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Abstract

e Virolab project provides an environment to develop and execute grid applications.
Applications are wrien in Ruby programming language and grid infrastructure is acces-
sible by grid object instances. Existed optimization model does not realize optimization
based on application structure and in detail, dependencies between grid object methods.

is thesis discusses opportunities of optimization based on workflow scheduling,
goes through the process of building workflow for Virolab applications and gives a view
for scheduling techniques.

In order to build a workflow scheduling system, one should encounte issues of ana-
lyzing Ruby sources, resolving variables and methods dependencies, building workflow
representation and providing workflow scheduling algorithms which can deal with pro-
posed representation.

ere were developed solutions to these problems and they were proved by imple-
menting complex grid applications as CyberShake, Epigenomics and Montage. Evalua-
tion is enriched by representing workflow control flow paerns.

is thesis is organized as follows:
Chapter 1 gives an introduction to the problem, describes existing Virolab environ-

ment and defines the goals for the thesis. Chapter 2 describes how the workflow schedul-
ing problem in grid applications is handled in other works, what issues can be encoun-
tered and how to design an application to enable cooperation with existing tools. In
chapter 3 the whole process of GridSpace application source analysis is presented with
explanation howparticular issueswere solved. Chapter 4 focuses on the technical aspects
of the developed application, introduces its architecture, describes usage of external tools
and answers the question how to invoke desired actions. Chapter 5 is an aempt to prove
the concept by creating workflows for non-trivial Ruby scripts, using typical workflow
constructs and by recreating existing well-known workflow application as hypotheti-
cal GridSpace applications. Chapter 6 points connections between developed solutions
and existing workflow scheduling systems. e last chapter 7 summarizes the work by
answering questions about which aspects of the problem gives expected results, which
brings problems, which trends promise good outcomes and how to modify starting as-
sumptions to reach beer results.

Keywords: Ruby, Grid Computing, Optimization, ViroLab,Workflow scheduling, Anal-
ysis of script applications



Anowledgements

I wish to express appreciation to my supervisor - Marian Bubak for priceless comments
and motivation and to my irreplaceable adviser - Maciej Malawski for his suggestions
and support.

is work is related with the Mapper project which receives funding from the EC’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° RI-261507.



Contents

1 Motivation and Objectives 10
1.1 Virolab environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Grid environment abstraction . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Virolab experiments . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3 Virolab Laboratory runtime . . . . . . . . . . . . . . . . . . . . . 12

1.2 Workflow scheduling problem . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Goals of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 esis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Workflow seduling and representing 17
2.1 Workflow scheduling taxonomies . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Workflow model . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Scheduling criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Scheduling process . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Benchmark workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 CyberShake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Epigenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Petri nets workflow graph representation . . . . . . . . . . . . . . . . . . 28
2.4 Workflow paerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Sequence paern . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Parallel split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Exclusive choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 Simple merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



CONTENTS 2

2.5 Workflow Description Languages . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 AGWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 YAWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Scheduling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.1 Taxonomy of scheduling algorithms . . . . . . . . . . . . . . . . 34
2.6.2 Dynamism of the grid . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Concept of script application analysis 37
3.1 Workflow elements in experiments . . . . . . . . . . . . . . . . . . . . . 37
3.2 Analyzing steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Source code analysis . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Locate grid objects and operations . . . . . . . . . . . . . . . . . 41
3.2.3 Resolve grid operations dependencies . . . . . . . . . . . . . . . . 44
3.2.4 Reassignment issue . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Finding dependencies from blocks - analyzing control flow . . . . 50

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Tool for application analysis 54
4.1 External tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Architecture and class diagram of a developed tool . . . . . . . . . . . . . 54
4.3 Usage description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Workflow description language based on YAML . . . . . . . . . . . . . . 56
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Transformation of scripts to workflows 58
5.1 Building workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Supporting workflow paerns . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Parallel split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 Exclusive choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Reassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.5 Parallel for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Benchmark workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.2 CyberShake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



CONTENTS 3

5.4.3 Epigenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 ViroLab workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Script fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Seduling concept of transformed script 95
6.1 Dependent task scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Workflow conversions . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.2 HEFT example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.3 Clustering heuristic example . . . . . . . . . . . . . . . . . . . . . 98

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Summary and future work 100
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 Improving application source to workflow conversions . . . . . . 101
7.2.2 GSengine and GrAppO integration . . . . . . . . . . . . . . . . . 104
7.2.3 Implement complex scheduling routines . . . . . . . . . . . . . . 104
7.2.4 Implicit parallelism - transparent get_result operation . . . . . . . 104
7.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Acronyms

AGWL Abstract Grid Workflow Language. 30, 31, 36

CPN Coloured Petri-Net. 27–30

DAG Directed Acyclic Graph. 18, 33–35, 94, 95

DS Dominant Sequence. 34, 97

DSC Dominant Sequence Clustering. 34, 97

GO Grid Object. 9–11, 13, 15

GS Grid Scheduler. 32

GSEngine Grid Space Engine. 9–11, 100, 103

HEFT Heterogoneous Earliest-Finish-Time. 33, 34, 95, 96

PSA Peak Spectral Acceleration. 24, 25

SGT Strain Green Tensor. 24, 25

YAWL Yet Another Workflow Language. 31, 36

4



List of Figures

1.2 Virolab general architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1 Real Virolab experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Montage workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 CyberShake workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Epigenomics workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Two kinds of Petri nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Sequence workflow paern. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Parallel split workflow paern. . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Synchronization workflow paern. . . . . . . . . . . . . . . . . . . . . . 30
2.8 Exclusive choice workflow paern. . . . . . . . . . . . . . . . . . . . . . 30
2.9 Simple merge workflow paern. . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Script with synchronous grid operation. . . . . . . . . . . . . . . . . . . . 37
3.2 Script with asynchronous grid operation. . . . . . . . . . . . . . . . . . . 38
3.3 Steps of analyzing process . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Simple example of the Virolab script. . . . . . . . . . . . . . . . . . . . . 40
3.5 S-expression produced from sample script . . . . . . . . . . . . . . . . . . 40
3.6 S-expressions - s() changed to arrays to simplify. . . . . . . . . . . . . . . 40
3.7 Internal representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Grid object creation paern in internal representation. . . . . . . . . . . 42
3.9 Internal representation with grid objects scope. . . . . . . . . . . . . . . . 42
3.10 Internal representation with grid objects scope. . . . . . . . . . . . . . . . 43
3.12 Internal representation with transitive dependencies. . . . . . . . . . . . 45
3.11 Internal representation with direct dependencies. . . . . . . . . . . . . . 45
3.13 Internal representation with located operation handlers. . . . . . . . . . . 46

5



LIST OF FIGURES 6

3.14 Reassignment issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.15 Reassignment issue with grid operations . . . . . . . . . . . . . . . . . . 48
3.16 Internal representation with resolved reassignment issue . . . . . . . . . 49
3.17 Example of looped dependencies . . . . . . . . . . . . . . . . . . . . . . . 51
3.18 If statement and its S-expression . . . . . . . . . . . . . . . . . . . . . . . 51
3.19 Example of dependencies from if statement block. . . . . . . . . . . . . . 52
3.20 Internal representation of if statement. . . . . . . . . . . . . . . . . . . . 52
3.21 Internal representation of loop statment. . . . . . . . . . . . . . . . . . . 53

4.1 Class diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Sequence paern in yaml representation. . . . . . . . . . . . . . . . . . . 57

5.1 Virolab implementation of sequence workflow paern. . . . . . . . . . . 59
5.2 Sequence paern intermediate graphs. . . . . . . . . . . . . . . . . . . . 60
5.3 Workflow representation of sequence paern. . . . . . . . . . . . . . . . 61
5.4 Virolab implementation of parallel split paern. . . . . . . . . . . . . . . 61
5.5 Parallel split paern intermediate graphs. . . . . . . . . . . . . . . . . . . 62
5.6 Workflow representation of parallel split paern. . . . . . . . . . . . . . 62
5.7 Virolab implementation of synchronization workflow paern. . . . . . . 63
5.8 Synchronization paern intermediate graphs. . . . . . . . . . . . . . . . 63
5.9 Workflow representation of synchronization paern. . . . . . . . . . . . 64
5.10 Virolab implementation of exclusive choice workflow paern. . . . . . . 64
5.11 Exclusive choice paern intermediate graphs. . . . . . . . . . . . . . . . 65
5.12 Workflow representation of exclusive choice paern. . . . . . . . . . . . 66
5.13 Virolab application with reassignment issue. . . . . . . . . . . . . . . . . 67
5.14 Workflow built for application with reassignment issue. . . . . . . . . . . 67
5.15 Virolab application with loop statement. . . . . . . . . . . . . . . . . . . . 68
5.16 Graphs created for Virolab application with loop statement. . . . . . . . 69
5.17 Expanded workflow for application with loop statement. . . . . . . . . . 70
5.18 Virolab application with if statement. . . . . . . . . . . . . . . . . . . . . 71
5.19 Operation dependencies for Virolab application with if statement. . . . . 72
5.20 Workflow built for Virolab application with if statement. . . . . . . . . . 73
5.21 Complex example of looped dependencies. . . . . . . . . . . . . . . . . . 74
5.22 Workflow of the experiment with looped dependencies. . . . . . . . . . . 75
5.23 Workflow of the experiment with looped dependencies. Expanded iter-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.24 Parallel loop example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.25 Minimal implementation of the parallel for feature. . . . . . . . . . . . . 77
5.26 e usage of parallel for statement. . . . . . . . . . . . . . . . . . . . . . 78
5.27 Workflow of a application with a parallel for statement. . . . . . . . . . 78
5.28 Montage workflow implemented as Virolab application. . . . . . . . . . . 80



LIST OF FIGURES 7

5.29 Montage workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.30 CyberShake workflow implemented as Virolab application. . . . . . . . . 82
5.31 CyberShake workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.32 Epigenomics workflow implemented as ViroLab application. . . . . . . . 85
5.33 Epigenomics workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.34 Dependencies between variables in the script 1.1. . . . . . . . . . . . . . . 87
5.35 Dependencies between operations. . . . . . . . . . . . . . . . . . . . . . . 89
5.36 Workflow created for Virolab application. . . . . . . . . . . . . . . . . . . 90
5.37 Real Virolab experiment modified to improve workflow generation. . . . 91
5.38 Operations graph for fixed script. . . . . . . . . . . . . . . . . . . . . . . 92
5.39 Workflow for fixed script . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Workflow for HEFT algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Clustering heuristic example. . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Comparison of transparent and explicit get_result operation. . . . . . . . 105



List of Tables

6.1 Askalon constructs conversions . . . . . . . . . . . . . . . . . . . . . . . 96

8



CHAPTER 1

Motivation and Objectives

is chapter describes application environment in which optimization should be per-
formed -eVirolab Virtual Laboratory. It also introduces existing optimization solution
in terms of its limitations and also proposes an approach which exceed these limitations.

1.1 Virolab environment
e target environment - ViroLab Virtual Laboratory[2, 3] runtime (also called Grid
Space Engine (GSEngine)[4]) is a part of ViroLab project. Official site of ViroLab project
[5] describes virtual laboratory as a “set of integrated components that, used together,
form a distributed and collaborative space for science. Multiple, geographically-dispersed
laboratories and institutes use the virtual laboratory to plan, and perform experiments
as well as share their results.” Term experiment, used in this context, means a process of
combining data and computations in order to obtain new knowledge.

e main goal of the ViroLab is to provide a virtual labolatory for infactous diseases
but technical solutions and concepts are universal enough to cover many domains of
science.

1.1.1 Grid environment abstraction

To provide grid environment capabilities and to build interfaces between different tech-
nologies, in Virolab, there is a three level Grid Object (GO) abstraction[6]. e top level
includes GO classes, these are abstract entities which define operations. One GO class

9



CHAPTER 1. MOTIVATION AND OBJECTIVES 10

may havemany implementations which are build on various technologies and run on dif-
ferent environments but by dint of GO class, their operations are consistent. e third
level of abstraction is GO instance which is in the same relation with GO implementation
as GO implementation is with GO class - one GO implementation can have many GO
many GO instances, running on different resources or levels of performance.

1.1.2 Virolab experiments

GSEngine provides capabilities offered by Virtual Labolatory through APIs and libraries
which are accessible from Ruby[7] scripts - also called experiments. Experiment devel-
oper is allowed to instantiate GOs and to perform operations on them.

e top level abstraction of grid environment is realized by a routine which takes
GO class name as an argument. e result represents GO instance which provides all
operations previously defined in GO class.

e most important fact for this master thesis is that GO operations can be invoked
both synchronously and asynchronously. A synchronous operation blocks script exe-
cution until remote procedure is finished. An asynchronous operations does not block
script execution but returns an operation handler which represents state of remote op-
eration. en, invoker keeps executing process during which further operations can be
called (including other asynchronous operations) till the result of asynchronous opera-
tion is not required. e result of asynchronous operation can be obtained by invoking
get_result method on operation handler.

Instancing a GO looks as follows. GObj is a module which provides method create, it
creates GO identified by string 'cyfronet.gridspace.gem.weka.WekaGem'. It waits until grid
operation ends:

retriever = GObj.create('cyfronet.gridspace.gem.weka.WekaGem ')

A synchronous grid operation is an invocation of a method on GO whose name does
not start with async_:

retriever.loadDataFromDatabase(database , query , user , password)

An asynchronous grid operation is an invocation of a method on GO whose name
startswith async_. Operation returns grid operation handler (in this case classificationPercentage)
and does not wait for grid operation result:

classificationPercentage = retriever.async_compare(testA ,

prediction.get_result , attributeName)

Result request on grid operation handler is shown on a following listing, get_result
method returns grid operation result which is represented by operation handler. If a grid
operation is not finished, the script waits until the result is obtained.

puts 'Prediction␣quality:' + classificationPercentage.get_result.to_s
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An example of a real Virolab experiment is shown in figure 1.1.

1.1.3 Virolab Laboratory runtime

Previously introduced GSEngine[4] consists of main two parts:

Grid Operation Invoker. is part includes Ruby language interpreter - particularly
JRuby implementation. It is also responsible for optimization and invocation of
GO. It corresponds with Computation Access library in figure 1.2 which is respon-
sible for remote processing.

Data Access Client. Ruby library which allows to access data sources available in the
Virtual Laboratory. It is shown in figure 1.2 as a Data Access Client library which
is used to relay data from Data Access Service.

Figure 1.2: Virolab general architecture.

Optimization

Virolab optimizer is called GrAppO[8, 9]. It is responsible for selecting optimal Grid Ob-
ject Instances to invoke operation from the particular Grid Object Class implementations.
Optimization in Virolab environment bases on the information gathered by a registry
called Grid Resource Registry, by the Monitoring Infrastructure and by the Provenance
Tracking System. Figure 1.2 presents relations between these components.
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ree optimization modes were defined in GrAppO:

• short-sighted optimization stands for selecting optimal solution for one Grid Object
Class,

• medium-sighted optimization designates optimal Grid Object Instances for a set of
Grid Object Classes,

• far-sighted optimization stands for optimization based on application analysis, it
considers dependencies between grid operations to reorder and prioritize invoca-
tions.

e far-sighted mode is not yet implemented and designed. Some possible directions
of research were mentioned in [8] - finding a method to gain application structure or
graph from its sources and considering heuristic algorithms to perform optimization.
is approach is known as a workflow scheduling problem.

1.2 Workflow seduling problem
Workflows can be considered as directed graph built from set of nodes and set of edges.
Depending on workflow model, nodes can stand for tasks and data transfers, edges - for
control flow (workflow structures are described in section 2.1.1). Scheduling process is
a procedure which assigns each task to its resource where the task will be executed[10]
based on proper criteria.

Important aspects of the scheduling problem are:

• workflow representation which implicates much restrictions to other aspects,

• service monitoring which should provide data about resource states and as a re-
sult enables proper resource discovering and filtering in parallel heterogeneous
systems,

• providing algorithms for resource selecting which should base on certain objec-
tives and be able to work with workflow representation.

1.3 Goals of the thesis
e existing optimization system in GrAppO does not provide any optimization based
on experiment structure and control flow - far-sighted mode(1.1.3).

Workflow scheduling with a goal to minimize workflow execution can be consid-
ered as a solution to this issue. However, Virolab applications are wrien in Ruby code
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and they are not represented as a workflows. Lack of this key information would elim-
inate this approach but it can be supplemented by building a workflow directly from
Ruby scripts and as a result reducing optimization problem to the well-known workflow
scheduling problem.

e main goal of this esis is to improve experiment execution by analyzing exper-
iment source, relations between GOs, GO operations and their results and finally, build
workflows from Virolab experiments. To achieve these goals, we define the following
sub-goals:

1. Find dependencies between GO operations invoked from Ruby scripts. e goal
is to analyze Ruby source code, locate grid object classes, their instances and op-
erations. Check operation arguments and by resolving them - find dependencies
between grid operations.

2. Build workflow basing on application source code. Gather information collected
during realization of previous point and locate control flow structures in Ruby
source code.

3. Validate approach by buildingworkflows for control-flow paerns andwell known
applications (Montage, CyberShake, Epigenomics). e purpose is to prepare hy-
pothetical Virolab implementation of these well known applications and transform
them to workflows.

4. Provide data needed to enable optimization based on Ruby source code structure.
Find what data are required to enable far-sighted optimization of Virolab applica-
tions.

5. Provide models for scheduling algorithms. Research what are requirements of
scheduling algorithms and prepare scheduling-enable data basing on workflow
representation.

1.4 esis overview
Chapter 1 gives an introduction to the problem, describes existing Virolab environment
and defines the goals for the thesis. Chapter 2 describes how the workflow scheduling
problem in grid applications is handled in other works, what issues can be encountered
and how to design an application to enable cooperation with existing tools. In chapter
3 the whole process of GridSpace application source analysis is presented with explana-
tion how particular issues were solved. Chapter 4 focuses on the technical aspects of the
developed application, introduces its architecture, describes usage of external tools and
answers the question how to invoke desired actions. Chapter 5 is an aempt to prove
the concept by creating workflows for non-trivial Ruby scripts, using typical workflow
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constructs and by recreating existing well-known workflow application as hypotheti-
cal GridSpace applications. Chapter 6 points connections between developed solutions
and existing workflow scheduling systems. e last chapter 7 summarizes the work by
answering questions about which aspects of the problem gives expected results, which
brings problems, which trends promise good outcomes and how to modify starting as-
sumptions to reach beer results.
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1 require 'cyfronet/gridspace/goi/core/g_obj '

2
3 puts 'Start␣of␣weka␣experiment␣!!␣(Asynchronous␣version)!!'

4
5 # Create Web Service Grid Object Instance

6 retriever = GObj.create('cyfronet.gridspace.gem.weka.WekaGem ')

7
8 # Build the query

9 query = 'select␣outlook ,␣temperature ,␣humidity ,␣windy ,␣play␣from␣

weather␣limit␣100;'

10 database = "jdbc:mysql ://127.0.0.1/ test"

11 user = 'testuser '

12 password = ''

13
14 a = retriever.async_loadDataFromDatabase(database , query , user ,

password)

15
16 classifier =

GObj.create('cyfronet.gridspace.gem.weka.OneRuleClassifier ')

17
18 b = retriever.async_splitData(a.get_result , 20).get_result

19 trainA = b.trainingData

20 testA = b.testingData

21
22 # Set the name of attribute that will be predicted

23 attributeName = 'play'

24
25 trained = classifier.async_train(trainA , attributeName)

26 # wait until training is done

27 trained.get_result ()

28
29 prediction = classifier.async_classify(testA)

30
31 classificationPercentage = retriever.async_compare(testA ,

prediction.get_result , attributeName)

32 # show results

33 puts 'Prediction␣quality:' + classificationPercentage.get_result.to_s

34 puts 'End␣of␣weka␣experiment␣!!'

Figure 1.1: Real Virolab experiment. In line 6 first GO in initialized, then there are three
asynchronous operations invoked on this object in lines 14, 18 and 31. In lines 14 and 31,
there are created operation handlers a and classificationPercentage. eir result request
are located in lines 18 and 33. e second GO - classifier is created in line 16, operation
handlers trained and prediction are results of asynchronous operations in lines 25 and 29.
Corespondent result requests are located in lines 27 and 31.



CHAPTER 2

Workflow scheduling and representing

In previous chapter it was decided that Virolab applications are intending to be trans-
formed intoworkflows and then treated by scheduling algorithms. is chapter describes
taxonomies of workflows and workflow scheduling problem, shows workflow represen-
tations, typical constructs and introduces workflows generated for existing applications.

2.1 Workflow seduling taxonomies
Workflow scheduling problem can be considered in many aspects depending on the per-
spective chosen by us. According to [11] and [10] we can distinguish five main different
facets of the problem:

Workflow model. Workflow model classes can be defined basing on model representa-
tions and behavior. A detailed description of distinguished classes is presented in
section 2.1.1.

Seduling criteria. Classes of workflow scheduling criteria can be distinguished by op-
timization goals and methods which are used to measure the cost calculated for a
particular criterion. Section 2.1.2 includes its classification.

Seduling process. Scheduling process taxonomy can be based on the characteristics of
information that are processed by the scheduler and the way how this information
is processed. Section 2.1.3 contains the workflow scheduling classification based
on this purposes.

16
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Resource model. Resource model describes differences between resource classes. First
aspect which can be identified distinguishes between resources that have the same
parameters (homogeneous) and resources that have different characteristics (i.e.,
different performance or load). Second aspect of the resource model differences
between the class of resources that can execute one and multiple tasks at the same
time (multiprogrammed resources).

Task model. Two main classes can be distinguished basing on how tasks are mapped
to resources (tasks need fixed number of resources, required resources number
is determined before execution time and resource usage of particular task can be
changeable.)

2.1.1 Workflow model

Workflow model taxonomy based on scheduling perspective focuses on tasks and data
transfers which is a combination of four other well known workflowmodel perspectives:

Control-flow. Focuses on tasks and their execution order using workflow constructs like
sequence, synchronization, parallel split, exclusive choice and others.

Data. Focuses on data flow between tasks in the workflow.

Resource. Focuses on allocation, scheduling and other actions performed on resources
according to executing tasks.

Operational. Focuses on how tasks work in such aspects as implementation.

In [11] task and data transfers are called “schedulable units” since they are atomic
workflow components used in scheduling process.

Component model

In scheduling perspective there is a distinction between two workflow model classes:

Task oriented. In this approach, task are represented as graph nodes and edges between
them stand for data transfers or control preconditions.

Task and data transfer oriented. It is low-level approach, both tasks and data transfers
are represented as graph nodes.
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Structure

e structure of the workflow is hardly related with scheduling methods, their level of
generality and designed for different specific domains. We will distinguish the following
three workflow models[11]:

Directed Acyclic Graph (DAG). Workflow is represented by DAG.

Extended digraph. Allows to represent structures like loops or conditions by adding
them to DAG model.

Simplified DAG. Workflow structure is enriched by certain regulations and it is repre-
sented as well-defined subset of DAG model.

e most common workflow structure representation is DAG. e major disadvan-
tage is the lack of the representation of very common programming statements like loop,
parallel loop or if. e solution is to introduce extended digraph which extends DAG
with cycles (loops and parallel loops) and conditionals (if or switch). e opposite ap-
proach is a simplified dag since it contains simpler structure than DAG model like:

Sequence. Workflow is a single sequence (e.g., pipelined application).

Tree-like. Tree is a representation of workflow graph.

Parallel section. Computations in parallel section are distributed among. multiplework-
ers

Other. ere can specified other workflow structures like Fast Fourier Transformation
or parallel split(2.4.2).

Atomic structure dynamism

For optimization purposes (as a part of scheduling process) workflow nodes can be added
to, removed from the workflow or grouped together into new nodes. Opposite approach
is when nodes cannot be modified, removed, added aside from user interaction or normal
workflow execution like loop unrolling.

Aer[11], we distinguish two workflow classes:

Fixed. Workflow structure is static during the scheduling process (only additional de-
pendencies can be added or removed).

Tunable. Nodes can be modified, grouped, added or removed during scheduling process.
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Data processing

As in [11], we can create two class workflow model taxonomy based on data processing:

Single input workflow models. Workflows which are executed for single input data.

Pipelined workflow models. Workflows which are executed for many different data in-
puts that are processed by the workflow as a stream.

2.1.2 Seduling criteria

Taxonomy of scheduling criteria is based on properties that determine optimization goal
and way in which the total cost of a workflow is calculated.

Optimization model

When considering workflow scheduling as an optimization process, scheduling criteria
can be defined basing on two perspectives[11][12]:

Workflow-oriented. e optimization criterion is defined for the user who executes
workflow (e.g., execution time - makespan, economic cost). e goal is to opti-
mize performance of particular workflow.

Grid-oriented. e optimization criterion is defined for the grid environment (e.g., re-
source usage. economic profit). e goal is to prevent wasting resources when
they are waiting for jobs with empty queue or to maximize throughput - resource
ability to execute proper task number.

Workflow structure dependence

Aer [11] and [10], we can distinguish two classes of criteria based on whether the work-
flow structure is considered when calculating total cost:

Structure dependent. (e.g., execution time) Optimizing execution time is the goal of ma-
jority of existing workflow scheduling approaches.

Structure independent (e.g., economic cost) Economic cost may be due to expense of
used applications which in turn corresponds with en example of structure inde-
pendent criterion - reliability.

e purpose of these thesis is structure dependent aproach which consider task de-
pendencies to minimize workflow execution time.
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Optimization impact

Scheduling criteria can have two different kinds of impact in optimization process. First
one occurs when the goal of optimization is to find best cost for certain criterion (e.g., to
minimize total cost). Second one corresponds with restrictions imposed of optimization
process, it occurs when certain criterion has hard constant limit (e.g., budget limit or
deadline). We call them, in order:

Optimization objective. Best possible cost for the given criterion. An example of this
class is an optimization objective defined for execution time with a goal to mini-
mize its amount. e other examples are quality of results or security which are
supposed to be maximized.

Optimization constraint. Constant limit for the given criterion. If there is a strict re-
quirement of particular quantity like budget or time, it can be named optimization
constraint. It defines limit for a certain criterion.

e general approach of defining multi-criteria scheduling is to define one optimiza-
tion objective and establish constraints for all other criteria [10].

Calculating method

In [11] there are three classes of scheduling criteria in calculating method domain. e
representative method of the first class is used to calculate total execution time or total
economic cost - it is an addition. An example of the second class calculating method
is multiplication. It can be used to calculate data quality or probability of failure, it is
simply the multiplication of numbers from range [0, 1]. e last one can be explained
by the examples of bandwidth in network or pipelined execution where total cost of
criterion is the minimal cost of all components. We call them in order:

• additive,

• multiplicative,

• concave.

2.1.3 Seduling process

Scheduling process should be considered as one of a few steps in bigger process called
workflow processing. It is formed by combination of requirements of problem definition,
optimization principles and the environment of the woflow. Following aspects have
major influence on the workflow scheduling process.
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Criteria multiplicity

One of the most important aspects of scheduling process is a complexity of scheduling
criteria. From the perspective of criteria multiplicity, the simplest are scheduling pro-
cesses that involve only one criterion and the most complex are scheduling processes
that involve multiple criteria. erefore the scheduling processes can be divided into
two classes:

• single criterion,

• multiple criteria.

Workflow multiplicity

Scheduling process can also aempt to optimize the execution of multiple independent
workflows at a time. Aer [11] we distinguish two classes:

Single workflow. Execution of single process is optimized in single scheduling process.

Multiple workflows. Execution of multiple workflows is optimized in single scheduling
process.

Dynamism

e third aspect of scheduling process is different that two others since it is significantly
more related with a workflow execution. Aer [11], there can be considered three classes
of scheduling process dynamism depending on a point in timewhen the decision is made.
In order:

Just-in-time seduling. Decision is postponed as long as possible.

Full-ahead planning. Static approach, workflow is scheduled before execution.

Hybrid. Combination of the two previous approaches.

In addition, we know that the workflow structure can be modified during scheduling
process, this makes big picture of the constantly changing workflow structure during the
scheduling process which is repeated many times during workflow execution.

2.2 Benmark workflows
Workflow scheduling and execution implies a need of testing and benchmarking work-
flow scheduling systems. For that purpose, inspired by real world applications, thework-
flow generator was created. Arbitrarily large workflow models can be created providing
ability of benchmarking and comparing implementations efficiency [13].
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2.2.1 Montage

Montage (An Astronomical Image Mosaic Engine)[14] is an open source toolkit main-
tained by NASA/IPAC Infrared Science Archive which can merge sky images into mo-
saics. It was designed as a portable application which can be used by astronomers on
their desktop computers and also adopted to running on grid infrastructure.

ere are four main steps in the image assembling process:

• gather information from images about its geometry (they are kept in a Flexible
Image Transport System - FITS format, which con represent that kind of data) and
process it to calculate geometry of the result mosaic,

• rescale, rotate, change coordinates of input images to gain the same spatial scale,

• get background radiation values of each image to align flux scales and background
levels in whole mosaic,

• join images which corrected background.

ese steps are performed in portable, separated ANSI C modules.
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Figure 2.1: Montage workflow[1] generated by the workflow generator[13]. Size of the
problem is determined by a number of input images of a given region of the sky while
each image has its mProjectPP job and for each pair of overlapping images mDiffFit has
to be performed. Job mConcatFit fits differences between images and mBgModel makes good
global fit. At least mImgTbl aggregates metadata from all images and mAdd (which is the
most computationally intensive job in the workflow), mShrink and mJPEG jobs produce final
image by gathering all images to final mosaic, reducing size of output file by averaging
blocks of pixels and finally converting it to JPEG format.

is workflow performs following operations:
ere are some simplifications in the Montage workflow described in [13]. e fol-

lowing list is a aempt to bind nodes from figure 2.1 withmodules of montage application
described on its website - [1]:

• mProjectPP - reprojects a single image to the defined scale,

• mDiffFit - mDiffExec runs mOverlap module to determine which images overlaps and
then runs mDiff module which performs image difference between pair of overlap-
ping images,

• mConcatFit - mFitExec executes mFitplane module which fits plane to an image,

• mBgModel - module has the same name in montage application. It is a modeling/fit-
ting programwhich determines a set of corrections to apply to each image in order
to achieve a ”best” global fit,
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• mBackground - mBgExec runs mBackground module to perform corrections generated by
mFitPlane module,

• mImgTbl - module mImgTbl extracts geometry information from a set of files which
are used in following operations,

• mAdd - mAdd module joins all images to form output mosaic,

• mShrink - module mShrink reduces size of file by averaging blocks of pixels,

• mJPEG - is a one of montage application utilities which generates JPEG file.

2.2.2 CyberShake

Project CyberShake is maintained by Southern California Earthquake Center (SCEC).e
main goal of a project is to construct a physics-based models of earthquake processes and
to develop scientific framework basing on these models for seismic hazard analysis[15].
For each Earth rupture in an analyzing area, variations of its parameters are created.
Each variation represents a potential earthquake. To make it clear how big is the prob-
lem: given 7000 ruptures, CyberShake will generate 415000 rupture variations.[16].
CyberShake uses ruptures and rupture variations to create Strain Green Tensor (SGT)
around concrete site of interest. SGT describes seismic wave fields. Basing on SGT, Cy-
berShake generates seismogram which, in the next step, are processed to obtain Peak
Spectral Acceleration (PSA) values. In the last step PSA values are combined into hazard
curves which can be used to produce seismic hazard map for the whole analyzed area.
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Figure 2.2: CyberShake workflow[15, 16] generated by the workflow generator[13]. Size
of the problem is determined by a number of locations from which SGT data has to be
extracted - ExtractSGT. Job SeismogramSynthesis generates seismograms which represent
ground motions. en, gained seismograms are combined in job ZipSeis and used to
calculate PSA in job PeakValCalcOkaya. PSA values returned by the last mentioned job are
combined into hazard curve in the last operation - ZipPSA.

is workflow performs following operations:

• ExtractSGT - extracts SGT data corresponding to the location,

• SeismogramSynthesis - generates seismogram which represents ground motions,

• ZipSeis - combines seismograms of ground motions,

• PeakValCalcOkaya - calculates PSA,

• ZipPSA - combines PSA into a hazard curve.

e execution of each of steps: ExtractSGT, SeismogramSynthesis and PSA process-
ing takes just a couple of minutes[16], but SGT extracting must be performed for all
ruptures and two more times for each rapture variations. As it was mentioned before,
typical problem contains ~7000 raptures which makes 415000 rupture variations.

Regarding the workflow size, the distance from the starting node to the exit node is
relatively small, but the workflow can be very wide, depending on the input data. In
other words the critical path is short but there are a big number of parallel processes.
Each parallel process consists a sequence of only two tasks: SeismogramSynthesis and
PeakValCalcOkaya.
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2.2.3 Epigenomics

e USC epigenome Center[17] Epigenomics conducts research on the epigenetic state
on human genome. e Epigenomics workflow is based on the application which is
used for that research. It takes DNA sequences which are separated into several chunks.
For each chunk, independently from other, several conversions, mappings and filters are
applied. is workflow is an example of pipelined application.

Figure 2.3: Epigenomics workflow generated by the workflow generator [13]. Size of a
problem is determined by a size of input sequences. ey are split into several chunks
by a fastQSplit job. en, various operations are performed sequentially to each chunk
- filterContams, sol2sanger, fastq2bfq and map. Aer a pipeline, all chunks are merged into
one result.

is workflow performs following operations:

• fastQSplit -eDNA sequence data is split into several chunks that can be operated
on in parallel,

• filterContams - en noisy and contaminating sequences are filtered,

• map - remaining sequences are mapped into correct locations in a genome,

• mapMerge - generates global map,

• maqIndex - identifies density sequence for each position in the genome.
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2.3 Petri nets workflow graph representation
Petri nets is a tool which can provide graphical and formal description of concurrent
processes in distributed systems. ey were introduced in Carl Petri Ph.D. thesis[18].
Petri net is built from states and transitions which are connected with arrows - arcs.
Arrows are able to connect state with transition or transition with state, connections
between transitions or states are not allowed.

States (or places) stand for system states, transitions stand for actions. Arcs are bounded
with expressions which determined how the state is changed aer transition. Places may
contain zero on multiple tokens. During execution of Petri net, tokens are moving across
the net according to arrow directions.

is kind of Petri nets are also named low-level Petri nets do distinguish them from
extensions which are called high-level Petri nets. One of them is Coloured Petri-Net
(CPN). Tokens in CPN can carry data and can be distinguished between each other[19].

Following [19], differences between low-level and high-level Petri nets are similar
with differences between low-level and high-level programming languages - high level
languages have more advanced structuring facilities like types and, as a result, they pro-
vide more modeling capabilities.

e execution of CPN looks as follows: if there is are tokens in a transition input state
(there is a incoming arc which have matched expression), then, they are passed to each
of transition output states (these which are connected with a current transition with arcs
with matched expressions). e transition may fire only if there is a token in input state.

(a) Petri net. States (circle nodes) contain to-
kens (black dots). ere is one transition T be-
tween states S1 and S2.

(b) Colored petri net. Token are coloured to dis-
tinguish between them. ey can also carry a
data.

Figure 2.4: Two kinds of Petri nets low level 2.4a and CPN - 2.4b. Both contain states S1

and S2 and one transition T. CPN petri net has arcs with a expression which determines
passing tokens between nodes.

2.4 Workflow patterns
e motivation for creating workflow paerns byWorkflow Paerns Initiative was to de-
lineate fundamental requirements for workflow modeling[20][21]. e area of research
included various perspectives - control flow, resource, data, etc. Resulting paerns can
be used to examine these purposes of workflow modeling tools.
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From the wide spectrum of cases which were considered byWorkflow Paerns Initia-
tive, basic control-flow paerns were chosen for further considerations.

2.4.1 Sequence pattern

Sequence paern is a fundamental building block for workflow processes[20]. Activities
are executed in a sequence, the activity that follows a running activity is started as soon
as the preceding activity is completed. is paern is widely supported by all work-
flow management systems. e typical realization of this paern is done by associating
two activities with unconditional control flow arrow[22]. Figure 2.5 presents sequence
paern using the CPN formalism.

i1 A
c

p1
c

B
c

o1
c

Figure 2.5: Sequence workflow paern in CPN formalism. ere is a pipeline of three
states - i1, p1 and o1 separated with activities - A and B. ese construct ensures that
activities are performed in sequential order.

2.4.2 Parallel split

Parallel split is a point in workflow process where the particular branch of a control flow
splits into multiple branches which can be executed concurrently.[22] e other names
for parallel split are: fork and AND-split[20]. Implementation of the parallel split pat-
tern can be implicit and explicit. First aproach can be realized by multiple unconditioned
edges outgoing from particular activity or by an edge representing control flow which
splits into multiple branches. Specific construct dedicated to parallel split is required
when particular tool implements this parent explicitly. Figure 2.6 presents parallel split

paern using the CPN formalism - activities B end C are executed in parallel when activity
A is finished.

i1 A
c

p1c

p2

c

B
c

o1
c
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c
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c

Figure 2.6: Parallel split workflow paern in CPN formalism. Activity A has two outgoing
arcs with the same condition. Activities B and C are executed in parallel.
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2.4.3 Synronization

Synronization is a point in the workflow process where many threads of control are
joined into one[22]. Workflow realization of this paern can be explicit and implicit.
Tools that implement synronization paern explicitly contain particular construct, the
implicit way of implementing this paern is realized by many transitions (representing
control flows) coming to one activity[20]. Figure 2.7 shows implicit representation of
synronization paern in CPN formalism. is paern is also known as AND-join and
synronizer[20].

i1 A
c

p1
c

i2 B
c

p2
c

C

c

c
o1

c

Figure 2.7: Synchronization workflow paern in CPN formalism. Arcs which are outgo-
ing from states p1 and p2, point on the same activity which makes from it a synchroniza-
tion point of a control flow.

2.4.4 Exclusive oice

Exclusive oice is a point in the workflow process where, basing on the decision, one
from several outgoing branches is chosen[22]. Similarly to parallel split paern (2.4.2),
exclusive oice can be realized explicitly and implicitly. Implementation of explicit rep-
resentation is when the tool provides particular construct and implicit representation
is when condition of outgoing control-from edges have disjoint conditions. Alternative
names for this paern are as follows: case statement, switch, decision, exclusive OR-split,
XOR-split.[20]

i1 A
c

p1if cond then 1’c else empty

p2

if cond then empty else 1’c

B
c

o1
c
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c
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c

Figure 2.8: Exclusive choice workflow paern in CPN formalism. Arcs outgoing from
state A have excluded conditions - only one outgoing arc is chosen by control flow.

2.4.5 Simple merge

Simple merge is a point in the workflow process where two or more branches come to-
gether without synchronization.[22] Moreover, incoming branches are not executed in
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parallel and the result of one of them is passed to the subsequent branch. Some work-
flow tools have a separate construct for this paern, we call it explicit representation. In
other cases simple merge paern can be created using lower level constructs. Figure 2.9
shows implicit representation of simple merge paern in CPN formalism. Simple merge
is also named XOR-join, asynchronous join or just merge.[20]

i1 A
c

p1

c

i2 B
c

c
C
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c

Figure 2.9: Simple merge workflow paern in CPN formalism. State p1 is a point where
two branches of control flow - one from activity A, other from B, come together without
synchronization (incoming branches are not executed in parallel).

2.5 Workflow Description Languages

2.5.1 AGWL

Abstract Grid Workflow Language (AGWL)[23] is a XML-based workflow language. Us-
ing AGWL constructs, we can describe grid workflows on a high level of abstraction,
since AGWL workflow does not include implementation details.

Activities. Activities are defined as units of work. It can be a computation (let associate
it with a grid operation), sequence of activities, or a composed sub-activity.

Activity is represented by a black box with input/output ports and additional infor-
mation in constraints and properties. Constrains may define environment requirements.
Properties contain data which is used by workflow tools like scheduling applications.

AGWL supports hierarchical decomposition of activities - some part of the workflow
(sequence of activities or composed sub-activity) can be represented by a single activity.
In that case input/output ports of enclosed workflow are mapped to input/output ports
of composed activity.

Control and data flow. Control flow and data flow specify workflow composition.
Data flow specification is realized by connections between input and output ports of
activities, it can be enriched by some additional information in associated constrains,
e.g., protocol specification. Control flow is defined by links between activity ports and
by control-flow constructs: sequential flow - sequence, exclusive choice - if, switch, se-
quential loops - while, dountil, for.
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As we see, AGWL supports wide spectrum of commonly used constructs which are
specially useful in scientific grid workflows. ere is parallel and parallel for which
provide simple concurrency model. Activities defined in parallel in general case are
executed concurrently. Parallel loop does just a lile more - activities defined in that
construct receives index and proper value from the given array.

2.5.2 YAWL

e origin of Yet Another Workflow Language (YAWL)[24] was preceded by gathering
a wide collection of workflow paerns[20] presented in section 2.4. Collected paerns
have been implemented in existing workflow tools. en, these tools have been eval-
uated for abilities to capture control flows for complex workflow processes. e new
workflow language (YAWL) has been designed based on Petri nets enriched with addi-
tional constructions to provide beer support for workflow paerns. YAWL is XML-
based language.

Workflow in YAWL is a set of extended workflow nets. ey are formed in hierarchical
structure. Task (in [24], authors use term task instead if activity but in fact, task are
synonyms of AGWL’s activities) can be one of both: atomic task and composite taskwhich
refers to extended workflow net in the lower level of hierarchy.

Each extended workflow net contains tasks and conditions (they can be interpreted as
places). One unique input condition and one unique output condition are required for
extended workflow net.

Atomic tasks, as well as composite, can have multiple instances, number of them is
determined by upper and lower bounds. e task is completed when all task instances
have finished (specification predicts threshold for the number of instances that has to
finish before a whole task is done and parameter which indicates if it is possible to add
new instances during task execution).

YAWL elements

YAWL language consists various elements including condition elements: 1 condition -
which also can be interpreted as places, 2 input condition - each workflow has unique
output condition, 3 output condition - each workflow has unique output condition. ere
are task elements: 1 atomic task„ 2 composite task - refers to workflow at the lower level
of hierarchy.

Multiple instances:

• Multiple instances of an atomic task.

• Multiple instances of a composite task.

Spliing and joining:
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• AND-split task

• XOR-split task

• OR-split task

• AND-join task

• XOR-join task

• OR-join task

2.6 Seduling algorithms
One of the main goals of this thesis is to work out how GridSpace applications can be
scheduled using existing workflow scheduling approaches. While the scheduling prob-
lemwas already introduced and classified in section 2.1, requirements for concrete work-
flow scheduling approaches remaining unknown.

Grid Scheduler (GS) process can be generalized into stages[12]:

• resource discovering and filtering,

• resource selecting and seduling according to certain objectives,

• job submission.

e scheduling algorithms is particular to a second stage.
GS systems, in general, seem to have twomodules/services which support scheduling

process. ey are Grid information service and Cost estimation. First module provides
statuses of available resources - available CPU and memory, network bandwidth, load of
a site in particular period.

Cost estimation module based on the some additional information about applications
- like profiling, benchmarking or previous usage, estimates the cost of executing appli-
cation on the particular resource.

While it is shown as a single unit, there can be more than one GS deployed in the
system, each characterized by a different performance or scalability. Moreover they can
form various structures - centralized, hierarchical or decentralized. In contrast to a tra-
ditional distributed system, grid workflow scheduler is not able to manage resources.
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2.6.1 Taxonomy of seduling algorithms

Workflow scheduling algorithms can be analyzed in the context of the already introduced
taxonomy of Workflow scheduling (2.1), moreover they can be assigned to various cate-
gories in similar terms. In section 2.1.3, workflow scheduling process was divided basing
on point in time when scheduling decisions are performed.

Static approach is good when there is workflow model which can not be modified
during execution. It can not be applied when there are loops in the workflowwhich have
undefined numbers of iteration or conditions with expression evaluated in execution
time. Workflow scheduling process was categorized by its dependency on workflow
structure - 2.1.2, these categories can be enriched by subcategories as follows.

Structure independent

is category can be considered into two aspects: system point of view, whose goal is to
achieve high throughput and application where some heuristic algorithms can be applied
to estimate application execution.

An example of the heuristic which is based on the predicted execution time (it can be
named static method since it is applied before workflow execution) is: Minimum Execu-
tion Time - algorithm with performance estimation - assign task to resource which have
shortest execution time expectancy. e goal is to bind particular application with most
suitable resource.

Structure dependent

Structure dependent algorithms work with workflows represented as DAG where nodes
stand for tasks and edges determine the execution order.

Algorithms from this category can be divided into static, dynamic and hybrid (e.g.,
static enhanced by dynamic rescheduling).

Static algorithms include:

• list algorithms,

• cluster algorithms,

• duplication-based algorithms.

List heuristics. Tasks are grouped in priority lists, tasks from the top of the list - with
highest priority are processed before others. Differences between algorithms are in the
method of calculating priorities.

An example of this kind of heuristic is Heterogoneous Earliest-Finish-Time (HEFT)[25].
HEFT algorithm has two major phases:
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Task Prioritizing Phase. It orders the tasks on the list based on their distance from the
exit nodes plus it takes into the consideration their computational and communi-
cation cost.

Processor Selection Phase. en, for each task on the ordered list, HEFT algorithm sched-
ules task in the earliest idle time slot on available resource. Selected idle time-slot
should be long enough to hold computation process of newly scheduled task -
time-slot should be longer than estimated execution time.

Clustering heuristics. Group tasks which are expected to perform massive communi-
cation with each other and, to minimize communication costs, assigns them to the same
resource. is problem is NP-complete, thus various heuristics are used to solve this
issue.

Usually, clustering heuristics algorithm has two phases:

• split original graph into clusters,

• refine the clusters produced in first phase.

In theory, tasks are mapped to infinite number of clusters but in practice merging
step (in second phase) tasks are mapped to the amount of clusters equal to number of
resources.

Clustering heuristics has its own taxonomy. Algorithms can be linear or nonlinear
depending if independent tasks can be assigned to the same cluster (nonlinear) or not
(linear).

e example of this category is Dominant Sequence Clustering (DSC)[26]. It is based
on concept of Dominant Sequence (DS) which is a critical path of the scheduled DAG
(it is different from critical path of the clustered DAG). Application of this algorithm is
described in section 6.1.3.

Duplication based algorithms. Task are duplicated and executed on different resources
which may minimize resource idle time and a communication cost between resources.
Algorithms from this category differ according to a task selection strategies (which tasks
are duplicated, how many duplications is made and on which resources).

2.6.2 Dynamism of the grid

Described algorithms do not consider dynamism of the grid as they are based on the static
resource performance estimation[12]. Dynamism is a result of a fact that resources are
shared between jobs and execution of one of them may affect others. One of the solu-
tions is to create multiclusters with their own local schedulers. is kind of algorithms
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consider the optimization of DAG makespan on multiclusters which arrive as a linear
function of time. Schedulers would have hierarchical structure, each cluster is expected
to gather as many tasks as possible, during the execution, it reports finish time estima-
tions to a global scheduler.

2.7 Summary
is chapter introduced a state of a research into a workflow scheduling problem. e
taxonomies of workflow, workflow scheduling and workflow scheduling algorithms (sec-
tions 2.1, 2.6) points approaches how Virolab applications should be analyzed and trans-
formed to achieve the goal of a far-sighted optimization based on workflows scheduling.
Workflow paerns described in section 2.4 and benchmark workflows - 2.2 will be used
to evaluate worked out solutions.



CHAPTER 3

Concept of script application analysis

Works introduced in previous chapter gave answers how master thesis goals can be
reached. In GridSpace applications, workflows are not defined in a workflow oriented
language (like AGWL or YAWL) but in Ruby scripts. us, workflow has to be created
from Virolab application. e purpose of this chapter is a process of collecting data that
are required to transform ruby scripts into workflows of grid operations.

3.1 Workflow elements in experiments
To achieve the goal of creating workflows, some information from Ruby source code
have to be extracted. It is important to identify all workflow activities and detect how
data-flow and control-flow are realized.

Detecting activities. Activities are identified as grid object operations.

a = GObj.create("MyGObj")

b = a.do_sth

Figure 3.1: Script with synchronous grid operation do_sth performed on grid object a.

36
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a = GObj.create("MyGObj")

b = a.async_do_sth(c)

d = b.get_result

Figure 3.2: Script with asynchronous grid operation async_do_sth performed on grid ob-
ject b.

In case of the synchronous operations (figure 3.1) activity is in a one to one relation
with a grid object operation. But asynchronous operations(figure 3.2) are spit into two
statements - the operation handler request invoked on grid object and the result request
invoked on the operation handler.

e synchronous grid object operation is a special case of asynchronous operation
where operation handler is requested for a result just aer it was acquired.

Data and control flow elements are not so trivial to found in experiments. It can be
said that there is a data or control flow between grid operations if the result of the first
one may affect execution of second one.

e interaction between grid operation occurs when:

• Result of first one affects any of the arguments of second one (a data flow depen-
dency).

• Second grid operation is in control structure like loop or if statement which con-
ditions depends on result of the first grid operation (a control flow dependency).

3.2 Analyzing steps
It was established in previous section that to create workflow, grid operation and control
structures have to be located and the dependencies between grid operations have to be
resolved. ese three goals imply a long chain of operations.

Before locating grid operations, grid objects have to be founded. But to locate grid
objects, grid objects initializations have to be found and to achieve that goal, all assign-
ments have to be analyzed to check which of them are initializing grid objects.

Control structures and grid operations are even more complicated. All function calls
and all assignments have to be analyzed to find how variables are changing in the whole
script.

e input for the analysis is grid application represented as pure Ruby code. Figure
3.3 shows all steps of the analysis process and their dependencies.
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create workflow

locate
grid operations

resolve
grid operations
dependencies

locate
control flow
structures

locate
grid operations assigments

locate assigments

locate
grid objects

parse source code

locate
grid objects
assigments

assigments dependencies

direct dependencies
between assigments

resolve
indirect dependencies

Figure 3.3: During the development of analyzing process some routines were reproduced
in different aspects of the analysis. As it will be shown, data produced by one algorithm
are used to different purposes. e graph describes links between them. Arrows can be
read as “needs data from” (e.g., a routine which locates grid objects needs data from a
routine which locates grid objects assignments).

3.2.1 Source code analysis

Ruby parser[27] is a Ruby language parser wrien in pure ruby, it means it can be used
with any Ruby implementation such as JRuby. It converts ruby source code to symbolic
expressions (also called S-expression or sexp) using ruby arrays and base types.

Figure 3.4 contains a simple example.
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a = GObj.create

b = a.async_do_sth

c = b.get_result

Figure 3.4: Simple example of the Virolab script.

Ruby parser [27] transforms this source code into s-expressions as in figure 3.5.

s(:block ,

s(:lasgn , :a,

s(:call , s(:const , :GObj), :create , s(: arglist))),

s(:lasgn , :b,

s(:call , s(:lvar , :a), :async_do_sth , s(: arglist))),

s(:lasgn , :c,

s(:call , s(:lvar , :b), :get_result , s(: arglist))))

Figure 3.5: Listing presents S-expressions produced from from script 3.4.

s() which repeats in listing is a function which creates Sexp object, it can be repre-
sented using the array representation (figure 3.6).

[:block ,

[:lasgn , :a,

[:call , [:const , :GObj], :create , [: arglist ]]],

[:lasgn , :b,

[:call , [:lvar , :a], :async_do_sth , [: arglist ]]],

[:lasgn , :c,

[:call , [:lvar , :b], :get_result , [: arglist ]]]]

Figure 3.6: S-expressions - s() changed to arrays to simplify.

Figure 3.6 shows what really s-expressions are. e first element of an array is a sym-
bol of operation, the remaining elements are operations data. In the analyzed example,
there is one block operation which contains three left assignments. e first one saves the
result of a function call to variable a. Function is called by the constant GObj, its name
is create and it has an empty argument list. e second and third assignments are very
similar, except that the function is reached by a variable, not by the constant.

S-expressions analysis

Full analysis process would be very complex, particularly for Ruby since the full list of
operations holds 105 elements. 38most important operation types for the grid application
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were selected, like assignment, function call, arguments list, loop and others. Each of these
38 operations has implemented a routine which analyze s-expression.

To allow further analysis, s-expressions are converted into internal representation.
When performing the analyzing process, 38 most important operation types are pro-
cessed, all others are ignored. e data structure is prepared to keep additional data for
each operation and optimized for easy and efficient traversing.

At this point of analyzing process, each tree node contains type and name (figure 3.7).

node type: block

a type: lasgn b type: lasgn c type: lasgn

create type: call

GObj type: const node type: arglist

async_do_sth type: call

a type: lval node type: arglist

get_result type: call

b type: lval node type: arglist

Figure 3.7: Internal representation. It is transformed S-expression from figure 3.5.

3.2.2 Locate grid objects and operations

According to figure 3.3, in this step grid operations are going to be located in a Ruby
code.

To achieve this goal the analyzer has to identify which variables are grid objects.
With that knowledge, it will be possible to point grid operations as function calls on grid
objects and grid operation handlers as returning values.

Locate grid objects

From all the variables, grid objects are those which are created in following way:

g_obj = GObj.create("some_string")

us, grid objects are created in the assignments where on the right side is create

function call on GObj constant. Based on a figure 3.7, it is assumed that every structure
in internal representation which is similar to tree graph in figure 3.8 is a grid object
creation.
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a type: lasgn

create type: call

GObj type: const node type: arglist

Figure 3.8: Grid object creation paern - fragment of internal representation which
stands for operation: a = GObj.create. Grid objects can be located by searching internal
representation for that kind of constructs.

Now it is known which variables are grid objects, about their names and positions in
internal representation where they are created.

ere are enough data to determine grid objects scopes. Analyzing analogies between
source code (figure 3.4) and internal representation (figure 3.7) we can notice that:

• grid object variable is accessible in all nodes that belong to grid object assignment
tree (figure 3.8),

• grid object is accessible in a given node if it is accessible from its parent or from
the first node on the le which belongs to the same parent.

If the above definition was applied to the tree from figure 3.7, it would obtained result
from figure 3.9.

node
type block

grid objects:

a
type lasgn

grid objects: a
b

type lasgn

grid objects: a
c

type lasgn

grid objects: a

create
type call

grid objects: a

GObj
type const

grid objects: a
node

type arglist

grid objects: a

async_do_sth
type call

grid objects: a

a
type lval

grid objects: a
node

type arglist

grid objects: a

get_result
type call

grid objects: a

b
type lval

grid objects: a
node

type arglist

grid objects: a

Figure 3.9: Internal representation of script 3.4 with grid objects scope. If a particu-
lar node stands for method invocation and its name is included in grid objects list, this
method invocation is gird operation.

One more example with two grid objects:
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a = GObj.create

b = a.async_do_sth

c = b.get_result

d = GObj.create

e = d.async_do_sth

f = e.get_result

Its internal representation with grid object scopes is shown in figure 3.10.
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Figure 3.10: Internal representation of script 3.4 with grid objects scope. In each node, list
which occurs with label grid objects:, stand for grid object names which are accessible.
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Locate grid operations

In internal representation, the node is grid operation when:

• its name starts with async_,

• its type is call,

• its first son (counting from the le to right) has type lval,

• its first son name is the same as any grid object in the scope.

3.2.3 Resolve grid operations dependencies

Resolving dependencies between grid operations requires knowledge about all nodes de-
pendencies. Since grid operations are a subset of all operations, finding all dependencies
will fulfill requirements of this goal.

Resolve variables dependencies

Operation was spit into to two sub-processes.
In the first one, variables are examined if they have any direct dependencies - this

case occurs between two variables a and b when value of variable b is calculated using a
value of variable a.

Second step is to resolve direct dependencies to acquire knowledge about dependen-
cies between every pair of nodes in internal representation.

Detecting direct dependencies. To find direct dependencies following operations are
performed for each node in internal representation:

• if its type is lasgn, node is dependent on all nodes of type lval that are below ex-
amining node,

• if the first son of the examining node (counting from the le to right) has type call,
all direct dependencies from examining node are transited to its first son
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node

type block

grid objects: 

direct dependencies: 

transitive dependencies:

a

type lasgn

grid objects: a

direct dependencies: 

transitive dependencies:

b

type lasgn

grid objects: a

direct dependencies: a

transitive dependencies:

c

type lasgn

grid objects: a

direct dependencies: b

transitive dependencies: a

create

type call

grid objects: a

direct dependencies: 

transitive dependencies:

GObj

type const

grid objects: a

direct dependencies: 

transitive dependencies:

node

type arglist

grid objects: a

direct dependencies: 

transitive dependencies:

async_do_sth

type call

grid objects: a

direct dependencies: a

transitive dependencies:

a

type lval

grid objects: a

direct dependencies: 

transitive dependencies:

node

type arglist

grid objects: a

direct dependencies: 

transitive dependencies:

get_result

type call

grid objects: a

direct dependencies: b

transitive dependencies: a

b

type lval

grid objects: a

direct dependencies: 

transitive dependencies:

node

type arglist

grid objects: a

direct dependencies: 

transitive dependencies:

Figure 3.12: Internal representation of script 3.4 with transitive dependencies. In graph,
node c is dependent on node b and node b is dependent on node a, thus node c depends
on node a through node b. Transitive dependencies list stands for transitive dependencies.

node

type block

grid objects: 

direct dependencies:

a

type lasgn

grid objects: a

direct dependencies:

b

type lasgn

grid objects: a

direct dependencies: a

c

type lasgn

grid objects: a

direct dependencies: b

create

type call

grid objects: a

direct dependencies:

GObj

type const

grid objects: a

direct dependencies:

node

type arglist

grid objects: a

direct dependencies:

async_do_sth

type call

grid objects: a

direct dependencies: a

a

type lval

grid objects: a

direct dependencies:

node

type arglist

grid objects: a

direct dependencies:

get_result

type call

grid objects: a

direct dependencies: b

b

type lval

grid objects: a

direct dependencies:

node

type arglist

grid objects: a

direct dependencies:

Figure 3.11: Internal representation of script 3.4 with direct dependencies. If given node,
has in any of its branches present node of type lval, it is directly dependent on variable
of lval node name. Direct dependencies list stands for direct dependencies.

Preceding algorithm for script 3.4 produces internal representation shown in figure
3.11:

Detecting transitive dependencies. To detect transitive dependencies very simple re-
cursive operation is performed. If node a depends on node b and node b depends on node
c but a does not depend on c, add node c to a list of indirect dependencies of node a.

Internal representation aer applying this step is shown in figure 3.12.

Locate operation handlers

To associate grid operation and result request on its operation handler, information about
direct dependencies are used. Node b is a result request on handler for operation at node
a if:



CHAPTER 3. CONCEPT OF SCRIPT APPLICATION ANALYSIS 45

• distance from node b to root node is equal or greater than distance from node a to
root node,

• branch of node b is connected on the le side of connection of node a to its parent,

• node b depends (directly) from node a,

• node b depends on any grid object which it has in its scope,

• a type of node b is lasgn,

• first sons name of node b has name get_result or first sons son has this condition
met.

node

type block

grid objects: 

direct dependencies: 

transitive dependencies: 

dependent operation handlers: 

a

type lasgn

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers:

b

type lasgn

grid objects: a

direct dependencies: a

transitive dependencies: 

dependent operation handlers: c

c

type lasgn

grid objects: a

direct dependencies: b

transitive dependencies: a

dependent operation handlers: 

create

type call

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers: 

GObj

type const

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers: 

node

type arglist

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers: 

async_do_sth

type call

grid objects: a

direct dependencies: a

transitive dependencies: 

dependent operation handlers

a

type lval

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers:

node

type arglist

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers: 

get_result

type call

grid objects: a

direct dependencies: b

transitive dependencies: a

dependent operation handlers: 

b

type lval

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers:

node

type arglist

grid objects: a

direct dependencies: 

transitive dependencies: 

dependent operation handlers: 

Figure 3.13: Internal representation of script 3.4 with located operation handlers. If there
are two nodes, first stands for grid operation and second stands for result request on
operation handler and second node directly depends on first node, second node is result
request correspondent to operation of first node. is kind of relation happens between
node b and c.

Internal representationwith linked grid operationswith corresponded operation han-
dler requests is shown in figure 3.13.

3.2.4 Reassignment issue

e operation of resolving dependencies is based on variable names. us, it is important
to recognize these names properly and to be certain that variable name represents value
that is expected.

Ruby, as many other imperative languages, allows reassignments. e problem oc-
curs when new variable value is assigned to variable label which was already used and
still appears in the scope. Since it is very common practice, it might make impossible to
resolve dependencies correctly even in simple scripts and as a result, impossible to create
workflows.
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a = "foo"

a = 0

Figure 3.14: Reassignment issue

Listing 3.14 shows the reassignment issue. In this script, variable a is initialized with
a string value "foo" but then in succeeding line there is assignment where new reference
is created. Now, variable a points to 0 and the old value - "foo" is no longer accessible. Re-
garding to Virolab scripts, lets investigate what happens if any of these two assignments
is a grid operation.

If the second assignments is a grid operations. ere is nothing to add, except that
optimizer have to recognize variable b as a request handler:

b = 2

a = GObj.create

b = a.async_do_sth

If the first assignment is a grid operation. Request handler is covered by new reference
and it is no longer accessible, it means, there is no need to track further usage of variable
b. Grid operation result will never be acquired.

a = GObj.create

b = a.async_do_sth

b = 2

Solution

e solution to this problem is based on changing the variable names. When the assign-
ment to a variable name which already exists occurs, a suffix is added to this variable and
all its occurrences. us variable with new value will have different name than variable
with the old value. Following source code with reassignments:

a = "foo"

a = 0

b = a + 2

is translated to (in fact there is no any code translations since the whole procedure
takes place only on internal representation):

a = "foo"

a_1 = 0

b = a_1 + 2
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Figure 3.15 is a more complex example of reassignment issue with grid objects and
grid operations. Its internal representation with resolved reassignment issue is shown
in figure 3.16.

a = GObj.create

b = a.async_do_sth

c = b.get_result

b = a.async_do_sth(c)

c = b.get_result

Figure 3.15: Reassignment issue with grid operations
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Figure 3.16: Internal representation with resolved reassignment issue
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3.2.5 Finding dependencies from blos - analyzing control flow

e cases presented in the previous sections are just examples of simplest sequential
instructions. e Ruby Language (as well as many other imperative programming lan-
guages) gives us possibility to express complex programs in hierarchical structure by
introducing blocks. Garbling Ruby Language from blocks might be unacceptable for ma-
jority of users since they would not be able to use if and loop statements (particularly
in Ruby Language, where blocks are very important structures since they can be defined
and managed independently from other structures - many Ruby products bases on that
feature, e.g. Ruby on Rails web framework).

Description of the issue

e issue arises when in block statement there is a reassignment of already initialized
variable. us, this issue is similar to the reassignment issue 3.2.4 with a difference that
a block can be executed many times (if it is a loop statement) or it can be executed con-
ditionally (if statement case). It entails some consequences - dependencies might be
fulfilled only when some condition, in runtime, returns positive value or can be looped
by unspecified (in preexecution time) numbers of times.

ere are several Ruby constructions which has to be considered to analyze control
flow: if, iter, while and block and dependencies from each of them has to be considered
in a different way.

Solution of dependencies between blos issue

e solution has to include finding dependencies between operations in block statements
and operations executed before and aer in following conditions:

• block belongs to if statement - the condition on which operations in this block
depend has to be extracted from Ruby source code

• block belongs to some loop operation - it is extended case of previous one since
except that loop statements are invoked on some condition, some operations can
be calculated basing on previous iterations 3.17

a = 1

for i in 2..10

a = a * i

end

puts a

Figure 3.17: is code calculates factorial of 10 and it is an example of looped dependen-
cies, each iteration uses values produced be previous one.
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If and while loop conditions. Conditions are contained in S-expressions as it is shown
in figure 3.18 and they can be extracted.

if a == 2

b = 1

end

s(:if ,

s(:call ,

s(:call , nil , :a, s(: arglist)),

:==,

s(:arglist , s(:lit , 2))),

s(:lasgn , :b, s(:lit , 1)), nil)

Figure 3.18: If statement and its S-expression. Condition can be extracted by analyzing
lines from 2 to 5 of Sexp.

Eliminate reassignments. e procedure originally described in 3.2.4 has to be ex-
tended to gather information about blocks and variable scopes.

Internal representation is traversed as previously but name changes of sons of block,
if, while and iter block types are noticed. Name changes are performed only on nodes
which are lower or on the right of given reassignment so this additional information
about variables which were overwrien in blocks are necessary to track dependencies
between operations from block and operations which takes place aerwords.

Find dependencies in if, while, iter and loop statements. Breadth-first traversal is
applied to the internal representation. For each node:

• analyzer checks all direct and transitive dependencies if any of themwas overwrit-
ten in block (variable names which are overwrien in blocks was gathered using a
method described in 3.2.5), if so, node which overwrien dependency is added as
new dependency to current node,

• analyzer checks if current node is one of types: if, iter or while, if so, it is added to
the corresponding list, thus in next iterations it will be known if particular node is
nested in some statements and it will provide information to distinguish between
many if, iter and while nodes

Aer this step, procedure of detecting transitive dependencies 3.2.3 is invoked second
time to supplement whole dependency network.
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Results for if statements

e example of if statement which illustrates current issue is shown in figure 3.19. Inter-
nal representation produced from this script with resolved dependencies from if state-
ment body is shown in figure 3.20.

a = 1

b = 2

if a == 1

b = a + 1

end

c = b

Figure 3.19: Simple example of dependencies from if statement block. When if condition
is fulfilled, variable c is dependent on a and b, otherwise, c is dependent only from b.

node

type block

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: 

a

type lasgn

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: 

b

type lasgn

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: 

node

type if

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: 

c

type lasgn

direct dependencies: b, b_1

transitive dependencies: a

deps from block: b_1

if statements: 

1

type lit

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: 

2

type lit

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: 

==

type call

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: node

b_1

type lasgn

direct dependencies: a

transitive dependencies: 

deps from block: 

if statements: node

node

type main

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: node

a

type lval

direct dependencies: a

transitive dependencies: 

deps from block: 

if statements: node

node

type arglist

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: node

1

type lit

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: node

+

type call

direct dependencies: a

transitive dependencies: 

deps from block: 

if statements: node

a

type lval

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: node

node

type arglist

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: node

1

type lit

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: node

b

type lval

direct dependencies: 

transitive dependencies: 

deps from block: 

if statements: 

Figure 3.20: Processed internal representation of script from figure 3.19.

Results for loop statements

Figure 3.17 contains already discussed example of looped dependency. Internal repre-
sentation built on this example with all dependencies resolved, is presented in figure
3.21.
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node

type block

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: 

a

type lasgn

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: 

node

type for

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: 

puts

type call

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: 

1

type lit

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: 

2..10

type lit

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: node

i

type lasgn

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: node

a_1

type lasgn

gridobjects 

direct dependencies: a, i, a_1

transitive dependencies: 

deps from block: a_1

iters: node 

*

type call

gridobjects 

direct dependencies: a, i, a_1

transitive dependencies: 

deps from block: a_1

iters: node 

a

type lval

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: node

node

type arglist

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: node

i

type lval

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: node

node

type main

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: 

node

type arglist

gridobjects 

direct dependencies: 

transitive dependencies: 

deps from block: 

iters: 

a

type lval

gridobjects 

direct dependencies: a, a_1

transitive dependencies: i

deps from block: a_1

iters: 

Figure 3.21: Processed internal representation of script from figure 3.17.

3.3 Summary
It was shown in this chapter that it is possible to acquire all information needed to trans-
form Virolab scripts into workflows. e analyzing process was divided into small steps,
solving these simple issues brought results that enabled opportunities for resolving com-
plex problems, as it was shown in figure 3.3.



CHAPTER 4

Tool for application analysis

e implementation of analyzing process ended up creating a tool which allows to pro-
cess Ruby scripts and produce all discussed data and graphs.

4.1 External tools
Only two external tools used to implement workflow builder for ViroLab scripts are parse
tree[27] for source code analysis and GraphViz[28] for drawing graphs.

4.2 Aritecture and class diagram of a developed tool
Class diagram included in figure 4.1 shows dependencies between classes and their meth-
ods.

• DagEdge is a class which keeps information about edges of workflow, used in dag-tree

module.

• DagNode is a class which keeps information about nodes of workflow, used in dag-tree

module.

• Dag is a class which contains procedures that build all dot graphs from internal rep-
resentation - internal representation graph trees, variable dependencies, operation
dependencies and workflows.

53
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• DagTree is a class which handles internal representation of workflow. It is produced
directly from experiment tree.

• ExperimentNode is a class of experiment_tree node. It includes node type read from
s-expression and all information gathered during analyzing process.

• ExperimentProcessor is an extension of SexpProcessor class from parse tree[27] tool.
It contains methods, one per s-expression type, e.g. block, args, class, defn, etc - in
total 38. It produces internal representation from parsed Ruby code.

• ExperimentTree is a classwhich handles internal representation produced in experiment_processor.
Moreover, it contains main methods used in analyzing process.

DagEdge

from : DagNode

to : DagNode

deps: Array

type : Array

name()

condition()

variable()

method()

DagTree

edges : Array

nodes : Array

if_statements : Hash

loop_statements : Hash

add_edge()

add_node()

expand_loops()

to_yaml()

1

*

DagNode

name : String

type : String

if_statements : Array

loop_statements : Array

condition : ExperimentNode

1

*

Dag

direct_dependencies : Hash

transitive_dependencies : Hash

sons : Hash

name_unification : Hash

variables_dot_graph()

program_dot_graph()

operations_dot_graph()

workflow_dot_graph()

ExperimentTree

root : ExperimentNode

ep : ExperimentProcessor

find_direct_dependencies()

find_transitive_dependencies()

eliminate_hiding()

situate_grid_obj()

find_parallel_loops()

find_getresults()

find_dependencies_in_block_statements()

0..1

*

0..1

*

ExperimentNode

sons : Array

parent : ExperimentNode

name : String

node_type : String

grid_objects : Array

direct_depenencies : Array

transitive_dependencies : Array

parallel_loops : Array

dependent_getresults : Array

original_name : String

dependencies_from_block_statements : Array

if_statements_above : Array

loop_statements_above : Array

grid_obj?()

grid_operation?()

branch_depends_from_gobj?()

is_async_operation?()

is_result_request?()

get_arg_list()

0..1

*

ExperimentProcessor

tree : ExperimentNode

process_block()

process_lvar()

process_args()

process_class()

process_defn()

.

.

.

process_for()

process_hash()

process_block_arg()

process_yield()

0..1

0..*

0..1

0..1

1

0..1

SexpProcessor

 

process()

Figure 4.1: Class diagram presents all implemented modules. SexpProcessor
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4.3 Usage description
Modules from previous section (4.2) are managed by small script called workflow.rb, it can
be invoked as follows:

• ./workflow.rb input_script.rb sexp creates S-expression representation of the given
script (example: 3.5)

• ./workflow.rb input_script.rb variables creates variables dependencies graph in dot
format (example: 5.2a)

• ./workflow.rb input_script.rb program creates internal representation graph in dot
format (example: 3.21)

• ./workflow.rb input_script.rb operations creates operations dependencies graph in
dot format (example 5.5b)

• ./workflow.rb input_script.rb workflow creates workflow diagram (example 5.6)

To automate typical routines, Rakefile was created. It is able to produce various con-
figuration of workflow.rb script results and produce graphical outputs for .dot files. Pro-
cessing file sets, directory trees are automated.

4.4 Workflow description language based on YAML
During the work on this thesis, there was a need to keep workflows in a permanent
storage to enable easy access of complete workflows from application. ere was already
a possibility to export workflows to dot files but they are not easy to parse from any
programming language. To fulfill this requirement YAML[29] language was chosen (it
is easy to read by a human and it has import/export tools in majority of programming
languages).

Figure 4.2 includes exported workflow to YAML representation. It contains all infor-
mation which are gathered in a graphical workflow representation. In detail, there is a
list of nodes and edges, both identified by numbers. Each node has a list of incoming and
outgoing edges, type and name. Edges contain only a type and a list of dependencies in
(deps segment).



CHAPTER 4. TOOL FOR APPLICATION ANALYSIS 56

---

nodes:

3269977186983927969:

input: []

output:

- 1227372557622029165

name: "b␣=␣a.async_do_sth ()"

type: job

-940644704559776611:

input:

- 1227372557622029165

output: []

name: "d␣=␣a.async_do_sth(c)"

type: job

edges:

1227372557622029165:

type: non_expl

deps: c

Figure 4.2: Sequence paern in yaml representation.

4.5 Summary
Developed tool is adapted to quick and easy generating workflows and intermediate
graphs (which are used for debugging) for particular scripts or whole directory branches.
It works well with Ruby 1.8.7, 1.9.2 and JRuby 1.6.0.



CHAPTER 5

Transformation of scripts to workflows

In this chapter, it will be presented how to build workflows for ViroLab scripts using data
collected during the analysis process (3). Moreover created workflows are going to be
evaluated whether they are able to resolve dependencies in complex Ruby programming
statements and present well known workflow paerns (2.4), benchmark workflows (2.2)
and already existing ViroLab scrips correctly.

5.1 Building workflows
All data required to build workflow are collected during analyzing process which was
described in chapter 3.

Internal representation is traversed and all nodes which are not asynchronous oper-
ation on grid object are filtered. Remaining nodes are grouped into:

• pairs of explicit dependencies

• pairs of transitive dependencies

• pairs of dependencies from if or loop statements

Additionally, nodes with equal names are replaced with its first appearance which
makes it a graph of grid operations dependencies in adjacency list representation. More
details of the workflow building process are in section 5.2.1.

57
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5.2 Supporting workflow patterns
In section 2.4 are presented basic control-flow paerns. To prove that these aspects of
process-control can be implemented in ViroLab scripts, a sample workflow will be cre-
ated for each paern.

5.2.1 Sequence

Listing in figure 5.1 is a implementation of the sequence workflow paern[20] specifica-
tion previously introduced in chapter 2.4.1.

a = GObj.create

b = a.async_do_sth("")

c = b.get_result

d = a.async_do_sth(c)

e = d.get_result

Figure 5.1: A script above contains two activities, where the second one uses values
returned from first activity. is workflow fulfills requirements of sequence paern de-
scribed in chapter 2.4.1.

Building workflow

To make workflow building process more clear to understand, intermediate forms be-
tween internal representation and workflow representation was created.

As it was mentioned in chapter 3, internal representation of the script contains for
each node direct dependencies, transitive dependencies, information about if and loop

statements, if the node is a grid operation, if the node is operation handler, grid objects
scopes etc.

First intermediate. First intermediate graph form (figure 5.2a) is created to show de-
pendencies between assignments. Procedure which creates this kind of graph simply
takes all assignments from internal representation, filters all assignments that do not con-
tain grid operation, grid object creation or result request on grid operation handler and
joins remaining assignments with arrows. If assignments depend on each other without
distinction between dependency types and ignore all other information. Assignments in
the graph are named aer variables which are created in particular operation. Arrows
can be read as “is necessary to calculate variable”, which on particular relation between
node c and d is formulated as “c is necessary to calculate variable d”.
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Second intermediate. Second intermediate graph form (figure 5.2b) contains more in-
formation from internal script representation. Now there is a graphical distinguish be-
tween different dependency types and assignments of different operations 5.2b.

a

b

c

d

e

(a) Variable dependencies - first intermediate
graph which shows dependencies between as-
signments in script from figure 5.1. If the node
name is d it means that it represents assignment
d = a.async_do_sth(c). Arrow from node c to d

means that node d depends on node c.

a

b

d

c

e

(b) Operation dependencies - second interme-
diate graph for script 5.1. Grid operations
are represented as circles, result requests are
squares and grid objects are hexagons. Di-
rect dependencies are represented by solid lines
(dependency arrow which points on grid op-
eration is bold and has filled arrow), transitive
dependencies has doed lines (arrows pointing
grid operations are dashed and also have filled
arrows). Edges without arrow shows on which
grid objects operation is invoked.

Figure 5.2: Sequence paern intermediate graphs.

Workflow

Graph for sequence paern can be finally made basing on second intermediate graph
with following transformations:

• grid objects are removed,

• grid operations handlers nodes are replaced by labels on edges which indicate data
flow,

• transitive dependencies are removed except for the cases where there is not a direct
dependency (there is no label on the edge).
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b = a.async_do_sth()

d = a.async_do_sth(c)

c

Figure 5.3: Final workflow representation of the sequence paern 2.4.1 implemented as
Virolab application 5.1.

5.2.2 Parallel split

e parallel split workflow paern[20] (introduces in section 2.4.2) is a point where one
branch splits in multiple of branches. In Virolab script this situation can appear when
aer one grid operation, multiple different grid operations are invoked using values pro-
duced by the first one as it is shown in figure 5.4.

a = GObj.create

b = a.async_do_sth

c = b.get_result

d = b.get_result

e = a.async_do_sth(c)

f = a.async_do_sth(d)

Figure 5.4: ere are three activities in the script above. e last two (e and f) which
are executed in parallel, use value obtained as a result of the first one (b). It fulfills
requirements of parallel split paern.

Building workflow

Intermediate steps of building workflow representation split parallel split paern are
presented in figures 5.5a and 5.5.
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a

b

c d

e f

(a) Variable dependencies of parallel split pat-
tern implementation. Values of variable c and
d depend on value of variable b but they are in-
dependent on each other.

a

b

ef

cd

(b) Operation dependencies of parallel split
paern implementation. Operation repre-
sented by nodes e and f are independent but
this graph representation does not consider
control flow structures thus it can not be said
that these operations are executed in parallel.

Figure 5.5: Parallel split paern intermediate graphs.

Workflow

Workflow representation of parallel split paern is shown in figure 5.6. is workflow is
a case of implicit representation since it is realized by two branches which are executed
without any condition, outgoing from one node.

b = a.async_do_sth()

e = a.async_do_sth(c)

c

f = a.async_do_sth(d)

d

Figure 5.6: Workflow of parallel split paern 2.4.2 built from Virolab implementation 5.4.
Two grid operations e = a.async_do_sth(c) and f = a.async_do_sth(d) which have common
dependency - b = a.async_do_sth().

5.2.3 Synronization

e synchronization workflow paern[20] which defines (2.4.3) a point in the workflow
where more than one thread of control join into one. is case appears in Virolab appli-
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cation when one grid operation depends on many other grid operations - sample imple-
mentation which includes this kind of relation is shown in figure 5.7.

a = GObj.create

b = GObj.create

z = GObj.create

c = a.async_do_sth

d = b.async_do_sth

e = c.get_result

f = d.get_result

g = z.async_do_sth(e, f)

h = g.get_result

Figure 5.7: ere are three grid operations used invoked by the above script. e first
two of them (represented by c and d operation handlers) produce values which are used
to calculate result of operation gwhich makes this operation dependent on both previous
operations.

Building workflow

Both intermediate graphs presenting variable and operation dependencies are included
in figures 5.8a and 5.8b.

a

c

e

g

h

b

d

fz

(a) Variable dependencies of synchronization
workflow paern implementation. A value of
variable h is calculated using (not directly) all
other variables in a script.

a

c

b

d

z

g

e

h

f

(b) Operation dependencies of workflow paral-
lel split paern implementation. Operation g

depends on operations c and d. Each operation
is from different grid object instance (a, b and
z).

Figure 5.8: Synchronization paern intermediate graphs.
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Workflow

Workflow representation of synchronize paern is included in figure 5.9. Built work-
flow can be classified as implicit representation since instead of particular structure,
synchronize paern is represented by edges which coming to one node - the point of
synchronization as it is shown in figure 5.9.

c = a.async_do_sth()

g = z.async_do_sth(e, f)

e

d = b.async_do_sth()

f

Figure 5.9: Workflow of synchronization paern 2.4.3 built from Virolab implementa-
tion 5.7. Operation g = z.async_do_sth(e, f) depends on two different grid operations
c = a.async_do_sth() and d = b.async_do_sth().

5.2.4 Exclusive oice

e exclusive choice workflow paern[20] defines in section 2.4.4 a point in workflow
where depending on a particular condition, one outgoing control flow branch is cho-
sen. In Virolab application and as well in Ruby code, operations which are executed
under certain decision are commonly located in if statement. Figure 5.10 includes Viro-
lab application in which grid operations executions are determined by conditions of if
statements.

1 a = GObj.create

2 b = a.async_do_sth

3 c = b.get_result

4 if c == true

5 d = a.async_do_sth(c)

6 e = d.get_result

7 elsif c == false

8 f = a.async_do_sth(c)

9 g = f.get_result

10 else

11 h = a.async_do_sth(c)

12 i = h.get_result

13 end

Figure 5.10: Exclusive choice workflow paern implementation. First grid operation b

= a.async_do_sth() is always executed but following operations depend on conditions of
if statements in lines 4 and 7.
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Building workflow

Both intermediate graph representations needed to build exclusive choice workflow pat-
tern from its Virolab implementation are included in figures 5.11a and 5.11b.

a

b

c

d

e

f

g

h

i

(a) Variable dependencies of exclusive choice
paern implementation. ree groups of nodes
f and g, h and g, d and e do not have any arrows
between each other.

a

b

d f h

c

e g i

(b) Operation dependencies of exclusive choice
paern implementation. ree operations d, f
and h are independent but because of lack of
control flow structures in this graph represen-
tation, it can not be determined if these grid
operation can be executed in parallel.

Figure 5.11: Exclusive choice paern intermediate graphs.

Workflow

Figure 5.12 includes workflow representation of exclusive choice paern built from its Vi-
rolab implementation. is workflow can be considered as explicit representation of ex-
clusive choice since there is a special construct which determines which outgoing branch
is chosen.
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b = a.async_do_sth()

if(c == true)

c

d = a.async_do_sth(c)

c

if(c == false)

c

f = a.async_do_sth(c)

c

h = a.async_do_sth(c)

c

Figure 5.12: Exclusive choice workflow paern 2.4.4 built from its Virolab implementa-
tion 5.10. Triangle shaped nodes stand for condition, when control from goes through
this kind of node, only one outgoing edge is chosen depending on conditions expression
and its evaluation.

5.3 Statements
As it was emphasized in chapter 3, analyzing Ruby language constructs like loops and
if statements can be very hard. In this section, there are created workflow represen-
tations for Virolab applications which includes non-trivial Ruby constructs previously
mentioned in section about analyzing process (3).

5.3.1 Reassignment

e reassignment issue (discussed in section 3.2.4) occurs when new value is assigned
to already used variable label. Virolab application where variable names are reused is
included in figure 5.13, its workflow is shown in figure 5.14.
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1 a = GObj.create

2 b = a.async_do_sth

3 c = b.get_result

4 b = a.async_do_sth(c)

5 c = b.get_result

6 b = a.async_do_sth(c)

7 c = b.get_result

Figure 5.13: Virolab application with reassignment issue. Label b keeps different values
in lines 2, 4 and 6. Label c which determine dependencies between grid operations is also
reused in lines 3, 5 and 7.

b = a.async_do_sth()

b_1 = a.async_do_sth(c)

c

b_2 = a.async_do_sth(c_1)

c_1

Figure 5.14: In workflow built for application with reassignment issue all operation de-
pendencies were correctly determined. Distinguish of various values kept by label b and
c were achieved by adding a suffix to original label. Re-usage of label b were renamed
into b_1 and b_2 and re-usage of variable c were named c_1

5.3.2 Loop

In section 3.2.5, there is a description of a problem when grid operation which is placed
in a loop block, has dependencies on operations before the loop or operations aer loop
are dependent on this particular operation. In figure 5.15 there is a script which shows
both cases.
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a = GObj.create

b = a.async_do_sth

c = b.get_result

e = nil

loop do

d = a.async_do_sth(c)

e = d.get_result

end

f = a.async_do_sth(e)

g = f.get_result

Figure 5.15: Virolab application using a loop statement, there is a grid operation (d
= a.async_do_sth(c)) which has dependency on operation accured before the loop (b =

a.async_do_sth). is is also an example of operation (f = a.async_do_sth(e)) which has
dependency on operation which is placed in the loop statement (d = a.async_do_sth(c)).

ere are three grid operations and they are dependent on each other in a sequential
order. It can be predicted then, that operation dependencies might be similar to sequence
paern 5.2.1 and because of double usage of the same variable label (c and d) it might be
also similar to reassignment graph 5.3.1. e operations dependencies are presented in
figure 5.16a.

From now, loop statement has its representation in workflow diagrams as circle with
label loop. Dependencies between operations from the loop with other operations are
represented as follows:

• operation before loop and operation in loop: from first operation arrow goes to
loop node and then directly to the targeting operation

• operation in loop and operation aer loop: there is only one arrow as in normal
case but it is doed
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a

b

d

f

c

e_1

g

(a) Operation dependencies based on 5.15
script. Two lines of sequential process can be
noticed, first one is b -> d_1 -> e and the sec-
ond one omit d_1: b -> e.

b = a.async_do_sth()

loop

c

d = a.async_do_sth(c)

f = a.async_do_sth(e)

e_1

c

(b) Workflow graph built from script with loop
statement 5.15. ere are two new elements,
first one is loop node which indicate loop en-
trance and doed line - loop exit.

Figure 5.16: Graphs created for Virolab application with loop statement.

In the graph fromfigure 5.16b, there is only one nodemade for operation d = a.async_do_sth(c).
If it was predicted that this operation is invoked many times, there can be added new
nodes for d = a.async_do_sth(c) operation additional instances as it is shown in figure
5.17.
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Figure 5.17: Expanded workflow from figure 5.16b by additional operation instances
which can be created by several loop iteration.
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5.3.3 Condition

e other complex example of dependencies between blocks previously discussed in sec-
tion 3.2.5 is a if statement case. Script containing if statement with several branches is
shown in figure 5.18. Operation from some branches have different dependencies than
the others.

a = GObj.create

b1 = a.async_do_sth

c1 = b1.get_result

b2 = a.async_do_sth

c2 = b2.get_result

d = 0

if 0 == 2

d = a.async_do_sth(c1)

elsif 1 == 2

d = a.async_do_sth_else(c1)

else

d = a.async_do_sth_else2(c2)

end

e = d.get_result

f = a.async_do_sth(e)

g = f.get_result

Figure 5.18: Virolab application with if statement. Application is similar to exclusive
choice paern implementation - 5.10. It this case, there is a grid operation aer if state-
ment which uses value produced in if statement branches. Grid operations in different
branches have arguments of different variables.

e complexity of this case is illustrated by operation dependencies graph in figure
5.19.
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a

b1 b2

d_1 d_2 d_3

f

c1

e

c2

g

Figure 5.19: Operations dependencies for script 5.18. Two branches which are dependent
on c1 variable and third if branch which is dependent on c2 can be clearly remarked.

In a workflow graph 5.20 there is a node in a shape of triangle previously introduced
in exclusive choice workflow paern - 5.2.4. Its role is similar to loop node, it marks
beginning of the block plus its label is a condition definition and it has two output arrows
for different results of condition evaluation. e role of doed arrows corresponds with
loop case - they are dependencies which goes out from if statement.
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b1 = a.async_do_sth()

if(0 == 2)

c1

b2 = a.async_do_sth()

c2

d_1 = a.async_do_sth(c1)

f = a.async_do_sth(e)

e

c1

if(1 == 2)

c1, c2

d_2 = a.async_do_sth_else(c1)

e

c1

d_3 = a.async_do_sth_else2(c2)

c2

e

Figure 5.20: Workflow prepared from script 5.18. ere are two conditions and three
condition branches. Control flow stops on operation f = a.async_do_sth(e)which is placed
outside the if blocks.

5.3.4 Iteration

Interesting aspect if iteration usage in experiments scripts is looped dependencies. It was
mentioned in section 3.2.5 and illustrated with simple example in figure 3.17.

More complex example, with grid operations is shown in figure 5.21. Workflow cre-
ated for this script 5.22 contains loop node and edges which indicate loop exit and next
iteration.
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a = GObj.create

b = a.async_do_sth

c = b.get_result

d = a.async_do_sth(c)

5. times do

e = d.get_result

f = a.async_do_sth(e)

g = f.get_result

d = a.async_do_sth(g)

end

i = d.get_result

j = a.async_do_sth(i)

k = j.get_result

Figure 5.21: Complex example of looped dependencies. In loop, operation f =

a.async_do_sth(e) depends on operation d = a.async_do_sth(c) which is before the loop or,
in following iterations, on operation d = a.async_do_sth(c).
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b = a.async_do_sth()

d = a.async_do_sth(c)

c

loop

e

j = a.async_do_sth(i)

if = a.async_do_sth(e)

d_1 = a.async_do_sth(g)

g

e

i

Figure 5.22: Workflow for experiment from figure 5.21. Doed edge with label i (which
means that there is dependency through variable i) represents dependency and exit from
a loop. Dashed edge from node d_1 = a.async_do_sth(g) to f = a.async_do_sth(e) represents
looped dependency and return to the beginning of loop aer each iteration.

While expanding given iteration, looped dependencies are recognized, additional
nodes are added and connected with proper dependencies as it is shown in figure 5.23.
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b = a.async_do_sth()

d = a.async_do_sth(c)

c

loop

e

j = a.async_do_sth(i)

i

f = a.async_do_sth(e)

d_1 = a.async_do_sth(g)

g

e

f__loop0 = a.async_do_sth(e)

e

f__loop1 = a.async_do_sth(e)

e

f__loop2 = a.async_do_sth(e)

e

i

d_1__loop0 = a.async_do_sth(g)

g

i

d_1__loop1 = a.async_do_sth(g)

g

i

d_1__loop2 = a.async_do_sth(g)

g

i

Figure 5.23: Expanded iteration. Pairs f_* = a.async_do_sth(e) and d_* = a.async_do_sth(g)

which represents one iteration are connected with dashed arrow with its clones from
different iterations.
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5.3.5 Parallel for

Section 5.3.4 describes how the loop with dependencies among iterations can be ex-
panded. Another workflow modification which can bring interesting results, especially
with proper implementation, If operations in loop body do not modify values from out-
side of the loop and the result is not dependent on iterations order, particular iterations
can be executed concurrently.

Motivation

e motivation of extending Virolab constructs by parallel for is to provide explicit
method for defining which parts of Virolab application can be executed in parallel.

Design

Existing GSEngine libraries does not contain any routines which allow such kind of fa-
cilities. For the purpose of the thesis, following statement was introduced to provide
parallel execution for given block.

P.parallelFor ([1, 2, 3, 4, 5]) do |i|

10. times { puts i; sleep 0.3 }

end

Figure 5.24: Example of parallel loop. Given block will be executed concurrently for each
element of Enumerable argument (in this case - an array [1, 2, 3, 4, 5]).

Implementation Figure 5.25 contains sample implementation of parallel for statement.
Each element from the Enumerable object list is processed in the separated thread.

class P

def P.parallelFor(list)

threads = []

list.each_with_index do |e, i|

threads << Thread.new(e, i) { |*args| yield args }

end

threads.each { |aThread| aThread.join }

end

end

Figure 5.25: Minimal implementation of the parallel for feature.
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Usage

a = GObj.craete

b = a.async_do_sth

c = b.get_result

P.parallelFor ([1, 2, 3, 4]) do |i|

d = a.async_do_sth(c + i)

e = d.get_result

end

Figure 5.26: e usage of parallel for statement. In execution, the block will be launched
in parallel, each thread with corresponding argument from the array: [1, 2, 3, 4].

b = a.async_do_sth()

parallelFor

c

d = a.async_do_sth(+)

f = a.async_do_sth(e)

e

c

d__loop0 = a.async_do_sth(+)

c

d__loop1 = a.async_do_sth(+)

c

d__loop2 = a.async_do_sth(+)

c

h = a.async_do_sth(g)

g_1

f__loop0 = a.async_do_sth(e)

e

g_1

f__loop1 = a.async_do_sth(e)

e

g_1

f__loop2 = a.async_do_sth(e)

e

g_1

Figure 5.27: Workflow of a application with a parallel for statement. Independent
branches between parallelFor node and doed arrows will be executed in parallel.

5.4 Benmark workflows
Benchmarkworkflows previously described in section 2.2 arewell documented andwidely
used workflows in science. ey are good examples of typical

5.4.1 Montage

Montage (2.2.1) toolkit, as it was mentioned before, is built from modules implemented
in ANSI C. ey can be used separately. Figure 5.28 presents a hypothetical ViroLab
experiment which manages montage data and control flow.
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In compare to the original Montage following modifications and simplifications has
been applied:

• since presenting workflow tool is limited to information gathered from code pars-
ing, it is impossible to resolve dependencies in objects collections,

• parallel loops in lines 14, 20 and 32 would be replaced by normal loops if opera-
tion handlers were gathered in some collections, original dependencies between
mProjectPP and mDiffFit would be reconstructed then.

Montage workflow is included in figure 5.29.
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1 dataRepository = GObj.create("fotos")

2 mProjectPP = GObj.create("mProjectPP")

3 mDiffFit = GObj.create("mDiffFit")

4 mConcatDiff = GObj.create("mConcatDiff")

5 mBgModel = GObj.create("mBgModel")

6 mBackground = GObj.create("mBackground")

7 mImgTbl = GObj.create("mImgTbl")

8 pipeline = GObj.create("pipeline")

9
10 data_handler = dataRepository.async_load_fotos("12345")

11 data = data_handler.get_result

12
13 fotos_result = nil

14 P.parallelFor(data) do |f|

15 fotos_handler = mProjectPP.async_do_sth(data)

16 fotos_result = fotos_handler.get_result

17 end

18
19 diffFit_result = nil

20 P.parallelFor(fotos_result) do |f|

21 diffFit_handler = mDiffFit.async_do_sth(fotos_result)

22 diffFit_result = diffFit_handler.get_result

23 end

24
25 concatDiff_handler = mConcatDiff.async_do_sth(diffFit_result)

26 concatDiff_result = concatDiff_handler.get_result

27
28 bgModel_handler = mBgModel.async_do_sth(concatDiff_result)

29 bgModel_result = bgModel_handler.get_result

30
31 backgrounds_result = nil

32 P.parallelFor(fotos_result) do |f|

33 backgrounds_handler = mBackground.async_do_sth(fotos_result ,

bgModel_result)

34 backgrounds_result = backgrounds_handler.get_result

35 end

36
37 imgTbl_handler = mImgTbl.async_do_sth(backgrounds_result)

38 imgTbl_result = imgTbl_handler.get_result

39
40 pipeline_handler = pipeline.async_do_sth(imgTbl_result)

41 pipeline_result = pipeline_handler.get_result

Figure 5.28: Script shows hypothetical situation - how Montage would look like if it was
wrien in Ruby and with usage of ViroLab Grid interface.
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data_handler = dataRepository.async_load_fotos(12345)

parallelFor

data

fotos_handler = mProjectPP.async_do_sth(data)

parallelFor

fotos_result_1

parallelFor

fotos_result_1

data

diffFit_handler = mDiffFit.async_do_sth(fotos_result)

concatDiff_handler = mConcatDiff.async_do_sth(diffFit_result)

diffFit_result_1

fotos_result_1

bgModel_handler = mBgModel.async_do_sth(concatDiff_result)

concatDiff_result

bgModel_result

backgrounds_handler = mBackground.async_do_sth(fotos_result, bgModel_result)

imgTbl_handler = mImgTbl.async_do_sth(backgrounds_result)

backgrounds_result_1

bgModel_result, fotos_result_1

pipeline_handler = pipeline.async_do_sth(imgTbl_result)

imgTbl_result

Figure 5.29: Montage workflow created for script 5.28. e original montage workflow
generated from Pegasus framework is shown in figure 2.1.
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5.4.2 CyberShake

As it was noticed in section 2.2.2, CyberShake has short critical path but with big amount
of concurrent control branches. It might be reasonable to implement this application in
such way that these branches would finish as soon as possible avoiding situations when
one process would wait for another from different control-flow branch. e aempt to
implement script which fulfill above requirement is contained in figure 5.30.

1 sgt = GObj.create("sgt")

2 synthesis = GObj.create("synthesis")

3 peak = GObj.create("peak")

4 zip_seis = GObj.create("zip_seis")

5 zip_psa = GObj.create("zip_psa")

6
7 input_handler = sgt.async_do_sth("data")

8 input = input_handler.get_result

9
10 s = []

11 P.parallelFor ([1,2,3,4]) do |i|

12 s[i] = synthesis.async_do_sth(input[i])

13 end

14
15 p = []

16 s_result = []

17 P.parallelFor ([1,2,3,4]) do |i|

18 s_result[i] = s[i]. get_result

19 p[i] = peak.async_do_sth(s_result[i])

20 end

21
22 s_result = s.get_result

23 zs = zip_seis.async_do_sth(s_result)

24
25 p_result = p.get_result

26 zp = zip_psa.async_do_sth(p_result)

27
28 zp_result = zp.get_result

29 zs_result = zs.get_result

Figure 5.30: Script shows hypothetical situation - how CyberShake would look like if it
was wrien in Ruby and with usage of ViroLab Grid interface.

In line 12, iteration loop creates tasks that create seismograms for given SGT taken
from array s. Result requests on these newly created handlers are in line 18 - just be-
fore they are used in following line. In line 19, new tasks are created to calculate peak
Spectral Accelerations. Line 22 - result request on already requested handler (returns
immediately; although, this kind of operation needs modification of Ruby Array class).
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Obtained result is passed into new grid operation in line 23. Line 25 contains result re-
quest identical to already discussed construct in line 22. Lines 23, 26, 28, 29 calculate final
results of hazard curve and combined seismograms of ground motions.
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Figure 5.31: CyberShake workflow created from script 5.30. e original SyberShake
workflow generated from Pegasus framework is shown in figure 2.2.
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5.4.3 Epigenomics

Epigenomics 2.2.3 is an example of pipelined application, there are few independent long
sequences of operations (in this sense it is opposite case than CyberShake). It is important
to process independent branches of control flow in parallel.

1 epigenomics = GObj.create("epigenomics")

2
3 fqs_h = epigenomics.async_fastQSplit

4
5 map_h = []

6 P.parallelFor ([1,2,3,4]) do |i|

7 fqs_res = fqs_h.get_result

8 fc_h = epigenomics.async_filterContams(fqs_res)

9 fc_res = fc_h.get_result

10 s2s_h = epigenomics.async_sol2sanger(fc_res)

11 s2s_res = s2s_h.get_result

12 f2b_h = epigenomics.async_fastq2bfq(s2s_res)

13 f2b_res = f2b_h.get_result

14 map_h[i] = epigenomics.async_map(f2b_res)

15 end

16
17 map_res = map_h.get_result

18 mm_h = epigenomics.async_mapMerge(map_res)

19 mm_res = mm_h.get_result

20 mi_h = epigenomics.async_maqIndex(mm_res)

21 mi_res = mi_h.get_result

22 pileup_h = epigenomics.async_pileup(mi_res)

23 pileup_res = pileup_h.get_result

Figure 5.32: Script shows hypothetical situation - how Epigenomics would look like if it
was wrien in Ruby and with usage of ViroLab Grid interface.

Epigenomics workflow created from script 5.32 is presented in figure 5.33.
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Figure 5.33: Epigenomics workflow created for script 5.32. e original Epigenomics
workflow generated from Pegasus framework is shown in figure 2.3.
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5.5 ViroLab workflows
In chapter 1, there were mentioned an experiment developed for Virolab. e application
is shown in figure 1.1 and it can be downloaded directly from ViroLab website - [2].

For this special example, all intermediate graphswere created. It will be shownwhich
parts of particular script causes problems and how to prevent them.

First intermediate Variable dependencies graph should contain grid objects, all grid
operations and presents dependencies between them. On the graph 5.34 created for the
script 1.1 all required nodes are present.

retriever

a

b

trainedprediction

classificationPercentage

classifier

Figure 5.34: Dependencies between variables in the script 1.1.

Second intermediate ere are some limitation which are implied from a method cho-
sen to locating grid objects and operations. As it is based on assignments, in case of ab-
sence of this construct, information extracted from Ruby source can be incomplete. Fol-
lowing list describes which parts of the script was correctly analyzed and which caused
problems. e second intermediate graph is shown in figure 5.35.

• line 6: grid object retriever was correctly recognized

• line 14: asynchronous operation was correctly recognized



CHAPTER 5. TRANSFORMATION OF SCRIPTS TO WORKFLOWS 87

• line 18: in the same line asynchronous operation is succeeded by result request,
moreover there is also result request on previous asynchronous operation handler.
is kind of construct might cause problems since from this particular line three
nodes should be produced. Solid thin linemeans that node b indicates result request
on asynchronous operation a, in fact there is a result request for operation a but
node b should stand for request result of operation async_splitData.

• line 25: asynchronous operation and dependencies were correctly recognized

• line 27: there is no assignment and as a consequence result request node was not
produced

• line 29: asynchronous operation and transitive dependencies on node a and b were
correctly recognized

• line 31: asynchronous operation and direct dependency between nodes classificationPercentage
and prediction were correctly recognized; node for result request on prediction op-
eration handler was not produced

• line 33: as a result of assignment lack, result request node was not produced
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retriever

a

b

classificationPercentage

trainedprediction

classifier

Figure 5.35: Dependencies between operations.

Workflow In all cases, results were not saved into variables, thus there are no depen-
dencies on edges. Except the lack of node for operation retriever.async_splitData, graph
5.36 is complete.
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Figure 5.36: Workflow created for Virolab application included in figure 1.1.

5.5.1 Script fixing

Only a few modifications of original script are needed to make operations and workflow
graphs completed. Fixed script is presented in figure 5.37. Changes are as follows:

• all operations on grid objects or operations handlers were changes into assign-
ments - line 18 on script 1.1 is changes into lines 18-21 in figure 5.37

• variables from lines 19 and 20 of original script has removed and their usage is
replaced by direct references to b_res variable
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1 require 'cyfronet/gridspace/goi/core/g_obj '

2
3 puts 'Start␣of␣weka␣experiment␣!!␣(Asynchronous␣version)!!'

4
5 # Create Web Service Grid Object Instance

6 retriever = GObj.create('cyfronet.gridspace.gem.weka.WekaGem ')

7
8 # Build the query

9 query = 'select␣outlook ,␣temperature ,␣humidity ,␣windy ,␣play␣from␣

weather␣limit␣100;'

10 database = "jdbc:mysql ://127.0.0.1/ test"

11 user = 'testuser '

12 password = ''

13
14 a = retriever.async_loadDataFromDatabase(database , query , user ,

password)

15
16 classifier =

GObj.create('cyfronet.gridspace.gem.weka.OneRuleClassifier ')

17
18 a_res = a.get_result

19
20 b = retriever.async_splitData(a_res , 20)

21 b_res = b.get_result

22
23 # Set the name of attribute that will be predicted

24 attributeName = 'play'

25
26 trained = classifier.async_train(b_res.trainingData , attributeName)

27 # wait until training is done

28 trained.get_result ()

29
30 prediction = classifier.async_classify(b_res.testrainingData)

31 prediction_res = prediction.get_result

32
33 classificationPercentage =

retriever.async_compare(b_res.testrainingData , prediction_res ,

attributeName)

34 classificationPercentage_res = classificationPercentage.get_result

35 # show results

36 puts 'Prediction␣quality:' + classificationPercentage_res.to_s

37 puts 'End␣of␣weka␣experiment␣!!'

Figure 5.37: Real Virolab experiment - weka. Script has been modified to improve work-
flow generation.

Operations graph for fixed script is included in figure 5.38 and workflow in on 5.39.
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Figure 5.38: Operations graph for fixed script 5.37.
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Figure 5.39: Workflow for fixed script 5.37.
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5.6 Summary
Virolab programming model provides an ability to implement applications which cor-
respond to a basic workflow paerns (sequence, parallel split, synchronization and ex-
clusive choice). Various Ruby control statements like loop, iteration or if can be used in
Virolab applications without loosing ability of analyzing structure and converting them
to workflows. Virolab can be extended by introducing parallel statement to enable ex-
plicit specifying of Ruby code blocks which should be executed in parallel.

ere were also shown that Virolab is able to implement non-trivial real world ap-
plications like Montage, CyberShake or Epigenomics. While Ruby scripts coordinate
various grid objects can be coordinated, it is still able to transform them to workflows.
At least, real world Virolab application was analyzed and transformed into workflow.



CHAPTER 6

Scheduling concept of transformed script

While the workflow building process was already described and followed by various
cases of application to workflow conversions, the next goal of this thesis and the purpose
of this chapter is an examination of realizing scheduling process on created workflow
model.

As it was mentioned before (sections 2.6.1 and 2.1.2), scheduling process can examine
structure dependent criterion and structure independent. e purpose of this chapter is
a realization of dependent task scheduling process.

6.1 Dependent task seduling
According to workflow structures taxonomy presented in 2.1.1, current workflow struc-
ture can be assigned to extended digraph.

In Askalon environment and its AGWL language, there are also used extended di-
graph representation[11]. For scheduling purposes, this model is converted to DAG rep-
resentation which is most popular and can be considered as a common model for many
workflow management systems[12].

6.1.1 Workflow conversions

Workflow models can be reduced to DAG during execution. Workflow conversions in
Askalon Grid Environment[30] splits in two phases:

• initial conversion - basic transformations, workflow structure preserved

94
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• final conversion - loop unrolling, condition evaluation

Original construct Converted construct
while

sequencefor
forEach
parallelFor

parallel
parallelForEach
if-then-else

sequence
switch
DAG DAG

Table 6.1: Askalon constructs conversions

6.1.2 HEFT example

As it was described in section 2.6.1, HEFT heuristic is a static algorithm for DAGs based
on the prediction of costs of task execution and communication.
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b = a.async_do_sth()

d = a.async_do_sth(c)

c

f = a.async_do_sth(c)

c

n = a.async_do_sth(e, m)

e

h = a.async_do_sth(g)

g

j = a.async_do_sth(g)

g

l = a.async_do_sth(i, k)

i k

m

Figure 6.1: e example of workflow prepared to show HEFT procedure (6.1.2).

All tasks from the workflow are prioritized as it was described previously in sec-
tion 2.6.1, then, starting with a task with highest priority, selection phase is performed.
earliest time when particular task can start is designated from the latest time from all
predecessor finish times. en, if in resource has free slot which is later than aeriest
start time and has length longer than predicted task length, task is assigned to free slot.

HEFT procedure

e HEFT algorithm steps for the given graph (6.1) are as follows:

1. Select tasks which can be executed - they are these nodes which have all depen-
dencies completed. e task of the first selection is b = a.async_do_sth().

2. Execution time is estimated for selected tasks.

3. Each task has assigned proper resource - assigned resource must fulfill require-
ments of the task and has the earliest free slot. Free slot is a period of the time in
which particular resource has no tasks assigned.



CHAPTER 6. SCHEDULING CONCEPT OF TRANSFORMED SCRIPT 97

4. End of iteration if there are no remaining tasks to assign, otherwise, go to first
point.

6.1.3 Clustering heuristic example

As it was mentioned in paragraph 2.6.1, the goal of clustering scheduling is to minimize
communication cost by assigning mutually dependent tasks to a single resource.

Previously described example from this scheduling algorithms category is DSC heuris-
tic. For a given workflow - 6.1, enriched by tasks and edges costs (numbers in brackets)
in figure 6.2 - critical path of the clustered graph (the longest path in graph including
non-zero communication edge cost and task weights in the path) contains nodes b =

a.async_do_sth(), d = a.async_do_sth(c) and n = a.async_do_sth(e,m), its length is 9.
e critical path of a scheduled graph (DS) contains nodes f = asunc_do_sth(c), h =

asunc_do_sth(g), j = asunc_do_sth(g) and l = asunc_do_sth(i,k).
To introduce DSC algorithm steps terms top level and boom level has to be intro-

duced. Both are sums of tasks and edges costs, top level is computed for DS from start
node to current (it is calculated during execution of this algorithm) and boom level cor-
responds to cost of DS from current node to exit node (it is calculated at the begging and
it is constant during the execution).

Algorithms takes starting node (since is always has longest path to exit) and then:

1. Current node is merged with a cluster of one of its predecessors if it does not
increase top level cost, if so, new cluster is assigned for a current node.

2. If there are remaining nodes, select one with the highest boom level and go to
first point.

e result of the algorithm is shown in figure 6.2.
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b = a.async_do_sth() (1)

d = a.async_do_sth(c) (5)

c (0)

f = a.async_do_sth(c) (1)

c (1)

n = a.async_do_sth(e, m) (1)

e (2)

h = a.async_do_sth(g) (2)

g (0)

j = a.async_do_sth(g) (2)

g (0)

l = a.async_do_sth(i, k) (1)

i (0) k (0)

m (1)

Figure 6.2: Clustering heuristic example - tasks are grouped to decrease communication
cost.

6.2 Summary
Presented scheduling algorithms are able to process workflows created for Virolab appli-
cations. Workflow conversions approach used in Askalon[30] can adopt existing work-
flow model for wider class of algorithms.



CHAPTER 7

Summary and future work

is chapter summarizes thesis goals and presents conclusions which appeared during
their realization. It includes possible directions of research and further evolution of cre-
ated tool.

7.1 Conclusions
e main goal of master thesis was to provide ability for far-sighted optimization. Re-
quirements placed by this optimization mode are fulfilled by workflow scheduling ap-
proachwhich considers application structure and dependencies between grid operations.

To convert Virolab application to a workflow model which can be used as a model
for scheduling algorithms various analysis were performed.

Processing Ruby source code (chapter 3) gave a knowledge about which Grid Object
Classes are used in application and what grid operations are performed. Information
about relations between these operations was obtained by resolving variable dependen-
cies. Control statements were parsed and their impact on grid objects was determined.
emain conclusion aer this process is that Ruby programming language has very com-
plex syntax and dynamism of the language which from one side, gives the opportunity
to develop complex applications, causes many problems during its analysis. Aer all,
most of commonly used programming languages can keep and manipulate complex data
structures which exclude complete source code analysis.

Gathered information were used to build graphs of workflow representation (chapter
5). Basic fourworkflowpaernswere implemented as Virolab applications and thewhole
process of building workflow graph was presented. It was shown how complex Ruby
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scripts with loop and if statements affect workflow structure. Well-known workflow
applications (Montage, CyberShake, Epigenomics) were reimplemented as hypothetical
Virolab applications and then converted to workflows - as well as real Virolab application
- 5.37.

Scheduling process were explained on the example - 6 which proves that Virolab
workflows give complete information for various scheduling algorithms.

7.2 Future work
Based on the experience gained from the research process on providing far-sighted opti-
mization for ViroLab runtime environment, the wide spectrum of actions can by desig-
nated to work on in future. Evolution of this work can be developed in many directions.
ey can be categorized as follows:

• Improving ViroLab application to workflow conversion:

– improve by extending routines of analyzing process to enable resolving more
complex Ruby scripts,

– improve by changing application model,

– provide script validations based on data gathered during analyzing process.

• Make this work compatible and integrate with GrAppO and GSEngine.

• Develop complex scheduling process.

7.2.1 Improving application source to workflow conversions

As the main goal of this master thesis is to provide far sighted optimization for Virolab
environment, we observed that the most challenging problem to reach this goal is a
process of converting Virolab applications sources into workflows. is problem brought
most of research issues and although many of them were solved, there is still much room
for improvement in the future.

Add new routines to handle more Ruby statements

As it was mentioned in section 3.2.1, ere are 105 types of Ruby statements which can be
distinguished by used Ruby parser - ParseTree[27]. Current implementation can analyze
only 38 types which makes a room for improvements. Implementation of each type
complements internal representation and improves additional process.
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Changing application model

As it was mentioned many times in this master thesis, Ruby programming language pro-
vides much flexibility in its syntax. Two fragments of Ruby code which look completely
different and use various Ruby statements may produce exact results. Flexibility in pro-
gramming language usually goes with complexity in its syntax which implies problems
in parsing and analyzing process.

Concrete Ruby language features which bring issues include:

• ere are no syntax distinction between variable and function usage, it means that
in analyzing process, it is not known if particular label refers to function or vari-
able, e.g. in Ruby statement foo = bar, variable foo is assigned to value which is
returned from function bar or to a value of variable bar.

• Each function, beside variables, can take block as an argument. e main issue
with that feature is once the block is passed as argument, it is not known when
and how this block will be executed. If in the function there is yield statement,
block will be executed immediately (one or more times), it can be kept and used
later as a callback or in different conditions.

• Ruby code can be freely redefined. ank to Ruby syntax constructions as well as
module_exec, class_exec functions, classes and objects can be easily changed, method
can be aliased (alias_method function), added or removed.

• e logical structure of Ruby program has no implications in structure of files.
require and load methods which are usually used to load Ruby modules simply
execute Ruby code included in given file. It implies that each Ruby application has
to be considered as a whole thing since definition of a particular class or method in
one file can be changed in another which makes the problem of analyzing process
bigger and more complex.

• Ordinary collections as Array, Hash or Set bring problems for resolving dependencies
procedure. When the reference of the tracking variable is passed to a collection it
can be used and modified in that places of application structure where reference to
the collection are available. It implies in fact that assigning variable to an element
of a collection causes it cannot be discovered where and how variable is processed
thus as a result the track of a variable is lost.

Each of the featureswhich bring issues has to be limited to improve application source
to workflow conversions.

Starting from the Ruby language flexibility, which can be rightly described by the
Perl language programming slogan: “ere’s More an One Way To Do It”[31] (it is
known that Ruby is influenced by Perl design), programming language chosen for the
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purpose of source analyzing has to fulfill moo of other modern programming language
- the Python: “ere should be one - and preferably only one - obvious way to do it”[32].
It would expand capabilities of building workflows if each statement of programming
language (like method invocations, loops and block/function definitions) had only one
configuration of nodes in its parsed form (internal representation).

Immutable variables (value assigned to a particular label cannot be changed) solves
issue of tracking variables. Since it is known that value of variable will not be changed
in whole application whenever all references to this variable are discovered or not, it re-
duces necessity of considering reassigments and resolving global variable dependencies.

Ruby script validations

e understanding of Virolab application structure provides data for script examining.
In a current application model, the user has no restrictions in designing application con-
trol flow until the source code is correct Ruby language syntax. It gives a flexibility for
developers but it also lets them to make mistakes and to create inefficient constructs.

If the get_result operation is requested not as late as it possible in application flow
or the asynchronous operation is not performed as soon as possible, some optimization
work should have to be done on application source.

e optimization which can be performed include:

• Changing sequential iterations into parallel for loops if there are no looped depen-
dencies and the order of execution does not affect variables from outside of the
loop (e.g., results are stored in collections which does not have order like set or
Ruby 1.8.7 hash).

• Basing on the variable dependencies graph, asynchronous grid operations and its
result request can be moved within their blocks to ensure that control flow would
not be suspended before all possible asynchronous operations are performed.

• Having a knowledge about operations and variables dependencies gives a possibil-
ity of making validations which usually cannot be made in pre-execution time like
finding operations on variables which were not initialized. If there is a get_result

request on operation handler which does not have corresponding asynchronous
grid operation, many costly calculation may turn out pointless since this error can
interrupt application execution.

7.2.2 GSengine and GrAppO integration

Virolab optimizer - GrAppO is wrien in Java programming language and it works on
Java Virtual Machine[8, 9]. As it was mentioned earlier in section 3.2.1, used tools can be
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used with any Ruby language implementation, particularly with JRubywhich is already a
part of Virolab Laboratory runtime (section 1.1.3). While GrAppO was designed in mind
of far-sighted optimization, extending existing tools by workflow scheduling approach
requires implementation of common interfaces as well as redefinition of optimization
strategies.

7.2.3 Implement complex seduling routines

In chapter 6 were presented scheduling algorithms and opportunities of their utilization
with workflow models. Future work in this segment is related with work described in
previous section - the integration with GSEngine since scheduling algorithms require
data from monitoring and tracking services.

7.2.4 Implicit parallelism - transparent get_result operation

e explicit parallelism model of asynchronous grid operations and their handlers which
keep operation statuses can be consider as explicit parallelism - the operations are exe-
cuted in parallel if they are explicitly specified by the application developer. e other
approach is a implicit parallelism where operations are invoked in parallel and operation
result is requested when needed.

Motivation

Transparent get_result operation simplifies scripts, user is no longer obligate to analyze
where to put get_result request to achieve best optimization. It also minimize probability
of error when user omits operation result request which was previously mentioned in
section about possible script validations - 7.2.1.

Tenical aspects

In Ruby language it is impossible to assign the callback to the variable which would be
executed when value of the variable is requested (and thus invoke transparent get_result
operations).

e goal is to provide mechanism to enable construction presented in figure 7.1a
instead of current explicit approach in figure 7.1a.
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a = GObj.create

state = a.async_do_sth

# or

state = a.do_sth

puts state

(a) Implicit parallelism.
a = GObj.create

state = a.async_do_sth

puts state.get_result

(b) Explicit parallelism.

Figure 7.1: Comparison of transparent and explicit get_result operation.

If it can be assumed that asynchronous operation results are used only in functions
(as on script in figure 7.1a where the result is printed to standard output), the transpar-
ent get_result operation can be realized by special handlers added to all methods of all
objects in user space. If the handler receives asynchronous operation handler, it invokes
get_result method. It goes with hard limitation - operation handlers cannot be used in
other context than function arguments like foo = operation_handler.

e definition of the operation handler created to prove the concept of operation
handlers can look as following ActiveObject class with get_value method:

class ActiveObject

def get_value

100 _009

end

end

Ruby language provides many routines and methods that enable dynamic code gen-
eration.

All living objects in current virtual machine instance can be accessed through special
object called ObjectSpace which provides routines that interact garbage collector facility.
us, to redefine all methods in all loaded classes following operations can be performed:

ObjectSpace.each_object(Module) do |c|

next if [Method , UnboundMethod , Array]. include? c

next unless c.instance_of ?(Class)

result = false

a = c

while a = a.superclass

result = result || a.superclass == Exception

end
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next if result

c.class_eval do

(instance_methods + private_instance_methods).each do |method_name|

next if instance_method(method_name).owner != c

next if method_name == :initialize

old_method = instance_method method_name

define_method method_name do |*args , &block|

args.map! { |a| a.instance_of ?( ActiveObject) ? a.get_value : a }

old_method.bind(self).call(*args , &block)

end

end

end

end

And as a result, execution of fallowing code:

class Test

def test1 a

a

end

end

def test2 a

a

end

puts test2(ActiveObject.new)

puts Test.new.test1(ActiveObject.new)

puts 2 + ActiveObject.new

puts ActiveObject.new

it will produce:

100009

100009

100011

100009

since in all occurrences, ActiveObject instance is used as function arguments. In Ruby
1.8.7, object which owns method puts seems to be not accessible from ObjectSpace, thus
method puts is not modified and output listing might be different than presented above.

Foregoing solution handles whole loaded code but what if user want to create its own
classes and methods? To change methods which are going to be loaded or defined but do
not exist before execution of the script, following Module class method called method_added

can be used which is a simple callback that is invoked each time when the new method
is defined.
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Module.class_eval do

define_method :method_added do |method_name|

# p method_name

return if $adding

return if method_name == :method_added

$adding = true

old_method = instance_method method_name

define_method method_name do |*args , &block|

args.map! { |a| a.instance_of ?( ActiveObject) ? a.value : a }

old_method.bind(self).call(*args , &block)

end

$adding = false

end

end

7.2.5 Summary

e future work covers technical and research aspects of computer science depending if
the current work will be improved to provide far-sighted optimization for Virolab labo-
ratory or will be a base for new approach of developing grid applications in imperative
programming language and translating them into workflows.
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