
AGH UNIVERSITY OF SCIENCE

AND TECHNOLOGY IN KRAKÓW, POLAND

Faculty of Electrical Engineering, Automatics,
Computer Science and Electronics

Department of Computer Science

Installation of complex e-Science
applications on heterogeneous

cloud infrastructures

Bartosz Wilk

Master of Science Thesis
in Computer Science

Supervisor: Dr Marian Bubak

Consultancy:
Marek Kasztelnik (ACC Cyfronet AGH, Kraków),

Dr Adam Beloum (Informatics Institute, University of Amsterdam)

Kraków, August 2012

Aware of criminal liability for making untrue statements I declare
that the following thesis was written personally by myself and that
I did not use any sources but the ones mentioned in the dissertation
itself.

.

AKADEMIA GÓRNICZO-HUTNICZA

IM. STANISŁAWA STASZICA W KRAKOWIE

Wydział Elektrotechniki, Automatyki,
Informatyki i Elektroniki

Katedra Informatyki

Instalacja złożonych aplikacji
e-Science na zasobach chmur

obliczeniowych

Bartosz Wilk

Praca magisterska
Kierunek studiów: Informatyka

Promotor: dr inż. Marian Bubak

Konsultacja:
mgr inż. Marek Kasztelnik (ACK Cyfronet AGH, Kraków),

Dr Adam Beloum (Informatics Institute, University of Amsterdam)

Kraków, Sierpień 2012

Oświadczam, świadomy odpowiedzialności karnej za poświadcze-
nie nieprawdy, że niniejszą pracę dyplomową wykonałem osobiście i
samodzielnie i że nie korzystałem ze źródeł innych niż wymienione w
pracy.

.

Abstract

Nowadays virtually any serious scientific research has to be supported by
computing. As the time it takes to lead computations from the phase of de-
sign to the end of execution is crucial for the experimentation process, pro-
ductivity of the scientists’ work depend on issues inherently associated with
the process of computational environment preparation. Moreover, following
the modern trends of computer systems virtualization, more and more to-
day’s scientists decide to deploy their experiments in a relatively cheap, ro-
bust and efficient distributed infrastructure based on cloud services. In this
thesis a solution that responds to a need for means of automatic e-Science ap-
plication deployment in a heterogeneous cloud infrastructure is presented.

The scientific objective of this work is to evaluate the possibility of ap-
plying the methodology of Software Product Line to the experiment envi-
ronment preparation process. The created tool proves the feasibility of this
concept by adapting Feature Modeling to the domain of e-Science and al-
lowing for deployment of application comprising a selection of features. The
implementation takes advantage of State-of-the-art of large scale software in-
stallation automation methods, and uses a popular provisioning tool (Chef)
to support deployment in heterogeneous cloud infrastructure. The system
was built on the basis of requirements originating from VPH-Share, and al-
lows scientists involved in the project for quick and intuitive creation of ex-
periment environment, by using interface accessible through a Web Browser.
The application was deployed in the production environment of the project
and evaluated in several categories including usability, security and scalabil-
ity.

Furthermore, there was elaborated a generic architectural concept of ex-
tensible Software Product Line, inspired by the experience gained in pro-
cess of tool design and implementation. The concept applies to generation
of production line architecture directly from the Feature Model. Presented
reasoning can constitute a base for a framework to creation of declaratively
managed, plug-in-based Software Product Line, extensible in terms of feature
installation methods.

After an introduction (Chapter 1), there is presented a comparison of
provisioning tools (Chapter 2) evaluated in the phase of research. The

i

ABSTRACT

definition of Software Product Line, a concept of its application and a review
of technologies suitable for implementation of the tool is introduced in
Chapter 3. The following two chapters present the tool design (Chapter 4)
and details of its implementation (Chapter 4). After a chapter devoted to
the system review (Chapter 6), further reasoning on Software Product Line
inspired by the research is described (Chapter 7). Chapter 8 summarizes the
thesis and describes plans for future work.

KEYWORDS: e-Science, Cloud Computing, Software Product Line, Fea-
ture Model, Provisioning Tools, VPH-Share

ii

Acknowledgments

I dedicate this thesis to my parents for their love and continuous support in
everything I do. I would like to thank my supervisor Dr Marian Bubak for
sharing his experience and guidance throughout the process of writing this
thesis. I would also like to express my appreciation to Marek Kasztelnik for
his advisory in designing and implementation of the tool developed in scope
of this work. Eryk Ciepiela and Jan Meizner are thanked for their helpful
insights and suggestions.

This thesis was realized partially in the framework of the following projects:

Virtual Physiological Human: Sharing for Healthcare (VPH-Share) - partially
funded by the European Commission under the Information Communication
Technologies Programme (contract number 269978).

Project UDA-POKL.04.01-01-00-367/08-00 "Improvement of didactic poten-
tial of computer science specialization at AGH", at the Department of Com-
puter Science, AGH University of Science and Technology, Al. A. Mick-
iewicza 30, 30-059 Krakow

iii

Contents

Abstract i

Acknowledgments iii

Contents v

List of Figures vii

Abbreviations and Acronyms xiii

1 Introduction 1
1.1 Background . 1
1.2 Survey of automatic software installation methods 3
1.3 Objectives of the thesis . 7

2 Provisioning in cloud infrastructure 9
2.1 Comparison of provisioning tools 9
2.2 Provisioning with Chef . 12
2.3 Summary . 15

3 Software Product Line as a generic approach to software creation 17
3.1 The concept of using Software Product Line methodology . . 17
3.2 Overview of Feature Modeling 18
3.3 Families of Feature Model reasoning algorithms 21
3.4 Solvers based on Boolean Satisfiability Problem and Binary

Decision Diagrams . 24
3.5 Tools for Feature Model reasoning 26
3.6 Summary . 32

4 Experiment environment preparation tool overview 33
4.1 Cloudberries general description 33
4.2 Specification of requirements 34
4.3 High-level system design . 36
4.4 Summary . 39

v

CONTENTS

5 Implementation of the tool 41
5.1 Proof of Concept . 41
5.2 Cloudberries - the tool . 45
5.3 User interface . 48
5.4 Summary . 52

6 Validation of tool 55
6.1 Case study . 56
6.2 System usability evaluation . 57
6.3 System security . 58
6.4 Limitations . 59
6.5 Summary . 60

7 A concept of Feature Model - based automatic SPL generation 63
7.1 Feature Model adaptation . 63
7.2 A concept of Feature Model - driven Software Product Line

architecture . 72
7.3 Further thoughts . 78
7.4 Summary . 81

8 Summary and Future Work 83

Appendices 85

A Glossary 87

B Installation Guide 91
B.1 Installing prerequisites . 91
B.2 Cloubderries portlet installation 93

Bibliography 99

vi

List of Figures

1.1 Schematic presenting components of the tool being developed in
scope of this thesis. Two main architectural components (Config-
uration and Deployment modules) are interconnected and built
on top of the cloud infrastructure. 7

2.1 The architecture of Chef [3]. The administrator uses his Worksta-
tion to connect to the server, upload installation packages (cook-
books), and deploy a selection of environment components on the
node machine. In order to perform the configuration remotely
Chef uses its own client application. 13

3.1 Graphical representation of feature relationship types. The image
is based on a picture presented in [8]. 19

3.2 Sample feature model describing a product line from telecommu-
nications industry [8]. The model presents hierarchical structure
of mobile phone features. In order to include some additional con-
straints in the model, cross-tree constraints may be provided. . . . 20

3.3 The rules for translating Feature Model relations into Boolean for-
mulas [8], in order to represent the model in a form as a Boolean
Satisfiability Problem. The third column is a mapping of relation-
ships presented as an example in the Figure 3.2. 21

3.4 Sample Binary Decision Diagram [2]. Round nodes represent vari-
ables (in this case they are product features). Squares external
nodes denote values of the formula. Solid edge represents 1, dot-
ted - 0. A path from the root to an external node is a representation
of a variable values. 22

3.5 FaMa modular architecture [22]. As one can see there are four rea-
soners that can be used to operate on feature models. FaMa is
built as a Software Product Line, so the library not only supports
the methodology, but also is an example of its implementation. . 28

vii

LIST OF FIGURES

3.6 The architecture of SPLOT [49]. The application is a web based
tool allowing to perform various operations on feature models.
Under a web user interface there is an application using SPLAR
library implementing the logic of operations. As one can see in the
diagram, SPLOT is based on JavaEE and uses Servlets to handle
HTTP requests. 30

3.7 A diagram of the core SPLOT classes. A single servlet uses mul-
tiple handlers. The source code of handlers can be reused quite
easily. 31

4.1 The design of Cloudberries experiment developer interface. Ex-
periment Developer can manipulate three types of entities. Con-
figuration is a selection of environment components that can be
deployed in the experiment environment after providing neces-
sary attributes. Deployment Template allows to store a composition
of default values for the attributes. Deployment Task is a represen-
tation of running deployment process. The user can monitor an
installation by viewing details of the corresponding Deployment
Task. 37

4.2 The design of Cloudberries administration interface. The branch
on the left side is an interface accessed via Web Browser, and the
one on the right requires usage of linux shell. 38

4.3 The architecture of Cloudberries. There are two basic components
of the system - an instance of Chef server and the main Cloud-
berries application running in web application container. Both of
these components need an access to the cloud infrastructure. The
scientific user accesses Cloudberries using Internet Browser. Ad-
ministrative tasks are performed using linux shell. 39

5.1 Example of a feature model in the extended SXFM notation that
is used by Cloudberries. There are all types of the feature re-
lationship used in this model. The structure is hierarchical and
very intuitive to understand. After a colon there is a character
which determines type of the relationship with the parent fea-
ture. Blank character means that the feature is a leaf in the tree.
Feature identifiers are written in brackets. Cross tree constraints
has to be formulated in Conjunctive Normal Form and placed in
the constraints tag. The features marked with exclamation mark
are treated as installable and will be considered during valida-
tion of the installation package repository. The use of exclamation
marks for distinguishing installable features differs format used
by Cloudberries from the original SXFM. 43

viii

List of Figures

5.2 Sample configuration in the format that is accepted by the Cloud-
berries prototype. Configuration was prepared using SPLOT. The
constraints in the model (See Figure 5.1) allow SPLOT to automat-
ically guess all of the above decisions. 44

5.3 The entity Relationship Diagram of the Cloudberries database.
This diagram should be read starting from FEATURE_MODEL_FILE

table and finishing on DEPLOYMENT_TASK. The names of tables are
quite intuitive and match corresponding items in the user inter-
face. 47

5.4 Creation of an experiment environment configuration. On the left
side of the page one can see a hierarchical representation of the
feature model loaded by Cloudberries from a file saved under a
location specified in settings. Features represent elements of the
environment. Each configuration step, the underlying application
layer updates configuration changes and excludes all of the use-
less features from the configuration space. On the right side there
is placed a table of configuration steps. Configuration process can
be automatically completed by selecting either Less Features (se-
lects as little as possible) or More Features (selects as much as pos-
sible). 49

5.5 In this screenshot one can see the list of configurations that were
previously created and saved by the users. Each configuration is
assigned to a feature model which was used to create it. Before
any further usage, the configuration is validated with respect to
the model, in order to avoid errors in the installation process. . . 50

5.6 Creation of a deployment template. A user can entitle the tem-
plate and provide some information notes. The box on the left
allows to select attributes for the configuration elements. The one
on the right allows to specify values for the attributes. This is very
similar to the process of Deployment Task creation. 51

5.7 Monitoring of a Deployment Task. After selecting the task from the
list in the Deployment Tasks page, the user can see a page similar
to the above. The table on the top contains information about in-
stallation steps. By selecting a step one can see the corresponding
log. 52

7.1 Software Product Line engineering schematics [36]. There are
three spaces that has to be connected in order to create production
line. The most challenging process in the lifecycle of the produc-
tion line is a mapping from the space of product features (that are
relevant to stakeholder) to the space of artifacts (that are relevant
to the developers). 64

ix

LIST OF FIGURES

7.2 A schematic of production line using several production sites to
produce single feature. Each production site is capable for its own
production procedures that can be applied to realize partial pro-
duction of given feature. 65

7.3 A cycle in the process of production. Requirement should be
treated as a dependency of production stages. Production stages
of the given features cannot be put in any order that guarantees to
meet all of the requirements. 66

7.4 A schematic of production line using single production site to pro-
vide a single feature. The process of feature installation is atomic
and cannot be split between production sites. So that, there is no
need for management of dependencies of intermediate produc-
tion stages. 68

7.5 Sample feature model enriched with installation ordering rela-
tionship. The installation ordering relationship extends the orig-
inal Feature Model relationships in order to provide additional
information that is needed to perform scheduling. 70

7.7 Graphical illustration of the ordering algorithm presented before.
The Feature Model was replaced by the directed acyclic graph
with edges determined by the ordering relationship. The graph is
sorted topologically by visiting adjacent nodes starting from the
Root. 71

7.6 Simple recursive ordering algorithm. The nodes in the graph rep-
resent features of the feature model. The edges are built out of the
installation ordering relationship. 71

7.8 The problem of ambiguous installation ordering. Both feature 3
and feature 2 should be installed before installation of the feature 1
(ordering relationship marked with orange). Presented algorithm
does not specify the installation order of indirectly connected fea-
ture 3 and feature 2. 72

7.9 The internal construction of the main production line component.
The main inner component is the Workflow Manager that controls
the production process. Production Site plug-ins, Feature Models
and Feature Descriptors are registered in appropriate registries. . . 73

7.10 The concept of Feature Descriptor structure. This structure can be
for example mapped to XML format. 74

7.11 ProductionSite interface to be implemented in order to provide
means of feature installation (see procedure installFeature). As
a Production Site is controlled from the outside the function is-
FeatureSupported has to be implemented to declare support for
production of feature with a given identifier. 75

7.12 Sample contract of interfaces. Installation procedure of feature 2
depends on 1 and provides feature 1 Production Site with its own
input. Feature 1 will be installed before feature 2. 77

x

List of Figures

7.13 Sample contract of interfaces. Feature 1 depends on 2. Feature
1 will be installed before feature 2 and provides feature 1 with
output emerged from its own installation. 77

7.14 An illustration of the problem of scheduling the installation pre-
formed by Group Production Site. The Group Production Site is a
Production Site that does not allow for separate installation of sup-
ported features. The process of subordinated features installation
has to be performed as an atomic, indivisible group. 79

7.15 The figure presents exactly the same situation as in the previous
picture, but all of the features installed by a Group Production Site
are treated as a single feature (the green rectangle). This approach
allows to check if there are any cycles which causes scheduling
unfeasible. In this figure we can see a cycle of the installation
ordering relationship graph, so the model that contain features
arranged in this way, should be considered invalid. 80

7.16 A symbolic representation of a feature model part with features
assigned to a Group Production Site in a way that is correct in terms
of installation scheduling. Scheduling is feasible when features
connected to a group with installation ordering relationships can
be split into two independent groups. The first contains only fea-
tures that are installed before the features in green rectangle (in-
stalled by Group Production Site). Second group contains only fea-
tures installed afterwords. 80

xi

Abbreviations and Acronyms

AHEAD Algebraic Hierarchical Equations for Application Design

API Application Programming Interface

ATS AHEAD Tool Suite

BDD Binary Decision Diagram

CNF Conjunctive Normal Form

COSL Commercial Open Source License

CP Constraint Programming

CSP Constraint Satisfaction Porblem

DAG Directed Acyclic Graph

DSL Domain Specific Language

FM Feature Model

FOP Feature Oriented Programming

FORM Feature Oriented Reuse Method

GNU GNU’s Not Unix

GPL General Public License

GPS Global Positioning System

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ID Identifier

IP Internet Protocol

JEE Java Enterprise Edition

JSON JavaScript Object Notation

JSR Java Specification Request

JVM Java Virtual Machine

xiii

ABBREVIATIONS AND ACRONYMS

MAC Media Access Control

MVC Model View Controller

OS Operating System

PaaS Platform as a Service

PXE Preboot Execution Environment

REST Representational State Transfer

RHEL RedHat Enterprise Linux

SaaS Software as a Service

SAT Boolean satisfiability problem

SPL Software Product Line

SPLAR Software Product Lines Automated Reasoning

SPLOT Software Product Line Online Tools

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

SXFM Simple XML Feature Model

TFTP Trivial File Transfer Protocol

VM Virtual Machine

VPH Virtual Physiological Human

XML eXtesnible Markup Language

xiv

Chapter 1

Introduction
This chapter presents the background and general objectives of the thesis.
The motivations for the project are described in the first section. Next
section describes different approaches to solve the problem addressed by
the thesis. The last one presents some high-level design considerations
for the tool developed in scope of the thesis that summarizes the preced-
ing discussion.

1.1 Background

In the 21st century we are living in the world of massive progress in culture,
technology and science. In the domain of information technology we already
reached a level in which computerization affected virtually every aspect of
human life. Revolution of computer technology made us belong to an in-
formation society in which knowledge, communication, entertainment and
many other areas become increasingly subordinated to management of in-
formation. Science is no different in this respect from other fields. Since the
capabilities of computers can give people a promise to finish complex com-
putations in a reasonable time, simulation have become a modern paradigm
of scientific research and its popularity is continually growing. Therefore,
nowadays experiments in silico become an important and powerful approach
in scientific research that brings lots of challenges every day. What is more, as
increasing number of scientists decide to use the power of computer systems
to bring the productivity of their research to the next level, the complexity
of tasks delegated to the responsibility of computer systems is continuously
growing. In this scope a particularly interesting field is computationally in-
tensive science, carried out in highly distributed network environments. Tra-
ditionally, e-Science denotes a field of scientific research that is oriented to-
wards grid computing [30], which provides users with broad access to the
means of high performance computation. Although computing on the grid
is a paradigm that was designed to satisfy specific needs of the scientific com-
munity, the use of the infrastructure is quite bulky and inconvenient. Never-

1

1. INTRODUCTION

theless, the computational grid is continuously evolving and still particularly
valuable for e-Science.

On the other hand, a great expansion of virtualization of computer sys-
tems has become a fact. It can be observed that a massive growth of popular-
ity regarding services of virtualized computer infrastructure has a significant
influence on the service market. Today, there are quite a lot of solutions that
provide access to commercial cloud infrastructure, offering virtualization of
computer systems at different level - Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS) and Software as a Service (SaaS). Several encourag-
ing factors such as low costs, high availability, decent performance regard-
ing usage in scientific applications, causes that cloud computing attracts a
growing number of researchers. This particular case of scientific research is
the subject of this work. The objective of this thesis is to investigate some
issues regarding deployment of e-Science applications on a cloud infrastruc-
ture, point out the problems, and provide a solution that will help to avoid
them.

There is a basic concept of e-Science application which has to be described
before the further reasoning can be started. e-Science applications are built
in context of scientific research and should be treated as implementations of
scientific experiments. As an application in terms of e-Science usually con-
sist of components originating from several domains including various types
of data, software applications, libraries and others, the concept of e-Science
application is very generic and may be defined as a composite of the men-
tioned components. Moreover, the components of a single application may
be distributed between virtual or physical machines in virtually unlimited
way. So that, the task of e-Science application installation, addressed by the
author of this thesis, can be in fact described as a process of deployment of a
complex (and possibly heterogeneous) environment distributed among vir-
tual machines operating in a cloud infrastructure. Furthermore, as this work
originates from VPH-Share project [58] founded by European Commission
it concerns applications from various areas of science related to medicine.
Scientists that take part in the project, represent wide range of interests con-
cerning simulations of human heart (euHeart [21]), neural system (@neurIST
[42]), and others.

Following the definition of e-Science application presented before, now
we can describe the process of its deployment. In fact, after preparing a dis-
tribution plan of e-Science application components, the installation of an ap-
plication in cloud infrastructure is a process that consists of two major steps
- instantiation of virtual machine and installation of selected components on
a running VM instance. As the second task is the most time-consuming and
troublesome, it is particularly interesting from the perspective of this work.
As the person executing experiments is generally a scientist and not a sys-
tem administrator, they do not necessarily have to be familiar with methods
of installation and configuration of environment components on a particular

2

1.2. Survey of automatic software installation methods

operating system. This circumstance is the main reason for the work.
Therefore, one of this thesis’ objectives is to design and provide imple-

mentation of a tool making the process of experiment environment prepara-
tion as easy as it is possible. Another interesting aspect of the given task is
the cost of VM image storage. Because of the virtual machine nature, some
of the components may be preinstalled on the saved VM image. In order
to bother the scientist as little as possible, the best solution of the problem
of the configuration complexity, would be storage of previously configured
VM images that are specifically suitable for the particular experiment. There
is an obvious need for configuration of the image before it can be saved in
the form corresponding to requirements of particular experiment, but dur-
ing every following execution a scientist can use the environment prepared
before. There is no doubt that in this case any further executions of the same
experiment, will be free from unnecessary configuration. The most signifi-
cant problem regarding this approach the cost of the storage that will affect
every saved image. Alternatively, just the configuration of environment can
be saved and redeployed on demand. Sacrificing a little time to perform the
deployment again, the cost of storage will be greatly reduced.

Summing up the above considerations, we can clarify the objective of this
thesis, describing it as creation of tool that will allow a scientist to perform
deployment and reconstruction of experiment environment in an easy and
intuitive way. Deployment should apply to installation of various software
products, data, and configuration of the operating system. Although the
main application of the system is the use in terms of VPH-Share project [58],
it might be used as a general purpose tool. In the next sections there are pre-
sented some high-level requirements regarding the tool, possible approaches
to meet these requirements and vision of the system implementation that can
satisfy them.

1.2 Survey of automatic software installation methods

For a scientist, preparation of an environment for experiment execution is
a process that in some aspects can be compared to everyday activities of a
person administering a distributed computer infrastructure. Although there
is a slight difference between tasks performed by these two types of special-
ists, some requirements affect both groups. What should be outlined, the
discussed case is focused on administration of environments based on vir-
tualized infrastructure. In design of a system that has to satisfy needs of
scientific users, several aspects should be taken into account:

• A need for simultaneous configuration of a number of virtual ma-
chines. When the experiment makes use of a distributed infrastructure
to replicate computation. Each node of the infrastructure is configured
in the same way.

3

1. INTRODUCTION

• A need for reusing a configuration to deploy it again and rebuild in-
frastructure. Reusing a configuration of a single computation node can
also be taken into account. This aspect matters when the experiment is
executed again.

• A need for reusing an existing virtual machine image. In order to
deploy a configuration it may be reasonable to reuse a stored image
providing base elements of the environment.

Despite some commonalities between the two groups, the same task may for
a scientist mean a different problem to be addressed. During the software
installation, they can face some issues they are not familiar with. Problems
may come from a broad domain comprising such issues as the need for op-
erating system administration skills, familiarity with infrastructure, having
appropriate privileges and others. So that, in order to meet the requirements
of usability, the level of environment preparation complexity in the designed
system should be as low as possible.

There are several methods known to satisfy the above needs. In this sec-
tion three classes of them will be presented in order to outline different ap-
proaches to the problem.

1.2.1 Distributed Shell

Distributed shells is a class of software products that allow to configure mul-
tiple instances of similar operating systems. There are plenty of applications
belonging to this class of software. Some of the examples are clusterssh [16],
pssh [44], clusterit [15], omnitty [43], taktuk [53], dish [19], dsh [20].

Distributed shell allows to simultaneously log into a number of remote
consoles (all of the above solutions are based on SSH) and replicate com-
mands among them. The key assumption of the tools, which belong to this
class of software, is a wish that all of the operating systems that are config-
ured at once, are virtually identical and react in the same way. Of course
applications from this group will not satisfy the need for easing the installa-
tion process. It is also hard to imagine automation based on this kind of soft-
ware. The clear advantage over configuration without any additional tools
is a possibility to save some time that is wasted on repetition of identical
configuration steps.

1.2.2 Unattended Installation

Unattended installation is a notion that describes a class of software prod-
ucts, which allow to install a specific configuration of on operating system
without any (or just a little) interaction with user. As the automation is per-
formed at the installation phase, the starting point of this solution is a sit-
uation when we have a machine (in particular a virtual machine) without

4

1.2. Survey of automatic software installation methods

any operating system. The requirements specific for this thesis imply that
the cloud provider will support such situation. However, as it was exam-
ined that factor should not raise any problems as long as we think of local
cloud administration. The method can be useful in case of using Preboot
Execution Environment (PXE). PXE allows to boot an installer of operating
system from the network, download a kickstart configuration file (the kickstart
name is used here to represent of a class of solutions rather than a concrete
product) from TFTP server, and perform unattended installation. This class
of solutions is addressed to administrators who want to ease the process of
system installation, especially when the target infrastructure is composed of
a considerable number of nodes.

On the market there are a number of solutions specific to an operating sys-
tem that support Unattended Installation paradigm - RedHat/Fedora Kick-
Start [1], Ubuntu KickStart [4], Solaris JumpStart [50], as well as Unattended
[57] and Fog Project [25] (cloning image only) for Windows.

This approach should satisfy most of the requirements as the process of
installation is fully automatic. A configuration of single node can be easily
replicated and there is an easy way to reuse a configuration that has been
created before, so this solution seems to be promising in terms of the require-
ments mentioned before. A disadvantage of this approach is the fact that
there is no way to make use of previously saved virtual machine image. So
that each configuration has to be deployed from scratch including the in-
stallation of an operating system. It seems that this is a limitation that may
considerably slow down the process of deployment.

1.2.3 Provisioning Tools

The last class of software to automatically deploy a distributed environment,
covered by this review is a group of provisioning tools. These tools are usu-
ally built in a client /server architecture, and allow to manage operating sys-
tems by installing a lightweight client on a target machine. Client configures
the operating system and performs installation of software on behalf of the
central management system. Most of them allow to monitor some system
attributes as the architecture, type of operating system, network addresses
(MAC, IP), memory etc. The software of that type is oriented towards opera-
tion during the entire operating system lifecycle so there are no limitations as
those listed in the previous paragraph. There are a number of provisioning
tools on the market and some of the most popular are Bcfg2 [6], CFEngine
[9], Chef [11], Puppet [45].

Although there are some similarities of the software products belong-
ing to this group, each of them implements its own concept of deployment
mechanism. Differences start from the form of installation packages, concern
scripting and configuration representation languages, operating system sup-
port and available API. Most of them allow to use SSH in order to bootstrap

5

1. INTRODUCTION

(install) a client on a remote machine (in case of Unix/Linux). Some of the
tools provide cloud support in terms of virtual machine instantiation, so it
should be also taken into account during the comparison.

This group of software seems to meet all of the requirements specific to
the thesis. Tools in the group of software provisioning allow to automate
deployment process without additional limitations such as the application
in a specific phase of operating system lifecycle. They allow to easily reuse
configurations and virtual machine images. They can also satisfy a need for
multiple installation of the same selection of environment components.

1.2.4 Evaluation of software installation tools

In this chapter there were presented three classes of software products that
can help a scientist in a process of experiment environment preparation. The
tasks which has to be performed by a person deploying experiment envi-
ronment, were compared to activities of distributed (and possibly heteroge-
neous) computer environment administrator. In respect to that, the selection
of the presented tools were based on analysis of software products commonly
used by administrators. At the beginning of the chapter there were presented
some requirements of the deployment process and specific circumstances of
the application in the target use case. Based on the specific conditions of use
the presented groups of application can be judged and compared in terms of
usefulness. Distributed shells are tools that help the user to save time wasted
on repetition of configuration. In fact they are not pure automation tools, and
will not ease the process of configuration in terms of providing any simpli-
fication of manual installation. The tools of Unattended installation help an
administrator to automate the process of single installation of an operating
system. After providing an appropriate configuration the user is discharged
from the supervision of the installation process. This solution is functionally
similar to using Provisioning tools but offers less flexibility. Inability to use
saved virtual machine image again, makes it much less useful and that is
why wthere was made a decision of using provisioning tool to automate the
process of deployment. In this work there is a separate chapter dedicated to
provisioning tools, so more detailed description and comparison of specific
tools will be presented there.

As the use of provisioning system can still be a difficult task for a scientist,
the application being developed in the scope of this project should provide a
layer that will hide unnecessary complexity and make environment configu-
ration as easy as possible. In the next section there is presented a vision of a
system to experiment environment preparation based on provisioning appli-
cation that will focus on minimizing complexity of a configuration process.

6

1.3. Objectives of the thesis

1.3 Objectives of the thesis

As it was mentioned in the previous section, in scope of this thesis there is a
need for creation of a tool that will extend capabilities of a provisioning sys-
tem, in order to enable e-Science researchers to use it. The extension can be
understood as providing an additional layer in order to facilitate the use. In
this section there is presented a conceptual vision of the system. At this point
of description, the architecture can be presented as three high-level compo-
nents visible in the figure 1.1.

Figure 1.1. Schematic presenting components of the tool being developed in
scope of this thesis. Two main architectural components (Configuration and
Deployment modules) are interconnected and built on top of the cloud infras-
tructure.

The architectural element responsible for installation of environment
components, which was presented in the previous section, is located in the
middle of the Figure 1.1. An additional layer built on top of the deployment
module, has to provide a scientific user with an interface for selecting com-
ponents of experiment environment. In terms of project design there are two
main challenges regarding development process. First is a task of deploy-

7

1. INTRODUCTION

ment of a provisioning system, and implementation of its management. The
other one is a task of implementation of an environment configuration user
interface.

During the research that was made in order to find a suitable approach for
modeling of environment configuration, there emerged an idea of analogy of
e-Science application to Software Product Line operation. SPL refers to soft-
ware engineering techniques for creation of similar software systems from a
shared set of software assets. If we would think for a moment of installation
of e-Science application as a process of software composition from specific
prerequisites, it would appear that the case may have much in common with
a task of software product creation. The similarities are manifested in several
aspects. The most significant characteristic, which applies to both cases is
orientation on features of the target product. Talking about Software Product
Line it cannot be failed to mention that there are number of feature-oriented
techniques and tools of modeling product configuration used in the context
of SPL. Feature Modeling which is a common subject of interest of those in-
volved in Software Product Lines, can be easily adapted to modeling envi-
ronment experiment configuration. As research has shown, the paradigm is
worth taking a closer look, and considering in the project design.

In the description of high level tool architecture it should be noted that the
design is based on the idea of implementing Software Product Line method-
ology. So that, the target system can be treated as a product line with a mod-
ule responsible for automatic installation on a cloud, which is based on provi-
sioning system, and a user interface allowing for configuration of experiment
environment based on theoretical foundations of Feature Modeling. Compo-
nents of the target environment are represented as its features. A resulting
e-Science application is an analogy of software product in the nomenclature
of Software Product Line. In order to clarify this concept, a wider description
of SPL adaptation will be introduced later, in a separate chapter (Chapter 3).

This thesis presents reasoning on selected aspects regarding the system
design. First, there is described a comparison of various provisioning tools
in order to present the circumstances of selecting one that is most suitable
for implementation. The selected provisioning system is described in more
detail. Then, more complex description of Software Product Line as well as
algorithms and tools supporting Feature Modeling are introduced. A few in-
teresting software products based on Feature Modeling are described more
broadly, in order to present solutions that can be used in development of
the tool. After describing issues connected with research on State-of-the-art,
there is presented precise specification of requirements and selected aspects
of the tool implementation. Finally there is presented reasoning on Software
Product Line and Feature Modeling, inspired by the experience gained dur-
ing the research in scope of this thesis. The reasoning leads us to the concept
of a framework to automatic Feature Model - based generation of production
line architecture presented in the Chapter 7.

8

Chapter 2

Provisioning in cloud infrastructure

In the section 1.2 a comparison of several approaches to administration
of distributed computer environment was presented. As using provi-
sioning tools was assessed to be the best solution in the context of pre-
sented requirements, this paradigm will be described broader. In this
chapter the capabilities of the previously mentioned provisioning sys-
tems is presented and the solution, which was chosen to be used in the
implementation, is described more broadly.

2.1 Comparison of provisioning tools

Cloud provisioning tools are framework applications, built to bring the ben-
efits of automatic configuration management to cloud infrastructure. On the
market there are many provisioning solutions providing slightly different fla-
vors of automatic deployment. In order to choose one, which will be par-
ticularly valuable for the project, following comparison was made. As it is
mentioned below some of the frameworks are delivered in both free and com-
mercial product versions. For the project this is a limitation that substantially
narrows a research. In the review presented below following products are
compared: Bcfg2 [6], CFEngine [9], Chef [11], Puppet [45].

To choose a suitable provisioning application a few aspects has to be
taken into account. Application has to be run on Ubuntu Linux and client
should support as many operating systems as possible (Windows support
is important). Java or REST API is very convenient in terms of invocation
from the code of the tool. License policy is another crucial limitation - free
use is required. Because the information presented in this section has been
collected from various sources, it is very hard to impose consistency in the
tables below. So that, the versions of the operating systems supported by the
following provisioning systems are listed in the form they were presented in
the literature.

9

2. PROVISIONING IN CLOUD INFRASTRUCTURE

2.1.1 Bcfg2

Bcfg2
Language Declarative management via XML
API no API
License BSD
Supported OS AIX, FreeBSD, OpenBSD, Mac OS X, OpenSolaris,

Solaris, ArchLinux Blag, CentOS, Debian, Fedora,
Gentoo, gNewSense, Mandriva, openSUSE, Red
Hat/RHEL, SuSE/SLES, Trisquel, Ubuntu, Windows
not directly supported [7]

Community no community

Table 2.1. Summary of Bcfg2 features.

Bcfg2 [6] is a tool to configure a large number of computers, developed in
Python by members of the Mathematics and Computer Science Division of
Argonne National Laboratory. It is based on a client-server architecture and
the client is responsible for interpreting the configuration provided by the
server. Client translates a declarative configuration specification into a set of
configuration operations which will attempt to change its state (if the process
of configuration fails, the operation can be rolled-back). So that, the declar-
ative specification for environment components are separated from the im-
perative operations implementing configuration changes. After completion
of the configuration process, client application uploads statistics to the server
[18]. Generators enable code or template based generation of configuration
files from a central data repository [17]. The Bcfg2 client internally supports
the administrative tools available on different architectures. Following table
presents facts about Bcfg2:

2.1.2 CFEngine

CFEngine
Language Declarative management via XML
API REST (commercial version only)
License Commercial/Open Source(limited functionality)
Supported OS Linux, Unix, Solaris, AIX, FreeBSD, Macintosh, Win-

dows (CygWin is required)
Community no community

Table 2.2. Summary of CFEngine features.

10

2.1. Comparison of provisioning tools

CFEngine [9][17] is an extensible framework for management of either indi-
vidual or networked computers developed in C. It has existed as a software
suite since 1993 and then the third version published under the GNU Public
License (GPL v3) and a Commercial Open Source License (COSL). The en-
gine is different from most automation tools that runs a process of configura-
tion and stops when installation is finished. Every configured environment is
also continuously verified and maintained. After installation of a lightweight
agent it continues to run during the environment lifecycle. Any agent state
which is different from the policy description is reverted to the desired state.

2.1.3 Chef

Chef
Language Ruby DSL
API REST Server API, JClouds-Chef third party Java API
License Apache License
Supported OS Ubuntu (10.04, 10.10, 11.04, 11.10), Debian (5.0, 6.0),

RHEL, CentOS (5.x, 6.x), Fedora 10, Mac OS X (10.4,
10.5, 10.6), Windows 7, Windows Server 2003 R2,
2008 R2, Ubuntu (6.06, 8.04-9.10)*, Gentoo (11.1,
11.2)*, FreeBSD (7.1)*, OpenBSD (4.4)*, OpenSolaris
(2008.11)*, Solaris 5.10 (u6)*, Windows XP, Vista*

Community Script repository for user scripts, hosted by Opscode

Table 2.3. Summary of Chef features. (*) - As Chef documentation claims
"Additionally, chef-client is known to run on the following platforms"

Chef [11][10][17] is a library, configuration management system, system inte-
gration platform and API written in Ruby that uses a Ruby DSL for writing
configuration "recipes" [17]. These recipes are basically bundles of installa-
tion steps (or scripts) to be executed. There is quite a big community of users
who share their recipes via repository managed by Opscode company. Chef
can be used in one of possible two modes - either client-server or solo [10].
There is also a possibility to use commercially hosted Chef for free - up to 5
nodes of provisioned infrastructure.

11

2. PROVISIONING IN CLOUD INFRASTRUCTURE

2.1.4 Puppet

Puppet
Language Own language/Ruby DSL
API REST
License Apache License/Commercial
Supported OS RHEL (4 - agent only, 5, 6), Ubuntu 10.04 LTS, Debian

(5, 6), CentOS (4 - agent only, 5, 6), Scientific Linux
(5, 6), Oracle Linux (5, 6), SLES 11, RHEL 4 (agent
only), Solaris 10 (agent only), Windows (commercial
version only)

Community Package repository

Table 2.4. Summary of Puppet features.

Puppet [45] is an open source configuration management tool allowing to
manage Unix-like and Microsoft Windows systems declaratively. Puppet can
be used by writing a configuration either in Puppet own declarative language
or in a Ruby DSL. Puppet, like the rest of the presented provisioning tools is
a client-server solution.

2.1.5 Result of provisioning tools comparison

As all of the previously mentioned provisioning tools are suitable for the
given task, it is possible to show some stronger and weaker points of each,
but it’s hard to be fair while doing comparison, because all of them are
slightly different. Anyway it seems that Chef is the most promising among
free solutions above, because of full Windows support, ease of use of the third
party Java API, user community providing ready-to-use scripts. So that, Chef
wins the competition and it will be the solution used in the implementation.
That is the reason why the next section covers a wider description of Chef.

2.2 Provisioning with Chef

The purpose of this section is to describe Chef [11] architecture in a nutshell
and introduce vocabulary strictly connected with Chef. For more detailed
description of Chef refer to the Chef documentation.

12

2.2. Provisioning with Chef

Figure 2.1. The architecture of Chef [3]. The administrator uses his Workstation
to connect to the server, upload installation packages (cookbooks), and deploy a
selection of environment components on the node machine. In order to perform
the configuration remotely Chef uses its own client application.

2.2.1 Chef architecture

Chef architecture[3] in its simplest form is presented in the following Figure
2.1. As you can see there are three core elements - workstation, server and
node.

Chef documentation introduces specific vocabulary, one have to get used
to while using Chef. Below there are explained some elements that are crucial
to understanding the rest of the thesis, in order to skip these details in the tool
architecture overview.

• Server - A Chef server is a centralized store of infrastructure configura-
tion. It manages users, nodes, cookbooks (provides access to the central
cookbook repository), attributes, roles etc. Server is a passive element
of the architecture. Client communicates it whenever it has to obtain
any needed information.

• Workstation - Workstation is a computer station of a system adminis-
trator. In order to communicate with Chef Server administrator is using
a command line tool called Knife. A Workstation is also a local reposi-
tory of cookbooks which will be uploaded to the server.

• Node - A node is a host that runs the Chef client. The primary features
of a node from Chef’s point of view are its attributes and its run list.

13

2. PROVISIONING IN CLOUD INFRASTRUCTURE

• Run List - A run list is a list of the recipes that a client will run. As-
suming the cookbook metadata is correct, you can put just the recipes
you want to run in the run list, and dependent recipes will be run auto-
matically if needed. Ordering is important: the order in which recipes
are listed in the run list is exactly the same order in which chef will run
them.

• Cookbooks - A cookbook is a collection of recipes, resource definition,
attribute, libraries, cookbook files and template files that chef uses to
configure a system, plus metadata. Cookbooks are typically grouped
around configuring a single package or service. The MySQL cook-
book for example contains recipes for both client and server, plus an
attributes file to set defaults for tunable values. Cookbooks are the unit
of distribution and sharing in Chef. Most of the time you are using
Chef, you are writing cookbooks.

• Recipes - recipes are bundles of installation steps (or scripts) to be ex-
ecuted. They are files where you write resources and arbitrary ruby
code (Ruby DSL). Although writing recipes is quite easy, it is needed to
understand a little bit about how Chef runs in order to write them.

2.2.2 Chef in operation

In order to prepare Chef to be used for software installation, an administrator
has to provide cookbooks that can be used later. To create a cookbook, ad-
ministrator prepares installation scripts in a form of recipes, provides needed
tarballs of software, fills in the metadata, and performs tests of the package
using local repository. Then they can upload a cookbook to the central repos-
itory using Knife.

The process of environment preparation is performed on the node by the
client application. To describe the idea of a simple Chef run in a nutshell, the
process of deployment is presented omitting unnecessary details:

• Client installation on the node. The Chef client application can be
installed on the node either manually or automatically using Knife ap-
plication. Chef supports automatic installation (bootstrap) of a client
on a number of popular operating systems. In addition to that it is pos-
sible to provide your own installation script, and extend functionality
of Chef. After the step of client installation, a node become visible for
the server.

• Updating nodes’ Run List and populating node attributes on the Chef
server. In order to do that, you may use Knife command or Chef server
web user interface/REST API. Run List and attributes are stored on
server as an additional node parameters.

14

2.3. Summary

• Execution of the installed Chef client. The client can be run either
manually by executing shell command on a node machine (eg. via ssh)
or using Knife.

• Client downloads the Run List and attributes from server.

• Client performs the installation. Now the client invokes all of the
scripts provided by the server.

• Client executes handlers in order to return statuses and logs of the
installation process.

2.2.3 Chef based tools

Chef provides cloud provisioning automation functionalities, and several
methods to achieve them. Chef server REST API [48] can be used to ob-
tain cookbooks, recipes and node information, to check repository content
and perform similar tasks. To manage cookbooks stored in the central cook-
book repository, bootstrap and start client, receive installation logs and so
on, a command line tool called Knife is provided. The main disadvantage of
Chef regarding the project design is the fact that it does not provide any API
regarding software installation.

It should be mentioned that there is a third-party library called jclouds-
chef [33] that provides convenient Java and Clojure API for Chef. It is neither
a part of Chef project nor JClouds (which is pretty popular provider agnostic
library used to access cloud) and it lacks a decent documentation. Anyway it
seems that jclouds-chef API can cover most of the tasks carried out by Chef
REST API and Knife. Experimentation with the library will be presented later
as a part of prototype description.

2.3 Summary

In this chapter a number of provisioning tools were presented. As all of them
provide different flavors of similar functionalities it is hard to compare them
without experience in usage. Moreover a process of making comparison may
be really time consuming. As many administrators managing their infras-
tructure using provisioning software usually recommend the solution they
are familiar with, it is even hard to find a reasonable comparison of tools.
What is more, most of the articles [55] [41] [46] that present some compari-
son are highlighting several features of a particular system, and neglect the
others, so it is really hard to find a common domain of features of provision-
ing tools that allow to fairly compare the software products. Therefore, in
order to compare selected solutions there was chosen some factors in terms
of which the systems can be analyzed and compared. The deciding factors
in the comparison were - the license, the ease of possible integration of a

15

2. PROVISIONING IN CLOUD INFRASTRUCTURE

product with a code that is written in Java and support for Windows oper-
ating system. These three factors favor Chef among the others, because of
Apache License, third party Java API, and support for several systems from
the Microsoft family. So that, although probably all of the presented solu-
tions would be applicable for the given task, Chef was chosen to be used.
In this chapter was also introduced some vocabulary that is specific to Chef,
and there was presented Chef architecture in a nutshell. In the further part of
this work it was assumed that the reader is familiar with the content of this
chapter.

16

Chapter 3

Software Product Line as a generic
approach to software creation

Software Product Line is a paradigm of software creation, defining soft-
ware production as a process based on an analogy to production line. In
this chapter the concept of this analogy is presented in order to apply it
to the process of e-Science application production. As the design of the
system built in scope of the thesis follows some of the Software Product
Line principles, some of the basic SPL concepts of the methodology are
presented in this chapter. This chapter introduces a language for produc-
tion line configuration modeling, data structures to represent the model
and algorithms for automating product configuration. Then, the review
of approaches to Feature Modeling adaptation in software product line
is presented. The chapter ends with the conclusion on the selection of
tools that is used in the process of the tool implementation.

3.1 The concept of using Software Product Line
methodology

Software product line (SPL) engineering is a paradigm for systematic reuse
[56]. Product line engineers define common assets, from which different pro-
grams of a domain can be assembled. Programs are distinguished by fea-
tures, which are domain abstractions relevant to stakeholders and are typi-
cally increments in program functionality [56]. Each program is defined by a
unique composition of features, and no two programs have the same combi-
nation of features. In order to define domain of software products the notion
of feature model was introduced. Model based on features allow to present
an abstraction of software product components, their hierarchy and depen-
dencies. As Feature Model is a generic concept and there is no limitation of
the model semantics, it can be found an appropriate representation of prod-
uct domains for various product lines. When we take a look at Software

17

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

Product Line Online Tools web page [51] there we can find examples of fea-
ture models defining TREK’s Bikes Catalog and DELL’s Laptops Catalog. So
as the nature of Feature Model is very generic, its flexibility was a main rea-
son to think about adaptation of Software Product Line concept in the process
of automatic creation of e-Science application environment on a cloud. The
second reason was the quite obvious fact of inclusion of the e-Science applica-
tions domain in the domain of software products. As the notion of e-Science
application can be understood as a software product built from a number
of reusable software components, it seems to be another aspect bringing it
closer to the concept of Software Product Line.

The circumstances mentioned before lead to the idea of thinking of exper-
iment environment deployment in terms of creating a product in a produc-
tion line. The concept presented in this thesis is based on the assumption,
that we can treat the components of experiments environments as features of
environment. As it is presented in the chapter regarding target system de-
sign and implementation, in context of using Chef as a basis of the system
implementation, the term of cookbook (refer to Chef documentation) is con-
ceptually not that far from the idea of feature. Actually a cookbook represent
means of installation of environment components connected to a single en-
tity uniquely identified by name. Therefore, in the further reading the notion
of feature can be regarded as a entity that can be mapped to cookbook in the
final system implementation. Nevertheless, before any concept of implemen-
tation will be introduced there is a need to provide a description of several
aspects connected with Feature Modeling.

In the following chapters there will be presented the Feature Model nota-
tion, data structures of model representation, basic algorithms of automatic
reasoning on feature models and tools that will allow to make use of feature
modeling in the application of e-Science application deployment.

3.2 Overview of Feature Modeling

3.2.1 Feature Model notation

A "feature" is defined as a "prominent or distinctive user-visible aspect, qual-
ity, or characteristic of a software system or system" [35]. Features express the
variabilities and commonalities among programs in a software product line.
Feature model represents the information of all possible products in a prod-
uct line in terms of features and relationships among them. A feature model
is represented as a hierarchically arranged set of features which is similar to
a tree. Relationships between features can be expressed in two forms [8]:

• As relationships between a parent (or compound) feature and its child
features (or subfeatures). Relationships form a tree-like structure of a
model.

18

3.2. Overview of Feature Modeling

• As Cross-tree (or cross-hierarchy) constraints that are typically inclu-
sion or exclusion statements in the form: if feature F is included, then
features A and B must also be included (or excluded).

Feature Models Relationships between a parent (or compound) feature and
its child features (or subfeatures) are categorized as:

• And - all mandatory subfeatures must be selected. In the example in
Figure 3.2, a mobile phone consists of 4 main features - Calls, GPS,
Screen and Media.

• Alternative - only one subfeature can be selected. In the example in
Figure 3.2, mobile phones may include support for a basic, color or
high resolution screen but only one of them.

• Or - one or more can be selected. When cell phone supports Media,
Camera or Mp3 must be chosen.

• Mandatory - features that are required. For instance, every mobile
phone system must provide support for calls.

• Optional - features that are optional. In the example, software for mo-
bile phones may optionally include support for GPS.

Or relationships can be extended with additional information concerning
cardinalities: n:m - a minimum of n features and at most m features can be
selected.

Figure 3.1. Graphical representation of feature relationship types. The image is
based on a picture presented in [8].

Cross-tree constraints were introduced to represent require and exclude
restrictions. In our example Camera feature may require Screen with High
resolution and GPS can exclude Basic Screen. In order to represent cross-tree
constraint boolean expressions are used (eg. clause in form of Conjunctive
Normal Form, where each feature corresponds to a different literal).

3.2.2 Proposed operations on feature models

In order to bring feature based software to life it is necessary to properly
process feature model. If you imagine that a feature model is large it becomes
quite a complex problem to define product domain or find out if product
configuration is valid for the model. However, quite a lot of research on how

19

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

Figure 3.2. Sample feature model describing a product line from telecommuni-
cations industry [8]. The model presents hierarchical structure of mobile phone
features. In order to include some additional constraints in the model, cross-tree
constraints may be provided.

to deal with similar issues has been already made. Based on the work [8],
several operations meant to be performed by different feature-model-based
programmatic tools can be mentioned. This summary is presented to point
out the range of issues connected with feature model processing.

• Void feature model - check if feature model describes any valid config-
uration.

• Valid product - check if configuration of software product is valid for a
given feature model.

• Valid partial configuration - check if partial configuration is valid and
allows for further selection of features.

• All products - count products.

• Filter - limit the domain of configuration by providing constraints.

• Anomalies detection - Dead features, Conditionally dead features,
False optional features, Wrong cardinalities, Redundancies.

• Explanations - find a reason for model/configuration validation or
other failure.

• Feature model relations - comparison between models (Refactoring,
Generalization, Specialization, Arbitrary edit).

• Optimization - guidance on feature model edits for optimization of op-
erations.

• Core features - features that are selected in every configuration.

20

3.3. Families of Feature Model reasoning algorithms

• Other - for further information refer to [8].

Regarding objectives of the project some of the operations are useful,
some of them turn out to be needles. Decisions on how to adapt feature
model concept to e-science application component connection configuration
will be presented later.

3.3 Families of Feature Model reasoning algorithms

In order to perform automatic reasoning on a feature model, there is a need to
provide its formal representation. According to the research that was made
in this area it seems that there are two main approaches to feature model rep-
resentation and two corresponding algorithm families of efficient reasoning
on that model. This section presents a problem of boolean satisfiability (SAT
and Binary Decision Diagrams (BDD) as these two families are mainly used
in this scope.

3.3.1 Constraint Satisfaction Problem

Figure 3.3. The rules for translating Feature Model relations into Boolean for-
mulas [8], in order to represent the model in a form as a Boolean Satisfiability
Problem. The third column is a mapping of relationships presented as an exam-
ple in the Figure 3.2.

21

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

Figure 3.4. Sample Binary Decision Diagram [2]. Round nodes represent vari-
ables (in this case they are product features). Squares external nodes denote
values of the formula. Solid edge represents 1, dotted - 0. A path from the root
to an external node is a representation of a variable values.

Constraint satisfaction (CSP) [37] is a mathematical problem defined as a
set of variables, and a set of constraints the variables must satisfy. A solution
to the problem is a vector of variables that satisfies all the constraints. Con-
straint satisfaction can represent numerous practical combinatorial problems
including scheduling, planning and configuration. Moreover, recently CSP
is being applied to other domains such as natural language processing (for
construction of parsers), computer graphics (for visual image interpretation),
biology (for DNA sequencing), business applications (trading) and others .

Boolean Satisfiability (commonly known as SAT) is a case of constraint
satisfaction problems in which all the variables are boolean. To adapt boolean
satisfiability problem to automatic reasoning on feature models, we treat each
feature as a variable (see the Figure 3.3). A value of a variable will be 1 when
the corresponding feature is selected by user in the configuration process, 0
will be assigned otherwise.

In order to find a solution to a constraint satisfaction problems, constraint
solvers are used. Many different algorithmic techniques are applied by mod-
ern constraint solvers such as backtracking search, local search, and dynamic
programming. In this review I will not focus on the specific type of algorithm
as this is not the main point of interests regarding the thesis specificity.

3.3.2 Binary Decision Diagrams

Binary decision diagrams [2] are compact encodings for Boolean formulas
that provide numerous efficient reasoning algorithms. BDDs have been

22

3.3. Families of Feature Model reasoning algorithms

widely explored in many research areas such as model checking, formal ver-
ification, optimizing, etc.

In terms of data structure BDDs are directed acyclic graphs (DAGs) hav-
ing exactly two external nodes representing constant functions 0 and 1, and
multiple internal nodes labeled by variables. Each variable node has two out-
going edges representing a decision based on the variable value assignment.
Solid edge represents 1, and dotted denote assignment to 0. A path from the
root to an external node represents a vector of variable values. So a "config-
uration" of variable states is valid when the corresponding path exists in a
decision diagram.

Example of Binary decision diagram is presented in the picture 3.4.

3.3.3 SAT vs BDD

The advantage of BDDs over SAT solvers is a great performance of some BDD
algorithms once the BDD structure is built. For example, while for a SAT
solver it will take some noticeable time to count the number of possible so-
lutions for a given problem, BDD can perform this operation very efficiently.
Moreover, a single check of a Boolean formula is linear with the formula size
using BDDs, while this is a NP-hard problem for SAT solvers. Finally what is
especially important in interactive configuration, where system updates the
available options while the user makes configuration decisions, there exists
efficient BDD algorithms for calculating valid domains [28].

According the description above, BDD solvers seem to be perfect for
the interactive configuration of a product. Unfortunately the structure of
BDD have a significant drawback. The graph represents whole combinato-
rial space, which in comparison to SAT may cause huge growth in memory
utilization of the solver. This may result in a situation, in which the repre-
sentation of the model is exponentially larger than the number of variables,
which may be unacceptable.

3.3.4 The areas of application

Marcilio Mendonca in his work [39] presents following comparison of some
of the mentioned operations being performed on the feature model. Based
on literature (listed in the work) and his own experience he divides them
into several groups and presents which feature model reasoning algorithm
best fits each operation. Summary of Feature Model Reasoning Activities
and Operations [39] with the suitable data structure/algorithm family is pre-
sented below:

1. Debugging :

• Checking satisfiability of models (SAT),

• Detecting if a given feature is "dead" (SAT),

23

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

• Detecting "dead" features (SAT, BDD).

2. Refactoring:

• Checking equivalence of feature models (SAT, BDD),

• Checking extension of feature models (SAT, BDD).

3. Configuring:

• Checking specialization of feature models (SAT, BDD),

• Validating partial or full configuration (SAT),

• Calculating valid domains (BDD),

• Enumerating one or more valid configurations (SAT, BDD),

• Resolving decision conflicts in collaborative configuration (SAT,
BDD).

4. Measuring:

• Counting valid configurations (BDD),

• Computing variability factor (BDD),

• Computing commonality of a feature (BDD).

3.3.5 Comparison summary

Summing up the above considerations, it seems that BDD solver should be
used whenever it is possible in context of feature model-based product con-
figuration. The only limitation of this approach is memory utilization factor
and a time of DAG model representation creation computational overhead. If
the model representation will be generated only once and stored in the mem-
ory, a BDD solver will be more suitable for most of the operations performed
on a feature model, than a solver based on SAT. However, if there is a need
for multiple model object storage, serialization should be considered instead
of model creation on demand. Although the BDD solvers may deliver better
performance, if there is a need for ad-hoc model object creation, using SAT
solver may be also reasonable.

3.4 Solvers based on Boolean Satisfiability Problem
and Binary Decision Diagrams

There are several popular SAT and BDD solvers that may be suitable to per-
form reasoning on feature models that enable user to easily cope with soft-
ware product configuration. This section presents three different Java-based
reasoners in order to outline their capabilities. Each of the solvers uses a dif-
ferent paradigm, so they cannot be equally compared. The purpose of this

24

3.4. Solvers based on Boolean Satisfiability Problem and Binary Decision
Diagrams

review is a presentation of part of the work that was done to analyze the
possibility of using following libraries in the development process. As the
next chapter shows, there exist some reasoning tools, which are dedicated to
feature models and are more suitable to be used in target application devel-
opment.

3.4.1 SAT4J

Sat4j [47] is an open source library of SAT solvers providing cross-platform
SAT-based solvers written in Java [38]. It is used by various Java-based soft-
ware, in the area of software engineering, bioinformatics, or formal verifica-
tion [38].

As a documentation claim a SAT solver in Java is about 3.25 times slower
than its counterpart in C++, but the library is not focused on performance
but to be fully featured, robust, user friendly and extensible [47].

SAT4J has been succesfully applied to analysis of large feature models by
Marcilio Mendonca [40].

3.4.2 JavaBDD

JavaBDD [32] is a Java library for manipulating BDDs (Binary Decision Di-
agrams). The JavaBDD is providing Java API based on that of the popular
package written in C language - the BuDDy. JavaBDD includes a pure Java
BDD implementation and it can also be used as an uniform interface to ac-
cess other libraries. JavaBDD provides an additional layer allowing to seam-
lessly switch between JDD Java-based library, and BuDDy, CUDD, and CAL
libraries, which are written in C [32].

JavaBDD is designed for high performance applications, so it also exposes
many of the lower level options of the BDD library, like cache sizes and ad-
vanced variable reordering [32].

3.4.3 Choco reasoner

Chocois a java library for constraint satisfaction problems (CSP) and con-
straint programming (CP). It is built on a event-based propagation mecha-
nism with backtrackable structures [12].

It is an open, user-oriented solver which provides a separation between
model and solver. It paves the way to provide a general problem solving
library not necessarily dedicated to constraint programming [13]. Choco can
be used for [12]:

• teaching (a user-oriented constraint solver with open-source code),

• research (state-of-the-art algorithms and techniques, user-defined con-
straints, domains and variables),

25

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

• real-life applications (many application now embed CHOCO).

3.4.4 Evaluation of the solvers

As it is shown in the table 3.1, all of the above solvers can be used to imple-
ment majority of the operations taken into account. As the FaMa team [24]
implemented all of the presented operations using Choco solver it may be
considered the most flexible in terms of automatic reasoning on feature mod-
els. However, the research in a domain of various solvers shows that there
are some tools that are more suitable for the given task. A comparison of the
tools designed specifically to manipulate feature models is presented in the
next section.

Operation SAT4J JavaBDD Choco
Validation X X X
Products X X X
Number of products X X X
Commonality X X X
Variability X X X
Valid product X X X
Valid configuration X X X
Detect errors X 7 X
Explain errors X 7 X
Product explanation 7 7 X
Core features 7 7 X

Table 3.1. A summary of operations on Feature Model that was implemented in
[24] using SAT4J, JavaBDD and Choco reasoner. The table shows that Choco
solver is suitable for all of the listed operations.

3.5 Tools for Feature Model reasoning

In the previous section there were presented three libraries that allow to an-
alyze a feature model after translating the operations on a model into an ap-
propriate combinatorial problem. The tools introduced in the current section
can help to perform similar tasks, providing feature model centric interfaces.
What it means, using them there is no longer needed to provide a special
conversion of operations referring to a feature model. This approach results
in more "blackbox feel" of a library, gives the user less control, but on the
other hand abstracts the operation and significantly eases the use. Although
in this section description of three popular tools will be provided, the last
one will be emphasized because of its special suitability for implementation
of the tool.

26

3.5. Tools for Feature Model reasoning

3.5.1 AHEAD tool suite

AHEAD [54] (Algebraic Hierarchical Equations for Application Design)
model was presented by Don Batory, Jacob Neal Sarvela and Axel
Rauschmayer in the work [5]. It is an architectural model for feature oriented
programming (FOP) and a basis for large-scale compositional programming
[54].

The AHEAD Tool Suite is a set of tools that support Feature Oriented
Programming. ATS can be used to build a product line for software products
reusing modularized units implementing features. The suite requires the use
of extended Java languages and provides tools for [54]:

• step-wise refinement and compositional programming,

• metaprogramming,

• extending programming languages (e.g. Java).

Although AHEAD Tool Suite is basically regarding "Feature Oriented Pro-
gramming" (in the sense of mixin code) some of the utilities are suitable for
feature model edition and reasoning. As an example guidsl tool can be men-
tioned. Features of AHEAD Tool Suite are listed below:

• Model Debugging,

• Model Checker,

• Variable Table and Propositional Formulas,

• Variable Value Explanation,

• Saving Equations and Configurations.

A significant drawback of AHEAD is the fact that its components are ac-
cessed as a shell command. It implies an obvious inconvenience of using
it as a part of another application (input/output parsing, process lifecycle
management, etc.).

3.5.2 FaMa tools

FaMa [23] (FeAture Model Analyser) is a tool to analyse feature models.
FaMa accepts models written either in XML or plain text Feature Model For-
mat.
FaMa allows to perform following operations on feature model [24]:

• Validation - checks if a model is not empty.

• Products - calculates all valid products of a feature model.

27

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

• Number of products - calculates the number of products.

• Commonality - calculates appearances of a given feature into the list of
products.

• Variability - calculates variability degree of a feature model.

• Valid product - determines if a product is valid for a given model.

• Valid configuration - analyses if configuration that has not been com-
pleted yet is valid.

• Error detection.

• Error explanations - looks for relationship of conflicting features.

• Invalid product explanation - provides options to repair a invalid prod-
uct for a given model.

• Core features - calculates features that are present on every product.

• Variant features - calculates features that are not present on every prod-
uct.

Figure 3.5. FaMa modular architecture [22]. As one can see there are four
reasoners that can be used to operate on feature models. FaMa is built as a
Software Product Line, so the library not only supports the methodology, but
also is an example of its implementation.

28

3.5. Tools for Feature Model reasoning

As one of the main advantages of FaMa the versatility of usage should be
mentioned. FaMa tools can be accessed in four ways [24]: FaMa shell, FaMa
Web Service, FaMa OSGi, FaMa standalone.

Moreover, FaMa design is modular and the tool suite is extendable by
implementing reasoners, metamodels or transformations, and integration
through OSGi. For now FaMa allows to use four reasoners: choco, sat4j,
jacop and javabdd. Each of the operations on feature model has a number of
implementations using different reasoners.

3.5.3 Software Product Lines Automated Reasoning (SPLAR)
library

SPLAR [49] uses both SAT and BDD models to cope with memory/time in-
tractability problems regarding reasoning. The library is particularly valu-
able for the project in terms of comparing both models. SPLAR was built
as part of Marcílio Mendonca’s PhD thesis [39] at the University of Waterloo
and offers state-of-the-art BDD variable order heuristics designed to reduce
BDD structure as much as possible. The library includes also SAT-based al-
gorithms. SPLAR includes implementation of the operations such as valid
domain computation, conflict detection, configuration auto-completion and
others [49]. The library is written in Java and provides Java API, so it is con-
venient for the usage inside the Java code.

SPLAR was used to create a quite popular, open source, web applica-
tion, which can be used to create, configure and analyze Feature Models -
SPLOT (Software Product Line Online Tools) [51]. Moreover, on November
2010 SPLAR went open source so it is another favoring factor in context of
the project needs.

What has to be outlined SPLAR can be particularly valuable for the thesis
because of several aspects connected with its connection with SPLOT. First
of all SPLOT is ready-to-use application that can be used for testing the pro-
totype of the developed tool. It allows to generate feature models using an
intuitive web interface and export them to SXFM format (which tends to be
more and more popular). Once a model is created it can be saved in the
online repository and tested. In order to test the feature model the product
configuration web interface can be used by a user for selection of certain fea-
tures. Each configuration can be exported to XML and CSV format. As all
of the source code is freely available, some parts of the application can be
reused in early phases of the implementation of the prototype. For example
while using SPLAR to perform operations on feature model, SPLOT can be
used to generate, export and re-read sample models or configurations. This
can allow to focus on the development of deployment mechanism for the
application being created.

Another promising factor of using SPLOT is the fact that it is imple-
mented using Freemarker [26] (a template engine) and Java servlets [31] fol-

29

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

Figure 3.6. The architecture of SPLOT [49]. The application is a web based tool
allowing to perform various operations on feature models. Under a web user
interface there is an application using SPLAR library implementing the logic of
operations. As one can see in the diagram, SPLOT is based on JavaEE and
uses Servlets to handle HTTP requests.

lowing the MVC pattern, so the code of View and Controller are well sepa-
rated. This allows to easily reuse some interesting parts of the code.

What is more, as SPLAR library implements both SAT and BDD solver
engines, the source code of the developed prototype can be easily modified
to adapt a reasoner to specific memory utilization / efficiency requirements.
As SPLAR is also open source, it opens possibilities of modifying the model
representation which is very promising for the future work.

3.5.4 Summary of the reasoners comparison

As all of the presented Feature Model reasoning libraries provide different
flavors of similar operations on feature models, the comparison was focused
on the adaptation profits of the particular tool. Taking the considerations pre-
sented in the section 3.5.3 into account, there was made a decision of testing
SPLOT and SPLAR in the phase prototype development. As it was decided
to use these tools the next section presents several aspects of SPLOT design
in a nutshell.

30

3.5. Tools for Feature Model reasoning

3.5.5 Evaluation of Software Product Line Online Tools

As it was mentioned before, SPLOT [51] is an online tool that allows to per-
form several operations on feature model starting from its creation, ending
on analysis of the structure of feature interconnections. From the perspective
of the software product created in the scope of this thesis, the most inter-
esting are the operations of creation and saving a feature model, selecting
features in product configuration and finally exporting final configuration of
a software product.

Once a feature model is created in SPLOT it can be exported to the SXFM
format [52] (see the example below). SPLOT provides a parser, which allows
to read and write the feature model to a file. As it was mentioned before it
was decided to use SPLOT and SPLAR in order to build the target system
prototype. It was also decided that the prototype (see the section regarding
the Proof of Concept - 5.1) will be based on both - the SXFM model format
and the XML configuration format.

Figure 3.7. A diagram of the core SPLOT classes. A single servlet uses multiple
handlers. The source code of handlers can be reused quite easily.

In order to find out whether it is possible to make use of any of SPLOT
web user interfaces, the source code was analyzed in terms of reusability,
and the following architecture description was made. As it can be noticed,
the most convenient approach would be using whole configuration interface
of SPLOT in order to focus on implementation of experiment environment
installation. In order to adapt the user interface of product configuration,

31

3. SOFTWARE PRODUCT LINE AS A GENERIC APPROACH TO SOFTWARE

CREATION

there was a need to extract an appropriate module. SPLOT is built based on
Java Servlets and as it is presented in the Figure 3.7, the product configurator
has only one entry point - SplotConfigurationServlet. The servlet adapts its
behavior according to the "action" parameter of HTTP GET method, and runs
an appropriate handler. It means that even if it is be necessary to write from
scratch some code to handle HTTP requests, there is still a possibility to reuse
the source code of the handlers.

Some handlers use SPLAR ConfigurationEngine (as InteractiveConfigura-
tionMainHandler2) which is instantiated each time a new model is loaded
SPLOT uses SAT-based model reasoning algorithms for models created ad-
hoc. At this point it should be mentioned that if a model is large enough to
cause efficiency problems of SAT reasoner, using a Binary Decision Diagram
generated and kept in memory should be considered.

As a summary of a study on SPLOT and SPLAR library, it can be said that
both tools appear to suit well the tool design. SPLOT source code appear to
be promising in terms of reusing user interfaces that can be extracted quite
easily. SPLAR is used by the SPLOT for model creation and product config-
uration, so it proves that SPLAR provides sufficient operations to perform
tasks that will be implemented by the tool developed in scope of the thesis.
Moreover, SPLAR gives a programmer an opportunity to switch between
two reasoning modes - using BDD or SAT-based reasoner - which allow to
adjust the implementation to specific requirements for time of operation and
memory utilization.

3.6 Summary

This chapter presents application of Software Product Line in the domain of
e-Science. The concept is based on modeling the configuration of e-Science
application components as a set of features that form a Feature Model. In
order to introduce means of production for the production line, the idea of
mapping from the space of e-Science application features to the space of en-
vironment component installation packages was described. Next, there were
presented a few low-level approaches to perform operations on feature mod-
els that may be useful from the perspective of product configuration. As
during the research it was discovered, there exist some Feature Model spe-
cific solutions that was found to be more useful for the implementation of the
tool. As the SPLAR library was evaluated to be particularly valuable, there
was made a decision to use it in the implementation. Chapter 4 presents how
the SPLAR and SPLOT are adopted by the tool built in scope of this thesis.

32

Chapter 4

Experiment environment
preparation tool overview

In this chapter the detailed vision of the application created in scope
of this thesis is presented. Starting from a general system description
(section 4.1), the reader will go through the specification of requirements
(section 4.2), to the description of the system design (section 4.3). The
chapter should give the reader a high-level look at the system, before the
actual description of implementation will be introduced.

4.1 Cloudberries general description

In order to introduce the concept of the tool design, it is needed to describe
what it is designed for. As it was mentioned before the system has to cope
with the complexity of e-Science application installation. What this really
means is the need to provide a tool that will allow a scientist to select, config-
ure, and install components of the experiment environment in an easy and
intuitive way. It also means that the set of environment components that can
be installed using the system, will be easily extensible.

Cloudberries is the code name of a tool created in the scope of this thesis
and this name will be used in the further reading. The Cloudberries is an tool
that allows the end user to see a set of reusable components (organized in a
certain way, and managed by the administrator), select a few of them, spec-
ify attributes (such as installation path, etc.), and deploy the corresponding
experiment environment on the cloud infrastructure.

Looking at the tool in terms of requirements, it should be mentioned that
the configuration selected by the user has always to be valid. So there is
a need for environment component dependency management to cope with
that problem. That’s why feature modeling was engaged to express con-
nections between elements of configuration. In the context of the reasoning
that was presented before, it can be said that a developed system should

33

4. EXPERIMENT ENVIRONMENT PREPARATION TOOL OVERVIEW

be treated as a Software Product Line, managed by an administrator. In the
nomenclature of the SPL a single experiment environment can be regarded as
a product, with its components as features. The scientist will see a graphical
representation of a Feature Model and be able to decide which components
he would like to include in his experiment environment.

Behind the user interface there will be working a provisioning system as
a framework for automation of software installation. As it was mentioned
before, after a comparison of several tools, Chef was chosen to be used.

In the following sections a detailed specification of requirements and the
design of th system will be presented.

4.2 Specification of requirements

In this section a specification of requirements concerning the application is
presented. Although the requirements come mainly from general description
of application of the tool, as it was meant to be deployed in the VPH-Share,
there are some additional limitations originating from the project.

4.2.1 Functional requirements

Base requirements:

• The application has to provide a function of loading model that speci-
fies dependencies between features (environment components).

• The application has to determine whether the model is syntactically
valid or not.

• The application has to provide an ability to supply a deployment script
for a feature.

• The application has to determine whether the feature model is valid in
terms of deployment capability. For each installable feature an installa-
tion script must be provided.

• The application should allow to view a feature model represented as a
tree with additional requirement/contradiction integrity constraints.

• The application has to allow to create an environment configuration.
Configuration process should be based on graphical representation of
feature model.

• The application has to allow to save created configuration.

• The application has to determine whether configuration is valid or not.
Validation should allow to avoid a situations when two selected fea-
tures conflict in context of a feature model.

34

4.2. Specification of requirements

• The application has to allow to load a saved configuration.

• The application has to be able to deploy a configuration of environment
components on the Virtual Machine in a cloud.

Additional requirement (not critical):

• The application may allow to edit feature model through the graphical
interface.

4.2.2 Non-functional requirements

• Accessibility - multiple user, non-exclusive access.

• Configuration - Feature Models (eg. SXFM [52] notation) for feature
relationship constraints. Plug-able installation scripts. Additional tool
functionality may cover the need for feature model edition.

• Dependencies - future integration with the VPH-Share project user in-
terface.[58].

• License - open license software use only.

• Platform - multiple cloud platform support. Possibility of extending
for next vendors. Unix/Linux as an operating system, Java language
(JEE). JetSpeed [34] portal integration may be considered.

• Security - user interface security can be provided by the JestSpeed por-
tal. The system should be protected against interference from the out-
side without permission.

• Usability - user interface should be as easy and intuitive as possible.
The less time spent on configuration of an experiment environment the
better is the frontend.

• Documentation - Javadoc and in-code documentation (English lan-
guage), user’s manual (English), MSc thesis documentation (English)
has to include architectural design and description of implementation.

35

4. EXPERIMENT ENVIRONMENT PREPARATION TOOL OVERVIEW

4.3 High-level system design

In previous sections there was introduced a general description of the tool
and requirements that had a great influence on the project planning phase.
At this point, the design of the final version of Cloudberries should be
presented. In this section there are described the user roles, their capabilities
and main elements of the system architecture. This paragraph can be treated
as a starting point to familiarize with Cloudberries architecture.

Cloudberries is a system designed to be used by two types of users:

• Experiment Developer - this user represents a scientist. In terms of the
system design Experiment Developer is the end user of the tool. His
needs can be described as a preparation of experiment environment in
an easy and intuitive way.

• System Administrator - the administrator of the system that takes care
of the means of environment preparation. He provides components (in
the form of installation scripts) and component dependency structure
(represented by Feature Model).

The end user (Experiment Developer) is provided with a graphical interface
accessed via web browser (Figure 4.1). Once the user is logged in, he can
manage three types of Cloudberries specific entities:

• Configuration - a selection of environment components that will be in-
stalled on the target Virtual Machine.

• Deployment template - a configuration of components, enhanced with
attributes. For each installation components there are some additional
parameters that can be specified by the user (eg. installation path, log
folder, initial credentials). By specifying deployment template, default
component attributes are overridden by the user.

• Deployment task - when the user selects a configuration of compo-
nents or a deployment template, he has to provide Virtual Machine
IP address (for now the user cannot request virtual machine instance
creation), adjust the parameters, and the installation process can be
started. Once the user starts the installation, the user can monitor the
progress by viewing corresponding deployment task.

Defining configurations and deployment templates allows a user to simplify
experiment preparation process at different levels. Persistent configuration
stores information about coarse grained decisions of environment compo-
nents. Each time the user faces the necessity of installing similar environment
he can open saved configuration, provide required parameters and run the

36

4.3. High-level system design

Figure 4.1. The design of Cloudberries experiment developer interface. Ex-
periment Developer can manipulate three types of entities. Configuration is a
selection of environment components that can be deployed in the experiment
environment after providing necessary attributes. Deployment Template allows
to store a composition of default values for the attributes. Deployment Task is a
representation of running deployment process. The user can monitor an instal-
lation by viewing details of the corresponding Deployment Task.

installation process. If a user would like to predefine values for a selection
of attributes and override attribute defaults (if such are specified in the cook-
book metadata), they should take advantage of deployment template which
will keep the defaults.

Each configuration, deployment template and deployment task must be
named and may be described by the user. All the information are retained
in the database and can be accessed again by selecting from adequate list.
Once the components and assigned attributes are selected (either by using
new/existing configuration, or retained deployment template), user can run
the installation. This process starts from creation of a deployment task en-
tity in the database. Deployment task can be observed through an Internet

37

4. EXPERIMENT ENVIRONMENT PREPARATION TOOL OVERVIEW

Figure 4.2. The design of Cloudberries administration interface. The branch on
the left side is an interface accessed via Web Browser, and the one on the right
requires usage of linux shell.

browser. The web interface provides information such as selection of compo-
nents, parameter values, and state of deployment.

Before a user can configure their environment, the system administrator
has to provide a hierarchical feature model of component dependencies (the
format of feature Model is presented in the chapter concerning prototype
development), and corresponding installation packages. The process of en-
vironment configuration is subordinate to Chef, so the installation packages
have to be provided in form of a Chef cookbooks (to get more information
refer to Opscode Chef documentation and Cloudberries user manual).

There are two types of user interfaces in terms of administering Cloud-
berries (Figure 4.2). The web browser interface (black in the picture below)
was meant to allow management of feature models. As the implementation
of this part of user interface was postponed a feature model loaded from a file
is used instead. The second interface (white element) can be accessed by Knife
command line tool. Each feature is bound by its identifier to a corresponding
cookbook, which provides installation scripts, a definition of attributes, and
some other stuff - refer to the Chef documentation [10].

Cookbooks are stored in the central cookbook repository managed by
Chef server instance. Before the administrator can upload a cookbook to the

38

4.4. Summary

Figure 4.3. The architecture of Cloudberries. There are two basic components
of the system - an instance of Chef server and the main Cloudberries applica-
tion running in web application container. Both of these components need an
access to the cloud infrastructure. The scientific user accesses Cloudberries
using Internet Browser. Administrative tasks are performed using linux shell.

repository, he has to create and test it at his local workstation (have a look
at the Chef architecture description - Section 2.2). Next, the cookbook needs
to be added to his local cookbook repository and then uploaded using Knife
(refer to Chef documentation [10]).

The architecture of Cloudberries in its simplest form can be presented as
in the picture 4.3. The main component of the Cloudberries is a web appli-
cation written in Java, running in a web application container (eg. Apache
Tomcat). The application is in fact a portlet deployerd in Jetspeed portal. All
of the information collected by the system is stored in a relational database.
Of course the Chef server and the web application container can be deployed
on the same physical machine.

4.4 Summary

In this chapter there was introduced a vision of a tool to easily deploy an
environment of e-Science application in the cloud infrastructure. Presented
system should meet the requirements originating from the field of its appli-
cation, the chosen approach to automation of the software installation (using
Chef from a family of provisioning tools) and methodology used in the sys-
tem implementation (Software Product Line). The system presented in this
chapter can be described as a web based tool of software installation, which

39

4. EXPERIMENT ENVIRONMENT PREPARATION TOOL OVERVIEW

is guided by the user, selecting features from the domain specified by a fea-
ture model. The implementation of the tool should be focused on easing the
process of configuration, in order to satisfy the needs of non-technical users.

40

Chapter 5

Implementation of the tool

This chapter presents selected aspects of implementation of the system
that was built in scope of this thesis. First section describes details of the
Proof of Concept implementation that was built in the phase of feasibil-
ity study. Presentation of the prototype familiarizes the reader with the
course of the project, beginning from the assumptions that were made in
the early phase of implementation. Next section presents the choice of
technology used to create the tool, details of implementation and its op-
erational rules. To confront ideas with the real appearance of the system
some demonstrational screenshots are presented at the end of the chapter.

5.1 Proof of Concept

The Cloudberries project realization took about eight months and besides
State of the Art research the work may be split into two main phases - imple-
mentation of Proof of Concept prototype and actual implementation of the
tool. The prototype was built as a number of Java classes, mainly to investi-
gate capabilities of SPLAR library and Chef provisioning tool. It allowed to
test some of the core functionalities of the tool. There are some elements of
prototype that were inherited by the final version of Cloudberries. So that,
this section presents several aspects of prototype realization before introduc-
ing description of a final version.

5.1.1 Installation packages

Deployment of environment is performed using Chef. The features that are
specified in a feature model represent components that can be included in
a configuration. Each feature has a corresponding cookbook that has to be
saved in the central cookbook repository of Chef server. Feature identifiers
are mapped to the names of cookbooks stored in the repository.

41

5. IMPLEMENTATION OF THE TOOL

5.1.2 Loading feature model

The prototype is able to load a feature model from a file in a form of extended
SXFM format (to get more information about SXFM refer to the SPLOT docu-
mentation [52]). Extension affects the SXFM format only a little - exclamation
mark is added when the feature should be treated as installable. Only instal-
lable features are analyzed while searching for a corresponding cookbook in
the Chef repository. In order to read feature models the parser provided by
SPLAR library was extended. The loaded model is kept by the SPLAR as a
Java object providing the programmer with several operations. The object
representation of the model is used in the final implementation of the tool in
a process of configuration. Sample feature model in extended SXFM format
is presented in the Figure 5.1.

5.1.3 Loading configuration

The prototype is able to load a configuration of features saved in XML gen-
erated by SPLOT (refer to SPLOT website). Each configuration corresponds
to a certain feature model so it has to be validated in terms of compatibility
with the model. A sample configuration is presented in the Figure 5.2

As one can see in the Figure 5.2, some of the features are selected by the
user, and some of them are inferred automatically by SPLOT (auto-completion,
propagated). The prototype implementation treats all of the features equally
and matches them by the identifier with features in the model. The valida-
tion concerns name, type and correctness of the decision value in the context
of model. When two configuration decisions conflict, the configuration is
treated as invalid and deployment of environment fails.

The configuration is subjected to further validation in order to check if
for each of the installable features a corresponding cookbook exists in the
Chef repository. In order to do that jclouds-chef [33] library was used to
communicate with Chef REST API.

5.1.4 Using provisioning API

As the design assumes Java is the main programming language used to de-
velop the system. So that, there was a need for a solution that will allow to
manage cookbooks, clients and nodes in a context of JVM. The obvious so-
lution is system level java invocation of Knife shell command. In this case
required Knife invocation parameters, such as Run List and cookbook at-
tributes can be generated from java code and provided as a JSON file. The
main drawback of this solution is obtaining responses from remote Chef-
client. Using system command means that its output has to be read and pro-
cessed (parsing command line output can be a challange because of variety
of it’s possible forms).

42

5.1. Proof of Concept

1 <feature_model name=" minimal ">
2 <meta>
3 </meta>
4 < f e a t u r e _ t r e e >
5 : r minimal (_r)
6 :m! mandatory (_r_1)
7 : o ! opt iona l (_r_2)
8 : g (_r_3) [1 , ∗]
9 : ! or1 (_r_3_4)

10 : ! or2 (_r_3_7)
11 : g (_r_5) [1 , 1]
12 : ! xor1 (_r_5_6)
13 : ! xor2 (_r_5_8)
14 </ f e a t u r e _ t r e e >
15 < c o n s t r a i n t s >
16 c o n s t r a i n t _ 1 : ~_r_5_6 or _r_3_7
17 </ c o n s t r a i n t s >
18 </feature_model>

Figure 5.1. Example of a feature model in the extended SXFM notation that
is used by Cloudberries. There are all types of the feature relationship used in
this model. The structure is hierarchical and very intuitive to understand. After a
colon there is a character which determines type of the relationship with the par-
ent feature. Blank character means that the feature is a leaf in the tree. Feature
identifiers are written in brackets. Cross tree constraints has to be formulated
in Conjunctive Normal Form and placed in the constraints tag. The features
marked with exclamation mark are treated as installable and will be considered
during validation of the installation package repository. The use of exclamation
marks for distinguishing installable features differs format used by Cloudberries
from the original SXFM.

Another approach is to make use of jclouds-chef [33] plugin. The plug-in
is a .jar library based on Jclouds - commonly used java library that abstracts
usage of several cloud providers and allows to unify infrastructure manage-
ment. Jclouds-chef provides Java and Clojure API to perform both sever- and
client-side tasks while using Chef. It appears to be the right solution of the
mentioned problem. Therefore using jclouds-chef was a first attempt during
prototype development. Unfortunately, implementation of the system pro-
totype proved that jclouds-chef plug-in is very underdeveloped. The most
significant issue out of the many weak points of this library is the fact that
it completely lacks documentation. Therefore, it becomes hard to guess how
to appropriately use the complicated API. Moreover after several black box

43

5. IMPLEMENTATION OF THE TOOL

1 < c o n f i g u r a t i o n model=" minimal ">
2 . . .
3 < f e a t u r e id=" _r_1 ">
4 <name>mandatory</name>
5 <type>mandatory</type>
6 <value>1</value>
7 <decisionType>propagated</decisionType>
8 <dec i s ionStep>1</dec i s ionStep>
9 </ f e a t u r e >

10 < f e a t u r e id=" _r_2 ">
11 <name>opt iona l</name>
12 <type>opt iona l</type>
13 <value>0</value>
14 <decisionType>auto−completion</decisionType>
15 <dec i s ionStep>2</dec i s ionStep>
16 </ f e a t u r e >
17 < f e a t u r e id=" _r_3_4 ">
18 <name>or1</name>
19 <type>grouped</type>
20 <value>1</value>
21 <decisionType>auto−completion</decisionType>
22 <dec i s ionStep>2</dec i s ionStep>
23 </ f e a t u r e >
24 < f e a t u r e id=" _r_3_7 ">
25 <name>or2</name>
26 <type>grouped</type>
27 <value>0</value>
28 <decisionType>auto−completion</decisionType>
29 <dec i s ionStep>2</dec i s ionStep>
30 </ f e a t u r e >
31 < f e a t u r e id=" _r_5_6 ">
32 <name>xor1</name>
33 <type>grouped</type>
34 <value>0</value>
35 <decisionType>auto−completion</decisionType>
36 <dec i s ionStep>2</dec i s ionStep>
37 </ f e a t u r e >
38 . . .
39 </ c o n f i g u r a t i o n>

Figure 5.2. Sample configuration in the format that is accepted by the Cloud-
berries prototype. Configuration was prepared using SPLOT. The constraints in
the model (See Figure 5.1) allow SPLOT to automatically guess all of the above
decisions.

44

5.2. Cloudberries - the tool

tests I find the code is very unstable (a few bugs was found) - the reason may
be jclouds-chef ’beta’ development stage. As another drawback I consider
core jclouds developers’ assumption, which imply that API communicates
with the cloud provider directly. In regard to project security premise, sys-
tem must use intermediary service to communicate with the cloud.

Having abandoned the idea of using jclouds-chef it was a turn to give the
first approach, a second chance. The main reason for which the first solu-
tion was deemed insufficient was the fact that a shell command output is too
complicated to be processed. Fortunately, as it was shown by second review
of the Chef’s documentation, there is a way to extend Chef client, in the way
that will add custom error and report handlers. Handlers are simple Ruby
scripts which are loaded and run during client process execution. The variety
of error handling methods and output formats is virtually unlimited.

As a further jclouds-chef review showed, the library can be used pretty
well to communicate with Chef server REST API. So when we forget about
bootstrapping on a node and running a Chef client directly from jclouds-chef
it can still be used for other purposes.

5.1.5 Software installation

The prototype is able to perform simple installation of selected components
on the target virtual machine after providing SSH credentials. As jclouds-
library turned out to be insufficient to perform installation, so the installation
process was based on Knife (shell command) invocation. Reusability of this
part of prototype code was very poor, so the installation process had to be
implemented again in the final version of the system.

5.2 Cloudberries - the tool

To summarize previous mentions about the application architecture and the
choice of technology this section provides a complete description of the im-
pelmentation. Cloudberries is organized in form of Java-based web applica-
tion, implementing "Model, View, Controller" design pattern.

5.2.1 The choice of technology

To generate HTML web pages it was decided to use Free Marker [26]. It
is a generic tool to generate text output (anything from HTML to autogen-
erated source code) based on templates. As an input FreeMarker takes a
static template and a data dynamically generated in Java code. As an out-
put FreeMarker engine returns to the programmer a generated text. To use
FreeMarker in context of a web application there is a need for a mechanism
that will cope with HTTP requests/responses. In order to easily integrate

45

5. IMPLEMENTATION OF THE TOOL

Cloudberries with VPH-Share infrastructure, Java Portlet API (JSR-168, JSR-
286) [29] and Jetspeed [34] portal was chosen. Thye user interface is written
in HTML, JavaScript and Dojo toolkit using Ajax. A part of user interface re-
garding selection of environment components was based on implementation
of open source Software Product Line Online Tools. So that the look-and-feel
of SPLOT configuration panel was preserved.

In order to perform reasoning on feature model the design followed the
same approach as it was taken in SPLOT realization. So that, SPLAR library
is used. SPLAR provides an implementation for both presented families of
reasoning engines: SAT-based and BDD. Cloudberries uses the first one.

For installation of environment components Chef is used. The part of the
source code that is responsible for provisioning using Chef was mainly im-
plemented in the phase of the Proof of Concept prototype development. The
design and implementation considerations concerning Chef are presented in
the section 5.1

The application is a portlet, deployed in a Jetspeed portal, running on a
Tomcat container and uses MySQL relational database management system.
To communicate with database from the Java code I decided to use Java Per-
sistence API and Hibernate.

5.2.2 The database schema

Entity Relationship Diagram in the picture 5.3 presents a schema of the
Cloudberries database.

This diagram should be read starting from FEATURE_MODEL_FILE and
finishing on DEPLOYMENT_TASK. The first one represents a feature model
file stored in the feature model repository (directory on the machine of
deployment) and contains its name (ID) and checksum in order to eas-
ily check integrity of the model during the system operation. Each
CONFIGURATION is built in a context of certain feature model so there is
a relationship n:1 between them. Each configuration consists of a num-
ber of configuration elements. CONFIGURATION_ELEMENTs can have de-
fault attributes stored in a CONFIGURATION_ELEMENT_DEFAULT_ATTRIBUTE or-
ganized in DEPLOYMENT_TEMPLATEs. So deployment template is in fact
a set of default attributes for configuration elements. Another form of
configuration attribute is related to deployment task, and is stored in
CONFIGURATION_ELEMENT_DEPLOYMENT_ATTRIBIUTE table. DEPLOYEMENT_TASK

represents a process of installation and holds its STATE (NEW, RUNNING,
COMPLETED) and current deployment STEP (will be described later). Each
of these properties is enumerated in application layer. Each deploy-
ment step is separately reported in the table DEPLOYMENT_STEP_STATUS.
DEPLOYMENT_STEP_ATTRIBUTE table is used to save some output from deploy-
ment step which is other than log.

46

5.2. Cloudberries - the tool

Figure 5.3. The entity Relationship Diagram of the Cloudberries database. This
diagram should be read starting from FEATURE_MODEL_FILE table and finish-
ing on DEPLOYMENT_TASK. The names of tables are quite intuitive and match
corresponding items in the user interface.

5.2.3 The process of environment configuration

When the user opens a page regarding environment configuration, a feature
model is loaded and validated. Then a feature model object is created in the
memory, and it can be configured. Configuration process can be treated as
providing the feature model instance with decisions about selection of fea-
tures. Validation of the configuration is performed on the fly, so the user is
guided through configuration process. So that, each configuration created
using the user interface is correct in the context of the feature model at the
time of configuration saving. It should be mentioned that only installable
features are saved to the database.

When the user opens configuration stored in the database in order to cre-
ate deployment task, he has to provide attributes for features. Attributes
are stored in a cookbook (cookbook is in fact a directory) as a file named
metadata.rb (refer to Chef documentation [10]). When the user creates either
deployment template or deployment task, attributes of features are loaded
from a central cookbook repository. Each time Cloudberries needs to access
the Chef repository it uses jclouds-chef library.

When the configuration is supplemented with attributes the deployment
process may be run. Even though the stored configuration is considered

47

5. IMPLEMENTATION OF THE TOOL

valid, it is validated again before starting the installation. The process it-
self is similar to that, implemented as a part of the prototype and can be
represented as a sequence of steps described below.

1. VALIDATION - similar to the process presented in the section concern-
ing prototype development. This step of deployment takes a configu-
ration loaded from the database as an input. VALIDATION process
consists of instantiating the model (and checking its syntactical cor-
rectness), checking if for each feature there exists corresponding cook-
book in the central Chef repository, validating the configuration (fea-
ture must exist in the model), automatic inference of feature installation
order and creating Run List (refer to the Chef documentation). Installa-
tion order is based on a graph constructed using dependency relation-
ship. If a dependency graph contains cycles configuration is discarded.

2. BOOTSTRAP - a process of installing Chef client on the Node. To do
that, Knife shell command is used. When the client is installed, Cloud-
berries apply the Run List, and user-defined attributes of cookbooks
on the node. The jclouds-chef library is used in order to perform these
tasks.

3. DEPLOYMENT - the installation is performed by the Chef client. In
order to execute Chef client on the Node, Knife is used. Monitoring
of the client state is based on the log output of Knife. As Knife is a
command line application the log has a form of standard output from
the command and it is not so easy to programmatically customize it.
The logging can be improved by engaging Chef client’s mechanism of
handlers. It is a mechanism of plug-ins written in Ruby that allows to
handle logging from the perspective of Chef client. When the client
perform installation it invokes handler, providing them with informa-
tion regarding installation process. Because logging is not so crucial,
the plan of improvement is left to the implementation in the future.

5.3 User interface

In this chapter Cloudberries user interface will be presented in a nutshell.

5.3.1 Configuration

As it was mentioned before, end user is allowed to choose elements of en-
vironment and save the configuration in the database. After entering New
configuration page (Figure 5.4), the user will see a visual representation of
feature model similar to the one presented in the figure 5.4.

48

5.3. User interface

Figure 5.4. Creation of an experiment environment configuration. On the left
side of the page one can see a hierarchical representation of the feature model
loaded by Cloudberries from a file saved under a location specified in settings.
Features represent elements of the environment. Each configuration step, the
underlying application layer updates configuration changes and excludes all of
the useless features from the configuration space. On the right side there is
placed a table of configuration steps. Configuration process can be automati-
cally completed by selecting either Less Features (selects as little as possible)
or More Features (selects as much as possible).

As it was mentioned before, a single feature represents a component of
experiment environment. Features are either installable or not, so that the
installable ones are darker than the rest of features (black color). A feature
can be selected by performing a single click at the corresponding checkmark.
When a feature is selected, the user is being informed about possible conflict-
ing decisions. Decisions that can be inferred are automatically made for the
user. After selecting a single feature, the decision appears in the table on the
right side. Each decision step can be undone, by clicking on the rewind mark.
When the user intends to do so, they can automatically complete the configu-
ration process by selecting either Less Features or More Features option. The
first will results in selecting as little features as possible. The second, just the
opposite.

49

5. IMPLEMENTATION OF THE TOOL

When a user sees a message Done which means the configuration process
is finished, they can save the configuration and view it (Figure 5.5) by clicking
Configurations link on top of the portlet.

Figure 5.5. In this screenshot one can see the list of configurations that were
previously created and saved by the users. Each configuration is assigned to
a feature model which was used to create it. Before any further usage, the
configuration is validated with respect to the model, in order to avoid errors in
the installation process.

Having a single configuration the user can create deployment template
or deployment task.

5.3.2 Deployment template

In order to create deployment template, the scientist has to select a configu-
ration on the Configurations page, and click Create deployment template. Then
they will be redirected to template creation page, which looks similarly to the
one in the Figure 5.6.

50

5.3. User interface

Figure 5.6. Creation of a deployment template. A user can entitle the template
and provide some information notes. The box on the left allows to select at-
tributes for the configuration elements. The one on the right allows to specify
values for the attributes. This is very similar to the process of Deployment Task
creation.

After specifying a title and description of the template, the user has to
select feature attributes which will be saved in the template, just as presented
in the picture above. Left box shows default values of attributes and allows
to select attributes that will be modified. Right box is used to specify attribute
values.

Saved templates can be listed and viewed in a way similar to that pre-
sented in the configuration description.

5.3.3 Deployment task

Deployment task can be created either by using configuration or deployment
template. Regardless of which of the way is chosen, the user has to select
an entity from a list, and click a button Create deployment task. The user inter-
face for creating deployment task is very similar to that, creating deployment
template. The difference lays in the need for providing IP address, user name
and password in order to access target Virtual Machine via SSH.

Once the deployment template is created, the corresponding deployment
process can be monitored by selecting a given task from the Deployment tasks

51

5. IMPLEMENTATION OF THE TOOL

page. The interface will be similar to the one presented in the picture 5.7.

Figure 5.7. Monitoring of a Deployment Task. After selecting the task from the
list in the Deployment Tasks page, the user can see a page similar to the above.
The table on the top contains information about installation steps. By selecting
a step one can see the corresponding log.

Deployment task page informs the user about the current state of the task
and a set of deployment steps which are visible in the table on top of the page.
Deployment steps are described in the section regarding technical aspects of
the final version of the system (5.2).

Right click at a deployment step shows a corresponding log. The log will
appear in the popup window at the same page.

5.4 Summary

This chapter presented design considerations of Cloudberries - the applica-
tion that was built in scope of the thesis. In order to familiarize the reader
with the course of the project there were presented details of the particular
implementation phases. The division of this description is also justified by
the fact that some assumptions of the project realization were made in the
early phase of prototyping and can be clearly separated. Sections 5.1 and
5.2 allow to explore the choice of technology, low-level design considerations
and principles of the system operation. At the end of the chapter there are

52

5.4. Summary

presented some screenshots that help the reader to visualize described appli-
cation.

53

Chapter 6

Validation of tool
The tool developed in scope of this thesis was installed in the produc-
tion infrastructure of VPH-project. This chapter presents several as-
pect of deployment and evaluation. The objective of the tool creation
was minimizing the complexity of experiment deployment by providing
additional layer on top of provisioning system, so efficiency of the tool
strictly depends on performance of provisioning. As it is very hard to
introduce reasonable metrics to assess efficiency of this process, the tool
was evaluated in terms of the usability, security and its limitations in
the current state of implementation. This chapter presents also some
lessons learned in the process of implementation and areas of possible
improvement.

In order to evaluate Cloudberries, the tool was deployed in the pro-
duction environment of VPH-Share project and runs in the project’s private
cloud infrastructure. Cloud Execution Environment of VPH-Share is based
on OpenStack middleware suite responsible for providing VM lifecycle man-
agement and storage for a private cloud installation. So far the infrastructure
consists of 7 physical nodes with identical hardware specifications (HP Pro-
Liant BL2x220c G5, 2 x Intel Xeon L5420, 16GB RAM, 120 GB internal HDD).
One of them acts as the Cloud Controller (CC) and the rest are used to run
VMs. All nodes have access to approximately 3 TB of external shared storage
space (NFS on iSCSI volume) backed by a disk array with fast (15000 RPM)
SAS hard drives. This shared space is used to store VM templates and images
that can be used to run experiments. Cloudberries is installed in the Jetspeed
portal running in the application server, deployed on a dedicated VM. The
portal at the time of writing this thesis can be accessed via a Web browser at
http://vph.cyfronet.pl/puff. As the tool allows for software installation,
in order to gain the access to Cloudberries an account in the portal is needed.

The instance of Cloudberries is for now configured in a way that allows
to handle installation of software used by GridSpace Experiment Workbench
[14]. GridSpace is a virtual laboratory for running experiments that combines
usage of various languages and interpreters (Bash, Mathematica, Matlab,

55

http://vph.cyfronet.pl/puff

6. VALIDATION OF TOOL

Python, Perl, Ruby, Gnuplot) as well as a variety of execution methods (SSH,
QosCosGrid, GLite, Globus). The instance of Cloudberries is provided with
a feature model and corresponding cookbooks that allow for installation of
the prerequisites that are used by GridSpace execution environment (Erlang,
Java, JRuby, Perl, Python, Ruby, etc.) and some other useful applications (eg.
database management systems - Cassandra, CouchDB, MongoDB, MySQL;
utilities - Cron, Maven, Nfs, Screen, Apt).

6.1 Case study

As a case study for Cloudberries evaluation euHeart e-Science application
was chosen to be installed. As it appeared, its installation prescription gives
a great opportunity for automation. The process of euHeart installation is
presented below:

1. Instantiate a x64 Virtual Machine log into it.

2. Install required software. Although, the installation commands of these
packages are basically one-liners, some operating system distributions
may require installation from source. So that, there is a opportunity
of automation and installation methods reuse. Following packages are
needed for euHeart installation:

• python,

• python-pip,

• xvfb,

• wine,

• libxp6,

• openjdk-6-jdk,

• python-dev,

• libxslt1-dev.

3. Download instalation archive heartgen.zip.

4. Extract heartgen.zip.

5. Execute easy_install Flask.

6. Execute ./MCRInstaller.bin -console from the extracted directory.
Installation process is prompted by the user and requires some input.
Interaction with user can be automated using expect tool.

7. Execute easy_install soaplib suds.

56

6.2. System usability evaluation

8. Create user localuser with home directory. Usually it means en-
tering a command similar to sudo useradd -d /home/localuser -m

localuser.

9. Set password for localuser.

10. Move files extracted from heartgen.zip to /home/localuser.

11. Prepare service initialization file /etc/init/heartgen.conf. The configura-
tion can be included in installation package - for now it is not.

12. Start heartgen service.

After completing all of these activities the application may be tested us-
ing the script provided in the installation package. The process of installation
consists of 12 steps. Although most of the the steps are not very complicated,
they may require some attention (providing input, copying files, waiting for
results) and operating system administration knowledge (using different fla-
vors of commands, granting privileges). It means, that automation may save
some valuable time - amount of time savings depends on individual abilities.

Most of the above installation steps can be easily mapped to cookbooks,
as well as euHeart application can be represented as a single feature depen-
dent on its prerequisites.

For installation of python, python-pip, xvfb, wine, libxp6, openjdk-6-jdk,
python-dev, libxslt1-dev individual cookbooks were prepared, so that they
constitute individual feature in the model. The cookbooks may be reused to
deploy other applications. The procedures specific to installation of euHeart
(moving files, unzipping, python packages installation, user creation) were
wrapped together in a separate cookbook. Installation of MATLAB distribu-
tion (MCRInstaller) was automated using the tool called expect.

Using Cloudberries the entire installation process can be scheduled by se-
lection of the euHeart feature. So that, the productivity of scientist deploying
euHeart is increased.

6.2 System usability evaluation

In order to review the tool usability it was evaluated in two different aspects.
First aspect regards the usage of the user interface. As the user interface was
planned to be as easy as possible it was mainly judged in terms of complexity.
The second applies to the ease of installation.

6.2.1 User interfaces

From the user perspective, the usability of the system is connected with the
level of environment configuration complexity. So that, Cloudberries was

57

6. VALIDATION OF TOOL

designed to minimize impact of this factor. As the use of the web user inter-
face is really simple, the scientist has only provide the list of needed software
components and some attributes which could not be prescribed by the ad-
ministrator (eg. IP address). In addition to that, the user can save the config-
uration at two levels - using default or predefined attributes of environment
components (configuration or deployment template).

Another aspect of the interface implementation that should be evaluated
is the ease of searching for a certain configuration or template. In order to
allow a large number of users to manage their configurations in a convenient
way, there may be introduced some kind of filtering mechanism. In order
to cope with possibly large number of database entities, users should have a
possibility of selecting only elements created themselves, or a specific group
of elements. There can be also some performance issues of the user interface
that can affect usability, when Cloudberries is used by a large number of
users. This factor should be taken into consideration when the tool will be
developed.

However Cloudberries is pretty easy to use for the end-user (a scientist),
the system was not planned to be focused on the usability in terms of admin-
istration. In the phase of the tool design there was considered a user interface
module that allows the administration user to create, edit, and save feature
models. In the current state of the implementation such operations are not
allowed. Instead of this, the application allows to use models saved in the
filesystem of the machine where the web application is deployed on. The ap-
propriate model can be selected by specifying a filepath in the Cloudberries
configuration file.

6.2.2 Tool installation

Installation of the tool is easy and does not demand anything but copying
and pasting into appropriate catalogue of Jetspeed portal (refer to the guide
presented in Appendix B). The integration with other parts of portal is re-
ally simple and does not require any knowledge but deployment of regular
Jetspeed portlet. The system architecture is loosely coupled so individual
elements can either be distributed among dedicated machines or deployed
together on a single server.

6.3 System security

Security of the user interface is provided by the Jetspeed Portal, and is based
on login-password user verification. A communication between Cloduber-
ries backend and Chef server is secured by SSL, so there is very little chance
of using Chef without permission. Authentication is based on a single .pem
file, so currently there is no mapping between users of Cloudberries to Chef
server users.

58

6.4. Limitations

Knife (which is used, inter alia, to install Chef client) uses SSH protocol
so it can be also considered to be safe. Authentication via SSH is based on
verification of login and password.

6.4 Limitations

In order to describe limitations of the current state of implementation, and
guidelines to the future work, several aspects of the system capabilities are
presented. Because in a number of cases the limitations are not strictly con-
nected with implementation of Cloudberries and in some other they cannot
be measured without manual beta testing (especially the usability of user in-
terface), following description will be probably the best way to present these
limitation issues. The limitations of the system will be described in terms of:

• System load - as a number of users that the system can handle.

• Domain of configurations - a number of environment components that
can be maintained by the system.

• Scalability of deployment - a number of environment configurations
that can be deployed simultaneously by a single user.

6.4.1 System load

Number of users that the system can handle. There is no explicit limitation of
the number of users. As Cloudberries is a typical web application it scales
just like web applications scale. In order to handle operation of a larger num-
ber of users that are simultaneously logged in, the population of users may
be clustered into groups, and each group can be served by a different server,
communicating the same database. In order to plan scaling the databae, there
would be a need to provide replication mechanism, so it may cause a need
to rethink a choice of database engine (currently MySQL is used, which al-
lows for some kind of replication, but there are some more mature solutions
on the market like PostgreSQL, OracleDB). Fortunately as Cloudberries uses
Java Persistence API it is suitable for database provider changes. Another
aspect of scalability in terms of number of users is simultaneous installation.
Because of Chef’s architecture the Chef server load is only slightly dependent
on a number of environments being deployed at the same time. As installa-
tion is performed by client application on the target node, the complexity of
the process is split between nodes. The actual load of a Chef server depends
on the size of cookbooks downloaded from the central repository. If cook-
books contain installation package tarballs, the server will suffer from large
number of concurrent download processes. That is the reason for chef docu-
mentation not to present any performance evaluation. Nevertheless the load

59

6. VALIDATION OF TOOL

of the Chef server can be managed by replication of Chef servers on separate
machines and clustering the users between them.

6.4.2 Domain of configurations

Number of environment components that can be maintained by the system. The
number of installation packages that can be managed by Cloudberries is sub-
ordinated to the capabilities of the system administrator. In order to manage
dependencies and exclusions they have to cope with the complexity of com-
ponents interaction. Complexity of feature model can obviously slow down
the process of computation of a valid domain of environment components
(during the configuration process), but this factor will not heavily affect per-
formance of user interface.

6.4.3 Scalability of deployment

Number of environment configurations that can be deployed simultaneously by a
single user. At the current state of the system implementation there is no way
to run multiple installation processes at the same time, other than creating
a deployment template and then running a few deployment tasks one af-
ter another. That procedure is not demanding and in fact requires only to
click at the template the user wants to use more than once and then provide
User/Password/IP address triple. To simplify this process even more, the
part of user interface to create deployment tasks, could be equipped with a
form allowing to input multiple triples presented before and start a group of
deployment tasks. This would ease the deployment process of a large envi-
ronments even more.

6.5 Summary

This chapter presents validation of the tool and some conclusions that were
drawn in terms of its usability and security. The tool was evaluated in the
production infrastructure of VPH-Share project and used for installation of
ehHeart application. The evaluation proved that the system meets its re-
quirements and can be successfully used in the main areas of application.
There are also a few system limitation aspects that are addressed in this sec-
tion. Apart from that, the process of implementation brought some specific
type of results, which are presented in the next chapter. There was created
a concept of Software Product Line architecture that could be applied in a
design of application created for similar purposes as Cloudberries. The solu-
tion is very generic and extensible, in the way that it could allow to easily add
additional types of features (e.g. instance of VM) and new means of compo-
nent installation (e.g. a service of VM instantiation corresponding with the
sample additional feature type). Because of the above, the Chapter 7 should

60

6.5. Summary

be treated as a further description of the lessons learned during the thesis
realization.

61

Chapter 7

A concept of Feature Model -
based automatic SPL generation

this chapter presents further reasoning inspired by experiences, gained
during the study of State-of-the-Art, design of the tool and its implemen-
tation. During the process of implementation it was discovered that as
the tool architecture is based on Software Product Line methodology and
usable for wide domain of purposes, it might be designed in more generic
fashion. In this scope it has arisen a concept of an easily evolving soft-
ware production line architecture. The architecture is oriented on the use
of Feature Model for software products domain representation and based
on a highly extensible mechanism of software installation. Production
line operational rules are automatically derived from a model. The first
part of this chapter presents the idea of Feature Model adaptation (7.1),
and the second (7.2) describes the architectural concept that was based
on this approach.

7.1 Feature Model adaptation

This section presents the concept of Feature Model adaptation in order to
introduce the idea of automatic derivation of product line architecture from a
feature model. As the authors of the paper [27] claim, "Software product line
engineering (SPL) involves developing the requirements, architecture, and
component implementations for a family of systems, from which products
(family members) are derived and configured."

Usually in order to build a functional product line, there is a need to go
through a complex engineering process starting from a domain analysis.

63

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

Figure 7.1. Software Product Line engineering schematics [36]. There are three
spaces that has to be connected in order to create production line. The most
challenging process in the lifecycle of the production line is a mapping from
the space of product features (that are relevant to stakeholder) to the space of
artifacts (that are relevant to the developers).

The key task of Software Product Line engineering is to distinguish fea-
tures by detecting product commonalities and variabilities. In this way we
can think of our product as of a set of certain characteristics. Treating our
product in terms of features gives us a high-level view of our product family.
High level of abstraction helps us to realize dependencies, so given a single
product configuration even complex interactions among its features become
visible. Moreover commonalities manifested in the model indicate clearly
where reuse opportunities are.

Once we have our model defined, there comes a time to shift from the
Feature Space to the Artifact Space (See figure 7.1). What it means is to cre-
ate the architecture specification (defining reusable components and the way
they are used) and to develop production line application. In other words we
have to prepare our means of production.

Following the terminology of production line, software product manufac-
turing process can be seen as a succession of interrelated production stages.
Specialized production sites cooperate with each other to assemble product
parts according to a production plan. Production site should be understood
as a part of production line system providing the means of production for
specific stage of product creation.

64

7.1. Feature Model adaptation

Figure 7.2. A schematic of production line using several production sites to
produce single feature. Each production site is capable for its own production
procedures that can be applied to realize partial production of given feature.

The plan itself describes the rules of operation for the whole production
line. It can be understood as a specification similar to that, presented in the
table 7.1:

Feature Stage Action Prerequisites
Feature X 1 Site 2 procedure 1 -

2 Site 3 procedure 1 -
3 Site 5 procedure 1 Feature Y after Stage 1

Feature Y 1 Site 3 procedure 1 -
2 Site 2 procedure 2 Data input A

Table 7.1. A sample production plan for a production line. Production process
of a single feature is split between several production stages. Each stage is
realized by a different production site and has different requirements. Each site
may offer several procedures that provide means of production specific to the
feature.

Production plan matches stages of production for each feature with the
corresponding production sites, prerequisites and actions to be performed on
appropriate site. Introducing the notion of production site, we may regard
it as an application module, providing some production capabilities that are
split into procedures. In terms of production plan each feature must be de-
scribed in order to provide a mapping from the feature space to the space of
prerequisites and means of production (stages and installation procedures).
On the basis of a production plan, in order to create a product, each produc-
tion site should be provided with some input relevant to an installation of a
given feature:

65

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

• production schedule (inferred from the production plan),

• installation prerequisites (required reusable data, intermediate prod-
ucts of other sites),

• guidance on which action should be performed (if we think of sites,
that are able to serve several production procedures).

What is worth mentioning, in order to prepare production schedule we need
to look at the production plan and set production stages of the selected fea-
tures in the correct order. As one can imagine even if we take a single con-
figuration of product into account, the scheduling process is intellectually
demanding and should be performed automatically.

At this stage, the issue I would like to point out, is the situation presented
in the picture 7.3. The problem presented in the figure is pretty dangerous
for the product line operation and what is more it may occur quite unexpect-
edly, especially when no product line validation is being performed. In the
picture 7.3 we can see a graphical representation of feature installation re-
quirements corresponding to three feature production stages. For example,
a "requirement" denotes that production Stage 3 of Feature B should be com-
pleted before Feature A production Stage 1 starts. When we treat the rest
of the "requirements" analogously, we can see a conflict, which causes the
scheduling is not feasible (the chronological loop that is visible in the picture
7.3).

Figure 7.3. A cycle in the process of production. Requirement should be treated
as a dependency of production stages. Production stages of the given features
cannot be put in any order that guarantees to meet all of the requirements.

The occurrence of this conflict shows that either the configuration of these
three features should not be permitted or production plan fails. In addition
to that, when the production plan is growing bigger, we can see the need for
automatic production line conflict resolution that is rather obvious. Further-

66

7.1. Feature Model adaptation

more, every single configuration has to be tested in terms of production plan
feasibility, before the Feature Model can be accepted.

Therefore, the closer we look at the mapping of a model to the production
line architecture, the more complicated the mapping process turns out. So if
we manage to automatically derive the architecture of our production line
from a feature model, several aspects have to be taken into account:

• In domain of Feature Modeling

– selection of features - how products vary from themselves? What
should be treated as a single feature,

– feature model definition - what are dependencies between fea-
tures,

– feature model validation - testing whether the definition of feature
model is semantically sensible.

• In definition of the means of production

– defining reusable artifacts,

– determination of the feature production stages - a procedures of
asset installation in the product,

– determination of the feature production stages interconnections,

– mapping features to a succession of production stages.

• In product line validation and model refinement

– production feasibility test for each valid product configuration,

– exclusion of invalid products from model.

Some of the above tasks can be performed automatically, and some of them
are a part of the analysis, which has to be done manually by the product line
engineer. The challenge is to bring about a situation, in which the number of
tasks that are the responsibility of the user would be minimal.

As the author of this thesis suppose it is very likely that at least feature
selection and feature model definition has to be performed by the user. As-
signment of a code to the specific features probably also needs to be done
manually. The question is - where is a space for the automation?

Obviously the level of automation of software product line derivation
process may be closely related to the specificity of software family which
is being modeled. As it turns out during experimentation with SPL in appli-
cation of experiment environment preparation, there was realized that there
are some assumptions that can be made on the Feature Model, which can
allow us to perform more of these tasks automatically.

Feature models are built based on feature dependencies that are in princi-
ple very general (parent-child relationships, and cross-tree dependency). As

67

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

we have seen in the example, in which we considered an attempt to installa-
tion of three features related in the sense of production line dependency, there
exists an influence of production scheduling on the feature model. Moreover,
the role of the dependency relationship can be crucial for a model correctness.
When we take the dependency of installation processes into account, it can
prove that the model includes a configuration of features that causes conflict
in terms of production schedule.

The author realized that maybe there is a need to extend the model, in
order to provide all the information needed to validate its domain of prod-
ucts in terms of production scheduling feasibility. For the author, the most
intuitive way to do that would be expanding the relationships defined by the
Feature Model, in the way that they would present the order of installation.
Each of the original relationship between two features would be either di-
rected one way or another, to represent the succession of feature installation.

As a natural consequence of this approach, the following assumption has
to be made: Each feature must be produced at once (single stage), and pro-
duction of feature must be performed by a single production site.

Figure 7.4. A schematic of production line using single production site to provide
a single feature. The process of feature installation is atomic and cannot be
split between production sites. So that, there is no need for management of
dependencies of intermediate production stages.

Of course the assumption may be considered very strict and even in-
appropriate (from the perspective of Feature Modeling purpose), because it
does not allow to split feature production between several reusable product
line application components (production sites). On the other hand, it should
be noted that each reusable code component which has had to be used be-
fore introducing the assumption (Single Stage + Single Production Site), now
may be represented as a separate feature and used in its usual way. So we
just shift the specification of production plan into Feature Model and gain an
ability to verify if the product family is consistent, without looking deeper
than the Model. The actual method of verification will be presented in the
next section.

Further consequence of the assumption is the fact that Feature Model

68

7.1. Feature Model adaptation

becomes more detailed and consequently its level of abstraction is lower. In
this way some irrelevant product details may be unintentionally presented
to the end user. To avoid this effect we may introduce a concept of layered
Feature Model similar to that presented in FORM [36]. The idea of layered
model is also known in other approaches of domain engineering (eg. Model
Driven Architecture). Layered model allows to keep all the valuable infor-
mation and hide unnecessary details in the same time.

A quick summary of the above considerations:

• We assumed that each feature of the extended model is produced by a
single production site of the production line.

• We assumed that feature production process is atomic and cannot be
split or interrupted by another.

• We introduced the notion of a relationship that describes feature instal-
lation order.

Ordering relationship

To describe the installation ordering relationship a bit more precisely let’s
look at its characteristics:

• It is an element of Feature Model.

• It extends basic feature relationships:

– parent-child relationships,

– dependency relationships.

• For a pair of related features it determines the order of installation.

• The relationship can be graphically represented by an edge of a directed
graph composed of feature as graph vertices.

• A graph created out of relationship edges is a dependency graph that
can be analyzed in order to answer the questions:

– whether every configuration represented by the model is valid in
terms of production scheduling (graph is acyclic),

– how to schedule production in order to create a product corre-
sponding to a configuration?

• For a parent-child relationship the direction of the edge is identical for
all of the children of a single parent vertex.

69

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

The example in the Figure 7.5 shows the sense of the relationship more sug-
gestively. In this picture you can see the feature installation order relation-
ship marked in orange.

Figure 7.5. Sample feature model enriched with installation ordering relation-
ship. The installation ordering relationship extends the original Feature Model
relationships in order to provide additional information that is needed to perform
scheduling.

Another example presents simple scheduling algorithm based on feature
installation order relationship. In fact scheduling will be based on topological
sorting of directed acyclic graph. In order to find a proper schedule we have
to construct a graph out of the features represented by vertices and edges of
installation order relationship. Now, we apply simple recursive topological
sort algorithm presented in the Figure 7.6.

A sample use of the algorithm is presented in the Figure 7.7. The proce-
dure is very simple and convenient, but unfortunately there exist yet another
problem connected with dependency relationship.

70

7.1. Feature Model adaptation

Figure 7.7. Graphical illustration of the ordering algorithm presented before.
The Feature Model was replaced by the directed acyclic graph with edges deter-
mined by the ordering relationship. The graph is sorted topologically by visiting
adjacent nodes starting from the Root.

1 L <− Empty l i s t t h a t w i l l conta in the sor ted nodes
2 S <− Set of a l l nodes with no outgoing edges
3 f o r each node n in S do
4 v i s i t (n)
5 funct ion v i s i t (node n)
6 i f n has not been v i s i t e d yet then
7 mark n as v i s i t e d
8 f o r each node m with an edge from m to n do
9 v i s i t (m)

10 add n to L

Figure 7.6. Simple recursive ordering algorithm. The nodes in the graph rep-
resent features of the feature model. The edges are built out of the installation
ordering relationship.

71

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

Figure 7.8. The problem of ambiguous installation ordering. Both feature 3
and feature 2 should be installed before installation of the feature 1 (ordering
relationship marked with orange). Presented algorithm does not specify the
installation order of indirectly connected feature 3 and feature 2.

When we take into account a simple example, concerning three features
dependent as presented in the Figure 7.8, we expect their installation pro-
cesses to be ordered in a way represented by the numbers in the picture.
While 3 depends on 1 and requires it to be installed before its own installa-
tion, we can expect that even if 1 depends on anything else (like the feature
2, installed after feature 1), all of the feature 1 dependencies will be installed
before the feature 3 installation process begins.

It means that even though there is no explicit relationship between 2 and
3, an ordering dependency exists indirectly. So that, the algorithm should be
improved to handle similar situations. The simple topological sorting algo-
rithm can provide inappropriate solution, only when two independent (not
dependent directly) features are both ordered in the same way by two adja-
cent ordering relationship edges. There exists a need for improvement of the
tree search algorithm.

7.2 A concept of Feature Model - driven Software
Product Line architecture

Previous section presents an abstract concept of Feature Model extension,
which allows to equip the notation with some information needed to per-
form scheduling of production. The extension is based on introducing new
relationship type into the model, and assuming that each feature is mapped
to an atomic process of feature production. As it was discussed earlier, the
reason for introducing this extension is the need to allow for derivation of
production line architecture directly from the model. When we think of Fea-
ture Model not only in terms of visualizing product features, but also as a
notation that can express dependencies of feature production processes, it
seems that we have a too for representation of product features in an intu-
itive way that allows for managing the means of production. This fact can
be particularly valuable when our production line can change dynamically
by adding new features (it can be noticed that similar situation took a place

72

7.2. A concept of Feature Model - driven Software Product Line architecture

in Cloudberries). As we virtually base our means of production on a sin-
gle model, it seems that the architecture of production line variability can be
managed using the information kept in Feature Model. This section presents
a concept of production line system architecture that is based on extended
Feature Model introduced in the previous section.

The component diagram presented in the Figure 7.9 shows the inner
structure of core components of the proposed production line architecture.
On the left side of the picture one can see the interfaces that are interesting
from the perspective of means of production. Interface on the right side is
dedicated to be used by the front-end for running the production line in or-
der to create products.

Figure 7.9. The internal construction of the main production line component.
The main inner component is the Workflow Manager that controls the production
process. Production Site plug-ins, Feature Models and Feature Descriptors are
registered in appropriate registries.

The production line architectural design is based on two basic artifacts:
Feature Model containing dependencies between features of product and Fea-
ture Descriptor which maps features to the means of production (Production
Sites). Production Site is an interface that has to be implemented to provide
procedure of feature installation. More precise description of the production
line architectural components is presented below.

73

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

Feature Model

Feature Model describes the domain of products in terms of features and rela-
tionships between them. Relationship are identical to these presented in the
previous section:

• parent - child relationship,

• dependency relationship,

• installation order relationship (can be represented as a variant of above
two).

Each feature has to be represented by an unique identifier in order to
associate it with appropriate Feature Descriptor.

Feature Descriptor

Feature Descriptor describes requirements of feature installation processes in
form of input and output interfaces declaration. Moreover, Feature Descriptor
connects a feature to the Production Site that provides means of the feature
installation. Corresponding Production Site has to accept this declaration (see
isFeatureSupported() of ProductionSite interface). Feature Descriptor can be
thought of as a structure similar to the example below:

1 s t r u c t u r e FeatureDescr ip tor {
2 Id : f e a t u r e I d ;
3 Id : product ionS i te Id ;
4 Set of IOParameter : inputParameters ;
5 Set of IOParameter : outputParameters ;
6 }
7 s t r u c t u r e IOParameter {
8 Id : parameterId ;
9 Type : parameterType ;

10 }

Figure 7.10. The concept of Feature Descriptor structure. This structure can be
for example mapped to XML format.

For all input/output parameters identifiers must be unique among Fea-
ture Descriptors connected with a single model. Input/output interfaces will
be used to create a contract between features. The process of binding features
with contracts is introduced later in the description of the Feature Descriptor
Registry.

74

7.2. A concept of Feature Model - driven Software Product Line architecture

Production Site

Production Site is an interface for implementation of production line plugin.
Production Site has to accept all of the features that declared association with
it, before the feature model is validated and production line can be used (see
the function isFeatureSupported() in the Figure 7.11). During the process of
production, Workflow Manager prepares production schedule and invokes in-
stallation procedure (installFeature()) on each of Production Site corresponding
to the features contained in the product configuration. Production Site inter-
face is very simple and consists of two functions presented in the Figure 7.11:

1 i n t e r f a c e Product ionS i te {
2 g e t P r o d u c t i o n S i t e I d () : Id ;
3 isFeatureSupported (f e a t u r e I d) : Boolean ;
4 i n s t a l l F e a t u r e (
5 FeatureDescr ip tor : f e a t u r e D e s c r i p t o r ,
6 Product ionSi te Input : input ,
7 ProductionSiteOutput : output ,
8 Set of IndependentSiteOutput
9 : ouptutsTheSiteDependsOn) : Void ;

10 }
11
12 s t r u c t u r e IndependentSiteOutput {
13 FeatureDescr ip tor : f e a t u r e D e s c r i p t o r ;
14 ProductionSiteOutput : s i teOutput ;
15 }

Figure 7.11. ProductionSite interface to be implemented in order to provide
means of feature installation (see procedure installFeature). As a Production
Site is controlled from the outside the function isFeatureSupported has to be
implemented to declare support for production of feature with a given identifier.

• getProductionSiteId - Production Site returns its identifier.

• ifFeatureSupported - Production Site returns true if it can provide
means of production of a given feature.

• installFeature - Production Site should perform installation after invo-
cation of this function. Parameters: featureDescriptor - descriptor of fea-
ture being installed; input - Production Site can expect to be provided
with input that meets featureDescriptor parameters; output - Production
Site must fill in all callback fields declared by FeatureDescriptor; ouptut-
sTheSiteDependsOn - output of sites installing the features, this site de-

75

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

pends on (by FM dependency relationship), which was installed before
(installation order relationship).

Feature Model Registry

Feature Model Registry allow the production line system to store feature mod-
els in order to handle multiple production lines. Each production line is
based on a model managed by the registry. The lifecycle of a single pro-
duction line starts with model registration. A production line can be used
to create products after releasing corresponding feature model. Feature Model
Registry uses Feature Descriptor Registry and Production Site Registry to vali-
date the model before releasing it. Validation process determines whether the
contract of interfaces between related features is satisfied. Another proce-
dure performed by the Feature Model Registry before releasing a feature model
is testing whether Production Sites declared in Feature Descriptors accept sup-
port installation of corresponding features. In order to do that, Feature Model
Registry uses Production Site Registry to get the Production Site object and check
if isFeatureSupported().

Feature Descriptor Registry

Collects Feature Descriptors for a given feature model. Before a feature model
can be released, each feature has to be described by the corresponding
Feature Descriptor stored in the registry.

Contracts of interfaces:

Feature Descriptors declare requirements of installation for each feature
and output that is provided by processes of feature installation. This declara-
tions form interfaces for Production Sites tied with features. These interfaces
allow to connect inputs and outputs of installation procedures, in order to
allow Production Sites to share some information. In general, there are two
types of contracts that may bind feature installation interfaces, specified by
the direction of feature installation order relationship that connects features.

Let’s see an example in the Figure 7.12. There is a pair of features
connected with a dependency relationship (marked with the black edge - the
dependent) and an orange relationship of installation order.

76

7.2. A concept of Feature Model - driven Software Product Line architecture

Figure 7.12. Sample contract of interfaces. Installation procedure of feature 2
depends on 1 and provides feature 1 Production Site with its own input. Feature
1 will be installed before feature 2.

In the Figure 7.12, relationship edges are at the same direction. The instal-
lation order edge points at the feature that will be installed first (as a natural
analogy to the dependency arrow direction). It means that dependent fea-
ture 2 will be installed after 1. So that, when the feature model expresses a
will to have the feature 1 installed before the installation of feature 2 starts,
the descriptor of feature 2 must declare input interface that satisfy the input
interface of feature 1. Feature 1 requires two input parameters - A and B.
Because of installation order, feature 2 cannot provide feature 1 with its own
output, which is not ready at the time of installation of feature 1. That is why
feature 2 has to declare A and B input parameters as well.

Figure 7.13. Sample contract of interfaces. Feature 1 depends on 2. Feature
1 will be installed before feature 2 and provides feature 1 with output emerged
from its own installation.

In the Figure 7.13 the situation is just the opposite. Feature 1 will be in-
stalled before the installation of feature 2 starts. So that, feature descriptor
of 1 must declare that the production site will provide 2 with parameters A
and B right after it installs the feature. If two features depends equally on
the third, either the relative order must be specified by the user or some ad-
ditional order rule has to be applied.

Another interesting issue is a behavior of "independent" inputs. Even if
dependency is specified it does not mean that dependent feature will be se-
lected by the user if the independent is chosen. Therefore, each input which
is not provided by a dependent feature has to be prompted by the user. Be-
cause of the uniqueness of parameter identifiers it is easy to propagate man-
ually provided input among all of the features dependent on each parameter.
It should be noted at this point that any output of independent Production
Site is available for the dependent Production Site as an installation function
parameter named ouptutsTheSiteDependsOn.

77

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

Production Site Registry

Manages Production Sites. In order to use Production Site in the production line
it has to be registered in context of a given feature model. Once a Production
Site is registered, it can be used for installation of feature in a product. In
order to assign production of feature to Production Site, appropriate Feature
Descriptor has to be registered in the Feature Descriptor Registry.

Workflow Manager

Workflow Manager is the heart of the product line system. It takes care of
several processes, in order to perform product creation:

• Uses released feature model to create production schedule.

• Invokes appropriate Production Sites in order to install features.

• Passes inputs and outputs from/to appropriate Production Sites.

The Workflow Manager connects all of the previously mentioned compo-
nents into consistent production line. The Workflow Manager has to deal with
production request handling. So that, from the top level point of view it is
the component that is closest to the front end.

7.3 Further thoughts

There are some issues that was not covered by the previous section because
of its introductory character. In this paragraph there are presented some ad-
ditional considerations in terms of presented architectural concept.

7.3.1 Group production site

During the experimentation with application of Software Product Line to au-
tomation of experiment environment deployment, the author realized that
there are some cases in which installation of multiple features as a group is
very convenient. There may also exist some circumstances that require fea-
tures to be installed as a group. As an example the process of installation per-
formed by Chef can be recalled. When the Chef runs, it installs its client on
the target machine and then applies all deployment procedures of selected
cookbooks. There is no way to suspend Chef’s operation between deploy-
ment of two cookbooks in order to install another in the meantime (using
method of deployment other than Chef). It appears that in this case there is
a need for a dedicated approach, in order to deal with modeling dependency
of installation processes.

In order to present this approach let’s define a problem once again, using
more generic example. In the picture 7.14 one can see four features of which

78

7.3. Further thoughts

installation processes can be ordered using appropriate relationships. As it
was mentioned before in this example exist a Group Production Site, which
is implemented in a way that does not allow to split installation of feature
1 and 3 into separate installation processes. So that, there is no way to cre-
ate a product containing all of the features (1,2,3,4). Furthermore, following
the ordering algorithm presented in the section 7.1 there is no way to find
out if the configuration containing these four features, is correct in terms of
installation schedule.

Figure 7.14. An illustration of the problem of scheduling the installation pre-
formed by Group Production Site. The Group Production Site is a Production
Site that does not allow for separate installation of supported features. The pro-
cess of subordinated features installation has to be performed as an atomic,
indivisible group.

The solution for the problem is quite simple, and does not require any se-
rious changes in the method presented before. We will simply treat the whole
group of features as a single feature that inherits all of the relationship edges
from the inner features as it is presented in the picture 7.15. Now, if the con-
figuration of features contains a cycle, we can see that the scheduling will not
end up successfully. The scheduling will be feasible if ordering relationship
between the features contained in the group and the rest of the features will
be split into two separate groups, as it is visible in the picture 7.16

79

7. A CONCEPT OF FEATURE MODEL - BASED AUTOMATIC SPL
GENERATION

Figure 7.15. The figure presents exactly the same situation as in the previous
picture, but all of the features installed by a Group Production Site are treated
as a single feature (the green rectangle). This approach allows to check if there
are any cycles which causes scheduling unfeasible. In this figure we can see
a cycle of the installation ordering relationship graph, so the model that contain
features arranged in this way, should be considered invalid.

Figure 7.16. A symbolic representation of a feature model part with features
assigned to a Group Production Site in a way that is correct in terms of installa-
tion scheduling. Scheduling is feasible when features connected to a group with
installation ordering relationships can be split into two independent groups. The
first contains only features that are installed before the features in green rectan-
gle (installed by Group Production Site). Second group contains only features
installed afterwords.

80

7.4. Summary

7.3.2 Scheduling algorithm

The algorithm presented in the section 7.1 is not perfect. First of all it does
not allow to handle the problematic situation presented in the Figure 7.8.
Another factor that should be taken into account while improving the algo-
rithm, is the use of Group Production Sites presented in the previous section.
The actual algorithm will be the subject of further work.

7.4 Summary

This chapter presents reasoning on Software Product Line inspired by the re-
search and tool implementation. In order to implement the idea of automatic
generation of production line from Feature Model, the author introduced
the model extension. Described modifications affect relationships specified
by the model syntax, in the way that allows for scheduling of the installa-
tion procedures. Moreover, this chapter describes an architectural concept
based on the extended Feature Model, which may be used to implement a
framework for software products creation supporting Software Product Line
paradigm. Presented architectural concept constitutes an extensible applica-
tion layer that allows to link user-side software product configuration with
the means of production. The framework may be expandable in terms of new
product features as well as the procedures of feature installation. As certain
details of the solution presented in this chapter still need polishing up it will
be a subject for future work.

81

Chapter 8

Summary and Future Work

The main objective of this thesis was creation of a tool for installation of
e-Science applications in heterogeneous cloud infrastructure. The presented
solution was based on provisioning system (Chef) and allows for software
deployment on an instance of virtual machine. The tool had to satisfy the
needs of scientific user, so the design was focused on minimizing the com-
plexity of configuration process, in order to facilitate the use. The tool was
deployed in the production environment of VPH-Share project. The system
has been assessed and found to comply with the requirements originating in
the project.

Another goal of the implementation was investigation of Software Prod-
uct Line application in the domain of e-Science. The tool proves the concept
of implementation of an environment configuration, as a process guided by
dependency management based on automatic reasoning on Feature Model.
During the work there was also elaborated a concept of extensible production
line architecture that is derived from a feature model. The concept may con-
stitute a base for implementation of a framework for creation of extensible
production lines.

There are some tasks connected with the work executed in scope of this
thesis that were considered to be worth continuation. The list below presents
subjects for the further work in two groups. The first group is connected with
possibilities of the tool enhancements:

• Implementation of multiple node deployment tasks. For now the tool
allows for running deployment on a single virtual machine. Extension
of the user interface for deployment of a single configuration on mul-
tiple nodes, would make the process of environment preparation even
easier.

• Implementation of filtering mechanism in the user interface. In the cur-
rent version of the system, the user finds the interesting configurations

83

8. SUMMARY AND FUTURE WORK

and other entities by browsing elements stored by all of the users. En-
tity filtering mechanism would facilitate the use of the web interface.

• Implementation of a user interface allowing for feature model loading
and edition. The implementation of the tool was focused on providing
the interface for a scientific user. In order to allow to easily manage the
system, specialized administration interface can be implemented.

• Implementation of mapping between Cloudberries user accounts and
accounts of Chef server. For now, Cloudberries uses a dedicated Chef
account. In order to monitor activities of users, each of the should use
its own Chef credential.

• Implementation of on-demand VM instance creation. There is a plan
for integration with a library for VM instantiation in the private cloud
of VPH-Share.

The other group addresses some tasks concerning the reasoning on Software
Product Line and presented production line architectural concept:

• There is a need for improvement of production line scheduling algo-
rithm presented in this thesis. The algorithm has to cope with issues
specific for ordering of the phases of production, using a directed graph
composed of relationships contained in extended Feature Model.

• Implementation of a service-oriented framework for production line
creation. There is a plan of software product realization based on the
presented reasoning. The application may ease the process of creation
of dedicated production line, based on an architecture derived from a
feature model.

The further work presented in this chapter will be executed in scope of VPH-
Share project.

84

Appendices

85

Appendix A

Glossary

Binary Decision Diagram - a compact encoding for Boolean formulas used
to implement numerous reasoning algorithms. The structure of a diagram is
defined by a Directed Acyclic Graph representing whole combinatorial space.

Boolean satisfiability problem (SAT) - a mathematical problem defined as a
set of Boolean variables and constraints the variables must satisfy.

Chef - Chef is an open-source systems integration framework built for au-
tomating the cloud. Chef belongs to the group of provisioning tools. The
experiment environment deployment tool implemented in the scope of this
thesis is based on Chef.

Cloudberries - the codename of the e-Science application deployment tool
built in scope of this thesis. This thesis describes several aspects of Cloudber-
ries design, implementation and evaluation.

Cloud Computing - a computing paradigm based on virtual infrastructures
delivered as hosted services over computer network.

Conjunctive Normal Form - a formula of Boolean logic, that is a conjunction
of clauses, where a clause is a disjunction of literals. The Conjunctive Normal
Form is particularly useful in automated reasoning.

Cookbook - the notion used in the nomenclature of Chef to describe an in-
stallation package that contains resources and scripts included in the process
of environment configuration.

Deployment Task - an entity representing the process of experiment envi-
ronment deployment that is managed by Cloudberries.

87

A. GLOSSARY

Deployment Template - a stored selection of environment components and
predefined installation attributes that is managed by Cloubderries.

Distributed Shell - a class of software products for operating system config-
uration based on parallel usage of multiple remote shells.

e-Science - computationally intensive science carried out in highly dis-
tributed network environments. Most of the e-Science research activities are
focused on the development of tools to support scientific discovery.

e-Science application - a scientific experiment built as a computer simula-
tion. e-Science application are composed from various components including
software and data.

Feature Model - a notation used in Software Product Line to define the do-
main of product features. Features are connected into a hierarchy which rep-
resent mutual dependencies between features.

In silico - a term denoting “performed on computer or via computer simula-
tion” in terms of scientific experiment.

Jetspeed - Open Portal Platform and Enterprise Information Portal, written
entirely in open source under the Apache license in Java and XML and based
on open standards. Cloudberries is a portlet application deployed in Jetspeed
portal.

Knife - a tool from the Chef family used to manage server and clients in order
to perform installation and configuration of environment components.

Portlet - pluggable user interface software component that is managed and
displayed in a web portal.

Provisioning tools - a family of software products that allow for automatic
deployment of environment components in distributed computer infrastruc-
ture.

Software Product Line - a paradigm for systematic reuse of common assets,
from which different programs of a domain can be assembled. Reuse of code,
data and configuration, together with reproducible assembly methods resem-
ble the operation of production line in a factory.

Software Product Line Automated Reasoning - a Java-based reasoning
library used in the impelemtation of the tool developed in scope of this thesis.

Unattended Installation - installation that is performed without user inter-
action during its progress or with no user present at all. There exist a group

88

of software that support unattended installation for numerous operating sys-
tems.

Virtual Machine - virtualization technology that enables running operating
system instances in isolated environments managed by a hypervisor. Hyper-
visor performs emulation on hardware resources, and enable multiple Vir-
tual Machines to run simultaneously.

89

Appendix B

Installation Guide
This guide presents the process of Cloudberries installation by the ex-
ample. Section B.1 presents installation of prerequisites needed to run
Cloudberries. Section B.2 describes installation of the Cloudberries port-
let. All of the files needed for installation are delivered on the CD at-
tached to this thesis.

B.1 Installing prerequisites

In order to install Cloudberries we have to go through several steps of pre-
requisites installation. In this example it is presented installation on Ubuntu.
Cloudberries depend on several components:

• Chef server

• relational database (MySQL is used by default)

• JetSpeed portal (deployed on Apache TomCat web application server)

These three components can be deployed on the same machine or separated
from each other. In this example all of the components will be installed on a
single operating system. The process of Cloudberries installation is presented
below:

B.1.1 Chef installation

First, we have to have running instance of Chef server. In order to install
Chef refer to its documentation:

http://wiki.opscode.com/display/chef/Installing+Chef+Server

In a nutshell, Chef server can be installed via apt-get, after updating De-
bian packages (refer to the documentation). In order to do that use the below
command:

91

http://wiki.opscode.com/display/chef/Installing+Chef+Server

B. INSTALLATION GUIDE

shell> sudo apt-get install chef chef-server-api chef-expander

Once we have Chef our installed, we have to configure Knife command
line tool in order to manage Chef server. The procedure is described on the
same page of the Chef documentation. In order to test whether our client is
configured properly we can list all of the clients registered in the server:

shell> knife client list

chef-webui

bob

chef-validator

Now we can create our user which will be used to manage the server
(it is also described in the mentioned documentation). The key path
/tmp/my-username.pem will be used later in Cloudberries cofniguration file.

shell> knife client create myuser -d -a -f /tmp/myuser.pem

Chef runs by default on two ports - 4000 for API and 4040 for WebUI. The
first one will be used by Cloudberries to communicate with Chef.

B.1.2 Database installation

In fact, Cloudberries can use any relational database supported by Hiber-
nate, but is by default configured to use MySQL (configuration of Cloudber-
ries from the perspective of database will be presented later). Installation of
MySQL on Ubuntu is easy. We simply use apt-get command:

shell> sudo apt-get install mysql-server mysql-client

By default MySQL listens on port 3306. In order to use custom database
installation refer to the MySQL documentation:

http://dev.mysql.com/doc/refman/5.1/en/installing.html

We need to create single user and a single database for Cloudberries. In
order to do that we log into database using privileged account.

shell> mysql �user=root �password

mysql> CREATE USER 'myuser'@'localhost' IDENTIFIED BY 'mypass';

mysql> CREATE DATABASE cloudberries

mysql> GRANT ALL PRIVILEGES ON cloudberries.* TO

'myuser'@'localhost'

Now, our database is ready to be used by Cloudberries.

92

http://dev.mysql.com/doc/refman/5.1/en/installing.html

B.2. Cloubderries portlet installation

B.1.3 JetSpeed installation

JetSpeed is a portal running in a Apache TomCat web application server. As
Cloudberries is a portlet application it is deployed in running instance of por-
tal. Apart from JetSpeed, it is possible to use virtually any other portal that
implements Portlet API specification [29]. However, this guide covers only
installation in JetSpeed. The easies way to install JetSpeed is to use its ded-
icated installer which copes with installation of TomCat. The other way of
installation is to deploy JetSpeed in an existing TomCat instance. For infor-
mation regarding the second approach refer to the JetSpeed documentation:

http://portals.apache.org/jetspeed-2/getting-started-installer.

html

In order to install JetSpeed in a brand-new TomCat web application
server, we need to get the installer binaries. The list of mirrors is included
in the documentation. Once we have downloaded the installer we have to
run it and follow installation steps.

shell> wget http://ftp.ps.pl/pub/apache/portals/jetspeed-2/

binaries/jetspeed-installer-2.2.2.jar

shell> java -jar jetspeed-installer-2.2.2.jar

When our JetSpeed is installed successfully, we can run it and test
weather the portal is working. Dedicated TomCat is by default installed in
the HOME directory. So, in order to run the server we execute the command:

$HOME/Jetspeed-2.2.2/bin/catalina.sh run

The server may be also executed as a daemon using startup.sh script. In
order to test if the portal is working paste this address into a Web browser
(the default user of administration panel - admin, password - admin):

http://localhost:8080

B.2 Cloubderries portlet installation

The installation package of Cloudberries consists of three elements: port-
let application archive (cloudberries-pa.war), portal prerequisites (a folder
named jetspeed), and sample feature model (sample-model.xml). First, we
have to open our archive cloudberries-pa.war, get to /WEB-INF/classes

and edit files cloudberries.cnf.xml, hibernate.cnf.xml.

B.2.1 Cloudberries settings file (cloudberries.cnf.xml)

cloudberries.cnf.xml one looks as follows:

93

http://portals.apache.org/jetspeed-2/getting-started-installer.html
http://portals.apache.org/jetspeed-2/getting-started-installer.html
http://ftp.ps.pl/pub/apache/portals/jetspeed-2/binaries/jetspeed-installer-2.2.2.jar
http://ftp.ps.pl/pub/apache/portals/jetspeed-2/binaries/jetspeed-installer-2.2.2.jar
http://localhost:8080

B. INSTALLATION GUIDE

1 <?xml version=" 1 . 0 " encoding="UTF−8" ?>
2 <conf ig>
3 <chef>
4 < i d e n t i t y >chef−user−name</ i d e n t i t y >
5 <endpoint> h t t p : //chef−h o s t : 4 0 0 0</endpoint>
6 <pem>/ l o c a t i o n /of/the/chef/user/ c r e d e n t i a l . pem</pem>
7 </chef>
8 <runtime>
9 <model−repo>/ r e p o s i t o r y / l o c a t i o n </model−repo>

10 <model−f i l e >repo:sample−model . xml</model−f i l e >
11 <log−parent>/tmp/logs</log−parent>
12 < p o r t l e t−decorat ion>/name−of−the−p o r t a l /decora t ions/
13 p o r t l e t / c l o u d b e r r i e s </ p o r t l e t−decorat ion>
14 <fake−deploy> f a l s e </fake−deploy>
15 </runtime>
16 </conf ig>

We can see two sections that apply to communication with Chef server
and runtime configuration of Cloudberries. In order to communicate with
the Chef instance, in our example we have to change chef-user-name

to the name of our newly created Chef user myuser, chef-host will be
localhost (port remains the same) and set credential location to point to our
/tmp/myuser.pem.

Now we can adjust Cloudberries runtime parameters:

• model-repo is a path that will be searched to find feature models. We
can specify absolute path of the folder containing sample-model.xml.

• model-file - model locator. We leave the section as it is.

• log-parent - is a folder where will be kept installation logs. The user
running application server has to have rights to create new folders
there.

• portlet-decoration - relative path to the portal decoration folder. In a
newly installed JetSpeed, we will only change name-of-the-portal to
the portal name (the name is jetspeed by default).

• fake-deploy - this option allows for testing the application wothout
running installation processes. If set to true Cloudberries pretends that
installation steps finish immediately. We leave false.

94

B.2. Cloubderries portlet installation

The resulting configuration for our example should look as follows:

1 <?xml version=" 1 . 0 " encoding="UTF−8" ?>
2 <conf ig>
3 <chef>
4 < i d e n t i t y >myuser</ i d e n t i t y >
5 <endpoint> h t t p : // l o c a l h o s t : 4 0 0 0 </endpoint>
6 <pem>/tmp/myuser . pem</pem>
7 </chef>
8 <runtime>
9 <model−repo>/tmp/cloudberr ies−guide</model−repo>

10 <model−f i l e >repo:sample−model . xml</model−f i l e >
11 <log−parent>/tmp/logs</log−parent>
12 < p o r t l e t−decorat ion>/ j e t s p e e d /decora t ions/
13 p o r t l e t / c l o u d b e r r i e s </ p o r t l e t−decorat ion>
14 <fake−deploy> f a l s e </fake−deploy>
15 </runtime>
16 </conf ig>

B.2.2 Database connection settings (hibernate.cfg.xml)

Cloudberries connects to the database using Java Persistance API provider
- Hibernate. In order to support other databases than MySQL there is a
need for providing JDBC driver implementation specific to the type of the
database. Appropriate JAR has to be copied into the /WEB-INF/lib/ folder of
the application. In this guide we will simply use default MysQL driver. To
get more details about Hibernate configuration refer to its documentation.
The configuration is quite obvious. I our example resulting configuration file
has to contain the lines listed below:

1 <property name=" connect ion . d r i v e r _ c l a s s ">
2 com . mysql . jdbc . Driver</property>
3 <property name=" connect ion . u r l ">
4 j d b c : m y s q l :// l o c a l h o s t : 3 3 0 6 / c l o u d b e r r i e s</property>
5 <property name=" connect ion . username ">myuser</property>
6 <property name=" connect ion . password ">mypass</property>

B.2.3 Portal prerequisites

In the jetspeed folder, which is included in the installation pack-
age, you can find two following folders: decorations and pages,

95

B. INSTALLATION GUIDE

contents of which should be placed in appropriate locations. Both
of them represent hierarchy of folders ending with a folders named
cloudberries. The structure of the folders is identical to the fol-
lowing two: $HOME/Jetspeed-2.2.2/webapps/jetspeed/decorations and
$HOME/Jetspeed-2.2.2/pages/ (ATTENTION - it can be alternatively lo-
cated at $HOME/Jetspeed-2.2.2/webapps/jetspeed/pages). In order ot in-
stall prerequisites just reproduce the structure and copy folders named
cloudberries into appropriate locations.

B.2.4 Running the application

In order to run Cloudberries, make sure that the JetSpeed portal is
running. JetSpeed supports hot-deploy so the portlets can be seam-
lessly deployed without restart. In order to deploy Cloudberries
just copy the archive cloudberries-pa.war to the deployment folder
$HOME/Jetspeed-2.2.2/webapps/jetspeed/WEB-INF/deploy. Then you
should see logs of the server:

Creating war /home/bartek/Jetspeed-2.2.2/webapps/cloudberries-pa.war

War /home/bartek/Jetspeed-2.2.2/webapps/cloudberries-pa.war

created

Aug 24, 2012 3:18:45 AM org.apache.catalina.startup.HostConfig

deployWAR

INFO: Deploying web application archive cloudberries-pa.war

JetspeedContainerServlet: starting initialization of Portlet

Application at: cloudberries-pa

JetspeedContainerServlet: initialization done for Portlet

Application at: cloudberries-pa

When Cloubderries is succesfully deployed, it writes its own log:

Reading Cloudberries configuration from file

"/home/bartek/Jetspeed-2.2.2/webapps/cloudberries-pa/WEB-INF/classes

/cloudberries.cfg.xml"

=======================================

Cloudberries configuration:

=======================================

chefIdentity = myuser

chefEndpoint = http://localhost:4000

pemFileAbsolutePath = /tmp/myuser.pem

repoLocation = /tmp/cloudberries-guide

logParentPath = /tmp/logs

portletDecorationBase = /jetspeed/decorations/portlet/cloudberries

fakeDeploy = false

=======================================

96

B.2. Cloubderries portlet installation

In order to access the tool paste following link into a Web browser:

http://localhost:8080/jetspeed/portal/cloudberries

The sequence jetspeed is a name of the portal and should be replaced if
the portal name has changed. As Cloubderries is a portlet it can be made
accessible from the main portal page - to get more information refer to the
JetSpeed documentation.

97

http://localhost:8080/jetspeed/portal/cloudberries

Bibliography

[1] Anaconda/Kickstart - FedoraProject. URL: http://fedoraproject.org/
wiki/Anaconda/Kickstart.

[2] Henrik R. Andersen. An introduction to binary decision diagrams. Tech.
rep. Course Notes on the WWW, 1997.

[3] Architecture Introduction - Chef - Opscode Open Source Wiki. URL: http:
//wiki.opscode.com/display/chef/Architecture+Introduction.

[4] Automatic Installation - Ubuntu Linux. URL: http://help.ubuntu.com/
12.04/installation-guide/i386/automatic-install.html.

[5] Don Batory, Jacob N. Sarvela, and Axel Rauschmayer. “Scaling Step-
Wise Refinement”. In: IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING 30.6 (2004), p. 2004.

[6] Bcfg2 project web page. URL: http://trac.mcs.anl.gov/projects/
bcfg2/.

[7] Bcfg2 Windows support. URL: http://trac.mcs.anl.gov/projects/
bcfg2/wiki/FeatureWindows.

[8] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. “Auto-
mated analysis of feature models 20 years later: A literature review”.
In: Information Systems (Mar. 4, 2010). ISSN: 03064379. DOI: 10.1016/j.
is.2010.01.001. URL: http://dx.doi.org/10.1016/j.is.2010.01.
001.

[9] CFEngine - Distributed Configuration Management. URL: http : / /

cfengine.com/.

[10] Chef - Opscode Open Source Wiki. URL: http://wiki.opscode.com/
display/chef/Home.

[11] Chef Opscode. URL: http://www.opscode.com/chef/.

[12] Choco solver web page. URL: http://www.emn.fr/z- info/choco-
solver/.

99

http://fedoraproject.org/wiki/Anaconda/Kickstart
http://fedoraproject.org/wiki/Anaconda/Kickstart
http://wiki.opscode.com/display/chef/Architecture+Introduction
http://wiki.opscode.com/display/chef/Architecture+Introduction
http://help.ubuntu.com/12.04/installation-guide/i386/automatic-install.html
http://help.ubuntu.com/12.04/installation-guide/i386/automatic-install.html
http://trac.mcs.anl.gov/projects/bcfg2/
http://trac.mcs.anl.gov/projects/bcfg2/
http://trac.mcs.anl.gov/projects/bcfg2/wiki/FeatureWindows
http://trac.mcs.anl.gov/projects/bcfg2/wiki/FeatureWindows
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://cfengine.com/
http://cfengine.com/
http://wiki.opscode.com/display/chef/Home
http://wiki.opscode.com/display/chef/Home
http://www.opscode.com/chef/
http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/

BIBLIOGRAPHY

[13] choco Team. choco: an Open Source Java Constraint Programming Li-
brary. Research report 10-02-INFO. École des Mines de Nantes, 2010.
URL: http : / / www . emn . fr / z - info / choco - solver / pdf / choco -

presentation.pdf.

[14] E. Ciepiela et al. “Exploratory Programming in the Virtual Laboratory”.
In: Proceedings of the International Multiconference on Computer Science
and Information Technology. Wisla, Poland 2010, pp. 621–628.

[15] ClusterIt project web page. URL: http://www.garbled.net/clusterit.
html.

[16] ClusterSSH project web page. URL: http://clusterssh.sourceforge.
net.

[17] Comparison of open source configuration management software - Wikipedia,
the free encyclopedia. URL: http : / / en . wikipedia . org / wiki /

Comparison_of_open_source_configuration_management_software.

[18] Detailed Bcfg2 Architecture â Bcfg2 1.2.3 documentation. URL: http://
docs.bcfg2.org/architecture/.

[19] Dish project webpage. URL: http://directory.fsf.org/wiki/Dish.

[20] DSH - dancer’s shell / distributed shell porject web page. URL: http://www.
netfort.gr.jp/~dancer/software/dsh.html.en.

[21] euHeart project website. URL: http://www.euheart.eu/.

[22] FaMa project web page. URL: http://www.isa.us.es/fama/?FaMa_
Framework.

[23] FAMA tool suite web page. URL: http://www.isa.us.es/fama/.

[24] FaMa user manual. URL: http://famats.googlecode.com/files/
FaMaUserManual.pdf.

[25] FogProject web page. URL: http://www.fogproject.org/.

[26] FreeMarker: Java Template Engine Library - Overview. URL: http : / /

freemarker.sourceforge.net/.

[27] Hassan Gomaa and Michael Shin. “Automated Software Product Line
Engineering and Product Derivation”. In: 2007 40th Annual Hawaii In-
ternational Conference on System Sciences (HICSS’07). Waikoloa, HI, USA:
IEEE, 2007, 285a. DOI: 10.1109/HICSS.2007.95. URL: http://dx.doi.
org/10.1109/HICSS.2007.95.

[28] Tarik Hadzic, Rune M. Jensen, and Henrik R. Andersen. Calculating
valid domains for bdd-based interactive configuration. 2006.

[29] Introducing Java Portlet Specifications: JSR 168 and JSR 286. URL: http:
//developers.sun.com/portalserver/reference/techart/jsr168/.

100

http://www.emn.fr/z-info/choco-solver/pdf/choco-presentation.pdf
http://www.emn.fr/z-info/choco-solver/pdf/choco-presentation.pdf
http://www.garbled.net/clusterit.html
http://www.garbled.net/clusterit.html
http://clusterssh.sourceforge.net
http://clusterssh.sourceforge.net
http://en.wikipedia.org/wiki/Comparison_of_open_source_configuration_management_software
http://en.wikipedia.org/wiki/Comparison_of_open_source_configuration_management_software
http://docs.bcfg2.org/architecture/
http://docs.bcfg2.org/architecture/
http://directory.fsf.org/wiki/Dish
http://www.netfort.gr.jp/~dancer/software/dsh.html.en
http://www.netfort.gr.jp/~dancer/software/dsh.html.en
http://www.euheart.eu/
http://www.isa.us.es/fama/?FaMa_Framework
http://www.isa.us.es/fama/?FaMa_Framework
http://www.isa.us.es/fama/
http://famats.googlecode.com/files/FaMa User Manual.pdf
http://famats.googlecode.com/files/FaMa User Manual.pdf
http://www.fogproject.org/
http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/
http://dx.doi.org/10.1109/HICSS.2007.95
http://dx.doi.org/10.1109/HICSS.2007.95
http://developers.sun.com/portalserver/reference/techart/jsr168/
http://developers.sun.com/portalserver/reference/techart/jsr168/

BIBLIOGRAPHY

[30] Nicholas W. Jankowski. “Exploring e-Science: An Introduction”.
In: Journal of Computer-Mediated Communication 12.2 (Jan. 2007),
pp. 549–562. ISSN: 1083-6101. DOI: 10.1111/j.1083-6101.2007.00337.
x. URL: http://dx.doi.org/10.1111/j.1083-6101.2007.00337.x.

[31] Java Servlet Technology. URL: http://java.sun.com/j2ee/tutorial/1_
3-fcs/doc/Servlets.html.

[32] JavaBDD - Java Binary Decision Diagram library. URL: http://javabdd.
sourceforge.net/.

[33] Jclouds-chef Wiki - GitHub. URL: http : / / github . com / jclouds /

jclouds-chef/wiki/Quick-Start.

[34] Jetspeed 2 documentation. URL: http://portals.apache.org/jetspeed-
2/.

[35] K. C. Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Tech. rep. Carnegie-Mellon University Software Engineering In-
stitute, 1990.

[36] Kyo C. Kang et al. “FORM: A feature-oriented reuse method with
domain-specific reference architectures”. In: Annals of Software Engi-
neering 5 (1998).

[37] Vipin Kumar. “Algorithms for Constraint Satisfaction Problems: A Sur-
vey”. In: AI MAGAZINE 13.1 (1992).

[38] Daniel Le et al. The Sat4j library, release 2.2 system description. 2010.

[39] Marc’ilio Mendonca. “Efficient Reasoning Techniques for Large Scale
Feature Models”. PhD thesis. Waterloo: University of Waterloo, 2009,
p. 184. URL: http://hdl.handle.net/10012/4201.

[40] Marc’ilio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki.
“SAT-based analysis of feature models is easy.” In: SPLC. Ed. by Dirk
Muthig and John D. McGregor. Vol. 446. ACM International Confer-
ence Proceeding Series. ACM, 2009, pp. 231–240. URL: http://dblp.
uni-trier.de/db/conf/splc/splc2009.html#MendoncaWC09.

[41] Multivax: Bcfg2 vs Puppet. URL: http://multivax.blogspot.com/2009/
12/bcfg2-vs-puppet.html.

[42] @neurIST (Integrated Biomedical Informatics for the Management of Cere-
bral Aneurysms) - project website. URL: http://www.aneurist.org/
aneurist1/index.php.

[43] Omnitty SSH multiplexer. URL: http://omnitty.sourceforge.net/.

[44] PSSH project web page. URL: http://www.theether.org/pssh/.

[45] Puppet Labs Documentation. URL: http://docs.puppetlabs.com/.

[46] Puppet versus Chef: 10 reasons why Puppet wins. URL: http : / /

bitfieldconsulting.com/puppet-vs-chef.

101

http://dx.doi.org/10.1111/j.1083-6101.2007.00337.x
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
http://javabdd.sourceforge.net/
http://javabdd.sourceforge.net/
http://github.com/jclouds/jclouds-chef/wiki/Quick-Start
http://github.com/jclouds/jclouds-chef/wiki/Quick-Start
http://portals.apache.org/jetspeed-2/
http://portals.apache.org/jetspeed-2/
http://hdl.handle.net/10012/4201
http://dblp.uni-trier.de/db/conf/splc/splc2009.html#MendoncaWC09
http://dblp.uni-trier.de/db/conf/splc/splc2009.html#MendoncaWC09
http://multivax.blogspot.com/2009/12/bcfg2-vs-puppet.html
http://multivax.blogspot.com/2009/12/bcfg2-vs-puppet.html
http://www.aneurist.org/aneurist1/index.php
http://www.aneurist.org/aneurist1/index.php
http://omnitty.sourceforge.net/
http://www.theether.org/pssh/
http://docs.puppetlabs.com/
http://bitfieldconsulting.com/puppet-vs-chef
http://bitfieldconsulting.com/puppet-vs-chef

BIBLIOGRAPHY

[47] SAT4J web page. URL: http://www.sat4j.org/.

[48] Server API - Chef - Opscode Open Source Wiki. URL: http : / / wiki .

opscode.com/display/chef/Server+API.

[49] Software Product Lines Online Tools architecture. URL: http : / / gsd .

uwaterloo.ca:8088/SPLOT/splot_open_source.html.

[50] Solaris 10 Installation Guide: Custom JumpStart and Advanced Installations.
URL: http://docs.oracle.com/cd/E19253-01/817-5506/.

[51] SPLOT - Software Product Line Online Tools. URL: http://www.splot-
research.org/.

[52] SXFM Feature Model format. URL: http://www.splot-research.org/
sxfm.html.

[53] TakTuk project webpage. URL: http://taktuk.gforge.inria.fr/.

[54] The AHEAD Tool Suite. URL: http://www.cs.utexas.edu/users/
schwartz/ATS.html.

[55] “Thoughs on cfengine, bcfg2, and puppet | The Changelog”. In: ().
URL: http://changelog.complete.org/archives/519-thoughs-on-
cfengine-bcfg2-and-puppet.

[56] Thomas Thüm, Don Batory, and Christian Kästner. “Reasoning about
edits to feature models”. In: In Proc. Int’l Conf. on Software Engineering,
p. 2009.

[57] Unattended, A Windows deployment system. URL: http://unattended.
sourceforge.net/.

[58] VPH-Share project web page. URL: http://vph-share.org/.

102

http://www.sat4j.org/
http://wiki.opscode.com/display/chef/Server+API
http://wiki.opscode.com/display/chef/Server+API
http://gsd.uwaterloo.ca:8088/SPLOT/splot_open_source.html
http://gsd.uwaterloo.ca:8088/SPLOT/splot_open_source.html
http://docs.oracle.com/cd/E19253-01/817-5506/
http://www.splot-research.org/
http://www.splot-research.org/
http://www.splot-research.org/sxfm.html
http://www.splot-research.org/sxfm.html
http://taktuk.gforge.inria.fr/
http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.cs.utexas.edu/users/schwartz/ATS.html
http://changelog.complete.org/archives/519-thoughs-on-cfengine-bcfg2-and-puppet
http://changelog.complete.org/archives/519-thoughs-on-cfengine-bcfg2-and-puppet
http://unattended.sourceforge.net/
http://unattended.sourceforge.net/
http://vph-share.org/

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Abbreviations and Acronyms
	Introduction
	Background
	Survey of automatic software installation methods
	Objectives of the thesis

	Provisioning in cloud infrastructure
	Comparison of provisioning tools
	Provisioning with Chef
	Summary

	Software Product Line as a generic approach to software creation
	The concept of using Software Product Line methodology
	Overview of Feature Modeling
	Families of Feature Model reasoning algorithms
	Solvers based on Boolean Satisfiability Problem and Binary Decision Diagrams
	Tools for Feature Model reasoning
	Summary

	Experiment environment preparation tool overview
	Cloudberries general description
	Specification of requirements
	High-level system design
	Summary

	Implementation of the tool
	Proof of Concept
	Cloudberries - the tool
	User interface
	Summary

	Validation of tool
	Case study
	System usability evaluation
	System security
	Limitations
	Summary

	A concept of Feature Model - based automatic SPL generation
	Feature Model adaptation
	A concept of Feature Model - driven Software Product Line architecture
	Further thoughts
	Summary

	Summary and Future Work
	Appendices
	Glossary
	Installation Guide
	Installing prerequisites
	Cloubderries portlet installation

	Bibliography

