AGH
University of Science and Technology in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and
Electronics

Department of Computer Science

Il

AGH

MASTER OFSCIENCE THESIS
GRZEGORzZDYK

GRID MONITORING BASED ON COMPLEX EVENT
PROCESSING TECHNOLOGIES

Major: Computer Science
Specialization: Distributed Systems and Computer Networks

Album ID; 196810

SUPERVISOR
Marian Bubak Ph.D

CONSULTANCY:
Bartosz Bal Ph.D

Krakéw 2010

OSWIADCZENIE AUTORA PRACY

OSWIADCZAM, SWIADOMY ODPOWIEDZIALNOSCI KARNEJ ZA
POSWIADCZENIE NIEPRAWDY, ZE NINIEJSZA PRACE DYPLOMOWA
WYKONALEM OSOBISCIE | SAMODZIELNIE, | NIE KORZYSTALEM ZE
ZRODEL INNYCH NIZ WYMIENIONE W PRACY.

PODPIS

Akademia G rniczo-Hutnicza
Im. Stanistawa Staszica w Krakowie

Wydziat Elektrotechniki, Automatyki, Informatyki i Elektroniki

Katedra Informatyki

Il

AGH

PRACA MAGISTERSKA
GRZEGORzDYK

M ONITOROWANIE GRIDU W OPARCIU O
TECHNOLOGIE ZLO ZONEGO PRZETWARZANIA

ZDARZE N

Kierunek: Informatyka
Specjaln&t: Systemy Rozproszone i Sieci Komputerowe

Numer albumu: 196810

PROMOTOR
dr inz. Marian Bubak

KONSULTACJA:
dr inz. Bartosz Bak

Krakéw 2010

| express my gratitude to Marian Bubak — supervisor of thiskyfmr his
guidance, favor and advice when creating this Thesis. | alsaavike
to kindly acknowledge my grateful thanks to Bartosz 8fdr valuable
consultations, commitment, insightful look and very hélpbllabora-
tion.

This work was made possible owing to the UrbanFlobdt(p: //
ur banf | ood. eu) project.

Abstract

Diversity of resources and launched tasks in grid systemsbawed with various QoS poli-
cies defined by different Virtual Organizations produceseadfor sophisticated monitoring
tools. Monitoring data is required to keep QoS contractsgmeed and enable grid networks
provide services of high quality by assigning proper resesiffor tasks and optimizing their
usage. Resource state information should be provided (linhen2) with minimal network
and computing nodes load. However, most existing monigosystems for distributed envi-
ronments do not provide on-line monitoring capabilitias, é&xpose monitoring information in
data repositories refreshed periodically. Since this issnfficient for certain scenarios, a new
approach to monitoring is required.

This Thesis presents the problem of using Complex Event Bsoug technologies to the
following issues: (1) on-line provisioning of monitorin@i@ and (2) minimizing monitoring
overhead on resources when obtaining and transportingl#tés Special emphasis is placed
on distributed event processing within a monitoring systéhe advantages of CEP approach
to monitoring over existing solutions are discussed in Tiigsis. The concept of distributed
CEP is described along with problems regarding it and passblutions. Potential benefits
of applying such approach in monitoring infrastructures given. In addition, some issues
regarding resource handling in CEP-based monitoring itrfregures are identified, defined and
resolved. The proposed concepts and designed solutionmaotcally verified by extending
the capabilities of an existing monitoring framework GENHRland its subsequent evaluation
for monitoring of storage resources. Results of measuresy@hits impact on the working
environment are also presented.

The contents of this thesis are organized as follows. Ifirstime background information
regarding monitoring distributed systems is given and wtion and goals for this research are
presented. Then, an overview of existing monitoring systéndistributed environment with
analysis of their functionality in terms of on-line data amition is shown. Next, the general
concept of Complex Event Processing and ways it can be usednitaring frameworks for
distributed environments are presented. After that, s@sgeis concerning resource handling
when it comes to on-line monitoring of distributed systemestaghlighted. These are followed
by a discusson on the concept of distributed approach to CEPpessible problems involved
and solution drafts for some of them, architectural pattamd examples. Finally, description of
introduced modifications in the GEMINI-2 framework condamsupport of distributed CEP
Is given along with evaluation information and tests result

Keywords: Complex Event Processing, Grid monitoring, on-line, network utilizatiortridiged CEP,
resource, overhead

Contents

LIST Of FIQUIES ..ttt ee e e e e e aanas 6
LISt Of TADIES ... e e e 7
I 0T (3 Tox 1 o o S 8
1.1. Significance of monitoring iN grid NEtWOIKS.... .o .eoeeereeeiiiiie e, 8
1.1.1. Virtual Organizations and resource ShariNGum ..coeeeeeeeieeeriiiiieeeneiniiee. 8
0 I =1 = o |1 9
L.0.3. SBCUIMEY .ottt ettt et e e e e e e e e e e ettt e e e e e e s s nnne 9
1.1.4. QUAIILY O SEIVICEcciiiiiiiiiiiei et 9
1.1.5. AVAIIADIITY ©ovvveeieeeeeeeecccce e —————— 10
1.2. Motivation and goals of thiS WOIK...........coucceiiiiii e, 10
1.3. Requirements for the grid on-line monitoring infrasttie.............ccccoeeeeeeveviivnnnnn. 11
I I B = = W 1= £ £ (= o = USSR 11
1.3.2. Diverse measurement granularityccccccevevvereeieeiirieeeeeeeeiiieee 11
1.3.3. ENVIFONMENT QWAIENESSuuuuuneeee s s s eesseeaeaeaeeeaeeaaaaeeeeseeeenesssnnnnes 11
1.3.4. Visualization and analysiS SUPPOITccooooceiiiieeeeeeeeeeeeeeeeeeeeeeeeeeiees 12
1.3.5. EXENSIDIILY...covviiiiie it 12
1.3.6. ON-liN€ OPEratiNg......cevvvvrriiiiiiiieeeeee e e e e e e e e e anaaaaaaas 12
1.3.7. LOW OVEINEADccoiiiiiiiiiiiie ettt e e e 12
1.3.8. INtEroperability ... 13
1.3.9. Ease of installation and deploying........ccccceeeeeeeeeeeeeiiiiiiiiiiieeeeiiiiiiiees 13
1.3.10. Integration with existing monitoring SOftWareccevvvvvvivvevvnnnnnnnns 14
R 0t I 1= o U PP 14
1.4, TheSIS OrganiZationccceieeii i e e e e re e e e s e e e e e e e e eeas 14
2. Overview of existing MOoNItOriNg SYSIEMS........cuvuuriiiiiiiiiiiiaar e ere e e 15
122 I €1 4 T | [PP 15
2.2, GANGHA ... it ————— e e e — e 16
2.3, R-GIM A e 16
P S | 0 [07= V2 PP UPPPT 16
pZ TR O o T [od U o] o S PPPPUPRPTR 17
3. CEP technology in MONITOMNGuuieiiiieiiiiie et e e e earaas 18
3.1. Idea behind Complex EVENt ProCESSING.......uuceerieiiiieeieieeeeeeeeeeeeeeeeeeeeeeenannenns 18
3.1.1. EVENt PrOCESSINGuuuuuuerreeiiiieesmmmmiiittteeeeeeeeee e e e e s s e s asnibbbreeeeeeeeannns 18
3.1.2. EVENESOUICES ... e et ettt e et e 19
T O =l - Vo] o] o= i o] 1SRRI 19

CONTENTS 3
3.2.1. CEP and buSINESS PrOCESSESwmmmmmmmmms s ssssvsnsnnnnnnnnsssssassasasaaaaaaeees 20
0 | T L1 1 Y 20

3.3. CEP attributes in MONItOrING.........ooeeeiie e e e aaeee s 20
3.3.1. Simple and COMPIEX MELFICSuvurrvrceeeeenerniiiie e e e e e e e e e e e e e eeeeeeeeees 20
3.3.2. EVENL COMEIAtIONcoeiiiiiiiiiiit ettt e e e e 21
3.3.3. ON-liNE PrOCESSING .. .ciiiii e e e eeeaee s 22
ISR D T | r- W <o [T 1o o [P ERRPP PR 22

I @70 o 11] o] o KU PSPPSRI 23

4. RESOUICE NANAIING....cettiiiiiiiiiiiiiiieie e e e e e e ae e e e e e e e e e e e e e e e e e e et e e eeeeeeeeeeereeeennnnnnnns 24

4.1. RESOUICE EXAMPIES...cciii ittt e ettt e e e e e e e e e e e e e eeesbbrneeeees 24

4.2. RESOUICE UESCIIPLIONcoiiiiiiiiitiee e ettt e e e e e e e e e e eeeesbeneeees 25
4.2.1. Hierarchy Of r€SOUICES.ccoiiiiiii e 25
4.2.2. NALUIE Of FESOUICTES .. .uuuueuiiniiiaeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeesnann e e e eeennes 26
4.2.3. RESOUICE LYPE ...ttt e et aeeenee e 28
.24, PrOPEITIES ...ttt emmmee ettt e e e e e e e e e e e e e e e e e e 28

4.3. ResoUrce identifiCation......... ... oo e ee e e 30
4.3.1. ProbIemMS ... 31
4.3.2. Requirements for proper identifiCation..... . ..vvvrrimiiiiiireieee 31
4.3.3. POSSIDIE SOIULIONS ... st 31
4.3.4. Connection With CEP ..o 32
4.3.5. ldentification PropOSItION...........ooiicmmmmrsiiiiiii e 33

4.4, ReSOUrce t0 €VENT MAPPING -...uuvrrrrreereesammmmmn e e esiiitbbreeereeeeeeaeaeeeaaaanninneeeeeas 35

5. DISHIDULEA CEP ... e e e e e e e e e e e e eeeas 36

5.1, EPL StAtEMENTS.....coiiiiiiieeieieiieeem et e e e e e e e nnen s 36
5.1.1. EVENESIIEAMS. ...t eee i et e e e e e 36
5.1.2. SHAING WINUOWSciiiiiiiiiiii e eeieeemme e e et e e e e eaa e e e e e eeennnees 37
5.1.3. Aggregation fUNCLIONScccoiiiiiiieeeeeeiie e e 37
5.1.4. OULPUL CONTIOL.....oiuiiiiiiii it s ettt e e e e e e e e e et e e e 38
5.1.5. EPL @XaMPIES ...uuii it et e e e e ennnnae 38

5.2. System arChit@CtUINEooviiii i eeeee e e aaens 38
5.2.1. NOMENCIATUIE ..o eeeeeeee e 41

5.3. EPL request distribDULION.........ccuuuiiiiieeieiece e e 42
5.3.1. The ProbIEM 42
5.3.2. Distribution PAtterNSccoiiiiiimmmmmm et ee e e e e e aeeeenees 43
5.3.3. Distributing Stream JOINSc.coes e e eeriie e e ee e e e e eeerie e eeaaees 48
5.3.4. MiXiNG PAEINS.....iiiiiiiiiiee e ee et e e ettt e e e e e e et e e e e e e e eas s 50

5.4. Handling partial ProdUCEIS..........oiii i e e e e 50

5.5. EVENt SYNCNIONIZALIONciiiiieiiiceeeeeee e e e e e ee e e e 54
5.5.1. DaAl@ GCCUIACY ...ccvuniiiiiiiiieeiie s cmmmmmm e e e e e e e et e et s e ea e e e e e enanneeenns 55
5.5.2. Output tiIMe CONLIOL........cooiiiiiiiiiit oo e ettt e 56
5.5.3. Error aCCUMUIALIONuuuuiiiiiieeeeee et e 58
5.5.4. EVAIUALIONcoiiiiiiiiiiiiiiiiiiii e et e 58

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

CONTENTS 4

5.6, BONETITS. ..ciiiiiiiiiii i —————— e e 60
5.6.1. Beneficial EPL StatementS............uuuiimeiiieeiiiiiiiiiiiiiee e 60
5.6.2. Balanced Memory USAQE.........cceveeviiimceeeeeeeeeeeeeeeeeeeeeeeeeennesnnnnee s 64

6. GEMINI-2 DEVEIOPIMENT ...ttt e e e e e e e e e 65

6.1. Background iNfOrMatioNeeeiiiis oo e e e 65
6.1.1. GEMINI-2 overall arChitECtUIeccoceeeeurriiiiiiiiiiee e 65
6.1.2. ENUPOINTS ...oiiiiiiiiiiiiiiiiiit ettt e e e eeeee e e 65
6.1.3. ThE ESPEI CEP ...ttt 66

6.2. RESOUICE repreSENLALIONuuuuureeereerrereeeeeeeeeereanennnrs e e e e e e e e e eenaneaaaeeeeas 67

6.3. MONItOr MOAIfICATIONSuvuiiiiiiiiiiiiee e e e 68

6.4. SENSOr ENVIFONMIENT.iiiiiiiiiiiiiie et emereeeeee et e e e e e e e e e s s s s eeeeaeaaanssneeneeeees 70

6.5, SENSON TEALUIESceiiiiiiiiii et r et e et e e e e et 70

6.6. Sensor-MoNitor INTErACION.............u i ceeeeeiieieee e e e e e e s e 72
6.6.1. MONItOr AISCOVEIY......uvvviueininiii i et s s e e e e e e e e eeeaaeas 72
6.6.2. Communication ChanNElS ... 12
6.6.3. CONIrOl MESSAQES.....covviiiiieiiieetst i ettt s e e e e e ee e e e e e e eaaen s 73
6.6.4. SUDSCIIPLONS ..oooiiii e e e e eeaeeaae 74
6.6.5. ComMMUNICALION SEQUENCE.......cciiieevet oot e e e e e e et e e e e e e eaaa e e 75

6.7. SENSOr @rChitECIUINEciiiiiiiiieeeeee ettt e eeeeeeees 76

6.8. SamMPliNg MOUUIES........ouiiiiiiiieii e e e e e e e e e e e e e e 78
6.8.1. Network bandwidth sampling module.........e. e, 78
6.8.2. CPU sampling module...............oooii it eeeeeeeeeennn d 9

6.9. Distributed CEP SUPPOITveiiiiiiiiieiiimmmmm ettt ee e e e e 80
6.9.1. CEP ENQINE iN SENSOIciiiiiiiiiiiitieeeeeeeeie et 80
6.9.2. Request distributor Stub ...t e 80
6.9.3. EVENt AdAr@SSINGceeiiiiieiiiiiiiii et 81
6.9.4. Complex event NaNAlNgGccoooiii oo 81

6.10. USEd tECNNOIOGIESeeeieeiie e 82

6.11. CONFIGUIATION ...ttt mmmmm bttt e et e e e e e b e 82

A = VZ= 110 F= Y o] PSR TT 84

7.1, PEITOMMANCE ...coeeiiiiiiiiiiiiiiii s s s s e e s e e e e e e e e e e e e aaeeaaeeeeeeeesesssbnnnnneeeesssnnsennnnes 84
7.1. 1. MEMOIY USAUE ..ueievuieeietineeeet s s e e e e e e et e e e eenaeeeenn s e eesnmnees 84
7.1.2. Network UtIHZatioNccoooeiiiiii e 88
7.1.3. EVeNt ProCesSING tIME.......couiiiiiiiiimmmeee it 90

7.2. Storage deviCe MONIOMINGuuvreees o eneereseeeeeeeeeeaeesasssaannsrrssreeeeessaans 90
7.2.1. Background infOrmation...............eeeicmmmmeuiiiiiiiiiieeeee e 90
7.2.2. Storage deviCes PrOPEItIESciieiicccmmiiiieiee et 91
7.2.3. Resource type definitionoiiimemmmmeeeeee e 91
7.2.4. Eventtypes definitioncocuuiiiiiiiiiiiiiieee e 93
7.2.5. Sampling module implementation..........cccceeeeeeieieiiieieieeee e, 93
T7.2.6. EXGMPIE....co oo ————————— 95

8. SUIMIMAIY ... e e e e e ettt e e e e ettt b e e e e e e e et e e e aaaeeneensnnn e aeaas 98

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

CONTENTS 5

8.1. Functionality COMPLIANCEccoee e eer e e e 98
8.2. FULUre Challengesuueuuiiie e e 99
(2]] oo =T o] 0)Y/ 101

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

List

3.1

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7

of Figures

The CEP concept e
Example resource hierarchy 26
Example resource registry content L 34
Centralized CEP concept 39
Distributed CEP concept e 42
Place of request distribution in distributed CEP 43
Example of distributed average calculation using uasgindow 46
Eventgroup to producerlayout o 47
Event request and produceraddressingouw..... b3
Event synchronization and timewindow 56
Event synchronization and lengthwindow b7
Outdated outputeffect. 59
Timed output control error escalation example archite 59
Example distributed system architecture being stdgielo monitoring 63
GEMINI2 architecture 66
Monitor architecture e 70
Sensorenvironment L L e e 71
Sensor-monitor interaction diagram L. 72
Subscriptionconcept 75
Sensor architecture L L 77
Sampling module state diagram. e 79
Memory usage scenariolresults, 85
Memory usage scenario2results e .. 86
Memory usage scenario3results L L0 e 86
Memory usage scenario4results 87
Memory usage scenario5results 88
Network utilization scenariolresults 88
Network utilization scenario2results 89

List of Tables

4.1

4.2

5.1

5.2

6.1

6.3

6.2

7.1

7.2

7.3

7.4

7.5

7.6

Properties for exampleresources www ... 30
Discriminators for exampleresources. oL 33
EPL distribution patterns 45
Example of discrimating producer event property values 52
CPU Resource representation 67

Resource record content used in resource update message 74
Controlmessages 4

Common properties for storage devices. 91
Unique properties of disk array resource 91
Unique properties of disk array resource 92
Resource metadata for storagedevices 9
Event types for storage devices e 95
Additional event types for example purposes 95

1. Introduction

1.1. Significance of monitoring in grid networks

One of the main purposes of grid infrastructure is to prosdevices of high quality to
clients. This is achieved by "coordinating resources thainat subject to centralized control”
[25]. These resources can be varied, including elements asicisk matrices for data storage
or CPU-nets to carry out computing, and are usually conneéhtedgh computer network. The
lack of centralized control means that these resourceseahdred among grid network partic-
ipants in a direct way [26] by different providers using eafpolicies. Therefore, a successful
functioning of the grid infrastructure depends heavily oaimtaining a complex net of rela-
tionships between clients and resources that the gridstnfreture makes accessible to them, as
well as between resources themselves (for example jobsiskdmlays).

This is a nontrivial task as, among others, security, gualiservice, sharing between mut-
liple users and accessibility of shared resources have takes into account. Monitoring the
state of these resources can greatly contribute to solvsagisised problem in above mentioned
aspects. Following sections present the most importaiiteshtin greater detail.

1.1.1. Virtual Organizations and resource sharing

Grid network resources may be controlled by organizatioitis eiverse security and access
policies. These organizations also have various goalsdrel, production, providing services
), tasks and lines of business (pharmacy, information teldgies, electronics etc.) [26]. This
diversity creates a natural need to exchange resourcefieCther hand, it may result in some
problems: creating and maintaining contracts betweennargaons that comply with varied
security and sharing policies can be complicated. Moretese organizations may be a part of
one or more Virtual Organization¥Q) that group members with common goals and purposes,
such as solving particular large scale scientific probled].[dust like normal organizations,
each VO has it's own policies regarding security, resoucoess and membership.

In [26] it is stated that single resource can be used in diffeways by different VOs.
Conditions of resource sharing often contain constraintea¥ and when it may be used.
This may include performance and capacity metrics, asguquality (see 1.1.4) or security.
All parameters have to be monitored by service provider susnthat service level agreement
declarations are met and that tasks invoked by one of gaaitics do not interfere with others.

This is where monitoring software may show its usefulneégsn provide information about
utilization level of each resource and enable proper readif entities responsible for keeping
proper quality of service intact. However, in order for it® possible, monitoring infrastructure
has to provide most recent data. An out-of-date data magdrignproper reactions that try to
respond to past events. Therefore, a need for efficigntine monitoring emerges here.

8

1.1. Significance of monitoring in grid networks 9

1.1.2. Reliability

Grid networks are increasingly being used to execute comialeks, each composed of
multiple process executions and resource access opevakopry of those actions may fail.
In such case it is crucial that the entities responsible &ndiing task execution are informed
about the causes of the problem to react properly. For exgrophsider a taks that is supposed
to write a large amount of data to disk array installed on lagohode. If selected disk array
happens to refuse to accept incoming data during the prabessain task should be informed
about it in order to switch to other storage device [23].

In order for this to be possible, the real cause of the faihgeds to be discovered. This a
non-trivial task as the failure may be caused by an errorraflesicomponent, such as resource
incaccessibility, software exception etc. or some incgtesicies in the interaction between re-
sources themselves. Referring to given example, the ihabilisend data to given disk array
may be a result of broken network link, filled up disks, brokiesks or not responding machine
that operates the storage device. The problem becomes erencomplicated when it comes
to workflows (a set of ordered tasks that are invoked to aehtevnmon goal, business, indus-
trial or scientific in nature[19]), as the dependency graptwieen particular tasks can be very
complex.

Detecting the cause of failure is impossible without thevdeolge of current state of in-
volved resources (disks and network links in aforesaid g@t@mTherefore, an on-line moni-
toring infrastructure may contribute in this aspect.

1.1.3. Security

Authors of [12] claim that grid network security can be entethby proper resource allo-
cation. That is, security issues should be taken into cenaicbn when assigning resources to
given tasks by the scheduler. Such approach cannot be adhfguoper information about re-
source state is available which can be provided by mongaystem. Therefore, a monitoring
infrastructure may be contribute to Grid network security.

1.1.4. Quality of Service

Services provided by grid network in most cases have detlguality [27]. This quality
may be expressed by various parameters, such as availatgytiput, CPU time, disk space
etc. In fact, the nature of grid networks enables many useusé¢ same resources at the same
time. It is very common that multiple tasks are being run gk CPU. This significantly
complicates the problem of defining and keeping quality ofises.

Firstly, service provider must know how much it can offer ateg time. For example, if
network link is being used in 75% by other users’ tasks, incaoffer a new user a 45% part of
maximum throughput on this link. In other words, it must bekn what available capabilities
of each resource are.

Secondly, the state of resources must be monitored to etisairdeclared quality is kept
through all the time is it being used by clients. This is intpat, because clients’ tasks may be
faulty or even malicious and try to use more "goods" than theyetbeen assigned to. More-
over, some resources may break-down and appropriateoeactly be needed to keep declared
quality (see 1.1.5 and [42]).

Both these problems cannot be solved without informatiorutistate of the resources.
Monitoring middleware may be useful not only by providingvrdata on state of certain re-
sources. It also can help to estimate available resourcatagp (how many other clients can

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

1.2. Motivation and goals of this work 10

use given resource at given quality) by applying some stiphted queries to monitoring data.
Again, resource state information timeliness is cruciaélie make proper actions possible and
maintain declared QoS [11].

1.1.5. Availability

One of features of services provided by grid networks isrthecessibility [26]. In short,
it means that given service can be used at virtually any tinte anywhere. To ensure this,
redundant resources are often used. In case of breakdowmeofesource instance, services
may chose to switch so secondary (spare) one.

Such reaction is possible if information about resourdeffaiis available. Without it neither
service itself nor humans can make decision to switch toespae. This is where monitoring
system comes in. It may provide information about state aessibility of main resources
and spare ones. Sometimes it is even possible to know trainaswill fail before it actually
happens (i.e. when available disk capacity is running dommuonber of bad sectors on given
disk is becoming significant). Monitoring middleware magabprovide data on designated
backup resource to make sure it is available and avoid mhvdllind" switching to resource of
an unknown state.

It is quite obvious that proper resource inspection is a nugeep services accessible in
distributed environment.

1.2. Motivation and goals of this work

Aspects discussed in 1.1 indicate that in many cases amen¥lbnitoring system would
contribute to overall efficiency of a grid infrastructurenfdrtunately, such solutions usually
come at price of high network and CPU utilization as a resuiitezfuent updates of monitoring
data. Therefore, in order to make them more usable someitge®of reduction of this cost
have to be found and implemented. The work described in #pepaims at providing infor-
mation whether and how Complex Event Processing technaagie be used to limit these
handicaps.

The starting point of this work is research of CEP-based Grahitoring [17] and im-
plemented GEMINI-2 monitoring infrastructure. The mentd research proved that CEP ap-
proach can be successfully used for on-line resource momgturposes in distributed envi-
ronment. Still, some problems remain unresolved when iteta concepts and design them-
selves as well as implementation of propert functionaitreGEMINI-2. This work continues
the research towards CEP-based grid resource monitorihgewiphasis on efficiency in terms
of data rates sent over the netwoflhe main subject of this Thesis is an applicability and
evaluation of distributed CEP in grid infrastructure monito ring.

In detail, the issues discussed in this Thesis are as fallows

e develop a concept of distributed CEP with particular empghasiits application in pro-
cessing monitoring data in distributed environment

e introduce CEP mechanisms to sensor level of monitoringstifuature in order to provide
better data reduction

e develop resource handling mechanisms, especially ideatidin, that are required for
proper functioning of CEP-based monitoring infrastructure

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

1.3. Requirements for the grid on-line monitoring infrastructure 11

e implement sensor component for GEMINI-2 framework

e introduce necessary changes into monitor-layer of GEMANi-order to make coopera-
tion with aforesaid sensors possible.

1.3. Requirements for the grid on-line monitoring infras-
tructure

Points mentioned in 1.1, analysis in [8] and requirementmee in [51] can be used to
establish a set of funtionalities and characteristics itiatitoring infrastructure should posses
in order to be effective. Such list is presented in this sectWhile most of the listed points ap-
ply to any monitoring service for distributed system, theolelset focuses on on-line-operating
monitoring infrastructures. Therefore, this list is notqaete in general.

1.3.1. Data persistence

Grid monitoring should persist extracted data for future. Ugetrospective analysis can be
useful to detect patterns of task behaviors (i.e. how ofteh $asks use access to data storage),
resource error proneness (i.e. frequency of spare diskeusa®AID matrices) etc. Moreover,
monitoring data persistence increases monitoring imuasire resilience. Without it, in case
of failure of monitoring system entities that are interdstereceiving data could not get mea-
surement results that were taken during their interopktyaldiowever, to make this kind of
protection work measurement results should be stored ag ¢totheir source as possible to
make them less vulnerable to communication layer failure.

Apart from raw monitoring data some additional informatsiould be stored such as: time
of measurement, history of measurement, request that a@sdgo invoke given measurement.

1.3.2. Diverse measurement granularity

Good monitoring systems should provide data on every resaimat is part of distributed
environment. These resources may be of any kind and gréyufeom small hardware parts
to whole group of machines. For example, one may wish to measngle CPU core, single
CPU, single node or whole cluster. This implies that monitgpdata concerning those resources
Is also very varied in terms of size and semantics. Therefaritoring infrastructure should
be able to accept request that concern any level of gratul@hat is, consumer may request
monitoring data on any abstraction level (from single, pira resource such as CPU to whole
node or cluster) and monitoring system should handle it andigle proper information that
covers no less no more than selected scope.

1.3.3. Environment awareness

Distributed environment, especially Grid networks, cars&en on different levels of speci-
ficity: from single nodes, to sites to clusters to whole VOsritoring infrastructure that is to
work in such environment should be able to somehow graspctmgplexity. Monitoring sys-
tem should be aware nodes, clusters and possibly VOs to tierg a better view of existing
resources and provide context for gathered data. For exxaraplser should be informed that
given monitoring results come from specific cluster or stidaé able to gather data from one
single network node. A part of this problem has already beascudsed in 1.3.2. Still, other

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

1.3. Requirements for the grid on-line monitoring infrastructure 12

mechanisms, such as data gathering and resource discd8eB0] should reflect the the com-
plex nature of distributed environment in order to work edintly in it and acquire enough
information about it to present monitoring data to end upg@raprietly.

1.3.4. Visualization and analysis support

Data provided by monitoring infrastructure is often subjecanalysis performed by hu-
mans. Raw text or binary format is great for machines but notifong beings. In order to
efficiently and successfully carry out data analysis pesptruld be provided with charts, dia-
grams, time flows, graphs (for example graphs of event lihyaaind causality) etc.

Most existing monitoring systems (see 2) have built-in nseafnpresenting gathered data
in human-readable form [18]. These kinds of features hagerbe a standard for such applica-
tions.

1.3.5. Extensibility

Resources that are part of grid network may be very varieslvitiually impossible to create
monitoring infrastructure that covers all of them. Not otihere are many different models
of given resource types (for example CPUs maylriel i7 or AMD Opteror). New types of
resources may appear during the lifetime of monitoringesystThey also have varied "nature”.
Aforesaid CPU resource would be a fabric resource (a physamalponent). Other resources
may be logical (local network, subnets etc.) or "soft" (pssss, tasks).

This diversity creates a need for monitoring framework toelgensible in matter of re-
sources it can detect, recognize and measure. Thanks fbdbatd be customized and adapted
to specific grid network and its capabilities.

1.3.6. On-line operating

It most cases state of monitored resource changes in tines eéry frequently. For exam-
ple, current CPU user time may change rapidly within seconds.

Because of this monitoring data should be obtained and detiven-line or in best case
in real-time (the latter is very hard to achieve). This impagfficiency ofprobing (process of
obtaining information about state of resource) and trarisggpthis data from measured nodes
to interested parties. Both of these operations have to lyeeficient to ensure that monitoring
data is delivered in sensible time, before it becomes us@estate of examined resource has
changed. Moreover, data should be updated frequentlyjgpngvend user with most recent
information all the time.

Not meeting this requirement may result in having outdasgd that has nothing to do with
real situation on measured node. Some other consequenéasngf to provide current data
were highlighted in 1.1.

1.3.7. Low overhead

Operation of acquiring monitoring data (it will be callpdbbingfrom now on) may affect
probed resource [28; 14]. Probing available bandwidth dawaok link is a very good example.
In this case some packets have to be sent over the examiked his causes two problems.
Firstly, sent packets reduce available bandwidth, so rmeasent would not be absolutely ac-
curate. Secondly, probed network link is usually used bynamy tasks run on grid nodes (mi-
grating data for instance). Probing interferes with theskg and slows them down. Similar

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

1.3. Requirements for the grid on-line monitoring infrastructure 13

problems occur when probing CPU load (probing consumes CP#&) timprocess activity or
state (additional code to report process state slows th&m)dd he same applies to monitoring
jobs that are being invoked on the Grid. Application insteitation [29] injects additional code
to original program and may harm its performance.

So it is clear that special effort should be made to minimize degree that monitoring
application interferes with resources and normal taskis ddm be done, amongst other things,
by optimizing probing process (lower CPU time consumptiarg eeduce amount of data sent
over the network (low bandwidth usage, see 6.8.1 and [24]).

1.3.8. Interoperability

Interoperability is one of basic characteristics of Gridweaks (see [26] chapter 3). It en-
sures that all participants of VO use same standard, opehanens for authentication, au-
thorization, resource access, data exchange etc. Thimegemust span across whole grid
network to enable fluid and dynamic VO creating and changing.

Monitoring infrastructure must comply with this assumptidVithout it, monitoring frame-
works would hider VO creation and collaboration. Therefareould either become less usable
or highly violate Grid nature and assumptions.

For a monitoring infrastructure to be interoperable attleéas requirements should be met:

1. open protocols - in fact, interoperability vastly depends on protocols.eyhare
implementation-independent and define data manipulat@goformat without imposing
specific solutions. Well defined protocol allows diverse lenpentations and envirin-
ments to work together. Monitoring infrastructure shoutdilge protocols for monitoring
data transport and subscription, error handling and quatgrments. They should be well
known and defined to make implementing third party extersseoxd modules possible.

These definitions should use existing protocols in grid oeks, or in networks in general
(HTTP, TCP).

2. universal resource identification- as aforesaid, grid resources may vary, so their identi-
fication within given actual organization. Disks, cpus,qasses are identified in different
manners not only across single organization but also wihigle nodes. For example,
UNIX operating systems identify disks as block devices amd@sses with integer num-
bers. Some resources don’t even have identifiers. Netwokkdetween two hosts is a
good example. To enable interoperability, this identifax@must be unified, by building
an abstraction layer above "native" signatures or simplggiavailable virtual resource
identification identification that is available in Grid netsk and used by other applica-
tions.

1.3.9. Ease of installation and deploying

Modern grid networks are vast, connecting tens of computingters each containing some-
times hundreds of computing nodes (see TeraGrid [1], ondefdrgest scientific Grid net-
works). Installing parts of monitoring middleware on eatthem manually would be mundane,
to say the least. This, in turn, may result in mistakes andrizs during deployment process.
Moreover, overly complicated installation and configuratmay discourage from using given
technology even if it is robust, efficient and secure.

Monitoring software should contain some utilities that weblielp deploy its parts over the
network and relieve humans from this task as much as possible

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

1.4. Thesis organization 14

1.3.10. Integration with existing monitoring software

Virtually in every network there is some kind of monitoringftsvare that is well adapted
to nature and "quirks" of the environment it is working in. lowd be very desirable to use
this software in Grid monitoring. This would reduce the esibility (1.3.5) and deploying
(1.3.9) problems. Unfortunately, this can be very hard duatiety of used protocols, resource
representations and architectures.

1.3.11. Security

It is not very obvious that problem of security applies to manng middleware in large
extent. One has to keep in mind though that monitoring data®eer the network very often
contains names and states of processes running on probesd. ridds creates a serious threat
as unauthorized parties may intercept data containingrrdton about network structure and
its state. Such information may be very useful to preparmr&tthat would disturb normal
activity of a network. Therefore special care should berakeensure that monitoring data is
not accessible to unauthorized third parties.

1.4. Thesis organization

This work can be viewed as consisting of three parts. First @hapters 2 and 3) con-
cerns the general problem of monitoring grid networks argdiegtions. It defines requirements
for monitoring systems in distributed environments anccdbes the potential contribution of
Complex Event Processing to monitoring solutions. A shoetraew of existing solutions when
it comes to monitoring distributed systems is also given.

The second part (chapters 4 and 5) is an introduction toilliséd CEP in monitoring
in general: it defines the problem, describes potentiakssund provides some solutions and
proposals for them.

Finally, the third part (chapter 6 and 7) describes the agrakent of GEMINI-2 monitoring
framework, a sensor module in particular. Requirementshfersensor module are given and
implementation details with regard to previously mentmeoblems and solutions are pre-
sented. Moreover, features that support and help introdudistributed CEP in GEMINI-2 are
outlined. Finally, evaluation tests are carried out witke@pl emphasis on influence a sensor
may have on environment.

This thesis is organized in following way. Chapter 1 is anddtrction to this work, contain-
ing some background information and motiviation and go@tgpter 2 contains an overview
of existing monitoring systems for distributed environmeith analysis of their functionality
in terms of on-line data acquisition. Chapter 3 presents émeigal concept of Complex Event
Processing and the way it can be used in monitoring framesviankdistributed environments.
Chapter 4 highlights some issues concerning resource ngnahen it comes to on-line mon-
itoring of distributed systems. Chapter 5 discusses thelgmobf distributed approach to CEP
with possible problems involved and solution drafts for savhthem, architectural patterns and
examples. Chapter 6 describes introduced modifications IMIGBE2 frameworks, including
designed and implemented sensor module, and evaluatmmiafion. Chapter 7 presents some
performance tests results of new GEMINI-2 components ardcase regarding storage moni-
toring. Finally, chapter 8 contains summary including fetateps in GEMINI-2 development.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

2. Overview of existing monitoring systems

In this part several existing monitoring systems are mewetioand described. In each case
a short overview of architecture is presented. Moreoveemaphasis is put on their compliance
with functional and non-functional requirements mentebimel.3 and ability to support on-line
grid monitoring.

2.1. GridICE

GridICE [8] is relatively new Grid monitoring infrastructtr It was designed an imple-
mented exclusively for Grid networks in order to addressiiisjue requirements.
GridICE architecture consists of five layers:

e Measurement - responsible for gathering resource mesiicg(e and composite). It also
defines abstraction of resource identification and hieyarch

e Publisher - responsible for publishing gathered data tsgomers. It creates common in-
terface for monitored data access. GLUESchema [10] wasfoseldta definition which
enables users to perceive resources through GIS.

e Data Collector Service - stores data for retrospective amabnd is responsible for de-
tection of new resources and disappearance of monitorezl one

e Detection/Notification and Data Analyzer Services - naifidout certain events through
various notification means (e-mails, SMS etc) and provide®us analysis, reports and
statistics

e Presentation Service - web-based graphical user intepf@senting monitoring informa-
tion in concise way

The main advantage of GridICE is its integration with Gridtpowmls and data format. It uses
GLUESchema, provides a common interface for data accessn@dayer) and integrates with
other existing monitoring applications such as Nagios.[8hanks to Data Collector Service it
also detects new resources and can handle their disappeaRmesence of presentation layer
is an additional plus. Therefore, it well meets some requéets mentioned in 1.3.

Unfortunately, it cannot provide fine grained data in an ioe-imanner. Using GIS and
GLUESchema for data delivery can result in quite big messagat would cause significant
overhead of network links. Moreover, resource detectisedann periodical polling GIS. Pe-
riod is usually about a day so this system cannot respondliguic changes in network.

15

2.2. Ganglia 16

2.2. Ganglia

Ganglia [40] was designed for monitoring distributed sygsteincluding Grid networks or
even planetary-scale systems. It's architecture is tdbieal. Leaf nodes represent examined
clusters. Each higher node represents a group of lower nogesging a cluster federation.

Significant emphasis has been put on performance issuegli&aauses low overheads
when it comes to CPU (special measurement algorithms) ardiddiin usage (multicast used
for transporting monitoring data). Test results presemt¢diO] are very optimistic. Therefore it
can be used in high-performance clusters. Moreover it séeims robust as it applies heartbeat
signals between nodes.

On the other hand Ganglia does not take advantage of trudtp@en Grid protocols such
as GIS. Therefore its interoperability is reduced when mes to Grid environments. It also
does not have proper data storage functionality.

2.3. R-GMA

R-GMA, or Relational Grid Monitoring Architecture [21; 22§ based on Grid Monitoring
Architecture. Its implementation is based on relationghdaodel. Architecture consists of
three types of components:

e Producer - performs measurements and publishes monitdaitag

e Consumer - accepts monitoring data from producers. Additioperations on data are
available, such as joining data from multiple producersfanither publishing

e Registry - is a directory service that holds information abawaliable producers and
their location. Each producer after initialization registitself in the Registry. Consumers
perform a lookup in Registry to obtain information about Rroets they want to receive
data from.

Almost all operations in monitoring data, such as publighmegistering in Registry, query-
ing data are expressed in SQL. Producers, Consumers andriRegistponents maintain their
own databases to store received data, produced data amohation about producers respec-
tively. For example, registering producer in Registry isresged aSREATE TABLE clause (to
publish schema of monitoring data), while requesting datafpriducers is simply 8ELECT
* FROMclause. According to [21], "R-GMA creates the impression yloathave one RDBMS
per Virtual Organisation”.

Thanks to usage of relational data model, this system candawariously grained mon-
itoring data. The actual content can be arbitrarily defingdSBLECT clauses. Therefore, R-
GMA meets the data granularity related requirements (L.88 the other hand, using rela-
tional databases makes it harded to provide on-line mongatata.

2.4.Inca2

Inca2 [45] aims at providing monitoring data on user-lev&l functionality. Therefore, the
particular measurements are launched from standard useurc Every user can define tests
that will be used by the system to determine the health of eegrdistributed system.

The architecture of Inca2 consists of following elements:

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

2.5. Conclusion 17

Reporters - eecutable programs responsible for monitoratg acquisition. Results are
written to an XML file

Agent - centralized configuration and management of theesysResponsible for dis-
patching reporters

Depot - stores monitoring data that can be used to genernatetseand history views.
Based on Hibernate ORM

e Consumer - presents data to end user. It is a web applicationng on web server.

Additionally, Inca2 provides a reporters repository camtey reporters. These reporters are
ready to use in Inca2 deployments, making it easier andrfaste

Above, in conjuntion with the fact that reporters can betnetdy easily implemented added
and plugged in into the system makes Inca2 very extensildesary to deploy. Moreover, it
can present both historical and current data with properlization. The fact that the tests are
user-level grid applications makes it more secure and aofates environment.

However, Inca2 does not provide very recent data with fragupdates. It delivers current
data in form of summaries of test results. Moreover, it isdharacquire monitoring data on
single instances of very fine grained resources.

Nevertheless, the list of successful deployments thatuded TeraGrid [1], and GLEON
[33] indicate that it is an effective and useful monitoridgtform.

2.5. Conclusion

All of listed solutions are mature and have been succegs@ised in various distributed
environments. Probably the most notable is Ganglia, whastelbeen installed in vast number
of noted distributed systems (list of them is available om@ia web page).

However, none of them is able to provide on-line monitoriredadin efficient way. For
example, mentioned Ganglia in most cases presents snapshgsource state over longer
time period, such as 1 hour. Therefore, there still existoarfor monitoring system providing
on-line data. Such system would be very attractive as itccputsent gathered data in a form
of animated charts in real-time-like manner. It also wowdulseful to solve some of the issues
mentioned in 1.1.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

3. CEP technology in monitoring

In this chapter a problem of monitoring resources in gridimmment using CEP will be
generally discussed. Firstly, the idea of Complex Event &siag will be briefly presented.
Secondly, main features of Complex Event Processing will leatmned with emphasis on
their application in monitoring. Then an overview of prabke that must be addressed when
using CEP in distributed environment will be discussed.

This chapter contains many definition and concept explangatihat are required to under-
stand further parts of this Thesis.

3.1. Idea behind Complex Event Processing

Referring to [39], Complex Event Processing (or CEP) is a comguhat performs oper-
ations oncomplex evenisThese complex events are built or created as a result oepsoty
simpler events. An event (more precisely an event obje¢8rims of CEP is a representation of
real event ("anything that happens" - according to [39]) réed for the purposes of complex
processing. Authors of [43] proposed a more specific dafimitf event: éventas an object
that is a record of an activity in a system."

Events are sometimes also calledssagedn this document both names will be used inter-
changeably.

Figure 3.1 shows interaction and relationships betweem ralments of CEP concept.
These elements are discussed below.

3.1.1. Event processing

All events, both simple and complex, regardless of theietgpd source come to oegent
cloud Event cloud is a set of event objects that is usually unbedria terms of time, quantity
and event types. Relationships, such as timing, causaldtyeaplicit ordering are maintained
between events in this cloud. These relationships makestible to carry out a detection of
specific patterns in event distribution. The activity of fimglthese patterns is calleyent pro-
cessing

The results of event processing ammplex eventd hey may be seen as indicators of some
specific correlations in set of simple events. On the othedhidney may be subject to processing
by some other patterns, resulting in more complex and atistvants.

An example of event processing may be detecting storagesrindgorage cluster that are
currently receiving and saving data. In this case simpla®vimclude current CPU user and
system time, current load on all network links that nodescamenected to and current disk
capacity of each node. If for a given period (for example lépaes) CPU time, network load
are greater than average during last 5 hours on other nodedigk capacity on considered

18

3.2. CEP applications 19

omplex events

~
O

) “~..Simple events
~§

~
&‘ S
\

Event processing
engine

Event source Event source

Event source

Figure 3.1: The CEP concept. Event sources produce infosmabout particular events (sim-
ple events) and throw them into one event cloud. The contarttsis cloud is subject to pro-
cessing, which aims to detect more complex information abeents.

node is increasing then complex event should be createdgsthat this node is accepting data
to store.

3.1.2. Event sources

Event sources (also called emitters - see [39]) are thoseesies of CEP environment that
produce simple, atom events. The products of event souoras directly into event cloud and
are subject to processing.

Examples of event sources include:

e physical sensors, such as RFID sensors [50], digital therbens, photo-cells, infrared
sensors, battery capacity sensor

e software sensors, like CPU system/user/idle time, diskagpa

Emitters are by definition distributed over the environmtiiety are installed in (i.e. men-
tioned photo-cells or RFID sensors). This fact makes CEP gestdution for distributed sys-
tems. Event sources may be installed on separate machidesioes. Their architecture does
not have to be known by the event processing engine or thirtiiepanterested in receiving
events as the only thing one should care about is the formatesft objects. According to [20]
CEP has already become a paradigm for development of ditd@pplications.

3.2. CEP applications

Despite being a quite new idea CEP has already been appliedng systems that work
in various fields of economy and industry. Below are some exesngf successful CEP appli-

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

3.3. CEP attributes in monitoring 20

cations. They show that this concept is not only a mere stibjescientific studies but also a
working, mature solution that proves useful in real-lifeptbyed systems.

3.2.1. CEP and business processes

Business processes are event driven by definition. Certams\w&ich as creating an ac-
count, paying check, withdrawal etc. cause business psdodsansit to other state and trigger
other events. In economy it is often important to discovecHr patterns in those events. Mar-
ket rate changes is a good example. This is where a problemyemas there may be thousands
of events per second coming from many different sourcesfiardnt locations. Business pro-
cess based architectures have not been designed to copsuaitttasks. This is where CEP
becomes useful. According to [38] CEP has already been ajaliBusiness Process Manage-
ment based systems. Authors mentimmt running* detection or monitoring loan processes as
real-life CEP use cases. Another example, fraud detecBgreisented in [41].

3.2.2. Industry

Industry has been vastly computerized over the last fewddscdroduction lines are man-
aged by computers connected by specified network fabrics. fianagement itself can be
viewed as exchange of events between computers and rolxotg f@art in production pro-
cess. An event may cause transition to another state of ptioduine, contain statistical data
or indicate an error.

For fabrication line management it is crucial to know whahene and why something is
happening all the time. In case of failure, knowledge abolé&twcaused it is crucial for re-
covering from it. Analyzing the situation is hard as all obguced events come from various
elements of complex system.

Using CEP to detect causality or hierarchy between eventd solve the problem. Indeed,
[37] gives an example of complex event processing used icogilchip fabrication line. Ac-
cording to this paper, such lines "consist of several hundoegputers communicating across a
middleware layer". Event causality detection and hierabéfynitions are presented. All these
strongly support the thesis that CEP can be successfullyeaiplindustry.

3.3. CEP attributes in monitoring

Previous points proved that CEP can be used in different fidh as economy and in-
dustry. This section covers the problem of applying CEP toitoang purposes in distributed
applications. In other words, it shows what benefits may beveld from applying it to dis-
tributed environment monitoring systems. To answer thif? @tain features and attributes are
discussed in scope of this particular field.

3.3.1. Simple and complex metrics

As mentioned in 1.3.2, monitoring infrastructure shouldade to handle varied metrics
granularity. In fact, each layer in distributed system (36%2) produces event with different
range of information, data and semantics. For example, phicagion middleware layer may

lillegal practice of a stock broker

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

3.3. CEP attributes in monitoring 21

send events regarding state of whole transactions whilgigtence layer may inform about
specific requests to database that are part of more compézatomns.

In most cases data and granularity of metrics is fixed for é&aar or element of distributed
system and cannot be changed on demand. This is a problemsieezitwo reasons:

e consumer may want to receive metrics with different grartyldahan given layer offers.
For example, one could wish to receive information on howyrsslect statements have
been issued to DBMS within the last 2 days, while the DBMS presithformation only
about single statements (no counting operation available)

e consumer may wish to receive metrics that no layer or eleofatistributed environment
offers but can be obtained as a product of existing ones. ¥angle, one may wish to
obtain data about average usage of all processors withie sobitrary time period.

The first of mentioned problems could be solved by adding@pate aggregate types (for
example sums, counting, maximum) for all event types thah efistributed system element
produces. However, such approach has one serious drawbanay lead to enormous increase
in number of event types that are present in monitoring envirent. The second problem is
really a problem of defining new event types on demand. Incdi® new event types exist only
for the sake of single request that they are concerned witlerWttiis request is outdated, they
are no longer needed. In fact, the first of mentioned issugsti@aeen as special case of this
one.

Both of these problems may be solved by CEP’s ability to creatigptex events. In this case
every event source would have a set of well defined event igpsigned. Each event should be
simple, namely it would be fine grained and indivisible. Twiy CEP event processor could
construct virtually any kind of event from simple eventgjsgging consumer’s requests.

One may argue that consumer could just request all kindsasftexthat can be provided and
extract data from them after they are received. This saiuields another problem, which is
discussed in 3.3.4.

3.3.2. Event correlation

It is well known that contemporary distributed systems ¢singf at least several different
layers. Each layer has well defined interface and respaitisibi They don’t know anything but
the interface of layers they directly communicate with. ABIOSO network layer model is a
good example here. Physics layer communicates with lingrl&y receive data to be sent over
physical connection and to pass received data.

Each layer may trigger events. Those may indicate error®otam status and health in-
formation. Very often those events occur because some etlegits occurred in one of lower
layers. For example, errors in TCP packets may be caused lty fduysical layer. However,
in most cases none of these events contain any kind of intavmabout what caused them.
To make the matters even more complicated, a kind of layeattky may be perceived. For
example, almost every application working in applicatiapdr of the OSI model has an inter-
nal layer architecture. Persistence, middleware layesentation, client come to mind. Again,
each of those may trigger events indicating errors or orglispecial actions (such as writing
data to database).

Most monitoring infrastructures only collect data from $boevents. They are stored in
databases or in log files. These kinds of representatiorftagrevithout any information about
event hierarchy or causality. To make the matters worskerdifit event types are usually keptin
different ways. Application events may be stored in log fitkgabase events may be in database

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

3.3. CEP attributes in monitoring 22

and network and transport layer events may be stored innoated servers. This makes it
virtually impossible to detect any kind of causality betwelferent levels of abstraction which
Is essential in diagnosing errors and recovering from them.

CEP’s event cloud concept may be useful here. If all events fal layers and sources
where put into one bucket, detecting any relationships éetwthem would be a lot easier.
Of course, event cloud does not have to be physically ongyetitimay be distributed over
network nodes, servers, routers and applications. The pwmt is to be able to view all the
events globally, regardless of their type or source.

Just creating an event cloud is just a part of success. Samdeokiway of detecting rela-
tionships between events is still needed. As mentioned&eémd (see 3.1.1, CEP technology
does this out-of-the-box.

3.3.3. On-line processing

One of the main problems of research described in this Thesi®-line processing of
monitoring data. CEP technology can be a powerful tool toestilis issue. In fact, CEP engines
process events in on-line manner by nature. Each messagettiias to a processing engine is
processed right away. Because usually events are smalbpsif data, the whole operations
takes very short time and next message can be handled.

Moreover, CEP often relies on temporal properties of evesuish as creation time. There-
fore, the processing of single event cannot take long. lidf the time-related property values
would be outdated when data leaves the engine. As a resigtingximplementations of CEP
are very efficient.

3.3.4. Data reduction

In 1.3.7 it has been stated that monitoring infrastructtweuil influence the measured ob-
ject as little as possible. This is especially hard whenrhes to network bandwidth. The more
accurate and fine grained monitoring metrics are the morevaidth they use as a lot of sim-
ple events have to be sent frequently. Similarly, reduciagdwidth overhead usually entails
receiving less accurate and up-to-date data.

This problem is not very significant when dealing with onesaaner. However, when deal-
ing with more consumers (tens or hundreds, each requessiogvin set of events) or with one
consumer but requesting a lot of frequent events it becomigseable. It is worth pointing out
that even infrequent events but arriving in large burststsaharmful as they cause peaks in
bandwidth utilization.

Existing monitoring systems usually deal with this probleyrdecreasing frequency of sent
data. For example, Ganglia (2.2) provides aggregated saer arbitrary past period. In most
situations this is sufficient.

However, in at least two cases consumer can get all dataputiiny restrictions on granu-
larity and without noticeable network load. These are thleviong situations:

e sometimes consumer would like to get some little portionatadn one single resource
instance. Specific CPU user time may be an example here. Incaisels amount of data
transfered over network link is very small (in fact, send@BU user time is sending one
32-bit integer number). Therefore, all required data casdm, without any aggregations
of limitations

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

3.4. Conclusion 23

e consumer may be interested only in filtered events. Thatnly, events with particular
values are relevant. For example, one may want to get ordyrirdtion about those CPU’s
which have been extensively used (user time above 0.8). Bumwibevents that meet
desired criteria may be so small that sending them all ovemttwork would not be
sensible in terms of bandwidth utilization. In fact, filiggi may reduce this case to the
above one as only few resources may comply with filter.

The first case is simple: all monitoring data should be seotu@lly, CEP can be helpful
here with its flexible approach to event types (see 3.3.1).

The second one is a bit more tricky. Usually, in existing nanmg infrastructures monitor-
ing data filtering is done on the receiving end (R-GMA [21] isexiception here as consumer
may specify its request using SQL language). Thereforegjymers may send a lot of events
that will be discarded by consumer right away and in factygelhetwork with needless data.

Applying CEP in proper way to handle event filtering may solwes {problem. Filtering
itself is done by applying event patterns. Unfortunatelgt ppplying any CEP implementation
will not get rid of too much monitoring data in network. Theiptas to make CEP filter events
as close to their source as possible.

One may consider a simple example: a producer is conneatewdigh network link to con-
sumer. Producer wants to receive only those events thaeooficst of two installed CPUs and
have user time value greater than 0.7. A CEP implementatigno@iaave in two ways in terms
of pattern recognition:

e filter and recognize complex events in producer and then theamd to consumer

e filter at consumer’s machine, just before the consumervesealata

In both cases results are equal from consumer’s point of :\vi&®P properly filters and
finds patterns in events. However, in terms of bandwidthzatilon efficiency first solution is
clearly better. Therefore, well configured and approprizid® implementation may be useful
in reducing network links load. More information on this impan be found in chapter 5.

Such case when data is filtered at source and reduced amaitirg sé€nt over the network
will be calleddata reductiorin further part of this document.

3.4. Conclusion

Complex Event Processing concept appears to be very inteyesiution for event-oriented
applications. In fact, it has been designed for such salatiblowever, many of its features
and aspects described before seem to be useful in monitapplications as well. Therefore,
further part of this paper will discuss the problem of appdyihis technology to monitoring
infrastructure in a way that supports efficient monitoriragedprocessing and delivery.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4. Resource handling

The main subject of monitoring of any distributed appliocatare resources. Their nature,
characteristics, properties, identification etc. can by dverse, depending on many factors
such as operating system, vendor, family and so on.

In order for monitoring infrastructure to fulfill its taskshas to work on all of these varied
resource types and create unified view of them [9]. If eacbue® type was described or
identified by different means (such as XML files, plain texesil operating system registry
entries etc.) it would be very hard for humans to issue angkof requests for monitoring data
about those resources and virtually impossible for computeanalyze it.

In general, as far as resources are concerned monitorirgstnicture has to perform all
following actions:

1. discover — detect existing resources in system that wiamif infrastructure is working
in.

2. describe — create uniform view on all discovered res@jrpeesenting their capabili-
ties, properties and characteristics. In other words, todng infrastructure has to create
some kind of abstraction layer over native resource reptasen to unify any differences
init.

3. publish — send information about resources to other syste users

This chapter covers the last two points of this list. Resodreeovery is very system specific
and hard to describe in general. It is presented more thbipug 6.8. Moreover, a problem of
uniform, consistent resource identification in distrilslégvironment is discussed. Among other
things, its connection with CEP in monitoring is given.

One of the purposes of this chapter is to present decisi@ishtive been made regarding
resource identification, registering and event mapping llage been made during research.
This information is very helpful to understand further cteap.

4.1. Resource examples

Following sections refer to several resources as examiplesder to clarify any inaccura-
cies and avoid misunderstandings below is list of them whtbrisdescription.

e CPU - Central processing unit (or processor) - hardware elenhantcarries out instruc-
tions. Most modern CPUs may have several cores. Similartyy éstributed system node
may be equipped with several CPUs

e network link - single network connection between two nodes (hosts). lyssaidirec-
tional (full duplex). May be dynamic in terms of routing (i@fent paths) and therefore

24

4.2. Resource description 25

involved network standards (Ethernet, FDDI) provided thattwo hosts remain mutually
accessible

e Hard disk drive - hardware device for storing data.

e Process- instance of computer program being executed. A processhuan several
different states. In most cases it’s executed in envirorimravided by operating system

4.2. Resource description

As aforesaid, each resource that monitoring infrastrectan probe may have different
type, behavior and description. Resources description sngefiming these properties for each
resource instance.

This section presents set of identified aspects of reso@serigtion and examples of ways
of handling them. It is focused on describing resources initodang applications and is by no
means complete in general.

4.2.1. Hierarchy of resources

Having a set of unordered, not systematized resources vbewery disadvantageous. Op-
erations such as identifying (consumer wants to have irdition about specific CPU) and
searching (consumer wants to have information about adl daves) would be very slow when
performed on such "bag" of elements. Therefore some kindsafuree systematization is re-
quired.

A solution to this problem proposed in this paper and reteteein further sections is a
resource hierarchy. An example of such systematizatiomasvs in figure 4.1. Hierarchy is
built based on a "belongs to" relation between resourcesgimdi4.1 it is shown with arrows.
Thus, a CPU resource belongs to particular Host, Processd®elo Operating system it is
being executed in and so on. One may say that Host is parenvef grocess instance and
Operating System is parent of specific Process instance.

Such systematization has number of advantages:

e simplicity; it is easy to establish a "belongs to" relatiorivizeen resources. In fact, very
rarely this relation will span between several machinesstels, distributed operating
systems and network links come to mind as examples of resstinat concern multiple
nodes). Most resources will belong to resource on same machhis reduces the amount
information that has to be exchanged between nodes intdigtd system in order to
establish discussed relationship.

e greatly helps in identifying resources (see 4.3.5)

e enhances construction of requests to monitoring systerarying all CPUs of given host
or all cores of given CPU is natural in this structure. In faesources can be viewed on
many levels of abstraction (single cluster, single hosglsicpu).

However, this solution also has some serious drawbacks:

e structure is incoherent. This is caused by the fact that tieéollys to" relation is not
coherent. Some resources do not have parents. in figur&lehdork linkresource is
"dangling”. It cannot be assigned to one single host as itgefetwo hosts. On the other
hand host cannot be assigned to one network link as it mayroeected to many of them

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.2. Resource description 26

Cluster

Host network link

(CPU J (memory) (RAIDMatrixJ Operating
system

A

l CPU core l Hard disk Process Flle system
drive

Thread

iafl;

Figure 4.1: Example resource hierarchy. The arrows reptestbelongs to" relation between
resource instaces. In this case, a given CPU belongs to athsshstalled on while the file

system belongs to an operating system it is working in. A ekwink is "dangling" because
it does not belong to single instance of any other resource.

e the "belongs to" relation is ambiguous. Sensibility of nelas presented in figure 4.1
can be easily undermined. For example, in case of distidboperating system it cannot
belong to one single host (rather hosts should belong todjpésating system). Simi-
larly, hard drive does not always belong to a matrix and magdmmected directly to the
mainboard.

While first of mentioned disadvantages is not critical, theeotone is rather serious. As-
suming that relationships between resources are created thie resources are discovered by
sensors (producers) there is a danger of incoherence betrested hierarchies. One producer
may decide that process should belong to operating systdla ather that user should be an
owner. As a result monitoring environment may end up witht@source instances of same type
(see 4.2.3) that are located in very different locationsi@rdrchy. Therefore, when applying
this solution great care should be taken to ensure reldtipm®nformity.

Regardless of mentioned drawbacks hierarchy as a way ofnsgsizng resources will be
used in further research as it proved to be useful in othexasp

4.2.2. Nature of resources

Each resource may behave differently in terms of lifetimegfiency of state changes [34]
etc. These attributes, being very abstract and fluid, us@alhnot be included in properties.
Such set of attributes of a resource that cannot be desdntsdtematized way will be called
nature of the resource.

Nature may compromise many aspects of a resource. Hereragees@mples:

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.2. Resource description 27

e physical (mainly hardware) or virtual (mainly software -opesses, operating systems,
applications)

e lifetime length - is it permanent (always present in envin@mt) or transient (appears and
disappear frequently from environment). For example, @sses are created and killed
very frequently compared to CPU’s or hard disks which do nsdjpipear very often from
environment

e there are kinds of resources that may be cafjedntom Their main attribute is that
they can not be discovered in advance. Network link may bexample. Discovering all
network links in environment that monitoring infrastruewvorks in would be very hard
therefore although they exists they cannot be kept in any &firegistry.!

Although nature cannot be described explicitly, it's knedde is crucial for monitoring
infrastructure to successfully serve it’s purpose. FongXa, it is very obvious that all resources
that have long lifetime should be kept in some kind of regisBPUs, hard drives etc. can be
rather easily discovered and information about them storede place. Such registry is useful
for handling requests as monitoring system can detect wegburces they concern and decide
which locations system shouldquery for specific data. Meggdaving a registry of resources
would enable data consumer to have an overview of all elesnandistributed system that it
can gain information about and therefore avoid situationemit has to send requests "blindly".

However, problems appear when dealing with short-lifetnesources, such as jobs [13].
Adding them to registry every time they appear in system amdorving them each time they
disappear would be very inefficient. For example, in typioalti-user operating systems several
process start or die every second. This is true even more wikemes to threads. Moreover,
short intervals between resource appearing and disapgeay cause any request regarding
it invalid in the moment it comes to the producer. A followiegample may be considered:
monitoring infrastructure detects that a process hasestdttpublishes it to all consumers. One
of them, seeing it decides that it want’s to know current pssor usage of this process and
sends proper request to producer. Meanwhile however cenesidorocess ends and producer
receives request that regards non-existent resource.

When dealing with short-lifetime resources monitoring sgstcan behave in one of a few
ways:

e use minimum retention time: keep every resource in regigstrysome specified mini-
mum time period. If resource disappears before this timérespkeep it anyway (with
some kind of "done" status) and remove it after that time. Skime of information that
resource is expired is required here.

e treat such resources phantomresources (see below). In this case resources are neither
kept in registry nor they are published

Handling mentioned befonghantomresources also poses a problem. If they cannot be dis-
covered how can they be probed? Moreover, how can requestsireg them be handled? One
of possible solutions is to treat them as on-demand ressuftet is, they are discovered and
created when requests regarding them arrives to producknriRg to mentioned example of
network link, producer may try to discover it only when com&s specifies request for par-
ticular resource. Since request contains unambiguoudifidation of resource (or it should

10One may argue that discovering existing network topologgdwance is possible. In fact, some solutions for
this problem exist, such as [35]. However, in order to worficestly they require support from data-link and
network layers which is not always available. Thereforetitss paper network links will be considered phantom.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.2. Resource description 28

as consumer want’s to have information about particulamel#) it is easy to discover that
specific instance of network link. An obvious drawback oftthalution is that consumer has to
know that given resource really exists. In case of faultyiesq referring to non-existent element
producer should return error message.

If nature of given resource is known in advance during sysdesign and implementation
then adapting it to handle specific behaviors of this resouscquite easy. However, when
system is to handle unknown types of resources or it is kntahrtew types of resources will
appear in system after it has been designed and deployedtthas to detect the nature of
resources.

Detecting short-lifetime resources is not very difficulysg&m may observe the frequency
of their appearance and disappearance from environmeittisifabove arbitrary value then
software may decide that given resource type should bestiest transient.

Specifying which resources aphantomis virtually impossible during runtime. The deci-
sion would have to be made at the moment they are discovei#gthuany previous infor-
mation about their nature. Therefore, such resources dhmrilidentified during design and
implementation. However, if monitoring system is modulad &ave special modules for gath-
ering data for each resource type, these can decide whetbeurce igphantom This way
whole system can be adapted by simply adding new modules.

4.2.3. Resource type

Among all resources existing in distributed environmerd gossible to distinguish specific
classes or types (CPU, Hard drive, Host). These types spebifi@ resources are treated by
monitoring system. In fact, they are very similar to objdeisses in object oriented program-
ming: they describe in general resource capabilities atsdadgroperties. In other words they
systematize and categorize resource instances in adtbtimerarchy mentioned in 4.2.1.

In general, resource type help to:

e define how resource should be handled by monitoring systeparticular, it may specify
resource nature (see 4.2.2)

e characterize resource in terms of properties (see 4.2t i, each resource type has
specific set of those

e specify event types that are suitable for given resource4se

¢ identify resource instances in set of resources. Spegifs@source type when trying to
refer to particular instance greatly reduces amount ofaibjthat have to be searched.
For example, when trying to refer to single CPU in whole dttéd environment with-
out passing type (CPU in this case) would make monitoringesystearch through all
discovered resources. That would be inefficient, to saydast|

Implementing resource typing is very easy. Almost alwagsdlare some kinds of "probing
ends" that specialize in gathering data on specific resaypse As a matter of fact, it is hard
to imagine monitoring system without any kind of resouraessilfication.

4.2.4. Properties

One of elements of resource description are propertiesr Tiegn function is to provide
consumers or any client of monitoring infrastructure infi@tion about resource state and capa-
bilities. Table 4.1 contains examples of resource properti

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.2. Resource description 29

As stated in 4.2.3 a set of properties is defined by resoupm fjhe types specify names
and optionally data type of property. For example, CPU tinussisystem/idle) may be written
as real numbers (value from 0.0 to 1.0) or in percents (0% @8d0Resource instance itself
has specific values of all properties assigned.

Two types of properties can be distinguished in terms of eue dynamics in time:

e static properties are those, whose values do not change duringroesiifetime. They are
assigned when resource is detected by monitoring system.

e dynamic properties values change over time. Their actual values tabe measured
periodically by monitoring system. In fact, these are obfcconcern of monitoring
infrastructures. Their value affect actual distributedtsyn state.

Thestaticcolumn in table 4.1 defines which properties are static.

Identifying static properties is very important for momitay infrastructure efficiency. Such
properties do not have to be probed and sent over the netwdrieguently as dynamic ones.
Moreover, they can be held with associated resources in kordef registry. Consumer could
send a request to this registry for values of static propeitiwants to know. This way the whole
probing and measuring infrastructure would not be burdeviddresolving such queries.

It is also possible to define a hierarchy in resource progertn [36] authors proposed a
classification of metrics for network based resources. ¢ty fhone analyzes properties of net-
work link in table 4.1 a hierarchy is quite clearly visiblaete are three subtypeslwindwidth
property (haximumavailable utilized) and two subtypes dbss(one-way andoundtrip). Such
classification has following advantages:

e it makes it easier to send more specific request for mongatata. Consumer may spec-
ify that it wants to receive whole bandwidth information osj one type of it (say, avail-
able). It may reduce probing overhead as only requestediaatil be extracted

e simplifies human-perspective on properties. Tree viewh willapse and expand func-
tions would be very suitable here

e simplifies adding new property subtypes; such modificatmuia remain transparent for

all consumers that rely only on super-property

Resource type Property name Static Description
vendor v Name or ID or processor vendor
CPU
frequency v Maximum frequency this processol
can work with
working frequency O frequency this CPU is currently work-
ing with. Modern CPUs can often
change efficient frequency to saye
power.
user time [% of time that CPU spent in user task:
idle time O % of time that CPU was idle
system time W % of time that CPU spent in syste(r
tasks (such as 10)

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.3. Resource identification

30

Resource type Property name Static Description
Hard Disk Drive | vendor v name or id of hard disk vendor
rpm v maximum speed that this disk can ro-
tate at
capacity v maximum capacity (in bytes)
space occupied [number of bytes utilized on disk (ip
bytes)
cluster no. v number of clusters
Process PID v process id
command v command that invoked the process
working directory v full path to working directory of the
process
memory usage O number of bytes of memory this pro-
cess allocated
CPU usage O % of overall CPU time this process
used
threads [list of threads that have been started
by given process
user v ID of user that executed given process
parent v PID of parent process
Network link hop number v number of servers/routers that on the
way between terminal nodes
maximum bandwidth v maximum achievable speed on this
link
available bandwidth [] bandwidth that is achievable consider-
ing current network load
utilized bandwidth N bandwidth that is currently used hy
any traffic on this link
loss one-way [% of packets lost in one direction
(sender to receiver)
loss round-trip O % of packets lost in communicatign
sender- receiver- sender
MTU v maximum transmission unit; largest
protocol data unit that link layer can
handle

Table 4.1: Properties for example resources

4.3. Resource identification

One of the main functions of monitoring system is answertmgetjuests for data on given
resource. In general, any consumer has to be able to selgtt §PU from hundreds or thou-
sands scattered across network. In order to meet this ssgeit, system must be able to iden-
tify which resource exactly the request concerns.

Identifying resource in distributed, heterogeneous @mirent is not a trivial thing. One
must overcome several problems. These are discussedin 4.3.

The main subject of this section is to propose an identificaslystem for resources on grid
environment with additional emphasis on its cooperatiain Wiomplex Event Processing. This

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.3. Resource identification 31

proposal is supposed to solve problems mentioned in 4.3 reeet requirements specified in
4.3.2.

4.3.1. Problems

It is true that resource are already identified somehow byatipg) systems. They may be
callednativeidentifiers. For example, UNIX family systems assign nurslierCPUs, IDs to
processes, special files to hard drives etc. However, tidesgifiers remain unique only within
scope of single machine that given OS operates on. Almosy éyBIX machine has hard
disk drive identified ag dev/ sda. Therefore, this "native" identification does not work in
environment that consists of more that one UNIX machine.

Moreover, different operating systems identify resoutbesthey manage in different ways.
Windows using capital letter to designate disks and pantticompared to block devices and
directories UNIX is a good example here. These kinds of difiees of "native" identifiers
renders them inefficient in heterogeneous environment asignid networks.

Finally, some resources don't even have thnativeidentifiers. Network links, clusters of
nodes, cpu cores are usually the case. Still, they can bedwdfjmonitoring requests and need
to be specified somehow.

Clearly, mentioned problems cause a need for additionaliednidentification system to
emerge.

4.3.2. Requirements for proper identification

Heterogeneous and distributed nature of grid networks ses@veral requirements on re-
source identification system. They are named and discusded.b

e unambiguity — resources have to be identified uniquely widdope of whole grid net-
work. Thatis, if they are to have an id assigned, it shouldrbgue in whole environment.

e extensibility — identification system has to be able to hamdiw types of resources that
may appear in monitored environment. This is somewhat aatere of monitoring sys-
tem requirements described in 1.3.5.

e versatility — any type or resource must be able to be desegnay considered identifi-
cation system. A situation, where a special identifiers havee assigned to some small
group of peculiar resources is unacceptable as it wouldtteadedless complication and
confusion.

e human readability — while this is not a critical feature, faunmmeadable resource identifi-
cation could help in satisfying the requirement discusse8dction 1.3.4. In fact, many
native identifiers are understood by humans (drive lettevgindows, block device names
in UNIX, host names)

First of mentioned requirements is crucial. Failing to mestakes the whole identification
idea pointless.

4.3.3. Possible solutions

Taking into account the requirements mentioned in 4.3.2redgolutions can be proposed:

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.3. Resource identification 32

e user numerical ids: this is very similar to artificial pringdeeys in relational databases.
Each resource can have a unique number assigned. Cleasl\sdhition meets all of
requirements named in 4.3.2.

e use native identifiers. The problem of ambiguity of native @an be overcome by as-
signing a unique prefix that comes from host. It may be hoBt'address or name. For
example, one could specify/alev/ sdaZ2 drive by192. 168. 5. 43. / dev/ sdaZ2.

¢ identify by static properties. In this case, consumer g@scvalues of properties that de-
sired resource should match. For example, a request magicorgndor property with
value "Intel", frequency with value "2 GHZ" and number of corgsi@ to 2. Monitor-
ing system shoud match all CPUs that are made by Intel, havee? @md work with
maximum frequency of 2 GHz.

First solution is very good in terms of meeting mentioneduregments. Numbers are uni-
versal and can be used with any type of resource. Moreoviry @BUID (Globally Unique
Identifier) would make it easy to assign unique IDs. Howetles, fact that the numbers are
hardly human-readable (especially GUIDs) makes this swluéss attractive.

When it comes to the second one, it creates unique IDs atediatow price. Unfortunately,
it cannot handle resources that have no native identifiers.

The last one is quite promising. It successfully solves tlodlem of extensibility and han-
dling any resource type by using properties that are asdignall kinds of resources. However,
addressing by properties is usually not unique. There magberal instances of resource with
same property values. It may be hard to find such a set of thamatbuld uniquely define
an element that consumer is interested in. Moreover, inra@e@se this kind of identifica-
tion consumer must know all static property in advance tcstroiet proper query. Therefore,
it would have to obtain data about all existing resources amitoring environment, resulting
in big amounts of data being sent over the network. Finatlypgaring set of properties can be
takes longer than simply comparing an id. This is espectalig when hierarchical properties
are involved. In spite of a number of drawbacks this propasitnay be an interesting addition
to primary identification.

Apparently, none of mentioned solutions is satisfying gtourherefore, another identifi-
cation system was designed. It is described and discus<ed.hn

4.3.4. Connection with CEP

Chapter 3 discussed the general possibility of applying CERfitoring purposes. One
of conditions that have to be met is that resources are ithin uniform, consistent way. This
can be justified by a number of facts.

Each simple event in CEP-based monitoring infrastructuneems one single resource in-
stance. All these events are to be putinto one common evand.cAs mentioned before, within
this cloud various operations can be performed. Most inggdrones from the perspective of
this paragraph are correlations. If each of these eveatgngtin common event cloud, referred
to resource it concerns in a different way (for example, &vprnoduced by hosts operating on
Windows had references to disks noted with capital lettdrigedJNIX-based hosts used mount
directories) finding a correlation within them would be véiard (referring to given example,
correlating all events that regard system partition wowdlifficult).

Moreover, because all the events "live" in same space nanti@owtiunique identification
conflicts may occur. For example, on each machine CPUs areielgignarked with integer

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.3. Resource identification 33

Resource type Discriminator Example
Process PID 34434
CPU Cpu Number 1
Disk drive or partition name of device in operatingC: for Windows,
system /dev/sdaFor Unix
Host IP Address 192.168.2.39
Network link (between twq ip addresses of two ends 192.168.2.69-192.168.5.33
nodes)

Table 4.2: Discriminators for example resources

number. However, in aforesaid event cloud these numbers@lenger unique. Without any
change in identification, this cloud would contain more tbhag event referring to CPU number
1 causing incorrect correlations.

Unigque and uniform identification systems is also importanfollowing reasons:

e it creates a common "resource space" that correspond vehtovevent cloud. All re-
sources can be thrown into one "bag" and still can be identifMaeover, client may
search for resources within this "bag".

e filtering operations on events are easier. Client could $pé#wat it wants to receive data
on events referring to particular id

¢ it makes data reduction more effective (see 5.6 and 5.4).

Therefore, a unique and uniform identification is essefdiamonitoring systems based on
CEP approach.

4.3.5. ldentification proposition

Proposed identification system takes advantage of higraggource systematization de-
scribed in 4.2.1. The main idea is that the whole resourcéegbordered in hierarchy can be
viewed as forest data structure (set of trees). Identifgingle node in such structure is nothing
more than specifying a path from tree root to desired node.

Figure 4.2 presents an example of contents of resourcemeditere are two hosts, each
equipped with two CPUs. CPUs of the first one have two coresgewhé other’s are simple,
one-core processors.

In order to point to second core of the first CPU of first host oag specify a path:

host — cpu — core

However, such path is unambiguous. There’s no informatlmuawhich host and which
CPU instance it concerns.

In order to point to specific instances within single reseusge (in this case given host
among presented pair of hosts, or single CPU within given)heaive identification can be
used. Native identifiers that are used to discriminate mesounstances among children of same
parent will be calleddiscriminators If no such identifier is available (ref. 4.3.1, artificiakdi
criminator can be created. Table 4.2 contains discrimmsdtor some example resources.

After adding discriminators the considered path in resetiree has following form:

host[192.168.2.31] — cpu|[l] — core[2]

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.3. Resource identification 34

Host Host
[192.168.2.31] [192.168.2.49]
CPU CPU CPU CPU
[1] [2] [1] [2]
Core Core Core Core Core Core
[1] [2] [1] [2] [1] [1]

Figure 4.2: Example resource registry content. There aneHost type resource instances with
CPU resources assigned to those nodes that they are insiall€&ksources of same type can
be identified by their native identification. In this casesiain IP address for hosts and number
for CPUs.

This time the identifier is unambiguous and uniquely poiatddsired resource instance.
In general, resource id can be build with following algamith

1. determine the root of tree that considered resourcenosthelongs to. Attach its type
and proper discriminator to the beginning of the path

2. go down the selected tree to selected resource instadcati@ch each intermediate re-
source’s type and discriminator

It can be shown that presented identification system megtsregnents mentioned in 4.3.2.
First of all, it is unambiguous, provided that both relasdn resource hierarchy and root of
the tree can be determined uniquely. Versatility comes fiioenfact every resource have type
and discriminators can be created easily for any kind ofuesn(in extreme situations plain
number may be assigned). Therefore, there are no probleensating single path node for any
kind of resource. Moreover, new resource types can be hadlded by just specifying their
type and discriminator. Finally, identifiers created irsthiay are quite well readable.

This solution also has some special advantages:

e Unambiguity is obtained at relatively low price. Virtualhp data has to be exchanged
between distributed producers. This is achieved by takihvguatage of native identifiers
which are already unique at given scope. IP addresses g@indinate hosts are a great
example here.

¢ hierarchical nature of identifier makes it easier to idgngfoups of resources and thus
make it easier to create certain types of requests. For deaspecification of all CPUs
of given host could have following format:

host[192.168.2.31] — cpul*]

wherex meansany. However, to take advantage of this possibility additiomaiblems
should be solved when it comes to event manipulation in Coxriplent Processing.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

4.4. Resource to event mapping 35

The identification system that is presented in this sectomsied in further research. Due
to technical reasons, such as event marshalling and padiffeyent notation is applied with
dots instead of arrows. Therefore, in further part of thisudoent resource 1Ds will be written
similarly to the following example:

host[192.168.2.31].cpul[1].core|2]

4.4. Resource to event mapping

When considering resources in monitoring system that usegpf@ar&vent Processing one
more problem has to be discussed: how they should be view&stnms of their relation to
corresponding event messages. In other words, a questdo ba asked whether there should
be exactly one event type assigned to one resource type olddhds relation be more loose.

In fact, four different kinds of relationships between ne@s@s and event types can be dis-
tinguished:

e One-to-one every resource type has exactly one type of event assigtreterably, this
event contains all information about resource, includitagic and dynamic properties.

e one-to-many each resource may have a unique set of event types asskprezkample,
sensor that takes care of probing CPU may create messageasaagonly dynamic and
only static properties. Each event type is assigned to xace type of resource.

e Mmany-to-many. same as one-to-many except that some event types may pamceo
more than one resource type. A message containing venaomafion may be an exam-
ple as it can be applied to virtually any kind of resource.

e many-to-one there is one single message format that carries informatbmut any type
of resource

Depending on which of these four types of relationships igseh consumers will per-
ceive particular resources differently. In case of oneite-relation, there is no need to specify
desired message type in requests. In fact, in this case ic@mnssees resource quasi-directly,
without caring about message types. In following two solsi consumer specifies message
type it wants to receive rather than resource. Thus, messagent is decoupled from resource
properties. Moreover, both these relationship types mgkessible to separate static properties
from dynamic ones by creating different message types &8ntfThis, in turn makes it possible
to reduce network traffic as described in 4.2.4.

Last of mentioned relationship types requires a generintamessage to be designed. Such
message would have to contain a list of property names wéh tlalues and datatypes for
proper interpretation. One of its advantages is fairlydssige after serialization, as information
all mentioned information (names and datatypes) would tabe sent.

From presented solutions many-to-many relationship haa bhaosen for further research
as it is simple in implementation while being versatile egtou

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5. Distributed CEP

Chapter 3 discussed the way that main concepts of CEP can beénusexhitoring infras-
tructures. However, the real usefulness of this technoilmguch applications is closely related
to the implementation of the CEP idea. This chapter presatitdrébuted approach to CEP with
special emphasis on applying it in monitoring infrastruesufor efficient, on-line operating.

First, the architecture of distributed CEP oriented systemrésented with its advantages
and disadvantages. Secondly, the problems that have t@wéeé feghen designing such systems
are presented along with solution suggestions. Finakkybtmefits of using this architecture are
mentioned.

5.1. EPL statements

Before any further research is presented, one must first beetamiliar with defining event
patterns in CEP. They are used to define complex events andecapegified as statements
in special language called Event Programming Language Rar).EThere are many dialects
of EPL depending on implementation of CEP. The research ghptdsented in this Thesis
uses Esper [4] CEP implementation. Therefore, Esper EPedif8] will be referenced as an
example of EPL abilities and features. It is worth notingt tieese operations are not strictly
tied to EPL. They can be easily expressed in any other largguag

This sections covers only a few aspects of EPL capabilitiasdre crucial to understand the
problem of distributed CEP that is discussed in this chaptdf.reference can be found in [3].
Reader should refer to it in case of any inconsistencies aragsses in following text.

5.1.1. Event streams

EPL statements operate on data structures called evestrstrédnevent streamis a named,
ordered, infinite sequence of single events of same typeoider in event stream is based on
event creation time. The older events (created earlierjirgten the stream. The infinity comes
from the fact that event sources (see 3.1.2) in most caselsigecevents continually, without
permanent breaks. The name of the stream is arbitrary, @iyesystem users or system itself.
It is used to distinguish event streams carrying the samet éypes but coming from different
sources.

An event stream may be created in one of two ways:

e in event sources, by producing given event type. In this,calbeevents of same type
automatically form single stream

e by applying event patterns and creating complex events. Gngvents that are result
of event pattern form new event stream.

36

5.1. EPL statements 37

Event streams may be joined, split or filtered. Stream jgimireans forming single event
stream from two or more other streams. Getting events aangaprocess pid and command line
with information about user that invoked this process, fgles separate events about processes
and users are generated, may be an example here.

Stream splitting is an oposite operation to join. It extsanformation from one event stream
and forms two or more new ones. For example, two separetauomrs may want to have
information about CPUs. However, one of them wishes to recexents about only one of
them while other one about all of them. Thus, two separatatesteeams have to created: one
containing event that concern only specific CPU and otheranoing all events.

Filtering streams involves rejecting events that do nasgasome arbitrary condition. For
example, one may spacify that only events that have a givere \greater than 10 should be
involved in further processing.

5.1.2. Sliding windows

Stream of events that arrives to CEP engine is by definitionitefiPerforming any kind of
group operations on such data structure is impossible.

Sliding windows solve this problem by selecting a limitedset of incoming events. The
criteria by which events are put into windows can be divided two categories.

e time-based- events are selected by the time of their creation (arrvaCEP engine).
For example, a window may contain only events from last 3 teiswlf at some point
any event turns out to be older than specified time periodrgnsoved. Simultaneously,
new events that have just arrived are put into window. Tloeegftime window "slides”
through event steam with regard to time.

e size-based windows that have limited event capacity. If window is fatid new event
arrives, the oldest of events is removed to make room for &éve one. Thus, windows
slides with regard to size.

Each window can be additionally filtered by arbitrary cormtit For example, one may want
to have only events from last 4 minutes that come from prodwdé given name.

5.1.3. Aggregation functions

Aggregation functions in EPL work in similar ways as in SQLpbkgd in relational
databases. They are invoked on group of events. This grousuislly specified by windows
(group is equal to all events in window). The result is a nempl@x event containing the
outcome of aggregation function.

Examples of such functions include:

e sum- returns sum of given field of group of events.
e average- arithmetic average of given property of group of events
e maximum value - returns largest of of values taken from specific propertgvaint group

e element count- number of non-empty elements

In fact, the syntax and semantics in EPL of these functiongeng similar to their counter-
parts in SQL.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.2. System architecture

38

5.1.4. Output control

EPL enables user to control the number of events that areaeddy the statement at one
time and frequency of these outputs. For example, it is ptesso specify that 1, 10 or any
arbitrary number of all accumulated events should be retkaach given time interval passes
(for example: 10 seconds, 2 hours etc.). This feature isigeoMoy theout put clause.

5.1.5. EPL examples

Below are some examples of EPL statements along with deiseript their results. They
may be useful to grasp the EPL syntax and semantics and tizudgisome event pattern detec-

tion capabilities of CEP.

sel ect avg(cpu.idleTinme) from Cpulnfo.win:tinme(2 sec)

Statement
Description Calculate average idleTime from Cpulnfo mességen last 2 seconds
Statement sel ect max(cpu.idl eTinme) from Cpul nfo.w n:lengh(200)
Description Get maximum idleTime from last 200 Cpulnfo mgesa
Statement sel ect avg(cpu.idleTinme) from Cpulnfo.win:tinme(2 sec)
Description Calculate average idleTime from Cpulnfo mességen last 2 seconds
sel ect avg(cpu.idleTinme) from Cpul nfo(userTinme >
Statement 0.5).w n: | ength(100)
Calculate average idleTime from Cpulnfo messages from last@rgls that
_ have userTime above 50%. It is worth pointing here that ombsé events
Description , .
that meet this condition will be put into length window andopy space in
it.
sel ect avg(cpu.idleTinme) fromCpulnfo.win:tinme(4 sec) output
Statement | ast every 2 seconds
. Calculate average idleTime over a time window of 4 secondsrE® sec-
Description

onds return the latest result.

5.2. System architecture

In 3.1 a general idea of CEP was presented. However, the coot€tP can be imple-
mented in many ways, using different types of architectures

The simplest and most corresponding to CEP idea is centiadizehitecture. An example
of such architecture is shown in figure 5.1.

The arrows in this figure represent event streams coming &eent producers and from

CEP engine.

Event producers are implementation of event sources (4€2) 3They collect produce sin-
gle simple events and send them to one well known locatidedtadonitor. The event messages
themselves are usually sent over the network.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.2. System architecture 39

Consumer 1 Producer A

~

Consumer2{ ¢ — — — CEP Engine Event cloud)
i f

/ N i

5 %

~ Monitor T
SN

7~

Ve
Consumer 35 Producer B

Figure 5.1: Centralized approach to Complex Event Procesgitgroducers are sending
events to one single physical event cloud handled by one CEiherAll consumers receive
complex events from the same engine.

In order to perform event processings, a monitor has a CEmengstalled. TheCEP
Engineis part of the system that deals with event pattern deteatiorcoming events. This is a
heart of whole CEP-based application. It accepts EPL stattsyeompiles them and constructs
state automata (as far as Esper implementation is conqettmetdare used to detect complex
events. Therefore, a CEP Engine consumes and aggregatds siepts to produce complex
ones. Those are sent by the monitor to consumers. The daetestid pattern matching are
performed in one place on all arriving events. In this marthercentralized CEP corresponds
to the general CEP idea very well. There is one single eveatdioat contains all events that
exist in the environment and one Event Processing Engirtectraes out all operations on
them. In other words, the centralized CEP architecture isalynélirect implementation of
concept presented in figure 3.1.

The event consumers are applications that accept everdsqed by the CEP Engine. In
most cases they also specify event patterns, usually wiitt&€PL, that they are interested in.
Event consumers do not have to know anything about producdise way they are handled.
They only have to know the definitions of available event s/pethe system.

A typical scenario in centralized CEP architecture may looko#lows:

1. all producers start sending events to CEP Engine. They waibrthe time, producing
events periodically and therefore creating streams

2. aconsumer sends a request to the monitor in the form of arstaRement, defining event
patterns it wants to have detected. The monitor passesdtersint to its CEP engine

3. the CEP engine receives statement and starts detectingeosvents in arriving event
streams. These events are then sent by the monitor to tharoenshat sent the request
before

All operations regarding EPL compilation and event detec({in point 3) are provided by
CEP implementation. Therefore, when implementing cezeedlmodel of CEP, one has to deal
only with request protocols (from consumer to CEP engine)emetht transportation.

Unfortunately, presented solution has a number of disadgas:

e one single central point makes this kind of architecturg veitnerable to breakdowns. If
monitor fails, the whole system will stop working

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.2. System architecture 40

e if there are many producers and many consumers the monitpbesignificantly loaded
in terms of CPU and memory usage (event pattern detection st storing for ag-
gregation purposes). Although most CEP implementatiordu@ing Esper) can handle
hundreds of thousands of events in one second, the comnionigaterface (usually
network) and processes concerned with event serializatepnbecome a bottleneck.

¢ the network links between the monitor and event producessbmasignificantly loaded
as they carry all the simple events existing in system enui@nt. It also makes data
reduction (see 3.3.4) impossible

These factors, especially the first an the last one, makesbsd architecture less usable for
monitoring purposes. First of all, the monitoring infrastiure that is discussed in this Thesis
is supposed to work in grid environemnt which should be rolans accessible. Secondly, as
stated in 1.3.7 such system should affect the performanatole network as little as possible.
Therefore, a different approach to CEP architecture shoaikdlken.

In figure 5.2 an alternative architecture is presentedeftsbf one single monitor and one
event cloud there is a number of them, connected togethercdimsumers still send their request
to and receive events from one monitor and view the wholeegygtist as if it was centralized.
However, the mechanism of collecting simple events andIivandvent cloud is very different.

First of all, events created by producers do not come to firmgssing directly. They are
subjected to several intermediate processings carriedi®r €EP engines. Each CEP engine
operates on separate event cloud formed by events carrigddayns that are sent to this specific
engine. Similarly, each engine views arriving streamsarnity, regardless their source. In
other words, at stream receiving point it has no meaning léret comes from CEP engine or
directly from event source. For example, in figure 5.2 endimeceives three streams: directly
from producer D and two that are results of processing byr&sgP and 3. Similarly, each
intermediate engine sees engines that receive streamsitfrasnordinar consumers that can
iIssue requests. For example, in figure 5.2 the engine 1 issdéy engine 2 as consumer, in the
same way as engine 1 views consumer 1, 2 and 3. Therefor@dtipers can accept requests
just like monitors, a communication uniformity exists ahd actual complexity of architecture
is hidden from each monitor.

In order for this architecture to work, each EPL statemeat sent between intermiediate
CEP engines has to be properly related to a request thatsafrove consumer to the front-end
CEP engine. These partial statements are constructed asltaafesnalyzing original one. In
addition to this, a new EPL statement is created that will ¥&duto process incoming events.
Such process will be calleckquest distribution as it creates sub-statements that should be
distributed over other engines. It is extensively desctibbe5.3. The request distribution is
carried out in monitors.

Typical usage scenario, from issuing a request from conston@ceiving events by it, in
distributed architecture presented in figure 5.2, may ldakthis:

1. just as in centralized architecture, all producers seadts to assigned CEP engine peri-
odically

2. consumer 1 issues a request that concerns events prooygedducer Producer A, C
and D. Consumer does not have to know what types are producedhibli sources. It
just has to know that those types exist in system

3. Engine 1 examines the request and realizes that it hagdiossi-statements to engine 2,
3 and producer D.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.2. System architecture 41

4. Engines 2 and 3 receive requests and both start sendintseaming from producer A
and C accordingly

5. Engine 1 receives events from engines 2 and 3 and useséisbly statement (see 5.3.1)
to construct a final result: events requested by consumeseamiithem to this consumer

Obviously, this scenario is more complicated than the orentralized architecture. There
are several steps of statement processing and additiomeg$s of request distribution. More-
over, some other problems have to be solved when implenggtitia solution. These are dis-
cussed in 5.5. However, by the price of complexity some ingmiradvantages can be obtained:

e there is no single central point. That means no point is extely loaded with event pro-
cessing. Instead, the whole processing task is distriboibedr a group of nodes. More-
over, failure of one CEP engine does not necessarily meariitbathole system must
stop. While the front-end monitor (monitor 1 in figure 5.2) i&iad of single point of
communication between consumers and other monitors themsysould be adapted to
its failure by implementing a fallback mechanism that worddoute all request issued
to this monitor to other ones. The implementation detailswth solution will not be
discussed in this work. Moreover, not all consumers will beags connected to same
monitor. As a result, failure of one front-end monitor does mean detachment of all
consumers from monitoring service.

e scalability; by taking advantage of the communication amrhity between monitors, pro-
ducers and consumers, any producers or consumer can beagplamonitor. Therefore,
the area of network covered by monitoring infrastructune loa easily extended and per-
formance of event processing increased.

e data reduction support (see 3.3.4).

5.2.1. Nomenclature

Following sections of this chapter refer to some conceptseming distributed CEP archi-
tecture. Below are their definitions:

e partial producer - a producer that from point of view of particular monitor ates events
that will be processed by an assembly statement. For exampligure 5.2 in case of
monitor 1 partial producers are: monitor 2, monitor 3 anddBoer D. Partial producers
will also be calleddirect producersas they are those producers that send events directly
to given monitor

e assembly monitor- monitor that is using an assembly statement to processrimcp
events. Each partial producer has its assembly monitorhmsiche monitor it sends
its events to. In figure 5.2 monitor 1 is assembly monitor fanitor 2, monitor 3 and
producer D, while monitor 2 is assembly for producer A and B.

e front-end monitor - monitor that receives requests directly from consumehng don-
sumers see the whole CEP-based monitoring infrastructutevas only this one moni-
tor. In other words, front monitor hides the complexity ofmtoring infrastructure from
the consumer. A front monitor exists in context of given agnsr. Thas its, a monitor
that serves this role for some client may be only intermedtate (on processing path)
for requests sent from some other consumer.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution

42

Consumer 1

Producer A

Monitor 2

CEP Engine 2

d

Event cloud

Producer B

~

i il

Consumer2{ <4 —

e

Monitor 1
~

CEP Engine 1

7

Event cloud

N

x
-

L

Monitor 3

e

CEP Engine 3

Event cloud

N

A

~— Producer C

T o

S
Consumer 3%

Producer D

Figure 5.2: Distributed approach to Complex Event Procgsdihe event cloud is distribtued
over multiple CEP engines. Each producer sends event to agnaged event cloud. Results
of processing performed by one CEP engine may be an input Gdhanone. Consumers may
receive events from arbitrary monitor.

e intermediate monitor - monitor that performs processing that is a part of resghoh
given request but is not a front-end monitor. In figure 5.2 itwwr2 and monitor 3 are
intermediate ones from the point of view of monitor 1 wheroheisg requests from any
of shown consumers.

5.3. EPL request distribution

As stated in 5.2, distributed CEP requires a process of angly{zPL statements and di-
viding them into sub-statements. In this section this paldir problem will be thoroughly dis-
cussed.

5.3.1. The problem

The main idea of request distribution is to detect parts df &Rtement that can be resolved
independently by different monitors (more specificly: sepa CEP engines).

Figure 5.3 shows how request distribution process intenatth other parts of distrbuted
CEP architecture presented in 5.2. An EPL request sent frarsuroer is subjected to request
distribution process before it gets to CEP engine. This m®ceeates two types of result. One
iIs an EPL statement callemksembly statementhat will be used by CEP engine to process
streams coming from producers. The other are partial regjtiest are to be sent to individual
monitors that should carry out sub-processing.

Below is an example of request distribution. First, the ordgistatement that is sent from
consumer:

sel ect avg(Cpul nfo.userTine) as avgTi ne from Cpul nf o;

The result of applying this statement in CEP engine would bavenage user time of all
events containing data about CPUs existing in the envirohthahsystem is working in.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution 43

Monitor O

7 original statement Request .
Consumerj Distribution ————3Pp»| Monitor 1

asserﬁﬁl\ Partial statements

statement

A 4
CEP Engine

Monitor 2

Figure 5.3: A place of request distribution in distributedRCEhe statement received by Mon-

itor O is subject to distribution that is supposed to detestgpthat can be delegated to other
monitors. The results of this process are partial statesrtbat are sent to designated monitors
(those that should take part in resolving request) and amnasy statements that will be used

to process the results received from them.

The calculations of this average can be distributed ovetiphellmonitors by first summing
the usertTime in intermediate CEP engines and calculatiagpge of these sums in final mon-
itor. Therefore, the partial statements would be:

sel ect sun(userTine) as s, count(userTine) as ¢ from Cpul nfo;

and the assembly statement:

sel ect sun(s)/sum(c) as avgTine from
partial Stream wi n: | engt h(nunber O Parti al Provi ders);

The form of partial statement is obvious: it counts sum andier of given factors to make
it possible to calculate an average later. The assembbyséatt is more complex. It uses length
window to limit the number of events that aggregation fumusi are working on to equal to
number of direct providers of events (other monitors thatquen partial processing). If there
was no limitation, the average would be calculated usingliddata set that could include too
many events or old events. In 5.3.2 specific patterns ofiigions are discussed in details.

It is worth noting that presented assembly and originakstants produce same type and
format of events (including name of parameters, in this exgdime@. This is one of conditions
for a request distribution to work properly. In general, tguirements are:

e format of events that are result of assembly statement mastinthe format of events
that would be produced by plain original statement. This wapsparency of request
resolving from the consumer point of view is preserved

¢ the overall outcome of assembly statement must be same ag afriginal statement.
That is, the event sequence and content must be same as tlooggnal statement being
processed in centralized architecture

Following parts cover the problem of statements distrdouth more general way.

5.3.2. Distribution patterns

Not every EPL can be effectively distributed. For exampigial statements can be consid-
ered, such as:

sel ect * from CPUl nf o;

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution 44

It simply requests every single event message concerningsCHPtgre is no place where
the distribution could be performed. Obviously, in thise#se intermediate monitors would be
simply passing all individual events, just as the assempglynonitor?.

In order for a statement to be suitable for request distobytat least one of following
operations must be presentin it:

e aggregate function - aggregating could be performed omnrediate monitor (closer to
the source of events) or distributed over multiple oned §gsn example in 5.3.1)

e time or length windows - windows can be partially filled oremhediate monitors
e grouping - thegroup byclause in EPL, discussed in next parts of this chapter

e filtering - thewhereclause in EPL or stream filtering. Filtering can be placed @& n
the origins of the events as possible to prevent unwantedages being sent over the
network

Meeting the above requirement does not necessarily mean gtatement can be properly
distributed. The question whether given EPL statement cataonot be beneficially broken
into sub-statements is an advanced problem. However, sener@ patterns of EPL statement
distribution can be identified. They are presented in talde 5

Every assembly statement refer@gsenbl ySt r eam This is the name of the stream that
is formed by events coming from producers as a result of ging partial statements.

No | Request Distribution
1 Partial statements:
sel ect avg(val ue) as sel ect sunm(value) as s, count(value) as c
[alias] from[strean; from[strean

Assembly statement:

sel ect sun(s)/sum(c) as [alias] from
assenbl ySt ream st d: uni que(pr oducer Spec) ;

2 Partial statements:

sel ect count(val ue) as sel ect count(value) as from[streani
alias] from[strean;
[] [" Assembly statement:
sel ect sun{c) as [alias] from
assenbl yStream st d: uni que(pr oducer Spec)

3 Partial statements:

sel ect max(val ue) as sel ect max(value) as nx from[strean;
alias] from[stream;
[] [" Assembly statement:
sel ect nmax(nx) as [alias] from
assenbl yStream st d: uni que(pr oducer Spec) ;

“Whitestatements simitar to-presented-one can not-be ditgdbu-sense presented-inthis-work; the results
created by them can be buffered on intermediate monitoisorime cases events arriving from multiple producers
may flood the monitor. Therefore, each monitor could norpeetine flow of events by releasing only latest of them
with given frequency.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution

45

sel ect [aggregate] as
[alias] from
[streanf.wi n:length([len

spec])

No | Request Distribution
4 Partial statements:
sel ect [groupAttribute], sel ect [groupAttribute], aggregate(value) as
aggr egat e(val ue) as [alias] from[strean] group by
[alias] from[strean [groupAttribute];
group by)
[groupAttribute]: Assembly statement:
select [groupAttribute], [alias] from
assenbl yStream
5 Partial statements:
sel ect attribute as select attribute as [alias] from[strean
[alias] from][stream output [quantity] every [frequency/n]
out put [quantity] every]
[frequency] Assembly statement:
select attribute as [alias] from
assenbl yStream out put [quantity] every
[frequency];
6 Partial statements:
sel ect [aggregate] as same as partial for normal aggregate but over
[alias] from time window with [tinme spec]
stream.win:time([tine
[SpeC] ;ﬂ (I Assembly statement:
sane as assenbly for given aggregate
7 Partial statements:

same as partial for nornal aggregate but over
I ength window with Iength [l ength
gt h spec]/ producer Count

Assembly statement:

sanme as assenbly for given aggregate

Table 5.1: EPL distribution patterns

Pattern 1 concerns statements that contain calculatinyemage of specific property of
incoming events. This mechanism is portrayed in figure 5athEevent contains surs)(and
count €) values calculated at partial producer and event prodyssrifser @, each letter refers
to different producer) for reference purposes. When eveearto assembly monitor, it is put
into anuni que window (new events are marked with gray color), triggeriognputation of
total average. If there was nmi que window, an effect of "double aggregation” would occur.
The assembly monitor would remember all received eventsaledlate average from all events
sent so far. Because these event already contain aggregaséatitial” values, the outcome
would be invalid. For example, without theni que window, the fourth event (second from
producer A) would be appended to the whole set. As a reseliavierage would be calculated
from all four partial events, where fourth event alreadytaors all the information from the first

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution 46

Partial producers Unique window (by producer) | Output
S:2 S:2 !
C:2 C:2 P AVG:1

P: A P: A 1
|
I
S:3 S:2 S:3 :

C:2 C:2 C:2 —PAVG: 1,25
P: B P: A P: B 1
|
|
S:1 S:2 S:3 S:1 |

C:1 C:2 C:2 C:1 |—b AVG: 1,2
P: C P: A P: B P: C |
|
|
I
|

S:4 S: 4 S: 3 S:1

c:3 C:2 c:2 c1 L plAvG: 1,33
P: A P: A P: B P: C !
|
|
v !

time

Figure 5.4: Example of distributed average calculatiomgisinique window. Gray events are
those that are updated by incoming ones. After each receiaut an actual result is produced.
Each producer (on the left) aggregates its events on it'sawvasends only aggregation results
to monitor. The overall outcome is computed using thoseglgraggregated values.

event (from producer A). When using this kind of distributisome synchronization problems
that may occur. They are presented in 5.5.

In pattern 2 a&ount aggregation function is distributed. It is very simple:leadermediate
monitor counts its events and sends the outcome to an agsemobitor. There the outcomes
from each producer are summed to give final value. Againutiieque view is applied in the
assembly statement to prevent overlaying old and new data.

Pattern 3 covers theax aggregate function (th@ n function is analogous). It is distributed
by finding maximum of maximum values sent from other procsitaonitors. In other words,
each monitor calculates its own greatest value and sermalgst¢onsumer. The assembly state-
ment usesini que window for the same reasons asang distribution.

The above three patterns show that each aggreate funcsdo ba considered individually
in terms of request distribution. However, the general@pie is the same: partial results are
aggregated and assemblied usinguhé que window.

A grouping operation is considered in pattern 4. This patievery architecture dependent.
If the group by attribute value is different for each produtieen the statement can be naturally
distributed over them. Simply, every monitor performs &ggition on events it produces. For
example, if the original statement was:

sel ect hostname, avg(userTinme) as avgTinme from Cpul nfo group by host nane
wherehost nane attribute can be unambigously mapped to producer (one pesgher host),
then the partial statement would be:

sel ect hostnane, avg(userTine) as avgTinme from Cpul nfo group by host nane

In fact, thegr oup by clause is virtually obsolete here due to the fact that alhesseoming
from single producer would be in same group. However, it qgined for the statements to be

compilable. The attributes that are outside any aggregétioction fost nane here) has to
be in thegr oup by clause, just as in SQL. The assembly statement is very simple

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution 47

Producer A Producer B Producer C

No: 1 No: 1 No: 2 No: 1 No: 2 No: 1 No: 2 No: 2

Figure 5.5: Example of an event group to producer layoutfergroup by clause. Each producer
creates events that belong to one of two groups defined dyahmoperty gr oup by No; a
group corresponding to events with No value of 1 is marked gitiy). As a result there are six
virtual producers (2 groups for each one of three physicadpcers).

sel ect hostnane, avgTinme from assenbl ySt at enent ;

However, when thgr oup by clause concers attributes that are cannot be directly con-
nected to individual producers, the distribution probleihsuch statement becomes complex.
The aggregation cannot be delegated as a whole to other oromiecause they operate on
groups that are formed at the assembly monitor. Thereforeust be distributed in the same
way as in previous patterns. The assembly should includgpgng the incoming events in the
same way as the original statement would do it. However, wioastructing assembly state-
ment it must be taken into account that the groups createePL statement are split over
multiple physical producers. This problem is presentedgoré 5.5. Events are grouped by
the No property. Therefore, there are two logical EPL groups (graéus marked with gray
color) divided between three producers. Each of them segsiit of group as a whole. That is,
producer A considers two events as a whole group 1 and one asengroup 2. For each of
these group aggregation is calculated separately. In thetled "gray” results from producer A
must be combined with "gray" results from producer B and C. ttreoto handle the aggrega-
tion properly, the assembly monitor must perceive eachgnoproducer as separate producer.
That is, considering the situation in figure 5.5 there aré"artual” producers: white A, gray
A, white B, gray B, white C, gray C. For example, for original staént as follows:

sel ect nunmber, nmax(userTinme) as nxTime from Cpul nfo group by nunber

wherenunber is simply an integer identifying a CPU within single host feient CPUs on
different machines may have the same number), the pari@sents would be:

sel ect nunber, max(userTine) as nx from Cpul nfo group by nunber

The assembly statement is following:

sel ect nunber, nmax(nx) as nxTime from
Cpul nf o. st d: uni que(producer Spec, nunber) group by nunber

The last statement, compared to plamx function distribution was modified with addi-
tional parameter to thani que window. This parameter correspondsgooup by clause
arguments and causes thei que window to distinguish groups within producers. Presented
modification is valid only formmax andmi n operations. Again, each aggregation function must
be considered separately.

Statements in pattern 5 contaiogt put clause. Distributing such requests has virtually
no benefits. However, theut put clause often appears with other EPL constructions thexefor
it is important to analyze it. In fact, distribution of tleut put clause is very simple. Both
partial and assembly statements preserve the quantityfispedowever, the partial ones have
the frequency reduced by some arbitrary factotJsually, is may be 2 or less, but to lesser
than 1. It is needed because of possible lack of synchreomzbetween those producers. This
problem is discussed more thoroughly in 5.5.2.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution 48

Pattern 6 concerns the distribution of statements withegggron functions over time win-
dow. Such statements can be distributed in similar way &s atggregation statements. The only
difference is additional time window in partial statementth same time interval as in original
statement. The justification for such solution is simplee plain aggregation statements can be
viewed as having an infinite time window. This window is intfapplied implicitly in each par-
tial statement for plain aggregation functions. Therefegedting a limit on window in original
statement influences windows in partial statements. As ampie, following statement with
max function on time window can be considered:

sel ect max(userTine) as maxTine from Cpul nfo.w n:tinme(100 sec)

the partial statement is:

sel ect max(userTine) as nx from Cpulnfo.w n:time(100 sec)

and assembly statement:

sel ect max(nx) as nmaxTinme from assenbl yStream std: uni que(provi der Spec) ;

Statements in pattern 7 use aggregation function compuwedablength window. Simi-
larly as in case of time window pattern, the assembly statémesmains unchaged compared
to assembly statements for particular aggregation functimwever, the partial statements use
length window with length equal to original size dividided umber of producers taking part
in distribution. The reason for this is that the originalddmwindow collects a limited number
events from all producers. If length window is divided by rhenof produers, this limitation
is preserved as each event received by the assembly monitaowtain information about
Z% of all partial events provided by all producers. This valmeltiplied by number

of received events at given moment (which is equal to numbgramlucers) gives the length of
original window. For example, following original statenten

sel ect avg(userTine) as avgTine from Cpul nfo.wi n: I ength(50);

computes average user time from lastGtul nf o events. The assembly statement for this
cases:

sel ect sun{(s)/sum(c) as avgTine from
assenbl yStream st d: uni que(pr oducer Spec) ;

The partial statement, assuming that there are 5 partidugers, is following:

sel ect sun{avgTine) as s, count(avgTine) as ¢ from Cpul nfo.w n:1ength(10);

The assembly statement will accept one event from eachapproducer, which corresponds
with 10 Cpul nf o events. Because there are 5 producers, the final averageewdllbulated
using 5 partial aggregation events (the ones contaiaing) and count) which corresponds
to 50 Cpul nf 0 events. One may argue that tbeunt function is not necessary here as the
actual number of events is known in advance because of tigghlevindow. However, is was
kept to make this statement compatible with distributiomwf) without length window.

5.3.3. Distributing stream joins

As mentioned in 5.1.1, EPL statements may contain join djggr@n event streams. Pres-
ence of this operation in EPL statement complicates theilglision process. In fact, it may
cause the distribution virtually impossible.

Three following situations can be distinguished when deggaivith statement containing
stream joins:

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.3. EPL request distribution 49

¢ all events in all streams that are part of the join operati@paovided by the same pro-
ducer

e at least one of the streams is provided by other producerttiearest of the streams
¢ all event types involved in join operation can be providedbyroducers

First two cases are easy to resolve. In the former one a statezan be distributed as if no
join was present. The joined streams can be treated as eaexstor the purpose of distribution.
The latter case cannot be distributed. The statement esgenrents from two or more separate
sources thus virtually no operations can be executed atfahg producers as there is no access
to all required events.

When it comes to the third point the statement can be transfdonly if the distribution of
particular streams taking part in the join to the produceregular. That is, if one of producers
creates more events of given type than the other, distabusi probably not possible. For ex-
ample, following statement produces events that contaena@e cpuTime for those processes,
which were invoked by same user on two machines:

sel ect avg(HL.cpuTime + H2.cpuTine) from Processlnfo(host="192.168.2.31")
as Hl, Processlnfo(host="192.168.2.35) as H2 where Hl.user = H2.user

In this case, two producers can provide same event typresdess| nf o). However, the
first producer (at host with ip address 192.168.2.31) mag hess processes invoked from given
user (or none) than the other one. Moreover, the join itskdfré events in a way that cannot
be resolved at the producers separately because thereiselation between streams coming
from two different sources. Therefore, this statement oabe distributed properly and has to
be processed as is by receiving simple events from produBessessing th@her e clause
may be required here to determine whether correlation lestwwreams exists.

On the other hand, if the there is no correlation as above @inéd streams can be dis-
tributed regularly within producers, the statement disiiion can be performed. For example,
following statement:

sel ect avg(P.cpuTine) as avgCpuTi ne, U nane as uname from Processinfo as P,
Userinfo as U where P.user = U nanme group by U nane

can be distributed because the stre®@mgcess| nf o andUser | nf o do not correlate outside
single producer (assuming that user names are unique fmoallicers, that is a given user name
can appear on only one host). Thus, the assembly statemg¢hifacase would be following:

sel ect sun(s)/sum(c) as avgCpuTi ne, unane from
assenbl yStream st d: uni que(pr oducer Spec) ;

and the partial statement:

sel ect U. nanme, sum(P.cpuTine) as s, count(P.cpuTine) as ¢ from Processlnfo
as P, Userinfo as U where P.user = U name group by U nane;

Unfortunately, determining whether the correlation betwgined streams exists is diffi-
cult. It requires knowledge of the meaning of properties #ra involved in thevher e clause
and finding out whether they concern events coming from miffesources (such as thest
property in the example above specifies the producer). Tioislgm is discussed more thor-
oughly in 5.4. In practice, only statements containing mplain event streams (without fil-
tering) and without th@her e clause should be distributed.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.4. Handling partial producers 50

5.3.4. Mixing patterns

Patterns presented in 5.3.2 cover only some very specific &&ement types. In fact,
the real, usable EPL statements rarely contain only oneegggjon function or onlput put
clause without aggregation functions. In most cases, tfeegares are combined in one state-
ment. In fact, finding a way of distributing every EPL stat@tnean be a challenge. However,
several most common combinations can be rather easilyvexkolrhey are mentioned below:

e out put clause and any other EPL feature combine rather flawleskiy.i3 because the
out put clause does not affect the processing and matching itssiid{tions, filtering,
time windows etc.) and can be simply attached to existingigdaand assembly state-
ments. Therefore, distributing statement withaut put clause should first distribute
the statement without it and then attach possibly modifietiput (see 5.1 to created
assembly and partial statements

e aggregation functions with expressions as arguments,asieRample average of sum of
two property values. These are distributed as presentedbia 5.1 with single argument
replaced by expression. For example, following statement:

sel ect avg(userTi nexidl eTi nexsystemTli ne) from Cpul nfo.w n:tine(200
sec);

can be distributed as normalg statement with the single argument replaced by the
multiply expression.

e multiple aggregation functions in one statements can bsidered separately. That is,
proper parts of &el ect clause should be constructed for each of them independently
and then composed to form partial and assembly statememtsx&mple, following state-
ment:

sel ect avg(userTine) as avgUT, max(idleTinme) as maxI T from
Cpul nfo.win:tinme(200 sec);

would result in an assembly statement as:
sel ect sun(s)/sum(c) as avgUT, max(n) as maxI T from
assenbl yStream st d: uni que(pr oducer Spec) ;

and following partial statements:

sel ect sun{userTine) as s, count(userTine) as c, max(idleTine) as m
from Cpul nfor.win:tine(200 sec)

5.4. Handling partial producers

Many of request distribution patterns presented in takler&ferred to number of partial
producers. This is where another problem emerges when iesdmrequest distribution: the
assembly monitor has to know how many producers should takeip the process. More
specificly, following questions must be answered:

e which producers should take part in request distributidmatTs, which of them should
receive partial requests.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.4. Handling partial producers 51

e which assembly statement an incoming event sent by partidiyger should be assigned
to

The first point is very obvious and is an extenstion of theiggptoducers quantity problem.
In order for assembly monitor to determine which produckoaufd take part in distribution two
pieces of information have to be gathered: what types oftevsrproduced by each producer
and what event types are involved in original statement.

The first one in easy to establish. Each monitor should holcbdyzer registry with pro-
ducer addresses and provided simple event types. For badegar (not monitor, the one that
actually only creating events) the produced event typesiarply those that this producer can
create in probing process. For any producer that receivetgfi®m other ones, the set of event
types that it can provide must include also the events affesesub-producers. For example,
in figure 5.2 the monitor 2 would announce event types frondpcer A and B, while monitor
1 from monitor 2, monitor 3 and producer D (one has to keep mdntihat each monitor treat
base producers and other monitors that send streams tdatmiy).

The problem which event types are in involved in originatestaent is more complex. In
order to answer this question, the original statement hias é&xamined. Beside the omclause
(which explicitly contains streams that are involved) abed er | oi n has to be taken into
account. For example, a following statement can be coreider

sel ect user.id, cpu.nunber, cpu.userTine from Cpulnfo.wi n:tine(200 sec) as
cpu left outer join Userlnfo as user on user.hostnanme = cpu. host nane;

It refers to two event type<pul nf o, which is stated in thé r omclause and implicitly
to Userinfo mentioned in theut er j oi n clause. Therefore, the partial statements should be
sent to all producers that provide either thger | nf o or Cpul nf o events.

Moreover, besides the syntax of the statement, propertiegatould be examined to deter-
mine which producers really should contribute to distridwt This is especially true when the
wher e clause and window filtering are concerned. The conditiorhes¢ clauses may effec-
tively limit the events to only those coming from a few pautar producers. Using resource
identifiers as in statement below is a classic example of sitightion:

sel ect avg(userTine) from Cpul nfo(resourceld =
"host[192.168.2.34].cpu[1]’).win:tine(l00 sec);

This is a typical case of average pattern (number 1 in taltleexcept that it uses a condition in
window specification to refer to only one specific resourcirsh CPU on host with ip address
192.168.2.34.

It would the be best to send partial statements only to thesdugers that can provide
events about this particular resource. However, in orddotthat the assembly monitor would
have to know two things: what resources each producer canderevents about and which
properties determine the particular producer (it mayhbst name, devi ceNane or as in
previous example esour cel d) and how their values are mapped to producers. The first re-
guirement is easy to meet: the monitor should hold a resoegistry (see 4.2.4) containing all
resources handled by system and information which prodwaar provide information on them
(thus, reference to mentioned before provider registrytmxist). The second one is more com-
plex. The monitor must know which properties can be considl@s producer "discriminator".
In other words, a mapping of pair (property name, propertyejato producer is needed. Re-
source identifier described extensively in 4.3.5 is a go@agte of property that can be easily
mapped to producer. Well defined format of this identifiet thaised by all parts of monitoring
system makes it possible to determine exact instance ofiresty parsing the property con-
tent. Therefore, using such identification may greatly iovprthe statement distribution. When

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.4. Handling partial producers 52

Property name Discriminating values
hosthame 192.168.2.31
/dev/sdab
deviceName /dev/sda6
/dev/sdal

Table 5.2: Example of discrimating producer event propeatyes

it comes to other properties, such lagst nane or devi ceNane, producer could publish
them along with set of values that concern it. For examplegréiqular producer installed on
host with IP adress 192.168.2.31 may send "distriminatingp@rty values to a consumer as in
table 5.4.

Of course, any discriminating properties received from praglucer may "overlap” those
from the other ones. For example, each producer may pronfdemation about device named
/ dev/ sdab. Itis up to assembly monitor to determine whether given prgpuniquely points
to single producer.

If window filtering exists and no information can be gatheoedhow this filtering maps
to producers (meaning the used properties cannot be rexmhhy system in any meaningful
way), the partial statement has to be sent to all availalddurers. This is not a great disad-
vantage as unwanted events (that do not match the condmdije discarded sooner or later
(in worst case at the assembly monitor). However, issuingests to producers that will not
effectively participate in gathering and processin datk&d of inconvenience as it may lead
to a unnecessary request flooding caused by monitors pasaiegnents to all of their produc-
ers. This is especially true as far as very complex architestare concerned, with developed
producer-consumer tree.

The second of the problems mentioned in the beginning ofsénisions is connected with
the fact that processing of single original statement spangss more than one CEP engine.
In the centralized architecture the events created by any & producer at any location were
simply putinto one event cloud. As long as EPL statementadidefer explicitly to the origins
of events (for example in theher e clause to get only events from desired location), the CEP
engine did not need any information aboout it. Thereforenemessages did not have to contain
such data.

However, in case of distributed CEP the processing of singtement spans across mutiple
CEP engines. That raises the need of correlation betweevidodl monitors. This is visible,
among others, in distribution patterns presented in 518.2ome of them a property named
pr oducer Spec appeared. This is nothing more than a unique logical addreasroducer
that created given request. This address, or identifiesSgyaed in arbitrary way by the moni-
toring system. There are only two requirements that it muesttm

e unigueness: any producer (monitor is also a producer) neuable to be unambigously
identified by any monitor that take part in statement distrdn

¢ well-known: any monitor must know all identifier of its ditgaroducers. Knowledge of
addresses od remote producers is not required as theemaeésis hidden from non-direct
consumers). The means by which producers announce thetifides is is not significant.
It is also possible that the assembly monitor assigns theeades to the producers.

In order for the statement distribution to work properlycleavent must be marked with this
identifier of its creator (a correlation identifier, S€errelation Identifierintegration pattern in

[2]).

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.4. Handling partial producers 53

Producerl

Assembly

Monitor Producer 2

= = = = = = = = Producer 3

Figure 5.6: Example of event addressing by request and pesdArrows symbolize event
streams: gray ones concern distribution of original statem\, black - statement B. Streams
coming from different producers are distinguished by arstyle (dotted, dashed and solid)

A different solution of the event provider recognition plein exists. Each of the producers
could send events through different channel "physical caldr(isuch as JMS queue). In this
case, the assembly monitor would know that events coming fyiven channel were sent by
specific producer. However, this solution has a number aobaaks, from among which the
most serious is simply the multiplicity of required charméVloreover, each of them would
be utilized in relatively small degree by carrying eventsironly one source. Therefore, this
solution is unfavourable.

Figure 5.6 illustrates a case where same assembly monitgrecated with three differ-
ent producers in distribution of two different requestat@mients). Such situation can be very
common as consumers may issue more than one request to teensysdl three producers
participate in both distributions. Therefore, the moniteceives two event streams from each
producer. Both contain events with the same correlatiortifilen(described before). However,
each stream concerns different request. Therefore, sameokiadditional association between
event streams and a distribution request that they consemeded. This association must meet
following requirements:

e producer identification independency: this results from fidct that multiple producers
can take part in same request (gray streams in figure 5.6)iaad@rsa: every producer
may participate in many request distribution (all prodgadar5.6 contribute to resolving
two requests)

e unigueness and coherence: both producer and consumer marsbigously associate
given stream with same distribution request

One of potential approaches to mentioned problem would kiagaadvantage of the way
that Esper CEP implementation [4] (used in this researchdllearstreams. Namely, it is pos-
sible to create event stream based on event types by spgc¢hahall events with given type
should be put to same stream. Because most statements tihesalteof distribution do create
very singular event types, it hints that these types coulddeeg to associate requests with par-
ticular streams. Unfortunately, a situation where disttidn of two different statements yields
different partial statements that create same event tygte=sa(ns) cannot be ruled out. For ex-
ample, the two following statements result in same eveméobr

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.5. Event synchronization 54

sel ect avg(userTine) from Cpulnfo.win:tine(2 seconds);

sel ect avg(userTime) from Cpul nfo.w n: I ength(100);

The difference is quite subtle: type and parameters of wirsdélowever, the values in created
statements would be very different and mixing them in oneastr would result in unreliable
monitoring data.

Therefore, an explicit request-event association is redquit can be established is similar
way as the producer identification - by adding an identifiexaoh event. Every message should
contain an ID (usually a number) that associates it with iipgequest. The identifier of given
statement distribution should be sent to producer by thenalsty monitor with partial state-
ment. In this way every producer will be able to bind produwaftshis partial statements with
distribution request that this statement takes part inlvegn Again, it is theoretically possible
to have separate event channel for each request. Howeigeis ttven more disadvantageous
than in case of channel per producer approach as in this tasmel would have to be tran-
sient since each request may be cancelled by consumer oe €iqriexample due to consumer
failure). Moreover, using channels for both request reagland producer identification would
require vast number of them as each producer would have ttamaseparate channel for each
request it handles.

When it comes to the assembly monitor, it first separates sugntheir request id and
inserts them to proper assembly statement. Then the staté@sedf takes advantage of producer
ID contained in each event (speoducer Spec in patterns in table 5.1). Therefore, the event-
to-request resolving is transparent from the CEP engineig pbview.

Summarizing, two independent, complementary addressaansiare needed: by event pro-
ducer (correlation ID) and by request given event belongk&ach event should carry both of
these addresses.

5.5. Event synchronization

CEP approach is inherently time-based. Events can be ordgaged and released basing
on their creation time. This can be done using widows andutatpntrolling in EPL statements.

All these mechanisms work very well as far as centralizetiigecture is concerned. The
event creation time is assigned the moment the event atovée CEP engine. Therefore all
event messages are sychronized as they are sequentiahgdiay the same clock.

However, when it comes to the distributed architecture of @&ént sychronization be-
comes a problem. In fact, most distributed applicationghawope with such difficulties. The
reasons for the lack of synchronization between events eaatious and include:

e unsychronized clocks - each machine in distributed enui@m may work with slightly
different time set in its clock. This causes differences asgible timestamp values in
events

¢ various load on different machines - the nodes of grid ndtwlat are more loaded may
produce and process events slightly slower than the taskeines

e network delays - different network routes between eventcgand event consumer have
different length and Round Trip-Time, therefore even if twems are created simultane-
ously by two separate producers they may reach the destnatisignificantly different
moments

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.5. Event synchronization 55

The synchronization problem affects many aspects of Higed application. In this section
an attention is focused on its connection with CEP. Sevepads are discussed.

5.5.1. Data accuracy

The fact that in distributed CEP events arrive to destinattatfferent times than they would
in centralized approach may often affect the accuracy & thety carry. By ternaccuracythe
compatibility of the outcomes of centralized and distrdglCEP architecture are understood.
In fact, the centralized CEP architecture, as being very leimpd close to the CEP idea itself
(although very inefficient), can be treated as a kind of pofieference for testing the validity
of distributed architecture implementation.

The violation of this accuracy can be especially seen wheguisne and length windows in
EPL statements that are processed by distributed envinoniigure 5.7 illustrates the problem
of time window. The events with dashed lines represent atstian where no delay between
event creation and arriving to the CEP engine exist. Thawvents are thrown into the engine
right after the moment they are created. This somewhat tefesituation where events are
created and processed on same machine and no network detays Bhe solid-line events
correspond to more realistic, delay-burdened architectuch as transporting events over the
network or long intermediate processing (like in distréaitCEP). In both cases same time
window is shown (with same time-length). It is clearly vigilihat the difference in interval
between consecutive events influences the behaviour ofowiraygregation. While without
any external delays the window can hold up to three eventenwhe interval between the
arrival two consecutive events increases, the capacityedtitne window declines. In figure 5.7
the presented time window spans accross three events idehlkciase (no delays) and only two
when there is some kind of hold off.

To clarify this problem even more, one may consider follgyvaase: a time window with
span of 30 seconds (that is, it will hold events from last ha@tute) and events being produced
every 5 seconds. This window can hold up to 7 of shose evenescorrent and 6 more from
the past). However, if the interval between them increagelOlmilliseconds, the window will
keep 6 events at most (the 7th will be too olddty— 6 - 5,01 = 0,06 seconds).

When it comes to the length windows, unlike in case if time wind, their sensitivity to
lack of event synchronization is visible when more than oroglpcer is sending events to an
EPL statement that utilizes such windows. Figure 5.8 ptssesituation where two producers
are sending events which are put into length window aftestaalf there is no delay on event
arrival the results of processing with length window aredial'hat is, each event that is created
later "pushes” the oldest one out of the window, Therefoeewtimdow slides through the stream
of events properly. However, if any of events is delayed,ayrdisturb the operation of length
window. In figure 5.8 events provided by Producer A arrivewaértain delay. As a result, the
time order between events at receiving point that was albyirkept in the length window is
violated. Event 4 and event 2 are kept together in window évengh event 3 occured between
them.

Such event mixing in may render results of some EPL statesnemntliable. For example,
a following EPL statement can be considered:

sel ect avg(userTinme) from Cpul nfo.w n:Ilength(20);

Assuming that there are only two producers installed on tifferént machines, each cre-
ating one event message every second, this statement suilt i average user time of two
CPUs from last 10 seconds (2 events per secdifdlseconds = 20). However, if events from
one producer are late, the events coming from the other pevduill start to dominate the

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.5. Event synchronization 56

..... 1 rP=——— pP———— [(_____li
1 1 1 1 1 1 1 1 ! 1
:Eventll---b * t1! L 11 Lc 11 1c L1
1 1 1 1 1
Event 1 flrme—rt—p Event1|- -1 Event 1| - Event 1} =! Event 1 |-1! / \
----- - - -1 =———
1 1 N— 1 1] 1 1 1 1 1
1Event 2 - - P :Event2l :Eventzl :Event2l :Event2I
1 1 1 1 1 1
- - | I | 1 =1 1 =1 1 =1
Event 2 f———P ;/ Event 2 Event 2 |=1 Event2 |-
1 1 1
Event 3 = - P \) 31 31
1 1 1 1 1 1
| | | I | |
Event 3 f—————Pp] Event 3
“\—/

time

Figure 5.7: Lack of synchronization affecting accuracy dfnae window based processing.
Boxes with dashed lines represent events that arrived witthelay. Solid-line boxes portray
events that arrive with slight delay.

length window. As a result, the average will be counted utiiegdata from the other producer
in greater part, becoming a somewhat weighted average rtuntdely, this will happen without
the consumer knowledge. As a result, the actual data wilhtezpreted incorrectly.

5.5.2. Output time control

Output control based on time intervals described in 5.1matao be vulnerable to prob-
lems with event synchronization, especially the delaySHL statements contains that put
clause stating that a group of events should be releasey gpeified time interval and any of
partial events that should take part in processing arriter #iis interval because of delay, the
result event may contain less accurate data.

For example, the following statement releases last of resehts every 5 seconds:

sel ect avg(userTine) from Cpulnfo.win:tine(30 m nutes) output |ast every 5
seconds;

Assuming that th&Cpul nf o event is produced every 1 second, if there is no delay each
result event should be created after 5 new partial events hawed and put into the time
wimindow. However, if the last of these 5 events arrives eygst a little bit after 5 seconds, it
will not be counted in current processing.

All of mentioned problems concern on-line monitoring datagessing. That is, data is
gathered and sent to consumer contantly, with small inkeria fact, the smaller the interval,
the greater the significance of the delay as it is more prebthialt certain event will be created
soon enough to arrive before its delayed predecessor froer groducer. If events are sent
rarely, with interval specified in minutes or hours, it istually not possible that a delay would
cause their reordering at receiving end.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.5. Event synchronization 57

No delay Delay

Length window: 2 events

RREEE EEEELEEEE

Event 1 : ! Event 1 Event 1 . :
Producer A| 1 :) Producer A ’ [Producer |} :)

] 1 [} 1

Event 2) Event 2 Event 1
Producer B [Producer Bl |Producer A)

Event 1
Producer A

Event 2
Producer Bl

Event 2 Event 1
Producer Bl [|Producer A

Event 3
Producer A

Event 4 Event 3
Producer Bl [|Producer A

Event 4
—>

Producer B

Event 3 Event 2 ,‘iielay
Producer Al |Producer B

Event 4
—— Event 4 Event 2
Producer B Producer Bl [Producer B

Cmmmmmmm .

Event 3 > Event 3 Event 4
Producer A [Producer Al |Producer B)

v v

time

Figure 5.8: Lack of synchronization affecting length wimdbased processing accuracy. Left
part refers to situation without delay, right - with delay @rents from producer A. A delay in
Event 3 arrival causes the order of events in length windobetwiolated, as Event 4 and 2 are
simultaneously placed in the same window (compare withsleft of this figure).

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.5. Event synchronization 58

5.5.3. Error accumulation

One may argue that discussed synchronization problemm#dnd length windows also
occur in centralized architecture of CEP and that’s trueatm, imost applications of such system
would be in distributed environment, where event messagesemnt over the network and can
be delayed. However, these factors become more importahstnbuted CEP architecture as
there are many steps of event processing and therefore nuamtg pvhere data incosistency
may occur. Moreover, these incosistencies may accumulatach successive monitor. This
accumulation occurs in several cases. First of all partiatg@ssing at intermediate monitors
takes more time that simply passing an event to next nodeatthrithe central monitor. This
causes additional delay in event transporting and causagsto reach the consumer much
later than in case of centralized CEP. Secondly, the outmé tiontrol problem can become
very serious in distributed environment. Figure 5.10 hetpglustrate this. Monitor 1 and 2
use an EPL statement using same time output control withviait® seconds. Each producer
creates events every 1 second continously. Events in s@eamlate by 50 milliseconds due to
network delay and slightly longer processing of monitoré2€i initialized CEP engine causes
all processing to be shifted in time). If both monitors stawtinting down the output timers
simultaneously (which is quite possible to some extent,adis tatement may be part of same
statement distribution process), monitor 2 will output &#vent at the same moment monitor 1
closes the output batch. Therefore, the event sent by niéhal not reach monitor 1 on time
to be included in current processing. As a result, the modito following batch will use old
event (the one that have arrived just after closing previmaish). This is more serious because
monitor 1 will in fact use outdated data (by 5 seconds) frorthlpyoducer 1 and 2 (that was
aggregated by monitor 2), rendering the whole outcome iatnlel and probably useless for
consumer. This effect is shown in figure 5.9. Such chain odlatgs may span across multiple
monitors, causing vast amount of resulting events to coniareliable data. One of possible
solutions to this problem is to use smaller output interthats closer monitor is to original
producer. Referring to above example, monitor 2 could use imerval of 3 or 2 seconds.
This would cause at least one of its events to arrive in tineeraduce the amount of data in
aggregated event that is outdated. This solution is useidtimition patterns presented in table
5.1.

5.5.4. Evaluation

Many problems presented before that are connected withldistgd CEP are very hard or
even impossible to overcome. In fact, it is virtually impibés to get rid of delays caused by
network or event processing on monitor. Synchronizingldamr CEP engine initialization on
particular nodes of distributed system to make them workukaneusly is too complicated
compared to potential benefits (clocks are usually inctersidy 1 second at most).

However, all of these problems are significant only in sonex#je cases. First of all, the
interval between two consecutive events created by pradunatters. In most cases it is spec-
ified in seconds or minutes, which is much greater than palei¢lay caused by network and
processing at monitors together. The latter is usually heotslof milliseconds at most. Sec-
ondly, a even if a single case of data inaccuracy, as deskcnib®.5.1 occurs, its significance
is the smaller the smaller the interval between productiaimple events. This is because the
more frequent simple events are the smaller their validitgtas they are considered outdated
after new event is created. As a result, the possible lackraflgonization and data unreliabil-
ity caused by it have little consequence because in shoet filowing event will correct the

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.5. Event synchronization 59

Monitor 1 Input Monitor 2 Input
PL M P2 [—P P3 |—P
P1L B P2 P P3 P
PL M P2 [—P P3 P
PL M P2 [—P P3 P
PL I P2 MPr——-g———| P3 P| M2 result |- — 5 seconds
éDeIay
A M1 result f———p
v \4
Time

Figure 5.9: Effect of outdated data when using output tim&rod. Monitor 1 and 2 use state-
ments with output clause with same time interval (5 secoriignt produced by monitor 2 that
is result of this statement arrives to monitor 1 with someanikelay and is used only in next
batch. Events P1, P2 and P3 are created by producers 1, 2 apgeXtively.

Producer 1

Stream 1

Monitor 2

Stream 3

Stream 2 Producer 2

Monitor 1

Stream 4

Producer 3

Figure 5.10: Example architecture to illustrate the probt# late event error escalation when
using controlled output. Each monitor introduces a delaysed by the event processing and
data serialization/deserialization operations. As altesvents created by Producer 2 will arrive
later to Monitor 1 that those created by Producer 3 evendl t¢lay of network links used by
stream 3 and 2 is same as those utilized by stream 4.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.6. Benefits 60

error. Therefore, the smaller the event creation intetvaldmaller the effect of the errors and
the greater the interval the smaller the probability thatlfitk of synchronization will occur.

One of the factors that may have a big impact on the distrtbGEP reliability is mentioned
in 5.5.2 accumulation of error. In fact, if the distributed EBased monitoring infrastructure is
complex and developed, containing many monitors, errouctation is a real threat to data
accuracy. Therefore, the actual placement of the monitorsld be thoroughly considered to
minimize the length of the path from consumer to first prodsi¢eounted in monitors).

It also should be kept in mind that in very few cases the comsumould want to receive
very current data. Most consumers will be interested eitheome kind of averages over the
specified past time to know the overall health of a system onamdary peaks in value of spec-
ified properties (such as network utilization) to detect i@vpnt system failures. On the other
hand, if consumer really requests for on-line, actual daisis usually only for informative
purposes, for example to display current CPU user time. Toieminor inconsistencies in
data should not seriously impact on the usability of on-imenitoring infrastructure based on
distributed CEP.

5.6. Benefits

All the problems presented above straightforwardly sthsg tistributed CEP comes at
price. In fact, of the are very hard or impossible to solveerEffore, it is important to analyze
potential benefits of this solution.

The main purpose of applying distributed CEP to monitoringtey is reducing the band-
width utilization. This can be achieved by limiting the nuenlof events transmitted over the
network. This in turn can be done by carrying out the eventgssing, such as aggregation and
output control, as near the event source as possible.

5.6.1. Beneficial EPL statements

In section 5.3.2 it was said that not every EPL statement eatglidiributed. Indeed, some
statements are so simple that there are no points wher#digin could take place. However,
the sheer fact that statement can be distributed does nat thaathe distribution would be
beneficial in any way. For example, following statements lvarasily transformed according
to patterns presented in 5.1:

sel ect avg(userTine) from Cpulnfo.w n:tinme(100 sec);

This statements calculates an average which can be distilowver multiple producers. How-
ever, according to Esper implementation, each tinrdpal nf o event arrives, the average will
be recalculated effecting releasing an new event contgiitual value of the average. In other
words, for each incoming event there is being released dmesame thing applies to all other
aggregation functions: they are calculated again when nemarrives to the statement. There-
fore, the assembly and partial statements for such furetihbehave in same way: releasing
an event after new one arrives. The overall conclusion isttt@number of events resulting
from distributed statements is equal to the amount of messagnt when using traditional,
centralized approach. Therefore no data reduction talesepnd distributed CEP loses its
advantage.
However, such statements as presented above have litfidnesss in real-life monitoring

systems. Knowledge of the very current value of the averggeuser time over the past 100

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.6. Benefits 61

seconds is rarely critical for estimating the health of ty&tem or preventing errors. Especially
as it may be burdened with errors and inaccuracies (see 5.5.

A more real-life EPL statement example that could be usefaionitoring infrastructure is
presented below:

sel ect avg(userTine) from Cpulnfo.win:tine(1l00 sec) output |ast every 50
seconds;

This statement is very similar to previous one. There is ang difference: it uses the
out put clause. This change causes the events to be released esagdls. As a result, the
consumer would know the average of CPU user time from last @00nsls with 50 seconds in-
terval. Although the very actual data is not available, sté&gement is still useful for estimating
current load of CPUs. Moreover, it is very beneficial when ines to distribution. Assuming
that Cpul nf o events are created every 1 second (which is very frequemhémitoring pur-
poses), this statement outputs one event for every 50rmgriviherefore, the reduction of data is
significant here. If centralized CEP approach was appliésiyégduction would concern only the
channel from the front monitor to the consumer. All the egamneated each 1 second at every
producer have to be sent by them to central CEP engine, litdlabding the network. How-
ever, if statement distribution is used according to tablegach producer would output events
at specific frequency (distribution pattern for it put clause uses decreasing frequency for
each consecutive distribution). As a result, the amounvehts transmitted between monitors
taking part in processing a statements can be reduced santiff. The exact reduction factor
is implementation dependent. For definiteness, architeatigure 5.2 may be considered. All
producers (A, B, C and D) can cred@pul nf o events with interval of 1 second. Assuming
output frequency divisor is equal2 (see 5.1), if one of the consumers issued a request con-
taining above EPL statement, the monitor 2, 3 and produceo@ldveceive requests to output
events at rate 1 per 25 seconds (50 seconds divided by 2), rigamtor 2 and 3 would issue
another requests to producer A, B and C with output interddlseconds (25 seconds divided
by 2 rounded down). Therefore, events between monitor 1tardirect producers flow at rate
2—§)5 and between monitor 2 and 3 and their partial producers atﬁgl This is a significant
improvement compared to the centralized CEP where eventgebatthe producers and the
central monitor would be sent at rate ‘afSuch speed is not very significant for network links.
However, if there were more requests issued by consumeraptinber of event created by each
producer could be much greater. The request distributidkesd possible to reduce traffic in
this case at least 12 times.

Presented example shows that statements usinguhput clause can be very beneficial
when it comes to data reduction. In fact, every EPL statertinettcontains timedoutput every
time interva) or quantified ¢utput every amount of evehtsas great chances to be distributed
in an effective way.

However, one must take into account the quantity specifi¢ghérout put clause telling
the CEP engine how many events should be released when th@tiqueantity condition is
met. For example, theut put al | clause causes all gathered events since last output to be
released. This means that although the put clause is present, there is no real reduction
as each accumulated event triggered by incoming messabfbenslent eventually. The only
difference in comparison to a case without output contrah&t here the data is released in
bursts causing the network links to be utilized in greatéemixperiodically.

Therefore the general rule that tells whether a given stameimeneficial for request distri-
bution or not is:

Nreceived > 1

Nc'rcated

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.6. Benefits 62

where N,cceivea 8N Nereateq @re number of events received and created respectively oy th
statement during some arbitrary time. In short, statemieotils produce less events than it
receives.

Statement distribution can reduce the number of eventsmiptay moving the aggregation
closer to the source. It can also help to detect producetratbabsolete in resolving particular
statement and discard unwanted events sooner. If the CEResngihere installed not only
in intermediate monitors but also in the mere sources oftevkay could fitlered out many
messages right away. A request for statistics of one paticPU existing in system is a
classic example. If centralized CEP was used, all the nodssrexin the environment would
have to send their messages containing information about TR&Jdata would be filtered only
in central monitor. This would result in a lot of unwantedalbeing sent over the network and
then discarded at the CEP engine. However, if part of everlyzing and filtering was done
at the source, the CEP engines installed at those nodes ¢habiof interest of the consumer
would be rejected right away and never sent. Also, eachnm@drate monitor may discard some
of the events, gradually reducing the number of data beangstnitted. Of course, the amount of
data being reduced and the question whether it is possilgeofitable depends on the specific
request and usually cannot be determined by the system. Bel®wome examples of EPL
statements distribution of which will result in some datduetion.

sel ect avg(userTine) from Cpulnfo.win:tine(100 sec) where hostNane =
"gandal f' output |ast every 5 seconds;

Obviously, this statement concerns only messages sendiostmamedjandalf No other
events are needed to resolve it and those produced by sensi@ated on other nodes will be
discarded. If such statement was sent to other host thamthepecified in th@her e clause,
it will not create any events.

A more complex example may include a network presented imdigul1l composed of two
clusters, each holding a group of disk arrays. An example &Rlement that could be used by
the consumer to examine the health of such system is preseal@y:

sel ect Controllerlnfo.name, max(usedSpace) from Di sklnfo.w n:tine(1l hour),
Control l erl nfo where Di sklnfo.hostName = Controll erlnfo.nanme and
Controllerlnfo.clusterld="DI ANA' group by Controllerlnfo.nane
Controll erlnfo.nane output |ast every 5 seconds.

This statement will result in events containing maximumaduspace from all disk arrays be-
longing to single disk controller (thgr oup by clause) from the DIANA cluster. The max-
imum will be calculated from events that were created in lasiour. The up-to-date value
will be released every 5 seconds. Each disk controller weiticsits events to the correspond-
ing agent. Both controllers in DIANA cluster will be requestey their agent to provide the
Control | erl nfoandProvi der | nf o. As a result, the controllers will request the events
from the disk arrays (assuming that proper sensors ardlethtd he agent itself will process
them according to the statement and sent result to the Fronttf.

Controllers in the SARAH cluster will also be requested forrgsedespite the fact that
they are useless for this statement. This is because of thig wian constructions should be
resolved(see 5.3.3). However, the CEP installed SARAH dlusiatrollers will discard the
events as soon as they are associated withCt& r ol | er | nf o events and identified as
coming from the inadequate cluster. As a result, no uselesst® will be transmitted outside
the controller domain (controller and disk arrays handed)by

This kind of data reduction (by discarding unwanted eveists) natural consequence of
using distributed CEP. No additional operations or procgsare needed. The native features

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.6. Benefits 63

Disk controller D)/

Disk controller D2

Consumer
Front monitor

- - -CEP Engine

Disk controller S1

Disk controller S2

Figure 5.11: Example distributed system architecturedsubjected to monitoring. The two
clusters, SARAH and DIANA communicate with the front-end monthrough their agents.

Each Disk controller, the agents and and the front monitee IGEP engines installed (boxes
in right lower corner). The consumer may send request to aocelive events from the Front
monitor.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

5.6. Benefits 64

of CEP such as event pattern matching and filtering are usedainerdo all the job. The key is
to take advantage of them as close to the event source ablpossi

5.6.2. Balanced memory usage

Except for the data reduction mentioned before, usingidigegd CEP may also bring a
number of some minor benefits. One of them is balancing the onemsage. This feature
results from the fact that typically each monitor does a pbaggregation, filtering large groups
of events etc. All the aggregation functions presented Ini35.equire all the data involved in
calculation be held in memory. Because there is no one lamggrof events held in memory
of one node but rather a couple of smaller groups, each storelifferent host, memory usage
caused by aggregating events is distributed over multigleitors. As far as centralized CEP is
concerned, the node that the CEP engine works on could bedeeittevast amount of events
to be kept in it's memory. This can be clearly seen in case df &Btements that use timed
output control with very large interval (hours or days). ik situations, all the events have
to be stored until the specified time passes and the everit batcbe released. For example, a
following EPL statement can be considered:

select » fromDiskinfo.win:tine(3 days) output all every 2 days;

In the this case, all events have to be kept in memory as dlleshtare required to be released
after 2 days. If all of events required for resolving thidastaent were to be stored in single node
(centralized CEP), significat amount of memory would havegtaiged (counted in megabytes,
see 7.1.1). On the other hand, in case of distributed CEP, reacitor would store a part of
these events and release them after some relatively lomagpErtime (2 days divided by some
factor resulting from timed output control distribution).

In addition to aforesaid factors, some CEP implementatisuns) as Esper, optimize resolv-
ing statements so that only absolutely necessary evenkeptén memory.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6. GEMINI-2 Development

This chapter presents an implementation sensor module EdISI-2 [17] and modifi-
cation that have been introduced to monitor module. It akscdbes the way that sensor for
GEMINI-2 interacts with monitor and other parts of the systand how its architecture and
some applied solutions influence the overall usability armgpsrt distributed CEP approach.

First some background is given, presenting informatiorargigg GEMINI-2 framework
that is essential to understand further parts. After thaescdption of changes introduced to
monitor component of the system under consideration isngiltas followed by information
about architecture and implementation details of sensopoment that was created during
research described in this paper. Finally, some .

6.1. Background information

This section is dedicated to overall GEMINI-2 architecfwselutions introduced in it and
some missing features. This information is needed to urateisfurther parts that concern
research on and development of GEMINI-2.

6.1.1. GEMINI-2 overall architecture

High-level GEMINI-2 architecture is presented in figure.@Atcording to this architecture,
sensors communicates with monitor in order to subscribenthsend events to it. Monitor is
supposed to send requests for events to the sensors. Treetite between monitor and sensor
is discussed in details in 6.6. The sensor component pexsenthis diagram is in fact a simple
stub. It generates events containing data on first discdv @Rt on machine that it is installed
on. There is no CEP engine implemented in it, therefore the @BR>ach is purely central (the
only CEP engine is installed in monitor).

Moreover, not all of presented monitor parts were finishegarticular, the sensor manager,
discovery services and all parts regarding mutators wdteistler development when works
described in this Thesis began. Some of them have been ireptech during this research to
enable evaluation and feasibility study. The details asedeed in 6.3.

All presented components are implemented using Java progirsg language with minor
support of other technologies and native code.

6.1.2. Endpoints

To define and configure communication channels betweenkditgd elements GEMINI-
2 uses a concept of endpoint. An endpoint is a broker betweterlaransport system (JMS,
WebSerivces, plain TCP) of messages with given componeen{cimonitor, sensor). Each
endpoint represents either consumer or a producer. As tine saggests, producer can send

65

6.1. Background information 66

7 Discovery [~ Data
—— Monitor -
e Service M= — | Repository

Data
Repositony

Evenl 5ot p—f—

IA,

e | IR
earitarineg . .

Service Mangar Ewvnt Dispatcher r_:.‘_'ll 3 / :

o |

ciient l—-——-—7% i e
S T
Se]
o T —H Sensor

Instrimerishan Maragear
Servica e — - | Moviitered
¥ Resource

hdisator
Managar

¥ Mutator

Meanitor

—— Control flow

— == Daia flow
Figure 6.1: GEMINI2 architecture. Presented diagram isndkom GEMINI-2 documentation
site [5]. It contains the target architecture. Some of fietare not implemented yet.

messages through the channel while consumer can read ttésrséparation of roles of end-
points implies that channels defined by them are unidireaticEvery endpoint has a set of

messages assigned that it can send to or receive from channel
Two endpoint types were supported when works describedsmTtiesis began:

e event endpoint - used to send or receive events containimifonmg data.

e Mmonitoring service manager endpoint - used to send reqogstent and receive them on
monitor side. Channel associated with this endpoint careiggest and control messages.

More information about endpoints is available in [5].

6.1.3. The Esper CEP

The GEMINI-2 infrastructure uses the Esper CEP implemesridtr event processing and
matching. It is an open-source (GNU GPL) component writtgirely in Java. Below are some
key features and concepts of this software that are signtficam the point of view of works
described in this Thesis. Full description and documennatf this product can be found on its

webpagelitt p: / / esper. codehaus. or g/).

Event types
Esper uses a number of ways to define event types. Most inmpamas are:

e plain Java class - each Java class can be treated as defafiseparate event type. As a
result, any Java object can be sent as event and procesdeel Gf£P engine

e map - uses a mapping of property names to data types to deénetgpe. Each event will
contain a set of properties with given names with valuespésydefined in this mapping.
In other words, event type contains set of property namestaadtypes

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.2. Resource representation

67

Field Value
Name "Cpu”
user time Field Value
system time Type name "CPU"
Property names dle time 0.7
number 0.2
core count 0.1
Property values
max frequency 1
Discriminator number 2
max frequency 2000
Static properties | number (b) CPU instance
core count

(a) CPU metadata

Table 6.1: CPU Resource representation

A crucial thing about event types is that the Esper CEP has ¢wladl types involved
in given EPL statement before this statement is compiledused by the engine. Moreover,
new event types can be added at runtime. The implicationsesft facts will be discussed in
following sections of this work.

Creation of event streams
A stream of events in Esper can be created in one of two ways:

e explicitly, by inserting events from other stream usingitimsert t o clause

e implicitly, by simply sending events to the engine. Thislwésult in stream of events
named after the type of sent events.

The above facts imply that the initial (first) streams areatad only by sending event to
the CEP engine. Moreover, every event stream can containeoelyts of the same type that is
known in advance by the engine.

6.2. Resource representation

In chapter 4 a general idea of resource handling in mongarifrastructure was discussed.
Here a concrete implementation of resource representatiGEMINI-2 is presented.

Each resource is characterized by two kinds of data: its aa¢da(corresponds to resource
type) and concrete instance data (or just instance). Tloeires metadata specifies the set of
properties, information about which of them are static $&e4) and the discriminator (see
4.3.5). A given instance of resource carries only the typmenand the property values. For
example, a particular CPU is represented by structures ablie 6.2.

Cpu instance refers to its type lbype nameSuch data distribution into two structures is
useful because of couple of reasons:

e it reduces the amount of data that has to be kept in memory database. In fact, for
each resource instance only property values and type nastaed. The common data
for resources of same type is held once.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.3. Monitor modifications 68

e makes it easier to publish new resources types discovereziisor module. Only re-
source metadata has to be sent to monitors.

e it corresponds very well to relational data model, therefitrmakes it easier to build
relational database based resource registries that wolddall resources discovered in
system. The reference through the type name can be seandesskrted to foreign key
in relational data model.

e size of events that concern resources is reduced as onlyngype and property values
are contained in them.

Still, some drawbacks exist:

¢ all elements of monitoring infrastructure must hold con¢ets of resource metedata.
If any of monitors lacks some resource metadata, it will reeable to process any data
(such as events) that refers to the unknown type

e the order of property names and values must be the same idat@tnd instance data

The second problem can be easily overcome by proper implati@m The first one is
solved by keeping all data about resources and their metadaine place calledesource
registry. This registry is referenced by all monitors to update tls@veces or to get information
about them.

In current implementation the resource registry is kept @nmary using plain Java classes.
However, thanks to proper interface abstraction the dasigapted to using more sophisti-
cated implementations, such as Hibernate based persstenc

6.3. Monitor modifications

In order to make the cooperation between monitor and sessoregented in 6.6 possible,
a number of modifications had to be introduced into the momitodule.

First of all, the original monitor implementation lacked ensor manager module. As a
result, neither the subscription of sensors in the monitorsending requests to sensors was
possible. The sensor could only send events to the predafio@dor. In order to solve this
problem, a minimal functionality of sensor manager was dddehe monitor. This includes:

e ability to receive subscriptions from sensors. Every sesbould be able to introduce
itself in designated monitor with proper initializationtda

e sending requests to sensors. Monitor should be able toatantrat and how events are
produced by the sensor. In particular, it should be able hal g8 EPL statements that
sensor should use for event generating.

e a sensor registry containing information about each setmsrhas introduced itself to
the monitor. This is needed to properly handle requestibiigion (see 5.4).

In order for the first feature to operate, an additional emnuptype was required that
would handle the messages with initialization data that seat from sensor to mon-
itor. Therefore aEvent Provi der Contr ol | er Endpoi nt was added. The producer
of this endpoint is sensordbni t or Agent (see 6.7). On the consumer side is the

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.3. Monitor modifications 69

Event Provi der Control | erLi st ener that receives the subscription messages from
sensors and takes care of their proper initialization.

The sensor requesting mechanism was implemented in thevgayress the client requesting
to monitor. That is, from the sensor point of view monitor iglgnt just as a real client to
the monitor. Such solution has two advantages. Firstlyelises already created and tested
solution. Secondly, it is a step towards the unification ahownication interfaces between
event providers and event consumers. Thanks to that it i$ pessible that client would issue
a request directly to the sensor. Such situation could bsilplesf monitor returned a client’'s
address for request channel in subscription response tmiséee 6.6). For details about the
client-side mechanisms regarding event request handdiader should refer to the GEMINI-2
development site [5].

In order for a monitor to keep information about subscribeussers, an Event Provider Reg-
istry stub was added. It holds an identifier that has beegreagito sensor (see 6.6 associated
with following data:

e atransport address that this sensor listens on for reqloesgents

¢ a client stub that has been assigned to given sensor forseogevents

e list of event types that this sensor can provide.

All of this data is needed for request distribution and progpensor management. The fact
that considered element is called an Event Provider Regisdigates that it is adapted to hold
information about any kind of event provider, not just seasAgain, this is a small step towards
the unification of comminication interfaces between GEMINhfrastructure components.

As aforesaid, current Event Provider Registry implemeatais just a stub that holds all
information in Java Virtual Machine memory. It has some obgi drawbacks, including the
vulnerability to virtual machine crashes and data locdlitgcessible to only single monitor).
However, it can be relatively easily replaced with more ssiatated solutions, for example
some based on JNDI to make it available globally and persistéechnologies such as Hiber-
nate to prevent it from data loss caused by JVM crashes.

Another element that was introduced to GEMINI-2 monitorhs tesource registry. It
contains information about resources discovered by sersut received with resource update
messages (see 6.6.3). The resource registry is composed eféments: resource representa-
tion provider and resource context. The first one is respba$or holding resource types, as
described in 6.2. Each entry is identified by resource typmeend he resource context contains
specific information about each resource instance: itstiitiem static property values and op-
tionally parent resource identifier. Using the last oneguese context maintains a parent-child
relationship between resources, making it possible tdfd&ta in more sophisticated way that
just by resourceld, such as retrieving all CPUs installediearghost. Just like event provider
registry, current resource registry is only a stub that ballreplaced with real implementation
in the future.

Finally, a request distributor component was introducechomitor. Its main role is to con-
struct assembly and partial statements for distributed GERdiscussed thoroughly in 6.9.2.

The monitor architecture, after all introduced modificatios presented in figure 6.2.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.4. Sensor environment 70

~
I ~
Transport
Event mesgages _ Stub < - / CEP Engine

Event
Dispatcher

A

Transport
Stub < _Event messages

Transport
Stub

Sub;ription messages

Request Distributor

X Transport
Client requests Stub L . .
nl Monitoring Service Event Provider
Manager Controller

Update

Transport
Stub

< Sensor register messages

N

A

Resource Event Provider
Registry Registry Stub
Stub

Figure 6.2: Diagram presenting monitor architecture irrenir state. Dashed arrows represent
flow of monitoring data events while solid ones representaonessages and signals.

6.4. Sensor environment

Figure 6.3 presents a environment in which GEMINI-2 Sensonmonent works. In fact, it
Is a part of GEMINI-2 high-level architecture widh some adfial details and without elements
that do not interact with sensors directly, such as eveng¢sto

Each sensor is deployed on separate node of measuredutesdrgystem and it is supposed
to handle all resources installed on this node. Thereftwetis only one sensor per node.
There is also a possibility that sensor was installed ondhgesnode as monitor. Resources are
handled by sensor using Sampling Modules (see 6.8).

Each sensor is assigned to exactly one monitor. On the ot&t, hmonitor can manage
multiple sensors, usually located in same subnetwork oreskand of domain. The managing
itself boils down to sending requests for events and camgdfiem (see 6.6).

6.5. Sensor features
The sensor module design and implementation is supposeddbfollowing requirements:

1. modularity - sensor should be modular in order to be ableatodle multiple types of
resources

2. automatic discovery of existing resources - sensorlladtan given machine should dis-
cover existing resources and publish information abouttteecorresponding monitor

3. installation of new resource types at runtime - there khloe no restart required to intro-
duce new resource type

4. ability to receive EPL statements from monitor and useeESEP engine for data reduc-
tion

5. the overhead inflicted by working sensor on the maching iristalled on should be as
small as possible

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.5. Sensor features

71

Client <~

Client |q7

<4— - Monitoring events

Resource
Registry

y

A

> |CEP Engine

Node 1

Monitor

Node A

CEP Engine

Sensor

&

”~
~

~

~

~ — Resource

~

~ 4 Resource

Node B

CEP Engine

Sensor

-] Resource

~
9 Resource

<4— Control events

Figure 6.3: Sensor working environment. Monitor and eaclsseare installed on different
network nodes. The elements marked with dashed lines (siobsaurces) represent entities
that are not a part of GEMINI-2 framework but interact with it

The modularity was achieved by introducing Sampling Modulgee 6.8). They can be
invoked and stopped by sensor module and installed an raftynusing the SPI [7]. Each sam-
pling module is dedicated to one specific resource type agrefibre "knows" how to discover,
handle and probe it. Therefore, the discovery of resouscasampling modules responsibility.

Sensor can control the functioning of the sampling moduegptimize the mentioned over-
head. In particular, this is done by:

e starting sampling module only when there is any demand fengvit creates. That is,
any received EPL statement refers to events created by gamapling modules

e stopping sampling module when no statements refer to eutgmsvides

e modifying the interval at which events are created by samgpinodule

The last feature is not yet implemented as it requires exteraalysis of EPL statements
sent to the sensor.

Before sensor initializes any of sampling modules, it first tmknow which ones should
be invoked. The sensor resolves which subscribes in sagyplodules for events in one of two
ways:

e by passing a resource identifier pointing to resource thatilshbe subject of probing.
For example, sensor tells the CPU sampling module to measly®oe specific core of
given CPU. This mode is callesinart mode

e by requesting sampling module to gather all possible in&diom about all resources it
discovered. In this case, CPU sensor would probe all corefl ofstalled CPUs. This
mode is calleglain mode

Sensor always tries to extract resource identifier fromivedeEPL statement first. If this is
impossible, it uses the second subscription mode.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.6. Sensor-monitor interaction 72

< 1. Hello message

2. Assign control and event channel >

€ 3. list of discovered resources
4. Subscribe for events >
5.dispatch sampling module, _ ___._.__... >

Monitor (g — — — S.Transmitevents__ _ _ _{ Sensor
7. Renew subscription >
8. Cancel subscription >
9. stop sampling modulei

I e e e e === == ’

Figure 6.4: Sensor-monitor interaction diagram

6.6. Sensor-monitor interaction

As stated in 6.1 sensor cooperates with monitor in termsafiging events and accepting
requests. This section discusses the details of interatiédween sensor and corresponding
monitor.

6.6.1. Monitor discovery

Current implementation does not contain any kind of disopwdrmonitor [48]. It is as-
sumed that all sensors that should work with given monitavkits address when they are
started. However, it is possible to implement some kind stovery and lookup service for
monitors similar to (or even based on) JNDI. Each monitousheegister in well known reg-
istry when it starts, providing transport type and addreasghould be used by sensors for their
registration (see 6.6). The location of this registry sddug¢ well known and available to all
sensors and monitors. Therefore, a directory-serviceebaslution could be an answer to this
problem [47].

Still, the issue how sensor should choose proper monitootmect to remains. Monitors
can be assigned to subnetworks they are supposed to gataefrala. In this case, sensor
should pick monitor that is in its own subnetwork.

Regardless of applied solution, the monitor discovery psahould end up with each sen-
sor having a one designated monitor it can work with.

6.6.2. Communication channels

There are three separate channels used to pass on messagsnhb@aonitor and sensor.
The implementation of these channels is based on endpemtalale in GEMINI-2 framework
[17]. Each of those three channels is used for different gaep

e registration channel (direction from sensor to monitor)sed by sensor to send hello
messages to register itself in monitor and to send updates discovered resources. See

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.6. Sensor-monitor interaction

73

6.6.5.

e control channel (direction from monitor to sensor) - usedrmnitor to send requests for
messages to sensor.

e event channel (direction from sensor to monitor) - used msseto send monitoring
events to monitor.

More specific details of how these channels are used areildbeddn 6.6.5.

6.6.3. Control messages

In order to cooperate monitor and sensor exchange a numbentbl messages known by
both entities. These are listed in table 6.2.

Fields

Data type

Comment

Hello

preferredTransportURL string

preferredTransportType string

eventTypes

list

transport url that sensor wishes to
used by monitor to send requests

be

same as above, but concerns transport

type
list of event types that this sensor c
provide

an

HelloResponse

assignedTransportURL string

assignedTransportType string

transport url that has been picked
monitor to send requests to sensor

by

same as above, but concerns transport

type. This field is ignored if assigned-

TransportURL is not empty (URL al
ready contains the transport type)

assignedid string id that monitor assigned to subscrip-
ing sensor

errorCode integer code of error that occured during sub-
scription process. If this field is empty,
everything went fine

errorMessage string optional error description for passed
error code. This field is empty if np
error occured

ResourceUpdate

providerld string id of sensor sending this message

resources list list of resources discovered by sen-
sor sending this message. The details
of format of this list are discussed in
6.6.3

SubscribeRequest

statementLanguage string Name of language that subscription
statement is written in. Currently only
EPL is supported

subscriptionStatement string the statement that should be used by

sensor to detect significant events

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.6. Sensor-monitor interaction

74

Field Data type Comment

resourceld string identifier of given resource. Format of identifier is co
pliant with identifier described in 4.3.5

parentld string identifier pointing (equal) t@ esour cel d property of
parent resource

properties list list of resource properties. Each property has name
optionally value (suitable for static properties)

discriminators list list of property names that discriminate resource
4.3.5)

typeName string name of resource type. See 6.2

Table 6.3: Resource record content used in resource updasage

Fields Data type Comment

subscriptionld string desired id of subscription. With this
field monitor may suggest the id that
should be used for new subscription

transportURL string transport URL that monitor will use
for control channel

transportType string transport type that monitor will use fg
control channel

RenewSubscription

subscriptionld \ string \ Id of subscription to be renewed

Table 6.2: Control messages

MessagesSubscribeRequesandRenewSubscriptionwere already present in GEMINI-2
framework and were used in client-monitor interaction.datf monitor-sensor communication
Is very similar to the one being discussed here.

The ResourceUpdatemessage holds list of resource in special format. Each eny
tains serialized information about single resource. Thaertt of these records are presented
in table 6.6.3. Basing on on these records, the messageee¢aimonitor in this case) can re-
construct whole resource hierarchy known by the sendes@@gnThis is done using the fields
parent | d andresour cel d. The resource that has no parentld becomes the root of the

hierarchy.

6.6.4. Subscriptions

Sensor uses the same subscription mechanism for requestsgcisom monitor as the one
used for handling client requests in monitors in GEMINI-@rfrework. Each subscription as-
sociates the EPL statement receive®ubscribeRequesmessage and event channel endpoint
that should be used to transport events created by the medtistatement. The idea of sub-
scriptions is presented in figure 6.5.

Every subscription has a finite time to live. When it expiré® subscription is canceled
automatically. TheRenewSubscriptionmessages can be used to prolong it. Likewise, sub-
scriptions can be canceled before they expire by sendmgubscribemessage to the request

recipient.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

14

m-

and

see

=

6.6. Sensor-monitor interaction 75

Transport

Stub
A \ Subscription

id=1 [~

[~~~ Statement 1

CEP Engine

|- Statement 2

Subscription |_—
Transport / id=2

Stub
B

Figure 6.5: A subscription concept. Each subscriptionaims¢ has a unique ID and uniquely
associates an EPL statement installed in the CEP engineraitbdort stub that should be used
to send results created by this statement.

There is one significant difference between sensor and orositbscription mechanism.
Monitor usually generates subscription ID and sends it hadke client. Sensor never does
that. It always uses the ID sent in subscribe request mes$agereason for this is the need
to maintain the association between subscription in semsdrmonitor. This link is required
to handle event addressing, which is described in 5.4. M@regubscription requests sent to
sensor are usually a result of request received by monitars@ can expire or can be canceled
by the client. In such case monitor should cancel all sup8oris that were issued to sensors
as a result of original one. If subscription IDs in sensorevassigned arbitrarily they would
not be associated with any subscription in monitor and dargebsolete sensor subscriptions
would not be possible.

6.6.5. Communication sequence

Figure 6.4 presents an typical message exchange sequema@ebemonitor and sensor,
starting from sensor registering in designated monitor.

The hello message is sent by the sensor right after it hasdtand chosen proper monitor.
When receiving it, monitor checks the desired transport g URL of control channel and
decides whether it will use them or pick new ones. After thatinique id for new sensor is
generated and the information regarding given sensor,ishiéte address of communication
channel and identifier, is put into event provider regiskipally, a response message is sent
back to sensor, with generated sensor id and actual transpameters.

Sensor remembers received ID for future use and createsdtefecontrol channel. Then,
it sends to monitor firsResourceUpdatemessage with received ID through the registration
channel. Upon receiving it, monitor updates resource tggi¥his message it generated by
sensor periodically to inform monitor about any changessgudalize that sensor is still alive.
At this point monitor knows all new resources and data typas ¢an be provided by the new
sensor and is ready to send requests to it.

When such request is received by the sensor, it analyzesatesrsint included in it and
invokes proper sampling modules (if needed). It also addgébeived statement to the CEP
Engine and associates its endpoint of event channel witfspiat parameters contained in
registration request (monitor provides an address thstérs on for events). At this point, the
event channel is established and as soon as first event isaggohey the CEP engine it will be
sent to monitor.

Because the subscriptions are expiable (see 6.6.4 monitdsRenewSubscriptionmes-
sages periodically to the sensor in order to keep the sydtsers valid.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.7. Sensor architecture 76

When given subscription in monitor expires it sendslimsubscribemessage to sensor to
inform it that EPL statement associated with it is no longdidv At this point, sensor checks if
sampling module started before is still needed (some ottescsiptions may still take advan-
tage of it). If not, it is stopped.

Presented sequence is in considerable part same as iitteraetween client and monitor.
This concerns the creating, renewing and canceling sydigsrs and receiving events. This
compatibility is significant because of future possibitibyunify monitor-monitor and monitor-
sensor communication which is crucial to satisfy the comication uniformity proposition
mentioned in 5.2.

6.7. Sensor architecture

Figure 6.6 presents detailed view of sensor architectune. dashed lines represent flow
of events containing monitoring data while solid ones syimbdlow of control messages and
signal exchange between components.

The transport stubs are responsible for passing eventsebaetwemote endpoints of
GEMINI-2 framework. They isolate the higher layers of moning infrastructure from specific
implementation of transportation over the network. Eaahgport stub handles one designated
transport method or protocol. Currently there are four typleisansport stubs available: web
services (CXF implementation), JMS (Java Message Servitay TCP and within Virtual
Machine. The first three were already part of GEMINI-2 systehen work described in this
paper began. The last one was introduced later to makedestohevaluation easier.

The transport methods implemented in GEMINI-2 are unidioaal. That is, they enable
sending information only in one direction. Returning a rebylthe receiving end is possible
but communication is always initiated by only one side. Bseaof that, sensor module uses
three transport channels, each represented by one endpaimtcted to a transport stub. These
stubs are:

e event transport stub - useddentevent objects released by the CEP engine to monitor

e request transport stub - usedrézeiverequests from monitor that manages given sensor
containing EPL statements.

e control transport stub - used s&ndmessages containing set of resources discovered by
this sensor and some control messages such as hello messah® unitialize sensor-
monitor interaction (see 6.6

Each transport stub is defined by type that defines protocbtancrete technology that will be
used to transport data (mentioned JMS and web servicesaasprt types) and an address. The
format and meaning of the latter is specific for each typeekample, TCP would use hostname
and port number, while JMS requires only a queue name. There@implementations of
transport (web services, TCP, VM) can be changed in sensdigaoation. By default, IMS
IS used to transport events from sensor to monitor and welicssrare used for requests and
control transport.

All request received by designated transport stub are pcegsed to extract data required
for subscription (see 6.6). This includes: EPL statemeitseription ID and transport type and
address desired by request sender (usually monitor). Btesisipassed to Bvent Dispatcher.
This component performs the subscription process itsais ihcludes following steps:

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.7. Sensor architecture 77

—_ — CEP Engine [—~

Sampling
odule

Event ~

Transport
Stub < -

44— —

\
\
/]
/1
7
|

Sampling Module \
Dispatcher

create requgst statement

rresources

Request
Transport stub Event Dispatcher
equests Requests|

Sampling
samplinglmodules, Module

%:;

sampling

Control i .
discovered resources T t discovered resourdes g pjtor Agent modules .
srtaT)SPO [€————_| sampling Module
u

Locator

b

Figure 6.6: Sensor architecture. Dashed lines represemtonog data events flow while solid
ones stand for signals and control messages. Sampling e®dtg responsible for gathering
information about particular resources and can be pluggedruntime.

1. assign a unique subscription id; if subscription messagéains desired id, try to use it.
If not, or passed ID cannot be used, generate a new one

2. determine transport type an address (for example JIMSpauifiec queue name) that will
be used to send events to. Subscriber may sent desireddrapapameters but sensor is
not obliged to use them and may use arbitrary transport tydeaddress.

3. requestSampling Module Dispatcherto invoke proper sampling modules in order to
"feed" the received EPL statement with events produced by the

4. register EPL statement in install€&EP Engine

As a result of subscription a response message is sent b#ok sobscriber containing actual
subscription ID (which, as written before may but does noeh@ be same as ID desired by
subscriber) and actual transport type and address (sibelaavior as in case of subscription
ID). Event dispatcher also takes care of subscription rahand cancellation.

As stated before the task &ling Module Dispatcheris to invoke proper sampling
modules. Which ones of them should be started is determingdebizPL statement from re-
guest. If statement concerns a resource that is handled/byg gampling module or it refers to
event type produced by this sampling module (see samplirdufaanitialization modes in 6.5)
then the module is invoked. In order to know what sampling uheslare available, Sampling
Module Dispatcher queries Sampling Module Locator for aldigt of them. This component is
plugged into the Event Dispatcher as a lister@pgerverdesign pattern) and is notified about
each subscription.

Sampling Module Locator is used to detect available sampling modules for given senso
Current implementation uses SPI [7] to load sampling modaiesntime. JAR files with sam-
pling module implementations should be put in designategctbry known by the locator. A
special thread checks this directory for any new JARs. If dileb are found and they contain

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.8. Sampling modules 78

sampling modules, which is determined using SPI, they aderasailable to the sensor. Also,
when new sampling module is detected, the Sampling Modwdpddcher is informed about this
fact so that it can initialize sampling modules in advanadtiture use. Other implementation,
that uses fixed set of sampling modules (not changed at reptsnalso prepared and was added
for testing purposes.

Monitor Agent is used for interaction with Monitor that given sensor isigssd to. It
gathers information about detected resources and seralthi¢ imonitor. It is also responsible
for proper initialization of communication between senand monitor. More information on
this subject is available in 6.6.

The CEP Engine(Esper implementation is used) is somewhat a heart of a séhigzeives
events produced by the sampling modules and filters, presessl matches them using regis-
tered EPL statement received in requests. The results airéosine monitor through the event
transport stub. However, as mentioned in 6.1.3 to work pigpehas to know the definition
of all simple event types (which are usually Java objectsaduance. To satisfy that condi-
tion, same solution as in monitor implementation is appl®dnessage definition registry is
used that contains all event types used by monitoring itrfretire. Each Java object represent-
ing simple event is marked with special annotation that ilepsovhether message is used for
control purposes (such as request messages) or is a plaiméasage (containing monitoring
data). These annotations are assigned using AspectJ (asated Java extension).

Using CEP Engine in sensor improves data reduction (see)3a8.4bsolete events are
discarded immediately at the creation point.

6.8. Sampling modules

Sensor handles resources using sampling modules. Eachisgmmodule specialized in
discovering and measuring one single resource type andd@®wne single event type con-
cerning this resource.

All sampling modules implement a specific interface thatriewn by the sensor module.
Through this interface the sensor can control the behaviaisampling module and change its
state. Figure 6.7 presents available states for every gagnplodule and transitions along with
signals that invoke them.

The Created state is the initial state for every sampling module. It iggered when the
module is discovered and created by sensor. No specificacie performed when transiting
to this state.

The initialization takes place when sampling module is eeddr the fist time. At this point
it detects available resources for the first time and per$osetup required to probe resources.

After sampling module isnitialized it can be started. Avorking state means sampling
module is probing resource and creating events at givervaidteThis interval can be changed
to the most suitable value for current needs (see 6.5). Aestaampling module can also be
stopped when there is no need for events created by it. Thtessd@ cycle can be performed
any number of times. Finally, sampling module can be desttayhen it is no longer needed.

Two sampling modules where implemented for evaluation gsep. They are presented in
following part of this section.

6.8.1. Network bandwidth sampling module

This sampling module handles the network links between twgihand measures available
bandwidth between them. As stated in 4.2.2, network linkgphantomresources. Therefore,

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.8. Sampling modules 79

initialize

initialized

stop >
o)
¢

start
estroy
destroyed

Figure 6.7: Sampling module state diagram.

destroy

this sampling module does not perform any resource disgawgeration (it shows the dis-
covered resources set as being empty). In fact, it would theally impossible to discover all
existing network links.

Instead, it extracts the desired network link from the reseudentifier received from sen-
sor. That implies that plain mode requests (see 6.5) are osgtifle when it comes to this
sampling module as no information about which exactly nekvioks should be probed would
be available.

For bandwidth measuring, this sampling module uses a pa&ietmethod [32]. In order
for it to work, one end of network link must have a particulkermt installed, and other a special
server. When initialized, this sampling module invokes ws@erver. Therefore, all nodes that
have a sensor installed with this module can be taken intouaxtdor measuring purposes.

In brief, to measure bandwidth, client sends a couple of @adlpacket train) to the server
with well defined interval. To improve the accuracy and aymioblems caused by lost packets,
more than one train is sent. The server, after receiving giaclpasses them back to client.
The possible traffic congestion and network delay on exadnlimk will cause the interval
between received packets to be greater than between theamtdsy the client in the beginning.
Therefore, bandwidth is estimated based on this intervigrdnce.

The main advantage of packet-train method is that it ovdddhe network traffic very
slightly. In order for it to work, a few dozens of packets atshare required. This is very little
compared to other methods such as Iperf [6] that for meagyunrposes literally flood the
network with thousands of packets in order to utilize alliade bandwidth for short period of
time. For example, measuring bandwidth on localhost (ab@.Gbits/s) sending more than 50
000 packets was required of total size around 1 GB. Packetrimathod used only 32 packets
of total size of 10 KBytes.

On the other hand, the estimates based on interval diffeseinetween packets may not be
as accurate as traditional methods. However, this is nog alisadvantage when it comes to
on-line monitoring. The current available bandwidth valvit most likely fluctuate in greater
range than the estimation error.

6.8.2. CPU sampling module

Sampling module for measuring CPUs uses SIGAR (System Ir#tiom Gatherer And
Reporter) - a Java library originally created for the needdygderic monitoring system. It pro-

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.9. Distributed CEP support 80

vides unified API for gathering system information. SIGARder ways of detecting CPUs
installed in system as well as gathering information abloeirt.

The CPU Sampling Module collects data about all CPUs and tbheascavailable in system.
CPUs that do not have multiple cores are treated as havintesemglicit core for uniformity.
Gathered static properties:

e maximum frequency - frequency at which processor can work
e CPU number - number at which CPU is visible in operating system

e core count - number of cores
For each core, CPU sampling module measures following dynproperties:

e idle time - % of time that core was idle
e system time - % of time that core spent executing system calls

e user time - % of time that core spent executing user leves call

6.9. Distributed CEP support

Full implementation of distributed CEP described in chaptisrvery complicated and goes
beyond the subject of this work. However, a number of featared modifications were intro-
duced to both sensor and monitor modules to support distitbGEP and make it easier to
evaluate in terms of feasibility and efficiency, as well astafl it in the future. This section
describes them in detail.

6.9.1. CEP Engine in sensor

First implementation of GEMINI-2 framework had a CEP enginstalled only in mon-
itor. This engine processed events coming in constantreydeom sensors. Sensors in turn
were simply periodical monitoring data generators. Thaesfthe architecture corresponded to
traditional centralized CEP.

The installation of CEP Engine is a step towards the distth@EP and data reduction.
Events can now be filtered at source effectively reducinguarhof data being sent to monitor.
The engine in sensor operates accordingly to EPL statemecgsved from monitor. These
statements are associated with requests sent by clientsritan Therefore, they are part of
processing one original request issued by client. In otleeds; processing of single request is
done in at least two distributed points: sensor and monitor.

6.9.2. Request distributor stub

The most difficult thing in implementation of distributed CERcreating an algorithm that
would produce partial and assembly statements from ofigima Some patterns were presented
in 5.3.2 that may be used to develop one.

To evaluate distributed CEP and prepare monitor for using algorithm, a request distrib-
utor stub was introduced in it. It uses is a simple interfdeg tlefines a service for generating
EPL partial and assembly requests as well as identifiersovigers that should take part in dis-
tribution (see 5.4). In addition to this it returns a set cfrevtypes involved in partial statements
and assembly statements. This is important because ofdtseedscussed in 6.1.3 and 6.9.4.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.9. Distributed CEP support 81

Current implementation of this interface simply containsedefined set of distribution pat-
terns, that is a projection of original EPL statements tgodeticonsisting of assembly statement,
partial statements and set of involved sensors. The setgihal statements is finite and has to
be defined directly in configuration.

Although this solution is trivial it is still useful becausétwo reasons:

e it enables testing, evaluation and even usability of disted CEP. However, the last one
is very limited as client has to pick a specific statement feoset of available ones

e it can be easily replaced with real implementation. Moste#ttires related with dis-
tributed CEP have been implemented to support it.

6.9.3. Event addressing

As written in 5.4, distributed CEP introduces the need foppra&vent addressing: by source
and by request. Implementing such addressing requiresogufsppm both monitor (as event
processor) and sensor (as event source). Solution for thesging by request problem was
already described in 6.6.4. For marking events with thaire®, a provider identifier is required.
This identifier is identical with sensor id mentioned in 6.6l herefore, solving the addressing-
by-source problem is as simple as adding a sensor id to each gnoduced by it.

Current implementation marks all events coming from senstr toth request ID and
sensor ID (correlation Identifier). As a result, whole evadtressing problem is solved and
results of partial statements can be properly assembled.

6.9.4. Complex event handling

Adding a CEP Engine to the sensor seriously affected the tgpesents coming from
it. In prior implementation sensor produced messages astyfpom predefined set (such as
Cpul nf o or Net wor kBandwi dt h) that was well known to monitor. Therefore, it was pos-
sible to define all event types in advance in monitor's CEP.

However, the existence of CEP engine in sensor involves thardically changing set of
possible event types. This is because sensor producese&osyants which have contents and
data dependent on received EPL statement. For examplet oli@y specify any set of prop-
erties from given event stream, along with aggregate fancsuch asvg that qualifies for
distribution. As a result, sensor would probably producengs containing all of the requested
properties and components needed for computing the avdtagenpossible to predefine such
event types. Therefore, these types have to be extractedHRL statements (see 6.9.2).

There is one more problem with dynamic event types. All piiegd events that are known
to both sensor and monitor are plain Java objects that aergeadl by Protobuf (see 6.10). They
are serialized and deserialized automatically. Howeveemit comes to aforesaid dynamic
event types, there is a need of a generic way of converting theprotobuf message that can
handle virtually any type of event. To solve this problem ddigonal Protobuf message was
added that contains a list of property names with their \&alltecan be easily converted to
map-based-type event (see 6.1.3) and used by CEP engine itomBrplicit marshalling and
demarshalling (in addition to operations provided by thet@ouf-generated code) were also
implemented.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.10. Used technologies 82

6.10. Used technologies

Previous sections already mentioned a some of technologied by GEMINI-2 frame-
work with its new modifications. Below is a cumulative list df more significant solutions in
GEMINI-2.

e Protobuf - protocol buffers used, among others, by Google. Protobablkes easy defi-
nition of messages that are sent over the network. Serti@iizand deserialization mech-
anisms are created automatically. Message definitionscangited to a number of pro-
gramming languages, including Java. Main advantages dblpué-based messages is
their small size and fast serialization.

e Esper- CEP engine Java implementation. Already described in 6.1.3

e Spring - J2EE application framework. Used by GEMINI-2 to assembteuales from
components and smaller beans and for configuration.

e ActiveMQ - JMS implementation. Used by GEMINI-2 for JMS transport ierpentation
(see 6.7)

e Sigar - an open source library used by Hyperic monitoring systeéroitains a number
of useful Java wrappers for standard system calls that carsdxe for gathering data on
various hardware resources. Used by CPU Sampling Module2(6.8

6.11. Configuration

GEMINI-2 uses Spring framework to assemble and configureditsponents, monitor and
sensor in particular. Configuration is kept in XML files, usdy@ine per component.

This section describes the configuration of sensor and moritmost all of elements de-
scribed here were already implemented in GEMINI-2 framéwanen works described in this
Thesis began. They are described for reference.

Each configuration for sensor and monitor contain a geminted tag. It is a heart of
GEMINI-2 component configuration. It defines the endpoitresport protocols with imple-
mentation and modules that are attached to them. In othetswdrdescribes an interface of
GEMINI-2 component (sensor or monitor) that it can conneithwith other elements of in-
frastructure. Below is an example of Gemini context from sersnfiguration:

<gem ni Context xm ns="http://cyfronet. edu. pl/gem ni 2/ schema/ spri ng"
i d="sanpl esensor" >

<endpoi nt uri="event: producer:sensor">
<transport uri="jms:queue: esper Queue" />
</ endpoi nt >

<endpoi nt uri="msm consuner: subscri ptionLi stener" >
<transport uri="jmnms:queue: request Queue"/ >
</ endpoi nt >

<endpoi nt uri ="epc: producer: sensor Subscri ber" >
<transport uri="ws:http://Iocal host: 9000/ msni" />
</ endpoi nt >
</ gem ni Cont ext >

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

6.11. Configuration 83

This gemini context contains three endpoints. Each endpoihefined with specific URI.
The URIs are composed of three parts separated with col@t.dfie specifies the type of chan-
nel. Currently, there are three types of endpoints availdblact, these are implementations of
channels described in 6.6.2:

e event - channel used for transporting events
e nsmM- Monitoring Service Management channel. Used to send @ive&PL requests

e epc - Event Provider Control - used by sensor to subscribe in rap@ihd sencRe-
sourceUpdatemessages.

As stated in 6.6.2, each channel is unidirectional. Thectioe of channel is specified by
the second part of URI. A given endpoint (belonging to a geroaritext holder, like monitor
or sensor) may be either consumer or producer. In the exaagolee, sensor is producing to
event channel (this is obvious as sensor’s job is to produests), reading from thes mchan-
nel (receiving requests from monitor) and producing togpe channel (sending registration
requests and resource update messages).

The third part of URI specifies a name of Spring bean that wilubiag a given endpoint.
The exact interface that this bean must implement is spdoitice endpoint type. More infor-
mation is available in [5].

Each endpoint has a list of possible transports assignegden example, only one transport
per endpointis defined but more can be added. Similarly tp@ints, transports are also defined
with URIs composed of parts. The first part specifies the tygeosport, or in other words the
protocol. The meaning and format of second part of the URIpe tyependent.

Besides defining communication interface, the Gemini cdngealso important because it
iImposes the rest of configuration. In fact, both monitor agmksr configuration is built around
it in order to satisfy dependencies for the beans that aaeladt] to endpoints. Because the other
parts are ordinary Spring beans with traditional Springhb@anfiguration and definition, they
will not be listed here.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7. Evaluation

The main purpose of this chapter is evaluation of conceptisitiens and design deci-
sions that were presented in previous parts of this Thesistlyi- a performance test results
of GEMINI-2 framework are given with emphasis on new sensodute behavior. They cover
memory usage and bandwidth utilization caused by mongaautivity. Then, an extensive use
case that concerns applying GEMINI-2 framework to monitgrstorage devices in distributed
environment.

7.1. Performance

This section is devoted to performance tests of distrib@E® . The goal is to determine
how data reduction caused by CEP engine installed on sensolimaibandwidth utilization
and at what are memory costs of conducting event processirggiosor. The latter aspect is
important because it may affect the performance of nodesdasor is installed on. In most
cases, these nodes would have other tasks to execute. gkddlyi processing time of single
event was measured.

For these performance tests a simple infrastructure dorgisf one monitor and one sensor
connected to it was used. Both monitor and sensor were iedtail the same machine commu-
nicating with JMS queues for events and internal Virtual Nae for transport. Monitor as well
as sensor were working in the same instance of JVM. To genevaints an artificial sampling
module was use that sent events with specified interval.

One may question the credibility of results obtained on suctplified infrastructure. How-
ever, when it comes to the memory usage only the part causeddny accumulation is taken
into account. Because monitor does not aggregate evenist passes them directly to client
stub, only sensor’s accumulation affects increased memsmge. Moreover, the network uti-
lization still can be measured with respect to processingimfle request. Obviously, when
sensor is processing more requests, the event streamdiBaitewill be greater and will con-
sume more bandwidth.

7.1.1. Memory usage

A couple of scenarios were tested to measure memory usage seanario defines a state-
ments sent by client and partial statement received by sefke latter is the main point of
interest as it affects the resource usage by sensor. Eacargralso uses different event gener-
ation interval. Usually it is 1 second.

In each case the used memory was measured using the builtven @thods:

t ot al Menory andf r eeMenory of thej ava. | ang. Runt i ne class. The value was cal-
culated as a difference of outcomes of these two methodsedxer, the garbage collector was
invoked before each reading to make sure only really needsdary is taken into account.

84

7.1. Performance 85

T T T T T T T T T T T T T T T T T T T
28000 r memory usage .
— 23000 | -
m
X,
> 18000 +
o
5
£ 13000
8000
| 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
time [min]
Figure 7.1: Memory usage scenario 1 results
Scenario 1

Original statement:

select = from Cpul nfo

Partial statement

select = from Cpul nfo

Events were generated with 1-seconds intervals. This soenaas used to simulate a case
where no event processing takes place in sensor. The statesimply pass the events to the
monitor and then client. Presented plot (figure 7.1 showdhadunt of used memory was fairly
constant. The visible fluctuations can be bounded with emrishinimum and maximum values.

Scenario 2

Original statement:

sel ect avg(userTine) as au from Cpulnfo.win:tine(4 hours) where providerld
= 'sensorl’ output |ast every 1 hour

Partial statement

sel ect avg(userTine) as au from Cpulnfo.win:tine(4 hours) output |ast every
1 hour

In this scenario events were generated with one second/ahtéfigure 7.2 presents out-
comes of measurement. Fluctuations visible in the figurepaobably caused by temporary
objects being created for processing purposes. Still,ugladcrease of the minimum value of
used memory is quite clear. It is caused by the fact that thelovy in partial statement is filling
with events. When its full (after 240 minutes) the minimumgeshecomes relatively constant
as no more events can enter the window. They just replacddianes.

Scenario 3

Original statement:

select = from Cpulnfo.win:tinme(2 hours) where providerld = ’"sensorl output
all every 2 hours

Partial statement
select = from Cpulnfo.win:time(2 hours) output all every 2 hours

Events were generated every 1 second. Unlike in scenarierhary usage increases gradu-
ally and drops after every 120 minutes. This correspondsapartial statement which contains

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.1. Performance 86

28000

T
®
3
o

usage - .

23000

18000

memory [KB]

T
———=

13000

8000

0 20 40 60 80 100120140 160 180 200 220 240 260 280 300 320 340 360 380 400
time [min]

Figure 7.2: Memory usage scenario 2 results

T T T T T T T T T T T T T T T T T T T
memory usage .

28000

23000

18000

memory [KB]

13000 n

8000

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
time [min]

Figure 7.3: Memory usage scenario 3 results

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.1. Performance 87

T T T T T T T T T T T T T T T T T T T
memory usage |

23000

18000

13000 .

memory [KB]

8000

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
time [min]

Figure 7.4: Memory usage scenario 4 results

anout put clause that instructs CEP Engine to release all events adatedun window after
2 hours.

Scenario 4
Original statement:

select * from Cpulnfo where providerld = "sensorl’ output all every 2 hours

Partial statement

select = from Cpulnfo output all every 2 hours

Again, events were generated every 1 second. This scesammyi similar to previous one.
The only difference is lack of the time window. The results also very similar. Memory used
to store events is freed every 120 minutes after gatheradsaee released.

Scenario 5

Original statement:

select * fromCpulnfo.win:tinme(2 hours) where providerld = "sensorl output
all every 2 hours

Partial statement

select = from Cpulnfo.win:time(2 hours) output all every 2 hours

This scenario uses the same statements as scenario 3. Wnfik@vious cases, in this one
events were generated every 10 milliseconds. The purpoieso$cenario was to check the
memory usage under extremely large stream of events. Theompeumsage is clearly greater
that in previous cases and rises quickly up to nearly 93 MB.l&ity to previous scenarios,
when events are released memory used to store them is freed.

All of presented scenarios clearly indicate that memorygadacreases when statements
with output control or time windows are processed. Theeefiarshould be taken into account
when installing on nodes that are also utilized for otheksaklowever, the overhead caused by
given statements was not very big. It did not exceed 2 MB. Theegton was scenario 4 but
it used unusually dense stream of events. In other wordan#maory usage caused by event
processing itself seems to be acceptable.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.1. Performance 88

93000
83000
73000
63000
53000
43000
33000
23000
13000

memory [KB]

1 1 1 1 1 1
0 20 40 60 80 100 120 140
time [min]

Figure 7.5: Memory usage scenario 5 results

Network bandwidth utilization

200 | —

150 - .

100 - .

bandwidth [bytes/s]

50 - =

no distribution distribution

Figure 7.6: Network utilization scenario 1 results

7.1.2. Network utilization

Similarly as in case of memory usage tests, network utibralvas also measured in refer-
ence to a few scenarios. In each of them a single EPL statemanéxamined in two modes:
with and without distributed CEP. In all cases events werapeced with 1-second interval.
For the distributed CEP mode a partial statement that waspedpn accordance with patterns
shown in 5.3.2 and was issued to sensor is given. Event message sent with TCP trans-
port implementation. In order to get the amount of bytes sgat the local loopback aptraf
program was used. The results are presented below.

Scenario 1

Original statement:

sel ect avg(usertine) as au from Cpulnfo.win:tine(1l0 seconds) output | ast
every 10 seconds

Partial statement

sel ect sum(usertine) as s, count(usertine) as ¢ from Cpulnfo.w n:tinme(10
seconds) output |ast every 5 seconds

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.1. Performance 89

Network bandwidth utilization

200 =
v
2
€ 150 =
=2
=
S 100 - =
=
©
3
o 50 I~]
0

no distribution distribution

Figure 7.7: Network utilization scenario 2 results

In figure 7.6 results of scenario 1 are presented. The difteref bandwidth usage is clearly
visible and is in favor of distributed CEP. In fact, utilizati of network of the latter is about five
times lower. This is clearly caused by tbat put clause in the partial statement that releases
events every 5 seconds instead of one.

Scenario 2
Original statement:

sel ect avg(usertine) as au from Cpulnfo.win:tine(1l0 seconds) output | ast
every 10 seconds

Partial statement

sel ect sun{usertine) as s, count(usertine) as ¢ from Cpulnfo.w n:tinme(10
seconds) output |ast every 5 seconds

Figure 7.7 shows results for scenario 2. This one presentryaunfavorable statement
distribution. It causes twice as much network utilizatiersgandard solution. This is caused by
the fact that the time window creates new result every timewamts enters it or leaves. This
happens more often than each 1 second. Scenario 2 showstlesery distribution is favorable
and it has to be considered whether a statement should begsext in this way or not. More
information about benefits from statement distributionigedssed in 5.6.1.

Scenario 1 clearly show the benefits of distributed CEP aral @afuction that comes with
it. Although presented bandwidth utilization values aré¢ very high (around hundred bytes
per second), they concerns single event stream. If sensoemidting more event streams as a
result of processing multiple requests, which is not an omoon case as single sensor handles
many resource instances, the utilized bandwidth would b&yrtimes higher. In such case, the
profit of data reduction would be much greater.

Scenario 2 may look discouraging. Not only implementatibdistributed CEP poses many
problems, it can actually make the network performance avaidsen not used correctly. How-
ever, one should keep in mind that statement used in thisagoceis quite obsolete in real ap-
plications. It is anticipated that most statements usedbdo®l profitably or at least harmlessly
distributed as in scenario 1.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring 90

7.1.3. Event processing time

Time of processing single event by monitor was measured. diefined as time between
reception of event sent by sensor and releasing of eventiviistreated as a result. Measured
value ranged from 15 to 90 milliseconds, depending on CPU ¢badkachine.

This value is significant because of the reasons presente8.iEach monitor introduces a
slight delay in event processing and may cause eventualrdateuracies. Therefore, this value
should be taken into account when designing the layout ofitmienin monitored network.

The processing time depends very slightly on CEP engine ipeaioce, which in case of
Esper is very good. Most overhead is introduced by tranaport mechanisms and related
serialization (especially JMS).

7.2. Storage device monitoring

This section is devoted to using GEMINI-2 framework to mesguparameters of various
storage devices working in distributed environment. Itntended as a case-study for imple-
mented changes in GEMINI-2 and simple proof of concept feouece handling and descrip-
tion mechanisms. | also presents a process of designing @lisgrmodule to handle new type
of resource.

Presented information is very general. This is because GERIis still under development
and implementation and configuration details may changeanr future. Therefore this chap-
ter should not be perceived as some kind of manual for imphtimg sampling modules for
measuring storage devices. These kinds of information\aiéahle in [5].

7.2.1. Background information

Three kinds of storage systems are taken into account: dislysa hierarchical storage
management (HSM) and ordinary local disks.

Local disks are simply single hard disk drives that are \esitirectly by the operating
system. They do not involve any sophisticated hardwarefowace.

Disk arrays are set of hard disks that are used to store datacim way that it is more
secure and can be more efficiently read compared to sindde Sieveral models of data layout
over disks are available called RAID (Redundant Array of Iredefent Disks) levels. Each level
specifies whether and how data is backed up and how redundamAID levels are designated
with integer numbers. There are 5 standard levels of RAIDk Rrsays usually communicate
with operating system through special hardware controlleere is also a possibility to create
software RAID matrix.

Hierarchy Storage Management is a system that automatio@drates data between differ-
ent levels of storage device types. Each level consistsmédand of storage devices. In most
cases there are three levels. On top there are higher-cosedgsuch as hard disk drives. They
keep frequently accessed data. Lower are optical disk thatheeaper but less efficient. Finally,
at the bottom of hierarchy are tape drives that can storefignt amounts of data but suffer
from very long access times. The whole idea of HSM is to medata between these levels in
most efficient way, considering data access time and sta@sgjs. For the need of this chapter
two-level HSMs will be considered.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring

91

Name | Data type Static? | Description

Local disks

device name string v name under which device is visible in oper
ating system. For example, disks in UNIX
are named sdal, hda2 etc.

Total capacity integer[bytes] v maximum number of bytes that given disl
can hold

free capacity integer[bytes] O number of bytes that can be used to writ
data on disk

average read transfer | integer[bytes/s] O number of bytes that can be read in gn
second from disk on average. Althougl
this is not a static property by nature, it af
ter enough number of estimates it become
quite stable and does not change over tin
and can be considered as such

average write rate integer[bytes/s] 0 same as above but concerns writing data

current read transfer | integer[bytes/s] O number of bytes that are currently beint
read in one second

current write transfer | integer[bytes/s] O same as above but concerns writing bytes

working boolean O true means the device is reading or writin
data at the moment

Table 7.1: Common properties for storage devices

Name Data type Static? Description
RAID level integer v number defining the level of RAID
disk number integer v number of disk that array consists of

Table 7.2: Unique properties of disk array resource

7.2.2. Storage devices properties

In order to design a sampling module properties of storagecee that will be measured
have to be found and defined. All resources considered inctiapters have some common
purpose and functions. They are all used to store data anidprat least reading and writ-
ing features. Therefore, a number of common properties eaddntified. These are listed in
table7.2.2. Each one has a static/dynamic qualificatioroatidnally a description.

Moreover, HSM systems and disk arrays have some unique mieg€rl hey are presented
in tables 7.2.2 and 7.2.2.

7.2.3. Resource type definition

After the properties have been found and described, resdype can be defined, according
to 6.2. Metadata for each of discussed three resource tygh@vgn in tables 7.2.3. The fields in
these types correspond to static properties presentempsiu For this reason the description
for them is omitted because meaning is the same as in 7.2.2.

Presented information can be used by GEMINI-2 sensors toalefisources and send in-
formation about them to monitors and by whole framework téngeevent types that will

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring

92

Name

Data type

Static?

Description

high watermark

low watermark

libraries

number of premigratec
files

size of premigrated files
number

files
size of migrated files

of migrateg

float

float

listof libraries

] integer

5 integer[bytes]
integer

integer

v

% of disk space filled after which data m

gration to lower levels of HSM begins. A
though this property is not strictly stat

it usually changes very infrequently and

sometimes can be treated as such.

% of disk space filled data migration in-

voked by high watermark stops. Similar
to previous property, this one also c
sometimes be treated as static

list containing information about tape |
braries that HSM system includes. Each

ly
AN

brary is defined by name and contains a

number of tape drives. Each drive can
empty or contain a tape.
number of files that have been selected

be

for

migration and have been moved to special

migration directory on disk (premigratio
state)

same as above but concerns total size of

these files
number of files that have been migrated
lower level of HSM hierarchy

same as above but concerns total size of

these files

Table 7.3: Unique properties of disk array resource

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring 93

contain information about these resources state. Tygjcalmonitoring data event contains
values of all non-static properties. For example, as farigk drray monitoring events is
concerned, event would contain values fareeCapaci ty, aver ageReadTr ansf er,
averageWiteTransfer,current ReadTransfer,current WiteTransfer and
true/false value for sWor ki ng. Therefore, both event and resource definition are ready.
The fact that some common group of properties have beenifidenin 7.2.2 suggest us-
ing some kind of inheritance mechanism for resource medad#®M, Local disk and Disk
Array resource types could have a common supertype: St@agee. Unfortunately current
implementation of resource handling in GEMINI-2 does ngimurt such constructions.

7.2.4. Event types definition

Based on resource type definitions established in previai®eevent types that will carry
information about particular resources can be defined. Bhneyresented in table 7.2.4. Most
fields in those events are self explanatory or corresponceldsfin resource types therefore
their description is omitted.

Unlike resource types, presented event type set do takentd@ of the fact
that some common properties can be identifier among storagé@ces. Events
St or ageDevi ceDynani cPar anet ers and St or ageDevi ceSt ati cPar anet ers
can be used to transport data that concerns any device uséoréodata. Other events detail
this information. Messages concerning the same resoustanice can be associated using
r esour cel Das they will have same value in this field.

Static and dynamic properties have been put into separatése\such solution helps avoid-
ing situation, where a lot of dynamic properties are meabwriile consumer requests only
single static one. In presented solution, consumer caricgkplrequest for static properties
only.

7.2.5. Sampling module implementation

After events content are defined and resource propertiesided, one may start to im-
plement sampling modules. One sampling module per resdypeewill be required. Each of
them will produce events with type corresponding to measuesource. The implementation
details will not be discussed here. Measuring local diskpeaters is usually fairly easy. How-
ever, getting information about HSM systems strongly déelgeim their producer and operating
software. Same applies to discovery of those resources.

During design and implementation of sampling module onetb@sy attention to number
of things:

e time required to perform single measurement must not be. [dygical probing times
range 1-5 seconds

e sampling module should rely on native measurement usli(agerating system tools,
hardware vendor tools etc.) as much as possible to ensuceerfly and measurement
accuracy

Sampling module should be packaged in JAR file with the maas<cthat handles mea-
surement specified in META-INF directory accordingly to SBécification [7]. Thanks to that
Sampling Module Locator (see 6.7) will be able to detect autehlize it. Finally, the whole jar
should be placed in designated directory that holds alla@via sampling modules.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring 94

Field Value

Name "HSM" Field Value
deviceName Name "DiskArray"
totalCapacity deviceName
freeCapacity totalCapacity
averageReadTransfer freeCapacity
averageWriteTransfer averageReadTransfer

Property names | currentReadTransfer averageWriteTransfer
currentWriteTransfer Property names | currentReadTransfer
isWorking currentWriteTransfer
lowWatermark isWorking
highWatermark RAIDLevel
libraries diskCount

Discriminator deviceName Discriminator deviceName
deviceName deviceName
totalCapacit . . totalCapacit

Static properties IowWatgrma¥k Static properties RAIDLepveI ’
highWatermark diskCount
libraries

(a) HSM metadata

Field

Value

Name

"Disk"

Property names

deviceName
totalCapacity
freeCapacity
averageReadTransfer
averageWriteTransfer
currentReadTransfer
currentWriteTransfer
isWorking

Discriminator

deviceName

Static properties

deviceName
totalCapacity

(c) Local disk metadata

(b) Disk array metadata

Table 7.4: Resource metadata for storage devices

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring

95

Field Datatype
resourcelD string
Field Datatype parentlD string
resourcelD string freeCapacity integer[bytes]
parentlD string averageReadTransfer | string
totalCapacity integer[bytes] averageWriteTransfer | string
deviceName string currentReadTransfer | string
(a) StorageDeviceStaticParameters currentWriteTransfer | string
isWorking boolean
(b) StorageDeviceDynamicParameters
Field Datatype Field Datatype
resourcelD string tatyp
parentiD string resourcelD str!ng
libraries list of Library pgrentID §tr|ng
. : diskCount integer
highWatermark integer RAIDLevel integer
lowWatermark integer g
(c) HSMStaticParameters (d) DiskArrayStaticParameters
Table 7.5: Event types for storage devices
Field Datatype Field Da_tatype
resourcelD string resourcelD string
: parentlD string
parentlD string :
hostName string agentHostName str!ng
hostName string
(2) Agentinfo (b) Controllerinfo
Table 7.6: Additional event types for example purposes
7.2.6. Example

This part contains an example of distributed CEP based maomgtdramework. Its main
purpose is to provide a clear overview of how concepts ptesdén this Thesis regarding men-
tioned approach (especially in chapter 5) may work in rekitsm.

The example refers to architecture presented in figure Bllpresented EPL statements
use event types defined in 7.2.4. In addition to them, eveneisepted in 7.2.6. They concern
information about agents and disk controllers respedtivel

Following assumptions are made:

¢ that the infrastructure is up and running, that is all reggiiconnections between compo-
nents are established, and no errors occur during the @ioges

e the sensors installed at each disk array produce evenwdpsily, sending a constant
stream of events to disk controllers.

e the event property esour cel D uniformly defines event producer. This fact will be
needed in statements with tgeoup by clause

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring 96

e disk array resource belongs to (is child of in resource hatnaof) disk controller re-
source.

Below are actions, in order, that are taken by each comporémné @rchitecture.

1. Consumer sends request to the front monitor containingaiog EPL statement:

sel ect ai.host Nanme as agentld, avg(da.freeCapacity) as avgFreeSpace
from St orageDevi ceDynani cParaneters.win:tinme(1l mnute) as da,
Controllerlnfo as ci, Agentlnfo as ai where da.parentlD =
ci.resource Id and s. agent Host Nane = Al. host Nane group by
ai .resourcel D output | ast every 10 seconds

With this statement consumer attempts to obtain informegioout the trend in used disk
space for each disk array in both clusters

. the front monitor receives the request and assigns ariti(iteeded for event addressing -
see 5.4)isedSpacdt also examines the statement contained in the requegtsaablishes
following facts:

e Two event types are involved in the statement:
St or ageDevi ceDynam cPar anet er s andControl | erl nfo

e There is agr oup by clause that "splits" the events in accordance to the sources.
In other words, each group comes from different source

e there is aravg aggregation function involved

. Basing on the information above, the front monitor sendlsiing requests to cluster
agents:

sel ect ai.hostNanme as agentld, avg(da.freeCapacity) as avgFreeSpace
from St orageDevi ceDynami cParaneters.win:tine(1l mnute) as da,
Controllerlnfo as ci, Agentinfo as ai where di.controllerld =
ci.resourcelD and ci.agentHost Name = ai.host Name out put |ast every 10
seconds

simultaneously, a following statement is used as assenmay o

sel ect * from aggregateStream where requestld = ’'usedSpace’

The aggr egat eSt r eamis an event stream composed of events received from the
agents. The type of the events that will be contained in tinesas is determined when
the partial requests are constructed. Teer e clause assures that only events associ-
ated with this particular request will be used to computel fiagult. Apart from partial
statement, also request id is sent to agents.

. Both agents receive their requests. They read the requestiained in them and remem-
ber it for future use. They analyze the statement and, jesthie front monitor, construct
their own partial statement:

sel ect ci.agentHost Name as agentld, sum(da.freeCapacity) as
freeSpaceSum count (da.freeCapacity) as freeSpaceCount from
St or ageDevi ceDynami cParanmeters.win:tine(1l mnute) as da,
Controllerinfo as ci where da.parentlD = ci.resourcel D group by
ci.resourcel D output last every 5 seconds

and assembly statement

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

7.2. Storage device monitoring 97

sel ect ai.hostName as agentld,
sun(ag. f reeSpaceSun) / sunm(ag. freeSpaceCount) as avgFreeSpace from
aggregat eStream std: uni que(providerld) as ag, Agentlnfo as ai where
ai . host Name = ag.agentld and requestld = ’'usedSpace’ group by
ai . host Nane out put | ast every 10 seconds

In both statements thgr oup by clause is added only to make them compilable (events
have to be grouped by the selected fields, just like in SQLYhiieally, the grouping is
done by splitting the original statement to partials Agagguest sent to disk controllers
contain the request id.

5. Disk controllers receive the statements and install thewheir CEP Engines. After 5
seconds, their CEP engines generate first events. Beforerthegra to the agents, request
id and provider id are added to them.

6. When agents receive events, they put them into their CEPemngiith proper assembly
statements installed. Their output control tells the eagarelease events every 10 sec-
onds. After that time (assuming that at least one event geavby disk controller arrives
before which should occur because of 5-second intervalgim #tatements). As soon as
any event leaves the CEP engine, requestld and providerkbaes to it.

7. finally, the front monitor receives the first event. Juke lin other cases, it is put into
monitor's CEP engine. When event the engine releases evesrpaissed to the consumer.

Obviously, presented scenario does not cover all aspedastibuted CEP. For instance,
the problem of establishing communication channels betwpeeviders and consumers, event
type recognition from statements and statement distobutiechanism itself still need to be
resolved. Some of these are discussed in chapter 6.

Moreover, it has to be admitted that brought up EPL exampfaiily complex. In order
to distribute it in a way as above, the distribution algamtkvould have to analyze the join
relations between three event types. Fortunately, reabktatements probably would use such
constructions fairly rarely.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

8. Summary

Presented work made a significant step in GEMINI-2 framewlerkelopment towards more
efficient and complete monitoring infrastructure. Patacly, a problem of distributed CEP was
defined and then examined and evaluated using mentioneehsyktproved to be relatively
complex to design and implement. A number of potential protd regarding applying this
technology in monitoring systems was identified and desdriMoreover, some directions were
given that could help implementing it. Although GEMINI-2enot fully support distributed
CEP yet, a number of improvements were introduced to brinigser to complete functioning
of this technology.

The test results are promising as far as network utilizaa®mwell as memory consumption
of monitoring infrastructure are concerned. This indisdteat the development of distributed
CEP support in GEMINI-2 may be beneficial and make this systenaficient monitoring
platform that is able to compete with other solutions in frakl.

These conclusions indicate that the main goal of this Thegerding applicability and eval-
uation of distributed CEP in grid monitoring was reached. Wiheames to the other problems
mentioned in 1.2 they were also solved. A sensor module waigmied and implemented, mak-
ing GEMINI-2 more extensible and capable. In addition tstsbme basic concepts regarding
resource handling were defined, described and introducdidt¢assed monitoring system.

Following sections take some other issues regarding woskrdeed in this paper. These
include the fulfillment of requirements for monitoring ssist and plans for the future when it
comes to the development of GEMINI-2.

8.1. Functionality compliance

Section 1.3 defined a set of requirements that a monitorifrgstructure for distributed
environments should meet. The implementation of GEMINe2s®r component and modifica-
tions introduced to monitor helped some of them to be met biI(B&-2 framework. They are
listed below, with short justifications:

e diverse data granularity (1.3.2) - CEP technology provides varied data granulaript su
port out of the box. User can define any pattern and aggreggttyjpes of events

e extensibility (1.3.5) - architecture of sensor that utilizes easily regddle sampling mod-
ules definitely contributes to overall extensibility of GEM-2 framework

e low overhead(1.3.7) - development towards distributed CEP support hydhicing a
CEP engine in sensor and using efficient measuring techni(pues as packet-train
method to probe bandwidth) reduce the overall overheadGiEAIINI-2 may have on
environment it is installed in.

98

8.2. Future challenges 99

on-line operation (1.3.6) - the CEP technology itself is on-line oriented inunat

Still, a number of requirements awaits resolving. Most imigat ones include security, data
storage and ease to deploy.

8.2. Future challenges

In chapter 6 it was mentioned that some features of GEMINiagheEwork are not imple-
mented yet. Below is a more complete list of parts that needldpment.

implementation of request distributor - this is probably thost challenging feature to be
implemented of all mentioned. The analysis of EPL statermenitder to extract data and
operations that can be distributed poses many difficulliegy were mentioned mainly
in 5 but also in this chapter. Request distributor is cru@afdll distributed CEP support.

improve security - test results presented in 7.1.1 cledrbyved that long time windows
cause significant memory usage. This may be a security \abiley as malicious clients

could send requests containing really long windows meadsirdiours or event days.
Therefore, additional analysis of received statementsagsired. It could be conducted
by the request distributor along with distributed statenoeeation.

design monitor discovery mechanism - some kind of monitscalery is required for
sensors to automatically initialize. Currently, they mustdran address of monitor they
are supposed to work with predefined. That makes automatialication and configu-
ration of sensors very hard or impossible. This problemssutised more thoroughly in
6.6.1.

resource type inheritance mechanism - currently there igpaossibility to define any

relation between resource types. As resource type definikample presented in 7.2.2
showed, a mechanism for resource type inheritance couldéiluo avoid redundant
property entries. Moreover, it would help organize resesntn more sophisticated way
(right now they form a tree hierarchy), thus making seararafons more efficient and
flexible (for example, fetching all resources of given type &s subtypes).

iImplement proper resource registry - as mentioned beforeeitly resource registry is
just a stub that is used for evaluation purposes. For fulhcfioning monitoring infras-
tructure a more sophisticated component is needed. Theeegents for it include:

— generally accessible by all elements of GEMINI-2 infrastane: monitors and
clients. Monitor need it to update resource data and sorestii@ich information
needed to distributed EPL statement that concerns giveyuress over sensors.
Clients would be able to obtain data about static propertiegsources without
involving monitors in the process.

— persistence - data contained resource registry shoulddsemwed during failures
of single monitors or even whole monitoring infrastructudsually the layout of
hardware resources does not change rapidly in distributgslomments so most
resources would still be up to date when system is initidlaker failure

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

8.2. Future challenges 100

— efficiency - some resources , such as processes, do appedisapgear from dis-
tributed environment often. Therefore, frequent data tgglssued to resource reg-
istry are probable. Moreover, clients may also request tilata registry very fre-
guently. Resource registry should be prepared to handldedlet operations effi-
ciently.

¢ unify interfaces between GEMINI-2 components - currengrifsices allow monitor to
request data only from sensors and accept requests frontscbaly. In order to enable
a fully functional architecture as suggested in 5.2, a uatitie of these interfaces is
needed. Each monitor should be able to register in other torojuist like sensor does
now. Similarly, each monitor should be able to request daan fother monitor just as
client does it with regard to monitor and monitor with regéwdsensor. In other words,
each monitor should be able to work as a event consumer tjched event producer at
the same time [47]. Some work in this field been done in thia Byeapplying the request
interface used by client to monitor (see 6.3).

e introduce instrumentation - current implementation of GEM2 framework does not
allow user to probe state of processes. A system of processiinentation is needed to
satisfy this need. A certain solutions are presented in [#5] and [16]

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

Glossary

consumer

node

probing

producer

resource

A computer, subsystem or any other element of
distributed system interested in receiving moni-
toring data., 22

Single machine that works in network, usually
part of a cluster, 11

Activity of sensor or any other device/software
that is responsible for handling resources that
consists in gathering monitoring data about re-
source instances. For example, CPU probing
would be extracting information about its user,
system and idle time., 12

Any element of distributed environment that
gathers and sends monitoring data to consumers.
It may be any kind of sensor, application etc., 23

Any element of distributed environment that can
be subjected to measurements and monitoring.
This include hardware (CPUs, hard disk drives,
memory, nodes, network links), software (pro-
cesses, applications, operating systems) or other
(databases)., 11

101

Bibliography

[1]
[2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

Teragrid. URLht t p: / / www. t eragri d. org.

Enterprise Integration Patterns: Designing, Building,caDeploying Messaging Solu-
tions. Addison-Wesley Professional, 2003.

Esper EPL Reference. URttp://esper. codehaus. org/ esper-2.0.0/
doc/reference/ en/ htm /epl _cl auses. htm .

Esper Reference Documentation

GEMINI-2 Development Site. URLhttp://chom k. cyfronet.pl/trac/
gem ni .

OpenSS7 IPERF Utility Installation and Reference Manual

Java Service Provider. URhtt p://j ava. sun. com j 2se/ 1. 3/ docs/ gui de/
jar/jar.htm #Servi ce¥20Pr ovi der .

S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G.Rubini, G. Tortone, and M.C.
Vistoli. Gridice: a monitoring service for grid systemsuture Generation Computer
Systems JournaP005. doi: http://dx.doi.org/10.1016/j.future.2002.A05.

Sergio Andreozzi, Massimo Sgaravatto, and Maria Craskfstoli. Sharing a conceptual
model of grid resources and servic€oRR ¢s.DC/0306111, 2003.

Sergio Andreozzi, Stephen Burke, Laurence Field, SEsher, Balazs KAsnya, Marco
Mambelli, Jennifer M. Schopf, Matt Viljoen, and Antony Wiis. Glue schema specifica-
tion version 1.2. Technical report, 2005.

Author. Towards a Framework for Monitoring and AnalygiQoS Metrics of Grid Ser-
vices. Ine-Science and Grid Computing, 2006. e-Science '06. Secd#id liiernational
Conference2006.

F. Azzedin, M. Maheswaran, and Man. Manitoba Univ., Wjpeg. Integrating trust into
grid resource management systemsPé#mallel Processing, 2002. Proceedings. Interna-
tional Conference on

Zoltan Balaton and Gabor Gombas. Resource and Job Mogton the Grid.

ZoltAan Balaton, Peter Kacsuk, Norbert Podhorszki &erenc Vajda. Comparison of
Representative Grid Monitoring Tools. Technical report, @ater and Automation Re-
search Institute of the Hungarian Academy of Sciences, .

102

BIBLIOGRAPHY 103

[15] ZoltAan Balaton, PAlter Kacsuk, Norbert Podhorszind Ferenc Vajda. From Cluster
Monitoring to Grid Monitoring Based on GRM, .

[16] Bartosz Balis, Marian Bubak, Wodzimierz Funika, Tomase#eniec, and Roland Wis-
muller. An infrastructure for grid application monitoringn Proceedings of the 9th Eu-
ropean PVM/MPI Users’ Group Meeting on Recent Advances ialle Virtual Machine
and Message Passing Interfagages 41-49, London, UK, 2002. Springer-Verlag. ISBN
3-540-44296-0.

[17] Bartosz Balifz, Bartosz Kowalewski, and Marian Bubak. Leveraging complesne
processing for grid monitoring, 2008.

[18] K. Balos, D. Radziszowski, P. Rzepa, K. Zieldki, and S. Zielifski. Monitoring grid
resources:jmx in actiomASK Quarterly : scientific bulletin of Academic Computer @ent
in Gdansk 8, 2004.

[19] Peter Brunner, Hong-Linh Truong, and Thomas Fahringetformance Monitoring and
Visualization of Grid Scientific Workflows in ASKALON.

[20] Alejandro Buchmann and Boris Koldehofe. Complex eventessing.it - Information
Technology51, 2009. doi: 10.1524/itit.2009.9058.

[21] Rob Byrom, Laurence Field, Steve Hicks, Manish Soni, amdoAy Wilson. Relational
grid monitoring architecture (r-gma), 2003.

[22] A.W. Cooke, A.J.G. Gray, W. Nutt, J. Magowan, M. OeversT&ylor, R. Cordenonsi,
R. Byrom, L. Cornwall, A. Djaoui, L. Field, S.M. Fisher, S. Hicks Leake, R. Middle-
ton, A. Wilson, X. Zhu, N. Podhorszki, B. Coghlan, S. Kenny, B84 @ Callaghan, and
J. Ryan. The Relational Grid Monitoring Architecture: Medigtinformation about the
Grid. Journal of Grid Computing2004.

[23] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselmauréhg Mehta, Karan Vahi,
Kent Blackburn, Albert Lazzarini, Adam Arbree, Richard Cavagia and Scott Koranda.
Mapping abstract complex workflows onto grid environmedisurnal of Grid Comput-
ing, 1:25-39, 2003. ISSN 1570-7873. URitt p://dx. doi.org/10. 1023/ A
1024000426962. 10.1023/A:1024000426962.

[24] Tiziana Ferrari and Francesco Giacomini. Network rnmnmg for grid perfor-
mance optimization. Computer Communications27(14):1357 — 1363, 2004.
ISSN 0140-3664. doi: DOI:10.1016/j.comcom.2004.02.012. URL htt p:
/I www. sci encedi rect. com science/articl e/ BGTYP- 4C1CCBW 2/

2/ 407al151e8acc095cbbb34f 1bbda50edb. Network Support for Grid Comput-

ing.
[25] lan Foster. What is the grid? - a three point checklistGRIDtoday 1(6),

July 2002. URLhttp://ww fp.nts. anl . gov/\~{}foster/Articles/
What | sTheGr i d. pdf.

[26] lan Foster, Carl Kesselman, and Steven Tuecke. The @ayaibthe grid.

[27] lan Foster, Carl Kesselman, Jeffrey M. Nick, and Stevelecke. Grid services for
distributed system integration.Computey 35:37—-46, 2002. ISSN 0018-9162. doi:
http://doi.ieeecomputersociety.org/10.1109/MC.200Q167.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

BIBLIOGRAPHY 104

[28] Dan Gunter, Brian Tierney, Keith Jackson, Jason Lee, Madin Stoufer. Dynamic
monitoring of high-performance distributed applicatiomtigh-Performance Distributed
Computing, International Symposium,oix163, 2002. ISSN 1082-8907. doi: http:
//doi.ieeecomputersociety.org/10.1109/HPDC.2002.2039

[29] Petr Holub, Martin Kuba, Ludeek Matyska, and Miroslavdau Grid infrastructure mon-
itoring as reliable information service.

[30] Adriana lamnitchi and lan Foster. On fully decentraizesource discovery in grid envi-
ronments. Irinternational Workshop on Grid Computing001.

[31] Emir Imamagic and Dobrisa Dobrenic. Grid infrastruetumonitoring system based on
nagios. INGMW '07: Proceedings of the 2007 workshop on Grid monitorpages 23—
28, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-716-2. daitp://doi.acm.org/
10.1145/1272680.1272685.

[32] Andreas Johnsson. On the comparison of packet-pairpaciet-train measurements.
SNCNW20032003.

[33] Timothy K. Kratz, Peter Arzberger, Barbara J. Benson, ©hinChiu, Kenneth Chiu,
Longjiang Ding, Tony Fountain, David Hamilton, Paul C. Hamséu Hen Hu, Fang-Pang
Lin, Donald F. McMullen, Sameer Tilak, and Chin Wu. Toward akall Lake Ecological
Observatory Network.

[34] Wei Li, Zhiwei Xu, Fangpeng Dong, and Jun Zhang. Gridowgse discovery based on
a routing-transferring model. IBRID '02: Proceedings of the Third International Work-
shop on Grid Computingpages 145-156, London, UK, 2002. Springer-Verlag. 1SBN
3-540-00133-6.

[35] Bruce Lowekamp, David O’Hallaron, and Thomas Gross. ology discovery for large
ethernet networks. I5IGCOMM '01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols fmmputer communicationpages
237-248, New York, NY, USA, 2001. ACM. ISBN 1-58113-411-8. dutitp://doi.acm.
0rg/10.1145/383059.383078.

[36] Bruce Lowekamp, Brian Tierney, Les Cottrell, Richard Hugdenes, Thilo Kielmann,
and Martin Swany. A hierarchy of network performance chmastics for grid applica-
tions and services, 2004.

[37] Davic C. Luckham and Brian Frasca. Complex Event ProcgseiDistributed Systems.
Technical report, Program Analysis and Verification Groupnpater Systems Lab Stan-
ford University, 1998.

[38] David Luckham. SOA, EDA, BPM and CEP are all Complementapmplexevents.cam
2007.

[39] David Luckham and Roy SchultEvent Processing Glossarkvent Processing Technical
Society, 2008.

[40] Matthew L. Massie, Brent N. Chun, and David E. Culler. Thengj@m dis-
tributed monitoring system: design, implementation, argdeeience. Parallel Com-
puting 30(7):817 — 840, 2004. ISSN 0167-8191. doi: DOI:10.10Qpéfco.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

BIBLIOGRAPHY 105

2004.04.001. URLhttp://ww. sci encedi rect. coni sci ence/article/
B6V12- 4CVHWAK- 2/ 2/ b6b44ba67¢732867d1c3881¢c510b2953.

[41] Brenda M. Michelson. Event-driven architecture ovewi Technical report.

[42] D.A. Reed and C.L. Mendes. Intelligent Monitoring for Adation in Grid Applications.
In Proceedings of the IEEE

[43] David B. Robins. Complex Event ProcessingASEP 5042010.

[44] Uwe Schwiegelshohn, Rosa M. Badia, Marian Bubak, Marcodldto, Schahram Dust-
dar, Fabrizio Gagliardi, Alfred Geiger, Ladislav Hluchydjeter KranzimAijller, Erwin
Laure, Thierry Priol, Alexander Reinefeld, Michael Reschdigas Reuter, Otto Rien-
hoff, Thomas RAijter, Peter Sloot, Domenico Talia, Klausrhinnu, Ramin Yahyapoura,
and Gabriele von Voigt. Perspectives on grid computikRgture Generation Computer
Systems2009.

[45] Shava Smallen, Kate Ericson, Jim Hayes, and Catheriseh@howsky. User-level grid
monitoring with inca 2. INGMW '07: Proceedings of the 2007 workshop on Grid moni-
toring, pages 29-38, New York, NY, USA, 2007. ACM. ISBN 978-1-5959%-2. doi:
http://doi.acm.org/10.1145/1272680.1272687.

[46] T.S. Somasundaram, R.A. Balachandar, V. Kandasamy, R.&W®yRaman, N. Mohan-
ram, S. Varun, and Chennai Anna Univ. Semantic-based gralires discovery and its
integration with the grid service broker. Bfdvanced Computing and Communications,
2006. ADCOM 2006. International Conference dioi: 10.1109/ADCOM.2006.4289861.

[47] Brian Tierney, Ruth Aydt, Dan Gunter, Warren Smith, Vaeraylor, Rich Wolski, Mar-
tin Swany, and the Grid Performance Working Group. White Pap&rid Monitoring
Service Architecture (DRAFT). .

[48] Brian Tierney, Brian Crowley, Dan Gunter, Jason Lee, andyM&ompson. A Monitoring
Sensor Management System for Grid Environments, .

[49] Hong-Linh Truong, Thomas Fahringer, and Schahram @arst Dynamic instrumenta-
tion, performance monitoring and analysis of grid scientorkflows. Journal of Grid
Computing 3:1-18, 2005.

[50] C. Zanga and Y. Fana. Complex event processing in enserpriormation systems based
on rfid. Enterprise Information Systensages 3—-23, 2007.

[51] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy g@fd monitor-
ing systems. Future Generation Computer System21(1):163 — 188, 2005.
ISSN 0167-739X. doi: DOI:10.1016/.future.2004.07.002. URL http:
/' I www. sci encedi rect. coni science/articl e/ B6V06- 4DH2G0J- 1/

2/ Of f df ce1044b5862df ea24d1d5dc51f 8.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies

