -

3.1.3 Delegation over network .. - 47 -

3.1.4 Proxy Certificate Format .. - 49 -

3.2 MyProxy ... - 49 -

3.2.1 Overview .. - 50 -

3.2.2 Usage Scenarios ... - 50 -

3.2.3 My Proxy as a CA .. - 53 -

3.3 Needham-Schroeder protocol .. - 53 -

3.4 Summary .. - 56 -

Chapter 4. Concept and Design ... - 57 -

4.1 Detailed requirements .. - 57 -

4.2 The name of the authenticator ... - 58 -

4.3 Use Cases ... - 58 -

4.4 Concept of GSI Authenticator ... - 59 -

4.5 Data Flow Diagram of H2O credentials .. - 61 -

4.6 Authentication sequence diagram and usage scenario - 62 -

4.7 Summary .. - 64 -

Chapter 5. Implementation ... - 65 -

5.1 Implementation scope .. - 65 -

5.2 Tools used .. - 66 -

 - 11 -

5.3 GSI Authenticator classes ... - 69 -

5.4 Other implemented classes .. - 74 -

5.5 Revocation mechanism ... - 76 -

5.6 CoG usage code examples .. - 77 -

5.7 Adding new authenticator to chain ... - 80 -

5.8 Adding GSI Authenticator handling in MOCCA.. - 80 -

5.9 Encountered problems with initial implementation without using CoG JGlobus

package ... - 82 -

5.10 Implementation summary .. - 83 -

Chapter 6. Usage and validation of GSI Authenticator .. - 85 -

6.1 Example usage in H2O .. - 85 -

6.2 Example usage in MOCCA ... - 87 -

6.3 PKI configuration ... - 90 -

6.4 Test suites .. - 92 -

6.5 Threat analysis .. - 95 -

6.5.1 Analyzed threats .. - 96 -

6.5.2 Analyzed attacks on the system ... - 96 -

6.5.3 GSI Authenticator threat analysis .. - 99 -

6.5.4 Conclusions .. - 100 -

6.6 Performance tests .. - 101 -

6.6.1 Authenticators comparison .. - 101 -

6.6.2 Server authentication ... - 104 -

6.6.3 Risk analysis .. - 105 -

6.6.4 GSI Authenticator analysis .. - 106 -

6.7 Summary ... - 108 -

Chapter 7. Conclusions and future work ... - 109 -

7.1 Achieved goals .. - 109 -

7.2 Future work ... - 110 -

References .. - 113 -

Appendix A : Standards and formats related to cryptography - 117 -

A. 1. What you should know about PEM, DER, PKCS, … - 117 -

- 12 -

A. 2. Proxy credential file format ... - 119 -

A. 3. Proxy certificate extensions ... - 120 -

A. 4. Proxy certificate types : ... - 121 -

A. 5. Certificate chain validation ... - 122 -

A. 6. Proxy chain validation .. - 123 -

Appendix B: Encountered problems with initial implementation without CoG JGlobus

package – code snippets ... - 125 -

Appendix C : Configuration ... - 127 -

C. 1. Building the distribution .. - 127 -

C. 2. CoG package configuration ... - 127 -

C. 3. H2O truststore configuration ... - 129 -

C. 4. Users.xml configuration ... - 129 -

C. 5. Permissions in Policy.xml configuration file ... - 130 -

C. 6. Revocation configuration ... - 131 -

C. 7. Server authentication configuration ... - 131 -

C. 8. H2O build files configuration .. - 132 -

Appendix D : Publication ... - 135 -

 - 13 -

List of Figures

Figure 1. Common Component Architecture ports. .. - 19 -

Figure 2. MOCCA = H2O + CCA - 20 -

Figure 3. Credential delegation in H2O. .. - 23 -

Figure 4. Public and private key. ... - 28 -

Figure 5. Confidentiality and Authenticity. ... - 28 -

Figure 6. Certificate chain - 31 -

Figure 7. RMIX communication framework in H2O ... - 33 -

Figure 8. Authentication process in H2O – high-level diagram - 35 -

Figure 9. Sequence diagram of password authenticator (v.2) - 37 -

Figure 10. Proxy certificate .. - 46 -

Figure 11. Creating proxy for Single Sign-On ... - 47 -

Figure 12. Delegation over network ... - 48 -

Figure 13. MyProxy overview .. - 50 -

Figure 14. MyProxy usage example .. - 51 -

Figure 15. MyProxy CA usage .. - 53 -

Figure 16. Needham-Schroeder protocol - message exchange - 55 -

Figure 17. Attack on Needham-Schroeder protocol - message exchange - 56 -

Figure 18. H2O Use Cases ... - 58 -

Figure 19. GSI Authenticator overview ... - 59 -

Figure 20. Data Flow Diagram of GSI Authenticator ... - 61 -

Figure 21. Sequence diagram of GSI Authenticator .. - 62 -

Figure 22. High-level class diagram .. - 69 -

Figure 23. GSI PublicCredential class ... - 70 -

Figure 24. GSIRemoteCredential class diagram .. - 72 -

Figure 25. GSIRemoteAuthenticator class diagram .. - 74 -

Figure 26. H2OPasswordFinder class diagram .. - 75 -

Figure 27. MoccaAuthClientSingleton class diagram ... - 81 -

Figure 28. Implemented example usage scheme in H2O .. - 86 -

Figure 29. Creating a proxy – console log ... - 87 -

Figure 30. Running a kernel – console log .. - 87 -

- 14 -

Figure 31. Running an example – console log ... - 87 -

Figure 32. Running H2O kernel for MOCCA example – console log - 89 -

Figure 33. Running MOCCA example – console log .. - 90 -

Figure 34. Suggested PKI for H2O .. - 91 -

Figure 35. Running test suite – console log ... - 95 -

Figure 36. Sequence diagram of man-in-the-middle attack without shared

communication key. ... - 98 -

Figure 37. Sequence diagram of man-in-the-middle attack without server authentication

 .. - 99 -

Figure 38. Authentication time depending on authentication scheme and chain length

for plain socket ... - 102 -

Figure 39. Authentication time depending on authentication scheme and chain length

for SSL socket .. - 103 -

Figure 40. Compared authentication time for plain and SSL socket for particular

authentication schemes ... - 104 -

Figure 41. The change of execution time depending on the authentication scheme and

used endpoint .. - 105 -

Figure 42. Chain validation time depending on chain length - 106 -

Figure 43. Percentage usage of particular GSI Authenticator elements in overall

authentication process .. - 107 -

file:///C:\Documents%20and%20Settings\majk\Desktop\mgr%20opis\mgr%20ca�o��.docx%23_Toc203466641

 - 15 -

Abbreviations

(in alphabetical order)

CA - Certificate Authority

CCA - Common Component Architecture

CRL - Certificate Revocation List

CSR - Certificate Signing Request

DN - Distinguished Name

GSI - Globus / Grid Security Infrastructure

GT - Globus Toolkit

HPC - High Performance Computing

HTTPS - HyperText Transfer Protocol Secure

J2EE - Java 2 Platform, Enterprise Edition

J2ME - Java 2 Platform, Micro Edition

JAAS - Java Authentication and Authorization Service

JCA - Java Cryptography Architecture

JCE - Java Cryptographic Extension

JRE - Java Runtime Environment

JRMP - Java Remote Method Protocol

JSSE - Java Secure Socket Extension

LDAP - Lightweight Directory Access Protocol

OCSP - Online Certificate Status Protocol

PKI - Public Key Infrastructure

PKIX - Public-Key Infrastructure (X.509)

RA - Registration Authority

RDN - Relative Distinguished Name

RMIX - RMI eXtended / RMI MIXture

RPC - Remote Procedure Call

RSA - Rivest, Shamir, Adleman

SOAP - Simple Object Access Protocol

SSL - Secure Socket Layer

TLS - Transport Layer Security

- 16 -

 - 17 -

Chapter 1. Introduction

The subject of this thesis is security in grid component systems on the example

of H2O and MOCCA. At the beginning, some introduction will be performed in this

chapter. First we will familiarize with the environment that will be targeted by this

thesis. Afterwards aspects of security in grid component systems will be described and

the importance of security at the example of target platforms will be shown. Finally the

sub-goals of this thesis will be stated. [1] and [2]

1.1 Target environment
1

As the Grid system evolved, programming of mostly compute intensive,

distributed, scientific applications that would utilize its growing resources, was

becoming more and more complicated. A suitable programming model and a way of

virtualization that would hide the complexity of heterogeneous environment, became

two key challenges to compete. One of the proposed approaches was to use an extended

component model with a virtualization layer applied. As one of the results, a CCA-

standardized MOCCA framework together with an H2O platform, which it is based on,

were designed. In this section they will be shortly introduced, with emphasis on the

security aspects, which are important from the point of view of this thesis.

1.1.1 Component-based approach

In order to understand the architecture of target systems let us first briefly recall

what the components are and see how the component-based approach can address Grid

complexity issues.

Components are independent units of software of specified (reusable)

functionality that can be dynamically composed and interact with other components

using (and only through) well-defined interfaces (input and output ports). They are

hosted by specific containers that are responsible for other services, such as

communication, data storage or security.

1
 Based on [1] and [2]

- 18 -

Some features of component-based approach enable it to addresses Grid complexity

issues:

- Virtualization and scalability

Component-based applications can be composed from (relatively) simple blocks

hosted by containers running on multiple grid sites. The physical location of

containers is not relevant for using them, they can even appear as a single logical

resource. Both pool of containers and number of individual components can be

managed dynamically, allowing to adjust the load according to number of owned

resources. Also new components can be deployed when needed. Together with a

lightweight platform it makes the approach scalable to different environments,

from laptops to HPC clusters.

- Communication

Instead of Web Services, components can be directly connected without need to

pass invocation data via central workflow engine. Parallel connections are

allowed as well. Furthermore, they do not require SOAP as a protocol. In fact,

containers allow for communication interoperability facilitating many

communication protocols.

- Adaptation to unreliable Grid environment

Dynamic and interactive reconfiguration of connections, locations and bindings

enables to adjust to the changing state of Grid network.

- Ease of development

Components‘ (relative) simplicity makes the development of large systems even

more convenient. Moreover, developers can focus on components functionality

itself, leaving cooperation with environment to the container. Together with a

specified inter-object communication it all makes the approach to be considered

as a step beyond object-oriented design, finally making cross-projects code reuse

available in a practical way.

This part introduced the component-based approach and its usefulness in a Grid

environment. Now we can look at some specific standards and solutions.

 - 19 -

1.1.2 CCA as a standard for component-based approach

As a standard for component-based approach, the Common Component

Architecture (CCA) was submitted. We describe it as the introduction to the MOCCA

framework that is compliant with this standard.

CCA was designed by members of a Common Component Architecture Forum
2
.

It defines ‗uses‘ and ‗provides‘ ports and a SIDL language to describe them (Figure 1).

Figure 1. Common Component Architecture ports
3
.

„Provides‟ ports are public interfaces that a component realizes whereas „uses‟ ports

specify dependency of other components‟ „provides‟ ports, which it requires to use.

There exist multiple different frameworks for building applications compliant

with CCA standard, i.a. loosely coupled, distributed XCAT or tightly coupled

CCAFFEINE (with support for Babel and MPI). This thesis however focuses on the

MOCCA framework based on the H2O platform. Both of them will be introduced in the

subsequent sections of this chapter. [3]

1.1.3 H2O as the underlying platform for MOCCA
4

Now let us familiarize with H2O as the underlying platform of MOCCA.

Following chapters of the thesis will focus on H2O security mechanisms, therefore this

part is essential to understand them. By reading this part we will get to know the

application and usage of H2O, learn its notation, actors and some interesting features.

As described by authors in [4]: „H2O is a middleware platform for building and

deploying distributed applications. H2O is Java-based, secure, scalable, stateless, and

lightweight.” The main difference towards other component frameworks, such as J2EE,

is that not only the container owner but any authorized third party (e.g. grid software

developer) is able to deploy services and use them afterwards.

2
 http://www.cca-forum.org/

3
 Based on figure from [1]

4
 http://dcl.mathcs.emory.edu/h2o, based on [3]

- 20 -

Nomenclature:

H2O names for containers and components are respectively kernels and pluglets.

The kernels are owned by Providers, who define their access control policy, start them

up and terminate them. The pluglets are implemented by Developers and mostly placed

as a digitally signed package (e.g. .jar file) in a repository. Deployers deploy them in the

kernel and can do some initial aggregation. Finally, the pluglets are used by Clients by

calling their remote methods and optionally by aggregating them if needed. Multiple

roles can be assigned to one person.

All of the presented issues of H2O platform are used by the MOCCA

framework, which will now be introduced.

1.1.4 MOCCA as an example of CCA-compliant Framework
5

This part introduces application and features of MOCCA framework. It aims to

show, how the security mechanisms of MOCCA and H2O are shared in order to specify

the object of this thesis‘ interest.

MOCCA is a distributed component framework compliant with CCA standard,

which is build on top of H2O platform. It allows building component applications on

distributed resources available through H2O. Although MOCCA is supposed to support

multiple programming languages, current version called MOCCA_Light is a pure-Java

implementation. Its architecture is presented in Figure 2.

Figure 2. MOCCA = H2O + CCA
6
.

Individual components, which are java classes implementing CCA interfaces (cca.Port,

cca.Component), are mapped to separate pluglets. The deployed pluglets are managed and

combined using MOCCA Builder and its Builder Pluglets.

5
 http://www.icsr.agh.edu.pl/mambo/mocca, http://mocca.icsr.agh.edu.pl/, based on [1]

6
 Based on figure from [1]

 - 21 -

What‘s very important from the point of view of this thesis – MOCCA uses the

security mechanisms of H2O, sharing the same challenges and using the same

solutions. That means that competing the MOCCA challenges comes down to

competing them in H2O, which in fact is done as the result of this work. Therefore in

subsequent chapters we will only refer to H2O platform remembering that the

same issues apply to the MOCCA framework as well.

1.1.5 Summary

This chapter gave an overview of a target environment, in which component-

based approach and CCA standard led us to introduce the H2O platform and MOCCA

framework, which security mechanisms are being focused by this thesis. This

introduction will help us to understand the motivation and issues of security in Grid

component systems, especially on the example of H2O and MOCCA.

1.2 Motivation for security

It is no unusual situation for Grid system that plenty of resources handling

confidential data are shared on multiple sites by a large number of users from a variety

of organizations. Security of such system is a critical issue, because not only data, but

also hosts, resources and computations have to be secured from improper access. Based

on such characteristic, several aspects of Grid security will be presented in this chapter.

H2O, as a Grid-oriented software, has to meet them as well – this will be described

afterwards.

1.2.1 Security concepts in Grid systems

The aim of this part is to introduce the main aspects of security in computer

systems and analyze them taking into account the characteristic features of Grid

environment.

- Authentication

The identity of every user has to be confirmed in order to enter the system.

Additionally, authentication of the server can ensure that resources and data are

not provided by an attacker.

- 22 -

- Authorization

Every authenticated user has to be authorized to access individual resources. It is

difficult mostly because of the scalability and evolution of Grid systems - both

number of hosts and users can be large (reaching thousands) and dynamic -

because of joining and leaving all the time. Furthermore, resources are often

owned by multiple administrative domains, which makes the administration

difficult and demands complex, distributed authorization policies.

- Single Sign-On and delegation

The trade-off between user friendliness and system robustness is still an

important issue. One of the aspects is to enable users to use multiple resources

without the need to authenticate multiple times on their providers‘ hosts;

moreover – to allow the system to work on user‘s behalf (e.g. to allow brokering

services acquire resources on behalf of the user) in the same manner.

- Communication security – message integrity and confidentiality

Secure communication has to be encrypted and signed. Encryption is a way to

ensure confidentiality - prevents the communication from being eavesdropped

by an unauthorized third party. Digital signature ensures the communicating

parties that the messages have not been modified on their way (e.g. the target

account number of our transfer has not been changed).

- Sandboxing

Users are not always victims of security vulnerabilities – they can pose threats as

well. On one hand, we have to protect the code running on shared computational

resources from others; on the other, we have to ensure that no user‘s code will

negatively affect the system, other computations or data.

- Audit

Violations can occur, indeed. In such situation it would be reasonable to have

some logs and chains of accountability for actions that took place on the system,

to find the responsible user.

- Accounting

In commercial systems the ability to limit or charge for consumption of

resources is demanded.

 - 23 -

Please notice that all of the ‗A..‘ aspects (commonly called together as AAAA)

need to be aware of resources distribution, which makes them more difficult than in

casual systems.

1.2.2 Security concepts on the example of H2O

Now that we know the characteristics of security issues in Grid systems we can

take a look at how it applies to the H2O platform. Finally we will select the aspects,

which this thesis will be focused on.

Because the kernels are publicly accessible, it is important to authenticate users

accessing them to verify their identity. The authentication is performed using some

credentials, i.a. username and password. Authorization, in turn, needs to be introduced

in order to distinguish between users with different permissions (e.g. for deploying

pluglets or accessing them…). Also the code can be authenticated by signing the

pluglets. Community policy management may need to be introduced in case of Virtual

Organizations.

Moreover, one of the concepts is to facilitate direct links between pluglets. Since

each pluglet can be kept in separate H2O kernel on multiple Grid sites, each connection

between kernels has to be authenticated and authorized as well. That would demand a

user to authenticate multiple times, which would be very inconvenient. To reduce the

number of times the user must authenticate (e.g. enter his passphrase), credential

delegation has been introduced (see Figure 3). The user authenticates only once upon

connecting to first component; afterwards code running in the component can

authenticate itself to another component on behalf of the user/client. That is called

Single Sign-On.

Figure 3. Credential delegation in H2O.

A user authenticates only once upon connecting to first component. Credential presented

by the user is delegated for subsequent connections. Code running in the component can

authenticate itself to another component on behalf of the user/client.

Furthermore, communication security can sometimes be a crucial aspect as well.

Confidentiality and integrity can be enabled in order to be sure that no other peer will be

able to understand or modify our communication.

- 24 -

Finally, users‘ code has to be separated from each other (run in sandbox) in

order to prevent them from interfering and being threat to each other.

Audit and accounting have not been concerned yet

Using the example of H2O platform, this section has shown, how broad and

complicated the aspects of security in grid component systems are. As the topic of this

thesis, the aspects of authentication, together with additional elements, as

delegation, single sign-on and some part of authorization have been selected. Their

detailed analysis together with review of available solutions as well as implementation

of selected one will be carried out in subsequent chapters.

1.2.3 Summary

This part introduced the aspects of security in grid component systems and

related them to the example of H2O platform. At the end the subset of aspects, which

are going to be considered by this thesis, were selected.

1.3 The MSc Thesis goals

The main goal of the thesis is to analyze, design and develop a solution that will

be able to rise to the presented subset of security challenges in H2O. This chapter lists

the sub-goals that will be realized by the thesis in order to achieve this goal.

- Identification and analysis of security architecture and shortages in

H2O

At the beginning we need to analyze the current state of security mechanisms

already implemented in H2O and find these aspects that are missing and have to

be added. All requirements have to be identified in order to state a problem, this

thesis will attempt to solve. In order to achieve this goal, it is necessary to deeply

familiarize oneself with the system.

- Overview of available solutions for H2O security enhancements

In order to find the best solution, we need to conduct a research of modern

security technologies used for authentication and examine if they are capable of

answering the issues specified in the previous point.

 - 25 -

- Concept and development of new security system for H2O

The analysis of possible solutions should lead to a concept of security system

that will address all the identified challenges. The main goal of this thesis will be

to design and implement a complete and comprehensive solution for the stated

problem. Moreover, the system environment should be analyzed and required

modifications should be identified and described.

- Proving the correctness and usefulness of the created solution

In order to prove the usefulness and robustness of the solution, an example usage

description as well as several tests are to be created. The main point of this part,

beside code and performance tests, will be the threat analysis. The goal will be

to check the system against all known attempts of violation so as to prove that it

is immune to them.

Since the complete H2O authentication architecture is very flexible and allows

to choose between the performance and security level, the analysis of possible

usages along with their pros and cons will be performed.

- Build, configuration and usage description

Because of a weak H2O documentation and encountered difficulties with

building, configuring and using it, the experience gained during the development

of the GSI Authenticator is going to be written down in form of a detailed

description of the required actions and steps in order to simplify successive

developers‘ work.

- Identification of future work

The subject of this thesis will be the next but not the last step of H2O

development. At the end of the thesis available areas of future work will be

identified, taking into account especially the newest trends in Grid computing

and the scheduled development of the target systems.

1.4 Summary

The chapter introduced both the environment, to which the subject of this thesis

is targeted, and the motivation for security in such an environment. The subset of

security issues that the thesis will concentrate on, were selected – namely authentication

together with delegation and single sign-on as well as some part of authorization.

Finally, the goals of this thesis were stated.

- 26 -

 - 27 -

Chapter 2. Background

In previous chapter an introduction of target environment was presented. This

following chapter will provide a detailed description of existing H2O security

architecture, together with a required theoretical background. First some key security

concepts will be recalled that is Transport Layer Security and its foundations: Public

Key Cryptography and Public Key Infrastructure. Their knowledge is essential for

understanding the subsequent parts of the thesis. Furthermore, the existing H2O

authentication and authorization architecture will be precisely described to provide us

with the knowledge of current state of the art. Finally some missing features of the

authentication mechanism will be discovered and stated.

2.1 Key concepts

As an introduction to further considerations a few security mechanisms are

going to be reminded with emphasis on aspects, which are going to be particularly

essential. The TLS protocol together with Public Key Cryptography and Public Key

Infrastructure are going to be described.

2.1.1 Transport Layer Security

Transport Layer Security (TLS) [5], in its previous version known as Secure

Sockets Layer (SSL)
7
, is a protocol for establishing a secure channel across mistrusted

networks. It ensures connection encryption, integrity (using digital signatures) and non-

repudiation. Moreover, authentication is provided. Typically one side is authenticated

only – the common example is using the HTTPS protocol for entering secured websites,

which identity we need to be sure, e.g. bank services. On the other side some server

may want to authenticate the user in order to share its resources in a secure manner. If

the identity of both sides has to be confirmed – the mutual authentication takes place.

7
 The names TLS and SSL will be used replaceably in this thesis

- 28 -

Communication using TLS involves three basic phases:

- Peer negotiation for common algorithms (ciphers, authentication

algorithms, message authentication codes)

- Key exchange and authentication (public key cryptography and certificates)

- Message encryption and message authentication (using symmetric

cryptography)

TLS is based on Public Key Cryptography and Public Key Infrastructure, which

are now going to be presented.

2.1.2 Public Key Cryptography

Instead of the symmetric-key cryptography,

where a single key is used both for encryption and

decryption, the public key (a.k.a. asymmetric)

cryptography uses a pair of keys: a public key and a

private key (Figure 4). The keys are mathematically

related in a way that the private key cannot be

practically derived from the public key. A message

encrypted with one key can be decrypted only with

the second - corresponding one.

Figure 4. Public and private key.

The private key should be kept

secret and be only known to the

owner, whereas the public key

may be widely distributed.

 The two main applications of the Public Key Cryptography are to ensure

confidentiality and authenticity. The applications are presented in Figure 5.

Figure 5. Confidentiality and

Authenticity.

Confidentiality : a message encrypted

with recipient‟s public key can only be

decrypted by the recipient with his

corresponding private key

Authenticity : a message signed with

sender‟s private key can be verified

using the wide-spread public key in

order to prove the identity of the sender

and the fact that the message hasn‟t

been tampered with.

 - 29 -

Because of the fact that public key cryptography is much more computationally

intensive than symmetric one, their usage is commonly mixed. For example some

protocols, like TLS, use the asymmetric keys during the handshake to authenticate the

peers and establish a symmetric key for faster encryption of further communication.

The first and still most popular algorithm for public key cryptography is RSA

[6], created in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman at the

Massachusetts Institute of Technology. The name of the algorithm is taken from the

initials of authors‘ surnames.

But how do we know that the owner of the public key we possess is really the

one she claims to be? In order to relate the public key encryption to the real world of

people with names, addresses and organizations they belong to, the next mechanism:

Public Key Infrastructure (PKI) was introduced.

2.1.3 Public Key Infrastructure

Public Key Infrastructure is based on certificates and Certificate Authorities.

Certificates are electronic documents that associate public key with the owner‘s real

identity. In order to assure this binding‘s integrity, it has to be digitally signed using

some signer‘s private key. The certificate may be self-signed (using the owner‘s key) or

signed by (issued by) some third-party. The signature unambiguously qualifies the

signer. In order to trust the certificate, we have to trust the issuer of the certificate.

The trusted third parties, used for signing the certificates, are called Certificate

Authorities. They are used to both sign and confirm the correctness and reliability of the

certificates. The most publicly known CA is VeriSign
8

Contents of the certificate:

The contents of the certificate typically includes:

 The public key being signed

 An associated name, which can refer to a person, a computer or an organization

 A validity period, after which the certificate won‘t be accepted

 A location of a revocation center

 A digital signature of the certificate, produced by the signer‘s private key

8
 http://www.verisign.com/

- 30 -

Certificate generation:

The process of generating a certificate contains the following steps:

1. Key pair is generated.

2. The Certificate Signing Requests (CSR) is created; this step requires user to enter

some information that will become parts of the subject name, which are described

below.

3. The request is sent to the signer (e.g. the Certificate Authority) to be signed.

4. Once signed, a certificate is returned.

It is important to notice that the private key is never sent anywhere.

Names in certificates
9
:

The subjects are identified with the Distinguished Names (DNs) that are

commonly used (e.g. in LDAP directories) to uniquely identify users, systems and

organizations. The format of DN, specified in one of X.500 series standard, has a

hierarchical form that begins with a subject specific common name and proceeds with

increasingly broader areas of identification until the country name is specified. Specific

components are called Relative Distinguished Names (RDNs)

The typical RDNs are:

 CN – common name – that can be user‘s real name or hostname of the server

 OU – organizational unit

 O – organization

 L – locality / city

 ST – state / province

 C – country code

The example certificate DN used by the thesis‘ author is:

CN=Michal Dyrda, O=AGH, O=GRID, C=PL

In case of e.g. GRID, in order to enable secure communication all the entities, like

users, hosts, servers, need to possess their certificates signed by the CA. [7]

9
 The description is based on [7]

 - 31 -

Credentials

In this thesis the word credential will be used for the pair of certificate and the

corresponding private key, furthermore permanent credential for a long-term user‘s

credential issued by the well known CA.

Certificate chains

The PKI architecture has a hierarchical structure of a tree. An example chain is

presented in Figure 6.

Figure 6. Certificate chain
10

.

At the top there is a „Root CA‟ with a self-

signed root certificate. Other CAs can exist,

whose certificates can be signed by the higher-

level CA in the hierarchy. The leaves of the

tree are end-entities certificates.

The set of certificates from an end-entity certificate up to a trusted Root CA

certificate is called a certificate chain. All the descendants inherit the trustworthiness of

their parents. That establishes a chain of trust. Trusting one of the CAs, we can trust any

of the descendants. The verification of user‘s certificate requires verification of all the

steps in the chain. The process is described in Appendix A. [8]

10

 Based on figure from [8]

- 32 -

Revocation and CRL

Certificate may become invalid before the end of its validity time, e.g. owner‘s

data may change or the private key may be compromised. In such cases, the CA revokes

the certificate and puts it on a publicly accessible Certificate Revocation List (CRL),

which should be updated regularly by the relying parties and checked during certificate

validation. Avoiding certificate revocation verification may lead to serious security

gaps.

Extensions

The recent, third version of certificates, available since 1996 supports certificate

extensions, which may be defined and included in certificates. Some common

extensions are defined by the standard, i.a.:

 Key Usage – limits the usage of the key to some particular applications, e.g.

signing only

 Basic Constraints – identifies, whether the subject of the certificate is able to

sign certificates (is CA) and may limit the number of certificates in the path

following this CA certificate

 Alternative Names – allows to associate more identities with one public key, e.g.

DNS names, email address or IP number

Each extension in a certificate can be marked as critical or noncritical. All the

critical extensions must be recognized and processed by the certificate-using system,

otherwise the certificate has to be rejected.

The knowledge of the extensions will be useful to understand problems that

occurred during the development of the thesis target, which will be described in section

5.9.

2.2 Architecture provided by H2O

The existing version of H2O already offers some solutions to the security issues

presented in previous chapter. They are based both on proprietary solutions (the RMIX

framework with connection sessions, authentication mechanism) and public standards

(i.a. Java Authentication and Authorization Service), which we can get familiar with

now.

 - 33 -

2.2.1 Communication mechanisms

The H2O communication interoperability is managed by RMIX
11

, ―a

communication framework for Java, based on the Remote Method Invocation (RMI)

paradigm‖ [9]. It combines simplicity, flexibility and performance. Depending on

application requirements, it enables communication over several remote method

invocation protocols, such as SOAP, RPC and JRMP. Extensible, pluggable architecture

provides possibility to add new protocols, even on runtime. Some interesting features

include possibility to use many protocols within a single application, dynamic protocols

negotiation upon connection and asynchronous calls as well as one-way invocations.

RMIX provides communication security as well. All of the currently supported

RMIX protocols can be used together with SSL/TLS layer (e.g. SOAP/HTTPS or

RPC/SSL). What is most important from the point of view of this thesis – the same

H2O authentication algorithms can be applied irrespective of the communication

protocol used.

Figure 7 presents the overview of RMIX framework in H2O.

Figure 7. RMIX communication framework in H2O
12

Depending on requirements, it enables communication between H2O kernels

over several remote methods invocation protocols, such as SOAP, RPC and JRMP.

2.2.2 Connection sessions and transport layer parameters

H2O provides the concept of a session that allows user to use multiple

connections and change their parameters in a flexible manner without the need of

multiple authentication. [10]

Upon connection a session certificate for client is created and based on the

certificate, a connection session is being established. After user‘s authentication, user

ID and roles are saved in session context on the server side. From that moment every

11

 http://dcl.mathcs.emory.edu/rmix
12

 The figure comes from [10]

- 34 -

client‘s connection to the server (which may use different sockets) may be established

without the need of next authentication: client‘s certificate is used to identify the session

which, in turn, provides client‘s roles required for specifying its permissions.

The initial connection is made using either plain (http) or TLS-secured (https)

endpoint. After the session is being established, because of using the RMIX framework,

client can modify the properties of both message (JRPM, SOAP, RPC…) and transport

(TCP, TLS/TCP, …) layers used for subsequent communication. The connection

features may be configured in order to trade-off between the performance and the

security level of connection, depending on the requirements.

One of the examples is to disable the encryption of the communication channel,

while retaining other features, such as integrity check. That allows to obtain better

communication performance by getting rid of the encryption overhead while still

preserving protection against tampering with the communication channel or man-in-the-

middle attacks.

Secure connection parameters may only be achieved while using TLS endpoint

for the initial connection. Using plain connection for the session establishment may

allow to intercept the communication and impersonate the user, therefore assuring

subsequent security is useless. Still the plain connection may be used for example in

secured internal LANs.

2.2.3 Tunneled authentication

Creation of session keys for communication is usually performed by the

authentication mechanism itself (e.g. in case of TLS). H2O mechanism is an example of

tunneled authentication, where an ‗outer‘ secure channel is used for creating a session

over the message exchange of an ‗inner‘ authentication algorithm.

The outer protocol is mostly responsible for the generation of a session key.

However it may also enable encryption and integrity during the authentication, in order

to prevent the authentication messages from being modified or understood. In that way

even simple legacy authentication methods can be used securely.

2.2.4 Client authentication

Authentication is checking the identity, the client pretends to have. It consists

both of getting the identity and verifying its correctness. The identity, together with the

groups (roles), which are assigned to the user, are in H2O the basis of subsequent

authorization.

 - 35 -

To allow Single Sign-On, H2O authentication mechanism allows delegation of

users‘ credentials together with login information (e.g. user id and groups).

Chain of authenticators structure

H2O kernel contains an extensible pluggable authentication architecture with

support for multiple protocols, developed as separate modules that simplifies adding

new authentication schemes. Similar solution is used i.a. in Pluggable Authentication

Modules (PAM)
 13

 as well as for authorization in Globus Toolkit
14

 [11]

The authentication engine evaluates a chain of configured authenticators that

implement some authentication schemes or can call out to some external authentication

services. That allows H2O kernel owner to provide multiple authentication methods,

thus enabling users from different environments (e.g. organizations), with different

credentials to use the resources provided by H2O.

Each authenticator has to be registered in H2O kernel (described in point 5.7)

Chain evaluation

The evaluation proceeds as shown in Figure 8:

Figure 8. Authentication process in H2O – high-level diagram

1. Submitting credentials in virtual Wallet

2. Proceeding the authentication messages exchange

3. Getting the authentication result

 A user provides his credentials putting them into the virtual Wallet:

clientCxt = H2OClient.newInstance(wallet, H2O.TRUST_ALWAYS);

13

 Described in RFC 86.0 published in October 1995
14

 www.globus.org/toolkit/

- 36 -

o User doesn‘t have to supply credentials for all of the authenticators…

o …but all of the supplied credentials have to be served by the engine

(otherwise – authentication fails)

o Each credential can be marked as ‗required‘ by the user

 Upon connection, the wallet is submitted to the Kernel. [1]

 Authentication engine tries to map each credential to one of its authenticators

o It finds the first authenticator that

 supports the requested protocol

 does not immediately fail after looking at the request – then the

authenticator assumes that it is able to handle the credential

 The authentication messages exchange proceeds [2]

 The authentication result is returned [3]

o If authentication of required credential fails, the chain evaluation breaks

and access is denied

o If authentication of non-required credential fails, the evaluation proceeds

o If the end of the chain is reached without a ‗required‘ authenticator

returning false, the access is granted (as a ‗guest‘ role)

Authenticators on the example of password authenticator

The H2O platform offers a simple password-based authenticator by default and

allows custom authenticators to be written and added to the chain. This part presents

details of the auth messages exchange from Figure 8 on the example of the password

authenticator.

There exist two versions of the authenticator. In the first one only one message is

sent from user to server, which contains both his public credential (id, realm) and the

password. In the second one that is going to be described here, the password is sent as a

second message.

The password authenticator specifies the following policies for credential

delegation:

 DELEGATE_ALWAYS

The delegation is performed even if the user is unknown (but not if the password

is incorrect)

 - 37 -

 DELEGATE_IF_AUTHENTICATED

The delegation is done only if the user is known and correctly authenticated

 DELEGATE_NOT

The delegation is never done

Figure 9 presents the sequence diagram of the second version of password

authenticator. It assumes that the authentication successes and that the credential is to be

delegated.

Figure 9. Sequence diagram of password authenticator (v.2)

The following steps of the diagram are described in the use case in text below.

The following use case scenario describes the steps of the diagram:

Goal: user wants to authenticate himself to the kernel in order to perform some

operations on it

Actors:

 client – user application connecting to the kernel

 server – the authenticator implementation on the server side

Preconditions: the credential from the Wallet is mapped to the proper authenticator

Triggers: authenticator engine starts the authentication process

Success guarantee : server responses with a success message and saves the client‘s

principals (id, group membership) in login context

- 38 -

Basic flow:

1. Client sends the public credential (id and realm), the selected delegation policy

and the ‗required‘ flag

2. Server gets the credential and reads user from the database

3. Client sends password to the server. User may be prompted to type in the

password at this time. It depends on client side implementation - current one

uses a credential with prefilled password.

4. Server verifies the password

5. Server reads user‘s group membership information and saves it in the login

context.

6. Server creates the delegated credentials and saves them in user‘s context

7. Server sends the authentication success response to the client

Alternative scenarios:

2a : The user was not found in the database

 2a1 : No groups are saved to user‘s login context

 2a2 : If the delegation flag is DELEGATE_ALWAYS, the delegation is performed

 2a3 : Server sends the authentication failure response to the client

 2a4 : The scenario is finished

4a : The password is incorrect

 4a1 : No groups are saved to user‘s login context

 4a2 : Server sends the authentication failure response to the client

 4a3 : The scenario is finished

6a : The delegation flag was DELEGATE_NOT

 6a1 : The delegation is not performed

 6a2 : The scenario goes to step 7

Users database

The password authenticator uses the file Users.xml placed in the security

configuration directory ({h2o-dist}/config/security) as a database. It contains the

entries of users both and their passwords (may be its digest) grouped in the four roles

that will be described by presenting a Policy.xml file in section 2.2.6.

 - 39 -

2.2.5 Server authentication

Server-side authentication can be a crucial thing in order to prevent some attacks

on the system, as it is going to be presented in the threat analysis in point 6.5. Now the

H2O mechanisms for enabling this feature will be described.

Upon connection, along with credentials wallet, client specifies so called trust

manager to disallow access to distrusted kernels:

clientCxt = H2OClient.newInstance(wallet, H2O.TRUST_CERTIFIED);

In order to require server authentication, instead of using the

H2O.TRUST_ALWAYS trust manager, which allows connection to any kernel

regardless of its certificate, client has to select the H2O.TRUST_CERTIFIED

manager. It allows connection only to kernels, which identify themselves with valid

certificates issued by CA that is included either in the default JSSE trust anchors, or the

H2O trust anchors specified in ${h2o-dist}/config/security/cacerts.

Additionally, TrustCertified manager allows only secure connections and verifies the

hostname of the kernel with the Common Name of kernel‘s certificate.

When specifying no (null) trust manager, the application will use default JSSE

trust manager if the connection is done using secure endpoint.

Using server authentication requires some changes in kernel configuration. By

default, the H2O kernel generates a self-signed certificate to identify itself to clients. It

is difficult to manage those certificates and add them to clients‘ truststores. Instead of

that, kernel can be forced to use other certificate, issued by a well-known CA. The

configuration is presented in the appendix C.

2.2.6 Authorization

Authorization specifies users‘ permissions to connect to the kernel as well as to

carry out given operations on it (deploy pluglets, activate sessions).

The H2O kernel security model is based on a customizable sandbox. Each

pluglet uses separate classloader, so that they can run safely without the risk of affecting

other pluglets or kernel itself. The authorization model of H2O is based on fine-grained

permissions and handled by java JAAS. The default set of permissions is bounded to

minimum (i.a. no file system access) and the permissions for specific operations have to

be explicitly granted. Privileges are granted to groups (roles), which are assigned to

each user.

- 40 -

JAAS

Java Authentication and Authorization Service [12] is a framework that extends

the code-centric architecture, introduced in the Java 2 platform, with the new user-

centric access control. In the hitherto architecture, the permissions are granted based on

code characteristics: where it is coming from and whether it is digitally signed – and if

so, by whom. The structure of the entries looks like:

grant [signedBy <signer> [,codeBase <code source>] {

 permission <class> [<name> [, <action list>]];

};

An example of the configuration is:

grant codebase "file:./JaasAcn.jar" {

 permission javax.security.auth.AuthPermission

 "createLoginContext.JaasSample";

};

JAAS allows the permissions to be granted based not just on what code is

running, but also who is running it. As a result of authentication, the Subject object is

created. It represents the authenticated user, containing his credentials as well as a set of

Principals, representing the identities of that user. Those principals may be assigned

specific permissions in the policy. The entries are supplemented with new fields - the

fully qualified name of a principal class and a principal name:

grant [signedBy <signer> [,codeBase <code source>]

[,principal <principal class> <principal name>] {

 permission <class> [<name> [, <action list>]];

};

This time the example may look like:

grant codebase "file:./SampleAction.jar",

 Principal sample.principal.SamplePrincipal "testUser" {

 permission java.util.PropertyPermission "java.home", "read";

};

In order to take advantage of the permissions, the Subject, which is the result of

authentication, must be associated with current access control context. For each

subsequent security-sensitive operation, Java runtime will automatically determine,

whether the required permission is granted to the specific principal and if so, the

operation will be allowed only if the currently active subject contains it.

 - 41 -

JAAS in H2O

The JAAS authorization component used in H2O requires the kernel to

authenticate the user first. Instead of using JAAS authentication mechanisms, H2O

expects its own authenticators to populate the Principals sets, which are then used by the

authentication engine to create a Subject object and associate it with the context.

Policy.xml

The H2O authentication policy is by default specified in the Policy.xml file in

{h2o-dist}/config/security. Since the authentication is both user-centric and code-

centric, the file is divided into:

 Principal-based permissions – the permissions granted to the specific roles.

There are four roles of increasing importance in the presented order; each role

inherits the permissions of its antecessor and adds its own ones. The default

permissions are presented here.

Unauthorized user is assigned the Guests role whose permissions can be

broaden for testing purposes but should be limited in production environment.

Assigning other roles requires user authentication:

o permissions given to Users

 allow users to login (activate the session)

 allow users to access and bind pluglets

o permissions given to Deployers

 allow deployers to deploy pluglets

 the pluglets are allowed to accept connections

o permissions given to Administrators

 all permissions for kernel, pluglets and session

 Code-based permissions – special permissions (i.a. accessing the file system)

can be granted to some code that is placed in specific location or that has been

digitally signed. The default sections of standard H2O policy file are the

following two:

o H2O distribution pluglet permissions

o permissions granted to pluglets signed by the Emory DCL
15

15

 Distributed Computing Laboratory, Dept. of Math and Computer Science, Emory University

- 42 -

2.3 Missing features

Analysis of the system, its target usage and users‘ opinions as well as the

observation of trends in the domain of security led to specification of missing features

that need to be added to H2O in order to increase its usability and usage safety. This

section is going to present and describe the features.

- Credential security

The provided password authenticator does not assure sufficient level of security.

It is very unsecure without the tunneling. Moreover, it cannot be used for single

sign-on and delegation (which feature is described below). And it is hardly

possible to manage the credentials‘ validity lifetime.

The another common weak point of this solution are users as well, which are

known to be careless with the passphrases or use very ‗easy‘ secrets that are

simple to break.

- (Single sign-on and) delegation with short-term permissions

The password authenticator enables credential delegation for single sign-on,

though it requires user to pass over his password to the services, which she can‘t

control – at the same time losing the control over the password.

- Compatibility with well-known standards

The current ‗de facto‘ standard for security in grid computing is the GSI, used by

Globus Toolkit as well as in some scientific projects, like EGEE
16

. It uses well-

known technologies with readily available, well-tested open source

implementations, which are standards in their fields as well. The flexibility of

trust model for X.509 certificates assures good scalability and perspectives for

broader field of application.

This solution may not only challenge all the other features presented above, but

may also be a cornerstone for further enhancements, like centralized management of

authentication and authorization policies or enabling the cooperation of multiple Virtual

Organizations.

16

 http://public.eu-egee.org/

 - 43 -

2.4 Summary

This chapter recalled us some key security concepts and gave us an overview of

the current state of security architecture provided by H2O. First the Transport Layer

Security both with Public Key Cryptography and Public Key Infrastructure were

reminded. Furthermore the issues of H2O communication layer security, client- and

server-side authentication and JAAS, an authorization mechanism used in H2O, were

presented. Together with missing features, which were identified, the presented

background will be the starting point for a design of a solution that will extend the

existing architecture to answer the presented shortcomings.

- 44 -

 - 45 -

Chapter 3. Related work

Prior to the design of this thesis‘ subject, let us look at how the presented

security issues were answered by hitherto researches of other people. The result of their

works - GSI, providing proxy credentials and delegation, MyProxy for credential

storage and Needham-Schroeder protocol for authentication - had an essential influence

on the designed solution and therefore are going to be described now.

3.1 GSI
17

The analysis of the grid security issues mentioned earlier was the reason to

create an official specification for safe communication in a grid environment. The Grid

Security Infrastructure (GSI), formerly called the Globus Security Infrastructure,

consists of protocols, libraries and tools that allow users and applications to make the

communication in grid computing environment in a secret, tamper-proof and

delegateable way.

GSI is in principle based on existing mechanisms like public key encryption,

X.509 certificates and TLS communication protocol with mutual authentication. Still it

provides some extended functionality, like single sign-on and delegation, together with

mechanisms that enable them.

3.1.1 Proxy certificate

The ‗idea‘ is called proxy credential and is a short-term credential that is created

in a base of user‘s permanent credential (private key with associated certificate obtained

from the CA) and can be placed instead of it to authenticate that user.

A proxy certificate is made on basis of a new key pair and it‘s digitally signed

by the owner of the original certificate using her private key. It contains the owner‘s

identity, slightly modified to indicate its being a proxy, and a lifetime usually limited to

some days or hours only. In a real world it could look like in Figure 10. [13] [14] [15] [16]

17

 Description of GSI is based on [13] [14] [15] [16]

- 46 -

Figure 10. Proxy certificate
18

A short-term credential created in base on user‟s permanent credential that can be used

instead of it to authenticate the user.

The credential also has to be kept secret but the limited lifetime makes it enough

to protect it only by file system permission, which gives the possibility to use them by

the user without inconvenience.

Proxy certificates mechanism allows certificates to be created dynamically

without the need of standard heavy-weight vetting process associated with obtaining it

from a CA.

Some technical information about proxy files - file format, extensions and

Globus‘ proxy types as well as proxy validation - are described in Appendix A.

3.1.2 Single sign-on

While using multiple grid services, mutual authentication is demanded for each

connection. In practice this requires user to access her private key each time the

authentication is needed. And since private keys are protected with passwords, user

would may have to sign on (type in the password) multiple times in a short period of

time.

Using proxy certificates, it is enough to sign on only once to create a proxy

certificate. The certificate is then used for all subsequent authentications. In practice this

means the Proxy Certificate private key is stored on a local file system and is protected

by only local file system permissions, which allow user‘s applications to access it

without any manual intervention by the user herself. Moreover, proxy creation is

normally done by a single application run by the user.

18

 The figure comes from [15]

http://virolab1.cyfronet.pl/student/lib/exe/detail.php?id=wiki:0:grid_security_infrastructure_management_on_the_basis_of_shibboleth_and_myproxy_systems&cache=cache&media=wiki:0:img1.jpg

 - 47 -

Figure 11 presents the process of creating a proxy for single sign-on.

Figure 11. Creating proxy for Single Sign-On
19

1. New key pair for using with proxy certificate is generated on user‟s storage space.

The certificate request is created.

2. The request is used to create the proxy certificate using user‟s permanent

credentials. That will usually require the user to enter a pass phrase for accessing

the credential. After signing the proxy certificate, the permanent credentials don‟t

have to be accessed until the proxy expires.

3. The proxy certificate and its associated private key are placed in a file. The file is

protected only by local file system permissions to allow for easy access by the user

or software.

3.1.3 Delegation over network

Other problem is using some grid services as agents that act on user‘s behalf. In

order to allow it, they need to have access to user‘s credentials to use them for

authentication to the services, they want to connect. The standard GSI software expects

the user‘s private key to be stored locally on the machine, encrypted by a password to

prevent other users from stealing it. The brute-force approach would be to send each

one of the services our key pair over the network and type in the pass phrase each time

they want to use it. The former is very dangerous, the letter – very inconvenient. And

what about invoking 100 jobs on 1000 computers?!

This issue can be solved by using proxy certificates delegated over the network.

The process is very similar to the process of creating proxy for single sign-on. It does

not include exchange of any secret information. It only requires the connection to be

19

 Based on figure from [16]

- 48 -

tamper-proof to prevent the messages from modifications, no encryption is required

though. That can be accomplished by using the TLS protocol.

After delegation, the access to user‘s private credentials is not needed. On the

other hand the risk of losing control of the created proxy is avoided by its limited

lifetime.

The process of proxy delegation (after establishing the integrity-protected

channel) can be described using the chart from Figure 12.

Figure 12. Delegation over network
20

1. The delegatee (let‟s say a grid service) generates a new key pair on its storage space

2. It creates the certificate request and sends it to the delegator (owner of the

permanent credential)

3. The delegator signs the request...

4. ... and sends it back to the delegatee.

5. The signed certificate and its associated private key are placed in a proxy certificate

file. The new proxy certificate is used by the delegatee to authenticate itself on other

grid services. [17]

The process of delegation can be chained. The new proxy can be used by the

delegatee to create another proxy for a third peer and so on. What we get is a chain of

certificates – similar to described in 2.1.3. Each proxy certificate contains all the

certificates of its ancestors including CA‘s certificate. In this case the mutual

20

 Based on figure from [17]

 - 49 -

authentication process runs slightly different. To verify the proxy at the end of the chain

the previous proxy‘s public key (got from its certificate) is used to check the signature.

Then the verification of the previous proxy goes analogously and so on. To check the

first generated proxy, the user‘s public key is used. At the end the public key of CA is

used to validate the signature on the user‘s certificate. This establishes a chain of trust.

3.1.4 Proxy Certificate Format

The format of Proxy Certificate is compliant with the X.509 public key

certificate standard, thus allows it to be used in already existing protocols and libraries,

making the implementation significantly easier.

In order to achieve the uniqueness of the proxy certificate, the subject name of

the proxy and the value of the proxy serial number should be unique (at least

statistically) to the issuer. The former one is accomplished by appending an additional

CommonName component, to the subject‘s DN. The example DN of author‘s proxy

certificate is:

CN=40253375, CN=Michal Dyrda, O=AGH, O=GRID, C=PL

Both RDN and serial number uniqueness may be achieved by using the hash of

the public key as the value. The motivation for use the unique subject names and serial

numbers is to enable the proxy certificates to be used together with attribute certificates,

which are used by some mechanisms for authorization purposes that are not going to be

described here. [18] [19] [14]

3.2 MyProxy
21

GSI allows us to use confidential, integral communication that is premised by a

mutual authentication using PKI. Moreover it provides proxy certificates, which enable

single sign-on and delegation. The disadvantage is that we get stuck with our permanent

credentials and their location, which makes using the Grid from different terminals

complicated and unsecure. As a solution the MyProxy was introduced. In this chapter it

is going to be described and some usage examples will be provided. At the end, one

more solution will be presented that is MyProxy CA, which allows us to completely get

rid of users‘ permanent credentials in our PKI.

21

 Description of MyProxy is based on [14] [18] [19]

- 50 -

3.2.1 Overview

MyProxy is an open source software for managing security credentials. Its

abilities will be best described using an example from the Figure 13.

Figure 13. MyProxy overview
22

1. Instead of storing the credentials on each machine that we use to use to access the

grid, we can take the certificate obtained from the CA...

2. ... and delegate it to MyProxy repository in form of a long-term proxy, valid by

default 7 days

3. Than we can use the proxy to create a short-time proxy credential (by the chain

rule) upon request – by using any MyProxy client software.

4. Any portal / service / host can get our short-time proxy credential and work on our

behalf just by providing them with the name and password, with which the

credentials are protected on MyProxy server.

MyProxy is developed at the National Center for Supercomputing Applications

with contribution from the worldwide Globus community. Since 2000 it was an

independent Globus Toolkit add-on and was integrated as an internal component in

version 4.0 of the GT.

3.2.2 Usage Scenarios

Let us consider a detailed view of using MyProxy to manage our credentials by

analyzing GRID usage with a grid portal. A grid portal is a simple graphical interface to

grid applications. It is a web server that gives a possibility to use grid services from any

standard web browser. After logging into the portal one can use a wide range of grid

resources, submit jobs, transfer files or query information services. And the user doesn‘t

want to type in a pass phrase any time she invokes a command.

22

 The figure and following ones concerning MyProxy come from [19]

http://virolab1.cyfronet.pl/student/lib/exe/detail.php?id=wiki:0:grid_security_infrastructure_management_on_the_basis_of_shibboleth_and_myproxy_systems&cache=cache&media=wiki:0:chart3.gif

 - 51 -

Standard Web Security protocols don‘t fulfill the requirements of the grid

portals. On the other side, the portals architecture doesn‘t work with existing grid

security solutions, like GSI, which would allow us to use delegation and single sign-on.

Fortunately MyProxy can be used as a bridge between grid portals and GSI to

provide secure interaction with grid resources. Let us analyze the Figure 14:

Figure 14. MyProxy usage example

The following steps of the example are described in text below.

I. Prerequisites

First we have to possess our own main pair of private key and certificate, which

will be called a permanent credential. The private key is stored safely on our

personal computer.

1. A CA well-known to all the services in the network exists…

2. … which is going to be used to sign the certificate request that is based on our

public key.

II. Permanent credential delegation

3. Before we start using the GRID (e.g. GRID portal) we have to delegate the

permanent credential stored on our PC to the MyProxy server using

my_proxy_init command.

http://virolab1.cyfronet.pl/student/lib/exe/detail.php?id=wiki:0:grid_security_infrastructure_management_on_the_basis_of_shibboleth_and_myproxy_systems&cache=cache&media=wiki:0:chart4.gif

- 52 -

To do that we safely connect to the server using TLS and login using any

authentication mechanism acceptable by the server (pass-phrase, certificate,

Kerberos, Pubcookie etc.). The MyProxy server generates a long-term proxy

certificate. What is exactly done is:

4. the server creates its own asymmetric key pair and certificate and

responses with a Certificate Signing Request.

5. the certificate is signed by our private key (that‘s the only place we

access it and give the password that protects it) with a default lifetime of

7 days and sent back to MyProxy server where it is safely saved together

with the generated key pair on the server space using Unix username and

the password given by the user.

III. Short-time credential generation

6. When we want to use the grid services, maybe at some later point of time, we

login to the grid portal using the username and password which were used to

store the proxy credential on the MyProxy server. We can connect from any

place and using any terminal supplied with web browser, because we don‘t need

the access to our permanent credential at this time.

7. To enable the portal to work on our behalf it has to create next, short-time

proxy credential using the one stored on MyProxy server. Again key pair is

created. At this time it is stored on the portal‘s storage space. The Certificate

Signing Request along with the username and password given by portal login is

send to the MyProxy server, which creates and signs the certificate using this

private key and the certificate signed by ourselves that have been generated by

initialization. The new certificate has a very short lifetime usually of some hours

or maybe minutes only.

8. When the grid portal connects any service using the newly created short-time

proxy, the certificate chain, which has arisen, is used to verify the correctness of

the certificate. It also uses the Online Certificate Status Protocol (OCSP) to

check, whether the certificate hasn‘t been revoked.

9. Successful verification can enable the service to work on our behalf. Any

portal / service / host can get our proxy credential and work on our behalf just by

providing them with the name and password, with which they are stored on

MyProxy server.

 - 53 -

The operation of logging out of the portal deletes the short-time credential on the

portal. If we do not logout – the certificate short lifetime makes it expire soon.

3.2.3 My Proxy as a CA

MyProxy can also include the ability to act as a Certificate Authority. In that

way users don‘t have to manage long-term proxies anymore. Upon the request of a

short-time proxy credential (with myproxy-logon) the MyProxy CA issues a new

original certificate and signs it using its own private key. To accept that, the grid

services must be able to trust the MyProxy server‘s internal CA (either trusting the CA

itself or any of the CAs higher in the hierarchy that have signed MyProxy CA

certificate). An overview of example usage is presented in Figure 15

Figure 15. MyProxy CA usage

The proxy certificate retrieved from MyProxy CA are used by the users to access other

grid resources

3.3 Needham-Schroeder protocol

This term refers to two protocols, which were proposed by Roger Needham and

Michael Schroeder.

The first one, based on symmetric encryption algorithms, called The Needham-

Schroeder Symmetric Key Protocol, was aimed to establish a session key between

two parties. This protocol is not going to be considered in this thesis.

The second one, The Needham-Schroeder Public-Key Protocol [20], was

intended to provide mutual authentication using asymmetric cryptography. It also

establishes the session key. The protocol, its vulnerabilities and fixed versions are going

to be analyzed here.

http://virolab1.cyfronet.pl/student/lib/exe/detail.php?id=wiki:0:grid_security_infrastructure_management_on_the_basis_of_shibboleth_and_myproxy_systems&cache=cache&media=wiki:0:chart5.jpg

- 54 -

Assumptions

 Both Alice (A) and Bob (B) possesses valid certificates together with

corresponding private keys.

Alice‘s keys are named : KPA and KSA (respectively public and private-secret

key)

Bob‘s keys are named : KPB and KSB

 The certificates are signed by a trusted server (S), which is used to distribute

public keys on request

Server‘s keys are named: KPS and KSS

Basic protocol

The primary version of the protocol is presented below in a security protocol

notation
23

. The brackets { … } indicate signing or encrypting their contents by the

following private or public key respectively:

 A requests B's public keys from S

 S responds with B's identity placed alongside KPB for

confirmation.

 A invents a random number, NA, and sends it to B

B requests A's public keys.

 Server responds.

 B invents NB, and sends it to A along with NA to prove ability

to decrypt with KSB.

 A confirms NB to B, to prove ability to decrypt with KSA

Figure 16 presents the message exchange between A and B (omitting the

communication with S). All the keys used are public keys:

23

 en.wikipedia.org/wiki/Security_protocol_notation

 - 55 -

Figure 16. Needham-Schroeder protocol - message exchange

Na and Nb – random numbers of Alice and Bob

A – identity of Alice

{ … }

KA – message encrypted with Alice‟s public key

{ … }

KB – message encrypted with Bob‟s public key

At the end both A and B know each other‘s identities and the NA and NB

numbers. They are not known to eavesdroppers, though.

Attack

Unfortunately, this protocol was found to be vulnerable to a man-in-the-middle

attack. Both the description and a fixed version of the scheme was described in 1995 by

Gavin Lowe [21]. If an impostor M can impersonate B and persuade A to initiate a

session with him, he can relay the messages to B and convince B that he is

communicating with A. M keys are again KPM and KSM

Ignoring the traffic to and from S, which is unchanged, the attack runs as

follows:

 A sends NA to M, who decrypts the message with KSM

 M relays the message to B, pretending that A is

communicating

 B sends NB

 M relays it to A

 A decrypts NB and confirms it to M, who learns it

 M re-encrypts NB, and convinces B that he's decrypted it

Again message exchange is presented in Figure 17

- 56 -

Figure 17. Attack on Needham-Schroeder protocol - message exchange

{ … }

KM – message encrypted with public key of man-in-the-middle

At the end of the attack B falsely believes that A is communicating with him.

Instead of that B is communicating with M, which also knows the NA and NB numbers

needed for communication.

The fixed version

In order to fix the algorithm, the traffic to from B to A should be extended with

the identity of B. We replace the step:

with

M doesn‘t know the value of NB yet so it cannot exchange this message with one

containing his own identity. After receiving the message, A can verify that she is really

communicating with B or not.

3.4 Summary

This chapter presented some examples of related work. Others‘ experience,

which in some cases became a ‗de facto‘ standard, will be used in the subsequent part of

the thesis during the development of the H2O security architecture.

 - 57 -

Chapter 4. Concept and Design

This chapter focuses on the main target of the thesis – creation of an

authenticator, which detailed requirements as well as additional demands towards its

overall creation process will be presented first in the chapter. H2O connection use cases

will allow us to state, in what extent its existing architecture can be used in the process

of new authenticator creation – and which aspects are to be designed from the scratch.

Furthermore the concept of the work will be presented. Detailed design will be

supported with a data flow diagram as well as sequence diagram described as usage

scenario.

4.1 Detailed requirements

The aim of the thesis will be to create the authenticator in a form of H2O Policy

Decision Point that will target the presented challenges basing on standardized and

verified technologies described above. This section will present the detailed

requirements towards the authenticator.

- Authentication based on PKI and X.509 certificates

An authentication scheme based on Public Key Infrastructure should be

implemented. Users identity should be confirmed using certificates issued by a

trusted CA. Simple challenge-response algorithm should be used to verify that

the user is really the owner of the certificate (possesses the corresponding

private key). For the solution to be complete, support of certificate revocation

should be added to the H2O.

- Delegation based on proxy certificates

The motivation for delegation using proxy certificates was already presented.

This solution is secure and integrates very well with the suggested authentication

algorithm and the Public Key Infrastructure. Moreover, it provides abilities to be

extended for broader fields of application, i.a. for advanced authentication based

- 58 -

on attributes. Some interesting solutions are going to be presented at the end of

the thesis.

- Compliance with GSI

While using some well-known solutions, an implementation that is going to be

compliant with existing and widely used systems should be used. Because of its

popularity in other grid-related software, the compliance with GSI is expected.

Some differences in used standards may cause some incompatibilities, which is

going to be presented.

4.2 The name of the authenticator

The suggested solutions is named the GSI Authenticator to underline its

compliance with the Globus mechanisms. Such name will be used in the following part

of this thesis while relating to the authenticator.

4.3 Use Cases

On the basis of the H2O architecture and the features that are required from the

GSI Authenticator, the expected use cases presented in Figure 18 can be identified:

Figure 18. H2O Use Cases

Client and pluglet connecting respectively from the outside and inside of the kernel

together with required included operations

User connects to the kernel in order to deploy and/or utilize pluglets (1). For

connection, user has to provide his credentials - certificate and corresponding private

 - 59 -

key or a proxy (2). The credentials are used for authentication (3). During the

authentication process, credential delegation can be performed (4). The deployed

pluglet can then act as an actor that wants to act on behalf of the client. Again, being

itself in a kernel, it wants to connect to some other one (5). The delegated credentials

should be provided by the kernel (6), then used for authentication (3) and maybe

delegated (4).

The mechanisms for performing connection (1,5) and obtaining delegated

credentials (6) are already provided by the H2O. Obtaining credentials from file system

(2) will be achieved using some external libraries. The tool will be described in the

implementation chapter (section 5.2.5). Now the concept of authentication and

delegation (3,4) will be precisely described.

4.4 Concept of GSI Authenticator

Figure 19, which is an evolved diagram of authentication process from Figure 8,

presents the high-level overview of GSI Authenticator usage.

User may use own permanent credentials to create a proxy for single-sign on.

The first proxy or the credentials themselves are put into credentials wallet and used for

authentication. During the authentication process delegation is performed and the

delegated credential may be used by the pluglets to work on a user‘s behalf.

Figure 19. GSI Authenticator overview

1. Submitting GSI credentials in virtual Wallet

2. Proceeding the authentication messages exchange and credential delegation

3. Getting the authentication result

The delegated credential may be used by the pluglet for subsequent communications

- 60 -

Now the details of the authentication itself are going to be presented.

The concept of the GSI Authenticator is to use a simple challenge-response

protocol with the requirement of tunneling the authentication process by a secure outer

protocol. The single sign-on and delegation abilities will be provided using proxy

certificates.

The successive steps are:

0. Creating a proxy

This step is optional. In order to authenticate, a client has to present his

certificate. Depending on the client‘s application implementation, permanent

credentials as well as proxy may be used. The former requires the application to

possess or ask user for the password while accessing the private key. The latter

requires the valid proxy certificate to be available on the file system. The details

of creating and accessing a proxy are going to be described in chapter 5.

1. Establishment of a tunnel

A client establishes a secured connection with the kernel that will be used to

prevent tampering and provide a session for securing subsequent

communication. During the handshake, the authentication of kernel is performed

by the client in order to prevent a man-in-the-middle attack.

2. Identity introduction

A client introduces himself with the public certificate or a chain of certificates.

Kernel verifies the validity of the certificate and checks, if the issuing CA is

trusted. The existence of a user‘s entry in kernel‘s database is confirmed for the

purpose of subsequent authorization.

3. Identity confirmation

A simple challenge-response algorithm is used for identity confirmation. The

kernel encrypts some randomly generated challenge number with a client‘s

public key. A client uses his private key to decrypt it, then it signs it and sends

back to the kernel as a response, to confirm the possession of the corresponding

private key. Kernel verifies the response with the user‘s public key. If the

response is verified, the identity of the client is trusted and saved in the session.

4. Delegation

This step is optional as well. The delegation may be performed in order to allow

deployed pluglets to work on the user‘s behalf. Kernel creates temporary

 - 61 -

asymmetric keys for the proxy and a proxy request which is sent to the user. The

user signs the request using his credentials (e.g. proxy for single sign-on) and

sends it back to the kernel. The signed proxy together with the corresponding

temporary private key are saved in the Kernel.

The step no.1 is achieved using secure communication layer with server

authentication enabled. The client authentication and delegation process are going to be

presented in subsequent sections.

4.5 Data Flow Diagram of H2O credentials

The diagram from Figure 20 gives some other view on the GSI Authenticator by

illustrating the flow of the credentials and the way they are processed in the course of

delegation.

Figure 20. Data Flow Diagram of GSI Authenticator

The flow starts from obtaining a first proxy – either from the file system or from MyProxy

server. The proxy is then used for authentication and delegated. The subsequent second

proxy is saved for usage by pluglets on behalf of the user. After successive authentication

and delegation next (third) proxy is received… and the process may go over.

- 62 -

4.6 Authentication sequence diagram and usage scenario

The details of message exchange and steps taken by the H2O client and kernel

are going to be presented using the sequence diagram together with a corresponding

usage scenario.

Figure 21. Sequence diagram of GSI Authenticator

The following steps of the diagram are described in the use case in text below.

Figure 21 presents the sequence diagram of the GSI authenticator under

assumption that the authentication successes and that the credential is to be delegated.

The following use case scenario describes the steps of the diagram together with

alternative paths.

 - 63 -

Goal: user wants to authenticate himself to the kernel in order to perform some

operations on it

Actors:

 client – user application connecting to the kernel

 server – the authenticator implementation on the server side

Preconditions:

 - the credential from the Wallet is mapped to the proper authenticator

 - an access to valid permanent credentials or proxy is provided

Triggers: authenticator engine starts the authentication process

Success guarantee : server responses with a success message and saves the client‘s

principals (id, group membership) in login context

Basic flow:

Introduction

1. Client sends the chain of public certificates, the selected delegation policy and

the ‗required‘ flag

2. Server validates the chain

The validation process for both standard and proxy certificates will be described

in Appendix A.

3. Server reads user‘s data from the database

Verification

1. Server prepares a random challenge and encrypts it with client‘s public key

2. Server sends the challenge to the client

3. Client decrypts the challenge with his private key

While using a proxy for single sign-on there is no need for prompting for a

password.

4. Client signs the response with his private key

5. Client sends the response to the server.

6. Server verifies the signature of the response with client‘s public key

7. Server verifies the response

Creating proxy certificate for delegation

1. Server generates a proxy key pair

2. Server sends a proxy certificate request to the client

3. Client signs the certificate request using his private key

4. Client sends proxy certificate back to the server

5. Server creates the delegated credentials and saves them in user‘s context

- 64 -

6. Server sends the authentication success response to the client

Alternative scenarios:

2a : The validation fails

 2a1 : No groups are saved to user‘s login context

 2a2 : Server sends the authentication failure response to the client

 2a3 : The scenario is finished

3a : The user was not found in the database

 3a1 : No groups are saved to user‘s login context

 3a2 : If the delegation flag is DELEGATE_ALWAYS, the delegation is performed

 3a3 : Server sends the authentication failure response to the client

 3a4 : The scenario is finished

10a : The response is invalid

 10a1 : No groups are saved to user‘s login context

 10a2 : Server sends the authentication failure response to the client

 10a3 : The scenario is finished

11a : The delegation flag was DELEGATE_NOT

 11a1 : The delegation is not performed

 11a2 : The scenario goes to step 16

4.7 Summary

This chapter presented the concept and detailed design of GSI Authenticator,

together with the successive steps of using it in the H2O authentication process: proxy

creation, tunnel establishment, identity introduction and confirmation as well as

delegation. The last three, which are ‗core‘ of the development process, were described

with details.

 - 65 -

Chapter 5. Implementation

The chapter describes the implementation details of the GSI Authenticator. At

the beginning, the implementation scope will be stated. Furthermore the external tools

used will be described, especially the CoG JGlobus package, which contains the

complete implementation of GSI. Next, a detailed description of implemented classes

supported with UML diagrams as well as code examples of particular elements (e.g.

validation and revocation) will be provided. Finally, the encountered problems with

initial implementation without some external tools will be described in order to prevent

further developers from possible difficulties.

5.1 Implementation scope

The main part of implementation concerns the new authenticator that will be

plugged into the authenticators chain. An important issue is creating and using proxy

certificates. It also requires some changes in the existing mechanism for serving the

authenticators chain, in order to allow the verification of the proxies. Moreover, some

new libraries are to be used and configuration system configuration has to be extended.

Finally, some steps need to be taken to verify the ability of proxy and rights delegation.

All the following steps will be described in this and subsequent chapters and in the

Appendix:

 Preparations for authentication

o Creating a proxy for single sign-on

 Client side implementation

o Reading certificates / proxies from file system

o Supplying credentials to the authenticator

o Usage tutorial

 Authenticator in H2O

o Server and client authenticator classes in H2O

o Auxiliary classes

- 66 -

o Validator (with revocation)

o Encryption and decryption

 Authenticator in MOCCA

o Supplying credentials in MOCCA

o Usage tutorial

 Delegation issues:

o Creating proxy for delegation

o Verifying the delegation abilities of H2O mechanisms

 Build issues:

o Adding new libraries (with security providers)

o Updating build files

 Configuration

o Adding new authenticator to chain

o PKI configuration

o CoG package configuration

o Server authentication configuration

o Setting permissions for security providers

5.2 Tools used

Java Cryptography Architecture, Java Cryptography Extension:

Cryptography-related part of Java is encompassed by the Java Cryptography

Architecture [22] framework. Some of the elements that are provided by JCA API, are:

digital signatures, message digests (hashes), certificates and certificate validation,

encryption (symmetric/asymmetric block/stream ciphers), key generation and

management, and secure random number generation.

The most of them are actually provided by the framework called Java

Cryptography Extension (JCE) that once was a distinct package but now is bundled into

the JDK distribution and therefore should be thought as a part of the JCA.

JCA (and at the same time JCE) allows for usage of multiple and interoperable

cryptography implementations by using the architecture of so called Cryptographic

Service Providers.

 - 67 -

Security providers:

The term refers to a package or set of packages, shortly called providers that

supply an implementation of a subset of the Security API cryptography features.

Depending on implementation, the provider may have different characteristics, thus

allowing both developers and end-users to decide, which to use according to their needs.

In order to use the provider, it has to be registered in the system. There are two

possibilities of registering the provider – statically, by editing a security properties

configuration file of the JRE before running the application or dynamically, by calling a

method at runtime.

The configuration file for static registration is located in <java-

home>/lib/security/java.security and contains the entries, which declare

providers together with their preference order n, like:

security.provider.n=masterClassName

The default provider that comes with standard Sun‘s JDK is the SUN provider

with main class Sun located in sun.security.provider package. The corresponding entry

in the security file might be:

security.provider.1=sun.security.provider.Sun

Dynamic registration may be performed by calling either the addProvider() or

insertProviderAt() static methods from the Security class. It is not persistent across VM

instances. Appropriate privileges are required by the java programs in order to register

the provider dynamically
24

.

Bouncy Castle
25

:

The Bouncy Castle provider is one of the products, which offer a collection of

Java and C# API of multiple cryptographic algorithms, developed by the Legion of

Bouncy Castle. It is based on the top of the other product, which is a low-level (also

called light-weight) API suitable to use in any environment: i.a. memory constrained

devices (available for J2ME) or with no easy access to the JCE libraries (applets). The

provider is compatible with the JCE architecture and is publicly released under the

terms of MIT License
26

.

24

 For permissions configuration in H2O see Appendix C
25

 http://www.bouncycastle.org/
26

 www.opensource.org/licenses/mit-license.php

- 68 -

Cryptix JCE
27

:

The Cryptix JCE provider was created to address some US export restrictions

problems of Sun JavaSoft implementations. It is fully compatible with Sun‘s

implementation and released on the liberal, BSD-alike license. Implementations for

both Java and Perl exist.

Both BouncyCastle and Cryptix are used by JGlobus, a part of Java CoG Kit.

The CoG (Commodity Grid) Kit:

The Commodity Grid (CoG) Kits were created to answer the developers desire

to program the Grid in frameworks familiar to them, in order to enable rapid Gid

application development. They allow Grid users, Grid application developers and Grid

administrators to use, program, and administer Grids from a higher-level framework.

Currently Java and python CoG Kits exist. They combine the advantages of the

framework and grids in order to facilitate the development of advanced Grid services.

Java CoG Kit
28

 and JGlobus
29

:

Because of the growth of the Java CoG Kit distribution, the contents of package

was divided into separate modules. One of them is JGlobus, which is also an integral

part of Globus Toolkit itself.

It provides client and limited server side capabilities. The most important from

the point of view of this thesis is the complete implementation of GSI. Starting from the

1.4 version of JGlobus, the GSI library is complaint with standard described in RFC

3820 [13] (still providing backward compatibility with older versions of certificates).

Some of other capabilities include MyProxy for certificate storage GridFTP for Remote

Data Access or GRAM for remote job submission and monitoring.

CoG Kit Java Command Line tools:

There are several command-line tools that enter the Java CoG Kit. The relevant

from the point of view of this thesis are the ones connected with certificates :

- grid-proxy-init – creates proxy certificate

- grid-cert-info – gives information about the permanent certificate

- grid-proxy-info – gives information about the proxy

- grid-proxy-destroy – delete the created proxy [23]

27

 http://www.ntua.gr/cryptix/products/jce/
28

 http://wiki.cogkit.org, CoG Kits described also in [23]
29

 http://dev.globus.org/wiki/CoG_jglobus

 - 69 -

All the tools use the CoG configuration file, described in the Appendix C, to find

the location of specific files. Also COG_INSTALL_PATH and PATH variables are

need to be set in order to run the tools.

Creating a proxy for single sign-on:

Using CoG JGlobus is a recommended way to create the proxy. Upon prior

configuration (described in Appendix C), the grid-proxy-init command-line tool

invocation creates a proxy from credentials and in the file specified in the configuration

file. Using this tool all types of Globus proxies
30

 can be generated (the default behavior

depends on the version of tool).

5.3 GSI Authenticator classes

Following figures present UML class diagrams of the GSI Authenticator. The

structure is mapped from the existing Password Authenticator and is compliant with the

interfaces used for H2O authenticators chain processing.

First is the high-level class diagram (Figure 22). Main classes are

GSIRemoteCredential and GSIRemoteAuthenticator, which contain AuthDialog client

and server classes respectively that are used for message processing and exchange by

the authentication protocol. The processing and exchange were presented on the

sequence diagram in point 4.6 and are based on the doPhase() and getNextToken()

methods of the AuthDialog classes.

The GSIRemoteCredential stores GSIPublicCredenial and GSIPrivateKey

classes, which correspond to the credentials provided by user for authentication.

Figure 22. High-level class diagram

30

 See Appendix A for the types of Globus proxies

- 70 -

GSIPublicCredential

The class stores the certificate chain and the type of used proxy (if applicable)

both with several methods that simplify using the credential as well as accessing some

of the credential features:

 readFrom() and writeTo()

allow for sending and receiving the credential through the ObjectStream in the

authentication exchange protocol.

 getPathLength()

returns the length of the stored certificate chain

Very often the most recent certificate from the chain (which should be kept as the first

one in the table) is used. Therefore a few methods for accessing the certificate are

provided:

 getRecentCertificate()

returns the certificate

 getPublicKey()

returns the public key of the certificate

 getUserID()

returns the Subject DN of the certificate

The class diagram is presented in Figure 23:

Figure 23. GSI PublicCredential class

 - 71 -

GSIRemoteCredential

GSIRemoteCredential is a realization of the RemoteCredential interface, which

indicates its ability to be used as a H2O Credential and put into credentials wallet. It

stores the credentials in form of GSIPrivateKey and GSIPublicCredenial classes. The

credentials are used by the GSIAuthDialogClient class for the authentication process

itself.

GSIPrivateKey keeps the private key corresponding to the most recent certificate in the

chain. It provides both cryptographic and proxy request signing methods:

 decrypt(), encrypt()

use the private key for decryption and encryption of the provided byte array

 createProxy()

signs the provided public key with own private key in order to create a proxy;

used CoG method is described in subchapter 5.6.

The other attributes of the GSIRemoteCredential class define the way it has to be

processed by the authenticator
31

 :

- the ‗required‘ flag

- the delegation policy of the credential

In order to create an instance of the class, three constructors are provided:

 public GSIRemoteCredential(GSIPublicCredential publicCred,

GSIPrivateKey privCred, int delegationPolicy,

boolean required);

User is required to explicitely provide all the information:

o public and private credential

o delegation policy

o ‗required‘ flag

 public GSIRemoteCredential(GSIPublicCredential publicCred,

PrivateKey passwd, boolean delegate);

The ‗required‘ flag is by default set to false

The delegation policy is set to DELEGATE_IF_AUTHENTICATED or

DELEGATE_NOT, depending on the boolean value provided

31

 See chain evaluation in Chapter 2.2.4

- 72 -

 public GSIRemoteCredential(GlobusCredential cred, boolean

delegate)

As above, but the public and private credentials are provided in form of

GlobusCredential object.

The methods of RemoteCredential interface provided by the GSIRemoteCredential class

are:

 getSupportedProtocols()

the class provides names of implemented authentication protocols, which are

used for mapping credentials to authenticators afterwards; the method returns

the protocols, which can utilize the credential

 initiateAuth()

prepares the credential for the authentication message processing and exchange

and returns the prepared AuthDialogClient

 getPublicCredential() and isRequired()

are getters of the stored attributes

Figure 24 presentes the diagram for GSIRemoteCredential and related classes.

Figure 24. GSIRemoteCredential class diagram

 - 73 -

GSIRemoteAuthenticator

GSIRemoteAuthenticator is a realization of the RemoteAuthenticator interface,

thus enabling it to be plugged into H2O authenticators chain.

The constructor gets the UserDatabase that is used by the kernel to read the

groups of authenticated users. The database parse and access methods are provided in

edu.emory.mathcs.h2o.security.auth.gsi package.

The two methods of the RemoteAuthenticator interface are similar to the ones of

RemoteCredential:

 getSupportedProtocols()

returns the names of protocols, which are provided by the authenticator

 initiateAuth()

prepares the authenticator for the authentication message processing and

exchange and returns the prepared AuthDialogClient

GSIAuthDialog implements the AuthDialog interface which is used for authentication

message exchange as well as for retreiving some authentication results by the kernel.

The latter are:

 getStatus

returns the authentication result

 getDetailedMessage()

returns the message that describes the authentication result (e.g. failure reason)

 getAuthenticatedPrincipals()

returns set of names and groups that were assigned to the authenticated user

 getPublicCredentials()

 returns the credentials that were used by the user for atuhentication

 getDelegatedCredentials()

returns the credentials that were created during the delegation process

Figure 25 presentes the diagram for GSIRemoteAuthenticator and related classes.

- 74 -

Figure 25. GSIRemoteAuthenticator class diagram

All the presented classes are placed in the edu.emory.mathcs.util.security.auth.spi.gsi

package.

5.4 Other implemented classes

edu.emory.mathcs.util.security.MyCertUtils

The class provides several auxiliary static methods for the authenticator:

 decrypt() and encrypt()

execute the cryptographic operations of GSIPrivateKey class

 stringToCert() and certToString()

use Base64 encoder and decoder in order to map between X509Certificate object

and string representation; this methods are provided because of problems with

certificate representation while sending the X509Certificate object through

ObjectStream; now their string representations are exchanged instead

 changeCNFormat()

a method that is used in MyProxyPathValidator (described in point 5.5) in order

to provide the validator with CNs of CRL issuers in form that corresponds to the

format of CN notation in validated certificates. It performs mapping between

two ways of CN notation with different order and white spaces usage, e.g. from

 - 75 -

o O=TestCA, ST=Some-State, C=PL – issuer‘s DN of validated certificate

to

o C=PL,ST=Some-State,O=TestCA – issuer of CRL used for validation

 readUserCredentials()

this method is provided in order to enable user to use some locations of

credentials different from those served by CoG methods (which are described in

subchapter 5.6). Two versions of the method exist. Both return objects of

GlobusCredential class but can parse different locations of credentials:

o readUserCredentials(String certfile, String keyfile,

H2OPasswordFinder passwd)

parses a certificate file and an encrypted RSA key file (GlobusCredential

can parse only unencrypted files)

o readUserCredentials(String keystorePath, H2OPasswordFinder

keystorePass, String alias, H2OPasswordFinder certPass)

gets the certificate and the key from a keystore; both keystore and the

certificate can be secured with a password

In order to provide passwords for keyfile, keystore and certificate that are

required by the presented methods, the subclasses of H2OPasswordFinder abstract

class from the edu.emory.mathcs.util.security.passwd package are used (Figure 26).

Figure 26. H2OPasswordFinder class diagram

- 76 -

The abstract class declares methods for obtaining a password and for clearing it

from memory. The H2OPrefilledPassword class is used when the passphrase is known a

priori and can be provided to the constructor. The H2OCallbackPassword class is used

in order to ask user for the passphrase on demand and requires the user to type in the

password during program execution. The ‗desc‘ parameter is used for password request

printout to describe the request to the user.

5.5 Revocation mechanism

The process of verifying if the validated certificate is not revoked, is often

neglected by creation of systems based on X.509 certificates and may lead to serious

security gaps. During development of GSI Authenticator, the possibility to use

Certificate Revocation Lists was added in H2O. The changed files and the principle of

operation will now be described.

KernelConfig.xml changes

The URLs of the Certificate Revocation Lists provided by CAs are to be

provided in the KernelConfig.xml configuration file in {h2o-dist}/config directory.

Its structure was developed in order to support new entries in the <Security> section:

<CRLLocations>

 <CRLLocationEntry location="<crl_url>"/>

 </CRLLocations>

kernelConfig-1.0.dtd changes

The extension required some changes in kernelConfig-1.0.dtd - XML Document

Type Definition file of the KernelConfig.xml, which is placed in

edu.emory.mathcs.h2o.server.impl package. The Security element of the file was

extended with CRLLocations element:

<!ELEMENT Security (KeyStores?, Identity?, Authenticators,

 TrustedCodeCerts?, AuthorizationPolicy, CRLLocations?)>

and the CRLLocations element itself was added as well:

<!ELEMENT CRLLocations (CRLLocationEntry*)>

 <!ELEMENT CRLLocationEntry EMPTY>

 <!ATTLIST CRLLocationEntry location CDATA #REQUIRED>

 - 77 -

Main.java changes

The KernelConfig.xml file is parsed with the

edu.emory.mathcs.h2o.server.impl.Main class. To use the new entries, Security subclass

of the Main class was extended with the crlLocations list and proper methods.

ProxyPathValidator changes

In order to enable validation, some changes in JGlobus‘ ProxyPathValidator

(org.globus.gsi.proxy) had to be performed because of the inconsistence in CN elements

order. The modified class is placed in the util subproject of H2O as

edu.emory.mathcs.util.security.MyProxyPathValidator.

Principle of operation

Globus Validator uses only CRLs from the file system, therefore H2O uses the

locations saved in the config file to download the CRL files to the local file system

during kernel startup. The files are subsequently used by the Validator during validation

of certificates.

5.6 CoG usage code examples

In this chapter the most interesting mechanisms of the CoG JGlobus package,

which were used in the GSI Authenticator, are going to be presented.

Reading credentials from file system

For reading certificates, keys and proxies from files, the

org.globus.gsi.GlobusCredential class from JGlobus is used. It constructors allow to

parse credentials from different sources:

GlobusCredential(InputStream input)

Creates a GlobusCredential from an input stream.

GlobusCredential(String proxyFile)

Creates a GlobusCredential from a proxy file.

GlobusCredential(String certFile, String unencryptedKeyFile)

Creates a GlobusCredential from certificate file and an unencrypted key

file

- 78 -

The example usage is:

GlobusCredential credd =

 new GlobusCredential("/tmp/x509up_u1000");

Creating proxy certificate

To create a proxy certificate on-the-fly, i.a. for delegation purposes, the

org.globus.gsi.bc.BouncyCastleCertProcessingFactory class is used.

BouncyCastleCertProcessingFactory factory =

 BouncyCastleCertProcessingFactory.getDefault()

The new certificate is created using the following method:

createProxyCertificate(X509Certificate issuerCert,

PrivateKey issuerKey, PublicKey publicKey, int lifetime, int proxyType,

X509ExtensionSet extSet, String cnValue)

The parameters are:

 issuerCert - the issuing certificate

 issuerKey - private key, corresponding to the public key of issuer certificate that

will be used to sign the proxy

 publicKey - the public key of the new certificate

 lifetime - lifetime of the new certificate in seconds. If 0 (or less then) the new

certificate will have the same lifetime as the issuing certificate.

 proxyType - can be one of

o GSIConstants.DELEGATION_LIMITED,

o GSIConstants.DELEGATION_FULL,

o GSIConstants.GSI_2_LIMITED_PROXY,

o GSIConstants.GSI_2_PROXY,

o GSIConstants.GSI_3_IMPERSONATION_PROXY,

o GSIConstants.GSI_3_LIMITED_PROXY,

o GSIConstants.GSI_3_INDEPENDENT_PROXY,

o GSIConstants.GSI_3_RESTRICTED_PROXY.

 extSet - a set of X.509 extensions to be included in the new proxy certificate.

 cnValue - the value of the CN component of the subject of the new certificate.

If null, the defaults will be used depending on the proxy certificate type created.

 - 79 -

For detailed description of the parameters as well as the attributes of created proxies

(which depend on their type) please refer to javadoc
32

.

The parameters used by H2O authenticator produce proxies of the same lifetime and

type as the issuer‘s one. The type of the source proxy is recognized during authenticator

initialization. If it is a plain certificate, the type GSIConstants.DELEGATION_FULL is

used for creating proxies.

The delegation method uses the subject name of the issuing certificate to create the

subject name of the proxy by appending a random number CN component.

Validator

The validation framework of H2O is placed in the

edu.emory.mathcs.h2o.impl.TrustManagers class. In order to correctly validate the

proxy certificates, the org.globus.gsi.proxy.ProxyPathValidator is used. The validation

method takes three parameters:

validate(certPath, trustedCerts)

validate(certPath, trustedCerts, crlsList)

 certPath is a table of X509Certificate objects, starting with the most recent certificate

 trustedCerts is a table of trusted CAs’ certificates

 crlsList is a CertificateRevocationLists object that specifies the locations of CRLs to use

with the validator

The TrustManager class provides a method for getting the certificates of trusted

CAs from both JSSE and kernel truststores.

Since the Globus validator is used, the authenticator is capable of serving all

proxy types defined for GT, which were described above.

Revocation is available in Globus Validator although it is not described in the

RFC document. The revocation check in H2O was already described.

Encryption and decryption

For encryption and decryption the JCE methods of Bouncy Castle provider are

used:

Cipher cipher = Cipher.getInstance(key.getAlgorithm(), "BC");

cipher.init(mode, key);

cipher.doFinal(bytes);

32

 www-unix.globus.org/cog/distribution/1.4/api/

- 80 -

The provided key is a public or private key, depending on usage. ‗bytes‘ is the

byte array to decode / encode. The used mode values are:

 Cipher.ENCRYPT_MODE - Constant used to initialize cipher to encryption mode.

 Cipher.DECRYPT_MODE - Constant used to initialize cipher to decryption mode.

5.7 Adding new authenticator to chain

In order to use the new authenticator, it has to be appended to the authenticators

chain in the KernelConfig.xml configuration file. In the <Authenticators> section the

following entry is to be added:

<Authenticator class="edu.emory.mathcs.h2o.security.auth.gsi.GSIAuthenticator"

trustdb="security/Users.xml"/>

The parser uses the XML Document Type Definition files to specify the

database structure. The entries of files used by GSI Authenticator have to be included in

the h2o-server\build-jbexport.xml file of the distribution:

<include name="edu/emory/mathcs/h2o/security/auth/gsi/XMLFileUserDB-0.8.dtd"/>

<include name="edu/emory/mathcs/h2o/security/auth/gsi/XMLFileUserDB-0.9.dtd"/>

5.8 Adding GSI Authenticator handling in MOCCA

The modified H2O authentication mechanisms are almost ready to use in the

MOCCA framework. In order to enable it, the framework has to be extended with

handling of H2O credentials and using them for performing connections to kernels. The

required changes in MOCCA source code as well as build and running configuration are

now going to be presented. As a source, version 0.10 of mocca-light was used
33

Changes in source code:

In order to use H2O credentials in MOCCA, a singleton class MoccaAuthClient

was created in mocca.client package. It provides methods for supplying the credentials

as well as setting the trust manager and allows to obtain the H2OClient instance used

for performing connection to H2O Kernel.

The class diagram for MoccaAuthClient is presented in Figure 27.

33

 Available at https://gforge.cyfronet.pl/projects/mocca

 - 81 -

Figure 27. MoccaAuthClientSingleton class diagram

In order to prepare an instance of H2OClient, the following methods are used:

 addCredential() methods are used to add a H2O credential to the wallet of

MoccaAuthClient; credentials for both GSIAuthenticator (proxy) and

PasswdAuthenticator (username and password) may be provided

 the default trust manager used by MoccaAuthClient is TRUST_ALWAYS; it

can be changed by using the setTrustManager() method; the valid parameters

are: ―always‖, ―certified‖ and ―null‖ for TRUST_ALWAYS,

TRUST_CERTIFIED and null trust managers respectively
34

 ; using other value

will throw an InvalidArgumentException

getClient() and getStaticClient() methods are used in order to get the instance of

H2OClient, supplied with added credentials and selected trust manager; the existing

source code of MOCCA was modified in order to provide the H2OClient for performing

connections with kernels (in getKernelContext() and getPlugletContext() methods) :

 MoccaBuilderClient class:

o in constructor, used for non-static methods of the class

o in static methods of the class:

 invokeMethodOnComponent()

 invokeMethodBySignature()

34

 The trust managers of H2O are described in section 2.2.5

- 82 -

 invokeMethodByName()

 MoccaClientConnection

o in getProviderPluglet() method

Changes in build:

- Required CoG libraries were added to {mocca_src}/lib/cog

- changes in {mocca_src}/build.xml :

o /lib/cog/cog-jglobus.jar added to the classpath

o added copying of CoG libraries to {mocca_dist}/lib/cog

- changes in {mocca_examples}/bin/runscript.sh:

o $MOCCA_DIST/lib/cog/cog-jglobus.jar added to classpath

It is important to build MOCCA with current H2O distribution provided in h2o-

dist directory of MOCCA package.

5.9 Encountered problems with initial implementation without using

CoG JGlobus package

The first idea of creating the proxy, still before using JGlobus, was to create own

proxy-alike certificates using available providers, namely BouncyCastle. They were

ordinary certificates and standard PKIX validator was used for validation. Several

methods were implemented that allowed for parsing proxy files, creating a proxy and

saving the proxy in a file. Combined together they created a grid-proxy-init-alike tool.

However, the compatibility with Globus, which was required, could not be achieved.

There were problems in both ways (for description of standards, which are mentioned

here, please refer to the Appendix A)

 The end entity certificates, which are issued by Certificate Authorities, usually

do not allow for signing other certificates – which is specified by the keyUsage

extension. The same situation applies to the RFC 3820 Globus proxies. Thus

creating the proxy-alike certificates from standard permanent credentials or

RFC-compliant proxies was impossible – the PKIX Validator returned an

java.security.cert.CertPathValidatorException: Not a CA certificate

 On the other hand, the certificates created with the grid-proxy-init-alike tool

were not acceptable by Globus. The problem concerned the incompatibility of

encoding standards of the private key:

 - 83 -

o Globus uses the PKCS#1 standard for storing the private key in a proxy

file (ASN.1-encoded in clear-text). However, using BouncyCastle there

was no possibility of storing the key in this standard

o Instead, PKCS#8 (not encrypted, used by Apache) was used, which was

not parsed by Globus.

Some code examples of the initial implementation are provided in Appendix B.

5.10 Implementation summary

During the implementation of the project the available source code and existing

libraries were tried to be reused. Therefore the implementation of the authentication

algorithm itself was not extensive. The H2O project was extended with 28 new source

files, including usage examples and tests. Much more code were written during the

phase of technology recognition as well as initial implementation described above.

Several original H2O classes were changed as well, correcting a few existing bugs by

the way (i.a. related to obtaining delegated credentials). 12 files of external libraries

were used. All the source code was written in Java.

Several ant build files as well as execution scripts (both windows and unix) end

configuration files were edited. Multiple asymmetric keys and certificates were

generated with the CoG tools and signed using test Certificate Authorities that were

created using the OpenSSL package.

The created source code and distribution together with example configuration

files and credentials are placed in the SVN repositories:

 H2O:

http://dcl.mathcs.emory.edu/bin/viewvc/software/harness2/trunk

(Developer Access tab on H2O page
35

)

 MOCCA

https://gforge.cyfronet.pl/svn/mocca/branches/mocca-gsi

35

 http://dcl.mathcs.emory.edu/h2o

http://dcl.mathcs.emory.edu/bin/viewvc/software/harness2/trunk
https://gforge.cyfronet.pl/svn/mocca/branches/mocca-gsi

- 84 -

 - 85 -

Chapter 6. Usage and validation

of GSI Authenticator

The aim of this section is to verify the usefulness and robustness of the

implemented authenticator. An entire description of H2O usage will be presented,

paying special attention to the GSI Authenticator. Moreover, a description of providing

GSI credentials to MOCCA will be presented. Additionally, the environment

configuration in form of the required Public Key Infrastructure will be introduced.

Finally, the propriety and quality of the solution will be confirmed by presenting

implemented test suites, performance tests with measurements as well as threat analysis

with the description of proper configuration that will protect from known attacks.

6.1 Example usage in H2O

An example client application was created in order to present the abilities of the

GSI Authenticator. The aim of this example is to present the following aspects of the

authenticator:

 Supplying credentials to the authenticator

 Authentication with GSI Authenticator

 Deployment of pluglets

 Usage of delegated credentials on deployed pluglets

The subsequent steps of the example are:

1. Reading proxy from file and supplying it to the Wallet

2. Connecting to kernel with authentication and delegation

3. Example usage scheme:

a. Deployment of the first pluglet

b. Subsequent recursive deployments of pluglets

c. Invocation of the hello() method

The implemented example usage scheme is presented on the diagram in Figure

28 and described below:

- 86 -

Figure 28. Implemented example usage scheme in H2O

Client deploys a pluglet, authenticating himself to the Kernel A with delegation enabled.

After deployment, the connect() method of the „Hello1‟ pluglet (no. 0) running on kernel

side is invoked. In that method the pluglet connects to (may be another) kernel B (with

subsequent authentication and delegation) and recursively deploys itself on it. This process

repeats, until the specified amount of pluglets (n) is deployed. Finally, the last instance

deploys another pluglet, „Hello2‟ (no. n+1).

After deployment, client invokes a hello() method of the deployed pluglet 0. The invocation

is recursively processed in the chain of pluglets. The last pluglet answers with the common

“Hello world” greeting, which is returned back along the chain to the client.

In order to run the example it is necessary to:

 Build the distribution

 Configure the CoG distribution e.g. with provided keys

o In case of using own keys instead of those provided with distribution:

 Truststore has to be supplied with the issuer‘s certificate

 Users.xml has to be supplied with subject‘s CN

 Configure file permissions in Policy.xml file

 Optionally configure CRL locations and server authentication

 Provide a valid path to Proxy file on tutorial execution

The steps are respectively described in Appendix C. The remaining commands

are:

 Creating a proxy (Figure 29):

o {cog-home}/bin/grid-proxy-init

 Running a kernel (Figure 30):

o {h2o-dist}/bin/h2o-kernel

 Running an example (Figure 31):

o {h2o-dist}/tutorial/bin/step11 <endpoint> <path_to_proxy>

<n>

 - 87 -

where available endpoints will be listed by kernel upon startup

Figure 29. Creating a proxy – console log

Figure 30. Running a kernel – console log

The kernel prints out i.a. used authenticators and available endpoints. Furthermore two

instances of Hello1 pluglet are deployed and started.

Figure 31. Running an example – console log

The answer is returned from Hello2 pluglet

6.2 Example usage in MOCCA

Verification of changes performed in MOCCA was done using the examples

provided with distribution. Here the changes and execution of

{mocca_dist}/bin/moccaping.py will be shown.

- 88 -

Part of the modified script file is presented in the code snippet:

 1 import sys

 2

 3 from mocca.client import MoccaMainBuilder

 4 from mocca.client import MoccaBuilderClient

 5 from mocca.client import MoccaAuthClient

 6 from java.net import URI

 7 from mocca.srv.impl import MoccaTypeMap

 8

 9 authClient = MoccaAuthClient.getInstance()

10 authClient.addCredential("/tmp/x509up_u1000", 1)

11 #authClient.addCredential("username","password",1)

12 authClient.setTrustManager("always")

13

14 builder = MoccaMainBuilder()

15

16 uriKernel = URI.create("https://majkcomp:7800/")

17 uriKernel2 = URI.create("https://jano:7800/")

18

19 userBuilderID = builder.addNewBuilder(uriKernel, "MyBuilderPlugletA")

20 providerBuilderID = builder.addNewBuilder(uriKernel2,

"MyBuilderPlugletB")

21

22 properties = MoccaTypeMap()

 …

For providing credentials to MOCCA, the MoccaAuthClient singleton class is

used. The following entries were added to the script:

Line 5 : importing the MoccaAuthClient class

Line 9 : getting the instance of the singleton

Line 10 : adding credential to MOCCA; here proxy file path is provided that will be

used for GSI Authenticator; the second parameter (boolean value written as integer) is

used to select, whether the delegation should be performed

Line 11 : an example entry of data provided for PasswdAuthenticator

Line 12 : setting the trust manager for the connection with kernel

For detailed description of the methods please refer to section 5.8.

In the example two kernels were used, running on two separate hosts: majkcomp

and jano. Connections to both of them were performed using secure endpoints (see lines

16 and 17)

 - 89 -

In order to run the example, the following permissions have to be set in H2O

kernel:

<permission type="java.net.SocketPermission" target="*"

actions="connect,resolve"/>

<permission type="java.lang.RuntimePermission"

target="accessDeclaredMembers"/>

Upon proper configuration, the H2O kernels and MOCCA builder can be run

with the following commands:

 Running kernels on both hosts (Figure 32):

o {h2o-dist}/bin/h2o-kernel

 Running MOCCA builder (Figure 33):

o {mocca_dist}/bin/runscript.sh moccaping.py

Figure 32. Running H2O kernel for MOCCA example – console log

The kernels are running on two separate hosts. After deployment, pluglets exchange

messages. An additional information can be seen that was printed out in order to present,

when the delegated credentials are used by the pluglet in kernel on majkcomp to perform

connection to kernel on jano.

- 90 -

Figure 33. Running MOCCA example – console log

Moccaping example uses secure endpoints of majkcomp and jano hosts. Using the

connections, the specified in script pluglets are deployed and connected and their methods

are invoked.

6.3 PKI configuration
36

Ten chapter presents the elements of the Public Key Infrastructure that has to be

implemented in the organization in order to take advantage of the H2O together with

GSI Authenticator and use it in a secure manner. The required entities will be presented,

together with procedures that should be provided by the PKI.

Entities:

 Registration Authority (RA) – collects certificate requests; verifies users‘

identities – e.g. by checking the identity card; therefore usually requires human

to human interaction

 Certification Authority (CA) – issues certificates, CRL lists, certifies

subsequent CAs, provides the repository of issued certificates; the Root CA of

the PKI is the root of trust and most often implemented by using a self-issued

certificate, therefore the strength of the key must be high and the private key

must be protected in the best possible way

 Clients and Kernels

Both communicating parties have to possess certificates issued by CAs.

Different CAs might be used but they have to be trusted by the peer. [24]

36

 The description is based on [24]

 - 91 -

Procedures:

The three main procedures in the PKI are presented on the chart in Figure 34 and

described below:

1. Key generation

A key pair may be generated either by

the user herself or by the CA. The

former is more secure, because the

private key is never sent. While using

the latter option, the generated keys

have to be transported in a secure way

afterwards (e.g. using secured smart

cards).

2. Registration

The process of certificate issuance has

to be premised by the identity

verification.

Upon certificate signing request user

provides some personal information,

required by the Certification Practices

Statement (CPS) of the Registration

Authority. Before issuing the

certificate, RA has to confirm the

provided information.

3. Certification

After identity confirmation, the request

is signed by the CA and the public

certificate is returned back to the user.

Moreover, it can be placed on some

public repository managed by the CA

to allow users to fetch other users‘

certificates for the purpose of secure

message exchange.

Figure 34. Suggested PKI for H2O

Each entity possess its own certificate, signed

by H2O-CA (with a self-signed certificate) and

has to trust the CA. The process of issuing a

certificate consists of key generation (1),

registration (2) and certification (3).

- 92 -

The key generation procedure is simple while using CoG JGlobus package. The

grid-cert-request command line tool generates RSA keys together with certificate

request, which is created on basis of some information, provided by the user (Common

Name, Locality etc.). The file should be sent to the respective CA. The received

certificate (usercert.pem file) should be placed in the directory defined by Globus

configuration
37

Other procedures:

 Key and Certificate Update

Required when:

o The lifetime of a certificate is expired – a normal situation

o The certificate is compromised – an unusual satiation; the old certificate

is revoked and placed on the CRL list; a new certificate has to be issued

 Certificate Revocation

o Performed when the information contained by a certificate are not valid

anymore, e.g. the employee has left the company or the personal

information of the certificate owner had changed

 Key recovery

o Performed when the owner lost her keys. Possible only when the PKI

allows for keeping a safe backup of the keys. It is still important to allow

no one but the owner to access them.

6.4 Test suites

The existing H2O tests were extended with a new suite, testing the correctness

of authentication using GSI. It verifies the H2O kernel responses on connection

attempts using both valid and invalid GSI credentials. The valid credential is a proxy

issued by a trusted party to a subject that is known to the kernel (specified in the

Users.xml file). The analyzed invalid cases are:

 The subject is unknown to the kernel

 The CA is not trusted by the kernel

 The lifetime of the proxy is over

37

 See Appendix C for configuration

 - 93 -

 The certificate is revoked

In order to perform those tests some example Certificate Authorities, keys and

certificates had to be prepared:

 An example Certificate Authority (CN=TestCA) with self-signed certificate

valid for 10000 days was created using OpenSSL. The certificate was added to

the trusted certificates of the kernel. The same credentials are provided with the

distribution for the purpose of running the usage examples.

 Two key pairs along with certificate requests were created using CoG‘s grid-

certificate-request tool: one for valid user (CN=TestUser) and one for invalid

(CN=FalseTestUser)

 The TestCA was used to sign the certificate requests – a certificate (valid 10000

days) was created both for TestUser and FalseTestUser

 Another certificate (valid 10000 days) was created for TestUser. The certificate

has been revoked by the CA.

 The CoG‘s grid-proxy-init tool was used to create a proxy for both users:

o One proxy valid for 10000 days for both TestUser and FalseUser

o Additional proxy valid for 1 hour for TestUser

 Another CA (CN=FalseTestCA) was created and used to sign the TestUser

certificate request; another long-life proxy was created for the user. The CA

certificate was not supplied to the truststore of the kernel.

The details of the credentials are presented in Table 1.

Table 1. Properties of credentials used for tests

The credential that should be accepted by the kernel is highlighted with green

background. In case of other credentials, reasons of their being incorrect are emphasized.

 Correct Incorrect Incorrect Incorrect Incorrect

Issuer TestCA TestCA TestCA FalseTestCA TestCA

Subject TestUser TestUser FalseTestUser TestUser TestUser

Cert validity

time

~2035 ~2035 ~2035 ~2035 ~2035

Proxy

validity time

~2035 Not valid

anymore

~2035 ~2035 ~2035

Revoked No No No No Yes

- 94 -

In order to perform the tests, some changes in suite configuration had to be

performed:

 The GSI Authenticator was added to the authenticators chain (entry in

GSITestKernelConfig.xml configuration file of the test suite). The

PasswordAuthenticator couldn‘t be removed from the chain for it is used by the

test framework to enter the kernel

 The CN of TestUser was supplied to the Users.xml configuration file of the test

suite

 The location of TestCA CRL list was added into the GSITestKernelConfig.xml

configuration file of the test suite

The test named GSIKernelAccessControlTest and test proxies are placed in

h2otest.cases.gsi package. The test suite class together with kernel configuration files

(Policy.xml and Users.xml) are placed in h2otest.suites.gsi package and its subpackages.

Additionally, the GSITestCase class was created in the h2otest.cases package

Before running the test, it is necessary to be customize the paths of file

permissions in Policy.xml file in h2otest.suites.gsi.config.security package in order to

reflect the true location of the files. Afterwards the test can be run with the Ant tool by

running the following command in the {h2o-dist}/h2o-test directory (Figure 35) :

ant runGSITests

 - 95 -

Figure 35. Running test suite – console log

Noticeable are the printouts of detailed messages for invalid credentials: unknown user,

unknown CA, expired proxy and revoked certificate

6.5 Threat analysis

During the development of security elements it is essential to perform a threat

analysis and try to look at as many aspects that can contain security gaps, as possible.

Even the most sophisticated and laboriously made mechanisms are useless, if they

contain a single weakpoint.

The H2O authentication uses both cryptography and network protocols, which

are a source of many threats. Moreover the broad possibilities of H2O transport layer

configuration provides large flexibility, but vulnerabilities as well.

While performing the threat analysis, the Microsoft Threat Analysis and

Modeling Tool
38

 was used. Several possible attacks and the way of preventing them

using proper H2O configuration and GSI Authenticator will now be presented.

38

 Search on http://msdn.microsoft.com

- 96 -

6.5.1 Analyzed threats

The analysis concerns the authentication process together with subsequent

communication session and encompasses the following threats :

 Confidentiality threats – refer to unauthorized disclosure of the executing

identity and data

 Integrity Threats – concerning violation of access control and business role

(gaining access as a different user) as well as integrity of transferred data

 Availability Threats - affect mostly the quality of offered services. The primary

factors are unavailability and performance degradation, which in commercial

application may lead to business loss. The Availability Threats will only be

shortly mentioned as they are not outside the interest of the thesis.

6.5.2 Analyzed attacks on the system

The following points will present the description and countermeasures of several

attacks that may affect H2O, which were discovered by the Microsoft Threat Analysis

and Modeling Tool. Afterwards the detailed analyze is presented and applied H2O

mechanisms are described:

a. Cryptanalysis Attacks

Cryptanalysis is the science of cracking codes, decoding secrets, violating authentication schemes and

breaking cryptographic protocols. It is also the science devoted to finding and correcting weaknesses in

cryptographic algorithms. It is understood within the field of Cryptology that an algorithm should not

rely on its secrecy. An algorithm should always be made available for public scrutiny. It is this scrutiny

that will make it a well trusted algorithm. Inevitably, vulnerability in the algorithm will be exploited.

Countermeasures:

 Use well-known implementations of well-known cryptographic algorithms

 Utilize SSL or IPSec w/ Encryption to establish a secure communication channel

 Use cryptographically generated random keys

H2O uses well-known opensource implementations for both GSI Authenticator

elements (JCE providers and JGlobus package) and for securing the connection (SSL-

secured connection in RMIX framework). The GSI Authenticator instead of using plain

passwords, which are known to provide many vulnerabilities (related to their

complexity as well as the way of using them by the users), is based on asymmetric

cryptography, which provides much better cryptographic properties.

 - 97 -

b. Network Eavesdropping

Network Eavesdropping is the act of monitoring network traffic for data, such as clear-text passwords or

configuration information. With a simple packet sniffer, all plaintext traffic can be read easily. Also,

lightweight hashing algorithms can be cracked and the payload that was thought to be safe can be

deciphered.

Countermeasures:

 Utilize SSL or IPSEC w/ Encryption to establish a secure communication

channel

Unencrypted connection allows for eavesdropping the authentication credentials.

It can be dangerous while using some trivial authentication mechanism, like H2O

default password authenticator. Therefore the secure endpoint has to be used for

tunneling the authentication process. GSI Authenticator does not require the connection

to be encrypted – neither during authentication nor during delegation any secret data are

transferred. Still it has to be tamper-proof, in order to prevent credentials manipulation.

c. Session Hijacking

Session hijacking is the act of taking control of a user session after successfully obtaining or generating

an authentication session ID. In session hijacking an attacker using a captured, brute forced or reverse-

engineered session ID seizes control of a legitimate user's Web application session while that session is

still in progress. The severity of the damage incurred depends on what's stored in the session state.

Countermeasures:

 Use strong random numbers for session IDs

The authentication process is usually combined with the procedure of

establishing a shared session keys only known to the authenticated parties. The keys are

then used for subsequent communication i.a. to ensure them that the peer is really the

one that took part in the authentication.

Absence of this mechanism may provide for kind of session hijacking with a

simple replay attack. Let us consider the following situation from Figure 36:

- 98 -

Figure 36. Sequence diagram of man-in-the-middle attack without shared communication

key.

The authentication messages exchange between the authorized user and server may be

captured and replayed by an attacker. Even though the messages may be encrypted, and

the attacker may not know what the actual keys and passwords are, the retransmission of

valid logon messages is sufficient to gain access to the server. After succeeding, it can start

its own communication with server as an authorized user.

Sometimes the attacker may try to replay the messages later, even on next days.

This threat may easily be avoided by using timestamp or ‗nonces‘ (one-time random

numbers) in the authentication procedure. But the presented real-time replay cannot be

avoided in that way.

H2O however provides the mechanism of sessions, which was described in

section 2.2.2, thus being resistant to the presented situation. The suggested

countermeasure is obtained by using asymmetric cryptography in form of session

certificates and keys, which make it difficult to impersonate the session.

d. Man-in-the-middle attack

A man in the middle attack occurs when the attacker intercepts messages sent between the sender and

receiver. The attacker then changes message and sends it to the original recipient.

Countermeasures:

 Utilize SSL or IPSec w/ Encryption to establish a secure communication channel

 Utilize a well-known authentication protocol to authenticate the server

In order to assure a secure connection, the crucial thing is the authentication of

the server. Ignoring it may lead to another man-in-the-middle attack, even while using

the secure tunneled connection. Let us analyze the diagram from Figure 37:

 - 99 -

Figure 37. Sequence diagram of man-in-the-middle attack without server authentication

The client starts an SSL connection. The MITM impersonates the server and presents a

faked certificate. The client establishes a secured connection with MITM. At the same time

a secured connection is being established between the MITM and the server. Afterwards,

the MITM replies the messages between client and server, encrypting them and

decrypting accordingly to the peer it communicates with. Upon successful authentication,

it starts its own further communication with the server.

In order to prevent it, server‘s identity at the TLS handshake has to be verified

by the client e.g. with a certificate signed by a known CA that it accepts. That will

prevent client from establish a faked connection and frustrate the attack.

6.5.3 GSI Authenticator threat analysis

After considering the available attacks on the H2O system, let us focus on the

features of the GSI Authenticator. At this point the following steps of the scheme will

be analyzed in order to see, if they can be misused for impersonation.

Assumptions:

 the authentication is tunneled in a secure (at least tamper-proof) connection;

otherwise the subsequent connection session won‘t be provided and the

authentication process is useless

 server must always be authenticated; otherwise it can be used for the man-in-

the-middle attack as described above

Let us analyze the authentication procedure step by step. We will consider a

legitimate user and an attacker, both performing a connection to a kernel. In order to

authenticate, the user has to:

- 100 -

1. send his certificate

The attacker may use the user‘s certificate for introduction in this step, because it is

public. It won‘t be useful though, as we well see soon.

2. receive and decrypt the challenge

Only the owner of the corresponding private key (the legitimate user) can decrypt the

challenge. It will not be possible for the attacker, thus the challenge obtained by attacker

during authentication with the user‘s certificate cannot be used for subsequent steps.

3. send signed response

Again - only the owner of the corresponding private key (the legitimate user) can sign

the response. For the attacker‘s connection with the server, the attacker needs to obtain

a valid response signed by the user. Let us consider the following possibilities:

- an attacker may try to modify a connection between a legitimate user and a

kernel and alter a challenge sent by the kernel to the user (exchange it with the

challenge which he got) in order to use the user‘s response for own connection

afterwards; this is prevented by the secure outer channel which is at least

tamper-proof

- an attacker may try to replay an old response of legitimate user; in order to

prevent that the challenge contains the actual time (in milliseconds) – ensuring

that it won‘t repeat

- an attacker may try to start the connection exactly at the same time as another

legitimate user to get the same challenge and use the user‘s response; in order

to prevent that, the challenge contains also a random integer value, which

makes it almost impossible to get the same challenge by different users in the

same millisecond

In none of the possibilities the attacker is possible to get valid response and

authenticate to the kernel.

6.5.4 Conclusions

This chapter presented possible threats and recommended countermeasures for

H2O security. The security of H2O authentication and subsequent communication is

 - 101 -

provided by H2O mechanisms, however requires proper configuration, in order to

prevent form known attacks, which were described. The configuration includes

 Using secure credentials with GSI Authenticator

 Using secured endpoint for tunneling the authentication process and providing a

communication session

 Always authenticating the server in order to prevent main-in-the-middle attack

6.6 Performance tests

Some performance tests were carried out in order to measure the overhead of the

GSI Authenticator as well as to compare it with the existing Password Authenticator

and with the configuration with no authentication enabled. Furthermore, the usage of

SSL tunneling on the authentication time was verified.

Additional tests were performed to estimate the percentage usage of particular

parts in the authentication process.

Communication overhead, which is equal to all the authentication schemes, was

not considered in the tests.

Test configuration:

OS : Ubuntu 8.04 Hardy Heron

Processor: Centrino Duo T2300 1,66 GHz (one core enabled)

Memory: 2 GB

Key length : 1024 bits

The results of the tests together with risk analysis from the security point of view

will now be presented:

6.6.1 Authenticators comparison

In order to perform the comparison tests of the authenticators, the example usage

classes presented in chapter 6.1 were made use of, differently configured. Three factors

were adjusted:

 The length of the pluglets chain (namely the amount of recursively deployed

instances of first pluglet after deployment by the client, before deploying the

second one) : 0, 5, 10, 20

- 102 -

 Used authenticator : GSI-based, password-based or none (in this case guest‘

permissions have to be enabled)

 The existence of an ‗outer‘ tunneling protocol for the authentication: using plain

or SSL-secured endpoint

A short script was written to perform the tests, which executed it 5 times for

each configuration. Extreme results were omitted and the average of the remaining was

taken.

Following tables (Table 2-4) and charts (Figure 38-40) present the results

divided into those obtained for plain and SSL socket. Authentication time for particular

authentication schemes and chain lengths are presented together with the overhead of

the GSI Authenticator over other schemes.

It is important to notice that the achieved time results include the time of

pluglets deployment – so the overhead of GSI Authenticator over no authentication

scheme is a real result of how the authentication affects the execution time.

Results for plain socket:

Figure 38. Authentication time depending on authentication scheme and chain length for

plain socket

Noticeable is the high overhead of GSI Authenticator comparing to other schemes

0 5 10 20

No authentication 3,5 s 6,9 s 10,1 s 16,5 s

Password Authenticator 3,6 s 7,5 s 11,1 s 18,2 s

GSI Authenticator 6,7 s 14,2 s 21,8 s 34,5 s

0,0 s

5,0 s

10,0 s

15,0 s

20,0 s

25,0 s

30,0 s

35,0 s

40,0 s

A
u

th
en

ti
ca

ti
o

n
 t

im
e

chain length

 - 103 -

Table 2. The overhead of GSI Authenticator over other authentication schemes for plain

socket

0 5 10 20 average

GSI vs password 84,3 % 89,7 % 96,4 % 89,3 % 89,9 %

GSI vs no auth 90,6 % 106,5 % 115,6 % 109,2 % 105,5 %

Results for SSL socket:

Figure 39. Authentication time depending on authentication scheme and chain length for

SSL socket

Table 3. The overhead of GSI Authenticator over other authentication schemes for SSL

socket

0 5 10 20 average:

GSI vs password 95,4 % 77,0 % 86,9 % 77,0 % 84,1 %

GSI vs no auth 102,4 % 93,6 % 113,0 % 107,7 % 104,2 %

The obtained results were used to estimate the overhead of the connection using

SSL socket over plain connection. The differences are graphically presented on the

charts and the overhead is listed in the table. Most important is the average overhead in

the last column.

0 5 10 20

No authentication 4,2 s 7,6 s 10,7 s 17,1 s

Password Authenticator 4,4 s 8,3 s 12,2 s 20,1 s

GSI Authenticator 8,5 s 14,6 s 22,9 s 35,5 s

0,0 s

5,0 s

10,0 s

15,0 s

20,0 s

25,0 s

30,0 s

35,0 s

40,0 s

A
u

th
en

ti
ca

ti
o

n
 t

im
e

chain length

- 104 -

No authentication Password Authenticator GSI Authenticator

Figure 40. Compared authentication time for plain and SSL socket for particular

authentication schemes

Table 4. The overhead of SSL-secured authentication over plain connection for particular

authentication schemes

0 5 10 20 average:

No authentication 19,3 % 9,7 % 6,1 % 3,6 % 9,7 %

PasswdAuthenticator 19,5 % 10,3 % 10,2 % 10,1 % 12,5 %

GSIAuthenticator 26,7 % 2,9 % 4,9 % 2,9 % 9,3 %

6.6.2 Server authentication

A short test was performed in order to check the server authentication overhead.

The test was performed for a chain length 10 for SSL authentication. The authentication

with server authentication enabled was about 5,7% longer than without it (19,5 s vs

18,45 s).

Conclusions:

What‘s obvious, the execution without authentication is the fastest one. The

authentication mechanism doesn‘t provide much overhead though – connecting using

the simple password authenticator scheme is only a bit slower than without any

authentication at all. The GSI Authenticator is much slower than other two

0

5

10

15

20

25

30

35

40

0 5 10 20

A
th

en
ti

ca
ti

o
n

 t
im

e
[s

]

0

5

10

15

20

25

30

35

40

0 5 10 20

chain length

0

5

10

15

20

25

30

35

40

0 5 10 20

Plain
socket

SSL

 - 105 -

authentication schemes – using it will take us twice as much time as using no

authentication. It is no large problem when not many authentications are needed but for

a longer authentication time it may become inconvenient.

The usage of SSL-secured connection doesn‘t change the relative times of

authentication, still provides about 10% overhead. Another 5% is added while using

server authentication. Since not much data are sent, the time is mostly affected by the

SSL handshake.

Noticeable is a very small overhead when GSI Authenticator is often use that

can be seen in Table 4. It may be a result of the fact that similar cryptographic

operations are required for both establishing the SSL connection and for the GSI

Authenticator – which can be optimized by CPU.

As a conclusion, Figure 41 may be used in order to summarize, how the

execution time depends on the authentication scheme and used endpoint:

Figure 41. The change of execution time depending on the authentication scheme and used

endpoint

Using GSI Authenticator over secured endpoint provides the highest security at the

expense of longer execution time

6.6.3 Risk analysis

While considering the performance of security-related issues it is always

important to analyze, how much time can be gained – and at the same time how much

security can be lost – by using different possible configurations. Some suggestions can

be provided by taking into account the performed threat analysis and gained

performance results.

It is by no means reasonable to abandon the SSL for securing the connection,

especially in a public network. The overhead is not so high – but the gained security

features are significant.

- 106 -

The decision whether to use the GSI Authentication should depend on the

company policy. It offers much higher security level than e.g. the password

authenticator, together with a reasonable delegation. The decision, if we can resign from

those features in support of half execution time is considerable.

Finally, the cost of implementing the Public Key Infrastructure needs to be taken

into account. It is not a case if the required PKI is already present and all the users are

provided with their permanent credentials. If not, the value of exchanged data, existing

threats and potential losses have to be considered and compared with the required

investment.

6.6.4 GSI Authenticator analysis

In order to check, which parts of GSI Authenticator have the highest influence

on the authentication time, two additional tests were performed. The tests won‘t be

useful in taking security-related decisions. They are rather performed from the curiosity

– to check the suppositions related with the complexity of cryptographic algorithms.

Some interesting information can be seen by the way.

First, the key creation and chain validation time were estimated. The test was

performed 10 times for chain length from 10 to 110 (step 20). For each length the two

extreme results were omitted and the average of the remaining was taken. Finally, the

average time of one key creation was taken. The average time is 0,52 s

The chain validation time is presented on the chart in Figure 42:

Figure 42. Chain validation time depending on chain length

10 30 50 70 90 110

results 0,07 s 0,16 s 0,29 s 0,48 s 0,71 s 1,00 s

0,00 s

0,20 s

0,40 s

0,60 s

0,80 s

1,00 s

1,20 s

ch
ai

n
 v

al
id

at
io

n
 t

im
e

chain length

 - 107 -

Afterwards, a detailed test of particular GSI Authenticator elements was

performed. The analyzed operations together with the results are presented in Table 5

and in Figure 43. The test was performed five times. Presented operations were

performed iteratively multiple times in each test; the amount of iterations was increased

and is presented in columns headers. The obtained results are normalized (summarized

times of each operation‘s multiple execution divided by the amount of iterations) and

presented in milliseconds. In last columns, the average time of all test executions are

provided together with the percentage usage of each operation in the overall execution

process.

Table 5. Times of execution [milis] of particular GSI Authenticator elements

together with average time and percentage usage in overall authentication process

25 50 75 100 200 average

%
Total time 572,8 614,7 671,6 622,4 629,6 622,2

Credential read 2,8 0,9 1,0 0,9 0,9 1,3 0,2 %

Key generation 518,4 560,0 617,2 568,7 577,2 568,3 91,3 %

Proxy creation 4,2 4,0 3,9 3,9 3,7 3,9 0,6 %

Challenge decryption (twice) 0,8 0,8 0,8 0,9 0,8 0,8 0,1 %

Challenge encryption (twice) 13,7 13,8 13,6 13,8 13,7 13,7 2,2 %

Validation 32,9 35,2 35,0 34,1 33,1 34,1 5,5 %

Figure 43. Percentage usage of particular GSI Authenticator elements in overall

authentication process

0,2 %

91,34%

0,6%

0,1%
2,2%

5,5 %

Credential read

Key generation

Proxy creation

Challenge decryption
(twice)

Challenge encryption
(twice)

Validation

- 108 -

Conclusions:

The chain validation time is rather insignificant for short chains. It grows almost

linearly with the enlargement of the chain.

Relatively time-consuming is the key generation procedure, which needs about

half second for each key. In comparison to other elements that are used in the GSI

Authenticator, it dominates the authentication time.

Noticeable is the difference between the encryption and decryption time. It

comes from the characteristic of asymmetric cryptography – data should be easily

decrypted while using the proper key and practically not decryptable without it. To

achieve it, time-consuming key creation and data encryption algorithms have to be used.

6.7 Summary

The chapter presented the tests that were performed in order to verify the

usefulness and quality of the generated authenticator. Its knowledge should also allow

readers to easily build the distribution, prepare the environment and run the provided

examples.

 - 109 -

Chapter 7. Conclusions and future work

In this chapter the accomplished work will be summarized by a short description

of achieved goals and by suggestion of the future steps of H2O development.

7.1 Achieved goals

The main goal was to create an H2O-applicable authenticator based on PKI and X.509

certificates that will be compliant with GSI and provide delegation based on proxy

certificates. This goal has been successfully achieved. The authenticator was verified

and added to the distribution for further development. All the sub-goals identified in

chapter 1 were accomplished:

- Identification and analysis of security architecture and shortages in

H2O

First two chapters provide a comprehensive analysis of current state of security

mechanisms in H2O with identification of missing features that were to be

challenged by the thesis. The results of the analysis were described in section 2.2.

- Overview of available solutions for H2O security enhancements

In chapter 3 some modern security technologies used for authentication were

presented. These are GSI, My Proxy and Needham-Schroeder protocol. They

became the cornerstone of a future concept of the developed authenticator.

- Concept and development of new security system for H2O

The analysis of possible solutions led to a concept of created authenticator.

Together with detailed design and implementation it was described in chapters 4

and 5. The added feature significantly increased the usability of the system, which

becomes ready to cooperate with current standards. A few existing bugs were

corrected as well.

- 110 -

- Proving the correctness and usefulness of the created solution

Chapter 6 provides a comprehensive validation and usage description of the GSI

Authenticator. First usage examples for both H2O and MOCCA were created. The

usefulness and robustness of the solution were proved by several tests as well as

detailed threat analysis – of the overall system and of the authenticator itself. The

trade-off between performance and security level was described and possible

usages were identified.

- Build, configuration and usage description

Together with the usage examples presented in chapter 6, an additional

description of actions and steps required to build, configure and use H2O and

MOCCA is presented in sections 1 and 2 of the chapter and in Appendix C. and

will hopefully help further developers of the system.

- Identification of future work

This issue is presented in the subsequent section.

Based on the thesis, a publication is being prepared by Bubak M., Dyrda M.,

Malawski M. and Naqvi S. The Table of Contents of the publication is presented in

Appendix D.

7.2 Future work

GSI Authenticator is the next but not the last step in the process of developing

H2O in order to provide an architecture that would be both secure and convenient from

the point of view of large distributed grid systems. Therefore some future work was

identified that may be considered by future developers:

1. Delegation of trust anchors

During the work it was identified that the H2O server authentication mechanism of trust

managers does not provide delegation of client‘s trust anchors, thus disabling the

pluglets to fully exploit the power of credentials delegation.

 - 111 -

2. CRL update and the Online Certificate Status Protocol (OCSP) for

certificate revocation verification

The current architecture provides revocation verification based on CRL lists, which are

downloaded from specified locations during a start of the kernel. Automatic updates,

based on the dates of next publications, provided in the CRL files, should be added.

OCSP was created as an alternative to Certificate Revocation Lists and is described in

RFC 2560 [25]. Because of getting more popularity, its usage could be added to the

Validator. It can be very straightforward because of the Open GRid Ocsp (ORGO)

project
39

3. MyProxy for credentials storage

The next step which emerges from the trends in the domain of security may be the

addition of MyProxy server attendance to the suggested Public Key Infrastructure, and

at the same time to the GSI Authenticator. Instead of performing the delegation between

the communicating peers, it would allow to get the delegated credentials from MyProxy

server, making users independent of their permanent credentials location. Also the

usage of MyProxy CA may be considered.

4. More sophisticated authentication mechanisms

The thesis was focused on authentication, bringing up the issues of H2O authorization

in a superficial way. However, the next step towards the advancement of the system

should be creation of more sophisticated authorization mechanisms that would allow to

get rid of local configuration of all the kernels using Users.xml files in favour of some

centralized management of the overall distributed system. Some research in this field

has already been started.

39

 http://dev.globus.org/wiki/Incubator/OGRO

- 112 -

 - 113 -

References

1. M. Malawski, D. Kurzyniec, V. Sunderam. MOCCA – towards a distributed CCA

framework for metacomputing. In Proceedings of 19th IEEE International Parallel and

Distributed Processing Symposium (IPDPS'05) - Joint Workshop on High-Performance

Grid Computing & High-Level Parallel Programming Models - HIPS-HPGC, April 4-8,

2005, Denver, Colorado, USA. [Online]

http://mathcs.emory.edu/dcl/h2o/papers/h2o_hips05.pdf.

2. Malawski, M. Component-based Grid Environment for Programming Scientific

Applications. Presentation at Cracow Grid Seminar. [Online] www.eu-

crossgrid.org/Seminars-INP/MOCCA-Seminarium-Nov06.ppt.

3. V. Sunderam, D. Kurzyniec. Lightweight self-organizing frameworks for

metacomputing. In The 11th International Symposium on High Performance

Distributed Computing (HPDC-11 '02), Edinburgh, Scotland, July 2002. [Online]

http://www.dcl.mathcs.emory.edu/downloads/h2o/papers/h2o_hpdc02.pdf.

4. Distributed Computing Laboratory, Emory University. H2O. Java-based, secure,

scalable, stateless, lightweight, flexible, component-hosting distributed application

platform. [Online] January 10, 2008. http://dcl.mathcs.emory.edu/h2o.

5. IETF. RFC 2246. The TLS Protocol. [Online] http://tools.ietf.org/html/rfc2246.

6. RSA Laboratories. RSA Algorithm. [Online]

http://www.rsa.com/rsalabs/node.asp?id=2146.

7. Red Hat Certificate System. Administrator's Guide. [Online]

http://www.redhat.com/docs/manuals/cert-system/admin/7.1/app_dn.html.

8. UIQ developer portal. Certificate Validation in PKIX. [Online]

http://developer.uiq.com/devlib/uiq_30/SDKDocumentation/sdl/guide/N1010A/CertMa

n/CertValidation.html.

9. D. Kurzyniec, T. Wrzosek, V. Sunderam, A. Slominski. RMIX: A multiprotocol

RMI framework for java. In Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS'03), Nice, France, April 2003. [Online]

http://www.dcl.mathcs.emory.edu/downloads/rmix/papers/rmix.pdf.

- 114 -

10. T.Ampula, D. Drzewiecki, et al. Harness and H2O. Alternative approaches to

metacomputing. [Online] www.cyfronet.krakow.pl/cgw03/presentations/1.ppt.

11. The Globus Authorization Framework with PDPs. [Online]

http://globus.org/toolkit/docs/4.0/security/authzframe/developer-index.html.

12. JavaTM Authentication and Authorization Service (JAAS). Reference Guide.

[Online]

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html.

13. IETF. RFC 3820. Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate

Profile. [Online] http://www.ietf.org/rfc/rfc3820.

14. T. Bujok, M. Dyrda. Grid Security Infrastructure Management on the basis of

Shibboleth and MyProxy Systems. [Online]

http://virolab1.cyfronet.pl/student/doku.php?id=wiki:0:grid_security_infrastructure_ma

nagement_on_the_basis_of_shibboleth_and_myproxy_systems.

15. GT 4.0: Security. [Online] http://globus.org/toolkit/docs/4.0/security/.

16. V. Welch, I. Foster et al. X.509 Proxy Certificates for Dynamic Delegation.

[Online] middleware.internet2.edu/pki04/proceedings/proxy_certs.pdf.

17. J. Basney. MyProxy. A Multi-Purpose Grid Authentication Service. [Online]

www.ncsa.uiuc.edu/~jbasney/MyProxy-WCGA06.ppt.

18. J. Novotny, S. Tuecke, V. Welch. An Online Credential Repository for the Grid:

MyProxy. [Online] www.globus.org/alliance/publications/papers/myproxy.pdf.

19. National Center for Supercomputing Applications (NCSA), University of

Illinois. MyProxy. Credential Management Service. [Online]

http://grid.ncsa.uiuc.edu/myproxy/.

20. R. Needham, M. Schroeder. Needham-Schroeder Public Key protocol. [Online]

December 4, 1978. http://www.lsv.ens-cachan.fr/spore/nspk.pdf.

21. G. Lowe. Lowe's fixed version of Needham-Schroder Public Key. [Online]

1995/2002. http://www.lsv.ens-cachan.fr/spore/nspkLowe.pdf.

22. Java ™ Cryptography Architecture (JCA). Reference Guide. [Online]

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html.

23. G. von Laszewski, I. Foster, J. Gawor, P. Lane. A Java Commodity Grid Toolkit.

ACM 2000 Java Grande Conference. [Online] June 28, 2001.

http://www.globus.org/alliance/publications/papers/vonLaszewski--cog-cpe-final.pdf.

 - 115 -

24. signet : Centrum Certyfikacji. Wprowadzenie do PKI. [Online]

http://www.signet.pl/pomoc/pki.html.

25. IETF. RFC 2560. X.509 Internet Public Key Infrastructure Online Certificate

Status Protocol - OCSP. [Online] http://tools.ietf.org/html/rfc2560.

26. —. RFC 3280. Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile. [Online] http://tools.ietf.org/html/rfc3280.

27. D. Hook. X.509 Public Key Certificate and Certification Request Generation.

[Online]

http://www.bouncycastle.org/wiki/display/JA1/X.509+Public+Key+Certificate+and+Ce

rtification+Request+Generation.

28. The Globus Security Team. Globus Toolkit Version 4 Grid Security Infrastructure.

A Standards Perspective. [Online] September 12, 2005.

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.

29. IETF. Public-Key Infrastructure (X.509) (pkix). [Online]

http://www.ietf.org/html.charters/pkix-charter.html.

30. ITU-T. X Series recommendations. Data networks, open system communications

and security. [Online] http://www.itu.int/rec/T-REC-X/en.

31. Proxy Certificates Types. [Online]

http://dev.globus.org/wiki/Security/ProxyCertTypes.

32. RSA Laboratories. Public-Key Cryptography Standards (PKCS). [Online]

www.rsa.com/rsalabs/pkcs/.

33. Wikipedia. the free encyclopedia. [Online] http://www.wikipedia.org/.

- 116 -

 - 117 -

Appendix A :

Standards and formats related to cryptography

A. 1. What you should know about PEM, DER, PKCS, …
40

The motivation for providing successive encoding standards was the difficulty in

transferring data between different systems. Several relevant standards are now going to

be presented:

 Notation: ASN.1

Abstract Syntax Notation One (ASN.1) is an ISO / ITU-T standard and

notation that allows to define data messages, which can be exchanged between

communicating systems regardless of the underlying machine-specific encoding. It

describes data structures for representing, encoding, transmitting and decoding data.

 Standards : PKCS

The Public Key Cryptography Standards (PKCS) were created by RSA

Security in order to standardize the format of objects used during public key operations .

They became part of many formal and de facto standards, including PKIX and SSL.

Some of the most important standards from the point of view of this thesis are:

o PKCS #1

PKCS #1 is a RSA Cryptography Standard that specifies the mathematical

properties and format (ASN.1 syntax) of RSA public and private keys together with

basic algorithms for performing cryptographic operations using those keys, like

encryption and decryption or producing and verifying signatures.

o PKCS #8

40

 The description is based on [30] [29] [32]

- 118 -

This standard describes syntax for private-key information: the private keys

themselves and additional attributes for public key algorithms. The standard also

describes an abstract syntax for encrypted private keys.

 Transfer syntax (encoding rules) :

Transfer syntax are rules for encoding abstract information (e.g. data structures

described in ASN.1) info a concrete data stream. The most commonly used formats will

now be described.

The first were the Basic Encoding Rules (BER), defined already as a part of the

ASN.1 standard. This is an example of TLV (type-length-value) encoding, where the

data elements are encoded as a type identifier, a length description, the actual data

elements and the end marker if needed. One of the advantage of this format is a

possibility to decode some information from an incomplete stream. BER however does

not provide an unique representation of data that means the same information can be

presented in multiple serialized ways. For example, there are 255 ways of saving the

boolean value of true. The unique representation is however required while using digital

signatures of data, e.g. for X.509 certificates.

Because of that, the subset of the BER was selected, which restricts the

possibilities of representing any ASN.1 value to a single option. The obtained transfer

syntax is called the Distinguished Encoding Rules (DER). Still, DER encoding is a

valid BER encoding.

Another version of BER subset are the Canonical Encoding Rules (CER). The

basic difference between DER and CER is that DER uses definitive length form, by

always providing a leading length information, whereas CER may use the end-of-

contents octet , providing the indefinite length in some cases.

CER, DER and BER are binary formats that encode data in octet (groups of

eight bits) sequences. In order to get a ‗printable‘ encoding, the Privacy-Enhanced

Mail (PEM) format can be used. It is the Base64 encoding of the DER format. Base64

is an encoding that allows to encode a sequence of octets as a sequence of printable

ASCII characters.

PEM files may contains certificate(s) and/or private key(s) enclosed between

appropriate header and footer lines. For certificates, they have the following form:

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

 - 119 -

The format of header and footer for private key depends on the standard of the key. The

PEM header of PKCS#1 private key is:

-----BEGIN RSA PRIVATE KEY-----

-----END RSA PRIVATE KEY-----

The PEM header of a PKCS#8 encrypted private key is :

-----BEGIN ENCRYPTED PRIVATE KEY-----

 -----END ENCRYPTED PRIVATE KEY-----

whereas the unencrypted form uses:

 -----BEGIN PRIVATE KEY-----

 -----END PRIVATE KEY-----

o PKCS #12

Another commonly used transfer syntax is described in the PKCS#12 standard.

It describes encoding of personal identity information, i.a. certificates and private keys.

It is considered as one of the most complex cryptographic protocols, still it is the only

standard that enables storing private keys together with certificates in a single encrypted

file.

 File extensions

In general, the .PEM files are mostly used in the Unix world, the .DER files in

the Java world and the .P12 (PKCS12) files in the Microsoft world.

There may be some ambiguity with the .CER extension, which should point to

CER-encoded certificates but is used by Microsoft both for both DER and Base64

certificate files.

A. 2. Proxy credential file format

The proxy file acceptable by Globus has a specific format: it contains the most

recent proxy certificate, followed by the corresponding private key, followed by the

chain of certificates, starting from the previous proxy up to the end entity certificate.

Individual blocks are enclosed by specific header and footer lines.

- 120 -

The example (truncated) file looks as follows:

-----BEGIN CERTIFICATE-----

MIICcDCCAhqgAwIBAgIEU6SeXjANBgkqhkiG9w0BAQQFADCBojENMAsGA1UEChME

[…]

-----END CERTIFICATE-----

-----BEGIN RSA PRIVATE KEY-----

MIIBOQIBAAJBAMc0n9W1E1KjK6saavXXZ/QhLjJ/TK40uW29l/wduSrHWCu1e5Kr

[…]

-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----

[…]

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

[…]

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

[…]

-----END CERTIFICATE-----

Both certificates and private key are PEM-encoded.

A. 3. Proxy certificate extensions

The RFC requires all the proxy certificates to include the newly introduced

Proxy Certificate Information (ProxyCertInfo) extension and the extension must be

critical. It indicates that a certificate is a proxy and may specify some restrictions,

placed on its usage.

The fields contained by the extension are:

 pCPathLenConstraint – specifies the maximum number of proxy certificates in

the chain that may follow the one being checked.

It is distinct from keyUsage, because it concerns only proxy certificates, whereas

keyUsage concerns only non-proxy certificates

Value 0 means that the certificate must not be used to sign a proxy. If the field is

missing, unlimited path length is allowed. End entity certificates have unlimited

maximum proxy path length.

 proxyPolicy – specifies a policy to use for the purpose of authorization.

It consists of two parts, one indicating the policy language and other expressing

the policy itself.

 - 121 -

A. 4. Proxy certificate types
41

 :

During the advancement of the proxy conception, different standards emerged,

until finally the official standard in form of RFC 3820 appeared. However, the older

versions can still be encountered, and what is more, Globus provides a backward

compatibility, to serve them. Therefore it is good to familiarize with the existing

formats:

- Legacy Proxy Certificate

First of them, introduced already in GT 2.0, was specified before the publication

of the RFC. It is recognized by the lack of ProxyCertInfo extension and the use of

CN=proxy or CN=limited proxy DN components.

- Proxy Draft Proxy Certificates

This format, also called the GSI3 Proxy Certificates (because of its first

appearance in GT3) is very similar to the RFC 3820 Proxy Certificates. The only

difference is the non-standard OID used to identify the ProxyCertInfo extension.

- RFC 3820 Proxy Certificates

RFC 3820 Proxy Certificates are proxy certificates that fully conform to RFC

3820 [13].

Proxy Certificate Compatibility

 In GT 4.2.x, it is expected that RFC 3820 Proxies will be generated by grid-

proxy-init by default.

 GT 4.x accepts all three types of proxy certificates listed above and generates

Proxy Draft Proxy Certificates by default.

The RFC 3820 Proxies can be generated using grid-proxy-init -rfc

 GT 3.x accepts Proxy Draft and Legacy proxy certificates.

 GT 2.x accepts Legacy proxy certificates.

41

 The description is based on [31]

http://www.ietf.org/rfc/rfc3820.txt
http://www.ietf.org/rfc/rfc3820.txt
http://www.ietf.org/rfc/rfc3820.txt

- 122 -

A. 5. Certificate chain validation
42

In order to validate a certificate, its issuer has to be verified. As it was presented

in the chapter 2.1.3, in PKI a certificate path starts with the End Entity certificate and

proceeds through a number of intermediate certificates up to a root certificate, which is

typically a self-signed CA certificate. At least one of them has to be trusted by the

verifier.

The validation is recursive as well. At the beginning the End Entity certificate is

being checked. In order to verify the signature, the signer‘s certificate has to be used.

This one may need to be verified as well – and this process is repeated until some

trusted certificate is reached.

A standardized path validation algorithm for X.509 certificates, given a

certificate path, is defined in RFC 3280 [26].

Validator input

 The certificate path to verify (End Entity and intermediate certificates)

 Trusted roots certificates

 Current date/time

 Acceptable policies – i.a. to specify the application, for which the verified

certificate will be used

Chain construction

A user may not always possess a complete path from a trusted CA to the End

Entity. Some solutions, commonly described as Path Discovery processes, are provided

but they are not going to be covered in this thesis.

Validation algorithm

The following steps are performed for each certificate in the path, starting from

the trust anchor. If any check fails on any certificate, the algorithm terminates and path

validation fails:

 Signature Verification & Name Chaining

Each certificate, except the self-signed root certificate, must be signed by the

certificate above in the chain. The issuer name of signed certificate must match

the subject name of the signer. The self-signed certificate subject and issuer

names must be equal.

42

 The description is based on [8]

 - 123 -

 Validity Period Checking

The time of validation must lie within the validity period of (each) certificate

 Extensions Processing

The validation algorithm must process at least the critical extensions contained

by the certificate. The restrictions, provided by the extensions (i.a. KeyUsage),

have to be taken into account.

 Policies verification

Policy constraints are checked, to ensure that any explicit policy requirements

are not violated

 Revocation Checking

If CRL locations are provided, certificates are checked against being revoked.

A. 6. Proxy chain validation
43

Validation of a certificate chain has two distinct phases. First validation of the

certificate chain from the End User non-proxy certificate up to the trusted anchor based

on RFC 3280 occurs, as described above. Afterwards the validation of the proxy

certificates, from the already verified end-user certificate down to the most recent proxy

takes place. This process is, in turn, based on RFC 3820. Some of the steps are similar;

the main steps are:

 Signature Verification & Name Chaining

As in case of plain certificates, but each Proxy Certificate must have a subject

name derived from the subject name.

 Validity Period Checking

 Extensions Processing

Proxy certificates may contain additional required proxy extension, which has to

be processed by the Validator. The extension was described in point 3 of this

Appendix

Current RFC contains no description of proxy revocation, some mechanisms are already

provided though.

43

 The description is based on [16]

- 124 -

 - 125 -

Appendix B:

Encountered problems with initial implementation

without CoG JGlobus package – code snippets

For parsing and writing proxy files in the initial configuration, which was

performed without the usage of Globus libraries, as described in section 5.9, the

BouncyCastle and Sun security tools were used. This appendix contains some code

examples that might be useful for future developers of proxy-related elements.

For reading certificate and key files the org.bouncycastle.openssl.PEMReader

can be used:

PEMReader r = new PEMReader(new FileReader(certfile));

X509Certificate cert = (X509Certificate)r.readObject();

The encrypted key file might be used by using the PasswordFinder parameter in

the PEMReader (org.bouncycastle.openssl)constructor:

PEMReader r = new PEMReader(new FileReader(keyfile), pwdFinder);

This parameter has to be a class implementing the

org.bouncycastle.openssl.PasswordFinder interface, which contains only one method:

public char[] getPassword();

In order to read the proxy file (not standard version with PKCS8 encoded key

only), it was first parsed by using the header and footer lines of certificates and keys.

Then the string representations were decoded, using sun.misc.BASE64Decoder

byte[] bytes = new BASE64Decoder().decodeBuffer(string);

Afterwards, java.security.cert.CertificateFactory and java.security.KeyFactory

were accordingly used.

CertificateFactory cf = CertificateFactory.getInstance("X.509");

DataInputStream dis = new DataInputStream(new

ByteArrayInputStream(bytes));

X509Certificate cert = (X509Certificate) cf.generateCertificate(dis);

- 126 -

The key still had to be translated into so called ‗key material‘, in form of a

java.security.spec.PKCS8EncodedKeySpec object:

PKCS8EncodedKeySpec privSpec = new PKCS8EncodedKeySpec(bytes);

KeyFactory fact = KeyFactory.getInstance("RSA");

RSAPrivateKey key = (RSAPrivateKey) fact.generatePrivate(privSpec);

In order to write the proxy file, the sun.misc.Base64Encoder is used to default

encoded versions of certificate and key respectively:

 return new BASE64Encoder().encode(cert.getEncoded());

 return new BASE64Encoder().encode(privKey.getEncoded());

For creating proxy certificate the BouncyCastle API [27] was used.

 - 127 -

Appendix C : Configuration

C. 1. Building the distribution

The following tools were used to build the H2O distribution (using other

versions may cause difficulties):

 Java 1.5

 ant 1.6.5

 junit 4.4 in classpath

A keystore with credentials that will be used in order to sign the distribution jar

files, has to be provided for the build to complete successfully. The keystore file should

be placed in ${user.home}/priv/dclPrivKeyStore along with the

${user.home}/priv/dclStorePass file containing password to the keystore.

An example keystore that can be used is provided in the misc directory of the

H2O distribution.

For the GSI Authenticator to work, the CoG libraries had to be added to the

distribution. The description of the required changes that were made, is placed in the

section 8 of this Appendix.

C. 2. CoG package configuration

In order to use the CoG Kit package, it has to be properly configured, by writing

a cog.properties file in {user.home}/.globus directory. The file contains the

following information:

 The location of user‘s certificate and private key, which are usually stored in the

mentioned .globus directory and called usercert.pem and userkey.pem

respectively , e.g.:

usercert=/home/majk/.globus/usercert.pem

userkey=/home/majk/.globus/userkey.pem

- 128 -

The certificate file is public and can be published without any risk, however the

private key should be kept secure from unauthorized access, so it is important to

set their access rights properly:

> ls –al .globus/user*.pem

-r-------- 1 majk majk 951 2008-05-07 15:06 userkey.pem

-rw-r--r-- 1 majk majk 2030 2008-05-07 15:06 userrequest.pem

 The location of the trusted CA certificate files

cacert=/etc/grid-security/certificates, /home/majk/.globus/cacert.pem

 The location of the proxy file (also the place where to put it upon generation by

the tool). The file is usually placed in a temporary directory with a name

x509up_u{ uid}:

proxy=/tmp/x509up_u1000

The file is protected by only local file system permissions, which allow the

user‘s applications to access it without any manual intervention by the user,

therefore the maximum allowable permissions for the proxy are restricted

(usually to 600):

> ls –al /tmp/x509up_u1000

-rw------- 1 majk majk 4729 2008-04-26 09:50 /tmp/x509up_u1000

 The system IP address

ip=192.168.120.51

The cog.properties file can be modified by hand or using the GUI wizard run by

executing the cog-jglobus.jar file.

The GSI Authenticator can accept GlobusCredential objects as well as separate

certificate chain and private key object. In order to use the authenticator, we need to

possess valid credentials that are accepted by the kernel. Example credentials and

configuration file are provided in the misc directory of the H2O distribution. The

 - 129 -

Issuer‘s certificate is added into the distribution truststore
44

 and the Subject CN is added

to the Users.xml configuration file
45

The details of the credentials are:

Issuer: C=PL,ST=Some-State,O=TestCA

Subject: C=PL,O=GRID,CN=TestUser

Validity end time (both for CA and user certificate) : ~2035

The password for the private key is : testUserPass

C. 3. H2O truststore configuration

The truststore of the H2O distribution is placed in the ${h2o-

dist}/config/security/cacerts file and secured with password h2o-CA

The truststore may be used both by client to specify trusted kernels (see server

authentication) and by kernel to specify clients that are allowed to connect using

GSIAuthenticator.

In order to add a new certificate to the truststore, the java keytool utility can be

used:

{java_home}/bin/keytool –import –keystore cacerts –file <certificate file> –

alias <certificate alias>

The TestCA certificate, which is used to issue the TestUser certificate, is already

contained by the distribution cacerts file.

C. 4. Users.xml configuration

Users.xml, placed in {h2o-dist}/config/security, contains the entries

required for user authorization, as described in chapter 2.2.5.

In order to give rights to the users authenticated with the certificates, their CN

have to be supplied in the file. The default file provided with the distribution contains

the entries for the TestUser that give him the rights of Deployer.

44

 See point 3 of this Appendix
45

 See point 4 of this Appendix

- 130 -

The example entry for the TestUser is:

<member type="user" id="CN=TestUser,O=GRID,C=PL"/>

in the Deployers group

<user uid="CN=TestUser,O=GRID,C=PL" password=""/>

at the end of the configuration file

It is important that the order of the CN elements used by the Validator of GSI

Authenticator is reversed comparing to the one presented by the common certificate

tools.

C. 5. Permissions in Policy.xml configuration file

Because of the security restraints, several permissions have to be set for using

the CoG JGlobus distribution and GSI Authenticator. The permissions are placed in

Policy.xml file placed in {h2o-dist}/config/security directory. A few entries

concern the location of configuration and certificate files that are used by the

authenticator. While using unusual configuration, they have to be adjusted properly.

The permissions entry and the target are:

<permission type="java.io.FilePermission" target="…" actions="read"/>

crl${/}* The location of downloaded crl files

${h2o.home}${/}lib${/}cog${/}cryptix32.jar
The location of the cryptix provider in

CoG lib directory

${user.home}${/}.globus
The location of the user‘s .globus

directory

${user.home}${/}.globus${/}*

This entry specifies all the files in user‘s

.globus directory, e.g. cog.properties

file or trusted ca certificates

The last entry is most important. GSI Authenticator requires permissions to

access all the cacert files that are specified in the cog.properties file. If the files are not

placed in user‘s .globus directory, additional permissions have to be added in the Policy

file.

Some other permissions that were added are:

 The permissions for using security providers used by CoG:

<permission type="java.security.SecurityPermission" target="…"

actions="accept"/>

 - 131 -

Where targets are:

putProviderProperty.ClaymoreProvider

insertProvider.ClaymoreProvider

removeProvider.BC

putProviderProperty.BC

insertProvider.BC

putProviderProperty.Cryptix

Other permissions:

<permission type="java.lang.RuntimePermission"

 target="accessClassInPackage.sun.misc"/>

<permission type="edu.emory.mathcs.rmix.RmixRuntimePermission"

 target="accessClientSocketFactory"/>

<permission type="java.io.FilePermission" target="/dev/urandom"

 actions="read"/>

C. 6. Revocation configuration

The URLs of the Certificate Revocation Lists provided by CAs are to be

provided in the KernelConfig.xml file. The entries should be added in the <Security>

section:

<CRLLocations>

 <CRLLocationEntry location="<crl_url>"/>

 </CRLLocations>

C. 7. Server authentication configuration

As it was said, by default H2O kernel generates a self-signed certificate to

identify itself to clients. This behavior can be overridden by specifying custom keystore

with X509 credentials to use in the KernelConfig.xml file:

- in the <KeyStores> section a new KeyStore is to be added, e.g.:

<KeyStore id="server" location="security/server.jks"

 passwordSource="here:server"/>

- The keystore id is used to identify the keystore in the Identity entry in the

<Security> section:

<Identity keyStore="server" alias="server"

passwordSource="here:server"/>

Obviously valid keystore location and certificate alias have to be provided, as

well as the password – in form of a direct passphrase entry (here:<passphrase>) or a

path to a file that contains it.

- 132 -

- After configuring the kernel, it can be authenticated by using the H2O

TRUST_CERTIFIED trust manager for client context:

clientCxt = H2OClient.newInstance(wallet, H2O.TRUST_CERTIFIED);

For the purpose of testing, example credentials were created. However in order

for the certificate to be valid, the CN of the certificate must be consistent with the

hostname of the server – therefore providing them in the distribution is not reasonable.

For creating such credentials, the Portecle
46

 application might be useful.

C. 8. H2O build files configuration

The required libraries for creating the GSI Authenticator are taken from the cog-

jglobus package
47

. The following files are used:

cog-jglobus.jar

cog-jobmanager.jar

cog-url.jar

commons-logging-1.1.jar

cryptix.jar

cryptix32.jar

cryptix-asn1.jar

jce-jdk13-131.jar

jgss.jar

junit.jar

log4j-1.2.13.jar

puretls.jar

The package contains the following providers:

- Cryptix

- BouncyCastleProvider

- ClaymoreProvider

Since the files are used by different H2O subprojects, the following changes in

H2O configuration were performed:

- util subproject:

o cog-globus.jar added in the lib/cog directory and proper entry added into

classpath in build-jbexport.xml file

o copying of lib/cog directory into h2o directory added in build.xml

- h2o subproject:

o copying of lib/cog directory into h2o-dist directory added in build.xml

- h2o-client subproject:

o cog-jglobus.jar added into classpath in build-jbexport.xml file

- h2o-server subproject:

46

 http://portecle.sourceforge.net/
47

 http://dev.globus.org/wiki/CoG_jglobus

 - 133 -

o cog-jglobus.jar added into classpath h2o-kernel and h2o-kernel.bat

execution scripts

o setting permissions in Policy file
48

- h2o-example-tutorial subproject:

o cog-jglobus.jar added into classpath in build/build.xml file and in the

execution scripts of the GSI example (step11 and step11.bat)

- h2o-test subproject:

o cog-jglobus.jar added into classpath in build-jbexport.xml file and in the

build/build.xml file

48

 Described in point 5 of this Appendix

- 134 -

 - 135 -

Appendix D : Publication

	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	Introduction
	Target environment
	Component-based approach
	CCA as a standard for component-based approach
	H2O as the underlying platform for MOCCA
	MOCCA as an example of CCA-compliant Framework
	Summary

	Motivation for security
	Security concepts in Grid systems
	Security concepts on the example of H2O
	Summary

	The MSc Thesis goals
	Summary

	Background
	Key concepts
	Transport Layer Security
	Public Key Cryptography
	Public Key Infrastructure

	Architecture provided by H2O
	Communication mechanisms
	Connection sessions and transport layer parameters
	Tunneled authentication
	Client authentication
	Server authentication
	Authorization

	Missing features
	Summary

	Related work
	GSI
	Proxy certificate
	Single sign-on
	Delegation over network
	Proxy Certificate Format

	MyProxy
	Overview
	Usage Scenarios
	I. Prerequisites
	II. Permanent credential delegation
	III. Short-time credential generation

	My Proxy as a CA

	Needham-Schroeder protocol
	Summary

	Concept and Design
	Detailed requirements
	The name of the authenticator
	Use Cases
	Concept of GSI Authenticator
	Data Flow Diagram of H2O credentials
	/
	Authentication sequence diagram and usage scenario
	Summary

	Implementation
	Implementation scope
	Tools used
	GSI Authenticator classes
	Other implemented classes
	Revocation mechanism
	CoG usage code examples
	Adding new authenticator to chain
	Adding GSI Authenticator handling in MOCCA
	Encountered problems with initial implementation without using CoG JGlobus package
	Implementation summary

	Usage and validation of GSI Authenticator
	Example usage in H2O
	Example usage in MOCCA
	PKI configuration
	Test suites
	Threat analysis
	Analyzed threats
	Analyzed attacks on the system
	GSI Authenticator threat analysis
	Conclusions

	Performance tests
	Authenticators comparison
	Server authentication
	Risk analysis
	GSI Authenticator analysis

	Summary

	Conclusions and future work
	Achieved goals
	Future work

	References
	Appendix A : Standards and formats related to cryptography
	What you should know about PEM, DER, PKCS, …
	Proxy credential file format
	Proxy certificate extensions
	Proxy certificate types :
	Certificate chain validation
	Proxy chain validation

	Appendix B: Encountered problems with initial implementation without CoG JGlobus package – code snippets
	Appendix C : Configuration
	Building the distribution
	CoG package configuration
	H2O truststore configuration
	Users.xml configuration
	Permissions in Policy.xml configuration file
	Revocation configuration
	Server authentication configuration
	H2O build files configuration

	Appendix D : Publication

