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dr inż. Marian Bubak

KONSULTACJA:
dr inż. Bartosz Balís

Kraków 2010



I express my gratitude to Marian Bubak – supervisor of this work, for his
guidance, favor and advice when creating this Thesis. I also would like
to kindly acknowledge my grateful thanks to Bartosz Baliś for valuable
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Abstract

Diversity of resources and launched tasks in grid systems combined with various QoS poli-
cies defined by different Virtual Organizations produces a need for sophisticated monitoring
tools. Monitoring data is required to keep QoS contracts preserved and enable grid networks
provide services of high quality by assigning proper resources for tasks and optimizing their
usage. Resource state information should be provided (1) on-line (2) with minimal network
and computing nodes load. However, most existing monitoring systems for distributed envi-
ronments do not provide on-line monitoring capabilities, but expose monitoring information in
data repositories refreshed periodically. Since this is not sufficient for certain scenarios, a new
approach to monitoring is required.

This Thesis presents the problem of using Complex Event Processing technologies to the
following issues: (1) on-line provisioning of monitoring data and (2) minimizing monitoring
overhead on resources when obtaining and transporting thisdata. Special emphasis is placed
on distributed event processing within a monitoring system. The advantages of CEP approach
to monitoring over existing solutions are discussed in thisThesis. The concept of distributed
CEP is described along with problems regarding it and possible solutions. Potential benefits
of applying such approach in monitoring infrastructures are given. In addition, some issues
regarding resource handling in CEP-based monitoring infrastructures are identified, defined and
resolved. The proposed concepts and designed solutions arepractically verified by extending
the capabilities of an existing monitoring framework GEMINI-2 and its subsequent evaluation
for monitoring of storage resources. Results of measurements of its impact on the working
environment are also presented.

The contents of this thesis are organized as follows. Firstly, some background information
regarding monitoring distributed systems is given and motiviation and goals for this research are
presented. Then, an overview of existing monitoring systems for distributed environment with
analysis of their functionality in terms of on-line data acquisition is shown. Next, the general
concept of Complex Event Processing and ways it can be used in monitoring frameworks for
distributed environments are presented. After that, some issues concerning resource handling
when it comes to on-line monitoring of distributed systems are highlighted. These are followed
by a discusson on the concept of distributed approach to CEP with possible problems involved
and solution drafts for some of them, architectural patterns and examples. Finally, description of
introduced modifications in the GEMINI-2 framework concerning support of distributed CEP
is given along with evaluation information and tests results.

Keywords: Complex Event Processing, Grid monitoring, on-line, network utilization, distributed CEP,
resource, overhead
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1. Introduction

1.1. Significance of monitoring in grid networks

One of the main purposes of grid infrastructure is to provideservices of high quality to
clients. This is achieved by "coordinating resources that are not subject to centralized control"
[25]. These resources can be varied, including elements such as disk matrices for data storage
or CPU-nets to carry out computing, and are usually connectedthrough computer network. The
lack of centralized control means that these resources can be shared among grid network partic-
ipants in a direct way [26] by different providers using varied policies. Therefore, a successful
functioning of the grid infrastructure depends heavily on maintaining a complex net of rela-
tionships between clients and resources that the grid infrastructure makes accessible to them, as
well as between resources themselves (for example jobs and disk arrays).

This is a nontrivial task as, among others, security, quality of service, sharing between mut-
liple users and accessibility of shared resources have to betaken into account. Monitoring the
state of these resources can greatly contribute to solving discussed problem in above mentioned
aspects. Following sections present the most important of them in greater detail.

1.1.1. Virtual Organizations and resource sharing

Grid network resources may be controlled by organizations with diverse security and access
policies. These organizations also have various goals (research, production, providing services
), tasks and lines of business (pharmacy, information technologies, electronics etc.) [26]. This
diversity creates a natural need to exchange resources. On the other hand, it may result in some
problems: creating and maintaining contracts between organizations that comply with varied
security and sharing policies can be complicated. Moreover, these organizations may be a part of
one or more Virtual Organizations (VO) that group members with common goals and purposes,
such as solving particular large scale scientific problem [44]. Just like normal organizations,
each VO has it’s own policies regarding security, resource access and membership.

In [26] it is stated that single resource can be used in different ways by different VOs.
Conditions of resource sharing often contain constraints ofhow and when it may be used.
This may include performance and capacity metrics, assuring quality (see 1.1.4) or security.
All parameters have to be monitored by service provider to ensure that service level agreement
declarations are met and that tasks invoked by one of participants do not interfere with others.

This is where monitoring software may show its usefulness. It can provide information about
utilization level of each resource and enable proper reaction of entities responsible for keeping
proper quality of service intact. However, in order for it tobe possible, monitoring infrastructure
has to provide most recent data. An out-of-date data may trigger improper reactions that try to
respond to past events. Therefore, a need for efficient,on-linemonitoring emerges here.

8



1.1. Significance of monitoring in grid networks 9

1.1.2. Reliability

Grid networks are increasingly being used to execute complex tasks, each composed of
multiple process executions and resource access operations. Every of those actions may fail.
In such case it is crucial that the entities responsible for handling task execution are informed
about the causes of the problem to react properly. For example, consider a taks that is supposed
to write a large amount of data to disk array installed on another node. If selected disk array
happens to refuse to accept incoming data during the process, the main task should be informed
about it in order to switch to other storage device [23].

In order for this to be possible, the real cause of the failureneeds to be discovered. This a
non-trivial task as the failure may be caused by an error of single component, such as resource
incaccessibility, software exception etc. or some inconsistencies in the interaction between re-
sources themselves. Referring to given example, the inability to send data to given disk array
may be a result of broken network link, filled up disks, brokendisks or not responding machine
that operates the storage device. The problem becomes even more complicated when it comes
to workflows (a set of ordered tasks that are invoked to achieve common goal, business, indus-
trial or scientific in nature[19]), as the dependency graph between particular tasks can be very
complex.

Detecting the cause of failure is impossible without the knowledge of current state of in-
volved resources (disks and network links in aforesaid example). Therefore, an on-line moni-
toring infrastructure may contribute in this aspect.

1.1.3. Security

Authors of [12] claim that grid network security can be enhanced by proper resource allo-
cation. That is, security issues should be taken into consideration when assigning resources to
given tasks by the scheduler. Such approach cannot be achieved if proper information about re-
source state is available which can be provided by monitoring system. Therefore, a monitoring
infrastructure may be contribute to Grid network security.

1.1.4. Quality of Service

Services provided by grid network in most cases have declared quality [27]. This quality
may be expressed by various parameters, such as available throughput, CPU time, disk space
etc. In fact, the nature of grid networks enables many users to use same resources at the same
time. It is very common that multiple tasks are being run by single CPU. This significantly
complicates the problem of defining and keeping quality of services.

Firstly, service provider must know how much it can offer at given time. For example, if
network link is being used in 75% by other users’ tasks, it cannot offer a new user a 45% part of
maximum throughput on this link. In other words, it must be known what available capabilities
of each resource are.

Secondly, the state of resources must be monitored to ensurethat declared quality is kept
through all the time is it being used by clients. This is important, because clients’ tasks may be
faulty or even malicious and try to use more "goods" than they have been assigned to. More-
over, some resources may break-down and appropriate reaction may be needed to keep declared
quality (see 1.1.5 and [42]).

Both these problems cannot be solved without information about state of the resources.
Monitoring middleware may be useful not only by providing raw data on state of certain re-
sources. It also can help to estimate available resource "capacity" (how many other clients can

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



1.2. Motivation and goals of this work 10

use given resource at given quality) by applying some sophisticated queries to monitoring data.
Again, resource state information timeliness is crucial here to make proper actions possible and
maintain declared QoS [11].

1.1.5. Availability

One of features of services provided by grid networks is their accessibility [26]. In short,
it means that given service can be used at virtually any time and anywhere. To ensure this,
redundant resources are often used. In case of breakdown of one resource instance, services
may chose to switch so secondary (spare) one.

Such reaction is possible if information about resource failure is available. Without it neither
service itself nor humans can make decision to switch to spare one. This is where monitoring
system comes in. It may provide information about state an accessibility of main resources
and spare ones. Sometimes it is even possible to know that resource will fail before it actually
happens (i.e. when available disk capacity is running down or number of bad sectors on given
disk is becoming significant). Monitoring middleware may also provide data on designated
backup resource to make sure it is available and avoid invalid, "blind" switching to resource of
an unknown state.

It is quite obvious that proper resource inspection is a mustto keep services accessible in
distributed environment.

1.2. Motivation and goals of this work

Aspects discussed in 1.1 indicate that in many cases an on-line monitoring system would
contribute to overall efficiency of a grid infrastructure. Unfortunately, such solutions usually
come at price of high network and CPU utilization as a result offrequent updates of monitoring
data. Therefore, in order to make them more usable some techniques of reduction of this cost
have to be found and implemented. The work described in this paper aims at providing infor-
mation whether and how Complex Event Processing technologies can be used to limit these
handicaps.

The starting point of this work is research of CEP-based Grid monitoring [17] and im-
plemented GEMINI-2 monitoring infrastructure. The mentioned research proved that CEP ap-
proach can be successfully used for on-line resource monitoring purposes in distributed envi-
ronment. Still, some problems remain unresolved when it comes to concepts and design them-
selves as well as implementation of propert functionalities in GEMINI-2. This work continues
the research towards CEP-based grid resource monitoring with emphasis on efficiency in terms
of data rates sent over the network.The main subject of this Thesis is an applicability and
evaluation of distributed CEP in grid infrastructure monito ring .

In detail, the issues discussed in this Thesis are as follows:

• develop a concept of distributed CEP with particular emphasis on its application in pro-
cessing monitoring data in distributed environment

• introduce CEP mechanisms to sensor level of monitoring infrastructure in order to provide
better data reduction

• develop resource handling mechanisms, especially identification, that are required for
proper functioning of CEP-based monitoring infrastructure

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



1.3. Requirements for the grid on-line monitoring infrastructure 11

• implement sensor component for GEMINI-2 framework

• introduce necessary changes into monitor-layer of GEMINI-2 in order to make coopera-
tion with aforesaid sensors possible.

1.3. Requirements for the grid on-line monitoring infras-
tructure

Points mentioned in 1.1, analysis in [8] and requirements defined in [51] can be used to
establish a set of funtionalities and characteristics thatmonitoring infrastructure should posses
in order to be effective. Such list is presented in this section. While most of the listed points ap-
ply to any monitoring service for distributed system, the whole set focuses on on-line-operating
monitoring infrastructures. Therefore, this list is not complete in general.

1.3.1. Data persistence

Grid monitoring should persist extracted data for future use. Retrospective analysis can be
useful to detect patterns of task behaviors (i.e. how often such tasks use access to data storage),
resource error proneness (i.e. frequency of spare disk usage in RAID matrices) etc. Moreover,
monitoring data persistence increases monitoring infrastructure resilience. Without it, in case
of failure of monitoring system entities that are interested in receiving data could not get mea-
surement results that were taken during their interoperability. However, to make this kind of
protection work measurement results should be stored as close to their source as possible to
make them less vulnerable to communication layer failure.

Apart from raw monitoring data some additional informationshould be stored such as: time
of measurement, history of measurement, request that was issued to invoke given measurement.

1.3.2. Diverse measurement granularity

Good monitoring systems should provide data on every resource that is part of distributed
environment. These resources may be of any kind and granularity, from small hardware parts
to whole group of machines. For example, one may wish to measure single CPU core, single
CPU, single node or whole cluster. This implies that monitoring data concerning those resources
is also very varied in terms of size and semantics. Thereforemonitoring infrastructure should
be able to accept request that concern any level of granularity. That is, consumer may request
monitoring data on any abstraction level (from single, primitive resource such as CPU to whole
node or cluster) and monitoring system should handle it and provide proper information that
covers no less no more than selected scope.

1.3.3. Environment awareness

Distributed environment, especially Grid networks, can beseen on different levels of speci-
ficity: from single nodes, to sites to clusters to whole VOs. Monitoring infrastructure that is to
work in such environment should be able to somehow grasp thiscomplexity. Monitoring sys-
tem should be aware nodes, clusters and possibly VOs to give client a better view of existing
resources and provide context for gathered data. For example, a user should be informed that
given monitoring results come from specific cluster or should be able to gather data from one
single network node. A part of this problem has already been discussed in 1.3.2. Still, other

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



1.3. Requirements for the grid on-line monitoring infrastructure 12

mechanisms, such as data gathering and resource discovery [46; 30] should reflect the the com-
plex nature of distributed environment in order to work efficiently in it and acquire enough
information about it to present monitoring data to end user approprietly.

1.3.4. Visualization and analysis support

Data provided by monitoring infrastructure is often subject of analysis performed by hu-
mans. Raw text or binary format is great for machines but not for living beings. In order to
efficiently and successfully carry out data analysis peopleshould be provided with charts, dia-
grams, time flows, graphs (for example graphs of event hierarchy and causality) etc.

Most existing monitoring systems (see 2) have built-in means of presenting gathered data
in human-readable form [18]. These kinds of features have become a standard for such applica-
tions.

1.3.5. Extensibility

Resources that are part of grid network may be very varied. It is virtually impossible to create
monitoring infrastructure that covers all of them. Not onlythere are many different models
of given resource types (for example CPUs may beIntel i7 or AMD Opteron). New types of
resources may appear during the lifetime of monitoring system. They also have varied "nature".
Aforesaid CPU resource would be a fabric resource (a physicalcomponent). Other resources
may be logical (local network, subnets etc.) or "soft" (processes, tasks).

This diversity creates a need for monitoring framework to beextensible in matter of re-
sources it can detect, recognize and measure. Thanks to thatit could be customized and adapted
to specific grid network and its capabilities.

1.3.6. On-line operating

It most cases state of monitored resource changes in time, often very frequently. For exam-
ple, current CPU user time may change rapidly within seconds.

Because of this monitoring data should be obtained and delivered on-line or in best case
in real-time (the latter is very hard to achieve). This impacts efficiency ofprobing (process of
obtaining information about state of resource) and transporting this data from measured nodes
to interested parties. Both of these operations have to be very efficient to ensure that monitoring
data is delivered in sensible time, before it becomes useless as state of examined resource has
changed. Moreover, data should be updated frequently, providing end user with most recent
information all the time.

Not meeting this requirement may result in having outdated data that has nothing to do with
real situation on measured node. Some other consequences offailing to provide current data
were highlighted in 1.1.

1.3.7. Low overhead

Operation of acquiring monitoring data (it will be calledprobing from now on) may affect
probed resource [28; 14]. Probing available bandwidth on network link is a very good example.
In this case some packets have to be sent over the examined link. This causes two problems.
Firstly, sent packets reduce available bandwidth, so measurement would not be absolutely ac-
curate. Secondly, probed network link is usually used by ordinary tasks run on grid nodes (mi-
grating data for instance). Probing interferes with these tasks and slows them down. Similar
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problems occur when probing CPU load (probing consumes CPU time) or process activity or
state (additional code to report process state slows them down). The same applies to monitoring
jobs that are being invoked on the Grid. Application instrumentation [29] injects additional code
to original program and may harm its performance.

So it is clear that special effort should be made to minimize the degree that monitoring
application interferes with resources and normal tasks. This can be done, amongst other things,
by optimizing probing process (lower CPU time consumption) and reduce amount of data sent
over the network (low bandwidth usage, see 6.8.1 and [24]).

1.3.8. Interoperability

Interoperability is one of basic characteristics of Grid networks (see [26] chapter 3). It en-
sures that all participants of VO use same standard, open mechanisms for authentication, au-
thorization, resource access, data exchange etc. This openness must span across whole grid
network to enable fluid and dynamic VO creating and changing.

Monitoring infrastructure must comply with this assumption. Without it, monitoring frame-
works would hider VO creation and collaboration. Therefore, it would either become less usable
or highly violate Grid nature and assumptions.

For a monitoring infrastructure to be interoperable at least two requirements should be met:

1. open protocols - in fact, interoperability vastly depends on protocols. They are
implementation-independent and define data manipulation na format without imposing
specific solutions. Well defined protocol allows diverse implementations and envirin-
ments to work together. Monitoring infrastructure should define protocols for monitoring
data transport and subscription, error handling and query statements. They should be well
known and defined to make implementing third party extensions and modules possible.

These definitions should use existing protocols in grid networks, or in networks in general
(HTTP, TCP).

2. universal resource identification- as aforesaid, grid resources may vary, so their identi-
fication within given actual organization. Disks, cpus, processes are identified in different
manners not only across single organization but also withinsingle nodes. For example,
UNIX operating systems identify disks as block devices and processes with integer num-
bers. Some resources don’t even have identifiers. Network link between two hosts is a
good example. To enable interoperability, this identification must be unified, by building
an abstraction layer above "native" signatures or simply using available virtual resource
identification identification that is available in Grid network and used by other applica-
tions.

1.3.9. Ease of installation and deploying

Modern grid networks are vast, connecting tens of computingclusters each containing some-
times hundreds of computing nodes (see TeraGrid [1], one of the largest scientific Grid net-
works). Installing parts of monitoring middleware on each of them manually would be mundane,
to say the least. This, in turn, may result in mistakes and failures during deployment process.
Moreover, overly complicated installation and configuration may discourage from using given
technology even if it is robust, efficient and secure.

Monitoring software should contain some utilities that would help deploy its parts over the
network and relieve humans from this task as much as possible.
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1.3.10. Integration with existing monitoring software

Virtually in every network there is some kind of monitoring software that is well adapted
to nature and "quirks" of the environment it is working in. It would be very desirable to use
this software in Grid monitoring. This would reduce the extensibility (1.3.5) and deploying
(1.3.9) problems. Unfortunately, this can be very hard due to variety of used protocols, resource
representations and architectures.

1.3.11. Security

It is not very obvious that problem of security applies to monitoring middleware in large
extent. One has to keep in mind though that monitoring data sent over the network very often
contains names and states of processes running on probed nodes. This creates a serious threat
as unauthorized parties may intercept data containing information about network structure and
its state. Such information may be very useful to prepare actions that would disturb normal
activity of a network. Therefore special care should be taken to ensure that monitoring data is
not accessible to unauthorized third parties.

1.4. Thesis organization

This work can be viewed as consisting of three parts. First one (chapters 2 and 3) con-
cerns the general problem of monitoring grid networks and applications. It defines requirements
for monitoring systems in distributed environments and describes the potential contribution of
Complex Event Processing to monitoring solutions. A short overview of existing solutions when
it comes to monitoring distributed systems is also given.

The second part (chapters 4 and 5) is an introduction to distributed CEP in monitoring
in general: it defines the problem, describes potential issues and provides some solutions and
proposals for them.

Finally, the third part (chapter 6 and 7) describes the development of GEMINI-2 monitoring
framework, a sensor module in particular. Requirements for the sensor module are given and
implementation details with regard to previously mentioned problems and solutions are pre-
sented. Moreover, features that support and help introducing distributed CEP in GEMINI-2 are
outlined. Finally, evaluation tests are carried out with special emphasis on influence a sensor
may have on environment.

This thesis is organized in following way. Chapter 1 is an introduction to this work, contain-
ing some background information and motiviation and goals.Chapter 2 contains an overview
of existing monitoring systems for distributed environment with analysis of their functionality
in terms of on-line data acquisition. Chapter 3 presents the general concept of Complex Event
Processing and the way it can be used in monitoring frameworks for distributed environments.
Chapter 4 highlights some issues concerning resource handling when it comes to on-line mon-
itoring of distributed systems. Chapter 5 discusses the problem of distributed approach to CEP
with possible problems involved and solution drafts for some of them, architectural patterns and
examples. Chapter 6 describes introduced modifications in GEMINI-2 frameworks, including
designed and implemented sensor module, and evaluation information. Chapter 7 presents some
performance tests results of new GEMINI-2 components and use case regarding storage moni-
toring. Finally, chapter 8 contains summary including future steps in GEMINI-2 development.
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2. Overview of existing monitoring systems

In this part several existing monitoring systems are mentioned and described. In each case
a short overview of architecture is presented. Moreover, anemphasis is put on their compliance
with functional and non-functional requirements mentioned in 1.3 and ability to support on-line
grid monitoring.

2.1. GridICE

GridICE [8] is relatively new Grid monitoring infrastructure. It was designed an imple-
mented exclusively for Grid networks in order to address itsunique requirements.

GridICE architecture consists of five layers:

• Measurement - responsible for gathering resource metrics (simple and composite). It also
defines abstraction of resource identification and hierarchy.

• Publisher - responsible for publishing gathered data to consumers. It creates common in-
terface for monitored data access. GLUESchema [10] was usedfor data definition which
enables users to perceive resources through GIS.

• Data Collector Service - stores data for retrospective analysis and is responsible for de-
tection of new resources and disappearance of monitored ones

• Detection/Notification and Data Analyzer Services - notifies about certain events through
various notification means (e-mails, SMS etc) and provides various analysis, reports and
statistics

• Presentation Service - web-based graphical user interfacepresenting monitoring informa-
tion in concise way

The main advantage of GridICE is its integration with Grid protocols and data format. It uses
GLUESchema, provides a common interface for data access (second layer) and integrates with
other existing monitoring applications such as Nagios [31]. Thanks to Data Collector Service it
also detects new resources and can handle their disappearance. Presence of presentation layer
is an additional plus. Therefore, it well meets some requirements mentioned in 1.3.

Unfortunately, it cannot provide fine grained data in an on-line manner. Using GIS and
GLUESchema for data delivery can result in quite big messages that would cause significant
overhead of network links. Moreover, resource detection based on periodical polling GIS. Pe-
riod is usually about a day so this system cannot respond quickly to changes in network.

15



2.2. Ganglia 16

2.2. Ganglia

Ganglia [40] was designed for monitoring distributed systems, including Grid networks or
even planetary-scale systems. It’s architecture is hierarchical. Leaf nodes represent examined
clusters. Each higher node represents a group of lower nodes, creating a cluster federation.

Significant emphasis has been put on performance issues. Ganglia causes low overheads
when it comes to CPU (special measurement algorithms) and bandwidth usage (multicast used
for transporting monitoring data). Test results presentedin [40] are very optimistic. Therefore it
can be used in high-performance clusters. Moreover it seemsto be robust as it applies heartbeat
signals between nodes.

On the other hand Ganglia does not take advantage of trusty and open Grid protocols such
as GIS. Therefore its interoperability is reduced when it comes to Grid environments. It also
does not have proper data storage functionality.

2.3. R-GMA

R-GMA, or Relational Grid Monitoring Architecture [21; 22], is based on Grid Monitoring
Architecture. Its implementation is based on relational data model. Architecture consists of
three types of components:

• Producer - performs measurements and publishes monitoringdata

• Consumer - accepts monitoring data from producers. Additional operations on data are
available, such as joining data from multiple producers andfurther publishing

• Registry - is a directory service that holds information about avaliable producers and
their location. Each producer after initialization registers itself in the Registry. Consumers
perform a lookup in Registry to obtain information about Producers they want to receive
data from.

Almost all operations in monitoring data, such as publishing, registering in Registry, query-
ing data are expressed in SQL. Producers, Consumers and Registry components maintain their
own databases to store received data, produced data and information about producers respec-
tively. For example, registering producer in Registry is expressed asCREATE TABLE clause (to
publish schema of monitoring data), while requesting data from priducers is simply aSELECT
* FROM clause. According to [21], "R-GMA creates the impression thatyou have one RDBMS
per Virtual Organisation".

Thanks to usage of relational data model, this system can provide variously grained mon-
itoring data. The actual content can be arbitrarily defined by SELECT clauses. Therefore, R-
GMA meets the data granularity related requirements (1.3.2). On the other hand, using rela-
tional databases makes it harded to provide on-line monitoring data.

2.4. Inca2

Inca2 [45] aims at providing monitoring data on user-level grid functionality. Therefore, the
particular measurements are launched from standard user account. Every user can define tests
that will be used by the system to determine the health of examined distributed system.

The architecture of Inca2 consists of following elements:
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• Reporters - eecutable programs responsible for monitoring data acquisition. Results are
written to an XML file

• Agent - centralized configuration and management of the system. Responsible for dis-
patching reporters

• Depot - stores monitoring data that can be used to generate reports and history views.
Based on Hibernate ORM

• Consumer - presents data to end user. It is a web application running on web server.

Additionally, Inca2 provides a reporters repository containing reporters. These reporters are
ready to use in Inca2 deployments, making it easier and faster.

Above, in conjuntion with the fact that reporters can be relatively easily implemented added
and plugged in into the system makes Inca2 very extensible and easy to deploy. Moreover, it
can present both historical and current data with proper visualization. The fact that the tests are
user-level grid applications makes it more secure and awareof the environment.

However, Inca2 does not provide very recent data with frequent updates. It delivers current
data in form of summaries of test results. Moreover, it is hard to acquire monitoring data on
single instances of very fine grained resources.

Nevertheless, the list of successful deployments that includes TeraGrid [1], and GLEON
[33] indicate that it is an effective and useful monitoring platform.

2.5. Conclusion

All of listed solutions are mature and have been successfully used in various distributed
environments. Probably the most notable is Ganglia, which have been installed in vast number
of noted distributed systems (list of them is available on Ganglia web page).

However, none of them is able to provide on-line monitoring data in efficient way. For
example, mentioned Ganglia in most cases presents snapshots of resource state over longer
time period, such as 1 hour. Therefore, there still exists a room for monitoring system providing
on-line data. Such system would be very attractive as it could present gathered data in a form
of animated charts in real-time-like manner. It also would be useful to solve some of the issues
mentioned in 1.1.
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3. CEP technology in monitoring

In this chapter a problem of monitoring resources in grid environment using CEP will be
generally discussed. Firstly, the idea of Complex Event Processing will be briefly presented.
Secondly, main features of Complex Event Processing will be mentioned with emphasis on
their application in monitoring. Then an overview of problems that must be addressed when
using CEP in distributed environment will be discussed.

This chapter contains many definition and concept explanations that are required to under-
stand further parts of this Thesis.

3.1. Idea behind Complex Event Processing

Referring to [39], Complex Event Processing (or CEP) is a computing that performs oper-
ations oncomplex events. These complex events are built or created as a result of processing
simpler events. An event (more precisely an event object) interms of CEP is a representation of
real event ("anything that happens" - according to [39]) recorded for the purposes of complex
processing. Authors of [43] proposed a more specific definition of event: "eventas an object
that is a record of an activity in a system."

Events are sometimes also calledmessages. In this document both names will be used inter-
changeably.

Figure 3.1 shows interaction and relationships between main elements of CEP concept.
These elements are discussed below.

3.1.1. Event processing

All events, both simple and complex, regardless of their type and source come to oneevent
cloud. Event cloud is a set of event objects that is usually unbounded in terms of time, quantity
and event types. Relationships, such as timing, causality and explicit ordering are maintained
between events in this cloud. These relationships make it possible to carry out a detection of
specific patterns in event distribution. The activity of finding these patterns is calledevent pro-
cessing.

The results of event processing arecomplex events. They may be seen as indicators of some
specific correlations in set of simple events. On the other hand, they may be subject to processing
by some other patterns, resulting in more complex and abstract events.

An example of event processing may be detecting storage nodes in storage cluster that are
currently receiving and saving data. In this case simple events include current CPU user and
system time, current load on all network links that nodes areconnected to and current disk
capacity of each node. If for a given period (for example 15 seconds) CPU time, network load
are greater than average during last 5 hours on other nodes and disk capacity on considered
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Figure 3.1: The CEP concept. Event sources produce information about particular events (sim-
ple events) and throw them into one event cloud. The contentsot this cloud is subject to pro-
cessing, which aims to detect more complex information about events.

node is increasing then complex event should be created stating that this node is accepting data
to store.

3.1.2. Event sources

Event sources (also called emitters - see [39]) are those elements of CEP environment that
produce simple, atom events. The products of event sources come directly into event cloud and
are subject to processing.

Examples of event sources include:

• physical sensors, such as RFID sensors [50], digital thermometers, photo-cells, infrared
sensors, battery capacity sensor

• software sensors, like CPU system/user/idle time, disk capacity

Emitters are by definition distributed over the environmentthey are installed in (i.e. men-
tioned photo-cells or RFID sensors). This fact makes CEP perfect solution for distributed sys-
tems. Event sources may be installed on separate machines ordevices. Their architecture does
not have to be known by the event processing engine or third parties interested in receiving
events as the only thing one should care about is the format ofevent objects. According to [20]
CEP has already become a paradigm for development of distributed applications.

3.2. CEP applications

Despite being a quite new idea CEP has already been applied in many systems that work
in various fields of economy and industry. Below are some examples of successful CEP appli-
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cations. They show that this concept is not only a mere subject of scientific studies but also a
working, mature solution that proves useful in real-life, deployed systems.

3.2.1. CEP and business processes

Business processes are event driven by definition. Certain events, such as creating an ac-
count, paying check, withdrawal etc. cause business process to transit to other state and trigger
other events. In economy it is often important to discover specific patterns in those events. Mar-
ket rate changes is a good example. This is where a problem emerges as there may be thousands
of events per second coming from many different sources in different locations. Business pro-
cess based architectures have not been designed to cope withsuch tasks. This is where CEP
becomes useful. According to [38] CEP has already been applied to Business Process Manage-
ment based systems. Authors mentionfront running1 detection or monitoring loan processes as
real-life CEP use cases. Another example, fraud detection, is presented in [41].

3.2.2. Industry

Industry has been vastly computerized over the last few decades. Production lines are man-
aged by computers connected by specified network fabrics. The management itself can be
viewed as exchange of events between computers and robots taking part in production pro-
cess. An event may cause transition to another state of production line, contain statistical data
or indicate an error.

For fabrication line management it is crucial to know what, where and why something is
happening all the time. In case of failure, knowledge about what caused it is crucial for re-
covering from it. Analyzing the situation is hard as all of produced events come from various
elements of complex system.

Using CEP to detect causality or hierarchy between events could solve the problem. Indeed,
[37] gives an example of complex event processing used in silicon chip fabrication line. Ac-
cording to this paper, such lines "consist of several hundredcomputers communicating across a
middleware layer". Event causality detection and hierarchydefinitions are presented. All these
strongly support the thesis that CEP can be successfully applied in industry.

3.3. CEP attributes in monitoring

Previous points proved that CEP can be used in different fieldssuch as economy and in-
dustry. This section covers the problem of applying CEP to monitoring purposes in distributed
applications. In other words, it shows what benefits may be derived from applying it to dis-
tributed environment monitoring systems. To answer this, CEP main features and attributes are
discussed in scope of this particular field.

3.3.1. Simple and complex metrics

As mentioned in 1.3.2, monitoring infrastructure should beable to handle varied metrics
granularity. In fact, each layer in distributed system (see3.3.2) produces event with different
range of information, data and semantics. For example, an application middleware layer may

1illegal practice of a stock broker
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send events regarding state of whole transactions while persistence layer may inform about
specific requests to database that are part of more complex operations.

In most cases data and granularity of metrics is fixed for eachlayer or element of distributed
system and cannot be changed on demand. This is a problem because of two reasons:

• consumer may want to receive metrics with different granularity than given layer offers.
For example, one could wish to receive information on how many select statements have
been issued to DBMS within the last 2 days, while the DBMS provides information only
about single statements (no counting operation available).

• consumer may wish to receive metrics that no layer or elementof distributed environment
offers but can be obtained as a product of existing ones. For example, one may wish to
obtain data about average usage of all processors within some arbitrary time period.

The first of mentioned problems could be solved by adding appropriate aggregate types (for
example sums, counting, maximum) for all event types that each distributed system element
produces. However, such approach has one serious drawback.It may lead to enormous increase
in number of event types that are present in monitoring environment. The second problem is
really a problem of defining new event types on demand. In thiscase new event types exist only
for the sake of single request that they are concerned with. When this request is outdated, they
are no longer needed. In fact, the first of mentioned issues may be seen as special case of this
one.

Both of these problems may be solved by CEP’s ability to create complex events. In this case
every event source would have a set of well defined event typesassigned. Each event should be
simple, namely it would be fine grained and indivisible. Thisway CEP event processor could
construct virtually any kind of event from simple events, satisfying consumer’s requests.

One may argue that consumer could just request all kinds of events that can be provided and
extract data from them after they are received. This solution yields another problem, which is
discussed in 3.3.4.

3.3.2. Event correlation

It is well known that contemporary distributed systems consist of at least several different
layers. Each layer has well defined interface and responsibilities. They don’t know anything but
the interface of layers they directly communicate with. An OSI-ISO network layer model is a
good example here. Physics layer communicates with link layer to receive data to be sent over
physical connection and to pass received data.

Each layer may trigger events. Those may indicate errors or contain status and health in-
formation. Very often those events occur because some otherevents occurred in one of lower
layers. For example, errors in TCP packets may be caused by faulty physical layer. However,
in most cases none of these events contain any kind of information about what caused them.
To make the matters even more complicated, a kind of layer hierarchy may be perceived. For
example, almost every application working in application layer of the OSI model has an inter-
nal layer architecture. Persistence, middleware layer, presentation, client come to mind. Again,
each of those may trigger events indicating errors or ordinary special actions (such as writing
data to database).

Most monitoring infrastructures only collect data from those events. They are stored in
databases or in log files. These kinds of representations areflat, without any information about
event hierarchy or causality. To make the matters worse, different event types are usually kept in
different ways. Application events may be stored in log files, database events may be in database
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and network and transport layer events may be stored in routers and servers. This makes it
virtually impossible to detect any kind of causality between different levels of abstraction which
is essential in diagnosing errors and recovering from them.

CEP’s event cloud concept may be useful here. If all events from all layers and sources
where put into one bucket, detecting any relationships between them would be a lot easier.
Of course, event cloud does not have to be physically one entity. It may be distributed over
network nodes, servers, routers and applications. The mainpoint is to be able to view all the
events globally, regardless of their type or source.

Just creating an event cloud is just a part of success. Some kind of way of detecting rela-
tionships between events is still needed. As mentioned beforehand (see 3.1.1, CEP technology
does this out-of-the-box.

3.3.3. On-line processing

One of the main problems of research described in this Thesisis on-line processing of
monitoring data. CEP technology can be a powerful tool to solve this issue. In fact, CEP engines
process events in on-line manner by nature. Each message that arrives to a processing engine is
processed right away. Because usually events are small portions of data, the whole operations
takes very short time and next message can be handled.

Moreover, CEP often relies on temporal properties of events,such as creation time. There-
fore, the processing of single event cannot take long. If it did, the time-related property values
would be outdated when data leaves the engine. As a result, existing implementations of CEP
are very efficient.

3.3.4. Data reduction

In 1.3.7 it has been stated that monitoring infrastructure should influence the measured ob-
ject as little as possible. This is especially hard when it comes to network bandwidth. The more
accurate and fine grained monitoring metrics are the more bandwidth they use as a lot of sim-
ple events have to be sent frequently. Similarly, reducing bandwidth overhead usually entails
receiving less accurate and up-to-date data.

This problem is not very significant when dealing with one consumer. However, when deal-
ing with more consumers (tens or hundreds, each requesting its own set of events) or with one
consumer but requesting a lot of frequent events it becomes noticeable. It is worth pointing out
that even infrequent events but arriving in large bursts canbe harmful as they cause peaks in
bandwidth utilization.

Existing monitoring systems usually deal with this problemby decreasing frequency of sent
data. For example, Ganglia (2.2) provides aggregated values over arbitrary past period. In most
situations this is sufficient.

However, in at least two cases consumer can get all data, without any restrictions on granu-
larity and without noticeable network load. These are the following situations:

• sometimes consumer would like to get some little portion of data on one single resource
instance. Specific CPU user time may be an example here. In suchcases amount of data
transfered over network link is very small (in fact, sendingCPU user time is sending one
32-bit integer number). Therefore, all required data can besent, without any aggregations
of limitations
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• consumer may be interested only in filtered events. That is, only events with particular
values are relevant. For example, one may want to get only information about those CPU’s
which have been extensively used (user time above 0.8). Number of events that meet
desired criteria may be so small that sending them all over the network would not be
sensible in terms of bandwidth utilization. In fact, filtering may reduce this case to the
above one as only few resources may comply with filter.

The first case is simple: all monitoring data should be sent. Actually, CEP can be helpful
here with its flexible approach to event types (see 3.3.1).

The second one is a bit more tricky. Usually, in existing monitoring infrastructures monitor-
ing data filtering is done on the receiving end (R-GMA [21] is anexception here as consumer
may specify its request using SQL language). Therefore, producers may send a lot of events
that will be discarded by consumer right away and in fact pollute network with needless data.

Applying CEP in proper way to handle event filtering may solve this problem. Filtering
itself is done by applying event patterns. Unfortunately, just applying any CEP implementation
will not get rid of too much monitoring data in network. The point is to make CEP filter events
as close to their source as possible.

One may consider a simple example: a producer is connected through network link to con-
sumer. Producer wants to receive only those events that concern first of two installed CPUs and
have user time value greater than 0.7. A CEP implementation may behave in two ways in terms
of pattern recognition:

• filter and recognize complex events in producer and then sendthem to consumer

• filter at consumer’s machine, just before the consumer receives data

In both cases results are equal from consumer’s point of view: CEP properly filters and
finds patterns in events. However, in terms of bandwidth utilization efficiency first solution is
clearly better. Therefore, well configured and appropriateCEP implementation may be useful
in reducing network links load. More information on this topic can be found in chapter 5.

Such case when data is filtered at source and reduced amount ofit is sent over the network
will be calleddata reductionin further part of this document.

3.4. Conclusion

Complex Event Processing concept appears to be very interesting solution for event-oriented
applications. In fact, it has been designed for such solutions. However, many of its features
and aspects described before seem to be useful in monitoringapplications as well. Therefore,
further part of this paper will discuss the problem of applying this technology to monitoring
infrastructure in a way that supports efficient monitoring data processing and delivery.
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4. Resource handling

The main subject of monitoring of any distributed application are resources. Their nature,
characteristics, properties, identification etc. can be very diverse, depending on many factors
such as operating system, vendor, family and so on.

In order for monitoring infrastructure to fulfill its tasks it has to work on all of these varied
resource types and create unified view of them [9]. If each resource type was described or
identified by different means (such as XML files, plain text files, operating system registry
entries etc.) it would be very hard for humans to issue any kinds of requests for monitoring data
about those resources and virtually impossible for computers to analyze it.

In general, as far as resources are concerned monitoring infrastructure has to perform all
following actions:

1. discover – detect existing resources in system that monitoring infrastructure is working
in.

2. describe – create uniform view on all discovered resources, presenting their capabili-
ties, properties and characteristics. In other words, monitoring infrastructure has to create
some kind of abstraction layer over native resource representation to unify any differences
in it.

3. publish – send information about resources to other systems or users

This chapter covers the last two points of this list. Resourcediscovery is very system specific
and hard to describe in general. It is presented more thoroughly in 6.8. Moreover, a problem of
uniform, consistent resource identification in distributed environment is discussed. Among other
things, its connection with CEP in monitoring is given.

One of the purposes of this chapter is to present decisions that have been made regarding
resource identification, registering and event mapping that have been made during research.
This information is very helpful to understand further chapters.

4.1. Resource examples

Following sections refer to several resources as examples.In order to clarify any inaccura-
cies and avoid misunderstandings below is list of them with short description.

• CPU - Central processing unit (or processor) - hardware element that carries out instruc-
tions. Most modern CPUs may have several cores. Similarly, each distributed system node
may be equipped with several CPUs

• network link - single network connection between two nodes (hosts). Usually is bidirec-
tional (full duplex). May be dynamic in terms of routing (different paths) and therefore
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involved network standards (Ethernet, FDDI) provided thatthe two hosts remain mutually
accessible

• Hard disk drive - hardware device for storing data.

• Process- instance of computer program being executed. A process maybe in several
different states. In most cases it’s executed in environment provided by operating system

4.2. Resource description

As aforesaid, each resource that monitoring infrastructure can probe may have different
type, behavior and description. Resources description means defining these properties for each
resource instance.

This section presents set of identified aspects of resource description and examples of ways
of handling them. It is focused on describing resources in monitoring applications and is by no
means complete in general.

4.2.1. Hierarchy of resources

Having a set of unordered, not systematized resources wouldbe very disadvantageous. Op-
erations such as identifying (consumer wants to have information about specific CPU) and
searching (consumer wants to have information about all hard drives) would be very slow when
performed on such "bag" of elements. Therefore some kind of resource systematization is re-
quired.

A solution to this problem proposed in this paper and referred to in further sections is a
resource hierarchy. An example of such systematization is shown in figure 4.1. Hierarchy is
built based on a "belongs to" relation between resources. In figure 4.1 it is shown with arrows.
Thus, a CPU resource belongs to particular Host, Process belongs to Operating system it is
being executed in and so on. One may say that Host is parent of given process instance and
Operating System is parent of specific Process instance.

Such systematization has number of advantages:

• simplicity; it is easy to establish a "belongs to" relation between resources. In fact, very
rarely this relation will span between several machines (clusters, distributed operating
systems and network links come to mind as examples of resources that concern multiple
nodes). Most resources will belong to resource on same machine. This reduces the amount
information that has to be exchanged between nodes in distributed system in order to
establish discussed relationship.

• greatly helps in identifying resources (see 4.3.5)

• enhances construction of requests to monitoring system. Querying all CPUs of given host
or all cores of given CPU is natural in this structure. In fact,resources can be viewed on
many levels of abstraction (single cluster, single host, single cpu).

However, this solution also has some serious drawbacks:

• structure is incoherent. This is caused by the fact that the "belongs to" relation is not
coherent. Some resources do not have parents. in figure 4.1Network link resource is
"dangling". It cannot be assigned to one single host as it refers to two hosts. On the other
hand host cannot be assigned to one network link as it may be connected to many of them
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Figure 4.1: Example resource hierarchy. The arrows represent a "belongs to" relation between
resource instaces. In this case, a given CPU belongs to a host it is installed on while the file
system belongs to an operating system it is working in. A Network link is "dangling" because
it does not belong to single instance of any other resource.

• the "belongs to" relation is ambiguous. Sensibility of relations presented in figure 4.1
can be easily undermined. For example, in case of distributed operating system it cannot
belong to one single host (rather hosts should belong to thisoperating system). Simi-
larly, hard drive does not always belong to a matrix and may beconnected directly to the
mainboard.

While first of mentioned disadvantages is not critical, the other one is rather serious. As-
suming that relationships between resources are created when the resources are discovered by
sensors (producers) there is a danger of incoherence between created hierarchies. One producer
may decide that process should belong to operating system while other that user should be an
owner. As a result monitoring environment may end up with tworesource instances of same type
(see 4.2.3) that are located in very different locations in hierarchy. Therefore, when applying
this solution great care should be taken to ensure relationship conformity.

Regardless of mentioned drawbacks hierarchy as a way of systematizing resources will be
used in further research as it proved to be useful in other aspects.

4.2.2. Nature of resources

Each resource may behave differently in terms of lifetime, frequency of state changes [34]
etc. These attributes, being very abstract and fluid, usually cannot be included in properties.
Such set of attributes of a resource that cannot be describedin systematized way will be called
nature of the resource.

Nature may compromise many aspects of a resource. Here are some examples:
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• physical (mainly hardware) or virtual (mainly software - processes, operating systems,
applications)

• lifetime length - is it permanent (always present in environment) or transient (appears and
disappear frequently from environment). For example, processes are created and killed
very frequently compared to CPU’s or hard disks which do not disappear very often from
environment

• there are kinds of resources that may be calledphantom. Their main attribute is that
they can not be discovered in advance. Network link may be an example. Discovering all
network links in environment that monitoring infrastructure works in would be very hard
therefore although they exists they cannot be kept in any kind of registry.1

Although nature cannot be described explicitly, it’s knowledge is crucial for monitoring
infrastructure to successfully serve it’s purpose. For example, it is very obvious that all resources
that have long lifetime should be kept in some kind of registry. CPUs, hard drives etc. can be
rather easily discovered and information about them storedin one place. Such registry is useful
for handling requests as monitoring system can detect whichresources they concern and decide
which locations system shouldquery for specific data. Moreover, having a registry of resources
would enable data consumer to have an overview of all elements of distributed system that it
can gain information about and therefore avoid situations when it has to send requests "blindly".

However, problems appear when dealing with short-lifetimeresources, such as jobs [13].
Adding them to registry every time they appear in system and removing them each time they
disappear would be very inefficient. For example, in typicalmulti-user operating systems several
process start or die every second. This is true even more whenit comes to threads. Moreover,
short intervals between resource appearing and disappearing may cause any request regarding
it invalid in the moment it comes to the producer. A followingexample may be considered:
monitoring infrastructure detects that a process has started. It publishes it to all consumers. One
of them, seeing it decides that it want’s to know current processor usage of this process and
sends proper request to producer. Meanwhile however considered process ends and producer
receives request that regards non-existent resource.

When dealing with short-lifetime resources monitoring system can behave in one of a few
ways:

• use minimum retention time: keep every resource in registryfor some specified mini-
mum time period. If resource disappears before this time expires, keep it anyway (with
some kind of "done" status) and remove it after that time. Somekind of information that
resource is expired is required here.

• treat such resources asphantomresources (see below). In this case resources are neither
kept in registry nor they are published

Handling mentioned beforephantomresources also poses a problem. If they cannot be dis-
covered how can they be probed? Moreover, how can requests regarding them be handled? One
of possible solutions is to treat them as on-demand resources. That is, they are discovered and
created when requests regarding them arrives to producer. Referring to mentioned example of
network link, producer may try to discover it only when consumer specifies request for par-
ticular resource. Since request contains unambiguous identification of resource (or it should

1One may argue that discovering existing network topology inadvance is possible. In fact, some solutions for
this problem exist, such as [35]. However, in order to work efficiently they require support from data-link and
network layers which is not always available. Therefore, for this paper network links will be considered phantom.
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as consumer want’s to have information about particular element) it is easy to discover that
specific instance of network link. An obvious drawback of that solution is that consumer has to
know that given resource really exists. In case of faulty request referring to non-existent element
producer should return error message.

If nature of given resource is known in advance during systemdesign and implementation
then adapting it to handle specific behaviors of this resource is quite easy. However, when
system is to handle unknown types of resources or it is known that new types of resources will
appear in system after it has been designed and deployed thenit has to detect the nature of
resources.

Detecting short-lifetime resources is not very difficult. System may observe the frequency
of their appearance and disappearance from environment. Ifit is above arbitrary value then
software may decide that given resource type should be treated as transient.

Specifying which resources arephantomis virtually impossible during runtime. The deci-
sion would have to be made at the moment they are discovered, without any previous infor-
mation about their nature. Therefore, such resources should be identified during design and
implementation. However, if monitoring system is modular and have special modules for gath-
ering data for each resource type, these can decide whether resource isphantom. This way
whole system can be adapted by simply adding new modules.

4.2.3. Resource type

Among all resources existing in distributed environment itis possible to distinguish specific
classes or types (CPU, Hard drive, Host). These types specifies how resources are treated by
monitoring system. In fact, they are very similar to object classes in object oriented program-
ming: they describe in general resource capabilities and sets of properties. In other words they
systematize and categorize resource instances in additionto hierarchy mentioned in 4.2.1.

In general, resource type help to:

• define how resource should be handled by monitoring system; in particular, it may specify
resource nature (see 4.2.2)

• characterize resource in terms of properties (see 4.2.4). That is, each resource type has
specific set of those

• specify event types that are suitable for given resource (see 4.4)

• identify resource instances in set of resources. Specifying resource type when trying to
refer to particular instance greatly reduces amount of objects that have to be searched.
For example, when trying to refer to single CPU in whole distributed environment with-
out passing type (CPU in this case) would make monitoring system search through all
discovered resources. That would be inefficient, to say the least.

Implementing resource typing is very easy. Almost always there are some kinds of "probing
ends" that specialize in gathering data on specific resourcetype. As a matter of fact, it is hard
to imagine monitoring system without any kind of resource classification.

4.2.4. Properties

One of elements of resource description are properties. Their main function is to provide
consumers or any client of monitoring infrastructure information about resource state and capa-
bilities. Table 4.1 contains examples of resource properties.
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As stated in 4.2.3 a set of properties is defined by resource type. The types specify names
and optionally data type of property. For example, CPU times (user/system/idle) may be written
as real numbers (value from 0.0 to 1.0) or in percents (0% to 100%). Resource instance itself
has specific values of all properties assigned.

Two types of properties can be distinguished in terms of their value dynamics in time:

• static properties are those, whose values do not change during resource lifetime. They are
assigned when resource is detected by monitoring system.

• dynamic properties values change over time. Their actual values have to be measured
periodically by monitoring system. In fact, these are object of concern of monitoring
infrastructures. Their value affect actual distributed system state.

Thestaticcolumn in table 4.1 defines which properties are static.
Identifying static properties is very important for monitoring infrastructure efficiency. Such

properties do not have to be probed and sent over the network as frequently as dynamic ones.
Moreover, they can be held with associated resources in somekind of registry. Consumer could
send a request to this registry for values of static properties it wants to know. This way the whole
probing and measuring infrastructure would not be burdenedwith resolving such queries.

It is also possible to define a hierarchy in resource properties. In [36] authors proposed a
classification of metrics for network based resources. In fact, if one analyzes properties of net-
work link in table 4.1 a hierarchy is quite clearly visible: there are three subtypes ofbandwidth
property (maximum, available, utilized) and two subtypes ofloss(one-way androundtrip). Such
classification has following advantages:

• it makes it easier to send more specific request for monitoring data. Consumer may spec-
ify that it wants to receive whole bandwidth information or just one type of it (say, avail-
able). It may reduce probing overhead as only requested datawould be extracted

• simplifies human-perspective on properties. Tree views with collapse and expand func-
tions would be very suitable here

• simplifies adding new property subtypes; such modification could remain transparent for
all consumers that rely only on super-property

Resource type Property name Static Description

CPU
vendor X Name or ID or processor vendor

frequency X Maximum frequency this processor
can work with

working frequency ✗ frequency this CPU is currently work-
ing with. Modern CPUs can often
change efficient frequency to save
power.

user time ✗ % of time that CPU spent in user tasks
idle time ✗ % of time that CPU was idle
system time ✗ % of time that CPU spent in system

tasks (such as IO)
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Resource type Property name Static Description
Hard Disk Drive vendor X name or id of hard disk vendor

rpm X maximum speed that this disk can ro-
tate at

capacity X maximum capacity (in bytes)
space occupied ✗ number of bytes utilized on disk (in

bytes)
cluster no. X number of clusters

Process PID X process id
command X command that invoked the process
working directory X full path to working directory of the

process
memory usage ✗ number of bytes of memory this pro-

cess allocated
CPU usage ✗ % of overall CPU time this process

used
threads ✗ list of threads that have been started

by given process
user X ID of user that executed given process
parent X PID of parent process

Network link hop number X number of servers/routers that on the
way between terminal nodes

maximum bandwidth X maximum achievable speed on this
link

available bandwidth ✗ bandwidth that is achievable consider-
ing current network load

utilized bandwidth ✗ bandwidth that is currently used by
any traffic on this link

loss one-way ✗ % of packets lost in one direction
(sender to receiver)

loss round-trip ✗ % of packets lost in communication
sender- receiver- sender

MTU X maximum transmission unit; largest
protocol data unit that link layer can
handle

Table 4.1: Properties for example resources

4.3. Resource identification
One of the main functions of monitoring system is answering to requests for data on given

resource. In general, any consumer has to be able to select single CPU from hundreds or thou-
sands scattered across network. In order to meet this requirement, system must be able to iden-
tify which resource exactly the request concerns.

Identifying resource in distributed, heterogeneous environment is not a trivial thing. One
must overcome several problems. These are discussed in 4.3.1.

The main subject of this section is to propose an identification system for resources on grid
environment with additional emphasis on its cooperation with Complex Event Processing. This
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proposal is supposed to solve problems mentioned in 4.3.1 and meet requirements specified in
4.3.2.

4.3.1. Problems

It is true that resource are already identified somehow by operating systems. They may be
callednative identifiers. For example, UNIX family systems assign numbers to CPUs, IDs to
processes, special files to hard drives etc. However, these identifiers remain unique only within
scope of single machine that given OS operates on. Almost every UNIX machine has hard
disk drive identified as/dev/sda. Therefore, this "native" identification does not work in
environment that consists of more that one UNIX machine.

Moreover, different operating systems identify resourcesthat they manage in different ways.
Windows using capital letter to designate disks and partitions compared to block devices and
directories UNIX is a good example here. These kinds of differences of "native" identifiers
renders them inefficient in heterogeneous environment suchas grid networks.

Finally, some resources don’t even have theirnative identifiers. Network links, clusters of
nodes, cpu cores are usually the case. Still, they can be subject of monitoring requests and need
to be specified somehow.

Clearly, mentioned problems cause a need for additional, unified identification system to
emerge.

4.3.2. Requirements for proper identification

Heterogeneous and distributed nature of grid networks impose several requirements on re-
source identification system. They are named and discussed below.

• unambiguity – resources have to be identified uniquely within scope of whole grid net-
work. That is, if they are to have an id assigned, it should be unique in whole environment.

• extensibility – identification system has to be able to handle new types of resources that
may appear in monitored environment. This is somewhat a derivative of monitoring sys-
tem requirements described in 1.3.5.

• versatility – any type or resource must be able to be designated by considered identifi-
cation system. A situation, where a special identifiers haveto be assigned to some small
group of peculiar resources is unacceptable as it would leadto needless complication and
confusion.

• human readability – while this is not a critical feature, human readable resource identifi-
cation could help in satisfying the requirement discussed in Section 1.3.4. In fact, many
native identifiers are understood by humans (drive letters in Windows, block device names
in UNIX, host names)

First of mentioned requirements is crucial. Failing to meetit makes the whole identification
idea pointless.

4.3.3. Possible solutions

Taking into account the requirements mentioned in 4.3.2 several solutions can be proposed:
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• user numerical ids: this is very similar to artificial primary keys in relational databases.
Each resource can have a unique number assigned. Clearly, this solution meets all of
requirements named in 4.3.2.

• use native identifiers. The problem of ambiguity of native ids can be overcome by as-
signing a unique prefix that comes from host. It may be host’s IP address or name. For
example, one could specify a/dev/sda2 drive by192.168.5.43./dev/sda2.

• identify by static properties. In this case, consumer specifies values of properties that de-
sired resource should match. For example, a request may contain vendor property with
value "Intel", frequency with value "2 GHZ" and number of cores equal to 2. Monitor-
ing system shoud match all CPUs that are made by Intel, have 2 cores and work with
maximum frequency of 2 GHz.

First solution is very good in terms of meeting mentioned requirements. Numbers are uni-
versal and can be used with any type of resource. Moreover, using GUID (Globally Unique
Identifier) would make it easy to assign unique IDs. However,the fact that the numbers are
hardly human-readable (especially GUIDs) makes this solution less attractive.

When it comes to the second one, it creates unique IDs at relatively low price. Unfortunately,
it cannot handle resources that have no native identifiers.

The last one is quite promising. It successfully solves the problem of extensibility and han-
dling any resource type by using properties that are assigned to all kinds of resources. However,
addressing by properties is usually not unique. There may beseveral instances of resource with
same property values. It may be hard to find such a set of them that would uniquely define
an element that consumer is interested in. Moreover, in order to use this kind of identifica-
tion consumer must know all static property in advance to construct proper query. Therefore,
it would have to obtain data about all existing resources in monitoring environment, resulting
in big amounts of data being sent over the network. Finally, comparing set of properties can be
takes longer than simply comparing an id. This is especiallytrue when hierarchical properties
are involved. In spite of a number of drawbacks this proposition may be an interesting addition
to primary identification.

Apparently, none of mentioned solutions is satisfying enough. Therefore, another identifi-
cation system was designed. It is described and discussed in4.3.5.

4.3.4. Connection with CEP

Chapter 3 discussed the general possibility of applying CEP for monitoring purposes. One
of conditions that have to be met is that resources are identified in uniform, consistent way. This
can be justified by a number of facts.

Each simple event in CEP-based monitoring infrastructure concerns one single resource in-
stance. All these events are to be put into one common event cloud. As mentioned before, within
this cloud various operations can be performed. Most important ones from the perspective of
this paragraph are correlations. If each of these events, staying in common event cloud, referred
to resource it concerns in a different way (for example, events produced by hosts operating on
Windows had references to disks noted with capital letters while UNIX-based hosts used mount
directories) finding a correlation within them would be veryhard (referring to given example,
correlating all events that regard system partition would be difficult).

Moreover, because all the events "live" in same space name, without unique identification
conflicts may occur. For example, on each machine CPUs are uniquely marked with integer

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



4.3. Resource identification 33

Resource type Discriminator Example
Process PID 34434
CPU Cpu Number 1
Disk drive or partition name of device in operating

system
C: for Windows,
/dev/sda5for Unix

Host IP Address 192.168.2.39
Network link (between two
nodes)

ip addresses of two ends 192.168.2.69-192.168.5.33

Table 4.2: Discriminators for example resources

number. However, in aforesaid event cloud these numbers areno longer unique. Without any
change in identification, this cloud would contain more thanone event referring to CPU number
1 causing incorrect correlations.

Unique and uniform identification systems is also importantfor following reasons:

• it creates a common "resource space" that correspond very well to event cloud. All re-
sources can be thrown into one "bag" and still can be identified. Moreover, client may
search for resources within this "bag".

• filtering operations on events are easier. Client could specify that it wants to receive data
on events referring to particular id

• it makes data reduction more effective (see 5.6 and 5.4).

Therefore, a unique and uniform identification is essentialfor monitoring systems based on
CEP approach.

4.3.5. Identification proposition

Proposed identification system takes advantage of hierarchy resource systematization de-
scribed in 4.2.1. The main idea is that the whole resource context ordered in hierarchy can be
viewed as forest data structure (set of trees). Identifyingsingle node in such structure is nothing
more than specifying a path from tree root to desired node.

Figure 4.2 presents an example of contents of resource registry. There are two hosts, each
equipped with two CPUs. CPUs of the first one have two cores, while the other’s are simple,
one-core processors.

In order to point to second core of the first CPU of first host one may specify a path:

host → cpu → core

However, such path is unambiguous. There’s no information about which host and which
CPU instance it concerns.

In order to point to specific instances within single resource type (in this case given host
among presented pair of hosts, or single CPU within given host) native identification can be
used. Native identifiers that are used to discriminate resource instances among children of same
parent will be calleddiscriminators. If no such identifier is available (ref. 4.3.1, artificial dis-
criminator can be created. Table 4.2 contains discriminators for some example resources.

After adding discriminators the considered path in resource tree has following form:

host[192.168.2.31] → cpu[1] → core[2]
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Figure 4.2: Example resource registry content. There are two Host type resource instances with
CPU resources assigned to those nodes that they are installedon. Resources of same type can
be identified by their native identification. In this case, itis an IP address for hosts and number
for CPUs.

This time the identifier is unambiguous and uniquely points to desired resource instance.
In general, resource id can be build with following algorithm:

1. determine the root of tree that considered resource instance belongs to. Attach its type
and proper discriminator to the beginning of the path

2. go down the selected tree to selected resource instance and attach each intermediate re-
source’s type and discriminator

It can be shown that presented identification system meets requirements mentioned in 4.3.2.
First of all, it is unambiguous, provided that both relations in resource hierarchy and root of
the tree can be determined uniquely. Versatility comes fromthe fact every resource have type
and discriminators can be created easily for any kind of resource (in extreme situations plain
number may be assigned). Therefore, there are no problems increating single path node for any
kind of resource. Moreover, new resource types can be handled added by just specifying their
type and discriminator. Finally, identifiers created in this way are quite well readable.

This solution also has some special advantages:

• unambiguity is obtained at relatively low price. Virtuallyno data has to be exchanged
between distributed producers. This is achieved by taking advantage of native identifiers
which are already unique at given scope. IP addresses that discriminate hosts are a great
example here.

• hierarchical nature of identifier makes it easier to identify groups of resources and thus
make it easier to create certain types of requests. For example, specification of all CPUs
of given host could have following format:

host[192.168.2.31] → cpu[∗]

where∗ meansany. However, to take advantage of this possibility additionalproblems
should be solved when it comes to event manipulation in Complex Event Processing.
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The identification system that is presented in this section is used in further research. Due
to technical reasons, such as event marshalling and parsing, different notation is applied with
dots instead of arrows. Therefore, in further part of this document resource IDs will be written
similarly to the following example:

host[192.168.2.31].cpu[1].core[2]

4.4. Resource to event mapping

When considering resources in monitoring system that uses Complex Event Processing one
more problem has to be discussed: how they should be viewed interms of their relation to
corresponding event messages. In other words, a question has to be asked whether there should
be exactly one event type assigned to one resource type or should this relation be more loose.

In fact, four different kinds of relationships between resources and event types can be dis-
tinguished:

• one-to-one: every resource type has exactly one type of event assigned.Preferably, this
event contains all information about resource, including static and dynamic properties.

• one-to-many: each resource may have a unique set of event types assigned.For example,
sensor that takes care of probing CPU may create messages containing only dynamic and
only static properties. Each event type is assigned to exactly one type of resource.

• many-to-many: same as one-to-many except that some event types may correspond to
more than one resource type. A message containing vendor information may be an exam-
ple as it can be applied to virtually any kind of resource.

• many-to-one: there is one single message format that carries information about any type
of resource

Depending on which of these four types of relationships is chosen consumers will per-
ceive particular resources differently. In case of one-to-one relation, there is no need to specify
desired message type in requests. In fact, in this case consumer sees resource quasi-directly,
without caring about message types. In following two solutions consumer specifies message
type it wants to receive rather than resource. Thus, messagecontent is decoupled from resource
properties. Moreover, both these relationship types make it possible to separate static properties
from dynamic ones by creating different message types for them. This, in turn makes it possible
to reduce network traffic as described in 4.2.4.

Last of mentioned relationship types requires a generic event message to be designed. Such
message would have to contain a list of property names with their values and datatypes for
proper interpretation. One of its advantages is fairly large size after serialization, as information
all mentioned information (names and datatypes) would haveto be sent.

From presented solutions many-to-many relationship has been chosen for further research
as it is simple in implementation while being versatile enough.
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Chapter 3 discussed the way that main concepts of CEP can be usedin monitoring infras-
tructures. However, the real usefulness of this technologyin such applications is closely related
to the implementation of the CEP idea. This chapter presents adistributed approach to CEP with
special emphasis on applying it in monitoring infrastructures for efficient, on-line operating.

First, the architecture of distributed CEP oriented system is presented with its advantages
and disadvantages. Secondly, the problems that have to be faced when designing such systems
are presented along with solution suggestions. Finally, the benefits of using this architecture are
mentioned.

5.1. EPL statements

Before any further research is presented, one must first become familiar with defining event
patterns in CEP. They are used to define complex events and can be specified as statements
in special language called Event Programming Language (or EPL). There are many dialects
of EPL depending on implementation of CEP. The research that is presented in this Thesis
uses Esper [4] CEP implementation. Therefore, Esper EPL dialect [3] will be referenced as an
example of EPL abilities and features. It is worth noting that these operations are not strictly
tied to EPL. They can be easily expressed in any other language.

This sections covers only a few aspects of EPL capabilities that are crucial to understand the
problem of distributed CEP that is discussed in this chapter.Full reference can be found in [3].
Reader should refer to it in case of any inconsistencies or vaguenesses in following text.

5.1.1. Event streams

EPL statements operate on data structures called event streams. Anevent streamis a named,
ordered, infinite sequence of single events of same type. Theorder in event stream is based on
event creation time. The older events (created earlier) arefirst in the stream. The infinity comes
from the fact that event sources (see 3.1.2) in most cases produce events continually, without
permanent breaks. The name of the stream is arbitrary, givenby system users or system itself.
It is used to distinguish event streams carrying the same event types but coming from different
sources.

An event stream may be created in one of two ways:

• in event sources, by producing given event type. In this case, all events of same type
automatically form single stream

• by applying event patterns and creating complex events. Complex events that are result
of event pattern form new event stream.
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Event streams may be joined, split or filtered. Stream joining means forming single event
stream from two or more other streams. Getting events containing process pid and command line
with information about user that invoked this process, provided separate events about processes
and users are generated, may be an example here.

Stream splitting is an oposite operation to join. It extracts information from one event stream
and forms two or more new ones. For example, two separete consumers may want to have
information about CPUs. However, one of them wishes to receive events about only one of
them while other one about all of them. Thus, two separate event streams have to created: one
containing event that concern only specific CPU and other containing all events.

Filtering streams involves rejecting events that do not satisfy some arbitrary condition. For
example, one may spacify that only events that have a given value greater than 10 should be
involved in further processing.

5.1.2. Sliding windows

Stream of events that arrives to CEP engine is by definition infinite. Performing any kind of
group operations on such data structure is impossible.

Sliding windows solve this problem by selecting a limited subset of incoming events. The
criteria by which events are put into windows can be divided into two categories.

• time-based- events are selected by the time of their creation (arrival to CEP engine).
For example, a window may contain only events from last 3 minutes. If at some point
any event turns out to be older than specified time period it isremoved. Simultaneously,
new events that have just arrived are put into window. Therefore, time window "slides"
through event steam with regard to time.

• size-based- windows that have limited event capacity. If window is fulland new event
arrives, the oldest of events is removed to make room for the new one. Thus, windows
slides with regard to size.

Each window can be additionally filtered by arbitrary condition. For example, one may want
to have only events from last 4 minutes that come from producer with given name.

5.1.3. Aggregation functions

Aggregation functions in EPL work in similar ways as in SQL applied in relational
databases. They are invoked on group of events. This group isusually specified by windows
(group is equal to all events in window). The result is a new complex event containing the
outcome of aggregation function.

Examples of such functions include:

• sum - returns sum of given field of group of events.

• average- arithmetic average of given property of group of events

• maximum value - returns largest of of values taken from specific property ofevent group

• element count- number of non-empty elements

In fact, the syntax and semantics in EPL of these functions isvery similar to their counter-
parts in SQL.
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5.1.4. Output control

EPL enables user to control the number of events that are generated by the statement at one
time and frequency of these outputs. For example, it is possible to specify that 1, 10 or any
arbitrary number of all accumulated events should be released each given time interval passes
(for example: 10 seconds, 2 hours etc.). This feature is provided by theoutput clause.

5.1.5. EPL examples

Below are some examples of EPL statements along with description of their results. They
may be useful to grasp the EPL syntax and semantics and understand some event pattern detec-
tion capabilities of CEP.

Statement
select avg(cpu.idleTime) from CpuInfo.win:time(2 sec)

Description Calculate average idleTime from CpuInfo messages from last 2 seconds

Statement
select max(cpu.idleTime) from CpuInfo.win:lengh(200)

Description Get maximum idleTime from last 200 CpuInfo messages

Statement
select avg(cpu.idleTime) from CpuInfo.win:time(2 sec)

Description Calculate average idleTime from CpuInfo messages from last 2 seconds

Statement
select avg(cpu.idleTime) from CpuInfo(userTime >

0.5).win:length(100)

Description

Calculate average idleTime from CpuInfo messages from last 2 seconds that
have userTime above 50%. It is worth pointing here that only those events
that meet this condition will be put into length window and occupy space in
it.

Statement
select avg(cpu.idleTime) from CpuInfo.win:time(4 sec) output

last every 2 seconds

Description
Calculate average idleTime over a time window of 4 seconds. Every 2 sec-
onds return the latest result.

5.2. System architecture

In 3.1 a general idea of CEP was presented. However, the concept of CEP can be imple-
mented in many ways, using different types of architectures.

The simplest and most corresponding to CEP idea is centralized architecture. An example
of such architecture is shown in figure 5.1.

The arrows in this figure represent event streams coming fromevent producers and from
CEP engine.

Event producers are implementation of event sources (see 3.1.2). They collect produce sin-
gle simple events and send them to one well known location calledmonitor .The event messages
themselves are usually sent over the network.
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Figure 5.1: Centralized approach to Complex Event Processing. All producers are sending
events to one single physical event cloud handled by one CEP engine. All consumers receive
complex events from the same engine.

In order to perform event processings, a monitor has a CEP engine installed. TheCEP
Engine is part of the system that deals with event pattern detectionin incoming events. This is a
heart of whole CEP-based application. It accepts EPL statements, compiles them and constructs
state automata (as far as Esper implementation is concerned) that are used to detect complex
events. Therefore, a CEP Engine consumes and aggregates simple events to produce complex
ones. Those are sent by the monitor to consumers. The detection and pattern matching are
performed in one place on all arriving events. In this mannerthe centralized CEP corresponds
to the general CEP idea very well. There is one single event cloud that contains all events that
exist in the environment and one Event Processing Engine that carries out all operations on
them. In other words, the centralized CEP architecture is a nearly direct implementation of
concept presented in figure 3.1.

The event consumers are applications that accept events produced by the CEP Engine. In
most cases they also specify event patterns, usually written in EPL, that they are interested in.
Event consumers do not have to know anything about producersor the way they are handled.
They only have to know the definitions of available event types in the system.

A typical scenario in centralized CEP architecture may look as follows:

1. all producers start sending events to CEP Engine. They workall the time, producing
events periodically and therefore creating streams

2. a consumer sends a request to the monitor in the form of an EPL statement, defining event
patterns it wants to have detected. The monitor passes the statement to its CEP engine

3. the CEP engine receives statement and starts detecting complex events in arriving event
streams. These events are then sent by the monitor to the consumer that sent the request
before

All operations regarding EPL compilation and event detection (in point 3) are provided by
CEP implementation. Therefore, when implementing centralized model of CEP, one has to deal
only with request protocols (from consumer to CEP engine) andevent transportation.

Unfortunately, presented solution has a number of disadvantages:

• one single central point makes this kind of architecture very vulnerable to breakdowns. If
monitor fails, the whole system will stop working
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• if there are many producers and many consumers the monitor may be significantly loaded
in terms of CPU and memory usage (event pattern detection and event storing for ag-
gregation purposes). Although most CEP implementations (including Esper) can handle
hundreds of thousands of events in one second, the communication interface (usually
network) and processes concerned with event serializationmay become a bottleneck.

• the network links between the monitor and event producers may be significantly loaded
as they carry all the simple events existing in system environment. It also makes data
reduction (see 3.3.4) impossible

These factors, especially the first an the last one, make discussed architecture less usable for
monitoring purposes. First of all, the monitoring infrastructure that is discussed in this Thesis
is supposed to work in grid environemnt which should be robust and accessible. Secondly, as
stated in 1.3.7 such system should affect the performance ofwhole network as little as possible.
Therefore, a different approach to CEP architecture should be taken.

In figure 5.2 an alternative architecture is presented. Instead of one single monitor and one
event cloud there is a number of them, connected together. The consumers still send their request
to and receive events from one monitor and view the whole system just as if it was centralized.
However, the mechanism of collecting simple events and handling event cloud is very different.

First of all, events created by producers do not come to final processing directly. They are
subjected to several intermediate processings carried by other CEP engines. Each CEP engine
operates on separate event cloud formed by events carried bystreams that are sent to this specific
engine. Similarly, each engine views arriving streams uniformly, regardless their source. In
other words, at stream receiving point it has no meaning whether it comes from CEP engine or
directly from event source. For example, in figure 5.2 engine1 receives three streams: directly
from producer D and two that are results of processing by engines 2 and 3. Similarly, each
intermediate engine sees engines that receive streams fromit as ordinar consumers that can
issue requests. For example, in figure 5.2 the engine 1 is viewed by engine 2 as consumer, in the
same way as engine 1 views consumer 1, 2 and 3. Therefore, if producers can accept requests
just like monitors, a communication uniformity exists and the actual complexity of architecture
is hidden from each monitor.

In order for this architecture to work, each EPL statement that is sent between intermiediate
CEP engines has to be properly related to a request that arrives from consumer to the front-end
CEP engine. These partial statements are constructed as a result of analyzing original one. In
addition to this, a new EPL statement is created that will be used to process incoming events.
Such process will be calledrequest distribution as it creates sub-statements that should be
distributed over other engines. It is extensively described in 5.3. The request distribution is
carried out in monitors.

Typical usage scenario, from issuing a request from consumer to receiving events by it, in
distributed architecture presented in figure 5.2, may look like this:

1. just as in centralized architecture, all producers send events to assigned CEP engine peri-
odically

2. consumer 1 issues a request that concerns events producedby producer Producer A, C
and D. Consumer does not have to know what types are produced bywhich sources. It
just has to know that those types exist in system

3. Engine 1 examines the request and realizes that it has to send sub-statements to engine 2,
3 and producer D.
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4. Engines 2 and 3 receive requests and both start sending events coming from producer A
and C accordingly

5. Engine 1 receives events from engines 2 and 3 and uses its assembly statement (see 5.3.1)
to construct a final result: events requested by consumer andsend them to this consumer

Obviously, this scenario is more complicated than the one incentralized architecture. There
are several steps of statement processing and additional process of request distribution. More-
over, some other problems have to be solved when implementing this solution. These are dis-
cussed in 5.5. However, by the price of complexity some important advantages can be obtained:

• there is no single central point. That means no point is extensively loaded with event pro-
cessing. Instead, the whole processing task is distributedobver a group of nodes. More-
over, failure of one CEP engine does not necessarily mean thatthe whole system must
stop. While the front-end monitor (monitor 1 in figure 5.2) is akind of single point of
communication between consumers and other monitors the system could be adapted to
its failure by implementing a fallback mechanism that wouldreroute all request issued
to this monitor to other ones. The implementation details ofsuch solution will not be
discussed in this work. Moreover, not all consumers will be always connected to same
monitor. As a result, failure of one front-end monitor does not mean detachment of all
consumers from monitoring service.

• scalability; by taking advantage of the communication uniforimity between monitors, pro-
ducers and consumers, any producers or consumer can be replaced by monitor. Therefore,
the area of network covered by monitoring infrastructure can be easily extended and per-
formance of event processing increased.

• data reduction support (see 3.3.4).

5.2.1. Nomenclature

Following sections of this chapter refer to some concepts concerning distributed CEP archi-
tecture. Below are their definitions:

• partial producer - a producer that from point of view of particular monitor creates events
that will be processed by an assembly statement. For example, in figure 5.2 in case of
monitor 1 partial producers are: monitor 2, monitor 3 and Producer D. Partial producers
will also be calleddirect producersas they are those producers that send events directly
to given monitor

• assembly monitor - monitor that is using an assembly statement to process incoming
events. Each partial producer has its assembly monitor which is the monitor it sends
its events to. In figure 5.2 monitor 1 is assembly monitor for monitor 2, monitor 3 and
producer D, while monitor 2 is assembly for producer A and B.

• front-end monitor - monitor that receives requests directly from consumers. The con-
sumers see the whole CEP-based monitoring infrastructure asit was only this one moni-
tor. In other words, front monitor hides the complexity of monitoring infrastructure from
the consumer. A front monitor exists in context of given consumer. Thas its, a monitor
that serves this role for some client may be only intermediate one (on processing path)
for requests sent from some other consumer.
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Figure 5.2: Distributed approach to Complex Event Processing. The event cloud is distribtued
over multiple CEP engines. Each producer sends event to one designated event cloud. Results
of processing performed by one CEP engine may be an input for another one. Consumers may
receive events from arbitrary monitor.

• intermediate monitor - monitor that performs processing that is a part of resolving of
given request but is not a front-end monitor. In figure 5.2 monitor 2 and monitor 3 are
intermediate ones from the point of view of monitor 1 when resolving requests from any
of shown consumers.

5.3. EPL request distribution

As stated in 5.2, distributed CEP requires a process of analyzing EPL statements and di-
viding them into sub-statements. In this section this particular problem will be thoroughly dis-
cussed.

5.3.1. The problem

The main idea of request distribution is to detect parts of EPL statement that can be resolved
independently by different monitors (more specificly: separate CEP engines).

Figure 5.3 shows how request distribution process interacts with other parts of distrbuted
CEP architecture presented in 5.2. An EPL request sent from consumer is subjected to request
distribution process before it gets to CEP engine. This process creates two types of result. One
is an EPL statement calledassembly statementthat will be used by CEP engine to process
streams coming from producers. The other are partial requests that are to be sent to individual
monitors that should carry out sub-processing.

Below is an example of request distribution. First, the original statement that is sent from
consumer:

select avg(CpuInfo.userTime) as avgTime from CpuInfo;

The result of applying this statement in CEP engine would be anaverage user time of all
events containing data about CPUs existing in the environment that system is working in.
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Figure 5.3: A place of request distribution in distributed CEP. The statement received by Mon-
itor 0 is subject to distribution that is supposed to detect parts that can be delegated to other
monitors. The results of this process are partial statements that are sent to designated monitors
(those that should take part in resolving request) and an assembly statements that will be used
to process the results received from them.

The calculations of this average can be distributed over multiple monitors by first summing
the usertTime in intermediate CEP engines and calculating average of these sums in final mon-
itor. Therefore, the partial statements would be:

select sum(userTime) as s, count(userTime) as c from CpuInfo;

and the assembly statement:

select sum(s)/sum(c) as avgTime from
partialStream.win:length(numberOfPartialProviders);

The form of partial statement is obvious: it counts sum and number of given factors to make
it possible to calculate an average later. The assembly statement is more complex. It uses length
window to limit the number of events that aggregation functions are working on to equal to
number of direct providers of events (other monitors that perform partial processing). If there
was no limitation, the average would be calculated using invalid data set that could include too
many events or old events. In 5.3.2 specific patterns of distributions are discussed in details.

It is worth noting that presented assembly and original statements produce same type and
format of events (including name of parameters, in this caseavgTime). This is one of conditions
for a request distribution to work properly. In general, therequirements are:

• format of events that are result of assembly statement must match the format of events
that would be produced by plain original statement. This waytransparency of request
resolving from the consumer point of view is preserved

• the overall outcome of assembly statement must be same as of the original statement.
That is, the event sequence and content must be same as those of original statement being
processed in centralized architecture

Following parts cover the problem of statements distribution in more general way.

5.3.2. Distribution patterns

Not every EPL can be effectively distributed. For example, trivial statements can be consid-
ered, such as:

select * from CPUInfo;
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It simply requests every single event message concerning CPUs. There is no place where
the distribution could be performed. Obviously, in this case the intermediate monitors would be
simply passing all individual events, just as the assemblying monitor1.

In order for a statement to be suitable for request distribution, at least one of following
operations must be present in it:

• aggregate function - aggregating could be performed on intermediate monitor (closer to
the source of events) or distributed over multiple ones (just as in example in 5.3.1)

• time or length windows - windows can be partially filled on intermediate monitors

• grouping - thegroup byclause in EPL, discussed in next parts of this chapter

• filtering - the whereclause in EPL or stream filtering. Filtering can be placed as near
the origins of the events as possible to prevent unwanted messages being sent over the
network

Meeting the above requirement does not necessarily mean that a statement can be properly
distributed. The question whether given EPL statement can or cannot be beneficially broken
into sub-statements is an advanced problem. However, some general patterns of EPL statement
distribution can be identified. They are presented in table 5.1.

Every assembly statement refers toassemblyStream. This is the name of the stream that
is formed by events coming from producers as a result of processing partial statements.

No Request Distribution
1

select avg(value) as
[alias] from [stream];

Partial statements:

select sum(value) as s, count(value) as c
from [stream]

Assembly statement:

select sum(s)/sum(c) as [alias] from
assemblyStream.std:unique(producerSpec);

2

select count(value) as
[alias] from [stream];

Partial statements:

select count(value) as from [stream]

Assembly statement:

select sum(c) as [alias] from
assemblyStream.std:unique(producerSpec)

3

select max(value) as
[alias] from [stream];

Partial statements:

select max(value) as mx from [stream];

Assembly statement:

select max(mx) as [alias] from
assemblyStream.std:unique(producerSpec);

1While statements similar to presented one can not be distributed in sense presented in this work, the results
created by them can be buffered on intermediate monitors. Insome cases events arriving from multiple producers
may flood the monitor. Therefore, each monitor could normalize the flow of events by releasing only latest of them
with given frequency.
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No Request Distribution
4

select [groupAttribute],
aggregate(value) as
[alias] from [stream]
group by
[groupAttribute];

Partial statements:

select [groupAttribute], aggregate(value) as
[alias] from [stream] group by
[groupAttribute];

Assembly statement:

select [groupAttribute], [alias] from
assemblyStream;

5

select attribute as
[alias] from [stream]
output [quantity] every
[frequency]

Partial statements:

select attribute as [alias] from [stream]
output [quantity] every [frequency/n]

Assembly statement:

select attribute as [alias] from
assemblyStream output [quantity] every
[frequency];

6

select [aggregate] as
[alias] from
[stream].win:time([time
spec])

Partial statements:

same as partial for normal aggregate but over
time window with [time spec]

Assembly statement:

same as assembly for given aggregate

7

select [aggregate] as
[alias] from
[stream].win:length([length
spec])

Partial statements:

same as partial for normal aggregate but over
length window with length [length

spec]/producerCount

Assembly statement:

same as assembly for given aggregate

Table 5.1: EPL distribution patterns

Pattern 1 concerns statements that contain calculating an average of specific property of
incoming events. This mechanism is portrayed in figure 5.4. Each event contains sum (s) and
count (c) values calculated at partial producer and event producer specifier (P, each letter refers
to different producer) for reference purposes. When event arrives to assembly monitor, it is put
into anunique window (new events are marked with gray color), triggering computation of
total average. If there was nounique window, an effect of "double aggregation" would occur.
The assembly monitor would remember all received events andcalculate average from all events
sent so far. Because these event already contain aggregated "historical" values, the outcome
would be invalid. For example, without theunique window, the fourth event (second from
producer A) would be appended to the whole set. As a result, the average would be calculated
from all four partial events, where fourth event already contains all the information from the first
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Figure 5.4: Example of distributed average calculation using unique window. Gray events are
those that are updated by incoming ones. After each receivedevent an actual result is produced.
Each producer (on the left) aggregates its events on it’s ownand sends only aggregation results
to monitor. The overall outcome is computed using those partially aggregated values.

event (from producer A). When using this kind of distribution, some synchronization problems
that may occur. They are presented in 5.5.

In pattern 2 acount aggregation function is distributed. It is very simple: each intermediate
monitor counts its events and sends the outcome to an assembly monitor. There the outcomes
from each producer are summed to give final value. Again, theunique view is applied in the
assembly statement to prevent overlaying old and new data.

Pattern 3 covers themax aggregate function (themin function is analogous). It is distributed
by finding maximum of maximum values sent from other procucers/monitors. In other words,
each monitor calculates its own greatest value and sends it to its consumer. The assembly state-
ment usesunique window for the same reasons as inavg distribution.

The above three patterns show that each aggreate function has to be considered individually
in terms of request distribution. However, the general principle is the same: partial results are
aggregated and assemblied using theunique window.

A grouping operation is considered in pattern 4. This pattern is very architecture dependent.
If the group by attribute value is different for each producer, then the statement can be naturally
distributed over them. Simply, every monitor performs aggregation on events it produces. For
example, if the original statement was:

select hostname, avg(userTime) as avgTime from CpuInfo group by hostname

wherehostname attribute can be unambigously mapped to producer (one producer per host),
then the partial statement would be:

select hostname, avg(userTime) as avgTime from CpuInfo group by hostname

In fact, thegroup by clause is virtually obsolete here due to the fact that all events coming
from single producer would be in same group. However, it is required for the statements to be
compilable. The attributes that are outside any aggregation function (hostname here) has to
be in thegroup by clause, just as in SQL. The assembly statement is very simple:

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



5.3. EPL request distribution 47

Figure 5.5: Example of an event group to producer layout for the group by clause. Each producer
creates events that belong to one of two groups defined by theNo property (group by No; a
group corresponding to events with No value of 1 is marked with gray). As a result there are six
virtual producers (2 groups for each one of three physical producers).

select hostname, avgTime from assemblyStatement;

However, when thegroup by clause concers attributes that are cannot be directly con-
nected to individual producers, the distribution problem of such statement becomes complex.
The aggregation cannot be delegated as a whole to other monitors because they operate on
groups that are formed at the assembly monitor. Therefore, it must be distributed in the same
way as in previous patterns. The assembly should include grouping the incoming events in the
same way as the original statement would do it. However, whenconstructing assembly state-
ment it must be taken into account that the groups created by the EPL statement are split over
multiple physical producers. This problem is presented in figure 5.5. Events are grouped by
the No property. Therefore, there are two logical EPL groups (group 1 is marked with gray
color) divided between three producers. Each of them sees its part of group as a whole. That is,
producer A considers two events as a whole group 1 and one event as a group 2. For each of
these group aggregation is calculated separately. In the end, the "gray" results from producer A
must be combined with "gray" results from producer B and C. In order to handle the aggrega-
tion properly, the assembly monitor must perceive each group in producer as separate producer.
That is, considering the situation in figure 5.5 there are six"virtual" producers: white A, gray
A, white B, gray B, white C, gray C. For example, for original statement as follows:

select number, max(userTime) as mxTime from CpuInfo group by number

wherenumber is simply an integer identifying a CPU within single host (different CPUs on
different machines may have the same number), the partial statements would be:

select number, max(userTime) as mx from CpuInfo group by number

The assembly statement is following:

select number, max(mx) as mxTime from
CpuInfo.std:unique(producerSpec,number) group by number

The last statement, compared to plainmax function distribution was modified with addi-
tional parameter to theunique window. This parameter corresponds togroup by clause
arguments and causes theunique window to distinguish groups within producers. Presented
modification is valid only formax andmin operations. Again, each aggregation function must
be considered separately.

Statements in pattern 5 containsoutput clause. Distributing such requests has virtually
no benefits. However, theoutput clause often appears with other EPL constructions therefore
it is important to analyze it. In fact, distribution of theoutput clause is very simple. Both
partial and assembly statements preserve the quantity specifier. However, the partial ones have
the frequency reduced by some arbitrary factorn. Usually, is may be 2 or less, but to lesser
than 1. It is needed because of possible lack of synchronization between those producers. This
problem is discussed more thoroughly in 5.5.2.
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Pattern 6 concerns the distribution of statements with aggregation functions over time win-
dow. Such statements can be distributed in similar way as plain aggregation statements. The only
difference is additional time window in partial statementswith same time interval as in original
statement. The justification for such solution is simple. The plain aggregation statements can be
viewed as having an infinite time window. This window is in fact applied implicitly in each par-
tial statement for plain aggregation functions. Therefore, setting a limit on window in original
statement influences windows in partial statements. As an example, following statement with
max function on time window can be considered:

select max(userTime) as maxTime from CpuInfo.win:time(100 sec)

the partial statement is:

select max(userTime) as mx from CpuInfo.win:time(100 sec)

and assembly statement:

select max(mx) as maxTime from assemblyStream.std:unique(providerSpec);

Statements in pattern 7 use aggregation function computed over a length window. Simi-
larly as in case of time window pattern, the assembly statement remains unchaged compared
to assembly statements for particular aggregation function. However, the partial statements use
length window with length equal to original size dividided by number of producers taking part
in distribution. The reason for this is that the original length window collects a limited number
events from all producers. If length window is divided by number of produers, this limitation
is preserved as each event received by the assembly monitor will contain information about

windowLength

producerNumber
of all partial events provided by all producers. This value,multiplied by number

of received events at given moment (which is equal to number of producers) gives the length of
original window. For example, following original statement:

select avg(userTime) as avgTime from CpuInfo.win:length(50);

computes average user time from last 50CpuInfo events. The assembly statement for this
case is:

select sum(s)/sum(c) as avgTime from
assemblyStream.std:unique(producerSpec);

The partial statement, assuming that there are 5 partial producers, is following:

select sum(avgTime) as s, count(avgTime) as c from CpuInfo.win:length(10);

The assembly statement will accept one event from each partial producer, which corresponds
with 10 CpuInfo events. Because there are 5 producers, the final average will be calculated
using 5 partial aggregation events (the ones containingavg andcount) which corresponds
to 50CpuInfo events. One may argue that thecount function is not necessary here as the
actual number of events is known in advance because of the length window. However, is was
kept to make this statement compatible with distribution ofavg without length window.

5.3.3. Distributing stream joins

As mentioned in 5.1.1, EPL statements may contain join operation on event streams. Pres-
ence of this operation in EPL statement complicates the distribution process. In fact, it may
cause the distribution virtually impossible.

Three following situations can be distinguished when dealing with statement containing
stream joins:

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



5.3. EPL request distribution 49

• all events in all streams that are part of the join operation are provided by the same pro-
ducer

• at least one of the streams is provided by other producer thanthe rest of the streams

• all event types involved in join operation can be provided byall producers

First two cases are easy to resolve. In the former one a statement can be distributed as if no
join was present. The joined streams can be treated as one stream for the purpose of distribution.
The latter case cannot be distributed. The statement requires events from two or more separate
sources thus virtually no operations can be executed at any of the producers as there is no access
to all required events.

When it comes to the third point the statement can be transformed only if the distribution of
particular streams taking part in the join to the producers is regular. That is, if one of producers
creates more events of given type than the other, distribution is probably not possible. For ex-
ample, following statement produces events that contain average cpuTime for those processes,
which were invoked by same user on two machines:

select avg(H1.cpuTime + H2.cpuTime) from ProcessInfo(host=’192.168.2.31’)
as H1, ProcessInfo(host=’192.168.2.35’) as H2 where H1.user = H2.user

In this case, two producers can provide same event types (ProcessInfo). However, the
first producer (at host with ip address 192.168.2.31) may have less processes invoked from given
user (or none) than the other one. Moreover, the join itself filters events in a way that cannot
be resolved at the producers separately because there is a correlation between streams coming
from two different sources. Therefore, this statement cannot be distributed properly and has to
be processed as is by receiving simple events from producers. Processing thewhere clause
may be required here to determine whether correlation between streams exists.

On the other hand, if the there is no correlation as above and joined streams can be dis-
tributed regularly within producers, the statement distribution can be performed. For example,
following statement:

select avg(P.cpuTime) as avgCpuTime, U.name as uname from ProcessInfo as P,
UserInfo as U where P.user = U.name group by U.name

can be distributed because the streamsProcessInfo andUserInfo do not correlate outside
single producer (assuming that user names are unique for allproducers, that is a given user name
can appear on only one host). Thus, the assembly statement for this case would be following:

select sum(s)/sum(c) as avgCpuTime, uname from
assemblyStream.std:unique(producerSpec);

and the partial statement:

select U.name, sum(P.cpuTime) as s, count(P.cpuTime) as c from ProcessInfo
as P, UserInfo as U where P.user = U.name group by U.name;

Unfortunately, determining whether the correlation between joined streams exists is diffi-
cult. It requires knowledge of the meaning of properties that are involved in thewhere clause
and finding out whether they concern events coming from different sources (such as thehost
property in the example above specifies the producer). This problem is discussed more thor-
oughly in 5.4. In practice, only statements containing joinon plain event streams (without fil-
tering) and without thewhere clause should be distributed.
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5.3.4. Mixing patterns

Patterns presented in 5.3.2 cover only some very specific EPLstatement types. In fact,
the real, usable EPL statements rarely contain only one aggregation function or onlyoutput
clause without aggregation functions. In most cases, thesefeatures are combined in one state-
ment. In fact, finding a way of distributing every EPL statement can be a challenge. However,
several most common combinations can be rather easily resolved. They are mentioned below:

• output clause and any other EPL feature combine rather flawlessly. This is because the
output clause does not affect the processing and matching itself (conditions, filtering,
time windows etc.) and can be simply attached to existing partial and assembly state-
ments. Therefore, distributing statement with anoutput clause should first distribute
the statement without it and then attach possibly modifiedoutput (see 5.1 to created
assembly and partial statements

• aggregation functions with expressions as arguments, suchas example average of sum of
two property values. These are distributed as presented in table 5.1 with single argument
replaced by expression. For example, following statement:

select avg(userTime*idleTime*systemTime) from CpuInfo.win:time(200
sec);

can be distributed as normalavg statement with the single argument replaced by the
multiply expression.

• multiple aggregation functions in one statements can be considered separately. That is,
proper parts of aselect clause should be constructed for each of them independently
and then composed to form partial and assembly statements. For example, following state-
ment:

select avg(userTime) as avgUT, max(idleTime) as maxIT from
CpuInfo.win:time(200 sec);

would result in an assembly statement as:

select sum(s)/sum(c) as avgUT, max(m) as maxIT from
assemblyStream.std:unique(producerSpec);

and following partial statements:

select sum(userTime) as s, count(userTime) as c, max(idleTime) as m
from CpuInfor.win:time(200 sec)

5.4. Handling partial producers

Many of request distribution patterns presented in table 5.1 referred to number of partial
producers. This is where another problem emerges when it comes to request distribution: the
assembly monitor has to know how many producers should take part in the process. More
specificly, following questions must be answered:

• which producers should take part in request distribution. That is, which of them should
receive partial requests.
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• which assembly statement an incoming event sent by partial producer should be assigned
to

The first point is very obvious and is an extenstion of the partial producers quantity problem.
In order for assembly monitor to determine which producers should take part in distribution two
pieces of information have to be gathered: what types of events is produced by each producer
and what event types are involved in original statement.

The first one in easy to establish. Each monitor should hold a producer registry with pro-
ducer addresses and provided simple event types. For base producer (not monitor, the one that
actually only creating events) the produced event types aresimply those that this producer can
create in probing process. For any producer that receive events from other ones, the set of event
types that it can provide must include also the events offered by sub-producers. For example,
in figure 5.2 the monitor 2 would announce event types from producer A and B, while monitor
1 from monitor 2, monitor 3 and producer D (one has to keep in mind that each monitor treat
base producers and other monitors that send streams to it uniformly).

The problem which event types are in involved in original statement is more complex. In
order to answer this question, the original statement has tobe examined. Beside thefrom clause
(which explicitly contains streams that are involved) alsoouter join has to be taken into
account. For example, a following statement can be considered:

select user.id, cpu.number, cpu.userTime from CpuInfo.win:time(200 sec) as
cpu left outer join UserInfo as user on user.hostname = cpu.hostname;

It refers to two event types:CpuInfo, which is stated in thefrom clause and implicitly
to UserInfo mentioned in theouter join clause. Therefore, the partial statements should be
sent to all producers that provide either theUserInfo or CpuInfo events.

Moreover, besides the syntax of the statement, property values could be examined to deter-
mine which producers really should contribute to distribution. This is especially true when the
where clause and window filtering are concerned. The condition in these clauses may effec-
tively limit the events to only those coming from a few particular producers. Using resource
identifiers as in statement below is a classic example of suchsituation:

select avg(userTime) from CpuInfo(resourceId =
’host[192.168.2.34].cpu[1]’).win:time(100 sec);

This is a typical case of average pattern (number 1 in table 5.1) except that it uses a condition in
window specification to refer to only one specific resource: afirst CPU on host with ip address
192.168.2.34.

It would the be best to send partial statements only to those producers that can provide
events about this particular resource. However, in order todo that the assembly monitor would
have to know two things: what resources each producer can provide events about and which
properties determine the particular producer (it may behostname, deviceName or as in
previous exampleresourceId) and how their values are mapped to producers. The first re-
quirement is easy to meet: the monitor should hold a resourceregistry (see 4.2.4) containing all
resources handled by system and information which producers can provide information on them
(thus, reference to mentioned before provider registry must exist). The second one is more com-
plex. The monitor must know which properties can be considered as producer "discriminator".
In other words, a mapping of pair (property name, property value) to producer is needed. Re-
source identifier described extensively in 4.3.5 is a good example of property that can be easily
mapped to producer. Well defined format of this identifier that is used by all parts of monitoring
system makes it possible to determine exact instance of resource by parsing the property con-
tent. Therefore, using such identification may greatly improve the statement distribution. When
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Property name Discriminating values
hostname 192.168.2.31

deviceName
/dev/sda5
/dev/sda6
/dev/sda1

Table 5.2: Example of discrimating producer event propertyvalues

it comes to other properties, such ashostname or deviceName, producer could publish
them along with set of values that concern it. For example, a particular producer installed on
host with IP adress 192.168.2.31 may send "distriminating" property values to a consumer as in
table 5.4.

Of course, any discriminating properties received from oneproducer may "overlap" those
from the other ones. For example, each producer may provide information about device named
/dev/sda5. It is up to assembly monitor to determine whether given property uniquely points
to single producer.

If window filtering exists and no information can be gatheredon how this filtering maps
to producers (meaning the used properties cannot be recognized by system in any meaningful
way), the partial statement has to be sent to all available producers. This is not a great disad-
vantage as unwanted events (that do not match the condition)will be discarded sooner or later
(in worst case at the assembly monitor). However, issuing requests to producers that will not
effectively participate in gathering and processin data isa kind of inconvenience as it may lead
to a unnecessary request flooding caused by monitors passingstatements to all of their produc-
ers. This is especially true as far as very complex architectures are concerned, with developed
producer-consumer tree.

The second of the problems mentioned in the beginning of thissections is connected with
the fact that processing of single original statement spansacross more than one CEP engine.
In the centralized architecture the events created by any kind of producer at any location were
simply put into one event cloud. As long as EPL statements didnot refer explicitly to the origins
of events (for example in thewhere clause to get only events from desired location), the CEP
engine did not need any information aboout it. Therefore, event messages did not have to contain
such data.

However, in case of distributed CEP the processing of single statement spans across mutiple
CEP engines. That raises the need of correlation between individual monitors. This is visible,
among others, in distribution patterns presented in 5.3.2.In some of them a property named
producerSpec appeared. This is nothing more than a unique logical addressof a producer
that created given request. This address, or identifier, is assigned in arbitrary way by the moni-
toring system. There are only two requirements that it must meet:

• uniqueness: any producer (monitor is also a producer) must be able to be unambigously
identified by any monitor that take part in statement distribution

• well-known: any monitor must know all identifier of its direct producers. Knowledge of
addresses od remote producers is not required as their existence is hidden from non-direct
consumers). The means by which producers announce their identifiers is is not significant.
It is also possible that the assembly monitor assigns the addresses to the producers.

In order for the statement distribution to work properly, each event must be marked with this
identifier of its creator (a correlation identifier, seeCorrelation Identifierintegration pattern in
[2]).
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Figure 5.6: Example of event addressing by request and producer. Arrows symbolize event
streams: gray ones concern distribution of original statement A, black - statement B. Streams
coming from different producers are distinguished by arrowstyle (dotted, dashed and solid)

A different solution of the event provider recognition problem exists. Each of the producers
could send events through different channel "physical channel" (such as JMS queue). In this
case, the assembly monitor would know that events coming from given channel were sent by
specific producer. However, this solution has a number of drawbacks, from among which the
most serious is simply the multiplicity of required channels. Moreover, each of them would
be utilized in relatively small degree by carrying events from only one source. Therefore, this
solution is unfavourable.

Figure 5.6 illustrates a case where same assembly monitor cooperated with three differ-
ent producers in distribution of two different requests (statements). Such situation can be very
common as consumers may issue more than one request to the system. All three producers
participate in both distributions. Therefore, the monitorreceives two event streams from each
producer. Both contain events with the same correlation identifier (described before). However,
each stream concerns different request. Therefore, some kind of additional association between
event streams and a distribution request that they concern is needed. This association must meet
following requirements:

• producer identification independency: this results from the fact that multiple producers
can take part in same request (gray streams in figure 5.6) and vice versa: every producer
may participate in many request distribution (all producers in 5.6 contribute to resolving
two requests)

• uniqueness and coherence: both producer and consumer must unambigously associate
given stream with same distribution request

One of potential approaches to mentioned problem would be taking advantage of the way
that Esper CEP implementation [4] (used in this research) handles streams. Namely, it is pos-
sible to create event stream based on event types by specfying that all events with given type
should be put to same stream. Because most statements that areresult of distribution do create
very singular event types, it hints that these types could beused to associate requests with par-
ticular streams. Unfortunately, a situation where distribution of two different statements yields
different partial statements that create same event types (streams) cannot be ruled out. For ex-
ample, the two following statements result in same event format:
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select avg(userTime) from CpuInfo.win:time(2 seconds);

select avg(userTime) from CpuInfo.win:length(100);

The difference is quite subtle: type and parameters of windows. However, the values in created
statements would be very different and mixing them in one stream would result in unreliable
monitoring data.

Therefore, an explicit request-event association is required. It can be established is similar
way as the producer identification - by adding an identifier toeach event. Every message should
contain an ID (usually a number) that associates it with specific request. The identifier of given
statement distribution should be sent to producer by the assembly monitor with partial state-
ment. In this way every producer will be able to bind productsof this partial statements with
distribution request that this statement takes part in resolving. Again, it is theoretically possible
to have separate event channel for each request. However, this is even more disadvantageous
than in case of channel per producer approach as in this case channel would have to be tran-
sient since each request may be cancelled by consumer or expire (for example due to consumer
failure). Moreover, using channels for both request resolving and producer identification would
require vast number of them as each producer would have to maintain separate channel for each
request it handles.

When it comes to the assembly monitor, it first separates events by their request id and
inserts them to proper assembly statement. Then the statement itself takes advantage of producer
ID contained in each event (seeproducerSpec in patterns in table 5.1). Therefore, the event-
to-request resolving is transparent from the CEP engine’s point of view.

Summarizing, two independent, complementary addressing means are needed: by event pro-
ducer (correlation ID) and by request given event belongs to. Each event should carry both of
these addresses.

5.5. Event synchronization

CEP approach is inherently time-based. Events can be ordered, grouped and released basing
on their creation time. This can be done using widows and output controlling in EPL statements.

All these mechanisms work very well as far as centralized architecture is concerned. The
event creation time is assigned the moment the event arrivesto the CEP engine. Therefore all
event messages are sychronized as they are sequentially ordered by the same clock.

However, when it comes to the distributed architecture of CEPevent sychronization be-
comes a problem. In fact, most distributed applications have to cope with such difficulties. The
reasons for the lack of synchronization between events can be various and include:

• unsychronized clocks - each machine in distributed environment may work with slightly
different time set in its clock. This causes differences in possible timestamp values in
events

• various load on different machines - the nodes of grid network that are more loaded may
produce and process events slightly slower than the task-free ones

• network delays - different network routes between event source and event consumer have
different length and Round Trip-Time, therefore even if two events are created simultane-
ously by two separate producers they may reach the destination in significantly different
moments
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The synchronization problem affects many aspects of distributed application. In this section
an attention is focused on its connection with CEP. Several aspects are discussed.

5.5.1. Data accuracy

The fact that in distributed CEP events arrive to destinationat different times than they would
in centralized approach may often affect the accuracy of data they carry. By termaccuracy the
compatibility of the outcomes of centralized and distributed CEP architecture are understood.
In fact, the centralized CEP architecture, as being very simple and close to the CEP idea itself
(although very inefficient), can be treated as a kind of pointof reference for testing the validity
of distributed architecture implementation.

The violation of this accuracy can be especially seen when using time and length windows in
EPL statements that are processed by distributed environment. Figure 5.7 illustrates the problem
of time window. The events with dashed lines represent a situation where no delay between
event creation and arriving to the CEP engine exist. That is, events are thrown into the engine
right after the moment they are created. This somewhat reflects a situation where events are
created and processed on same machine and no network delays occur. The solid-line events
correspond to more realistic, delay-burdened architecture such as transporting events over the
network or long intermediate processing (like in distributed CEP). In both cases same time
window is shown (with same time-length). It is clearly visible that the difference in interval
between consecutive events influences the behaviour of window aggregation. While without
any external delays the window can hold up to three events, when the interval between the
arrival two consecutive events increases, the capacity of the time window declines. In figure 5.7
the presented time window spans accross three events in the ideal case (no delays) and only two
when there is some kind of hold off.

To clarify this problem even more, one may consider following case: a time window with
span of 30 seconds (that is, it will hold events from last halfminute) and events being produced
every 5 seconds. This window can hold up to 7 of shose events (one current and 6 more from
the past). However, if the interval between them increases by 10 milliseconds, the window will
keep 6 events at most (the 7th will be too old by30 − 6 · 5, 01 = 0, 06 seconds).

When it comes to the length windows, unlike in case if time windows, their sensitivity to
lack of event synchronization is visible when more than one producer is sending events to an
EPL statement that utilizes such windows. Figure 5.8 presents a situation where two producers
are sending events which are put into length window afterwards. If there is no delay on event
arrival the results of processing with length window are valid. That is, each event that is created
later "pushes" the oldest one out of the window, Therefore, the window slides through the stream
of events properly. However, if any of events is delayed, it may disturb the operation of length
window. In figure 5.8 events provided by Producer A arrive with certain delay. As a result, the
time order between events at receiving point that was originally kept in the length window is
violated. Event 4 and event 2 are kept together in window eventhough event 3 occured between
them.

Such event mixing in may render results of some EPL statements unreliable. For example,
a following EPL statement can be considered:

select avg(userTime) from CpuInfo.win:length(20);

Assuming that there are only two producers installed on two different machines, each cre-
ating one event message every second, this statement will result in average user time of two
CPUs from last 10 seconds (2 events per second· 10 seconds = 20). However, if events from
one producer are late, the events coming from the other producer will start to dominate the
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Figure 5.7: Lack of synchronization affecting accuracy of atime window based processing.
Boxes with dashed lines represent events that arrived without delay. Solid-line boxes portray
events that arrive with slight delay.

length window. As a result, the average will be counted usingthe data from the other producer
in greater part, becoming a somewhat weighted average. Unfortunately, this will happen without
the consumer knowledge. As a result, the actual data will be interpreted incorrectly.

5.5.2. Output time control

Output control based on time intervals described in 5.1.4 can also be vulnerable to prob-
lems with event synchronization, especially the delays. IfEPL statements contains theoutput
clause stating that a group of events should be released every speified time interval and any of
partial events that should take part in processing arrive after this interval because of delay, the
result event may contain less accurate data.

For example, the following statement releases last of result events every 5 seconds:

select avg(userTime) from CpuInfo.win:time(30 minutes) output last every 5
seconds;

Assuming that theCpuInfo event is produced every 1 second, if there is no delay each
result event should be created after 5 new partial events have arrived and put into the time
wimindow. However, if the last of these 5 events arrives event just a little bit after 5 seconds, it
will not be counted in current processing.

All of mentioned problems concern on-line monitoring data processing. That is, data is
gathered and sent to consumer contantly, with small intervals. In fact, the smaller the interval,
the greater the significance of the delay as it is more probable that certain event will be created
soon enough to arrive before its delayed predecessor from other producer. If events are sent
rarely, with interval specified in minutes or hours, it is virtually not possible that a delay would
cause their reordering at receiving end.
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Figure 5.8: Lack of synchronization affecting length window based processing accuracy. Left
part refers to situation without delay, right - with delay onevents from producer A. A delay in
Event 3 arrival causes the order of events in length window tobe violated, as Event 4 and 2 are
simultaneously placed in the same window (compare with leftside of this figure).
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5.5.3. Error accumulation

One may argue that discussed synchronization problems in time and length windows also
occur in centralized architecture of CEP and that’s true. In fact, most applications of such system
would be in distributed environment, where event messages are sent over the network and can
be delayed. However, these factors become more important indistributed CEP architecture as
there are many steps of event processing and therefore many points where data incosistency
may occur. Moreover, these incosistencies may accumulate at each successive monitor. This
accumulation occurs in several cases. First of all partial processing at intermediate monitors
takes more time that simply passing an event to next node to reach the central monitor. This
causes additional delay in event transporting and causes events to reach the consumer much
later than in case of centralized CEP. Secondly, the output time control problem can become
very serious in distributed environment. Figure 5.10 helpsto illustrate this. Monitor 1 and 2
use an EPL statement using same time output control with interval 5 seconds. Each producer
creates events every 1 second continously. Events in stream3 are late by 50 milliseconds due to
network delay and slightly longer processing of monitor 2 (later initialized CEP engine causes
all processing to be shifted in time). If both monitors startcounting down the output timers
simultaneously (which is quite possible to some extent, as both statement may be part of same
statement distribution process), monitor 2 will output theevent at the same moment monitor 1
closes the output batch. Therefore, the event sent by monitor 2 will not reach monitor 1 on time
to be included in current processing. As a result, the monitor 1 in following batch will use old
event (the one that have arrived just after closing previousbatch). This is more serious because
monitor 1 will in fact use outdated data (by 5 seconds) from both producer 1 and 2 (that was
aggregated by monitor 2), rendering the whole outcome unreliable and probably useless for
consumer. This effect is shown in figure 5.9. Such chain of outdates may span across multiple
monitors, causing vast amount of resulting events to contain unreliable data. One of possible
solutions to this problem is to use smaller output intervalsthe closer monitor is to original
producer. Referring to above example, monitor 2 could use time interval of 3 or 2 seconds.
This would cause at least one of its events to arrive in time and reduce the amount of data in
aggregated event that is outdated. This solution is used in distribution patterns presented in table
5.1.

5.5.4. Evaluation

Many problems presented before that are connected with distributed CEP are very hard or
even impossible to overcome. In fact, it is virtually impossible to get rid of delays caused by
network or event processing on monitor. Synchronizing clocks or CEP engine initialization on
particular nodes of distributed system to make them work simultaneusly is too complicated
compared to potential benefits (clocks are usually inconsistent by 1 second at most).

However, all of these problems are significant only in some specific cases. First of all, the
interval between two consecutive events created by producers matters. In most cases it is spec-
ified in seconds or minutes, which is much greater than potential delay caused by network and
processing at monitors together. The latter is usually hundreds of milliseconds at most. Sec-
ondly, a even if a single case of data inaccuracy, as described in 5.5.1 occurs, its significance
is the smaller the smaller the interval between production of simple events. This is because the
more frequent simple events are the smaller their validity time as they are considered outdated
after new event is created. As a result, the possible lack of synchronization and data unreliabil-
ity caused by it have little consequence because in short time following event will correct the
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Figure 5.9: Effect of outdated data when using output time control. Monitor 1 and 2 use state-
ments with output clause with same time interval (5 seconds). Event produced by monitor 2 that
is result of this statement arrives to monitor 1 with some minor delay and is used only in next
batch. Events P1, P2 and P3 are created by producers 1, 2 and 3 respectively.

Figure 5.10: Example architecture to illustrate the problem of late event error escalation when
using controlled output. Each monitor introduces a delay caused by the event processing and
data serialization/deserialization operations. As a result, events created by Producer 2 will arrive
later to Monitor 1 that those created by Producer 3 even if total delay of network links used by
stream 3 and 2 is same as those utilized by stream 4.
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error. Therefore, the smaller the event creation interval the smaller the effect of the errors and
the greater the interval the smaller the probability that the lack of synchronization will occur.

One of the factors that may have a big impact on the distributed CEP reliability is mentioned
in 5.5.2 accumulation of error. In fact, if the distributed CEP based monitoring infrastructure is
complex and developed, containing many monitors, error accumulation is a real threat to data
accuracy. Therefore, the actual placement of the monitors should be thoroughly considered to
minimize the length of the path from consumer to first producers (counted in monitors).

It also should be kept in mind that in very few cases the consumer would want to receive
very current data. Most consumers will be interested eitherin some kind of averages over the
specified past time to know the overall health of a system or momentary peaks in value of spec-
ified properties (such as network utilization) to detect or prevent system failures. On the other
hand, if consumer really requests for on-line, actual data this is usually only for informative
purposes, for example to display current CPU user time. Therefore, minor inconsistencies in
data should not seriously impact on the usability of on-linemonitoring infrastructure based on
distributed CEP.

5.6. Benefits

All the problems presented above straightforwardly state that distributed CEP comes at
price. In fact, of the are very hard or impossible to solve. Therefore, it is important to analyze
potential benefits of this solution.

The main purpose of applying distributed CEP to monitoring system is reducing the band-
width utilization. This can be achieved by limiting the number of events transmitted over the
network. This in turn can be done by carrying out the event processing, such as aggregation and
output control, as near the event source as possible.

5.6.1. Beneficial EPL statements

In section 5.3.2 it was said that not every EPL statement can be distributed. Indeed, some
statements are so simple that there are no points where distribution could take place. However,
the sheer fact that statement can be distributed does not mean that the distribution would be
beneficial in any way. For example, following statements canbe easily transformed according
to patterns presented in 5.1:

select avg(userTime) from CpuInfo.win:time(100 sec);

This statements calculates an average which can be distributed over multiple producers. How-
ever, according to Esper implementation, each time aCpuInfo event arrives, the average will
be recalculated effecting releasing an new event containing actual value of the average. In other
words, for each incoming event there is being released one. The same thing applies to all other
aggregation functions: they are calculated again when new event arrives to the statement. There-
fore, the assembly and partial statements for such functions will behave in same way: releasing
an event after new one arrives. The overall conclusion is that the number of events resulting
from distributed statements is equal to the amount of messages sent when using traditional,
centralized approach. Therefore no data reduction takes place and distributed CEP loses its
advantage.

However, such statements as presented above have little usefulness in real-life monitoring
systems. Knowledge of the very current value of the average cpu user time over the past 100

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



5.6. Benefits 61

seconds is rarely critical for estimating the health of the system or preventing errors. Especially
as it may be burdened with errors and inaccuracies (see 5.5.

A more real-life EPL statement example that could be useful in monitoring infrastructure is
presented below:

select avg(userTime) from CpuInfo.win:time(100 sec) output last every 50
seconds;

This statement is very similar to previous one. There is onlyone difference: it uses the
output clause. This change causes the events to be released every 50seconds. As a result, the
consumer would know the average of CPU user time from last 100 seconds with 50 seconds in-
terval. Although the very actual data is not available, thisstatement is still useful for estimating
current load of CPUs. Moreover, it is very beneficial when it comes to distribution. Assuming
thatCpuInfo events are created every 1 second (which is very frequent formonitoring pur-
poses), this statement outputs one event for every 50 arriving. Therefore, the reduction of data is
significant here. If centralized CEP approach was applied, this reduction would concern only the
channel from the front monitor to the consumer. All the events created each 1 second at every
producer have to be sent by them to central CEP engine, literally flooding the network. How-
ever, if statement distribution is used according to table 5.1 each producer would output events
at specific frequency (distribution pattern for theoutput clause uses decreasing frequency for
each consecutive distribution). As a result, the amount of events transmitted between monitors
taking part in processing a statements can be reduced significantly. The exact reduction factor
is implementation dependent. For definiteness, architecture in figure 5.2 may be considered. All
producers (A, B, C and D) can createCpuInfo events with interval of 1 second. Assuming
output frequency divisorn is equal2 (see 5.1), if one of the consumers issued a request con-
taining above EPL statement, the monitor 2, 3 and producer D would receive requests to output
events at rate 1 per 25 seconds (50 seconds divided by 2). Then, monitor 2 and 3 would issue
another requests to producer A, B and C with output interval od 12 seconds (25 seconds divided
by 2 rounded down). Therefore, events between monitor 1 and its direct producers flow at rate
1

25s
and between monitor 2 and 3 and their partial producers at rate 1

12s
. This is a significant

improvement compared to the centralized CEP where events between the producers and the
central monitor would be sent at rate of1

s
. Such speed is not very significant for network links.

However, if there were more requests issued by consumers, the number of event created by each
producer could be much greater. The request distribution makes it possible to reduce traffic in
this case at least 12 times.

Presented example shows that statements using theoutput clause can be very beneficial
when it comes to data reduction. In fact, every EPL statementthat contains timed (output every
time interval) or quantified (output every amount of events) has great chances to be distributed
in an effective way.

However, one must take into account the quantity specifier intheoutput clause telling
the CEP engine how many events should be released when the timeor quantity condition is
met. For example, theoutput all clause causes all gathered events since last output to be
released. This means that although theoutput clause is present, there is no real reduction
as each accumulated event triggered by incoming message will be sent eventually. The only
difference in comparison to a case without output control isthat here the data is released in
bursts causing the network links to be utilized in greater extent periodically.

Therefore the general rule that tells whether a given statement beneficial for request distri-
bution or not is:

Nreceived

Ncreated

> 1
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whereNreceived and Ncreated are number of events received and created respectively by the
statement during some arbitrary time. In short, statement should produce less events than it
receives.

Statement distribution can reduce the number of events not only by moving the aggregation
closer to the source. It can also help to detect producers that are obsolete in resolving particular
statement and discard unwanted events sooner. If the CEP engines where installed not only
in intermediate monitors but also in the mere sources of event, they could fitlered out many
messages right away. A request for statistics of one particular CPU existing in system is a
classic example. If centralized CEP was used, all the nodes existing in the environment would
have to send their messages containing information about CPU. The data would be filtered only
in central monitor. This would result in a lot of unwanted data being sent over the network and
then discarded at the CEP engine. However, if part of event analyzing and filtering was done
at the source, the CEP engines installed at those nodes that are not of interest of the consumer
would be rejected right away and never sent. Also, each intermediate monitor may discard some
of the events, gradually reducing the number of data being transmitted. Of course, the amount of
data being reduced and the question whether it is possible orprofitable depends on the specific
request and usually cannot be determined by the system. Beloware some examples of EPL
statements distribution of which will result in some data reduction.

select avg(userTime) from CpuInfo.win:time(100 sec) where hostName =
’gandalf’ output last every 5 seconds;

Obviously, this statement concerns only messages send fromhost namedgandalf. No other
events are needed to resolve it and those produced by sensorsinstalled on other nodes will be
discarded. If such statement was sent to other host than the one specified in thewhere clause,
it will not create any events.

A more complex example may include a network presented in figure 5.11 composed of two
clusters, each holding a group of disk arrays. An example EPLstatement that could be used by
the consumer to examine the health of such system is presented below:

select ControllerInfo.name, max(usedSpace) from DiskInfo.win:time(1 hour),
ControllerInfo where DiskInfo.hostName = ControllerInfo.name and
ControllerInfo.clusterId=’DIANA’ group by ControllerInfo.name

ControllerInfo.name output last every 5 seconds.

This statement will result in events containing maximum used space from all disk arrays be-
longing to single disk controller (thegroup by clause) from the DIANA cluster. The max-
imum will be calculated from events that were created in last1 hour. The up-to-date value
will be released every 5 seconds. Each disk controller will send its events to the correspond-
ing agent. Both controllers in DIANA cluster will be requested by their agent to provide the
ControllerInfo andProviderInfo. As a result, the controllers will request the events
from the disk arrays (assuming that proper sensors are installed) The agent itself will process
them according to the statement and sent result to the Front Monitor.

Controllers in the SARAH cluster will also be requested for events, despite the fact that
they are useless for this statement. This is because of the way join constructions should be
resolved(see 5.3.3). However, the CEP installed SARAH cluster controllers will discard the
events as soon as they are associated with theControllerInfo events and identified as
coming from the inadequate cluster. As a result, no useless events will be transmitted outside
the controller domain (controller and disk arrays handed byit).

This kind of data reduction (by discarding unwanted events)is a natural consequence of
using distributed CEP. No additional operations or processing are needed. The native features
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Figure 5.11: Example distributed system architecture being subjected to monitoring. The two
clusters, SARAH and DIANA communicate with the front-end monitor through their agents.
Each Disk controller, the agents and and the front monitor have CEP engines installed (boxes
in right lower corner). The consumer may send request to and receive events from the Front
monitor.
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of CEP such as event pattern matching and filtering are used here and do all the job. The key is
to take advantage of them as close to the event source as possible.

5.6.2. Balanced memory usage

Except for the data reduction mentioned before, using distributed CEP may also bring a
number of some minor benefits. One of them is balancing the memory usage. This feature
results from the fact that typically each monitor does a partof aggregation, filtering large groups
of events etc. All the aggregation functions presented in 5.1.3 require all the data involved in
calculation be held in memory. Because there is no one large groups of events held in memory
of one node but rather a couple of smaller groups, each storedon different host, memory usage
caused by aggregating events is distributed over multiple monitors. As far as centralized CEP is
concerned, the node that the CEP engine works on could be loaded with vast amount of events
to be kept in it’s memory. This can be clearly seen in case of EPL statements that use timed
output control with very large interval (hours or days). In such situations, all the events have
to be stored until the specified time passes and the event batch can be released. For example, a
following EPL statement can be considered:

select * from DiskInfo.win:time(3 days) output all every 2 days;

In the this case, all events have to be kept in memory as all of them are required to be released
after 2 days. If all of events required for resolving this statement were to be stored in single node
(centralized CEP), significat amount of memory would have to be used (counted in megabytes,
see 7.1.1). On the other hand, in case of distributed CEP, eachmonitor would store a part of
these events and release them after some relatively long period of time (2 days divided by some
factor resulting from timed output control distribution).

In addition to aforesaid factors, some CEP implementations,such as Esper, optimize resolv-
ing statements so that only absolutely necessary events arekept in memory.
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6. GEMINI-2 Development

This chapter presents an implementation sensor module for GEMINI-2 [17] and modifi-
cation that have been introduced to monitor module. It also describes the way that sensor for
GEMINI-2 interacts with monitor and other parts of the system and how its architecture and
some applied solutions influence the overall usability and support distributed CEP approach.

First some background is given, presenting information regarding GEMINI-2 framework
that is essential to understand further parts. After that a description of changes introduced to
monitor component of the system under consideration is given. It is followed by information
about architecture and implementation details of sensor component that was created during
research described in this paper. Finally, some .

6.1. Background information

This section is dedicated to overall GEMINI-2 architecture, solutions introduced in it and
some missing features. This information is needed to understand further parts that concern
research on and development of GEMINI-2.

6.1.1. GEMINI-2 overall architecture

High-level GEMINI-2 architecture is presented in figure 6.1. According to this architecture,
sensors communicates with monitor in order to subscribe in and send events to it. Monitor is
supposed to send requests for events to the sensors. The interaction between monitor and sensor
is discussed in details in 6.6. The sensor component presented in this diagram is in fact a simple
stub. It generates events containing data on first discovered CPU on machine that it is installed
on. There is no CEP engine implemented in it, therefore the CEP approach is purely central (the
only CEP engine is installed in monitor).

Moreover, not all of presented monitor parts were finished. In particular, the sensor manager,
discovery services and all parts regarding mutators were still under development when works
described in this Thesis began. Some of them have been implemented during this research to
enable evaluation and feasibility study. The details are described in 6.3.

All presented components are implemented using Java programming language with minor
support of other technologies and native code.

6.1.2. Endpoints

To define and configure communication channels between distributed elements GEMINI-
2 uses a concept of endpoint. An endpoint is a broker between actual transport system (JMS,
WebSerivces, plain TCP) of messages with given component (client, monitor, sensor). Each
endpoint represents either consumer or a producer. As the name suggests, producer can send
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Figure 6.1: GEMINI2 architecture. Presented diagram is taken from GEMINI-2 documentation
site [5]. It contains the target architecture. Some of features are not implemented yet.

messages through the channel while consumer can read them. This separation of roles of end-
points implies that channels defined by them are unidirectional. Every endpoint has a set of
messages assigned that it can send to or receive from channel.

Two endpoint types were supported when works described in this Thesis began:

• event endpoint - used to send or receive events containing monitoring data.

• monitoring service manager endpoint - used to send requestsby client and receive them on
monitor side. Channel associated with this endpoint carriesrequest and control messages.

More information about endpoints is available in [5].

6.1.3. The Esper CEP

The GEMINI-2 infrastructure uses the Esper CEP implementation for event processing and
matching. It is an open-source (GNU GPL) component written entirely in Java. Below are some
key features and concepts of this software that are significant from the point of view of works
described in this Thesis. Full description and documentation of this product can be found on its
webpage (http://esper.codehaus.org/).

Event types

Esper uses a number of ways to define event types. Most important ones are:

• plain Java class - each Java class can be treated as definitionof separate event type. As a
result, any Java object can be sent as event and processed by the CEP engine

• map - uses a mapping of property names to data types to define event type. Each event will
contain a set of properties with given names with values of types defined in this mapping.
In other words, event type contains set of property names andtheir types
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Field Value
Name "Cpu"

Property names

user time
system time
idle time
number
core count
max frequency

Discriminator number

Static properties
max frequency
number
core count

(a) CPU metadata

Field Value
Type name "CPU"

Property values

0.7
0.2
0.1
1
2
2000

(b) CPU instance

Table 6.1: CPU Resource representation

A crucial thing about event types is that the Esper CEP has to know all types involved
in given EPL statement before this statement is compiled andused by the engine. Moreover,
new event types can be added at runtime. The implications of these facts will be discussed in
following sections of this work.

Creation of event streams

A stream of events in Esper can be created in one of two ways:

• explicitly, by inserting events from other stream using theinsert to clause

• implicitly, by simply sending events to the engine. This will result in stream of events
named after the type of sent events.

The above facts imply that the initial (first) streams are created only by sending event to
the CEP engine. Moreover, every event stream can contain onlyevents of the same type that is
known in advance by the engine.

6.2. Resource representation

In chapter 4 a general idea of resource handling in monitoring infrastructure was discussed.
Here a concrete implementation of resource representationin GEMINI-2 is presented.

Each resource is characterized by two kinds of data: its metadata (corresponds to resource
type) and concrete instance data (or just instance). The resource metadata specifies the set of
properties, information about which of them are static (see4.2.4) and the discriminator (see
4.3.5). A given instance of resource carries only the type name and the property values. For
example, a particular CPU is represented by structures as in table 6.2.

Cpu instance refers to its type bytype name. Such data distribution into two structures is
useful because of couple of reasons:

• it reduces the amount of data that has to be kept in memory or indatabase. In fact, for
each resource instance only property values and type name are stored. The common data
for resources of same type is held once.
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• makes it easier to publish new resources types discovered bysensor module. Only re-
source metadata has to be sent to monitors.

• it corresponds very well to relational data model, therefore it makes it easier to build
relational database based resource registries that would hold all resources discovered in
system. The reference through the type name can be seamlessly converted to foreign key
in relational data model.

• size of events that concern resources is reduced as only typename and property values
are contained in them.

Still, some drawbacks exist:

• all elements of monitoring infrastructure must hold coherent sets of resource metedata.
If any of monitors lacks some resource metadata, it will not be able to process any data
(such as events) that refers to the unknown type

• the order of property names and values must be the same in metadata and instance data

The second problem can be easily overcome by proper implementation. The first one is
solved by keeping all data about resources and their metadata in one place calledresource
registry. This registry is referenced by all monitors to update the resources or to get information
about them.

In current implementation the resource registry is kept in memory using plain Java classes.
However, thanks to proper interface abstraction the designis adapted to using more sophisti-
cated implementations, such as Hibernate based persistence.

6.3. Monitor modifications

In order to make the cooperation between monitor and sensor as presented in 6.6 possible,
a number of modifications had to be introduced into the monitor module.

First of all, the original monitor implementation lacked a sensor manager module. As a
result, neither the subscription of sensors in the monitor nor sending requests to sensors was
possible. The sensor could only send events to the predefinedmonitor. In order to solve this
problem, a minimal functionality of sensor manager was added to the monitor. This includes:

• ability to receive subscriptions from sensors. Every sensor should be able to introduce
itself in designated monitor with proper initialization data

• sending requests to sensors. Monitor should be able to control what and how events are
produced by the sensor. In particular, it should be able to send an EPL statements that
sensor should use for event generating.

• a sensor registry containing information about each sensorthat has introduced itself to
the monitor. This is needed to properly handle request distribution (see 5.4).

In order for the first feature to operate, an additional endpoint type was required that
would handle the messages with initialization data that aresent from sensor to mon-
itor. Therefore aEventProviderControllerEndpoint was added. The producer
of this endpoint is sensor’sMonitorAgent (see 6.7). On the consumer side is the
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EventProviderControllerListener that receives the subscription messages from
sensors and takes care of their proper initialization.

The sensor requesting mechanism was implemented in the sameway as the client requesting
to monitor. That is, from the sensor point of view monitor is aclient just as a real client to
the monitor. Such solution has two advantages. Firstly, it reuses already created and tested
solution. Secondly, it is a step towards the unification of communication interfaces between
event providers and event consumers. Thanks to that it is even possible that client would issue
a request directly to the sensor. Such situation could be possible if monitor returned a client’s
address for request channel in subscription response to sensor (see 6.6). For details about the
client-side mechanisms regarding event request handling reader should refer to the GEMINI-2
development site [5].

In order for a monitor to keep information about subscribed sensors, an Event Provider Reg-
istry stub was added. It holds an identifier that has been assigned to sensor (see 6.6 associated
with following data:

• a transport address that this sensor listens on for requestsfor events

• a client stub that has been assigned to given sensor for requesting events

• list of event types that this sensor can provide.

All of this data is needed for request distribution and proper sensor management. The fact
that considered element is called an Event Provider Registryindicates that it is adapted to hold
information about any kind of event provider, not just sensors. Again, this is a small step towards
the unification of comminication interfaces between GEMINI-2 infrastructure components.

As aforesaid, current Event Provider Registry implementation is just a stub that holds all
information in Java Virtual Machine memory. It has some obvious drawbacks, including the
vulnerability to virtual machine crashes and data locality(accessible to only single monitor).
However, it can be relatively easily replaced with more sophisticated solutions, for example
some based on JNDI to make it available globally and persistence technologies such as Hiber-
nate to prevent it from data loss caused by JVM crashes.

Another element that was introduced to GEMINI-2 monitor is the resource registry. It
contains information about resources discovered by sensors and received with resource update
messages (see 6.6.3). The resource registry is composed of two elements: resource representa-
tion provider and resource context. The first one is responsible for holding resource types, as
described in 6.2. Each entry is identified by resource type name. The resource context contains
specific information about each resource instance: its identifier, static property values and op-
tionally parent resource identifier. Using the last one, resource context maintains a parent-child
relationship between resources, making it possible to fetch data in more sophisticated way that
just by resourceId, such as retrieving all CPUs installed on given host. Just like event provider
registry, current resource registry is only a stub that willbe replaced with real implementation
in the future.

Finally, a request distributor component was introduced tomonitor. Its main role is to con-
struct assembly and partial statements for distributed CEP.It is discussed thoroughly in 6.9.2.

The monitor architecture, after all introduced modifications is presented in figure 6.2.
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Figure 6.2: Diagram presenting monitor architecture in current state. Dashed arrows represent
flow of monitoring data events while solid ones represent contol messages and signals.

6.4. Sensor environment

Figure 6.3 presents a environment in which GEMINI-2 Sensor component works. In fact, it
is a part of GEMINI-2 high-level architecture widh some additional details and without elements
that do not interact with sensors directly, such as event store.

Each sensor is deployed on separate node of measured distributed system and it is supposed
to handle all resources installed on this node. Therefore, there is only one sensor per node.
There is also a possibility that sensor was installed on the same node as monitor. Resources are
handled by sensor using Sampling Modules (see 6.8).

Each sensor is assigned to exactly one monitor. On the other hand, monitor can manage
multiple sensors, usually located in same subnetwork or some kind of domain. The managing
itself boils down to sending requests for events and canceling them (see 6.6).

6.5. Sensor features

The sensor module design and implementation is supposed to meet following requirements:

1. modularity - sensor should be modular in order to be able tohandle multiple types of
resources

2. automatic discovery of existing resources - sensor installed on given machine should dis-
cover existing resources and publish information about them to corresponding monitor

3. installation of new resource types at runtime - there should be no restart required to intro-
duce new resource type

4. ability to receive EPL statements from monitor and use Esper CEP engine for data reduc-
tion

5. the overhead inflicted by working sensor on the machine it is installed on should be as
small as possible
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Figure 6.3: Sensor working environment. Monitor and each sensor are installed on different
network nodes. The elements marked with dashed lines (such as resources) represent entities
that are not a part of GEMINI-2 framework but interact with it.

The modularity was achieved by introducing Sampling Modules (see 6.8). They can be
invoked and stopped by sensor module and installed an runtime by using the SPI [7]. Each sam-
pling module is dedicated to one specific resource type and therefore "knows" how to discover,
handle and probe it. Therefore, the discovery of resources is a sampling modules responsibility.

Sensor can control the functioning of the sampling modules to optimize the mentioned over-
head. In particular, this is done by:

• starting sampling module only when there is any demand for events it creates. That is,
any received EPL statement refers to events created by givensampling modules

• stopping sampling module when no statements refer to eventsit provides

• modifying the interval at which events are created by sampling module

The last feature is not yet implemented as it requires extensive analysis of EPL statements
sent to the sensor.

Before sensor initializes any of sampling modules, it first has to know which ones should
be invoked. The sensor resolves which subscribes in sampling modules for events in one of two
ways:

• by passing a resource identifier pointing to resource that should be subject of probing.
For example, sensor tells the CPU sampling module to measure only one specific core of
given CPU. This mode is calledsmart mode.

• by requesting sampling module to gather all possible information about all resources it
discovered. In this case, CPU sensor would probe all cores of all installed CPUs. This
mode is calledplain mode.

Sensor always tries to extract resource identifier from received EPL statement first. If this is
impossible, it uses the second subscription mode.
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Figure 6.4: Sensor-monitor interaction diagram

6.6. Sensor-monitor interaction

As stated in 6.1 sensor cooperates with monitor in terms of providing events and accepting
requests. This section discusses the details of interaction between sensor and corresponding
monitor.

6.6.1. Monitor discovery

Current implementation does not contain any kind of discovery of monitor [48]. It is as-
sumed that all sensors that should work with given monitor know its address when they are
started. However, it is possible to implement some kind of discovery and lookup service for
monitors similar to (or even based on) JNDI. Each monitor should register in well known reg-
istry when it starts, providing transport type and address that should be used by sensors for their
registration (see 6.6). The location of this registry should be well known and available to all
sensors and monitors. Therefore, a directory-service-based solution could be an answer to this
problem [47].

Still, the issue how sensor should choose proper monitor to connect to remains. Monitors
can be assigned to subnetworks they are supposed to gather data from. In this case, sensor
should pick monitor that is in its own subnetwork.

Regardless of applied solution, the monitor discovery process should end up with each sen-
sor having a one designated monitor it can work with.

6.6.2. Communication channels

There are three separate channels used to pass on messages between monitor and sensor.
The implementation of these channels is based on endpoints available in GEMINI-2 framework
[17]. Each of those three channels is used for different purpose:

• registration channel (direction from sensor to monitor) - used by sensor to send hello
messages to register itself in monitor and to send updates about discovered resources. See
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6.6.5.

• control channel (direction from monitor to sensor) - used bymonitor to send requests for
messages to sensor.

• event channel (direction from sensor to monitor) - used by sensor to send monitoring
events to monitor.

More specific details of how these channels are used are described in 6.6.5.

6.6.3. Control messages

In order to cooperate monitor and sensor exchange a number ofcontrol messages known by
both entities. These are listed in table 6.2.

Fields Data type Comment
Hello
preferredTransportURL string transport url that sensor wishes to be

used by monitor to send requests
preferredTransportType string same as above, but concerns transport

type
eventTypes list list of event types that this sensor can

provide
HelloResponse
assignedTransportURL string transport url that has been picked by

monitor to send requests to sensor
assignedTransportType string same as above, but concerns transport

type. This field is ignored if assigned-
TransportURL is not empty (URL al-
ready contains the transport type)

assignedId string id that monitor assigned to subscrib-
ing sensor

errorCode integer code of error that occured during sub-
scription process. If this field is empty,
everything went fine

errorMessage string optional error description for passed
error code. This field is empty if no
error occured

ResourceUpdate
providerId string id of sensor sending this message
resources list list of resources discovered by sen-

sor sending this message. The details
of format of this list are discussed in
6.6.3

SubscribeRequest
statementLanguage string Name of language that subscription

statement is written in. Currently only
EPL is supported

subscriptionStatement string the statement that should be used by
sensor to detect significant events
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Field Data type Comment
resourceId string identifier of given resource. Format of identifier is com-

pliant with identifier described in 4.3.5
parentId string identifier pointing (equal) toresourceId property of

parent resource
properties list list of resource properties. Each property has name and

optionally value (suitable for static properties)
discriminators list list of property names that discriminate resource (see

4.3.5)
typeName string name of resource type. See 6.2

Table 6.3: Resource record content used in resource update message

Fields Data type Comment
subscriptionId string desired id of subscription. With this

field monitor may suggest the id that
should be used for new subscription

transportURL string transport URL that monitor will use
for control channel

transportType string transport type that monitor will use for
control channel

RenewSubscription
subscriptionId string Id of subscription to be renewed

Table 6.2: Control messages

MessagesSubscribeRequestandRenewSubscriptionwere already present in GEMINI-2
framework and were used in client-monitor interaction. In fact, monitor-sensor communication
is very similar to the one being discussed here.

The ResourceUpdatemessage holds list of resource in special format. Each entrycon-
tains serialized information about single resource. The content of these records are presented
in table 6.6.3. Basing on on these records, the message receiver (a monitor in this case) can re-
construct whole resource hierarchy known by the sender (sensor). This is done using the fields
parentId andresourceId. The resource that has no parentId becomes the root of the
hierarchy.

6.6.4. Subscriptions

Sensor uses the same subscription mechanism for requests coming from monitor as the one
used for handling client requests in monitors in GEMINI-2 framework. Each subscription as-
sociates the EPL statement received inSubscribeRequestmessage and event channel endpoint
that should be used to transport events created by the mentioned statement. The idea of sub-
scriptions is presented in figure 6.5.

Every subscription has a finite time to live. When it expires, the subscription is canceled
automatically. TheRenewSubscriptionmessages can be used to prolong it. Likewise, sub-
scriptions can be canceled before they expire by sendingUnsubscribemessage to the request
recipient.
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Figure 6.5: A subscription concept. Each subscription instance has a unique ID and uniquely
associates an EPL statement installed in the CEP engine with transport stub that should be used
to send results created by this statement.

There is one significant difference between sensor and monitor subscription mechanism.
Monitor usually generates subscription ID and sends it backto the client. Sensor never does
that. It always uses the ID sent in subscribe request message. The reason for this is the need
to maintain the association between subscription in sensorand monitor. This link is required
to handle event addressing, which is described in 5.4. Moreover, subscription requests sent to
sensor are usually a result of request received by monitor. Those can expire or can be canceled
by the client. In such case monitor should cancel all subscriptions that were issued to sensors
as a result of original one. If subscription IDs in sensor were assigned arbitrarily they would
not be associated with any subscription in monitor and canceling obsolete sensor subscriptions
would not be possible.

6.6.5. Communication sequence

Figure 6.4 presents an typical message exchange sequence between monitor and sensor,
starting from sensor registering in designated monitor.

The hello message is sent by the sensor right after it has started and chosen proper monitor.
When receiving it, monitor checks the desired transport typeand URL of control channel and
decides whether it will use them or pick new ones. After that,a unique id for new sensor is
generated and the information regarding given sensor, thatis the address of communication
channel and identifier, is put into event provider registry.Finally, a response message is sent
back to sensor, with generated sensor id and actual transport parameters.

Sensor remembers received ID for future use and creates its end of control channel. Then,
it sends to monitor firstResourceUpdatemessage with received ID through the registration
channel. Upon receiving it, monitor updates resource registry. This message it generated by
sensor periodically to inform monitor about any changes andsignalize that sensor is still alive.
At this point monitor knows all new resources and data types that can be provided by the new
sensor and is ready to send requests to it.

When such request is received by the sensor, it analyzes the statement included in it and
invokes proper sampling modules (if needed). It also adds the received statement to the CEP
Engine and associates its endpoint of event channel with transport parameters contained in
registration request (monitor provides an address that it listens on for events). At this point, the
event channel is established and as soon as first event is generated by the CEP engine it will be
sent to monitor.

Because the subscriptions are expiable (see 6.6.4 monitor sendsRenewSubscriptionmes-
sages periodically to the sensor in order to keep the subscriptions valid.
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When given subscription in monitor expires it sends theUnsubscribemessage to sensor to
inform it that EPL statement associated with it is no longer valid. At this point, sensor checks if
sampling module started before is still needed (some other subscriptions may still take advan-
tage of it). If not, it is stopped.

Presented sequence is in considerable part same as interaction between client and monitor.
This concerns the creating, renewing and canceling subscriptions and receiving events. This
compatibility is significant because of future possibilityto unify monitor-monitor and monitor-
sensor communication which is crucial to satisfy the communication uniformity proposition
mentioned in 5.2.

6.7. Sensor architecture

Figure 6.6 presents detailed view of sensor architecture. The dashed lines represent flow
of events containing monitoring data while solid ones symbolize flow of control messages and
signal exchange between components.

The transport stubs are responsible for passing events between remote endpoints of
GEMINI-2 framework. They isolate the higher layers of monitoring infrastructure from specific
implementation of transportation over the network. Each transport stub handles one designated
transport method or protocol. Currently there are four typesof transport stubs available: web
services (CXF implementation), JMS (Java Message Service),plain TCP and within Virtual
Machine. The first three were already part of GEMINI-2 systemwhen work described in this
paper began. The last one was introduced later to make testing and evaluation easier.

The transport methods implemented in GEMINI-2 are unidirectional. That is, they enable
sending information only in one direction. Returning a result by the receiving end is possible
but communication is always initiated by only one side. Because of that, sensor module uses
three transport channels, each represented by one endpointconnected to a transport stub. These
stubs are:

• event transport stub - used tosentevent objects released by the CEP engine to monitor

• request transport stub - used toreceiverequests from monitor that manages given sensor
containing EPL statements.

• control transport stub - used tosendmessages containing set of resources discovered by
this sensor and some control messages such as hello message used to initialize sensor-
monitor interaction (see 6.6

Each transport stub is defined by type that defines protocol and concrete technology that will be
used to transport data (mentioned JMS and web services are transport types) and an address. The
format and meaning of the latter is specific for each type. Forexample, TCP would use hostname
and port number, while JMS requires only a queue name. The concrete implementations of
transport (web services, TCP, VM) can be changed in sensor configuration. By default, JMS
is used to transport events from sensor to monitor and web services are used for requests and
control transport.

All request received by designated transport stub are preprocessed to extract data required
for subscription (see 6.6). This includes: EPL statement, subscription ID and transport type and
address desired by request sender (usually monitor). This data is passed to toEvent Dispatcher.
This component performs the subscription process itself. This includes following steps:
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Figure 6.6: Sensor architecture. Dashed lines represent monitoring data events flow while solid
ones stand for signals and control messages. Sampling modules are responsible for gathering
information about particular resources and can be plugged-in at runtime.

1. assign a unique subscription id; if subscription messagecontains desired id, try to use it.
If not, or passed ID cannot be used, generate a new one

2. determine transport type an address (for example JMS and specific queue name) that will
be used to send events to. Subscriber may sent desired transport parameters but sensor is
not obliged to use them and may use arbitrary transport type and address.

3. requestSampling Module Dispatcher to invoke proper sampling modules in order to
"feed" the received EPL statement with events produced by them

4. register EPL statement in installedCEP Engine

As a result of subscription a response message is sent back tothe subscriber containing actual
subscription ID (which, as written before may but does not have to be same as ID desired by
subscriber) and actual transport type and address (similarbehavior as in case of subscription
ID). Event dispatcher also takes care of subscription renewal and cancellation.

As stated before the task ofSampling Module Dispatcher is to invoke proper sampling
modules. Which ones of them should be started is determined bythe EPL statement from re-
quest. If statement concerns a resource that is handled by given sampling module or it refers to
event type produced by this sampling module (see sampling module initialization modes in 6.5)
then the module is invoked. In order to know what sampling modules are available, Sampling
Module Dispatcher queries Sampling Module Locator for actual list of them. This component is
plugged into the Event Dispatcher as a listener (Observerdesign pattern) and is notified about
each subscription.

Sampling Module Locator is used to detect available sampling modules for given sensor.
Current implementation uses SPI [7] to load sampling modulesat runtime. JAR files with sam-
pling module implementations should be put in designated directory known by the locator. A
special thread checks this directory for any new JARs. If suchfiles are found and they contain
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sampling modules, which is determined using SPI, they are made available to the sensor. Also,
when new sampling module is detected, the Sampling Module Dispatcher is informed about this
fact so that it can initialize sampling modules in advance for future use. Other implementation,
that uses fixed set of sampling modules (not changed at runtime) is also prepared and was added
for testing purposes.

Monitor Agent is used for interaction with Monitor that given sensor is assigned to. It
gathers information about detected resources and sends it to the monitor. It is also responsible
for proper initialization of communication between sensorand monitor. More information on
this subject is available in 6.6.

TheCEP Engine(Esper implementation is used) is somewhat a heart of a sensor. It receives
events produced by the sampling modules and filters, processes and matches them using regis-
tered EPL statement received in requests. The results are sent to the monitor through the event
transport stub. However, as mentioned in 6.1.3 to work properly it has to know the definition
of all simple event types (which are usually Java objects) inadvance. To satisfy that condi-
tion, same solution as in monitor implementation is applied. A message definition registry is
used that contains all event types used by monitoring infrastructure. Each Java object represent-
ing simple event is marked with special annotation that specifies whether message is used for
control purposes (such as request messages) or is a plain data message (containing monitoring
data). These annotations are assigned using AspectJ (aspect-oriented Java extension).

Using CEP Engine in sensor improves data reduction (see 3.3.4) as obsolete events are
discarded immediately at the creation point.

6.8. Sampling modules

Sensor handles resources using sampling modules. Each sampling module specialized in
discovering and measuring one single resource type and provides one single event type con-
cerning this resource.

All sampling modules implement a specific interface that is known by the sensor module.
Through this interface the sensor can control the behavior of a sampling module and change its
state. Figure 6.7 presents available states for every sampling module and transitions along with
signals that invoke them.

The Created state is the initial state for every sampling module. It is triggered when the
module is discovered and created by sensor. No specific actions are performed when transiting
to this state.

The initialization takes place when sampling module is needed for the fist time. At this point
it detects available resources for the first time and performs setup required to probe resources.

After sampling module isinitialized it can be started. Aworking state means sampling
module is probing resource and creating events at given interval. This interval can be changed
to the most suitable value for current needs (see 6.5). A started sampling module can also be
stopped when there is no need for events created by it. The start-stop cycle can be performed
any number of times. Finally, sampling module can be destroyed when it is no longer needed.

Two sampling modules where implemented for evaluation purposes. They are presented in
following part of this section.

6.8.1. Network bandwidth sampling module

This sampling module handles the network links between two hosts and measures available
bandwidth between them. As stated in 4.2.2, network links are phantomresources. Therefore,
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Figure 6.7: Sampling module state diagram.

this sampling module does not perform any resource discovery operation (it shows the dis-
covered resources set as being empty). In fact, it would be virtually impossible to discover all
existing network links.

Instead, it extracts the desired network link from the resource identifier received from sen-
sor. That implies that plain mode requests (see 6.5) are not possible when it comes to this
sampling module as no information about which exactly network links should be probed would
be available.

For bandwidth measuring, this sampling module uses a packettrain method [32]. In order
for it to work, one end of network link must have a particular client installed, and other a special
server. When initialized, this sampling module invokes its own server. Therefore, all nodes that
have a sensor installed with this module can be taken into account for measuring purposes.

In brief, to measure bandwidth, client sends a couple of packets (packet train) to the server
with well defined interval. To improve the accuracy and avoidproblems caused by lost packets,
more than one train is sent. The server, after receiving packets, passes them back to client.
The possible traffic congestion and network delay on examined link will cause the interval
between received packets to be greater than between the onessent by the client in the beginning.
Therefore, bandwidth is estimated based on this interval difference.

The main advantage of packet-train method is that it overloads the network traffic very
slightly. In order for it to work, a few dozens of packets at most are required. This is very little
compared to other methods such as Iperf [6] that for measuring purposes literally flood the
network with thousands of packets in order to utilize all available bandwidth for short period of
time. For example, measuring bandwidth on localhost (about6.8 Gbits/s) sending more than 50
000 packets was required of total size around 1 GB. Packet train method used only 32 packets
of total size of 10 KBytes.

On the other hand, the estimates based on interval differences between packets may not be
as accurate as traditional methods. However, this is not a big disadvantage when it comes to
on-line monitoring. The current available bandwidth valuewill most likely fluctuate in greater
range than the estimation error.

6.8.2. CPU sampling module

Sampling module for measuring CPUs uses SIGAR (System Information Gatherer And
Reporter) - a Java library originally created for the needs ofHyperic monitoring system. It pro-

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



6.9. Distributed CEP support 80

vides unified API for gathering system information. SIGAR provider ways of detecting CPUs
installed in system as well as gathering information about them.

The CPU Sampling Module collects data about all CPUs and their cores available in system.
CPUs that do not have multiple cores are treated as having single explicit core for uniformity.
Gathered static properties:

• maximum frequency - frequency at which processor can work

• CPU number - number at which CPU is visible in operating system

• core count - number of cores

For each core, CPU sampling module measures following dynamic properties:

• idle time - % of time that core was idle

• system time - % of time that core spent executing system calls

• user time - % of time that core spent executing user level calls

6.9. Distributed CEP support

Full implementation of distributed CEP described in chapter5 is very complicated and goes
beyond the subject of this work. However, a number of features and modifications were intro-
duced to both sensor and monitor modules to support distributed CEP and make it easier to
evaluate in terms of feasibility and efficiency, as well as install it in the future. This section
describes them in detail.

6.9.1. CEP Engine in sensor

First implementation of GEMINI-2 framework had a CEP engine installed only in mon-
itor. This engine processed events coming in constant streams from sensors. Sensors in turn
were simply periodical monitoring data generators. Therefore, the architecture corresponded to
traditional centralized CEP.

The installation of CEP Engine is a step towards the distributed CEP and data reduction.
Events can now be filtered at source effectively reducing amount of data being sent to monitor.
The engine in sensor operates accordingly to EPL statementsreceived from monitor. These
statements are associated with requests sent by clients to monitor. Therefore, they are part of
processing one original request issued by client. In other words, processing of single request is
done in at least two distributed points: sensor and monitor.

6.9.2. Request distributor stub

The most difficult thing in implementation of distributed CEPis creating an algorithm that
would produce partial and assembly statements from original one. Some patterns were presented
in 5.3.2 that may be used to develop one.

To evaluate distributed CEP and prepare monitor for using such algorithm, a request distrib-
utor stub was introduced in it. It uses is a simple interface that defines a service for generating
EPL partial and assembly requests as well as identifiers of providers that should take part in dis-
tribution (see 5.4). In addition to this it returns a set of event types involved in partial statements
and assembly statements. This is important because of the facts discussed in 6.1.3 and 6.9.4.
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Current implementation of this interface simply contains a predefined set of distribution pat-
terns, that is a projection of original EPL statements to a triple consisting of assembly statement,
partial statements and set of involved sensors. The set of original statements is finite and has to
be defined directly in configuration.

Although this solution is trivial it is still useful becauseof two reasons:

• it enables testing, evaluation and even usability of distributed CEP. However, the last one
is very limited as client has to pick a specific statement froma set of available ones

• it can be easily replaced with real implementation. Most of features related with dis-
tributed CEP have been implemented to support it.

6.9.3. Event addressing

As written in 5.4, distributed CEP introduces the need for proper event addressing: by source
and by request. Implementing such addressing requires support from both monitor (as event
processor) and sensor (as event source). Solution for the addressing by request problem was
already described in 6.6.4. For marking events with their source, a provider identifier is required.
This identifier is identical with sensor id mentioned in 6.6.5. Therefore, solving the addressing-
by-source problem is as simple as adding a sensor id to each event produced by it.

Current implementation marks all events coming from sensor with both request ID and
sensor ID (correlation Identifier). As a result, whole eventaddressing problem is solved and
results of partial statements can be properly assembled.

6.9.4. Complex event handling

Adding a CEP Engine to the sensor seriously affected the typesof events coming from
it. In prior implementation sensor produced messages of types from predefined set (such as
CpuInfo or NetworkBandwidth) that was well known to monitor. Therefore, it was pos-
sible to define all event types in advance in monitor’s CEP.

However, the existence of CEP engine in sensor involves the dynamically changing set of
possible event types. This is because sensor produces complex events which have contents and
data dependent on received EPL statement. For example, client may specify any set of prop-
erties from given event stream, along with aggregate function such asavg that qualifies for
distribution. As a result, sensor would probably produce events containing all of the requested
properties and components needed for computing the average. It is impossible to predefine such
event types. Therefore, these types have to be extracted from EPL statements (see 6.9.2).

There is one more problem with dynamic event types. All predefined events that are known
to both sensor and monitor are plain Java objects that are generated by Protobuf (see 6.10). They
are serialized and deserialized automatically. However, when it comes to aforesaid dynamic
event types, there is a need of a generic way of converting them to protobuf message that can
handle virtually any type of event. To solve this problem an additional Protobuf message was
added that contains a list of property names with their values. It can be easily converted to
map-based-type event (see 6.1.3) and used by CEP engine in monitor. Explicit marshalling and
demarshalling (in addition to operations provided by the protobuf-generated code) were also
implemented.
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6.10. Used technologies

Previous sections already mentioned a some of technologiesused by GEMINI-2 frame-
work with its new modifications. Below is a cumulative list of all more significant solutions in
GEMINI-2.

• Protobuf - protocol buffers used, among others, by Google. Protobuf enables easy defi-
nition of messages that are sent over the network. Serialization and deserialization mech-
anisms are created automatically. Message definitions are compiled to a number of pro-
gramming languages, including Java. Main advantages of protobuf-based messages is
their small size and fast serialization.

• Esper - CEP engine Java implementation. Already described in 6.1.3

• Spring - J2EE application framework. Used by GEMINI-2 to assemble modules from
components and smaller beans and for configuration.

• ActiveMQ - JMS implementation. Used by GEMINI-2 for JMS transport implementation
(see 6.7)

• Sigar - an open source library used by Hyperic monitoring system. It contains a number
of useful Java wrappers for standard system calls that can beused for gathering data on
various hardware resources. Used by CPU Sampling Module (6.8.2).

6.11. Configuration

GEMINI-2 uses Spring framework to assemble and configure itscomponents, monitor and
sensor in particular. Configuration is kept in XML files, usually one per component.

This section describes the configuration of sensor and monitor. Almost all of elements de-
scribed here were already implemented in GEMINI-2 framework when works described in this
Thesis began. They are described for reference.

Each configuration for sensor and monitor contain a gemini context tag. It is a heart of
GEMINI-2 component configuration. It defines the endpoints,transport protocols with imple-
mentation and modules that are attached to them. In other words, it describes an interface of
GEMINI-2 component (sensor or monitor) that it can connect with with other elements of in-
frastructure. Below is an example of Gemini context from sensor configuration:

<geminiContext xmlns="http://cyfronet.edu.pl/gemini2/schema/spring"
id="samplesensor">

<endpoint uri="event:producer:sensor">
<transport uri="jms:queue:esperQueue" />

</endpoint>

<endpoint uri="msm:consumer:subscriptionListener" >
<transport uri="jms:queue:requestQueue"/>

</endpoint>

<endpoint uri="epc:producer:sensorSubscriber" >
<transport uri="ws:http://localhost:9000/msm" />

</endpoint>
</geminiContext>

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



6.11. Configuration 83

This gemini context contains three endpoints. Each endpoint is defined with specific URI.
The URIs are composed of three parts separated with colon. First one specifies the type of chan-
nel. Currently, there are three types of endpoints available. In fact, these are implementations of
channels described in 6.6.2:

• event - channel used for transporting events

• msm - Monitoring Service Management channel. Used to send or receive EPL requests

• epc - Event Provider Control - used by sensor to subscribe in monitor and sendRe-
sourceUpdatemessages.

As stated in 6.6.2, each channel is unidirectional. The direction of channel is specified by
the second part of URI. A given endpoint (belonging to a gemini-context holder, like monitor
or sensor) may be either consumer or producer. In the exampleabove, sensor is producing to
event channel (this is obvious as sensor’s job is to produce events), reading from themsm chan-
nel (receiving requests from monitor) and producing to theepc channel (sending registration
requests and resource update messages).

The third part of URI specifies a name of Spring bean that will beusing a given endpoint.
The exact interface that this bean must implement is specificto the endpoint type. More infor-
mation is available in [5].

Each endpoint has a list of possible transports assigned. Ingiven example, only one transport
per endpoint is defined but more can be added. Similarly to endpoints, transports are also defined
with URIs composed of parts. The first part specifies the type oftransport, or in other words the
protocol. The meaning and format of second part of the URI is type dependent.

Besides defining communication interface, the Gemini context is also important because it
imposes the rest of configuration. In fact, both monitor and sensor configuration is built around
it in order to satisfy dependencies for the beans that are attached to endpoints. Because the other
parts are ordinary Spring beans with traditional Spring bean configuration and definition, they
will not be listed here.

G. Dyk Grid Monitoring Based on Complex Event Processing Technologies



7. Evaluation

The main purpose of this chapter is evaluation of concepts, solutions and design deci-
sions that were presented in previous parts of this Thesis. Firstly, a performance test results
of GEMINI-2 framework are given with emphasis on new sensor module behavior. They cover
memory usage and bandwidth utilization caused by monitoring activity. Then, an extensive use
case that concerns applying GEMINI-2 framework to monitoring storage devices in distributed
environment.

7.1. Performance

This section is devoted to performance tests of distributedCEP . The goal is to determine
how data reduction caused by CEP engine installed on sensor may limit bandwidth utilization
and at what are memory costs of conducting event processing on sensor. The latter aspect is
important because it may affect the performance of node thatsensor is installed on. In most
cases, these nodes would have other tasks to execute. Additionally, processing time of single
event was measured.

For these performance tests a simple infrastructure consisting of one monitor and one sensor
connected to it was used. Both monitor and sensor were installed on the same machine commu-
nicating with JMS queues for events and internal Virtual Machine for transport. Monitor as well
as sensor were working in the same instance of JVM. To generate events an artificial sampling
module was use that sent events with specified interval.

One may question the credibility of results obtained on suchsimplified infrastructure. How-
ever, when it comes to the memory usage only the part caused byevent accumulation is taken
into account. Because monitor does not aggregate events, it just passes them directly to client
stub, only sensor’s accumulation affects increased memoryusage. Moreover, the network uti-
lization still can be measured with respect to processing ofsingle request. Obviously, when
sensor is processing more requests, the event stream created by it will be greater and will con-
sume more bandwidth.

7.1.1. Memory usage

A couple of scenarios were tested to measure memory usage. Each scenario defines a state-
ments sent by client and partial statement received by sensor. The latter is the main point of
interest as it affects the resource usage by sensor. Each scenario also uses different event gener-
ation interval. Usually it is 1 second.

In each case the used memory was measured using the built in Java methods:
totalMemory andfreeMemory of thejava.lang.Runtime class. The value was cal-
culated as a difference of outcomes of these two methods. Moreover, the garbage collector was
invoked before each reading to make sure only really needed memory is taken into account.
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Figure 7.1: Memory usage scenario 1 results

Scenario 1
Original statement:

select * from CpuInfo

Partial statement:

select * from CpuInfo

Events were generated with 1-seconds intervals. This scenarion was used to simulate a case
where no event processing takes place in sensor. The statements simply pass the events to the
monitor and then client. Presented plot (figure 7.1 show thatamount of used memory was fairly
constant. The visible fluctuations can be bounded with constant minimum and maximum values.

Scenario 2
Original statement:

select avg(userTime) as au from CpuInfo.win:time(4 hours) where providerId
= ’sensor1’ output last every 1 hour

Partial statement:

select avg(userTime) as au from CpuInfo.win:time(4 hours) output last every
1 hour

In this scenario events were generated with one second interval. Figure 7.2 presents out-
comes of measurement. Fluctuations visible in the figure areprobably caused by temporary
objects being created for processing purposes. Still, gradual increase of the minimum value of
used memory is quite clear. It is caused by the fact that the window in partial statement is filling
with events. When its full (after 240 minutes) the minimum usage becomes relatively constant
as no more events can enter the window. They just replace the old ones.

Scenario 3
Original statement:

select * from CpuInfo.win:time(2 hours) where providerId = ’sensor1’ output
all every 2 hours

Partial statement:

select * from CpuInfo.win:time(2 hours) output all every 2 hours

Events were generated every 1 second. Unlike in scenario 1, memory usage increases gradu-
ally and drops after every 120 minutes. This corresponds to the partial statement which contains
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Figure 7.2: Memory usage scenario 2 results
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Figure 7.3: Memory usage scenario 3 results
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Figure 7.4: Memory usage scenario 4 results

anoutput clause that instructs CEP Engine to release all events accumulated in window after
2 hours.

Scenario 4
Original statement:

select * from CpuInfo where providerId = ’sensor1’ output all every 2 hours

Partial statement:

select * from CpuInfo output all every 2 hours

Again, events were generated every 1 second. This scenario is very similar to previous one.
The only difference is lack of the time window. The results are also very similar. Memory used
to store events is freed every 120 minutes after gathered events are released.

Scenario 5
Original statement:

select * from CpuInfo.win:time(2 hours) where providerId = ’sensor1’ output
all every 2 hours

Partial statement:

select * from CpuInfo.win:time(2 hours) output all every 2 hours

This scenario uses the same statements as scenario 3. Unlikein previous cases, in this one
events were generated every 10 milliseconds. The purpose ofthis scenario was to check the
memory usage under extremely large stream of events. The memory usage is clearly greater
that in previous cases and rises quickly up to nearly 93 MB. Similarly to previous scenarios,
when events are released memory used to store them is freed.

All of presented scenarios clearly indicate that memory usage increases when statements
with output control or time windows are processed. Therefore, it should be taken into account
when installing on nodes that are also utilized for other tasks. However, the overhead caused by
given statements was not very big. It did not exceed 2 MB. The exception was scenario 4 but
it used unusually dense stream of events. In other words, thememory usage caused by event
processing itself seems to be acceptable.
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Figure 7.5: Memory usage scenario 5 results
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Figure 7.6: Network utilization scenario 1 results

7.1.2. Network utilization

Similarly as in case of memory usage tests, network utilization was also measured in refer-
ence to a few scenarios. In each of them a single EPL statementwas examined in two modes:
with and without distributed CEP. In all cases events were produced with 1-second interval.
For the distributed CEP mode a partial statement that was prepared in accordance with patterns
shown in 5.3.2 and was issued to sensor is given. Event messages were sent with TCP trans-
port implementation. In order to get the amount of bytes sentover the local loopback aniptraf
program was used. The results are presented below.

Scenario 1
Original statement:

select avg(usertime) as au from CpuInfo.win:time(10 seconds) output last
every 10 seconds

Partial statement:

select sum(usertime) as s, count(usertime) as c from CpuInfo.win:time(10
seconds) output last every 5 seconds
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Figure 7.7: Network utilization scenario 2 results

In figure 7.6 results of scenario 1 are presented. The difference of bandwidth usage is clearly
visible and is in favor of distributed CEP. In fact, utilization of network of the latter is about five
times lower. This is clearly caused by theoutput clause in the partial statement that releases
events every 5 seconds instead of one.

Scenario 2
Original statement:

select avg(usertime) as au from CpuInfo.win:time(10 seconds) output last
every 10 seconds

Partial statement:

select sum(usertime) as s, count(usertime) as c from CpuInfo.win:time(10
seconds) output last every 5 seconds

Figure 7.7 shows results for scenario 2. This one presents a very unfavorable statement
distribution. It causes twice as much network utilization as standard solution. This is caused by
the fact that the time window creates new result every time anevents enters it or leaves. This
happens more often than each 1 second. Scenario 2 shows that not every distribution is favorable
and it has to be considered whether a statement should be processed in this way or not. More
information about benefits from statement distribution is discussed in 5.6.1.

Scenario 1 clearly show the benefits of distributed CEP and data reduction that comes with
it. Although presented bandwidth utilization values are not very high (around hundred bytes
per second), they concerns single event stream. If sensor was emitting more event streams as a
result of processing multiple requests, which is not an uncommon case as single sensor handles
many resource instances, the utilized bandwidth would be many times higher. In such case, the
profit of data reduction would be much greater.

Scenario 2 may look discouraging. Not only implementation of distributed CEP poses many
problems, it can actually make the network performance worse when not used correctly. How-
ever, one should keep in mind that statement used in this scenario is quite obsolete in real ap-
plications. It is anticipated that most statements used could be profitably or at least harmlessly
distributed as in scenario 1.
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7.1.3. Event processing time

Time of processing single event by monitor was measured. It is defined as time between
reception of event sent by sensor and releasing of event thatwas created as a result. Measured
value ranged from 15 to 90 milliseconds, depending on CPU loadof machine.

This value is significant because of the reasons presented in5.5. Each monitor introduces a
slight delay in event processing and may cause eventual datainaccuracies. Therefore, this value
should be taken into account when designing the layout of monitors in monitored network.

The processing time depends very slightly on CEP engine performance, which in case of
Esper is very good. Most overhead is introduced by transportation mechanisms and related
serialization (especially JMS).

7.2. Storage device monitoring

This section is devoted to using GEMINI-2 framework to measuring parameters of various
storage devices working in distributed environment. It is intended as a case-study for imple-
mented changes in GEMINI-2 and simple proof of concept for resource handling and descrip-
tion mechanisms. I also presents a process of designing a sampling module to handle new type
of resource.

Presented information is very general. This is because GEMINI-2 is still under development
and implementation and configuration details may change in near future. Therefore this chap-
ter should not be perceived as some kind of manual for implementing sampling modules for
measuring storage devices. These kinds of information are available in [5].

7.2.1. Background information

Three kinds of storage systems are taken into account: disk arrays, hierarchical storage
management (HSM) and ordinary local disks.

Local disks are simply single hard disk drives that are visible directly by the operating
system. They do not involve any sophisticated hardware or software.

Disk arrays are set of hard disks that are used to store data insuch way that it is more
secure and can be more efficiently read compared to single disk. Several models of data layout
over disks are available called RAID (Redundant Array of Independent Disks) levels. Each level
specifies whether and how data is backed up and how redundant it is. RAID levels are designated
with integer numbers. There are 5 standard levels of RAID. Disk arrays usually communicate
with operating system through special hardware controller. There is also a possibility to create
software RAID matrix.

Hierarchy Storage Management is a system that automatically migrates data between differ-
ent levels of storage device types. Each level consists of same kind of storage devices. In most
cases there are three levels. On top there are higher-cost devices, such as hard disk drives. They
keep frequently accessed data. Lower are optical disk that are cheaper but less efficient. Finally,
at the bottom of hierarchy are tape drives that can store significant amounts of data but suffer
from very long access times. The whole idea of HSM is to migrate data between these levels in
most efficient way, considering data access time and storagecosts. For the need of this chapter
two-level HSMs will be considered.
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Name Data type Static? Description
Local disks
device name string X name under which device is visible in oper-

ating system. For example, disks in UNIX
are named sda1, hda2 etc.

Total capacity integer[bytes] X maximum number of bytes that given disk
can hold

free capacity integer[bytes] ✗ number of bytes that can be used to write
data on disk

average read transfer integer[bytes/s] ✗ number of bytes that can be read in one
second from disk on average. Although
this is not a static property by nature, it af-
ter enough number of estimates it becomes
quite stable and does not change over time
and can be considered as such

average write rate integer[bytes/s] ✗ same as above but concerns writing data
current read transfer integer[bytes/s] ✗ number of bytes that are currently being

read in one second
current write transfer integer[bytes/s] ✗ same as above but concerns writing bytes
working boolean ✗ true means the device is reading or writing

data at the moment

Table 7.1: Common properties for storage devices

Name Data type Static? Description
RAID level integer X number defining the level of RAID
disk number integer X number of disk that array consists of

Table 7.2: Unique properties of disk array resource

7.2.2. Storage devices properties

In order to design a sampling module properties of storage devices that will be measured
have to be found and defined. All resources considered in thischapters have some common
purpose and functions. They are all used to store data and provide at least reading and writ-
ing features. Therefore, a number of common properties can be identified. These are listed in
table7.2.2. Each one has a static/dynamic qualification andoptionally a description.

Moreover, HSM systems and disk arrays have some unique properties. They are presented
in tables 7.2.2 and 7.2.2.

7.2.3. Resource type definition

After the properties have been found and described, resource type can be defined, according
to 6.2. Metadata for each of discussed three resource type isshown in tables 7.2.3. The fields in
these types correspond to static properties presented previously. For this reason the description
for them is omitted because meaning is the same as in 7.2.2.

Presented information can be used by GEMINI-2 sensors to define resources and send in-
formation about them to monitors and by whole framework to define event types that will
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Name Data type Static? Description
high watermark float X % of disk space filled after which data mi-

gration to lower levels of HSM begins. Al-
though this property is not strictly static
it usually changes very infrequently and
sometimes can be treated as such.

low watermark float X % of disk space filled data migration in-
voked by high watermark stops. Similarly
to previous property, this one also can
sometimes be treated as static

libraries listof libraries X list containing information about tape li-
braries that HSM system includes. Each li-
brary is defined by name and contains a
number of tape drives. Each drive can be
empty or contain a tape.

number of premigrated
files

integer ✗ number of files that have been selected for
migration and have been moved to special
migration directory on disk (premigration
state)

size of premigrated files integer[bytes] ✗ same as above but concerns total size of
these files

number of migrated
files

integer ✗ number of files that have been migrated to
lower level of HSM hierarchy

size of migrated files integer ✗ same as above but concerns total size of
these files

Table 7.3: Unique properties of disk array resource
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contain information about these resources state. Typically, a monitoring data event contains
values of all non-static properties. For example, as far as disk array monitoring events is
concerned, event would contain values forfreeCapacity, averageReadTransfer,
averageWriteTransfer,currentReadTransfer,currentWriteTransfer and
true/false value forisWorking. Therefore, both event and resource definition are ready.

The fact that some common group of properties have been identified in 7.2.2 suggest us-
ing some kind of inheritance mechanism for resource metadata. HSM, Local disk and Disk
Array resource types could have a common supertype: StorageDevice. Unfortunately current
implementation of resource handling in GEMINI-2 does not support such constructions.

7.2.4. Event types definition

Based on resource type definitions established in previous section event types that will carry
information about particular resources can be defined. Theyare presented in table 7.2.4. Most
fields in those events are self explanatory or correspond to fields in resource types therefore
their description is omitted.

Unlike resource types, presented event type set do take advantage of the fact
that some common properties can be identifier among storage devices. Events
StorageDeviceDynamicParameters and StorageDeviceStaticParameters
can be used to transport data that concerns any device used tostore data. Other events detail
this information. Messages concerning the same resource instance can be associated using
resourceID as they will have same value in this field.

Static and dynamic properties have been put into separate events. Such solution helps avoid-
ing situation, where a lot of dynamic properties are measured while consumer requests only
single static one. In presented solution, consumer can explicitly request for static properties
only.

7.2.5. Sampling module implementation

After events content are defined and resource properties described, one may start to im-
plement sampling modules. One sampling module per resourcetype will be required. Each of
them will produce events with type corresponding to measured resource. The implementation
details will not be discussed here. Measuring local disk parameters is usually fairly easy. How-
ever, getting information about HSM systems strongly depends on their producer and operating
software. Same applies to discovery of those resources.

During design and implementation of sampling module one hasto pay attention to number
of things:

• time required to perform single measurement must not be long. Typical probing times
range 1-5 seconds

• sampling module should rely on native measurement utilities (operating system tools,
hardware vendor tools etc.) as much as possible to ensure efficiency and measurement
accuracy

Sampling module should be packaged in JAR file with the main class that handles mea-
surement specified in META-INF directory accordingly to SPIspecification [7]. Thanks to that
Sampling Module Locator (see 6.7) will be able to detect and initialize it. Finally, the whole jar
should be placed in designated directory that holds all available sampling modules.
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Field Value
Name "HSM"

Property names

deviceName
totalCapacity
freeCapacity
averageReadTransfer
averageWriteTransfer
currentReadTransfer
currentWriteTransfer
isWorking
lowWatermark
highWatermark
libraries

Discriminator deviceName

Static properties

deviceName
totalCapacity
lowWatermark
highWatermark
libraries

(a) HSM metadata

Field Value
Name "DiskArray"

Property names

deviceName
totalCapacity
freeCapacity
averageReadTransfer
averageWriteTransfer
currentReadTransfer
currentWriteTransfer
isWorking
RAIDLevel
diskCount

Discriminator deviceName

Static properties

deviceName
totalCapacity
RAIDLevel
diskCount

(b) Disk array metadata

Field Value
Name "Disk"

Property names

deviceName
totalCapacity
freeCapacity
averageReadTransfer
averageWriteTransfer
currentReadTransfer
currentWriteTransfer
isWorking

Discriminator deviceName

Static properties
deviceName
totalCapacity

(c) Local disk metadata

Table 7.4: Resource metadata for storage devices
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Field Datatype
resourceID string
parentID string
totalCapacity integer[bytes]
deviceName string

(a) StorageDeviceStaticParameters

Field Datatype
resourceID string
parentID string
freeCapacity integer[bytes]
averageReadTransfer string
averageWriteTransfer string
currentReadTransfer string
currentWriteTransfer string
isWorking boolean

(b) StorageDeviceDynamicParameters

Field Datatype
resourceID string
parentID string
libraries list of Library
highWatermark integer
lowWatermark integer

(c) HSMStaticParameters

Field Datatype
resourceID string
parentID string
diskCount integer
RAIDLevel integer

(d) DiskArrayStaticParameters

Table 7.5: Event types for storage devices

Field Datatype
resourceID string
parentID string
hostName string

(a) AgentInfo

Field Datatype
resourceID string
parentID string
agentHostName string
hostName string

(b) ControllerInfo

Table 7.6: Additional event types for example purposes

7.2.6. Example

This part contains an example of distributed CEP based monitoring framework. Its main
purpose is to provide a clear overview of how concepts presented in this Thesis regarding men-
tioned approach (especially in chapter 5) may work in real solution.

The example refers to architecture presented in figure 5.11.All presented EPL statements
use event types defined in 7.2.4. In addition to them, events presented in 7.2.6. They concern
information about agents and disk controllers respectively.

Following assumptions are made:

• that the infrastructure is up and running, that is all required connections between compo-
nents are established, and no errors occur during the processing.

• the sensors installed at each disk array produce events periodically, sending a constant
stream of events to disk controllers.

• the event propertyresourceID uniformly defines event producer. This fact will be
needed in statements with thegroup by clause
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• disk array resource belongs to (is child of in resource hierarchy of) disk controller re-
source.

Below are actions, in order, that are taken by each component of the architecture.

1. Consumer sends request to the front monitor containing a following EPL statement:

select ai.hostName as agentId, avg(da.freeCapacity) as avgFreeSpace
from StorageDeviceDynamicParameters.win:time(1 minute) as da,
ControllerInfo as ci, AgentInfo as ai where da.parentID =
ci.resource Id and s.agentHostName = AI.hostName group by
ai.resourceID output last every 10 seconds

With this statement consumer attempts to obtain information about the trend in used disk
space for each disk array in both clusters

2. the front monitor receives the request and assigns an id toit (needed for event addressing -
see 5.4)usedSpace. It also examines the statement contained in the request andestablishes
following facts:

• Two event types are involved in the statement:
StorageDeviceDynamicParameters andControllerInfo

• There is agroup by clause that "splits" the events in accordance to the sources.
In other words, each group comes from different source

• there is anavg aggregation function involved

3. Basing on the information above, the front monitor sends following requests to cluster
agents:

select ai.hostName as agentId, avg(da.freeCapacity) as avgFreeSpace
from StorageDeviceDynamicParameters.win:time(1 minute) as da,
ControllerInfo as ci, AgentInfo as ai where di.controllerId =

ci.resourceID and ci.agentHostName = ai.hostName output last every 10
seconds

simultaneously, a following statement is used as assembly one:

select * from aggregateStream where requestId = ’usedSpace’

The aggregateStream is an event stream composed of events received from the
agents. The type of the events that will be contained in this stream is determined when
the partial requests are constructed. Thewhere clause assures that only events associ-
ated with this particular request will be used to compute final result. Apart from partial
statement, also request id is sent to agents.

4. Both agents receive their requests. They read the request id contained in them and remem-
ber it for future use. They analyze the statement and, just like the front monitor, construct
their own partial statement:

select ci.agentHostName as agentId, sum(da.freeCapacity) as
freeSpaceSum, count(da.freeCapacity) as freeSpaceCount from
StorageDeviceDynamicParameters.win:time(1 minute) as da,
ControllerInfo as ci where da.parentID = ci.resourceID group by
ci.resourceID output last every 5 seconds

and assembly statement
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select ai.hostName as agentId,
sum(ag.freeSpaceSum)/sum(ag.freeSpaceCount) as avgFreeSpace from
aggregateStream.std:unique(providerId) as ag, AgentInfo as ai where
ai.hostName = ag.agentId and requestId = ’usedSpace’ group by

ai.hostName output last every 10 seconds

In both statements thegroup by clause is added only to make them compilable (events
have to be grouped by the selected fields, just like in SQL). Technically, the grouping is
done by splitting the original statement to partials Again,request sent to disk controllers
contain the request id.

5. Disk controllers receive the statements and install themin their CEP Engines. After 5
seconds, their CEP engines generate first events. Before they are sent to the agents, request
id and provider id are added to them.

6. When agents receive events, they put them into their CEP engines with proper assembly
statements installed. Their output control tells the engine to release events every 10 sec-
onds. After that time (assuming that at least one event provided by disk controller arrives
before which should occur because of 5-second interval in their statements). As soon as
any event leaves the CEP engine, requestId and providerId areadded to it.

7. finally, the front monitor receives the first event. Just like in other cases, it is put into
monitor’s CEP engine. When event the engine releases event, itis passed to the consumer.

Obviously, presented scenario does not cover all aspects ofdistributed CEP. For instance,
the problem of establishing communication channels between providers and consumers, event
type recognition from statements and statement distribution mechanism itself still need to be
resolved. Some of these are discussed in chapter 6.

Moreover, it has to be admitted that brought up EPL example isfairly complex. In order
to distribute it in a way as above, the distribution algorithm would have to analyze the join
relations between three event types. Fortunately, real-life statements probably would use such
constructions fairly rarely.
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8. Summary

Presented work made a significant step in GEMINI-2 frameworkdevelopment towards more
efficient and complete monitoring infrastructure. Particularly, a problem of distributed CEP was
defined and then examined and evaluated using mentioned system. It proved to be relatively
complex to design and implement. A number of potential problems regarding applying this
technology in monitoring systems was identified and described. Moreover, some directions were
given that could help implementing it. Although GEMINI-2 does not fully support distributed
CEP yet, a number of improvements were introduced to bring it closer to complete functioning
of this technology.

The test results are promising as far as network utilizationas well as memory consumption
of monitoring infrastructure are concerned. This indicates that the development of distributed
CEP support in GEMINI-2 may be beneficial and make this system an efficient monitoring
platform that is able to compete with other solutions in thisfield.

These conclusions indicate that the main goal of this Thesisregarding applicability and eval-
uation of distributed CEP in grid monitoring was reached. Whenit comes to the other problems
mentioned in 1.2 they were also solved. A sensor module was designed and implemented, mak-
ing GEMINI-2 more extensible and capable. In addition to this, some basic concepts regarding
resource handling were defined, described and introduced todiscussed monitoring system.

Following sections take some other issues regarding work described in this paper. These
include the fulfillment of requirements for monitoring system and plans for the future when it
comes to the development of GEMINI-2.

8.1. Functionality compliance

Section 1.3 defined a set of requirements that a monitoring infrastructure for distributed
environments should meet. The implementation of GEMINI-2 sensor component and modifica-
tions introduced to monitor helped some of them to be met by GEMINI-2 framework. They are
listed below, with short justifications:

• diverse data granularity (1.3.2) - CEP technology provides varied data granularity sup-
port out of the box. User can define any pattern and aggregate any types of events

• extensibility (1.3.5) - architecture of sensor that utilizes easily replaceable sampling mod-
ules definitely contributes to overall extensibility of GEMINI-2 framework

• low overhead (1.3.7) - development towards distributed CEP support by introducing a
CEP engine in sensor and using efficient measuring techniques(such as packet-train
method to probe bandwidth) reduce the overall overhead thatGEMINI-2 may have on
environment it is installed in.
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• on-line operation (1.3.6) - the CEP technology itself is on-line oriented in nature.

Still, a number of requirements awaits resolving. Most important ones include security, data
storage and ease to deploy.

8.2. Future challenges

In chapter 6 it was mentioned that some features of GEMINI-2 framework are not imple-
mented yet. Below is a more complete list of parts that need development.

• implementation of request distributor - this is probably the most challenging feature to be
implemented of all mentioned. The analysis of EPL statementin order to extract data and
operations that can be distributed poses many difficulties.They were mentioned mainly
in 5 but also in this chapter. Request distributor is crucial for full distributed CEP support.

• improve security - test results presented in 7.1.1 clearly showed that long time windows
cause significant memory usage. This may be a security vulnerability as malicious clients
could send requests containing really long windows measured in hours or event days.
Therefore, additional analysis of received statements insrequired. It could be conducted
by the request distributor along with distributed statement creation.

• design monitor discovery mechanism - some kind of monitor discovery is required for
sensors to automatically initialize. Currently, they must have an address of monitor they
are supposed to work with predefined. That makes automatic initialization and configu-
ration of sensors very hard or impossible. This problem is discussed more thoroughly in
6.6.1.

• resource type inheritance mechanism - currently there is not possibility to define any
relation between resource types. As resource type definition example presented in 7.2.2
showed, a mechanism for resource type inheritance could be useful to avoid redundant
property entries. Moreover, it would help organize resources in more sophisticated way
(right now they form a tree hierarchy), thus making search operations more efficient and
flexible (for example, fetching all resources of given type and its subtypes).

• implement proper resource registry - as mentioned before, currently resource registry is
just a stub that is used for evaluation purposes. For fully functioning monitoring infras-
tructure a more sophisticated component is needed. The requirements for it include:

– generally accessible by all elements of GEMINI-2 infrastructure: monitors and
clients. Monitor need it to update resource data and sometimes fetch information
needed to distributed EPL statement that concerns given resources over sensors.
Clients would be able to obtain data about static properties of resources without
involving monitors in the process.

– persistence - data contained resource registry should be preserved during failures
of single monitors or even whole monitoring infrastructure. Usually the layout of
hardware resources does not change rapidly in distributed environments so most
resources would still be up to date when system is initialized after failure
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– efficiency - some resources , such as processes, do appear anddisappear from dis-
tributed environment often. Therefore, frequent data updates issued to resource reg-
istry are probable. Moreover, clients may also request datafrom registry very fre-
quently. Resource registry should be prepared to handle all these operations effi-
ciently.

• unify interfaces between GEMINI-2 components - current interfaces allow monitor to
request data only from sensors and accept requests from clients only. In order to enable
a fully functional architecture as suggested in 5.2, a unification of these interfaces is
needed. Each monitor should be able to register in other monitor just like sensor does
now. Similarly, each monitor should be able to request data from other monitor just as
client does it with regard to monitor and monitor with regardto sensor. In other words,
each monitor should be able to work as a event consumer (client) and event producer at
the same time [47]. Some work in this field been done in this area by applying the request
interface used by client to monitor (see 6.3).

• introduce instrumentation - current implementation of GEMINI-2 framework does not
allow user to probe state of processes. A system of process instrumentation is needed to
satisfy this need. A certain solutions are presented in [15], [49] and [16]
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Glossary

consumer A computer, subsystem or any other element of
distributed system interested in receiving moni-
toring data., 22

node Single machine that works in network, usually
part of a cluster, 11

probing Activity of sensor or any other device/software
that is responsible for handling resources that
consists in gathering monitoring data about re-
source instances. For example, CPU probing
would be extracting information about its user,
system and idle time., 12

producer Any element of distributed environment that
gathers and sends monitoring data to consumers.
It may be any kind of sensor, application etc., 23

resource Any element of distributed environment that can
be subjected to measurements and monitoring.
This include hardware (CPUs, hard disk drives,
memory, nodes, network links), software (pro-
cesses, applications, operating systems) or other
(databases)., 11
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