|

AGH

Akademia Gorniczo — Hutnicza
im. Stanistawa Staszica

w Krakowie
Wydzial Elektrotechniki, Automatyki, Informatyki i Elektroniki

Katedra Informatyk:

Jan Melzner

Bezpieczenstwo w systemie
Wirtualnego Laboratorium

Praca magisterska

Kierunek: Informatyka
Specjalnosé: Systemy rozproszone i sieci komputerowe

Promotor:

dr inz. Marian Bubak

Konsultacja:

Nr albumu: 120564 dr inz. Maciej Malawski

Krakow 2009

Oswiadczenie autora

Oswiadczam, swiadomy odpowiedzialnosci karnej za posSwiadczenie nieprawdy, Ze
niniejszq prace dyplomowqg wykonatem osobiscie © samodzielnie 1 ze nie korzystatem
ze Zrodet innych miz wymienione w pracy.

Jan Meizner

|

AGH

AGH University of Science and Technology
in Krakéw

Faculty of Electrical Engineering, Automatics, Computer Science
and Electronics

Institute of Computer Science

Jan Meizner

Security in Virtual Laboratory
System

Thesis

Major: Computer Science
Specialization: Distributed Systems and Computer Networks

Supervisor:

Dr. Marian Bubak

Consultancy:

Album id: 120564 Dr. Maciej Malawski

Krakow 2009

Oswiadczenie autora

Oswiadczam, swiadomy odpowiedzialnosci karnej za posSwiadczenie nieprawdy, Ze
niniejszq prace dyplomowqg wykonatem osobiscie © samodzielnie 1 ze nie korzystatem
ze Zrodet innych miz wymienione w pracy.

Jan Meizner

Abstract

The thesis presents a work that has been done to provide a flexible security mecha-
nism for the Virtual Laboratory (VL). It was focused on preparation of solutions to cover
complex requirements of a non-web based part of the VL. Specifically it needs to provide
access to distributed resources for various types of users, who work for many separate
organizations. This constraint required the creation of a federated solution that allows
each organization to hold separate credential databases, even though their users need
access to the whole infrastructure. It also had to allow a seamless integration with other
security components, mostly those created for the web-based subset of VL components.

The work described in the thesis provides both theoretical background related to this
security solution, as well as detail of the software that has been created. This software
is composed of both complete tools (like ShibIdpCliClient, Policy Distribution Point) and
components providing security functionality for existing software (ShibIdpClient, MOCCA
Shibboleth Authenticator).

After introductory information including presentation of the VL, motivation for the
work as well as the goals, existing security solutions including cryptographic algorithms
(AES, RSA, Diffie-Helman and SHA), security standards and protocols (PKI, X.509 pub-
lic key certificates, TLS and SAML) and security frameworks (GSI, Shibboleth, ShibGrid,
GridShib and OpenlID) were described. Subsequently, all system requirements were ana-
lyzed, both directly related to the security as well as others. After that the solution based
on the Shibboleth augmented with newly created software for non-web authentication
(ShibIdpClient, ShibIdpCliClient) and authorization (MOCCA Shibboleth Authenticator,
Policy Distribution Point, it’s client and administrator’s tool) was presented, it’s compo-
nents design was shown as well as the implementation. Finally solution was successfully
validated by performing security audit on critical components, it’s performance was eval-
uated and found to be sufficient, then final conclusions were presented.

Key words

Virtual Laboratory, security, Grid, Shibboleth, federated authentication, user attributes,
SAML, threat model

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Marian Bubak
for his invaluable help and support. I would also like to thank Dr. Maciej Malawski
for his counsel during the creation of this thesis. Additionally I would like to thank
all my colleagues from ACC Cyfronet AGH, with whom I have been working on the
ViroLab Project. I also wishes to acknowledge helpful contribution from Tomasz
Mikotajczyk, Pawel Plaszczak and Krzysztof Wilk from GridwiseTech as well as
Matthias Assel from High Performance Computing Center Stuttgart. Finally, I
would like to thank all my academic teachers who guided me through my education
at the AGH.

This work has been supported by the European Commission ViroLab Project [1]
Grant 027446 and the PL-Grid Project [2] POIG.02.03.00-00-007/08-00.

(e
>

VIR :LAB GRD

Contents

Abstract 1
Acknowledgments 2
List of Figures 6
List of Tables 7
Acronyms 8
Chapter 1. Introduction 9
1.1. Security of IT Systems 9
1.2. The ViroLab as an Example of a Virtual Laboratory 10
1.3. Motivation L 11
1.4. Goals of the thesis 11
1.5, Summary e 12
Chapter 2. Analysis of Security Solutions 13
2.1. Cryptographic algorithms 13
2.1.1. Advanced Encryption Standard 14
2.1.2. RSA algorithm L 14
2.1.3. Diffie-Helman Key Exchange 15
2.1.4. Secure Hash Algorithms 15
2.1.5. Keyed-Hash Message Authentication Code 15
2.1.6. SUMMATY oo e e e e e e 15

2.2. Security standards and protocols Lo oo 15
2.2.1. Public Key Infrastructure L. 16
2.2.2. Public-key certificates (X.509) oL 16
2.2.3. Transport Layer Security o 17
2.2.4. Security Assertion Markup Language 17
2.2.5. Standards and solutions summary 18

2.3. Security frameworks oL 18
2.3.1. Grid Security Infrastructure oo 18
2.3.2. Shibboleth 19
2.3.3. ShibGrid 20
2.3.4. GridShib e 20

Contents

2.3.5. O0penlD 20
2.3.6. Summary of Security Frameworks 21
2.4, SUMMATY o e e e e e e 21
Chapter 3. Threat Model and Requirements 22
3.1. Introduction 22
3.2. Threat Model e 23
3.2.1. Security Requirements oo o 23
3.2.2. Assets and threats 24
3.2.3. Attack scenarios 24
3.3. Generic System Requirements L 27
3.3.1. Functional Requirements 27
3.3.2. Non-functional Requirements, 28
3.4. Discussion of the Chosen Solution 28
3.4.1. Shibboleth as the Chosen Framework 28
3.4.2. Relation between the Solution and the Security Requirements 29
3.4.3. Relation between the solution and the functional requirements 29
3.4.4. Relation between the Solution and the Non-functional Requirements . . 30
3.4.5. Required Customization 30
3.5, SUMMATY . . v v v vt e et e e e 31
Chapter 4. Architecture of the Virtual Laboratory Security System 32
4.1. General Architecture 32
4.2. System Componentso 33
4.2.1. ShibldpClient and ShibIldpCliClient 33
4.2.2. MOCCA Shibboleth Authenticator 34
4.2.3. MOCCA Policy Distribution Point and its Tools 35
4.3. Interaction between Security Components 36
4.3.1. Authentication tothe IdP, 37
4.3.2. Accessing MOCCA Container Protected by the Authenticator 37
4.3.3. Updating Local MOCCA Policies 38
4.3.4. Changing MOCCA Policies 39
4.4 SUMMATY . . .« . oL e e 40
Chapter 5. The Design of Security Components 41
5.1. ShibldpClient and SibIdpCliClient 41
5.2. MOCCA Shib Authenticator 43
5.3. MOCCA Policy Distribution Point and it’s Client 45
B4, SUMMATY o o e e 46
Chapter 6. Description of Implementation 47
6.1. Overview of Implemented Components 47
6.2. General Implementation Concepts 48
6.2.1. Programming Languages 48
6.2.2. Most Important Software Libraries 48
6.3. Challenging Implementation Tasks 49
6.3.1. Non-web IdP Authentication 49
6.3.2. Integration of the Authenticator with H20 50

Contents

6.3.3. Distributing Local Policies for MOCCA 50

6.4. SUMMATY e e 51
Chapter 7. Validation and Evaluation of the Security System 52
7.1. Security Audit e 52
7.1.1. ShibldpClient 52
7.1.2. MOCCA Shib Authenticator 53
7.1.3. MOCCA Policy Distribution Point 53

7.2. Performance evaluation 53
7.2.1. Test environment 53
7.2.2. ShibldpClient 54
7.2.3. MOCCA Shibboleth Authenticator 54
7.2.4. Policy Distribution Point o0 55

7.3. Validation of the Integration 56
7.3.1. ShibldpClient 56
7.3.2. MOCCA authenticator and PDistP 56

7.4. Manual user interface test o 56
7.4.1. ShibIdpClLiClient o 56
7.4.2. Administrator’s Panel for PDistP 56
T5.5UmMmary e 56
Chapter 8. Conclusions and Further Work 58
8.1. Achieved goals L 58
8.2. Plans for further research 59
Bibliography 60

Appendix A. Publications 63

1.1.

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

5.1.
5.2
5.3.

List of Figures

Overview of the ViroLab virtual laboratory 10
Architecture of the ViroLab virtual laboratory 23
Architecture of the security system L. 33
Architecture of the ShibldpCliClient and ShibldpClient 34
Architecture of the MOCCA Authenticator 35
Architecture of the Policy Distribution Point 36
Authentication with the ShibIdpCliClient 37
Deployment of MOCCA component 38
Checking local MOCCA policies i 38
Changing MOCCA policies with PDistP Administrator Panel 39
ShibldpClient and ShibldpCliClient UML diagram 42
MOCCA Authenticator UML diagram 44
Policy Distribution Point UML Diagram 46

2.1.

3.1.
3.2.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

List of Tables

Information that is a part of the X.509 public key certificate 16
Assets and threats 25
Assets and threats (continuation) L. 26
ShibldpClient security audit results 53
MOCCA Authenticator security audit results 53
MOCCA Policy Distribution Point 54
ShibldpClient benchmark results 54
MOCCA Shibboleth Authenticator benchmark results 55
PDistP benchmark results 55

Acronyms

AA Attribute Authority

ACRL Attribute Certificate Revocation List

AES Advanced Encryption Standard

ASN.1 Abstract Syntax Notation One

CA Certificate Authority

CRL Certificate Revocation List

DB Database

DES Data Encryption Standard

EMI Experiment Management Interface

EPE Experiment Planning Environment

GSEngine GridSpace Engine - ViroLab run-time environment
GSI Grid Security Infrastructure

H20 middleware platform for building distributed applications
HIV Human Immunodeficiency Virus

HMAC Keyed-Hash Message Authentication Code
HTTP Hypertext Transfer Protocol

HTTPS HTTP over TLS (previously SSL)

IDE Integrated Development Environment

IdP Identity Provider

IT Information Technology

ITU International Telecommunication Union

ITU-T Telecommunication standardization sector of ITU
JDBC Java DataBase Connectivity

LDAP Lightweight Directory Access Protocol

MD5 Message-Digest algorithm 5

MOCCA CCA compliant framework

PDistP Policy Distribution Point

PKI Public Key Infrastructure

RDBMS Relational Database Management System

RSA asymmetric cryptographic algorithm invented by R. Rivest, A. Shamir and L. Adleman
SAML Security Assertion Markup Language

SHA Secure Hash Algorithm

ShibldpCliClient command line interface for ShibldpClient
ShibldpClient library providing non-Web access to a Shibboleth IdP
SOAP Simple Object Access Protocol

SP Service Provider

SSL Secure Sockets Layer

SSO Single Sign-On

TCP Transmission Control Protocol

TLS Transport Layer Security

Tripple-DES variation of DES

TTP Trusted Third Party

Ul User Interface

UML Unified Modeling Language

X.509 ITU-T standard describing Public-key and attribute certificate frameworks

Chapter 1

Introduction

This chapter introduces a notion of IT systems security emphasizing its impor-
tance for all types of such systems. Later it describes a Virtual Laboratory on a basis
of the ViroLab, showing its properties that are quite unique from a security point of
view. Finally it provides a motivation for the work as well as its goals.

1.1. Security of IT Systems

All types of IT systems are potentially vulnerable to various security risks. A
number of threats is heavily correlated to a number of people with access to the
system. Despite this, even internal systems, completely isolated from the Internet
are vulnerable and might be attacked from inside. For example some kind of malware
like a virus might be transmitted from the outside world, on an employee’s laptop.
For that reason, even a system closed to external users must be well patched and
constantly monitored for security flaws. In the case of systems that are widely open
to general public via the Internet, like ViroLab, it is crucial to protect them against
various risk factors both external to the system (from people not being users of the
system), as well as the internal ones (from malicious users). In addition to that,
ViroLab is a distributed system and it’s components may run on multiple nodes.
This type of an architecture considerably complicates the security infrastructure
as it requires to introduce a secure mechanism of credentials delegation between
the nodes. Obviously, an inadequate protection of such delegated credentials would
create serious security vulnerabilities in the system. Finally, as ViroLab is formed
by multiple separate partners, its security system must be able to grant access to
resources supplied by any partner not only to its users but to other partners users as
well. To achieve this goal it is required to use a specific type of a security framework,
known as the federated security system.

1.2. The ViroLab as an Example of a Virtual Laboratory

1.2. The ViroLab as an Example of a Virtual Laboratory

This thesis is a description of the work, that has been done to provide security
solution for the ViroLab virtual laboratory - software enabling users to develop and
run in-silco experiments [3]. Overview of the laboratory is shown in Fig. 1.1. In par-
ticular it covers HIV treatment related area aiming for improvement of clinical results
by gathering knowledge on subjects like resistance of particular HIV mutations to
specific drugs or potentially harmful interactions between various medications used
to slow down development of AIDS [4]. This knowledge might be later used by the
software to support medical doctors in making decisions about the best course of
treatment. This goal requires a large number of users from various institutions and
many disciplines like of course computer scientists but also non-IT specialists like
virologists or medical doctors. This variety of organizations and users specializations
imposes specific requirements on all the components including the security system.
In addition to already described need for a federated system, it was necessary to
design system that is user-friendly enough for convenient work of all partners, in-
cluding those whose primary specialization is not related to computer science. The
ViroLab has a layered infrastructure. It’s core, the GSEngine [5] software, is an
example of VL run-time Environment [6] that uses computational services and data
sources running on the Grid infrastructure and provides services to the users through
dedicated interfaces. The system must ensure security on all the mentioned levels
ranging from the infrastructure (secure communication, guidelines for maintainers
of system software), through providing security for service layer and the GSEngine
itself and finally providing UI for the users.

Security Framework
[User Interface

Runtime Services
Computatio- Data
nal Services Sources
[Infrastructure]

Figure 1.1. Overview of the ViroLab virtual laboratory showing it’s layered structure
composed of: the Grid infrastructure, various computational and data services, run-time
environment and user interface protected by the integrated security framework

[Virtual Laboratory]

10

1.3. Motivation

1.3. Motivation

As described earlier in this chapter, the ViroLab virtual laboratory requires a
unique security infrastructure. The author had the opportunity to be responsible
for key security components in the project. The required solution had to on one
hand to support complex federated framework for all the partners, and to protect
various software components while on another hand to be friendly for potential
users, especially domain experts that are not computer specialists. Because of the
constrains of ViroLab, and a lack of sufficient alternative solution it was decided
to analyze the one already chosen for Web related part the project. The purpose
of this activity was to determine which requirements it meets and what kind of
customizations were needed. This information could provide a way to design and
implement the missing components and to integrate them with existing external
ones into a complete security solution for the virtual laboratory.

1.4. Goals of the thesis

Work done in this thesis was focused on creation of secure yet user-friendly
security solution that would provide functionality required by virtual laboratory
described here. This requires achieving the following goals:

1. analysis of existing security solutions and frameworks,

2. identification of elements that might be useful in creation of the complete solu-
tion,

creation of a formal threat model for the infrastructure,

enumeration system requirements,

discussion of the system architecture,

design and implementation of following system components: ShibldpClient, ShibId-
pCliClient, MOCCA Shibboleth Authenticator, Policy Distribution Point (PDistP),
its client and administrator’s panel as described bellow,
7. performing system validation and evaluation.

o Ot W

ShibIdpClient is a library that might be integrated with other external stand
alone software (like the EPE [7]) components to provide access to Shibboleth [8] IdP
without a need to use any web browser. It also has to be integrated with simple
command line interface to create tool (ShibIdpCliClient) enabling users that prefer
this type of interface rather then a web portal.

MOCCA Shibboleth Authenticator is an authenticator for H20/MOCCA |9,
10] supplementing them with a support for a Shibboleth credentials, in order to
secure access to MOCCA installations used in the ViroLab.

Policy Distribution Point (PDistP) is an XML-RPC [11] based service used
to distribute authorisation policies to dispersed H20 kernels acting as containers for
a MOCCA.

MOCCA Policy Distribution Point Client is a tool running on MOCCA
nodes that is being used to update policies based on information supplied by the
PDistP

11

1.5. Summary

Administrator tools for the PDistP is a web based software that enable
system administrators to setup central policies for the MOCCA installations.

1.5. Summary

This chapter emphasized need for the solid security solutions for all types of I'T
system. It also introduced the virtual laboratory and the motivation for complex
federated security solution, which defined the goals of the thesis. Issues introduced
here are addressed in subsequent chapters as follows: chapter 2 analyzes existing
security solutions like cryptographic algorithms, protocols, standards and frame-
works; chapter 3 focuses on creation of a threat model [12], requirements and
discussion of the chosen solution; chapter 4 presents architecture of the security
system; chapter 5 shows the system design; chapter 6 is devoted to the aspects of
implementation; chapter 7 presents the validation and evaluation of the solution
and chapter 8 the conclusions and further work.

12

Chapter 2

Analysis of Security Solutions

This chapter begins with the description of basic cryptographic algorithms which
are essential for any IT security measures. Then, it moves to the solutions and
standards based on those algorithms, and at the same time being building blocks
of the complete security frameworks, which are described in the last section of the
chapter.

2.1. Cryptographic algorithms

Algorithms described here that are relevant to the subject of this thesis are
divided into five sub-groupings: symmetric, asymmetric, key exchange, hashing and
keyed-hash message authentication code.

Symmetric cryptography provides a relatively fast encryption/decryption al-
gorithms, that however require prior knowledge of a shared secret by all parties.
Most notable examples are currently obsolete DES and Triple-DES [13] as well as
AES [14] that took their place.

Asymmetric cryptography supplies much slower encryption/decryption and
signature algorithms. It features use of a public/private key-pair in place of shared
secret enabling users to use it without a need to exchange any confidential informa-
tion. By downloading public key any entity is able to encrypt or verify its owner’s
signature, but only the owner has a private key that might be used to decrypt or sign
the message. These algorithms are frequently used in the process of establishing a
shared secret that might be later used for faster encryption/decryption with a help
of the symmetric algorithms. A standard example of this type of algorithms is the
RSA [15].

13

2.1. Cryptographic algorithms

Key exchange algorithms might be used to ensure a secure exchange of a
shared secret required by symmetric cryptographic algorithms. One of the commonly
used examples is a Diffie-Helman [16] algorithm.

Cryptographic hashes are used, both to derive password hashes preventing
attacker to decrypt stored passwords, as there are no reverse algorithms, as well as
to generate a short message that might be digitally signed to protect the integrity
of a larger block of data. Very well known example, but currently obsolete due to
it’s weakness is MD5 [17]. Currently it has been replaced in newer systems by SHA
family algorithms [18] (SHA-1 and now sometimes also SHA-2).

Keyed-Hash Message Authentication Code (HMAC) is a method of gen-
eration Message Authentication Code (MAC), protecting message origin as well as
its integrity [19].

Most representative examples of algorithms currently used, and not being obso-
leted were chosen and described in more details later in this section.

2.1.1. Advanced Encryption Standard

The Advanced Encryption Standard (AES) is NIST approved [14] version of a
block cipher originally known as Rijndael. It operates on 128-bit blocks and 128-bit
(AES-128), 192-bit (AES-192) or 256-bit (AES-256) keys. The strength of this
algorithm has been confirmed both in original NIST document (which pronounced
AES suitable to protect non-classified sensitive information) as well as later by

US National Security Agency (as suitable to protect classified information up to
SECRET level for AES-128 and TOP SECRET for AES-192 and AES-256) [20].

2.1.2. RSA algorithm

RSA is an asymmetric encryption and signing algorithm originally created by
R.L. Rivest, A. Shamir, and L. Adleman . Most recent version of the standard build
on this algorithm is published as a PKCS#1 standard [15]. RSA features a pair of
keys: a public and a private key.

A public key is used for encrypting data and verifying signatures; it includes a
modulus n being a product of 2 large prime numbers p and ¢ (in original algorithms;
further standards prove that it is faster but also safe to use more then 2 prime
numbers 71 to r, where u > 2 - so called multi-prime RSA) and a public exponent
e that satisfies: 3 <e <n—1 and ged(LCM(p—1,¢q—1)) =1 or ged(LCM (ry —
1,...,7,—1)) = 1 where gcd is a greatest common divider, and LCM least common
multiple.

A private key is used for decrypting data and signing it; it includes the modulus
n, the same as the public key and a private exponent d. The following condition
must be met: ed = 1(mod(LCM(p —1,q —1))) or ed = 1(mod(LCM (ry, ..., 1))

This algorithm is capable of performing both encrypting/decrypting of data as
well as signing/verifying signatures.

14

2.2. Security standards and protocols

2.1.3. Diffie-Helman Key Exchange

Diffie-Helman Key Exchange [16] algorithm has been created as a method allow-
ing a secure exchange of a secret between communicating parties so that it cannot be
eavesdropped by any malicious third parties. This algorithm prevents intercepting
the key directly, however it does not ensure the authentication of communicating
parties, being vulnerable to the man-in-the-middle attack. This is the reason why
it must be accompanied by a solution providing authentication like some kind of
signing algorithm (e.g. RSA) and a secure public key distribution method (like a
Public Key Infrastructure [21]). Despite that Diffie-Helman Key Exchange algorithm
is still not redundant in this scenario as it eliminates a need for direct exchange of
a symmetric key (even encrypted one, e.g. by directly encrypting the key with the
RSA). In this way this solution provides property known as perfect forward secrecy.

2.1.4. Secure Hash Algorithms

Secure Hash Algorithms are the group of four algorithms (SHA-1 and SHA-2
family of SHA-256, SHA-384 and SHA-512) described in Secure Hash Standard [18].
Those algorithms allow a user to compute a message digest, its fixed length repre-
sentation that is unique for each message with a very high probability. This low
probability of collision (the case in which two different messages have the same di-
gest) allows using this type of algorithms to ensure message integrity, as any change
in the message will most likely cause change of a digest.

2.1.5. Keyed-Hash Message Authentication Code

This type of code [19] combines s secret key with a cryptographic hash algorithm
(like SHA). This combination ensures both message integrity as well as the authen-
ticity of its source. The RFC 2104 [22] suggests a naming convention depending on
a used hash function in form HMAC-hash name (e.g. HMAC-SHAL).

2.1.6. Summary

The algorithms described above play a crucial role in solutions described further
in this thesis. Encryption/decryption algorithms are of course required by any secure
transport protocol to provide the confidentiality of transmitted data. The signature
algorithms and HMAC codes accompanied by the cryptographic hash algorithms
are required to provide a method of ensuring authenticity and integrity of the trans-
mission. Finally if the algorithm requires to exchange a common key (like in case of
symmetric algorithms) mechanisms providing secure key exchange are mandatory.

2.2. Security standards and protocols

After describing algorithms being the basis for the security solutions, this section
aims to show standards and solutions itself that might be considered as building
blocks for complete security frameworks described later in this chapter.

15

2.2. Security standards and protocols

2.2.1. Public Key Infrastructure

Public Key Infrastructure (PKI) is a method that allows to establish a mutual
trust relationship between communicating parties without a need for any previous
contact (like exchange of shared credentials) between them. It is accomplished by
introducing so called trusted third party (TTP) [23] that could confirm the authenti-
cation information provided by communicating parties with the help of asymmetric
cryptography. They might be signed by the TTP with it’s private key. This infor-
mation along with other like validity period and peers public key (useful in further
communication to validate its signatures and to encrypt data directed toward them)
is usually enclosed in a standard format like X.509 public-key certificate [21]. Ad-
ditionally, PKI also supports the infrastructure for invalidating compromised or no
longer needed certificates with the help of a Certificate Revocation List (CRL). Of
course for PKI to function properly TTP certificates must be already known and be
trusted by all communicating parties.

2.2.2. Public-key certificates (X.509)

Public-key certificates and Certificate Revocation Lists (CRL) along with at-
tribute certificates, its revocation lists (ACRL) and relevant authentication services
are the part of the X.509 ITU-T standard [21]. These particular certificates carry
mandatory data required by the PKI infrastructure including owners authentication
information and the public key confirmed by Certificate Authority (CA) signature.
Public-key certificates are encoded as an ASN.1 [24] binary file. They contain infor-
mation presented in Tab. 2.1 (digitally signed with the CA’s private key).

Field name Field description

version certificate version - currently integers

from 0 (v1) to 2 (v3) are valid; some fields are
valid only for specific versions of the certificate
serialNumber certificate serial number assigned by the issuer
signature information about the algorithm used to sign

a certificate (algorithm) and optionally algorithm
parameters (parameters)

issuer name of the certificate issuer (CA)

validity sequence of two dates marking a beginning (notBefore)
and end (notAfter) of this certificate validity period

subject name of the certificate subject (owner)

subjectPublicKeyInfo sequence of Algorithmldentifier (containing used

algorithm and optional parameters) for subject’s
public key and the public key itself

issuerUniqueldentifier (since v2) optional identifier of the issuer
subjectUniqueldentifier | (since v2) optional identifier of the subject
extensions (since v3) optional extensions that might be used

to add other information not covered by standard
fields like alternate subject names or non critical
extensions used by GridShib technology described later
in subsection 2.3.4

Table 2.1. Information that is a part of the X.509 public key certificate [21] with descriptions
of all certificate fields

16

2.2. Security standards and protocols

2.2.3. Transport Layer Security

A Transport Layer Security (TLS) [25] is a successor of a Secure Sockets Layer
(SSL) protocol [26]. The protocol might be used to a establish secure communication
over a reliable transport protocol, such as TCP. It provides confidentiality using
symmetric cryptography algorithms (like AES) to keep the privacy and the integrity
of transmitted data with the help of HMAC codes.

It must not allow the attacker to access or modify the message either by simple
eavesdropping or more elaborate methods (e.g. a man-in-the-middle attack).

TLS is a layered protocol, and its lowest Record Protocol is responsible for data
fragmentation, optional compression / decompression, encryption / decryption and
HMAC calculations. It’s functionality is used by following four higher level protocols
defined by the standard (and possible other extensions):

1. The handshake protocol - is used to:

e choose algorithms that might be used during the connection by both sides,

e exchange of parameters for agreed algorithms,

e server authentication or optionally mutual authentication of server and client,

e exchange of keys used for symmetric algorithms during communication; key
exchange might be performed either directly by sending generated key en-
crypted with RSA or with help of Diffie-Helmant key exchange algorithm in
unauthenticated version (if authenticity of server is ensured) or additionally
authenticate with the help of signing algorithms (RSA).

2. The alert protocol is used to communicate the discovery of an abnormal situation
to another side of the connection at any point. Alerts are divided into two groups
based on the severity:

e fatal — in the case of this error the receiver and the sender must immediately
close communication and forget all security information exchanged during
the failed session,

e warning — communication could continue normally (sender shouldn’t close
connection after sending this alert) however receiver might decide to close
the connection; in this case it should send it’s own fatal alert before closing
the connection.

3. The change cipher spec protocol - this message is used to signal switch to the
newly generated cipher specification and keys.

4. The application data protocol - this is not TLS sub-protocol, but arbitrary data
depending on the third party protocol using TLS (transparent to it).

2.2.4. Security Assertion Markup Language

Security Assertion Markup Language (SAML) [27] is a XML based security asser-
tion standard. Security information might be exchanged between parties providing
identity - called Asserting Party (SAML1.1) or Identity Provider (SAML2.0) and the
one receiving it - called Relaying Party (SAML1.1) or Service Provider (SAML2.0).
The Standard specifies assertions, protocol, bindings and profiles.

17

2.3. Security frameworks

The Assertions carry statements provided by SAML authority such as authen-
tication information, attributes or authorization decision.

SAML protocol is simple a request/response mechanism used in assertions
exchange. Party that wants to get an information sends a <Request> SAML element
with and gets a <Response> element containing the requested information.

Binding is used to map SAML request/response mechanism into some kind
of communication or messaging protocol. The examples might be mapping to
SOAP [28] over HTTP or binding using HTTP Redirect mechanism.

Profiles describe methods for conveying information between sites. For example
they might be carried as a part of an URL (browser/artifact profile) or as a POST
request (browser/POST profile).

To ensure the confidentiality of transmitted assertions they should be protected
with a help of transport layer encryption protocol such as TLS.

2.2.5. Standards and solutions summary

This part described various standards and solutions that make use of previously
presented algorithms and on the same time that provides functionality required by
security frameworks described in following section. X.509 public key certificates are
a basis for such common Grid security technologies as Grid Security Infrastructure
(GSI) [29]. SAML is fundamental technology used by the Shibboleth [8] framework
which also needs TLS to protect privacy of the transmitted data.

2.3. Security frameworks

This section presents various security frameworks. First a complete authentica-
tion/authorization solutions like GSI and Shibboleth are described, then two frame-
works enabling interoperation in heterogeneous security infrastructure - ShibGrid
and GridShib and finally an identity management solution - OpenlD.

2.3.1. Grid Security Infrastructure

Grid Security Infrastructure (GSI) [29] is a security system used in a Globus
Toolkit. It is based on PKI, featuring authentication based on public-key cer-
tificates as defined by the X.509 standard [21]. Fach user must poses own grid
certificate signed by a CA trusted by all parties, for example by European national
grid CA listed by EUGridPMA [30]. To enable quite secure credential delegation
this solution uses notion of so-called proxy certificates. Such certificates should have
reasonable short validity period (relatively to permanent certificates) to minimize
the chance of its private key being compromised, as it is not encrypted and is
attached to the proxy. They are signed by the owner of the Grid certificate with
his/her private key rather then directly by the CA. This technology were taken
under consideration as supplementary to the Shibboleth for non-web scenarios (as
it is very well suited for such use cases) if the Shibboleth itself wouldn’t be enough

18

2.3. Security frameworks

to meet all requirements. Eventually it was decided that it wasn’t a case in this
situation.

2.3.2. Shibboleth

Shibboleth [8] is a federated Single Sign-On framework supporting authentication
and enabling creation of attribute-based authorization solution. It is based on SAML
providing secure exchange of authentication and attribute assertions. Its main goals
are to allow access for members of various institutions maintaining their own user
databases, as well as to provide scalability and fault tolerance. Finally, it allows
user authorization even without revealing any personal information if such level of
privacy is needed.

The access for members of different institutions keeping separate users’ databases
is provided by the notion of a Home Organization located at each of them. A
part of a Home Organization (HO), an Identity Provider (IdP) is responsible for
maintaining its credential and attributes database and authentication system. An
IdP consists of a Single Sign-On (SSO) part responsible for assigning handles - short
term authentication tokens - to users, and an Attribute Authority (AA) responsible
for releasing attribute assertions. Other elements of a HO - Service Providers are
responsible for providing all required services. The Home Organizations that need
to cooperate formulate a so-called federation that provides trust relations between
them and enabling it’s users to access Service Providers across the whole federation
without a need for a separate account.

The described nature of HOs increase scalability, of the federation as adding a
new institution requires just adding of a new HO, and do not require to increase a
load on the authentication services of current members. Also the fault tolerance is
increased as failure of the element of any HO wouldn’t block access for all users, just
for the users of the affected HO. If even higher level of scalability or fault tolerance
is required it is possible to create a spare HO for single institution.

Shibboleth can provide high level of privacy through attributes that can be used
to authorize users, without a need to disclose private information. It is sufficient in
most cases to just tell the authorization system that a user is holding a given role
at specific Home Organization, to allow it taking the authorization decision.

The Shibboleth has been already used in Web-based part of the ViroLab project
as it meets all the requirements for such use case. The main goal of the work
described in this thesis was to asses if it is feasible to use it alone for all the parts
of the ViroLab security infrastructure (including non-web tools and services), or is
there a need to combine it with other security frameworks. Next, it was necessary
to find out, design and develop all required customizations of the chosen solution to
meet the requirements. The analysis and work described here is based on version
1.3 of the Shibboleth that has been chosen for the ViroLab project because it was
the most recent stable version at that time. At present, despite existence of version
2.0, version 1.3 is still considered as stable and fully supported. Of course, most of

19

2.3. Security frameworks

the work is independent from the specific software version and just it will need some
minor modifications to adapt it to the newer one when it is necessary.

2.3.3. ShibGrid

This UK project aims at integration of traditional GSI model based on X.509
certificates with a Shibboleth infrastructure [31]. Its goals were to support both
users holding standard grid certificates issued by a national CA as well as users with
just Shibboleth accounts.

The former ones could use the project portal to store and retrieve proxy certifi-
cates in MyProxy [32] and restrict access to them with the Shibboleth, so in turn
they could later use their Shibboleth accounts to access all grid resources.

The latter could get so-called low-assurance grid certificates based just on their
Shibboleth attributes. Such certificates allow them limited access to the grid infras-
tructure without obligation to get real grid certificates.

This solution was analyzed as an alternative to using Shibboleth directly for
non-web software, but it doesn’t meet all the requirements. In particular it requires
that user accesses the portal first, which in the case of stand-alone tools (like the
Experiment Planing Environment [7]) is not the best solution.

2.3.4. GridShib

This is another solution [33] aiming at the GSI-Shibboleth integration, main-
tained by the institutions responsible for development of both technologies. Grid-
Shib uses MyProxy [32] online CA to issue short-lived certificates instead of standard
proxy-certificates for users with Shibboleth accounts and without real grid certifi-
cates. The technology contains a few modes of operation designed to support the
generation of such short-lived certificates with embedded as a non-critical extinction
of the X.509 certificate Shibboleth assertion - either the authentication assertion
with the handle allowing a Grid service to request the attributes, or the attribute
assertion itself. For this reason and since this solution could function without a web
browser it was considered as a good choice to augment Shibboleth in a ViroLab
if Shibboleth-only solution wasn’t sufficient. Even though in the case described
in the thesis it wasn’t used, such a mixed solution might be required in further
development.

2.3.5. OpenlD

OpenlD is a very popular open identity management framework. It allows users
with OpenlD credentials from any of the providers, to access various websites. How-
ever, it cannot supply a complete solution for user authentication for projects like
ViroLab, as owners of this type of credentials will still need to be registered in some
kind of local user databases for each service. This would be quite complicated in
comparison to the federated authentication provided by Shibboleth or even by GSI
based solutions. The complexity would be necessary because in contrast to Shibbo-
leth, OpenID IdPs are by design not controlled by any kind of federation that would

20

2.4. Summary

ensure validity of user information. In fact anyone could create such a provider
and anyone could register there. So no user can be trusted to access the production
resources just on the basis of the fact that he/she is holding some OpenlD credential.
However, in further enhancement of the virtual laboratory infrastructure OpenlD
might be used to simplify the application for access to the grid infrastructure (user
registration) or even to give a very limited access to some demonstration part of
the infrastructure to users with a valid OpenlD credentials (possibly with some
limitation to more trusted IdPs).

2.3.6. Summary of Security Frameworks

This section described various security frameworks that were considered as main
or supplementary solutions. None of the solutions guaranteed to provide all the
required functionality out of the box, however Shibboleth seamed the most promis-
ing one. Next parts of the thesis were partially devoted to assess what kind of
modification it requires, and if it could be used alone, or if enhancements with other
described solution were needed.

2.4. Summary

In this chapter, various cryptographic algorithms were analyzed including en-
cryption (AES, RSA), hashing (SHA), key exchange (Diffie-Helman) and for gen-
eration of Keyed-Hash Message Authentication Code. These algorithms could be
used by subsequently described standards such as PKI and SAML as well as TLS
protocol. Next frameworks based on them like GSI, Shibboleth, ShibGrid, GridShib
and OpenlD were presented. Finally conclusions were drawn, that rest of the work
should be focused on analyzing, designing, implementing, validating and evaluating
the solution that would augment Shibboleth to provide seamless security mechanism
for a non-Web part of the system.

21

Chapter 3

Threat Model and Requirements

This chapter is focused mainly on discussing various system requirements both
strictly related to the security as the threat model as well as other generic func-
tional and non-functional requirements. Apart from the security requirements, the
presented threat model enumerates assets protected by the system as well as threats
against them, and also possible attack scenarios that need to be prevented. Finally,
this chapter provides information about the chosen solution (especially in relation to
the requirements) and customizations it required.

3.1. Introduction

The solution analyzed here provides security for the ViroLab virtual laboratory,
solution for in-silco experiments shown on Fig. 3.1. As it is presented there Vi-
roLab utilizes resources provided by the Grid, groups of computers connected by
local network forming a cluster or single machine. This resources provides ability
to run various computational services such as the plain old jobs submitted to the
Grid but also Web Services and components, as well as data services like those
provided by DAS [34] or regular databases. Based on provided services the VL
run-time environment [5] is able to execute experiments to provide the core function-
ality. Experiments could be developed by experiments developers using dedicated
Eclipse [35] based platform called Experiment Planning Environment (EPE) and
used by Scientists and Clinical Virologist with the help of user friendly web-based
tool called Experiment Management Interface (EMI) [7].

The solution that provides computational services that was especially adressed
in this thesis is the MOCCA [10]. It is a framework that could run distributed com-
ponents. To provide it with security mechanism compatible with the requirements

22

3.2. Threat Model

of the ViroLab, the new authenticator for H20 [9] (container used to run MOCCA
components) pluggable authenticator module had to be created.

- e :
Users 52 Experiment % Scientist i | =
. developer) :
Experiment | Experimen ViroLab Portal [pecision Suppart
Interfaces || Planning plan (incl. Experiment | gy ey
Environment Management Interface)

Virtual Laboratory runtime components tn
(Required to select resources and execute experiment scenarios) Gl

Runtime

(WS, WSRF, components, jobs) (DAS data sources, databases)

Services || Computational services@ Data services @

Infrastructure Grids (EGEE), Clusters, Computers, Network

Figure 3.1. Architecture of the ViroLab virtual laboratory showing its components: in-
cluding infrastructure, computational and data services provided through various tech-
nologies, run-time environment, EPE and EMI interfaces and different groups of users

3.2. Threat Model

This section describes analysis of security requirements that must be met by
the virtual laboratory, the assets protected by the security infrastructure and the
threats against them, as well as enumerates possible attack scenarios and methods
that should be used to prevent them.

3.2.1. Security Requirements

Basic security requirements for this VL system are authentication, credential
delegation, authorization, confidentiality, integrity, availability and non-repudiation.

The authentication solution needs to ensure that the user is who s/he claims
to be. Additionally, as mentioned already VL requires to be provided with a Single
Sign-On mechanism for all the services.

Credential delegation is specific for the distributed system. It requires that
user’s software can be run on various nodes which in turn prompts the need to safely
delegate user’s credential to each following nodes after the authentication to the first
one.

Authorization needs to control access to the services by verifying if a user is
authenticated and has required attributes. As it has been already described this
type of the authorization mechanism is required by the virtual laboratory.

Confidentiality is needed as the access to transmitted as well as stored data
including experiments, results, users credentials and attribute must be kept private.

All the elements mentioned above must be also safe from being tempered with, as
it might lead to a breach of system security or creation of phony experiment results.
This prompted the need to ensure integrity of stored and transmitted data.

23

3.2. Threat Model

Sufficient availability must be provided as any interruptions (e.g. those caused
by some kind of a denial of service attacks) would cause problems for users and might
lead to lose of some computational results.

Non-repudiation is also required as it must be possible to prove who uploaded
the experiment in case some kind of malicious code were uploaded.

3.2.2. Assets and threats

This section describes assets such as medical databases, user databases, experi-
ments scripts and results as well as computational and network resources that should
be protected by the system. It also shows threats against this resources related to its
theft, destruction or possible abuse for criminal purpose. Mentioned here informa-
tion is presented in a Tab. 3.1 and Tab. 3.2. The most dangerous would be of course
possibility to alter user database as it may give the attacker unlimited access to all
the resources. Also ability just to read this database might lead to similar results
if the attacker could access passwords hashes. Passwords are hashed with already
described strong algorithm (SHA1) and a so-called salt is added before hashing to
prevent usage of the Rainbow Tables [36] to get plain-text passwords much faster
then with a brute force search. Despite that it still might be feasible to use brute
force to crack some of these passwords especially if the attacker could acquire access
to large (e.g. distributed) computational resources. Also computational and network
resources are quite critical as the former might be used for mentioned here password
cracking and the latter could allow to perform very dangerous Distributed Denial of
Service attack from the VL network.

3.2.3. Attack scenarios

The main goal of a security infrastructure is to protect the system from various
attack, that might be directed toward it [37]. This section presents results of an
analysis of the most likely attacks and comments how the system might be designed
to stop them.

Plain-text eavesdropping - the simplest attack, requiring that data are being
sent without encryption; To prevent this attack all connection that are not suffi-
ciently secured at lower level must be encrypted either at the transport level (e.g.
via TLS [25]) or at the message level.

Man in the middle attack - even encrypted transmission isn’t always safe
as someone might try to establish a connection with both communicating sides
implying to each of them that s/he is the opposite one. That way, if successful,
the attacker would be able to decrypt analyze, or modify and re-encrypt all the
communication. To prevent such attack, a well configured PKI [23] is needed with
all the CA certificates securely distributed so no fake certificates could be trusted
as legitimate ones.

Password cracking - an attacker might try to guess users passwords either
using a dictionary to check if passwords are common phrases or Rainbow Tables [36]
if hashes were unsalted or by exhaustive search of all valid characters combinations

24

3.2. Threat Model

Assets

Descriptions

Threats

Medical databases

This category contains
various medical data

like types and mutations
of HIV, drugs and its
effectiveness for specific
mutations and interac-
tions. This data are ano-
nymized to make them less
sensitive, but they are
still valuable for poten-
tial attacker.

The attacker might
try to steal a data
or tamper with them
in some way.

The second case may
lead to further co-
ruption of calcula-
ted results

The attacker might
also try to destroy
the data.

User databases

Credentials along with
attributes are being kept
in LDAP database.

The biggest threat
against this type
of data is tamper

that might lead to
entering illegiti-
mate credentials or
attributes opening
the system for the
attacker or escala-
ting privileges of
current user.

Theft of the data
may allow password
hashes cracking or
at least leak of
personal data.

Table 3.1. Table enumerating assets stored by the system that need to be protected [37].
Detailed descriptions as well as threats against those assets are included

(so-called brute force method). Such search will be much easier if the attacker posses
database of password hashes, even though s/he cannot directly decrypt them (as
cryptographic hashing functions don’t have reverse functions by definition) however
it will enable him/her to validate password candidates without a connection to the
system, saving time and risk of blocking such repeated connection attempts. It is
highly important to ensure that users do not have weak passwords (short ones or
based on words present in dictionaries), because a password complicated enough
would make the highly complex brute force attack infeasible. It is also important to
use the salted hashed and to protect the credential databases containing password
hashes.

Phishing [38] - is an example of a social engineering technique aimed to trick
a legitimate user of the system to reveal his/her credentials to the malicious party.
Most common cases involve sending the user the e-mail claiming that for some reason
s/he need to go to a given (attacker’s) website and give his/her password, otherwise
something bad will happen (e.g. an account is going to be blocked). Usually such
a web-page well mimics the real one (in case of a ViroLab it might be e.g. the
main Portal or the stand-alone version of Experiment Management Interface). It
is crucial to instruct the users to watch out for such fake sites, by checking URLs
and certificates presented by web pages, and not to give a password even to people
claiming to be system administrators.

Pharming [39] - in opposition to phishing, this technique is based not on social

25

3.2. Threat Model

Assets Descriptions Threats

Experiment scripts Experiment scripts are Experiments might
used for computations du- | be stolen or tam-
ring in-silco experiments pered with. Like in
They contain valuable the case of input
intellectual property data from medical
rights. databases an illegal

modification might
lead to the genera-
tion of faulty res-

ults.

Experiment results Results are generated Attacker might try
during in-silco experi- to steal, modify or
ment. destroy them.

Computational resources | Distributed system being These resources may
the backend for the VL be abused by mali-
engine is also valuable cious party, for
for the attacker. activities such as

password cracking
or decrypting enc-
rypted data.

Network resources In a similar way to The attacker might
hardware resources Viro- try to use network
Lab posses huge network resources after ob-
resources that could be taining access to
a tempting target for the the system to perf-
attacker. orm Denial of Serv-

ice attacks on the
external targets.
On the other hand
s/he may try to use
own resources to
attack ViroLab net-
work resources.

Table 3.2. Table enumerating assets stored by the system that need to be protected [37].
Detailed descriptions as well as threats against those assets are included (continuation)

engineering, but on redirecting communication by supplying fake DNS query results.
A social engineering however might be used to install malicious software on users’
computers that will alter valid DNS resolver addresses. After being redirected,
the user might be attacked similarly to phishing, so the user might be directed to
illegitimate website pretending to be entry point to the system and asking for a
password. The attacker might also try to redirect other software to perform the
man-in-the-middle attack. In both cases care must be taken to ensure that both
DNS servers, as well as client machines are not compromised. Additionally in the
first case similar measures should be taken as in case of phishing, the second case
should not work unless conditions described in men-in-the-middle section are not
met.

Social engineering [40] (other then phishing) - in addition to very common case
called phishing, there are also other variation of this type of attack. All of them are
aimed not against the software or hardware but against users of the system. For
example a user might not necessary be asked to reveal his/her credential - instead
the attacker might ask him/her to access a web site with some interesting content, or
open e-mail attachment containing something either funny or shocking. Such action

26

3.3. Generic System Requirements

on the side of the user would result in installation of some kind of malware, that
might for example log user keyboard activities (especially passwords) or simplify
other attack like pharming (by replacing DNS configuration) or man-in-the-middle
attack (by adding illegitimate certificates to the list of trusted ones). Like in the case
of phising the only protection is to educate users not to trust such messages/offers.

Exploiting software vulnerabilities - attacker might also try to exploit vul-
nerabilities in installed software, either third-party (like web servers, LDAP servers
or RDBMSes) or custom created for the project by the author or others. To pre-
vent an attack against the third-party software it is needed to frequently check for
security announcements and keep software up to date and well patched. In the case
of custom software it is necessary to perform strict check of the created source code
for possible vulnerabilities and making sure that no vulnerabilities are present in
production system. If, despite that any are found, there is necessity to release and
install appropriate bug-fixes as fast as possible. In addition to that it is prudent to
perform a security audit of the installed software from time to time.

3.3. Generic System Requirements

This section enumerates functional and non-functional requirements for the se-
curity framework developed in the scope of this thesis, other then the basic security
requirements that already have been explained in details.

3.3.1. Functional Requirements

The system must provide following functionality: ability to store user credentials
and set of attributes, ability to provide authenticated access for non-web applica-
tions, authorization mechanism for MOCCA /H20, ability to store, look up and
update local MOCCA policies and providing administrator’s tool for policy distri-
bution mechanism.

System must provide means to store and modify both user credential used for
authentication, as well as data that might be used by the services for authorization.
Examples of such authorization data are users attributes.

Authenticated access for non-web applications must be provided (as functionality
for web portal was already provided by external partner). This element includes the
need for appropriate library and reference command line client for users preferring
this form of user interface rather then web site.

It was also necessary to augment MOCCA/H20 with functionality enabling
user authorization based on attributes provided by the external partner’s software
(ShibAuthAPI and ShibRPC) [37]. This module needs to dynamically assign users
with specific attributes to groups (like deployer, administrator) based on local set
of policies (specific for MOCCA/H20 part of the VL) providing additional fine
grained access control in addition to more coarse grained one provided by global
policies controlled by ShibAuthAPI.

The ability to store, look up and update local MOCCA policies was also needed.
This requires creation of solution that would allow distributed MOCCA nodes to

27

3.4. Discussion of the Chosen Solution

verify if it’s policies are up to date (in relation to the centrally stored ones) and
otherwise to download the new one. The system must allow easy centralized admin-
istration of them via dedicated tool.

3.3.2. Non-functional Requirements

There are also several non-functional requirements such as user friendliness, ef-
ficiency, scalability and maintainability.

User friendliness is especially important for parts of the system (tools) that are
dedicated for non-IT experts, like virologist or medical doctors. Security system
should try to keep them away from procedures that might be complicated for them
(like requesting or renewing certificates in the case of certificate based solutions
common in the Grid systems).

The system must be efficient, to ensure that time required for authentication and
authorization procedures as well as policy updating is short enough for the users of
the system.

Both off the shelf components used to build the base security infrastructure as
well as custom software that were written should be designed in the way that allow
scaling in the case of increased load.

Maintainability is needed so the designed system could be extended or modified if
either new requirements arise, like the need to incorporate new security frameworks,
or the current components became obsolete and need to be replaced by the new
versions (which is very important especially in the case of a security system).

3.4. Discussion of the Chosen Solution

The Shibboleth have been chosen as a single solution for the whole infrastructure.
This section is aimed to show the chosen solution in general, then describes how it
meets the requirements and finally mentions what customisations were required to
meet all of them.

3.4.1. Shibboleth as the Chosen Framework

When working on this thesis the constraint was that the solution must be inte-
grated with the Shibboleth elements that already were developed by other partners
of VL. Part of the task was to analyze if Shibboleth could be tuned and customized to
meet the requirements for non-web components developed at Cyfronet or whether to
choose a framework that could inter-operate with the Shibboleth if the former option
was infeasible. After performing the careful analysis of existing frameworks and the
requirements, it was decided that the Shibboleth is capable to support the whole
infrastructure. Consequently, the missing parts that needed custom solutions were
designed, implemented validated and evaluated. Finally, integration of these new
solutions and third-party software (including the one provided by external partners)
was performed.

28

3.4. Discussion of the Chosen Solution

3.4.2. Relation between the Solution and the Security Requirements

Shibboleth meets most of the mentioned security-related requirements and pro-
vides solutions helping to meet all of them. The following discussion shows how
each security requirement is being met by the chosen solution.

Authentication - Shibboleth provides a ready to use solution for authentication
of users in Web environment. In the case of non-web part of the infrastructure a
creation of custom solution was necessary as described later.

Credential delegation - is provided by delegating Shibboleth handles which
could be seen as a short lived credentials suitable for this task.

Authorization - Shibboleth provides for each authenticated user set of at-
tributes that are a good basis to authorize them for specific resources, based on
set a of policies. In typical web application the authorization is supported out of
the box. While specific needs of ViroLab Portal where addressed by external partner,
on the other hand authorization module for MOCCA (non-web application) needed
to be created from scratch as a part of this thesis.

Confidentiality - as required by guideline for Shibboleth IdP installation [41]
all the communication with it must be carried via the encrypted transport (TLS).

Integrity of the communication between components of the VL is also ensured
by the TLS. Additionally, all Shibboleth assertions holding authentication- and au-
thorization relevant data are digitally signed by the Shibboleth Identity Provider.

Availability - architecture of the Shibboleth as federated SSO solution is de-
signed in such way that each organization is maintaining it’s own components (in-
cluding IdP). This ensures that a failure of a single IdP doesn’t block access to all
users, just those from the same organization. There is also no problem with adding
redundant Home Organizations (containing IdPs) for single organization in the case
of Shibboleth.

Non-repudiation - each user from each organization is registered and logged
by services as a separate entity. If needed the Shibboleth logs from specific HO in
combination with other service logs might be used to identify him /her.

3.4.3. Relation between the solution and the functional requirements

Like in the case of the security requirements presented in the threat model, the
functional requirements are also directly met by the stock version of the Shibboleth,
or could be provided by some kind of customization.

The ability to store the user credentials and attributes is provided out of the
box by one of the back-ends used by the Shibboleth. In the case of ViroLab both
credentials and attributes are stored in a LDAP.

The authentication mechanism for non-web tools is provided by custom library
called ShibIdpClient and based on it command line tool called ShibIdpCliClient.
Other tools such as EPE also integrate with this library.

The authorization functionality for MOCCA /H20 is provided by a custom Shib-
boleth authenticator created specifically for this purpose. This authenticator enables

29

3.4. Discussion of the Chosen Solution

users to use their Shibboleth credential in a similar way as other previously sup-
ported, like GSI [42] or standard password-based credentials.

The ability to update local MOCCA policies is supported by a custom tool called
MOCCA Policy Distribution Point Client being a client to another tool that was
created for the project - MOCCA Policy Distribution Point, used to store, mange
and provide local MOCCA policies. The ability to centrally modify MOCCA policies
is provided by a web tool created for this purpose - MOCCA Policy Distribution
Point Administrator’s Panel.

3.4.4. Relation between the Solution and the Non-functional
Requirements

Similarly to the functional requirements, a non-functional requirements are ful-
filled by the chosen Shibboleth framework or derivatives based on it. As before in
case of other type of requirements the following describes how they are met.

User friendliness - web-based Shibboleth solutions are much friendlier for the
users then GSI based one. This is mostly because they do not force a user to apply
for any certificates. An access to whole infrastructure requires just to choose user’s
Home Organization and enter login and password as usual. A non-web authentica-
tion mechanism that were created to supplement Shibboleth framework is designed
to work in a very similar way. MOCCA authenticator requires just creation of a
simple XML configuration file. Its policies are being updated automatically from
PDistP, after it has been configured through simple Web tool.

Efficiency - all the components were successfully evaluated to be efficient enough
for the task. Detailed information on this subject are presented later in the sec-
tion 7.2.

Scalability is provided in case of Shibboleth IdP by already mentioned possi-
bility to add additional HOs.

Maintainability - architecture has been designed in a way supporting quite
manageable addition of another services and updating security solution to further
versions. Introduction of a new security framework will be more complicated as it
will require addition of some kind of gateway, but is possible and was even analyzed
with promising results in case of integrating with the GSI (subsections 2.3.3 and
2.3.4).

3.4.5. Required Customization

However the Shibboleth was found as a solution good enough as described above,
it required some customization. As part of the project and this thesis, the following
software components have been created: ShibldpClient, ShibIdpCliClient, MOCCA
Shibboleth Authenticator, Policy Distribution Point, it’s client and administrator’s
panel.

ShibIdpClient is a library which supports retrieving, authentication informa-
tion (a handle) from the Shibboleth SSO and is feasible for non-web tools like the Ex-
periment Planning Environment or mentioned below command line interface (CLI).

30

3.5. Summary

ShibIdpCliClient is a reference implementation of tool using ShibldpClient
library to provide authentication solution for users preferring system shell to the
web interface

MOCCA Shibboleth Authenticator is a component allowing authorizing
Shibboleth users the access to MOCCA framework based on their attributes and
policies with various access level

MOCCA Policy Distribution Point is a centralized entity storing policies
for the MOCCA Authenticator with XML-RPC [11] interface. Such an interface
allows access from tools based on various technologies.

MOCCA PDistP Client is a client for PDistP that might be installed on
MOCCA nodes to check if local policies are up to date and update them when
needed.

MOCCA PDistP Administrator’s Panel is Web application supporting
changing PDistP policies. Such a change is required when it is necessary to grant
or revoke access for users with some specific attributes.

3.5. Summary

This chapter was focused on describing requirements that must be met by the
proper security solution for VL, as well as describing characteristic of the solution
itself. The solution has been based on Shibboleth framework with some customiza-
tion for non-web solutions such as ShibldpClient for EPE and ShibldpCliClient,
and MOCCA Shibboleth Authenticator. The chapter also proves that such solution
meets all necessary requirements.

31

Chapter 4

Architecture of the Virtual Laboratory
Security System

The goal of this chapter is to depict the architecture of the whole security infras-
tructure, including the newly created parts and integration with third-party software.
Then each component of this infrastructure is described in more details, and finally
some notable samples of interaction between the elements of mentioned components
performing typical use cases are shown.

4.1. General Architecture

The general architecture of the security system is shown in Fig. 4.1. Such an
architecture provides the required functionality for the users. This section describes
in details how each element provides the mentioned functionality.

The Identity Provider (IdP) is a standard element of the Shibboleth infras-
tructure and is being used both by authentication and authorization components.

Its SSO component provides SAML authentication assertions transmitted over
HTTPS. ShibldpClient library is used to access SSO and provide authentication
token based on this assertion to the tools that require it, such as EPE or standalone
version of EMI as well as dedicated command line client (ShibIdpCliClient) that can
be used by more advanced users.

Another part of the IdP - the Attribute Authority provides SAML attribute asser-
tions to the external partner’s component - ShibAuthApi/ShibRPC that simplifies
access to attributes by providing lightweight XML-RPC based protocol. MOCCA
Shibboleth Authenticator is used to authorize users based on attributes returned for
a given handle.

32

4.2, System Components

Finally, the Policy Distribution Point provides a way to store (in MySQL database)
and maintain local MOCCA policies. These policies are later used by PDistP client
providing the ability to keep policies of MOCCA nodes up to date after they could
be modified using an administrator’s panel. PDistP like ShibRPC uses XML-RPC
protocol. The reason is that this protocol is lightweight, very portable to various
technologies and suitable for the task. It is already used by other ViroLab soft-
ware due to the usage of ShibRPC module, which eliminates necessity to add other
communication libraries for PDistP.

ShibldPCliClient EPE EMI standalone
ShibldpClient ShibldpClient ShibldpClient

IdP

SSO < Assertion (SAML/HTTPS)

>
>

XML-RPC_ PDistP

PDistP Client< XML-RPC;

SdLLH/WYS

XML-RPC Shib Authen-
ticator

PDistP
ShibRPC MOCCAM20 agmin. MYSQL

ShibAuthAPI

Figure 4.1. Architecture of the security system consisting of all mandatory components
including authentication and authorization solutions, external client components as well
as communication protocols.

4.2. System Components

This section explains in more details architecture of each component that has
been created for this thesis. It’s main goal is to break down the picture already
described into smaller parts.

4.2.1. ShibldpClient and ShibIdpCliClient

This section describes both ShibldpClient (a software library) and a tool that
uses it (ShibIdpCliClient). The architecture is shown on the Fig. 4.2

ShibldpClient connects via the HTTPS protocol to the Single Sign-On (SSO)
component of the Shibboleth Identity Provider being member of the appropriate

33

4.2, System Components

ShibldPCliClient
ShibldpClient

|dP
SSO

AA

SdLLH/TNVS

Figure 4.2. Architecture of the ShibIdpCliClient and ShibldpClient - command line tool
and library providing Shibboleth authentication capabilities for non-web based software
components

Home Organization specified in the configuration. Its task is to validate the server
certificate, authenticate the user and extract user’s handle. For example handle
might looks like this one:

_233f6bb9258bcd1cf0473a#https://virolab.cyfronet.pl/shibboleth-idp

It consists two parts - typical Shibboleth handle being a hexadecimal number
with _ sign at the beginning with an underscore sign and additional HO address
separated with a # sign.

Validation of server’s certificate hosting the SSO is mandatory to make sure it
has been issued by a trusted CA. Omission of this operation might lead to releasing
user’s credentials to fake web server pretending to be a legitimate one.

Authentication of a user via the basic HI'TP authentication is required as this
mechanism has been chosen as the most friendly way of protect SSO for not just
users but what was important for non-Web tools also machines.

As a first step in extracting the handle, the software needs to download and
parse the HTML document returned by SSO to extract Base64 encoded SAML
authentication assertion. After decoding it, SAML needs to be validated and finally
the handle might be extracted from it.

ShibIdpClient provides standardized interface for application using it such as
ShibIdpCliClient - command line interface whose tasks are to ask a user for his/her
credentials, request the handle via this interface and display handle to the user.

4.2.2. MOCCA Shibboleth Authenticator

MOCCA Shibboleth Authenticator provides the ability to protect MOCCA using
a Shibboleth security framework and enabling it to securely cooperate with other
parts of the infrastructure. It is used to provide capabilities to map Shibboleth
attributes assigned for each user to MOCCA groups, used for authorizing users for
various tasks. The architecture is shown on Fig. 4.3 .

34

4.2, System Components

IdP PDistP Client
SSO Shib Authen-
ticator =
AA
MOCCA/H20
ShibAuthAPI CMLRPC

ShibRPC

Figure 4.3. Architecture of the MOCCA Authenticator - component augmenting
MOCCA/H20 with capabilities to control access based on a Shibboleth credentials

The authenticator uses third-party components ShibAuthAPI and ShibRPC re-
sponsible for direct communication with the Identity Provider, processing SAML
attributes assertions and providing access to them via a XML-RPC based interface.
It accepts Shibboleth credentials for incoming connections, requests attributes via
ShibAuthAPI/ShibRPC based on the handle, and finally maps attributes to user
groups according to the local policies, or deny if they are insufficient to grant any
level of access.

The solution described here is based on the H20 pluggable authenticators. It
enables developers to provide custom authenticator for required security solution.
For example in addition to described here Shibboleth authenticator MOCCA fea-
tures the GSI authenticator and the standard password authenticator. Usage of the
specific authenticator is controlled through the <Authenticators> section of the
KernelConfig.xml file.

4.2.3. MOCCA Policy Distribution Point and its Tools

A Policy Distribution Point, its MOCCA client and administrator’s panel a are
set of tools created to support storing, maintaining and distribution of local MOCCA
policies to each node running MOCCA software. All the mentioned here components
are depicted on Fig. 4.4 .

The core element is of course Policy Distribution Point itself. It is responsible
for:

e storing in the RDBMS (MySQL) up to date information needed for generation
of the policies,

35

4.3. Interaction between Security Components

PDistP CIientM
Shib Authen-

ticator

MOCCA/H20

PDistP XML-RPC
admin.

Y

MySQL -~ PDistP

Figure 4.4. Architecture of the Policy Distribution Point; a solution for storing and main-
taining local MOCCA policies; as well as its client ensuring that policies on nodes are up

to date; and the administrator tool

storing its own users credential, with assigned role of either normal user (that
could download policies) as well as administrator (that could modify them),
providing XML-RPC based interface for the client and administrator tool,
performing authentication and authorization of the users,

allowing managing it’s own users through the interface,

generating local policies on demand and returning them to the client,

allowing modifying the policies via the interface.

Policy Distribution Point Client supports:

checking with PDistP if local policies are up to date,
requesting new policies when local version is obsolete,
updating local version with downloaded policies.

Finally, the administrator panel is used for:

managing internal PDistP users and roles,
adding, removing and modifying MOCCA policies,
viewing PDistP logs.

4.3. Interaction between Security Components

This section presents on diagrams of sample interaction between above mentioned

security components that is performed during realization of the selected important
use cases like authentication to the IdP, accessing MOCCA protected by the au-
thenticator, updating local MOCCA policies and changing MOCCA policies.

36

4.3. Interaction between Security Components

4.3.1. Authentication to the IdP

The first use case is when a user owning a Shibboleth account wants to authen-
ticate to the IdP (get handle) with the help of a command line client. Actions
required for such a case are shown in Fig. 4.5 .

User ShibldpCliClient SSO
Run
Req. credentials

Send credentials

Authenticate
Send SAML

Send handle

Figure 4.5. Authentication to the IdP with the help of the ShibldpCliClient performed to
acquire a Shibboleth handle without using a web browser

The authentication process consists of the following steps:

Run - user run the software,

Req. credentials - the client asks user for credentials,

Send credentials - user gives his/her credentials,

Authenticate - client authenticates to the SSO and requests authentication as-

sertion for the given user or informs him/her that credentials are invalid,

5. Send SAML - SSO sends back SAML containing authentication assertion with
valid handle,

6. Send handle - client extracts handle from the assertion and displays it to the

user.

L=

4.3.2. Accessing MOCCA Container Protected by the Authenticator

MOCCA authenticator provides authorization for various actions in H20 kernel
like deploying pluglets and running them. This specific use case features authentica-
tion and authorization process of a user accessing the protected MOCCA container.
As before, the process is illustrated in Fig. 4.6 and then is described in more details
bellow:

1. Provide handle - user presents a valid handle during connection to MOCCA,

2. Req. attributes - MOCCA authenticator requests his/her attributes via ShibRPC

3. Send attributes - ShibRPC returns valid attributes for this user or informs that
the handle is not valid or not trusted

4. Authorization decision - if the handle is invalid the authenticator refuses access
and informs user. If they are valid, it maps attributes to MOCCA group ac-

37

4.3. Interaction between Security Components

User mocca + Auth. ShibRPC

Provide handle

Req. attributes

Send attributes

Authorization
decision

Figure 4.6. Deployment of MOCCA component to the H20 container protected by the
MOCCA Shibboleth Authenticator - a solution for integration MOCCA with a Shibboleth
protected infrastructure

cording to the policies, and makes authorization decision depending on whether
resulting group has sufficient access level for a requested action or not.

4.3.3. Updating Local MOCCA Policies

PDistP Client need to check periodically if policies in PDistP haven’t been
changed and if they need to update local copy. This is required, because for smooth
administration policies are modified centrally. The PDistP Client updates policies

by downloading new ones to replace the obsoleted version. Such action is shown in
Fig. 4.7 .

pDiste Client ~ PDistP MySQL

Authenticate SQL Query

Results

Send session ID

Check pol. version
SQL Query

Results
Return pol. version
Request policies
SQL Query
_—

Results
Return policies

Figure 4.7. Checking if local MOCCA policies haven’t been changed. If so new policies
are downloaded to replace the obsoleted ones

The procedure requires to:

1. Authenticate - the client sends PDistP user credentials via XML-RPC,
2. SQL Query - PDistP checks the credentials and adds a new session if they are
valid,

38

4.3. Interaction between Security Components

3. Results - PDistP gets a response if the credentials are valid,

4. Send Session ID - PDistP returns the session ID to the client (used for further
operations) or denies access,

Check pol. wversion - if the access is granted the client asks for current policy
version stored in PDistP,

SQL Query - PDistP is querying stored policies version from RDBMS

Results - policy version is returned

Return pol. version - PDistP sends policy version to the client

Request policies - if policy version is newer the client requests new ones,

10 SQL Query - PDistP queries for policies

11. Results - policies are returned from DB

12. Return policies - policies are sent to the Client, which stores them localy

ot

© oo

4.3.4. Changing MOCCA Policies

From time to time it is necessary to modify policies stored in the PDistP. It has
to be done each time the status of the federation changes. For example, if new HOs
are added specific policies are required to give their users access to MOCCA. Similar
action must be performed if some new values of existing attributes are defined (like
a new role). Of course, sometimes policies must be changed even if federation is in
a constant state, for example if we need to grant or revoke access to specific groups
of user based on the attributes, or to change groups assigned to specific attributes.
Such process is described in Fig. 4.8 .

User PDistP admin. PDistP MySQL

Send credentials Authenticate

SQL Query
Results
Send session ID.
Send form
Post updates
Req. pol. mod.
> SQL Update

Up. count

Return result
-
Send results

Figure 4.8. Changing MOCCA policies with the help of the Policy Distribution Point
Administrator Panel

This action follows this scenario:

1. Send credentials - user enters admin credentials into a web site,
Authenticate - PDistP administrator panel send those credentials via XML-RPC
to PDistP,

3. SQL Query - PDistP requests user information from DB

Results - PDistP gets user information from DB,

5. Send session ID - PDistP returns session ID or informs about authentication
failure,

>

39

4.4, Summary

6. Send form - tool sends to client’s browser a form allowing, modification of at-
tributes or information that access is denied,

7. Post updates - if the access is granted the user sends his/her modification to the
policies,

8. Req. pol. mod. - the panel request that PDistP modifies attributes via XML-RPC,

9. SQL Update - PDistP sends the update command to RDBMS to change the
appropriate tables,

10. Up. count - DB returns the number of modified rows to indicate success or
failure

11. Return result - PDistP returns the modification result to the panel,

12. Send results - panel displays (returns to user’s browser) results of the modifica-
tion

4.4. Summary

This chapter provided the description of a complete and general architecture
view of the developed the system, as well the details for specific parts of the solution.
Additionally, the interaction between described components has been presented on
the basis of the most common use cases related to the discussed subject.

40

Chapter 5

The Design of Security Components

The goal of this chapter is to use UML class diagrams to specify the design of
the security system components described in chapter 4. The designed components
are divided into common groups presented in separate sections.

5.1. ShibIdpClient and SibldpCliClient

This section contains class diagram (presented in Fig. 5.1) for components related
to requesting shibboleth handle from the Identity Provider - ShibldpClient library
and ShibIdpCliClient that uses it. ShibldpClient has been designed in such way
that would provide seamless integration with other applications that requires it’s
functionality even for programmer without a solid background in Shibboleth related
technologies. This requires that the library exposes as simple API as possible.
Because of that the whole interface has been reduced to the most basic and only
necessary function - getting handle based on provided configuration. The interface
is as follows:

public interface ShibIdProviderClient {

public String acquireHandle(HandleRequesterConfig config)
throws CannotAcquireHandleException;

public String acquireFullHandle(HandleRequesterConfig config)
throws CannotAcquireHandleException;

}

The first method is used to get plain Shibboleth handle, and is just for backward
compatibility, the second one returns handle in format currently used in the Viro-
Lab: standard_handle#idp_url . HandleRequesterConfig is an interface supporting
flexible way of providing necessary configuration by the library:

41

5.1. ShibldpClient and SibldpCliClient

public interface HandleRequesterConfig {

public String getLogin();

public char[] getPassword();

public IdProviderEntry getIdProviderEntry();
public String getTrustStoreFilename();
public char[] getTrustStorePassword();

}

Client tool using the library just needs to implement this interface to provide
user credentials, IdP configuration (IdProviderEntry class) and Trust Store location
(with IdP certificate) that it might store at it’s creator discretion. Then default client
implementation (class DefaultShibldProviderClient) might be used to request the
handle. Additional presented classes are used as helpers (SAX parser, DTD validator
preventing connection to w3.org each time and an exception). ShibldpCliClient
provides class ClientConfig implementing HandleRequesterConfig as well as Client
class being main class responsible for communication with users.

cd: ShibldpClient and ShibldpCliClient)

ShibldpClinet

<< exception >> DefaultShibldProviderClient
c q (from_ShibldpClinet)
JID :long = 86L
+ CannotAcquireHandleException (): + DefaultShibldProviderClientt ():
+CannotAcquireHandleException (arg0 :String): +acquireHandle (config : onfig):String
+CannotAcquireHandleException (arg0 :Throwable): +acquireFullHandle (config :HandleRequesterConfig):String
+ CannotAcquireHandleException ~ (arg0 :String ,arg1 :Throwable):

v

DoNotDownloadDTDFromW3OrgResolver

(from ShibldpClinet) << interface >>
ShibldProviderClient

(from ShibldpClinet)
+resolveEntity (publicld :String ,systemld :String +acq la (config :Har questerConfig):String [ShibldpCliClient

+acq andle (config onfig):String

SimpleHandleExtractor

from ShibldpClinet

(idpinet) Client

- handle :String

+ error (e:SAXParseException):void e .
+fatalError (e:SAXParseException):void 4 main (args :Strin: Aol

+warning (e:SAXParseException):void
+SimpleHandleExtractor ():

+startElement (uri :String ,neme :String .qName :String ,atts :Attributes):void -
+getHandle (r:Reader):String ClientConfig
~login :String
- pass:char(]
- - << interface >> - idpEntry :IdProviderEntry
SimplestHostnameVerifier HandleRequesterConfig irustStoreFName :String

from ShibldpClinet -

(P) +getLogin (:Sting trustStorePassword :char[]
+getPassword ():char(]) +ClientConfig (1:String ,p:char[] ,confFName :String):
+getldF y (:IdF v +getLogin ():String

+ :String ,session :SSL - +getTrustStoreFileName ():String +getPassword ():char(]

+getTrustStorePassword ():charf] +getldProviderEntry ():IdProviderEntry
"""" | T 7| +getTrustStoreFileName ():String
\dProviderEntry +getTrustStorePassword ():char(]
(from ShibldpClinet)

- ssoUrl :String

- shireUrl :String

- serviceProviderUri :String

- identityProviderUri :String

+1dProviderEntry (ssoUrl :String ,shireUrl :String , Uri :String ,identity Uri :String):void

+getSsoUrl ():String

+getShireUrl ():String

+getServiceProviderUri ():String

+ getldentityProviderUri ():String

Figure 5.1. ShibldpClient and ShibIdpCliClient components providing non-Web access to
the Shibboleth infrastructure - UML diagram

42

5.2. MOCCA Shib Authenticator

5.2. MOCCA Shib Authenticator

MOCCA Shibboleth Authenticator requires specific design compatible with stan-
dard H20 pluggable authenticators structure. It’s classes are presented on Fig. 5.2.
The challenge was to design this module in a way that it could provide wide range
of configuration options, but to rely only on supported interface for H20 authenti-
cation pluggable modules (not needing any H20 modifications). The main goal was
to adapt architecture based on the data read from 2 files:

e Users.xml - listing users and passwords for standard password authenticator, as
well as static bindings between users and groups

e Policy.xml - file containing H20 policies (not to be confused with MOCCA local
policies that were mentioned before), which are mappings between groups and
Java permissions defined for specific group

In the Shibboleth solution Policy.xml file was kept, however Users.xml was re-
placed with Shib.xml holding local MOCCA policies (the one used to map attributes
to Groups). This file is supported by the ShibTrustDB class. It is used by the basic
classes - SimpleHandleAuthenticator that is an implementation of the RemoteAu-
thenticator interface and internal ShibDialogV1 implementing AuthDialog. Because
of that both classes must have appropriate construction of a typical H20 authentica-
tor dictated by this interfaces. ShibDialogV1 class also uses SimpleHandleCredential
class that implements RemoteCredential interface. Other classes are supplementing
the main classes with exception and containers data read from Shib.xml .

43

5.2. MOCCA Shib Authenticator

cd: MOCCA Shibboleth Authenticator)

ShibRpcElement SimpleHandleAuthenticator
-id:String - conf :ShibRpcConfAndMapping
- url :String - log :Logger
+ ShibRpcElement (id :String ,url :String): + SimpleHandleAuhenticator (params :AuthenticatorlnitParams):
+getld ():String + getSupportedProtocols ():String[]
+getUrl ():String + initiateAuthentication (protocol :String):AuthDialog
+getNextToken ():bytef]
ShibAttribute ShibRpcConf Group
- name :String -req:int - gid :String
- value :String - shibRpcElements :ShibRpcElement[]
+ Group (g:String):
+ ShibAttribute (n:String ,v:String): + ShibRpcConf (r:int ,els :ShibRpcElement[]): +getGid ():String
+getName ():String +getReq ():int +toString ():String
+getValue ():String + getShibRpcElements ():ShibRpcElement[] +hashCode ():int
Policy ShibMapping
-id:String -id:String
- attributes :ShibAttribute[] - policies :Policy[]

+ Policy (id-String ,a:ShibAttributeq]): | |- 97°uPS “Groupl

+getld ():String + ShibMapping (id :String ,p:Policy[] ,g:Group[]):void
+getAttributes ():ShibAttributef] +getld ():String

+getPolicies ():Policy[]

+getGroups ():Groupl[]

ShibRpcConfAndMapping
ShibTrustDB
- conf :ShibRpcConf - -
- mapping :ShibMapping(] -DTD SHIBDB 0 1 PUBLIC |BString = "-//MOCCA/H20 Shib Database//0.1"
-log :Logger
+ ShibRpcConfAndMapping (c:ShibRpcConf ,m:ShibMapping[]): +regAny :int
+getConf ():ShibRpcConf +regAll :int
+getMapping ():ShibMapping][] - -
+ getGroupsForPolicy (policy :Map):Group(] +parseTrustDB (source :InputSource .eh:ErrorHandler):ShibRpcConfAndMapping
- parseShibTrustDB (el:Element):ShibRpcConfAndMapping
<< exception >> - parseShibRpcConf (el:Element):ShibRpcConf
ShibTrustDBException - parseShibRpc (el:Element):ShibRpcElement
. . K - parseMapping (el:Element):ShibMapping|
=sefalVersionUID Jorg = 1L - parseMappingEl (el:Element):ShibMapping
+ ShibTrustDBException (): - parsePolicies (el:Element):Policy
+ ShibTrustDBException (msg :String): - parseShibAttributes (el:Element):ShibAttribute
+ ShibTrustDBException (t:Throwable): - parseGroups (el:Element):Group.
+ ShibTrustDBException (msg :String ,t:Throwable):
SimpleHandleCredential ShibDialogClientV1
~PROTOCOL_V1:String = "rauth.h2o.shibboleth 1.0" - done :boolean

~protocols :String[] = new String[] { PROTOCOL_V1 }

- handle :String +getNextToken ():byte[]

~idpUrl :String +doPhase (token :byte[]):void

- delegate :boolean

+ SimpleHandleCredential (handle :String ,idpURL:String ,delegate :boolean): ShibDialogV'1

+ SimpleHandleCredential (handleAndldpURL :String ,delegate :boolean): ~detailMessage :String
~staticGetSupportedProtocols ():String| ~status :int

+getPublicCredential ():Object ~principals :Set

+ getSupportedProtocols ():String[] ~credential :SimpleHandleCredential
+initiateAuth (protocol :String):AuthDialogClient ~credentials :Set

+isRequired ():boolean
+destroy ():void
+isDestroyed ():boolean < >
+ readFrom (dis :DatalnputStream):SimpleHandleCredential +getDetailMessage ():String
+writeTo (dos :DataOutputStream):void +getPubI|cCr§dentlaIs ():Set
+getHandle ():String +getStatus ():int _
+isDelegate ():boolean +doPhase (token :byte[]):void

+getldpURL ():String

+ getAuthenticatedPrincipals ():Set
+getDelegatedCredentials ():Set

Figure 5.2. MOCCA Authenticator - H20 plugable authenticator providing Shibboleth
authentication/authorization mechanism for MOCCA - UML diagram

44

5.3. MOCCA Policy Distribution Point and it's Client

5.3. MOCCA Policy Distribution Point and it’s Client

This section features design of a classes related to the Policy Distribution Point

and it’s client. Policy Distribution Point features 2 classes - the MoccaPDistP is
just providing basic XML-RPC service functionality and the PDistP exposes remote
methods. This methods are consumed by e. g. mentioned here PDistP Client. The
classes are shown on Fig. 5.3 .

as:

All remote methods are divided into 3 groups:

available for non-authenticated users (methods login() used for user login and
doTest() to test interface)

available for all authenticated users (methods reading policies, reading and up-
dating sessionID owners information and logout())

available just for administrators (changing policies, other users information, as
well as adding and removing users)

Methods could access and modify various elements stored by the PDistP such

local credentials - user id (uid), login, password and role,

available shibRPCs settings

simple MOCCA ShibTrustDB elements - Shibboleth attributes and MOCCA
groups,

more complex elements - policies that groups individual attributes,

the most complex elements - mappings that maps policies to groups

The final Shib.xml file is contains collection of mappings and shibRpcs.
PDistP Client contains single class PDistPClient that is capable of validating if

policies are current and downloading new ones when required.

45

5.4. Summary

cd: Policy Distribution Point and it's client)

PolicyDistributionPoint

MoccaPDistP

- serialVersionUID :long =1L

+ MoccaPDistP():
+init (config :ServletConfig):void

PDistP Client

PDistP

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote
remote

- getConnection ():Connection

- log (Il:LogLevel ,msg :String):void
- getSid ():String

- getSalt ():String

>;

v

+doTest ():String

+ login (user :String ,pass:String):String

+logout (sid :String):int

+getRole (sid :String):String

+getUid (sid :String):int

+changePassword (sid :String ,oldPassword :String ,newPassword :String):int
+changelLogin (sid:String ,password :String ,newLogin :String):int
+ setPassword (sid :String ,uid :int ,newPassword :String):int
+ setLogin (sid :String ,uid :int ,newLogin :String):int

+ setRole (sid :String ,uid :int ,rid :int):int

+addUser (sid :String ,login :String ,pass:String ,rid :int):int
+ delUser (sid :String ,uid :int):int

+getUsers (sid :String):Map

+getRoles (sid :String):Map

+addGroup (sid :String ,gname :String):int

+ setGroup (sid :String ,gid :int ,newName :String):int
+delGroup (sid :String ,gid :int):int

+getGroups (sid :String):Map

+addShibRpc (sid :String ,url :String):int

+ setShibRpc (sid :String ,rid :int ,newUrl :String):int
+getShibRpcs (sid :String):Map

+delShibRpc (sid :String ,srid :int):int

+addAttribute (sid :String ,attrName :String ,attrValue :String):int
+ getAttributes (sid :String):Map

+ setAttribute (String sid :int ,attrld :int ,attrName :String ,attrValue :String):int
+delAttribute (sid :String ,attrld :int):int

+addPolicy (sid :String ,pDescr :String):int

+getPolicies (sid :String):Map

+ setPolicy (sid :String ,spid :int ,pDescr :String):int
+delPolicy (sid :String ,spid :int):int

+addPAttribute (sid :String ,spid :int ,said :int):int
+getPAttributes (sid :String):Map

+delPAttribute (sid :String ,spsamid :int):int

+addMapping (sid :String ,mDesc :String):int
+getMappings (sid :String):int

+setMapping (sid :String ,smid :int,mDesc :String):int
+delMapping (sid :String ,smid :int):int

+addMGroup (sid :String ,smid :int ,mgid :int):int
+getMGroups (sid :String):Map

+delMGroup (sid :String ,smmgid :int):int

+addMPolicy (sid :String ,smid :int ,spid :int):int

+ getMPolicies (sid :String):Map

+delMPolicy (sid :String ,smspmid :int):int

>;

v

>;

v

>;

v

>;

\

>;

v

>;

v

>;

v

>;

\

>;

\

>;

v

>;

\

>;

v

>;

v

>;

v

>;

\

>;

v

>;

v

>;

v

>;

\

>;

\

>;

\

>;

v

>;

v

>;

v

>;

\

>;

\

>;

v

>;

v

>;

v

>;

\

>;

\

>;

v

>;

v

>;

v

>;

v

>;

v

>;

\

>;

v

>;

v

>;

v

>;

v

>;

\

PDistPClient
- pdistp :PDistP

+loadShibConf (confFile :String):void

+ connect (pDistPUrl :String):void
+connect ():void

+isValid ():void

+isValid (serial :String):void

+ updatePolicies ():void

+ updatePolicies (newConfFile :String):void

Figure

9.3.

Policy Distribution Point and it’s client supporting storing, managing and
updating MOCCA local policies - UML diagram

5.4. Summary

This chapter focused on designing key components that needed to be imple-
mented to provide required functionality. Some aspects mentioned here - like de-
tailed description of the Shib.xml configuration file is provided in chapter 6 in more

details.

46

Chapter 6

Description of Implementation

This chapter shows the most interesting concepts involved the development. It

includes general information about chosen programming languages, important soft-
ware libraries and a bit more detailed description of most challenging implementation
tasks.

6.1. Overview of Implemented Components

As required by the previous analysis all mandatory system components were

implemented. This section enumerates and describes this components.

1.

ShibIldpClient - a Java library that provides convenient interface for integration
of non-Web tools with a Shibboleth 1dP,

ShibIdpCliClient - a Java tool being a command line interface for the ShibIdp-
Client,

MOCCA Shibboleth Authenticator - pluggable authenticator module for H20,
suppling a Shibboleth based authentication/authorization mechanism,
MOCCA Policy Distribution Point - a Java, XML-RPC based service supply
remote methods for managing and requesting local MOCCA policies,

MOCCA Policy Distribution Client - a Java, XML-RPC client that consumes
PDistP’s remote interface and provides functionality required to update MOCCA
policies,

MOCCA Policy Distribution Point Administrator’s Panel - a PHP web applica-
tion and XML-RPC client for PDistP allowing policies management.

47

6.2. General Implementation Concepts

6.2. General Implementation Concepts

As already mentioned, the goal of this section is to describe which programming
languages were chosen and why, as well as to enumerate software libraries that were
essential for creation of the solution.

6.2.1. Programming Languages

The Java programming language was chosen as a basic one for most of the de-
scribed development. Sun’s JRE version 1.6 was used as the run-time environment.
The only exception were made for PDistP Administrator’s Panel which has been
written in PHP. There are several reasons for choosing Java for the standalone part
of the software:

e Java Virtual Machine present on many platforms made the software portable,
which is highly practical especially in case of grid systems where the nodes might
have various software and hardware architecture, even quite unusual,

e Javain it’s present version is a fine programming language allowing swift creation
of maintainable code,

e Existence of good quality IDE software for Java especially the Eclipse platform
that was used to create all Java components,

Quite good efficiency sufficient for the system needs,
Good software engineering tools (Maven)

For web part of the software PHP language have been chosen mostly to show
that it is possible to use different commonly used technologies to access PDistP via
XML-RPC (Java was used for client and PHP for administrator’s panel). PHP is
also a reliable and very well supported technology both from perspective of existing
software libraries as well as existing IDE (also for PHP Eclipse platform with PDT
extension were used).

6.2.2. Most Important Software Libraries

The developed software cannot be built without a help of several existing software
libraries, which are described in this section.

e OpenSAML - one of the basic libraries used by ShibldpClient, allowing to vali-
date Shibboleth SAML assertions signatures and parse them to extract needed
information (like handle),

e Xerces - as SAX XML parser used by ShibldpClient to parse XHTML website
returned by SSO, containing Base64-encoded SAML assertion,

e DBouncy Castle - a powerful cryptographic library. Part of this library is currently
used as Base64 decoder in ShibIdpClient,

e Classess from javax.net.ssl.* are used to provide HTTPS connection to the SSO
required by the Shibboleth implementation guidelines to provide confidentiality
of transmitted data,

48

6.3. Challenging Implementation Tasks

e Logdj - java logging library used in various components of the solution to simplify
logging process,

e Redstone XML-RPC library - used for Java components of Policy Distribution
Point to support server and client for XML-RPC service,

e MySQL JDBC driver - official MySQL driver, used by Policy Distribution Point
to access MySQL RDBMS used to store both it’s credentials as well as policies.

6.3. Challenging Implementation Tasks

This section shows some of the more challenging tasks that had to be resolved
during implementation of the solution. This tasks includes both critical function-
alists - a ability to access IdP without any web browser, providing Shibboleth au-
thenticator compatible with H20 and creating a solution for distributing MOCCA
local policies.

6.3.1. Non-web IdP Authentication

The first and the most important requirement for the customization of Shibbo-
leth was to enable ability for non-web tools to authenticate to Shibboleth Identity
Provider. The Performed research didn’t provide any existing solutions for such
use case as most Shibboleth implementations were purely web-based. Other cases
contain some kind of web gateway that allow getting Shibboleth handle or they
support a shell client via web (enabling running non-web applications just on pre-
defined nodes).Yet another ones were just producing credentials for other security
frameworks like GridShib for GSI. This prompted the need to create such a solu-
tion from scratch. The solution needs to emulate a session between a user using
web browser to access Identity Provider and the SSO itself. The implementation
requirement was that the authentication method for IdP, which is not defined by
Shibboleth 1.3 standard, must be HT'TP basic authentication for all the partners.
This simplifies a bit creation of the solution as it do not need to parse various
complicated authentication forms that might be used instead. The library created
for this purpose still needs to perform the folloing:

1. Use HttpsURLConnection class to securely connect to the SSO,

2. Calculate and set HTTP “Authorization” header to perform basic HT'TP au-
thentication,

3. Download the returned web page,

4. Parse it to find an input field with “name” property set to “SAMLResponse”
containing Base64 encoded SAML Assertion,

5. Decode the assertion ,

6. Use OpenSAML library to validate the SAML end to extract the handle,

7. Return the handle to the library user.

The library has been then wrapped with a piece of UI code to create ShibIdpCli-
Client - simple command line tool solving described problem of non-web authenti-
cation. Also the library might be directly integrated with other software by their
authors as it has been successfully done in case of EPE and EMI.

49

6.3. Challenging Implementation Tasks

6.3.2. Integration of the Authenticator with H20

The implemented solution keeps H20 policies (Policy.xml) intact but completely
replaces Users.xml with Shib.xml specifying ShibRPC configuration that is used
by the authenticator to get users attributes based on handle that is supported by
MOCCA client during connection. It also provides policies for dynamic mapping of
users with specific attributes to groups. Then privileges might be controlled as in
standard solution.

An example of such Shib.xml file is shown below:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE shibTrustDB PUBLIC "-//MOCCA//H20 Shib Database//0.1"
"shibDB-0.1.dtd">

<shibTrustDB version="2009-07-15 01:36:12"
PDistPUrl="https://localhost:8080/PDistP/PDistP">
<shibRpcConf require="any">
<shibRpc id="0"
url="http://virolab.cyfronet.pl:9080/ShibRPC-1.2.2/ShibRpcServlet" />
</shibRpcConf>
<shibMapping>
<mapping id="0">
<policy id="0">
<attribute name="homeOrganization" value="Cyfronet" />
<attribute name="virolabRole" value="Researcher" />
</policy>
<policy id="1">
<attribute name="homeOrganization" value="GridwiseTech" />
</policy>
<group gid="ShibGroup" />
<group gid="TestGroup" />
</mapping>
<mapping id="1">
<policy id="0">
<attribute name="homeOrganization" value="Cyfronet DEMO" />
</policy>
<group gid="EvilUsers" />
</mapping>
</shibMapping>
</shibTrustDB>

In the shown here examples both Cyfronet users with a role of Researcher as well
as all GridwiseTech users would be mapped to ShibGroup and TestGroup that might
be configured in Policy.xml to grant wide access to the MOCCA. On the other hand

“DEMOQO” user would be mapped to EvilUsers group that could get highly restricted
access (or even none).

6.3.3. Distributing Local Policies for MOCCA

Finally, it was needed to create flexible method for storing and delivering policies
based on Shibboleth attributes to distributed MOCCA installations. For this pur-
pose Policy Distribution Point was created. As a communication protocol for PDistP
and its satellites (its client for MOCCA and tool for administrators) the XML-RPC
were chosen. The main reason for that choice is that it met all requirements for such
solution, and that authenticator already needs to support it for cooperation with
external service (ShibRPC). The core of the system was implemented as XML-RPC

50

6.4. Summary

service that provides methods for user authentications, policy modifications, verify-
ing if policies are up to date and getting new policies.

After authentication user gets Session ID which is later used as parameter for
other exposed methods to provide authentication and authorization. System checks
if Session ID is valid and if it’s owner has sufficient role for the operation. Session
ID might be used unless it expires or user executes logout() method.

All information is stored in MySQL, with InnoDB engine because of the necessity
to use more advanced MySQL features like triggers (for tracking changes in policies)
and foreign keys. PDistP uses standard MySQL JDBC driver for connection to the
DB.

Policies on each node are updated by small Java applications being clients for
the PDistP (using XML-RPC client functionality provided by Redstone library).

For administration of the solution a PHP web application was written that al-
lows managing of users and policies in PDistP. This application’s authentication
system is transparent as it delegates this functionality to PDistP by executing re-
mote authentication methods, checking if user have sufficient role (just for user’s
convenience, because otherwise PDistP would still refuse to execute methods with
unprivileged Session ID) and storing received Session ID in a cookie. Because all
relevant information are configured remotely at PDistP this application do not need
own database backend.

6.4. Summary

This chapter summarized the implementation of the custom solutions that were
needed to be created to augment standard Shibboleth framework. The solutions
described here in combination with the existing ones both created as native part of
Shibboleth as well as by other VL partners, were integrated and provided a complete
security solution that met all requirements mentioned earlier in this thesis.

51

Chapter 7

Validation and Evaluation of the Security
System

This chapter is to provides a description of tasks that were perform to wvalidate
the security of a created solution as well as to evaluate it’s efficiency. For a security
system, the wvalidation is a very important phase of the whole process of software
development. That is why all key security components have been validated. Next,
the performance have been evaluated, as it was also one of the important factors for
the solution. Finally integration and user interface validation was performed.

7.1. Security Audit

Automatic security auditing has been performed on key system components spec-
ified below. For each component the description of the process as well as results are
described in it’s section.

7.1.1. ShibIdpClient

For testing purpose, the tool was provided with a valid and invalid credentials.
The results were completely satisfactory, as no attempts to request handle without
valid credentials where successful. Additionally, getting access to IdP after substi-
tuting a valid certificate with an invalid one were tried, mimicking situation in which
user is redirected to a fake service. As planned, the connection attempt failed due
to untrusted certificate. Attempts and results are shown in Tab. 7.1 .

52

7.2. Performance evaluation

Credentials | Certificate | Result

valid valid access granted / handle returned
invalid valid access denied

valid invalid access denied (untrusted cert. issuer)
invalid invalid access denied (untrusted cert. issuer)

Table 7.1. ShibldpClient security audit results, during audit both valid and invalid cre-
dentials as well as certificates were provided

7.1.2. MOCCA Shib Authenticator

JUnit test scenarios where used in the case of Shib authenticator. The test cases
were generated that tried to authenticate with handles that were either invalid or
valid with various attributes. Results for each case were summarized in Tab. 7.2 .

Handle | Trusted HO | MOCCA Policies | Result
invalid | - - access denied
valid no no access denied
valid yes no access denied
valid yes yes access granted

Table 7.2. MOCCA Authenticator security audit results, the first column informs if a
tested handle were valid, the second if HO was trusted by ShibAuthApi and the third if
handle’s attributes were acceptable by MOCCA local policies

Those validations were also successful - user was able to gain access only in the
last case and the mapped group was right.

7.1.3. MOCCA Policy Distribution Point

For Policy Distribution Point a special test client as created with strict checks
for each exposed method. It provides PDistP with different credentials both invalid,
as well as valid with different roles. The results are presented in Tab. 7.3 .

The results showed in the table confirmed that Policy Distribution Point is se-
cure.

7.2. Performance evaluation

For the same key components a basic performance evaluation was performed to
verify if these components might be used in a production environment. This section
shows the test environment as well as the results of performed benchmarks for each
of the elements mentioned here.

7.2.1. Test environment

All performance evaluations has been run on the computer system consistent of
2 machines with the following specification each:

53

7.2. Performance evaluation

Credential | Role | Action Result
invalid pass | - auth failed
valid pass - auth succeed
invalid sid - normal cmd | failed
invalid sid - admin cmd | failed
valid sid user normal cmd | succeed
valid sid user admin cmd | failed
valid sid admin | normal cmd | succeed
valid sid admin | admin cmd | succeed

Table 7.3. MOCCA Policy Distribution Point security audit results, various credentials

(password for login() command, and session id for others) with different roles were tested

against authentication command, normal commands as well as administrators (admin)
restricted commands

CPU: 2xIntel Xeon 5150 (2.66 GHz)

Physical RAM: 4 GB

SWAP: 8 GB

Connectivity (to all tested components): 1 GBit Ethernet

7.2.2. ShibldpClient

Performance of this component has been tested by measuring time needed by the
software to request Shibboleth handle for specified user. This operation has been
repeated 10 times, and then average time has been calculated. Measurement results
(in milliseconds) are presented in Tab. 7.4 .

sample 1 2 3 4 > 6 7 8 9 10
time, ms | 869 | 777 | 785 | 922 | 782 | 811 | 858 | 757 | 774 | 770

Table 7.4. ShibldpClient benchmark results - time measurements for handle requesting
process measured 10 times

Based on this results the average time needed to request a handle is: 810.5
ms . Because this process do not need to be repeated until the handle expires (8
hours), the authentication time not exceeding 1 s is acceptable for production use
in described use case.

7.2.3. MOCCA Shibboleth Authenticator

In the case of MOCCA Shibboleth authenticator a special test has been created
measuring the time of the typical phases of the life cycle of 2 components. Below
those phases and their symbols (in brackets) are presented:

e Preparing builder (BT)
e Deploying component 1 (C1)

54

7.2. Performance evaluation

e Deploying component 2 (C2)
e Running components (RUN)

Each series has been repeated 10 times. The results (in milliseconds) and average
values has been put into Tab. 7.5 .

sample | BT, ms | C1, ms | C2, ms | RUN, ms
1 726 68 49 568
2 749 76 53 570
3 737 79 61 587
4 759 71 51 603
5 755 7 50 596
6 730 87 50 585
7 701 70 50 600
8 750 79 68 581
9 729 69 53 594
10 738 70 48 593
AVG 7374 74,6 53,3 587,77

Table 7.5. MOCCA Shibboleth Authenticator benchmark results - each column (exept first
- sample number) represents time interval for predefined phasee of deployment process

The authenticator is used only during first phase (BT, since later on a session
is opened between the H20 client and the kernel. By comparing the times of de-
ployment of builder (BT) and component pluglets (C1 and C2) we can conclude
that the time used by the authenticator is less then 700 ms. It can be considered
as acceptable taking into account the steps required (including connecting with IdP

via ShibRPC services).

7.2.4. Policy Distribution Point

Policy Distribution Point performance has been tested by measuring time of 10
operations called on this service. As before, the calculations has been repeated 10
times. Results are attached in Tab. 7.6 .

sample 1 2 3 4 5) 6 7 8 9 10
time, ms | 1365 | 630 | 1000 | 822 | 617 | 1030 | 634 | 785 | 589 | 784

Table 7.6. PDistP benchmark results - 10 measurements of the sequences of 10 operations
performed on PDistP

Average time for 10 operations is: 825,6 ms
So average time for 1 operation is: 82,56 ms
This result prove that the solution is efficient enough for the required task.

55

7.3. Validation of the Integration

7.3. Validation of the Integration

After the integration the components described in subsequent sections were val-
idated to function properly.

7.3.1. ShibldpClient

It has been validated together with the components it has been integrated with:
ShibldpCliClient, EPE and standalone version of EMI. This validation has been
performed with the help of both Cyfronet credentials as well as test credentials that
have been provided by other partners. The aim for checking foreign credentials was
to verify that the software is functioning properly as part of the whole infrastructure
combined with various federated partner’s Home Organizations including Cyfronet,

GridwiseTech and HLRS.
7.3.2. MOCCA authenticator and PDistP

Integration of the following components also have been thoroughly checked:

MOCCA Authenticator with MOCCA /H20 itself,

Policy Distribution Point Client with MOCCA (through Shib.xml files),
Policy Distribution Point with it’s client,

Policy distribution point with administrator panel.

All the mentioned elements were found out to be working with each other.

7.4. Manual user interface test

Elements supporting user interface has been repeatedly manually tested until
they were free from errors.

7.4.1. ShibIdpCliClient

A command line interface for ShibIdpClient is a simple text based user interface.
Because of it’s simplicity just basic tests were enough to eliminate possible mistakes
(like spelling mistakes).

7.4.2. Administrator’s Panel for PDistP

Policy Distribution Point Administrator’s Panel as a web application is a bit
more complicated. Test required manually checking each sub-page and correcting
errors that were found out.

7.5. Summary

Validations and evaluations described in this chapter were performed to check
if each security component created as a part of the security system is free from
security flaws, provide sufficient performance as well as could be integrated with
external software without any problems. As described in this chapter, those goals

56

7.5. Summary

were fully achieved. Security of the components has been confirmed by audit results
described here. The performance of most components is quite good, and even the
worst result for requesting a handle is fully acceptable as this operation is performed
quite infrequently relatively to others. The integration of the system in aspect of
integration with components created by other ViroLab developers as well as with
other HOs’ infrastructure has also been successfully performed.

57

Chapter 8

Conclusions and Further Work

This chapter presents and summarizes the work that have been done, shows how
the goals were achieved and describes the plans for further research related to the
subject. The work described in this thesis had to be done to support a non-standard
and novel security infrastructure for federation of organizations cooperating to create
solution for distributed collaborative research environment. Part of the system in-
cluding Portal security where implemented by others with standard Shibboleth mech-
anism. The main task of the work in the scop of this thesis is to create compatible
infrastructure for other (non-web) part of the system.

8.1. Achieved goals

This section summarizes goals that were planned to be achieved before creation
of this work, and which all were reached:

1. analysis of existing security solutions and frameworks including PKI, TLS, SAML,
GSI, Shibboleth ShibGrid, GridShib and OpenlD as well as required crypto-
graphic algorithms - has been performed and documented in chapter 2

2. identification of elements that might be useful for creation of the complete solu-
tion like direct Shibboleth usage or supplementing Shibboleth with GSI through
GridShib - were discussed in chapter 2

3. creation of a formal threat model for the infrastructure - were described in section
3.2; As the result it was found out and described that getting unauthorized
access to credential database (both read-write and just read-only) would critically
compromise security of the system; It also was determined that getting such
access to network or computational resources might also lead to serious risks
(DDoS attack or password cracking attempts),

58

8.2. Plans for further research

4. enumeration system requirements - were done in sections 3.2 (security require-
ments like authentication, authorization, credential delegation, confidentiality
and integrity) and 3.3 (other requirements like user friendliness and scalability)

5. discussion of architecture of the system - were presented in chapter 4

6. design and implementation of following system components ShibIdpClient, ShibId-
pCliClient, MOCCA Shibboleth Authenticator, Policy Distribution Point (PDistP),
it’s client and administrator’s panel - were done in chapters 5 and 6

7. performing system validation and evaluation - were successfully done in chapter
7

The conclusions are tha it is possible to use Shibboleth not only for Web, but it
requires adding new tools and solving problem with policy distribution.

8.2. Plans for further research

The work described in this thesis will be continued. First, the work will be
focused on further augmenting of already created parts of the system. Especially
adding features for ShibldpCliClient allowing secure, fully automatic distribution
of configuration and certificates. Also it would be interesting to provide Policy
Distribution Point with mechanisms enabling it to run in master slave mode to
increase scalability and fault tolerance of the system even further.

Next, the support for newest version of the third-party software components
(especially Shibboleth 2.0) should be provided to ensure long term usability of the
created solution. Also adding support for interoperability with other security tech-
nologies is worth doing some research.

Finally, quite important might be a need to adapt the solution for other projects
then ViroLab, for example to support the security for VL part of the PL-Grid
project, where the virtual laboratory continues to be developed.

59

1]
2]
3]

[11]

Bibliography

ViroLab Project Consortium. ViroLab, 2009. http://virolab.org/.

PL-Grid Project Consortium. PL-Grid, 2009. http://www.plgrid.pl/.

Marian Bubak, Tomasz Gubala, Maciej Malawski, Bartosz Balis, Wlodzimierz Fu-
nika, Tomasz Bartynski, Eryk Ciepiela, Daniel Harezlak, Marek Kasztelnik, Joanna
Kocot, Dariusz Krol, Piotr Nowakowski, Michal Pelczar, Jakub Wach, Matthias As-
sel, and Alfredo Tirado-Ramos. Virtual Laboratory for Development and Execution
of Biomedical Collaborative Applications. In Proceedings of the Twenty-First IEEE
International Symposium on Computer-Based Medical Systems, June 17-19, 2008,
Jyvdaskyld, Finland, pages 373-378. IEEE Computer Society, 2008.

Peter M. A. Sloot, Alfredo Tirado-Ramos, Ilkay Altintas, Marian Bubak, and Charles
Boucher. From Molecule to Man: Decision Support in Individualized E-Health. Com-
puter, 39(11):40-46, 2006.

Eryk Ciepiela, Joanna Kocot, Tomasz Gubala, Maciej Malawski, Marek Kasztel-
nik, and Marian Bubak. GridSpace Engine of the ViroLab Virtual Laboratory. In
Proceedings of Cracow Grid Workshop 2007, pages 53-58. ACC CYFRONET AGH,
2008.

ViroLab team at CYFRONET. The ViroLab Virtual Laboratory Website, 2009.
http://virolab.cyfronet.pl.

Wlodzimierz Funika, Daniel Harezlak, Dariusz Krol, and Marian Bubak. Environ-
ment for Collaborative Development and Execution of Virtual Laboratory Applica-
tions. In Marian Bubak, G. Dick van Albada, Jack Dongarra, and Peter M. A. Sloot,
editors, Computational Science - ICCS 2008, 8th International Conference, Krakow,
Poland, June 23-25, 2008, Proceedings, Part III, volume 5103 of Lecture Notes in
Computer Science, pages 246-458. Springer, 2008.

Internet 2 Project. Shibboleth, 2009. http://shibboleth.internet2.edu/.

D. Kurzyniec et al. Towards Self-Organizing Distributed Computing Frameworks:
The H20 Approach. Parallel Processing Lett., 13(2):273-290, 2003.

Maciej Malawski, Marian Bubak, Michal Placek, Dawid Kurzyniec, and Vaidy Sun-
deram. Experiments with distributed component computing across grid bound-
aries. In Proceedings of HPC-GECO/COMPFRAME Workshop in Conjunction with
HPDC’06, pages 109-116, 2006.

UserLand Software. Xml-rpc, 2009. http://www.xmlrpc.com/.

60

Bibliography

[12]

[13]

[14]

[28]
[29]

Jan Meizner, Maciej Malawski, Syed Naqvi, and Marian Bubak. Threat Model for
MOCCA Component Environment. In Proceedings of Cracow Grid Workshop 2008,
pages 94-102. ACC CYFRONET AGH, 2009.

National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption
Standard (DES). National Institute for Standards and Technology, October 1999.
National Institute of Standards and Technology. FIPS PUB 197: Advanced Encryp-
tion Standard (AES). National Institute for Standards and Technology, November
2001.

RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. RSA Laboratories,
June 2002.

E. Rescorla. Diffie-Hellman Key Agreement Method (RFC 2631). http://www.ietf.
org/rfc/rfc2631.txt.

Ronald L. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). http://www.
ietf.org/rfc/rfc1321.txt.

National Institute of Standards and Technology. FIPS PUB 180-2: Secure Hash
Standard. National Institute for Standards and Technology, August 2002.

National Institute of Standards and Technology. FIPS PUB 198: The Keyed-Hash
Message Authentication Code (HMAC). National Institute for Standards and Tech-
nology, March 2002.

National Security Agency. National Policy on the Use of the Advanced Encryption
Standard (AES) to Protect National Security Systems and National Security Infor-
mation. National Security Agency, June 2003.

International Telecommunication Union. ITU-T Recommendation X.509:Information
technology Open systems interconnection The Directory: Public-key and attribute
certificate frameworks. International Telecommunication Union, March 2000.

H. Krawczyk, M. Bellare, and R. Cannetti. HMAC: Keyed-Hashing for Message
Authentication (RFC 2104). http://www.ietf.org/rfc/rfc2104.txt.

Joel Weise. Public Key Infrastructure Overview. Sun Microsystems, Inc., August
2001.

International Telecommunication Union. ITU-T Recommendation X.680:Information
technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation.
International Telecommunication Union, July 1994.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2
(RFC 5246). http://www.ietf.org/rfc/rfc5246.txt.

Frier, A. and Karlton, P. and Kocher, P. The SSL 3.0 Protocol. Netscape Commu-
nications Corp., November 1996.

OASIS. Security Assertion Markup Language. http://saml.xml.org/
saml-specifications.

W3C. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap/.

Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security Archi-
tecture for Computational Grids. In ACM Conference on Computer and Communi-
cations Security, pages 83-92, 1998.

The EUGridPMA. Coordinating grid authentication in e-Science. http://www.
eugridpma.org/.

David Spence et al. ShibGrid: Shibboleth Access for the UK National Grid Service.
In E-SCIENCE °06: Proceedings of the Second IEEE International Conference on

61

Bibliography

e-Science and Grid Computing, page 75, Washington, DC, USA, 2006. IEEE Com-
puter Society.

Jim Basney, Marty Humphrey, and Von Welch. The MyProxy online credential
repository. Softw., Pract. Exper., 35(9):801-816, 2005.

Tom Scavo and Von Welch. A Grid Authorization Model for Science Gateways.
Concurrency and Computation: Practice and Experience, 2008. To appear.
Matthias Assel, Piotr Nowakowski, and Marian Bubak. Integrating and accessing
medical data resources within the ViroLab virtual laboratory. In Marian Bubak,
G. Dick van Albada, Jack Dongarra, and Peter M. A. Sloot, editors, Computational
Science - ICCS 2008, 8th International Conference, Krakéw, Poland, June 23-25,
2008, Proceedings, Part III, volume 5103 of Lecture Notes in Computer Science,
pages 90-99. Springer, 2008.

The Eclipse Foundation. Eclipse, 2009. http://eclipse.org/.

Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Advances
in Cryptology - CRYPTO 2003, Lecture Notes in Computer Science, pages 617-630.
Springer, 2003.

Jan Meizner, Maciej Malawski, Eryk Ciepiela, Marek Kasztelnik, Daniel Harezlak, Pi-
otr Nowakowski, Dariusz Kroél, Tomasz Gubata, Wlodzimierz Funika, Marian Bubak,
Tomasz Mikotajczyk, Pawel Plaszczak, Krzysztof Wilk, and Matthias Assel. Viro-
Lab Security and Virtual Organization Infrastructure. In Young Dou, Ralf Gruber,
and Josef Joller, editors, Advanced Parallel Processing Technologies 8th International
Symposium, APPT 2009, Rapperswil, Switzerland, August 24-25, 2009 Proceedings,
volume 5737 of Lecture Notes in Computer Science, pages 230-245. Springer, 2009.
Gunter Ollmann. The Phishing Guide: Understanding and Preventing Phishing
Attacks. http://www.technicalinfo.net/papers/Phishing.html.

Gunter Ollmann. The Pharming Guide: Understanding Preventing DNS-related
Attacks by Phishers.

Kevin Mitnick, William L. Simon, and Steve Wozniak. The Art of Deception: Con-
trolling the Human Element of Security. Wiley, 2002.

Internet 2 Project. Shibboleth Identity Provider Installation, 2009. https://spaces.
internet2.edu/display/SHIB/JKIdPInstall.

Michal Dyrda. Master of Science Thesis supervised by Marian Bubak: Security in
Component Grid Systems, 2008.

