
AGH University of Science and Technology
in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and
Electronics

Institute of Computer Science

Tomasz Jadczyk

Bioinformatics Applications in the
Virtual Laboratory

MSc Thesis

Major: Computer Science
Specialization: Distributed Systems and Computer Networks

Album id: 127116

Supervisor:
dr. Marian Bubak

Consultancy:
dr. Maciej Malawski

Krakow 2009

Oświadczenie autora

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że
niniejsza̧ pracȩ dyplomowa̧ wykonałem osobiście i samodzielnie i że nie korzystałem
ze źródeł innych niż wymienione w pracy.

Tomasz Jadczyk

Akademia Górniczo - Hutnicza
im. Stanisława Staszica

w Krakowie

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Katedra Informatyki

Tomasz Jadczyk

Aplikacje bioinformatyczne w
wirtualnym laboratorium

Praca magisterska

Kierunek: Informatyka
Specjalność: Systemy rozproszone i sieci komputerowe

Nr albumu: 127116

Promotor:
dr inż. Marian Bubak

Konsultacja:
dr inż. Maciej Malawski

Kraków 2009

Abstract

Bioinformatics is the field of science in which biology, computer science, and infor-
mation technology merge to form a single discipline. Its main focus is on broadening
the spectrum of biological analysis by facilitating the new discoveries within its field,
as well as providing a more universal perspective of research which would spur the
process of revealing the unifying principles in biology. The virtual laboratory is an
environment where the applications are available as reusable components (gems)
and are exploited within (in silico) experiments.

The subject of this thesis is to prepare a set of applications suited to solve
common problems in the field of bioinformatics, as well as to integrate them into
the virtual laboratory. Three main problems tackled in the scope of this thesis:
protein sequence and structure comparison, ligand binding site prediction and mi-
croarray analysis, have led to the selection of the appropriate applications. The
applications responsible for data gathering, preliminary data analysis and visual-
ization of the results are also included in the prepared set. In addition, the work
is focused on integrating selected applications into the virtual laboratory with the
use of the available technologies, as well as preparing additional mechanisms that
would ensure the proper working of the applications. In the course of this thesis the
created experiments that cover the problems listed above are also presented. The
classification of the applications is proposed in order to select the most appropriate
set of applications that can be used in a variety of bioinformatics experiments.

Contents of this thesis is organized as follows: Firstly, the background of the
target environment and elementary bioinformatics knowledge are introduced. Then
we are proceeding to the analysis of the related work and the examination of the
problem, which leads to providing the classification of applications by technology
and by the scope of use. A description of the additional mechanisms required to
integrate the selected applications is followed by the presentation of database access
and basic analysis gems. After that, the solutions of main bioinformatics problems
discussed in this thesis are offered. Finally, the applications for data visualization
are listed.

Keywords: bioinformatics, virtual laboratory, ViroLab, experiment, sequence align-
ment, structure alignment, binding site prediction, microarray

5

Acknowledgements

I would like to kindly acknowledge my grateful thanks to dr. Marian Bubak,
the supervisor of this work, for his guidance, advices and time. Especially, I would
like to express my gratitude to dr. Maciej Malawski for the invaluable commitment,
insightful look and very helpful collaboration.

The author wishes to appreciate contributions from the Department of Bioinfor-
matics and Telemedicine, Jagiellonian University – Medical College, especially prof.
Irena Roterman-Konieczna, dr. Monika Piwowar and Katarzyna Prymula because
without them, this work would not be possible.

Also, the help of all the ViroLab Virtual Laboratory team members from ACC
Cyfronet AGH cannot be overestimated.

This work was made possible owing to the ViroLab (http://www.virolab.org)
and PL-Grid (http://www.plgrid.pl/) projects.

6

Contents

Abstract . 5

Acknowledgements . 6

List of Figures . 9

List of Tables . 11

Abbreviations and Acronyms . 12

Chapter 1. Introduction . 14
1.1. Science of Bioinformatics . 14
1.2. ViroLab - Target Environment . 15
1.3. Problem Description . 17
1.4. The MSc Thesis Objectives . 18
1.5. Organization of the Thesis . 18

Chapter 2. Background of Bioinformatics and ViroLab Virtual
Laboratory . 19
2.1. Bioinformatics – Theoretical Background . 19
2.2. ViroLab Virtual Laboratory . 27
2.3. Summary . 30

Chapter 3. Related work . 31
3.1. Soaplab - SOAP-based Analysis Web Service 31
3.2. Taverna . 32
3.3. Biomedical Informatics Research Network . 34
3.4. META-PredictProtein . 36
3.5. Summary . 36

Chapter 4. Analysis of Bioinformatics Applications and Gems 37
4.1. Model of Bioinformatics Applications . 37
4.2. Classification of Gems . 40
4.3. Additional Integration Mechanisms . 47
4.4. Summary . 51

Chapter 5. Database Access Layer and Basic Analysis Layer Gems . 52
5.1. Bioinformatics Database Access Gems . 52
5.2. Statistical Analysis . 59

7

Contents

5.3. Data Mining . 62
5.4. Data Clustering . 67
5.5. Reduction of Data Dimension . 68
5.6. Summary . 68

Chapter 6. Protein Sequence and Structure Comparison 69
6.1. Problem Description . 69
6.2. Experiment . 73
6.3. Gems and Classes Used in Experiment . 78
6.4. Experiment Run and Results . 85
6.5. Summary . 88

Chapter 7. Comparison of Services for Predicting Ligand Binding
Site . 89
7.1. Problem Description . 89
7.2. Description of Available Services . 90
7.3. Integration of Gems Using Task Queuing System 94
7.4. The Prediction Experiment of Ligand Binding Sites 100
7.5. Summary and Results . 103

Chapter 8. Microarray Data Analysis . 105
8.1. Problem Description . 105
8.2. Microarray Analysis in Virtual Laboratory . 106
8.3. Sample Microarray Experiment in Virtual Laboratory 113
8.4. Summary . 113

Chapter 9. Results Presentation Layer . 115
9.1. Plotting Numerical Data With Gnuplot . 115
9.2. Protein Structure Visualization with Jmol and ProteinWorkshop 116
9.3. Sequences Alignment in Jalview . 120
9.4. Microarray Clustering Results in JTreeView 121
9.5. Summary . 121

Chapter 10. Conclusions and Future Work 123
10.1.Summary . 123
10.2.Future work . 125

Bibliography . 127

Appendix A. Glossary . 131

Appendix B. The experiments . 136
B.1.ProteinStructureAndSequenceComparison . 136
B.2.ProteinPocketsTests . 147

Appendix C. Gems API . 158
C.1.Bioinformatic database access gems . 158
C.2.Basic analysis gems . 160
C.3.Protein sequence and structure analysis gems 163
C.4.Protein binding site prediction gems . 166
C.5.Results presentation gems . 169

List of Figures

1.1. ViroLab virtual laboratory layered architecture 16

2.1. The Central Dogma of Molecular Biology . 21
2.2. Transfer RNA (tRNA) molecule . 22
2.3. Protein synthesis process . 22
2.4. Four levels of protein structure description . 24
2.5. DNA replication process . 25
2.6. Mutations in amino acid sequence for hemoglobin protein 26
2.7. Grid Object abstractions . 28
2.8. Experiment execution modes . 29

3.1. Taverna workbench . 34

4.1. General model of bioinformatics experiment process 39
4.2. Layers of the gem technology . 43
4.3. Layers of the gem scope of usage . 45
4.4. Bioinformatics database access layer . 46
4.5. Basic analysis layer . 46
4.6. General architecture of the tasks queueing system 48

5.1. ScopDb query execution diagram . 59
5.2. R gem running diagram . 61
5.3. Class diagram of Weka data handling part . 63
5.4. Weka Mocca components. 64
5.5. The experiment with comparison of Weka Classifiers 66

6.1. Two paths of protein structure analysis . 71
6.2. Scenario of the Protein Sequence and Structure Comparison experiment 74
6.3. FASTA format example . 75
6.4. Example of sequences alignment for protein family 76
6.5. W score computing method . 77
6.6. Wprotein profile computing example . 77
6.7. Mammoth gem running diagram . 82
6.8. MultiProt gem running diagram . 83
6.9. Experiment results. W score values . 86

9

6.10. Experiment results. W profiles for 2DD8 protein 87

7.1. Class diagram for binding site prediction services 95
7.2. Sequence diagram for Task creation process . 96
7.3. Sequence diagram for running Task analysis . 97
7.4. Class diagram for analyzers part of the system. 98
7.5. Class diagram for Options mechanism. 101
7.6. Binding site prediction - Experiment model . 101
7.7. Binding site prediction - Results conversion and visualization 103
7.8. Visualization of predicted binding sites for 1ITQ protein. 104

8.1. Microarray data model class diagram . 107
8.2. Sequence diagram for creating a new microarray dataset 109
8.3. Class diagram for microarray data clustering library. 111
8.4. The structure of microarray data analysis experiment 113

9.1. An example of the gnuplot script and plot . 117
9.2. The Protein Workshop visualization example. 119
9.3. Enhanced Jmol viewer main window. 120
9.4. Gene expression visualization in JTreeView software. 122

List of Tables

2.1. Genetic code, amino acids and assignments of all 64 triplets 20
2.2. Grid Object Implementation - available technologies. 28
2.3. Experiment running modes comparison. 30

4.1. The parameters of a new gem registration . 42
4.2. Required parameters during registration process for different gem technologies. 42
4.3. Tasks queuing system classes. 49

5.1. Atom record structure in PDB file. 55
5.2. The complete list of accepted FASTA codes. 56
5.3. Conversion between data formats rules . 60

7.1. Binding site prediction services - format description and rules of conversion . . 93
7.2. Parameters values for available binding site prediction services. 100

10.1. Created gems statistics, classification by technology 124
10.2. Created gems statistics, classification by scope of usage 125

11

Abbreviations and Acronyms

Acronym Meaning
AA Amino acid
API Application Programming Interface
ARFF Attribute-Relation File Format for Weka library

BLOSUM Blocks of Amino Acid Substitution Matrix
CCA Common Component Architecture
cDNA complementary DNA
CORBA Common Object Request Broker Architecture
CSV Comma Separated Values
DNA Deoxyribonucleic acid
EBI European Bioinformatics Institute
EMI Experiment Management Interface
EPE Experiment Planning Environment
FIFO First-In-First-Out
FTP File Transfer Protocol
GEO Gene Expression Omnibus
GRR Grid Resource Registry
HIV Human Immunodeficiency Virus

HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDL Interface Definition Language
JAR Java Archive
JDBC Java Database Connectivity
JNLP Java Network Launching Protocol
MDS Multidimensional scaling

MIME type An Internet media type
MOCCA Metacomputing-oriented CCA framework
mRNA messenger RNA
MSA Multiple Sequence Alignment

12

Acronym Meaning
NCBI The National Center for Biotechnology Information
NP Non-deterministic Polynomial-time
PAM Point Accepted Mutation
PCA Principal component analysis
PDB Protein Data Bank
RCSB Research Collaboratory for Structural Bioinformatics
REST Representational State Transfer
RMSD Root mean square deviation
RNA Ribonucleic acid
RPC Remote Procedure Call
SOAP originally Simple Object Access Protocol, lately also

Service-Oriented Architecture Protocol
SQL Structured Query Language
SSM Secondary Structure Matching
tRNA transfer RNA
UDDI Universal Description Discovery and Integration
URI Uniform Resource Identifier
URL Uniform Resource Locator
VLvl ViroLab Virtual Laboratory

WebDav Web-based Distributed Authoring and Versioning
WSDL Web Services Description Language
WWW World Wide Web
XML Extensible Markup Language

Chapter 1

Introduction

The subject of this thesis is to prepare a set of applications suited to solve com-
mon problems in the field of bioinformatics, as well as to integrate them into the
virtual laboratory. This Chapter presents general information about bioinformatics
as a single discipline that emerged from biology, computer science and information
technology. Next, the environment where the applications will be running - ViroLab
Virtual Laboratory, its architecture and users, is introduced. Finally, the problem of
this thesis is stated and that goals that are to be achieved are listed.

1.1. Science of Bioinformatics

Bioinformatics is a relatively new field of science that has rapidly advanced in
recent years. Therefore it is quite difficult to give its complete definition. In this
section two definitions of bioinformatics and its exploration areas are presented.

The first stage of bioinformatics evolution was focused on providing access to
data for researchers [15]. Within this scope the following definition is commonly
accepted:

Bioinformatics is a science focused on creating biological databases and web-based
front ends available to any user interested in searching and modifying biological
data

When the data availability has reached a satisfying level, the next stage of devel-
opment in the field of bioinformatics approached. It was focused on providing and
developing methods and algorithms purposed to data analysis. The most appro-
priate definition, describing bioinformatics at this stage of evolution is presented in
[35]:

14

1.2. ViroLab - Target Environment

Bioinformatics is an interdisciplinary science, that covers two issues:
• development of computing methods to analyse structure, function and evolu-

tion of genes, proteins and genomes,
• development of methods used in management and analysis of biological infor-

mation data which is gained in the process of genomics studies and research
conducted with the use of high-throughput experimental techniques.

Biology is a primary science from which bioinformatics has evolved, but more par-
ticular biology domain on which bioinformatics is based are population genetics and
molecular evolution.

It can be observed that the amount of data available in public and specialised
databases is rising exponentially. Moreover, many new algorithms and applications
are also being developed. We can relate dynamic development of bioinformatics with
simultaneous evolution of the Internet. Thanks to the global network, the biological
databases with DNA sequential data has been available to all interested users all
over the world.

Among the main bioinformatics research areas we can list:
• Putting gene and protein data into public databases, providing interfaces for

searching, adding and revising those data,
• Sequence alignment,
• Searching similar sequences,
• Phylogenetic analysis,
• Protein structure and function analysis,
• Protein structure prediction,
• Protein-protein interaction network modelling,
• Gene and protein expression analysis,
• Computer-aided drug research.
More detailed description of bioinformatics backgrounds is presented in section 2.1.

1.2. ViroLab - Target Environment

The ViroLab Virtual Laboratory, which is the target environment for bioinfor-
matics applications in the scope of this thesis, is a part of ViroLab project [7]. This
section1 intends to demonstrate its architecture and users.

ViroLab virtual laboratory is a set of integrated components that form an ad-
vanced environment, which can be used to plan and perform complex scientific appli-
cations, called experiments. Experiments in this context are processes that com-
bine available applications, services, tools and data into ordered activities sequence
and perform computer simulation (in silico) in order to obtain new knowledge.

A mission of the ViroLab project is to provide support for virologists, epidemi-
ologists and clinicians investigating the HIV virus and the possibilities of treating
HIV-positive patients. The offered solution is general enough to reuse it in other
domains among which bioinformatics is perhaps the best example.

1 This section is based on [7, 50].

15

Introduction

Figure 1.1. ViroLab virtual laboratory layered architecture. Emphasized layers are the
main areas in the scope of this thesis. Picture comes from VLvl homepage [12].

The ViroLab virtual laboratory architecture is presented in Fig. 1.1. It is a
conceptual way to show abstract layers of the virtual laboratory, however the real
architecture is far more complex.

The areas of research which are of particular concern in this thesis are included
in the highlighted layers. Computational services, called gems, allow experiment
developers to plan and carry out experiments. The experiments need input data
to work on. Those data can be gathered from several databases by using gems
from Data services layer. Prepared and published experiments are performed by
scientists. They have to know which pieces of data should be analysed and they
are able to explain the results of the experiment.

There are two main classes of the virtual laboratory users:
• Experiment developer - a person who designs experiments in a specific domain.

This person must be skillful enough to design and denote the way in which an
experiment should proceed, have a certain level of domain-related knowledge to
understand the nature of the processes in order to model an experiment and
technical skills to use available services in the virtual laboratory. The exper-
iments are written in Ruby language [10] and can be created in ViroLabEPE
environment [11]. In the scope of this thesis, its author is taking an experiment
developer role.

• Experiment user - is any person who runs a previously prepared and published
experiment in order to obtain results. In the scope of this thesis experiment
users are the scientists from Department of Bioinformatics and Telemedicine of
Jagiellonian University - Medical College [3], under professor Irena Roterman –
Konieczna guidance, who have run the experiments prepared and suited to their
research areas, repeating the process many times on different input data sets.

16

1.3. Problem Description

Virtual laboratory experiments are developed in ViroLabEPE environment and can
be run in this environment as well as by using Experiment Management Interface
(EMI) portal. More detailed description of the ViroLab virtual laboratory is pre-
sented in section 2.2.

1.3. Problem Description

Section 1.1 of this Chapter familiarized us with bioinformatics as a multi-faceted
science. What is more, its dynamic development is also a key feature which stimu-
lates creation of new applications aimed at finding new solutions to bioinformatics
problems. One subset of these applications is perceived by scientists as a set of basic
tools that have gained common acceptance in the field. The remaining part is under
constant development and testing. A multitude of available applications solving the
same problem makes it possible to perform a comparative analysis of many methods
and algorithms. However, usually it is necessary to do some additional work in or-
der to compare results. Modern bioinformatics struggles with the following typical
problems: an integration of many applications to solve a single issue, a need for
using many databases in order to gather data and check results, and finally an issue
of providing and maintaining bioinformatics software.

First of all, an integration of many bioinformatics applications may be a prob-
lem quite difficult to cope with. The available applications are made using many
technologies. Some of them are developed as binary programs, others are provided
as compiled libraries which we can use in our programs. The programs are also
often delivered as Web services or WWW portals. Every single problem in the
field of bioinformatics frequently requires the use of many applications to solve it.
The second issue in this area is passing data between programs. Such type of data
processing, called pipelining, requires adjusted format of inputs and outputs of the
used programs. A communication between them is often achieved by passing data
by the local file system.

The second problem is in the necessity of obtaining large amounts of data from
many sources to perform an experiment. What is more, a communication estab-
lished between many databases to gain information needed during the experiment,
or comparison of the obtained results with the already existing data, may be done
in a variety of ways. The authors of bioinformatics software often prepare Web
services in SOAP or REST technology to use their programs. In some databases
their own searching systems are available (e.g. Entrez [62] system in NCBI portal)
and therefore wrapping HTTP communication is often required to reach it.

Finally, in order to use it, all the needed software should be available for the
researcher on a workstation where the work is carried out. Giving access to the
most important applications in a unified way would allow to use it many times in
different experiments without the need for introducing additional changes to the
experiment code. As a result, there would be only one environment necessary to
run any experiment, which would be much easier to maintain and learn by new
users.

17

All these problems make the development of bioinformatics applications a chal-
lenge, which can be addressed by using a generic framework and by providing mech-
anisms recognized as objectives of this thesis.

1.4. The MSc Thesis Objectives

The main goal of the thesis is to provide a set of applications which can be
used in bioinformatics experiments within the virtual laboratory. In order to define
properly this set of applications and to integrate it into the virtual laboratory some
sub-goals must be achieved. The goals are as follows:
• Analysis of the available bioinformatics applications, the way in which each ap-

plication should be run, the available options to set, and the way of returning
the results and the results’ format;

• Classification of the bioinformatics applications and their division into a num-
ber of categories, while taking into consideration the technology in which the
application is created, the usage scope and their usefulness in different problems;

• Integration of selected applications projects. Preparing additional mechanisms
to run the selected applications as gems in the virtual laboratory;

• Creating a set of ViroLab gems and preparing experiments. Wrapping the se-
lected applications and publishing them into the ViroLab virtual laboratory.
Creating the experiments to show how the prepared gems could be used and
planning experiments to solve the selected bioinformatics problems;

• Preparing general methods and tools to make using the bioinformatics applica-
tions easier in the virtual laboratory experiments.

1.5. Organization of the Thesis

The contents of this thesis is organized in a following way. In Chapter 1 bioin-
formatics domain and target environment are introduced. Then goals of this thesis
are stated. Chapter 2 presents the background, that is elementary bioinformatics
knowledge and the ViroLab virtual laboratory architecture. Other bioinformatics
frameworks are overviewed in Chapter 3. Chapter 4 focuses on the analysis of the
solution and its design. In Chapter 5 the basic gems are described: Database access
(section 5.1), Statistical analysis (5.2), Data mining (5.3) Clustering (5.4) and Re-
ducing Dimensionality (5.5) are included in the basic gems set. Further Chapters
demonstrate the solutions prepared to solve specialized problems, the available gems,
the solutions design, the prepared experiments and the results of the performed ex-
periments. In particular, they include a comparison of proteins on three levels of
protein description in Chapter 6, a test of different methods of ligand binding site
prediction in proteins in Chapter 7 and a demonstration of an analysis of a large
amount of data from microarray experiments in Chapter 8. One of the main part
of bioinformatics experiments - results visualization and a way of integrating the
visualization tools into the virtual laboratory - are presented in Chapter 9. Finally,
Chapter 10 provides concluding remarks and outlines some further issues.

Chapter 2

Background of Bioinformatics and ViroLab
Virtual Laboratory

This Chapter introduces the basic terms used in bioinformatics. It explains how
biological data is organised in living cells, characterizes The Central Dogma of Molec-
ular Biology, the protein structure and the process of translating those data into the
format which can be stored and analyzed in (in silico) experiments. Secondly, a
detailed description of the ViroLab virtual laboratory, introduced in the section 1.2,
is given. It contains instructions how to extend virtual laboratory capabilities by
adding new applications as ViroLab gems, how to use them in the experiments and
the tools available to facilitate preparation and execution of an experiment.

2.1. Bioinformatics – Theoretical Background

Using computer techniques to analyze biological data was enforced by rapid in-
crease of the available data to study. Moreover, new knowledge gained by researchers
also stimulates development of new methods for data analysis. This section1 provides
an outline of basic information required to understand bioinformatics research area.

Information management in living cells. Living organisms have an ability to
store, utilize and pass on information. Information is stored in genes and main-
tained in genetic material - DNA. That information allows organisms to construct
living cells and smaller organisms from inanimate molecules. Newly created or-
ganisms are able to regulate their internal chemical composition, growth and re-
production. DNA is built from repertoire of four different basic structures, called

1 Information in this section comes from [14, 35, 41].

19

Background of Bioinformatics and ViroLab Virtual Laboratory

First base
Second base

U C A G
Third base

U

Phe(F) Ser(S) Tyr(Y) Cys(C)
Phe(F) Ser(S) Tyr(Y) Cys(C)
Leu(L) Ser(S) STOP STOP
Leu(L) Ser(S) STOP Trw(W)

U
C
A
G

C

Leu(L) Pro(P) His(H) Arg(R)
Leu(L) Pro(P) His(H) Arg(R)
Leu(L) Pro(P) Gln(Q) Arg(R)
Leu(L) Pro(P) Gln(Q) Arg(R)

U
C
A
G

A

Ile(I) Thr(T) Asn(N) Ser(S)
Ile(I) Thr(T) Asn(N) Ser(S)
Ile(I) Thr(T) Lys(K) Arg(R)

Met(M) Thr(T) Lys(K) Arg(R)

U
C
A
G

G

Val(V) Ala(A) Asp(K) Gly(G)
Val(V) Ala(A) Asp(K) Gly(G)
Val(V) Ala(A) Glu(E) Gly(G)
Val(V) Ala(A) Glu(E) Gly(G)

U
C
A
G

Table 2.1. Genetic code, amino acids and assignments of all 64 triplets

nucleotides: guanine (G), adenine (A), thymine (T) and cytosine (C). During
DNA to RNA translation process, presented in next paragraph, thymine unit is
replaced by uracil (U). Information stored in genes conveys as specific combination
of nucleotides - it is simply an order in which those nucleotides are found along DNA
molecules. Complicated genes can be many thousands of nucleotides long, and all of
the organism’s genetic instructions (genome) can be maintained in millions or even
billions of nucleotides. DNA structure forms a two-strand helix, which is kept thanks
to interaction between base pairs of nucleotides - adenine in one strand is connected
to thymine in the other, and guanine is connected to cytosine. Two strands are
antiparralel and exactly complementary, so the information in DNA is redundant.

As it was mentioned, DNA or RNA are built from nucleotides. On the contrary,
proteins, other very important group of macromolecules, are constructed from the
set of 20 different units, called amino acids. Successive nucleotides triplets in
RNA sequences form amino acids coding units - codons. Almost every amino
acid can be built from more than one coding sequence; there are also functional
sequences: one to mark where a gene starts (AUG) and three codons to mark the
end of coding sequence (UAA, UAG, UGA). The genetic code is nearly universal
for all the organisms. Only few of them have formed small modifications for limited
number of amino acids to codons assignments. Not the whole of DNA sequence
contains usable information. A large part of DNA are non-coding sections, called
introns. These regions are subsequently removed during the transcription process.
Only coding parts - exons - are left in a final mRNA sequence.

20

2.1. Bioinformatics – Theoretical Background

Codon number in gene

T
A
C
G
C
G

2

A
T
T
A
G
C

1

A
T
C
G
T
A

3

G
C

G
C

C
G

4

G
C

T
A
C
G

5

C
G
T
A
G
C

6 7

G
C
A
T
A
T D

N
A

U C C

2

A U G

1

A C U

3

G GC

4

G U C

5

C U G

6 7

G A A

m
R
N
A

p
o
ly
p
e
p
ti
d
e

U A C

Met

A G G

Ser

U G A

Thr

C CG

Ala

C A G

Val

G A C

Leu

C U U

Glu

Transcription

Translation
tRNA

tRNA

tRNA

tRNA
tRNA

tRNA
tRNA

Figure 2.1. The Central Dogma of Molecular Biology. Information in cells passes from
DNA to RNA to proteins. RNA is made from DNA molecules during transcription by
RNA polymerases. Proteins are made from the information content of RNA molecules as

they are translated by ribosomes.

The Central Dogma of Molecular Biology. There is a statement called Cen-
tral Dogma of Molecular Biology, which depicts how genetic information in cells is
passed from DNA to RNA and then to proteins. The process of making an RNA
copy of a gene is called transcription. The process of converting that informa-
tion from nucleotide sequences in RNA to the amino acid sequences that make a
protein is called translation. RNA strand transcripted from DNA coding region
is called messenger RNA (mRNA). Within eukaryotes DNA is placed in nucleus,
where both transcription and processing of RNA takes place. Newly synthesized
mRNA molecules are known as primary transcripts or pre-mRNA. They must un-
dergo post-transcriptional modification in the nucleus before being exported to the
cytoplasm, where the translation process is performed. The model of this process is
presented in Fig. 2.1.

Translation is a protein synthesis process, based on information from mRNA
sequence. To perform the translation process transfer RNA (tRNA) molecules are
used. Transfer RNA molecule contain two main regions in its structure - a site for
amino acid attachment and three base regions called anticodons. Anticodon can
bind to the complementary part of codon region on mRNA (basic pairing rules are
A-U and C-G). For example UGC anticodon can pair with GCA sequence (anticodon
is presented in the opposite direction, real pairing is CGU-GCA). It can be seen from
Table 2.1 that codon GCA corresponds to alanine (Ala). Another example is given
in Fig. 2.2, where tRNA molecule specific for phenylalanine, with anticodon AAA
that pairs with UUU, is shown.

Protein biosynthesis occurs in the cytoplasm, where the ribosomes are located.
Ribosome is made of a small and large subunit that surrounds mRNA. It moves
along mRNA sequence with one codon step. tRNA with appropriate amino acid is
selected and inserted into the ribosome; the selection is based on anticodon region.

21

Background of Bioinformatics and ViroLab Virtual Laboratory

Figure 2.2. Transfer RNA (tRNA) molecule [14]. Anticodon region consists of three ade-
nine nucleotides, phenylalanine molecule is attached to the amino acid side, tRNA binds

to the UUU codon.

Figure 2.3. Protein synthesis process [14]. Ribosome is made from a small and a large
subunit. Molecule moves along mRNA and binds amino acid from appropriate tRNA to

the growing protein chain.

The amino acid from the other site is then cut off from the tRNA and bound to
polypeptide chain. tRNA is then removed from the ribosome which moves along
the mRNA sequence for another nucleotide triplet and next tRNA is bound to the
ribosome. When the ribosome meets STOP codon on the mRNA, a special pro-
tein, called release factor is bound instead of tRNA and the ribosome is detached
from the mRNA strand. Scheme of protein synthesis is shown in Fig. 2.3 . Ribo-
some molecules are catalysts in polypeptide chain creation process. Ribosomal RNA
(rRNA), central component of ribosome is called ribozyme by analogy to protein
enzymes.

Protein - functions and structure. Proteins are the molecular machinery re-
sponsible for performing most of the cell work. Their functions are incredibly diverse
and depend on proteins structure. Structural proteins, such as collagen, provide
rigidity and support in bones and connective tissues; enzymes act as biological cat-
alysts in a variety of reactions (e.g. pepsin helps in metabolism process); others are
responsible for transportation of atoms and small molecules throughout an organ-
ism (e.g. hemoglobin). Some other responsibilities of proteins are signalling and

22

2.1. Bioinformatics – Theoretical Background

inter-cellular communication (e.g. insulin), absorbing photons (e.g. rhodopsin), and
many other functions.

Proteins are built from 20 different amino acids. Amino acids have similar struc-
ture; a central carbon atom, called the a-carbon, has attached an amino group, a
carboxylic acid group, a hydrogen atom and a distinctive R group, also referred as
side chain. Therefore amino acids differ in structure of the side chain, that can
vary. A common part that is presented in each amino acid is called backbone.
The backbone parts can vary in size from just a hydrogen atom in glycine through
a methyl group in alanine to a large heterocyclic group in tryptophan. Proteins
can be built even from thousands of amino acids, despite that they adopt compact
structures. After the translation process, the created polypeptide chain does not
remain as plain structure, but folding process has to be performed. Proteins are
often complex structures, their shape depends on amino acid sequence and proper-
ties. From these properties we can mention amino acid size (structure of protein
is quite compact, next amino acid residue is placed in to fill all available space),
electronegativity, polarity, and amino acid hydrophobicity, that is their abilities to
interact with water molecules. Polar amino acids are hydrophilic (“water friendly”)
and are often present on protein surface, Non-polar amino acids, hydrophobic, are
placed inside of protein.

Protein structure can be described on four different levels:
Primary structure It is an order in which different amino acids are assembled

into a protein, another name of this level is amino acid sequence
Secondary structure Chemistry of amino acids structure makes that large part

of backbone is rigid and only few places (especially bonds to alpha carbon) are
mobile. Examination of the proteins whose structures are known reveals that
a small number of patterns in local structures are quite common. The most
common are the a-helix and the b-sheet.

Tertiary structure The regions of the secondary structure in a protein packed
together and combined with other, less structured regions form an overall
three–dimensional shape, where each atom is placed in available space.

Quaternary structure A protein is often composed from more than one polypep-
tide chain. The overall structure formed by the interacting proteins is called
quaternary structure.

An example of protein structure description is presented in Fig. 2.4.

DNA replication, mutations and evolutions. Each cell division enforces DNA
replication, which is a fundamental process occurring in all living organisms an
aiming at copying their DNA. This process is "semiconservative", which means that
each strand of the original double-stranded DNA molecule serves as template for
the reproduction of the complementary strand. Hence, following DNA replication,
two identical DNA molecules have been produced from a single double-stranded
DNA molecule. The replication process is initiated at particular points within the
DNA, known as "origins", which are targeted by proteins that separate the two
strands and initiate DNA synthesis. When DNA is being replicated it forms special

23

Background of Bioinformatics and ViroLab Virtual Laboratory

Figure 2.4. Four levels of protein structure description. The primary and secondary struc-
tures come from PDB [9], while tetriary and quaternary structures are visualizations in

Jmol [5].

24

2.1. Bioinformatics – Theoretical Background

Figure 2.5. DNA replication process. Picture comes from
http://en.wikipedia.org/wiki/DNA_replication .

structure called replication fork, presented in Fig. 2.5. Primary enzyme complex
involved in DNA replication is known as DNA polymerase. A special short sequence,
called primer is required to start the replication process. During a proof-reading
process DNA polymerase is able to remove nucleotides from the end of a newly
created DNA strand if they do not match to the original strand. As a result of using
this mechanism, DNA replication process is remarkably more accurate than RNA
translation. An error in DNA replication causes hereditary point mutation, while
RNA translation and synthesis error results only in producing faulty, short-lived
mRNA molecules. It is the main reason why DNA replication must be very precise.

In spite of using a proof-reading mechanism, replication is a susceptible to errors.
This feature leads to incompatibility of that newly created DNA strands with the
original DNA. It is a basic property of the replication process that allows organisms
to evolve. If a replication was a faultless process, living organisms could not evolve -
all of them would be the same. As we can see, replication errors are necessary in the
evolutionary process, but their number must be limited because too many errors
make another important process, inheritance, impossible. The second important
part of the evolution process is a natural selection, thanks to which “positive” heri-
table traits become more common in a population over successive generations. Any
single change in a nucleotide sequence of the genetic material in an organism, that
can be passed to a successive generation is called a mutation. Point mutations are
present at the whole length of DNA. Mutation effect depends on the position in DNA
sequence where it occurs. In many genomes large non-coding regions are present in
DNA sequences. Mutation in these places probably will not have any influence on
any type of protein and will be neutrareasonal mutation. But non-coding regions

25

Background of Bioinformatics and ViroLab Virtual Laboratory

Figure 2.6. Mutations in amino acid sequence within hemoglobin protein family. Selected
organisms are: Teleost fish, Emerald rockcod, parrot, rat, and human. Visualization in
JalView [67] was created with Jalview gem using (see section 9.3), after sequence alignment

performed in ClustalW program [66].

contain also functional signals, that initiate transcription and translation processes.
Mutation in these places may have large impact on an organism adaptability. When
mutation occurs in the region that codes protein, it may cause change in amino acid
sequence of that protein. Genetic code structure allows not every mutation to cause
amino acid change; those type of nucleotide exchange are called silent mutations.
The situation when mutation causes nucleotide exchange is called missense muta-
tion - it means that one amino acid is changed to another. This type of mutation
can be harmful (decreasing organism’s fitness) or beneficial (due to an increase in
organism’s fitness and adaptability). In nonsense mutations stop codon appears
in the middle of gene coding sequence and it is almost always harmful by trun-
cating the protein. The other type of mutations present in replication process are
insertions and deletions of nucleotide sequence fragments, called indels. One of the
reasons why this mutation type happens is polymerase sliding. This type of errors
can disrupt reading frame or codons grouping, resulting in a completely different
translation from the original, if a number of nucleotides inserted or deleted is not
evenly divisible by three, due to the triplet nature of a gene expression by codons.
The earlier in the sequence the deletion or insertion occurs, the more altered the
protein is produced. The majority of mutations that occur in a gene within the
same species is harmful, and most of mutations between species are rather neutral
or beneficial because the natural selection does not discard those mutations. Some
types of mutations are presented in Fig. 2.6.

26

2.2. ViroLab Virtual Laboratory

2.2. ViroLab Virtual Laboratory

As it was stated in the section 1.2, the ViroLab virtual laboratory is a set of in-
tegrated components that, used together, form a distributed and collaborative space
for science [33, 23]. Thanks to those components the users are able to run (in-silico)
experiments. The purpose of the virtual laboratory is to support collaborative work
of all the people who are effectively involved in any stage of the experimental process.
This section provides a detailed description of ViroLab virtual laboratory compo-
nents and gives information about experiment running, which are the main entities
available in the virtual laboratory.

Experiment is a process that combines together data with a set of activities that
act on that data in order to yield experiment results. The substrate data required for
an experiment may be obtained from multiple resources in various possible forms.
No definite restrictions are imposed on the level of complexity of such an experiment.

Experiments in the ViroLab virtual laboratory are defined by name and ex-
periment version. The main part of an experiment is a script file. The script is a
program, created in JRuby language, in which virtual laboratory components, called
Grid Objects, are used. Scripts can act on data locally available or can get access
to data using specialized database access services.

Grid Object is by definition any entity that is accessed remotely from the exper-
iment execution environment that provides computation abilities for the experiment
(to distinguish it from data sources). Grid Object term is an abstraction; three
abstraction levels can be distinguished:
• conceptual level - Grid Object Class - it defines an interface which every Grid

Object that belongs to a certain class exposes. Within its interface every class
defines a set of one or more Grid Operations. Each operation describes what type
of input parameters it requires and what kind of output results it yields upon
successful completion. Such a description of functionality is frequently called an
operation signature;

• realization level - Grid Object Implementation - this abstraction may be done
in one of supported technologies, presented in Table 2.2. The same Grid Ob-
ject Class may be realized in different technologies, but every implementation
provides exactly the same functional behaviour to the external world (it realizes
Grid Object Class interface);

• execution level - Grid Object Instance - is an implementation that was executed
and published so that the Grid Object can be accessible from the network.

All of those Grid Object abstraction levels are presented in Fig. 2.7. In order to
add a new Grid Object the developer needs to provide all of this abstraction levels.
The available Grid Objects are registered in Grid Resource Registry (GRR), which
contains information about conceptual level - classes’ interfaces, which are the most
important source of knowledge for experiment developer and also give information
about realization and execution levels, that are necessary to run an experiment.

27

Background of Bioinformatics and ViroLab Virtual Laboratory

Technology Overall characteristics
Programming

platform

Web services

Useful especially for stateless services of relatively
fine-grained communication delays (at most 3-4
minutes to response); mainly used in blocking,

synchronous mode.

Various languages and
command line

MOCCA
Better suited for heavier, more time consuming

computations; internal state could be maintained;
dynamic deployment possible.

Java and command line

WSRF
Web services resource framework - stateful Web
service implementation, useful for long living

application - prototype implementation

Globus 4.0, WebSphere
Application Server

version 6.1, Muse 2.0,
WSRF::Lite,
WSRF.NET

WTS
Web service integrating with job execution mechanism
- useful for long living application that communicate

through input and output files
KUL implementation

gLite
useful for long running jobs - prototype

implementation
EGEE

AHE useful for long running jobs and simulations
Clusters,

supercomputers,
TeraGrid, DEISA

Table 2.2. Grid Object Implementation - available technologies.

Grid Object Class
Declares

Grid Operation

Grid Operation

Grid Object Implementation
Implemented as

Grid Object Instance
Published as

Figure 2.7. Grid Object abstraction, from the VLvl homepage [12]. Grid Object interface
is defined as a set of operations within Grid Object Class, which may be realized in many
of available technologies as Grid Object Implementation and made accessible over the

network as Grid Object Instance

28

2.2. ViroLab Virtual Laboratory

Figure 2.8. Different modes of experiment execution [33]. Local execution requires avail-
ability of the gsel part of GSEngine, while remote one is run on GSEngine server and

requires remote client, gsec. Picture comes from the VLvl homepage [12].

User interfaces There are two types of interfaces available in the virtual labora-
tory [30]:
• ViroLab Experiment Planning Environment (ViroLabEPE), which is based on

Eclipse platform and supports experiment developers during experiment plan-
ning process and allows experiment execution to its users,

• ViroLab Experiment Management Interface (ViroLab EMI) - it is a web portal
that allows users to run an experiment and manage results of those executions.

Running experiments in virtual laboratory requires using GSEngine [25]. The
GSEngine combines two important parts which are needed in order to run ViroLab
experiments. The first one is an interpreter of the JRuby language [6] in which
experiments are written. The second part is a runtime library that provides all the
specific functionalities of the virtual laboratory. Performing experiments may be
done in two ways: locally and remotely [49]. If we choose the local execution, it
requires the availability of gsel part of GSEngine, and it is achievable only from
ViroLabEPE or command line. The remote execution is available also through
ViroLab Portal (EMI) and requires the availability of remote client - gsec. Both
types of execution are depicted in Fig. 2.8 and compared in Table 2.3. The selection
of experiment running mode may have an influence on the experiment’s planning
process. It is an important issue especially for a experiment developer, who has to
make a decision to which local data access method and user communication API
should be used.

29

Local execution Remote execution

Requires local GSEngine installation Relies on a remote GSEngine server
The experiment script is interpreted locally The experiment is shipped to the remote server

Allows for any kind of GUI interaction with the
experiment

Interaction with the experiment is bound with
the protocol

Allows for local resource (file) access from the
script

Any files needed for execution need to be
staged on the server

Requires the user machine to run throughout
the execution phase

Allows the user to shut down his/her machine
and come back later for results

Table 2.3. Experiment running modes comparison. This table comes from VLvl homepage
[12].

2.3. Summary

This Chapter gave a view of a biological background necessary to become ac-
quainted with the idea of bioinformatics experiments. The key facts about cell’s
information management in DNA molecules, the main process of consuming those
information by transcripting DNA to RNA and translating RNA to protein and a
concept of heredity was presented. The essential elements of the virtual laboratory:
gems and experiments were introduced in the second section of this Chapter. Gems
are computational and data access elements, while experiments connect available
gems in order to solve a specific problem. The knowledge about the available tech-
nologies in which gems may be created will be used to integrate bioinformatics
applications in the virtual laboratory. A selected experiment execution mode will
influence on the created experiments’ structures, described in Chapters 6 and 7.

Chapter 3

Related work

This Chapter gives a short overview of the other approaches to solve a one of
the following problems: providing programmatic access to the applications on re-
mote computers, composing different applications in order to get expected results,
and creating, executing and managing execution results of the experiments, that are
advanced and specialised data flows. In this Chapter the Soaplab and its related
programs are introduced as well as the Taverna environment, BIRN network and
Meta-PP service.

3.1. Soaplab - SOAP-based Analysis Web Service

Soaplab1 [26] is a tool that can automatically generate and deploy Web services
on the top of existing command-line analysis programs. It is especially well suited for
applications with well described input and output parameters. It allows to integrate
many applications within a single programming interface.

Soaplab provides three types of Web services:
• Analysis Factory Service - produces a list of available analyses, and provides

pointers to them. It is not necessary to use this service - analysis services may
be accessed directly

• Analysis Service - A Web service representing a remote analysis, a remote appli-
cation. All services of this type have the same interface. Parameters are passed
by using weakly-typed name-value pairs, and results are obtained in the same
way

• Derived Analysis Service - A Web service representing the same remote analysis
as the one above, but with specialized interface (strongly-typed methods)
1 This section is based on http://soaplab.sourceforge.net/soaplab1/

31

Related work

Soaplab uses package AppLab to access to remote applications. Soaplab can wrap
as a Web service (almost) any command-line tool, starting from the common UNIX
tools. To do this the provider needs to prepare an ACD file which is an application
descriptor. This file contains information about a way of application running, its
parameters and created results. When a file is created some steps taken by Soaplab
must be performed: conversion of ACD file to XML format, the start of AppLab
and Tomcat servers, creation and deployment of the Web service. When all those
steps are taken, local application is available and can be accessed over the network.

Gowlab

Gowlab2 is a Soaplab extension used to access programmatically to web pages’
resources. Gowlab-service provider needs to create a metadata description of the
web resource (in ACD format) and create a Java class extracting useful information
from the web page (if page is not simple enough, that default one could not be
used). Gowlab uses HTML parsers to analyze the web page, but the provider needs
to describe all HTML form elements that have to be filled before retrieving data by
GET or POST command.

AppLab

AppLab3 is a CORBA interface to the command-line driven programs, an im-
plementation of the "Biomolecular Sequence Analysis" engine specification. Ap-
pLab uses CORBA communication between a computer executing a command-line
program, and the clients’ computers. It uses IDL, which allows to invoke remote
programs, control them, and deliver back their results. The advantages of AppLab
lie in a standard way of analyses description and their input and output data by an
XML-based metadata description. This approach makes it possible to plug-in new
applications without any additional programming.

Soaplab2

Soaplab24 [63] is a new project that enhances the standard Soaplab. It has
the same functionality and goals to achieve, but some additional work have to be
done, such as implementing plugin architecture, Java usage, CORBA dependencies
removal.

3.2. Taverna

The Taverna5 [38, 55] workbench is one of the most popular pieces of the software
that has been produced as a part of the myGrid project. This system allows users
to design and execute workflows. Each workflow is constructed from one or more

2 http://soaplab.sourceforge.net/soaplab1/Gowlab.html
3 http://www.ebi.ac.uk/~senger/applab/
4 http://soaplab.sourceforge.net/soaplab2/
5 http://www.mygrid.org.uk/tools/taverna/

32

3.2. Taverna

services, which may be connected directly with another service. This enables a chain
of services to be linked together in a systematic manner. Taverna can use services
in many technologies: Soaplab published, Biomoby, WSDL described and others.
In this approach services act as components, which are reusable. Taverna users
can adds new services by providing WSDL file or location to such file. Workflows
are defined as XML files and may be shared over the Internet. Additionally, local
resources may be used, such as R language interpreter.

During the workflow creation process, all computation elements are called pro-
cessors. The processors in Taverna are the primary components of the workflow.
They are the entities responsible for both representing and ultimately invoking the
tasks from which the workflow is comprised. A processor defines inputs and outputs
ports. The port nodes under each processor node are used to connect the outputs
of processors either to the inputs of other processors or to workflow outputs. Each
service used in the workflow is assigned to one processor. Inputs and outputs may
have assigned MIME type descriptions. Some processor types may expose additional
editors, that allows to set specific processor’s attributes. Each processor in the work-
flow has its own settings for fault tolerance. These settings include the ability to
retry after failures and to fall back to an alternative or set of alternative processors
when all retries have been exceeded. Workflow running may be aborted if any of
invocation have failed or may be continued with no invocation of “downstream”
processors of the failed one.

Taverna is a graphical environment to create, share and run workflows, presented
in Fig. 3.1 . All work can be done by mouse-click actions. Workbench is consisted
of some parts:
• Advanced Model Explorer (AME) - The main section of the AME shows a tabular

view of the entities within the workflow. This includes all processors, workflow
inputs and outputs, data connections and coordination links. Some items may
be expanded to show properties of child items such as alternate processors and
input and output ports on individual processors.

• Interactive Diagram - This component provides a mechanism for building work-
flows by interacting directly with a graphical representation of the workflow
model.

• Workflow Diagram - This component provides a read only configurable view of
the workflow in graphical form. Workflow inputs, outputs and processors appear
as coloured boxes with arrows between them to represent data and control links.

• Available services - This component provides facilities to manage the various
services available to the workflow designer and allows the user to manage service
libraries, create instances of a service in the form of a processor within the
workflow, search services and other such functionality.

• Results browser - This window shows the progress of the workflow and also the
results on completion.

The Taverna workbench capabilities may be enhanced by using Service Provider
Interface (SPI) and adding plugins.

33

Related work

Figure 3.1. Taverna workbench with Advanced Model Explorer (AME), Interactive Dia-
gram for sample Workflow and Available Services windows [38].

3.3. Biomedical Informatics Research Network

The Biomedical Informatics Research Network (BIRN)6 is a test bed for devel-
opment of hardware, software, and protocols to effectively share and mine data in a
site-independent manner for both basic and clinical research. It currently comprises
3 brain imaging research test beds: Mouse, Human Morphometry and Function.
BIRN is a geographically distributed virtual community of shared resources offering
tremendous potential to advance the diagnosis and treatment of disease. BIRN
enhances the scientific discoveries of biomedical scientists and clinical researchers
across research disciplines. BIRN also:
• hosts a collaborative environment rich with tools that permit uniform access to

hundreds of researchers, enabling cooperation on multi-institutional investiga-
tions.

• synchronizes developments in wide area networking, multiple data sources, and
distributed computing.

• designs, tests, and releases new integrative software tools that enable researchers
to pose questions and share knowledge across multiple animal models (mouse,
human, and non-human primate).
6 http://www.nbirn.net/

34

3.3. Biomedical Informatics Research Network

3.3.1. BIRN Coordinating Center

The BIRN Coordinating Center (BIRN-CC)7 develops, implements and supports
the information technology infrastructure necessary to achieve distributed collabora-
tions and data sharing among the test bed participants. The development of flexible
approaches to data integration, in conjunction with data modelling and database
development, is principal to the BIRN efforts. Other duties span research, dissem-
ination and deployment of the overall system architecture, adaptation of existing
hardware infrastructure and software, expansion and support of test bed-specific
tools, development of novel software techniques, facilitation of test bed group com-
munication, and daily operation and monitoring of the distributed BIRN hardware.

3.3.2. BIRN Data Repository

To further promote a collaborative research environment, the BIRN has under-
taken the development of the public BIRN Data Repository (BDR)8. This sustain-
able archive supports the sharing and exchange of biomedical research data, accepts
data generated by the biomedical research community and makes these data freely
available, towards fulfilment of NIH guidelines.

3.3.3. BIRN Test Beds

Function BIRN

The FBIRN Test Bed is developing tools to make multi-site functional MRI
studies a common research practice. The FBIRN has developed a suite of tools and
methods to calibrate and collect data across diverse environments; store and manage
the imaging and clinical data in standard ways; analyze multi-site data; and share
the results in a permanent location.

Brain Morphometry BIRN

BIRN’s Morphometry Test Bed focuses on pooling and analyzing data across
neuroimaging sites for potential relationships between anatomical differences and
specific memory dysfunctions, such as depression, mild Alzheimer’s disease, and
mild cognitive impairment. By acquiring and pooling patient data across sites,
scientists are analyzing data from a large group of subjects, in order to investigate
what structural brain differences correlate to symptoms of memory dysfunction or
depression.

Mouse BIRN

The Mouse BIRN Test Bed is helping scientists study neurodegenerative diseases
by marshaling multi-modal data from the mouse, as an animal model, to investigate
neurological disorders. Researchers across six groups are pooling and analyzing

7 http://www-calit2.nbirn.net/research/bcc/birncc_ci_primer.shtm
8 http://www-calit2.nbirn.net/bdr/index.shtm

35

multi-scale structural and functional data and integrating it with genomic and gene
expression data acquired from the mouse brain.

3.4. META-PredictProtein

META-PP is a part of the PredictProtein [58] service, an automatic service
for protein database searches and the prediction of aspects of protein structure.
META-PP provides a single-page interface to various World Wide Web services for
sequence analysis. ’Single-page interface’ means that sequence providing is required
only once, and any number of a list of services may be used by researcher. Compu-
tation results are returned via e-mail. The following features of sequence analysis
are covered by META-PP: signal peptides; cleavage sites; O-glycosylation sites;
cleavage sites of picornaviral proteases; chloroplast transit peptides and cleavage
sites; secondary structure prediction; membrane helix prediction; threading, or re-
mote homology modelling (searching for proteins of known 3D structure that appear
structurally similar to your protein); database searches; homology modelling (pre-
diction of protein 3D structure by homology to a sequence similar protein of known
structure). A complete list of available services is presented in Meta-PredictProtein
documentation9. Service accepts sequence or alignment as input in one of the fol-
lowing formats: FASTA (recommended), SWISS-PROT, GCG, PIR, DSSP, SAF,
MSF, HSSP.

3.5. Summary

This Chapter presented some examples of the related work. Others’ experience
and developed solutions will be used during the integration of existing services. In
particular, we follow the approach of SoapLab for providing command-line applica-
tions as remote accessibly Web services and we create services that are facades to
the other www services as it is done in Meta-PredictProtein project.

9 http://www.predictprotein.org/doc/explain_meta.html#list

Chapter 4

Analysis of Bioinformatics Applications and
Gems

In this Chapter we analyse the structure of the bioinformatics experiments and
we provide an overview of the selected applications which have been made accessible
in the virtual laboratory. Two types of classifications of the applications are demon-
strated in the second section: the first one is based on the integration technology
to wrap applications, the other relies on the application scope. Finally, additional
mechanisms developed in this thesis, designed in order to make proper integration of
the selected and future applications, are shown.

4.1. Model of Bioinformatics Applications

In this section the overall approach to bioinformatics software usage is presented.
Then the model of a general experiment is shown. Finally, selected bioinformatics
tools integrated in the virtual laboratory are listed.

Biological data are now easily accessible [15] to the scientific community thanks to
the rapid development of specialist databases and data querying systems. The next
challenge is to provide programs and algorithms that would allow the researchers to
extract meaningful information from a mass of initial data. Bioinformatics software
is designed to face this challenge. While designing these tools some factors must be
taken into consideration ([47]):
• The biologists as end users may not be familiarized enough with computer tech-

nology, programing techniques and languages, etc.;
• Software tools must be made available over the Internet to give the global dis-

tribution within the scientific research community;

37

Analysis of Bioinformatics Applications and Gems

• Programs that solve complex problems have to be provided with support infras-
tructure to run those programs in a reasonable time.

As it was presented earlier, available bioinformatics software is made in many dif-
ferent technologies. It is often necessary to use more than one application in order
to gain results in a single experiment.

We define metaservice as a framework that provides access to computational
services in unified way (under well defined interfaces). An analysis of bioinformatics
software used by researchers entailed a selection of the applications. After that, a
set of bioinformatics tools, in which many of the available programs are designed
to solve similar problems, was integrated into the ViroLab virtual laboratory and is
now available as a set of gems. The gems which are wrappers for software are often
available under the same interface, so the researchers can use the virtual laboratory
as a metaservice. Thanks to this abstraction of the integrated applications users
can easily create new experiments in which available software may be utilized in
almost unlimited sequence and if there are more programs to solve this same type
of problem, the user can easily select between them and swap selection if needed.

Performing experiments in the virtual laboratory allows researchers to manage
the results of those experiments easier, not only final results, but even those obtained
during experiment execution. Application programming interface provided in the
virtual laboratory gives methods to store results in web repositories as well as locally.
In order to enable a connection between any of the available gems it is necessary
to provide some converters between formats used by bioinformatics software and
libraries. A detailed data formats description is given in section 5.1.2.

4.1.1. A layered structure of the bioinformatics problems

An analysis of the bioinformatics experiments process, carried out in cooperation
with virtual laboratory users in the scope of this thesis, contributed to a production
of a general bioinformatics experiment model, which is depicted in Fig. 4.1. The
main part of this process is a specialized software running aiming a problem or some
kind of its sub-problems. To run any of the bioinformatics applications it is required
to provide data on which this program would run. Those data may be received from
many sources: researcher may put it directly, it can be stored in a locally available
file system or accumulated in publicly available databases and obtained by providing
its identifiers, or received by using general database querying systems.

Data may be obtained in different format from the one accepted by used ap-
plication, so that it is sometimes necessary to use format converters. A researcher
can do initial data analysis in addition to the main process. Those analyses may
be related to obtaining some statistical information, creating new knowledge with
data mining or manipulating data by using a clustering technique or dimensionality
reduction. The results created during the experiment execution are an input to
the next program in the sequence but may be also analyzed in another experiment,
so it may be necessary to store those data. The step with bioinformatics software
execution is repeated so that the new software also needs input data, which may

38

4.1. Model of Bioinformatics Applications

START
Data

Lo
ca

l

da
ta Dat

a-

ba
se

s

Location
Data
ID

Searching

0110110101 1001001010

Data format
conversion
Initial data
analysisP

ro
g
ra
m

Results

Program execution

Results
management

FINISHResults presentation
A
d
d
it
io
n
a
l

Store

Visualize

Figure 4.1. General model of bioinformatics experiment process. The main parts are:
a specialized software running and results management. Data may be obtained from

databases or local files, additional analysis and results presentation is also possible.

require a conversion to an appropriate format or doing an additional analysis. Any
number of applications may be used during experiment execution. The final step,
which is done when all the results are obtained, is visualization of the results. This
step is not necessary to get complete results, but it is often very helpful in their
understanding and verification.

4.1.2. Selected bioinformatics software - applications and libraries

The model of the general experiment process and the virtual laboratory users
research areas have a great influence on the composition of a provided set of bioin-
formatics tools in the virtual laboratory. A complete list of those tools, divided
according to the types of problems they can solve, is presented below:
• Sequence alignment - a set of tools that search the best multiple sequence align-

ment and tries to find a way of arranging the sequences of DNA, RNA, or protein
to identify regions of similarity that may be a consequence of functional, struc-
tural, or evolutionary relationships between the sequences. Available applications
are: ClustalW, ClustalW2, Muscle, T-Coffee;

• Structure alignment - applications that create multiple sequence alignment which
is based on the best alignment of three–dimensional proteins structure alignment.
Available applications are: Mammoth, MultiProt, SSM. For aligning only two
structures there is also Dali software available;

39

Analysis of Bioinformatics Applications and Gems

• Protein structure prediction - modelling of proteins folding. EarlyFolding is the
available application;

• Ligand binding site prediction, protein structure and function analysis - it is
a set of applications based on publicly available WWW portals. In the virtual
laboratory the following applications are provided: CastP, ConSurf, Fod, Ligsite,
Pass, PocketFinder, QSiteFinder, SuMo and WebFeature;

• Statistical analysis - running scripts that are written in R language;
• Data clustering - a set of libraries and programs that allow users to perform data

clustering. The following are available: Cluto, Cluster 3.0, Weka;
• Microarray data clustering and analysis - it is an own implementation of algo-

rithms used to create and analyze datasets from publicly available general data;
• Data mining - means discovering new knowledge from data by using classifiers,

associators and clusterers in Weka library;
• Database searching - plenty of public databases are available thanks to using the

provided Web services. Data can be accessed by using data identifiers;
• Results presentation - a set of programs that can visualize the obtained data.

Available software are: Jmol (protein structure visualization), JalView (sequence
alignment), JTreeView (microarray data visualization) and Gnuplot (numerical
data visualization).

4.1.3. Summary

The main bioinformatics research areas were discussed in this section. On the
basis of this analysis the general structure of bioinformatics experiments was de-
veloped and a selection of applications to integrate into the virtual laboratory was
performed. Those applications and the way how they were integrated will be de-
scribed in following Chapters.

4.2. Classification of Gems

Bioinformatics applications may be divided into a few different categories. In
this section two types of classifications are presented: the one based on used appli-
cation technology and the second one based on the scope of usage. Before that, the
technologies that are used to integrate bioinformatics software are depicted.

Gem is another name of Grid Object abstraction, and from now on we will be
using both this terms interchangeably. New gems are added to the virtual laboratory
in order to enhance its capabilities. As it was presented in Table 2.2, gems can be
created in several technologies. A common part of the gem creation process in
any technology is defining the interface which the gem will realize. Bioinformatics
applications are integrated in the virtual laboratory using three of the available
technologies. Two of them, Web services and Mocca components, were presented in
Table 2.2 and the last one - Local Gem has not been introduced yet.

40

4.2. Classification of Gems

Web service

Web service is defined by the W3C as "a software system designed to sup-
port interoperable machine-to-machine interaction over a network. It has an in-
terface described in a machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed by its description us-
ing SOAP-messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards."1. Web services are often remotely
accessible API used to run local programs, as it was presented in section 3.1. Web
service can be accessible by:
• a defined descriptor in Web Services Description Language (WSDL),
• publishing and searching available registries with well defined protocol (e.g.

UDDI registers),
• calling methods from a known service interface,
• using other services to access them - it may be a part of another service or it

may use other services.
Bioinformatics applications are integrated by using two of those types of Web ser-
vices: the one with WSDL description and the one with well defined interfaces, which
is done by defining Grid Object Class in Grid Resource Registry. Communication
with Web service is made by sending messages in SOAP protocol. Another type of
Web services - REST (REpresentational State Transfer) - is often used to provide
resources - by well defined URI identifiers. All resources are accessible in a unified
way, and are easy to search and download, thanks to the structure of URI address.

Mocca components

Mocca [51] is a CCA compliant distributed component framework based on H2O
platform. Mocca allows building component applications on the distributed re-
sources available through H2O. H2O [4] is a Java-based middleware platform for
building and deploying the distributed applications. Current Mocca version, called
Mocca_Light, is a pure-Java implementation of the CCA specification.

Local Gem

Local gems are ViroLab experiments scripts that undertake some precisely de-
fined tasks. Those experiments can be used in other, larger experiment scripts as
simply as standard gems. There is a possibility to use virtual laboratory API as
well as other Grid Objects inside a local gem body. Local gem functionality must be
defined as a JRuby class. All methods in this class must have the same signatures as
those defined in Grid Object class to which Local Gem implementation is assigned.
Detailed information about Local gem requirements are presented in Table 4.2.

Adding new functionality to virtual laboratory requires three steps to be taken.
Firstly, it is essential to register Grid Object class, which defines the interface.
Then this class has to be implemented in one of the available technologies and the
detailed information about this implementation must be also registered in GRR.

1 http://www.w3.org/TR/ws-gloss/

41

Analysis of Bioinformatics Applications and Gems

Parameter Description Is required?

Package Name of package where gem will be available in the
registry. Packages provide separated namespaces

Yes

Name Gem name. Name and package constitute gem
identifier which is used during gem creation in

experiment execution process

Yes

Description Description of gem, its capabilities, references to
external sources, etc.

No

Operation
signatures

Gem interface, list of available methods with required
parameters and returned results descriptions.

At least one

Table 4.1. The parameters of a new gem registration

Technology Gem Implementation

Web service
Name Implementation name
Type Web service type (RPC, DOCUMENT)

Namespace Required only if no WSDL file is available

MOCCA

Name Implementation name
Port name Mocca port name
Port class Mocca port class that defines port interface

Component class
name

Mocca component class name - a full Java path

Component
classpath

Address to public component class implementation
(usually an URL to JAR file)

Local Gem

Name Implementation name
Local gem type Gem type, only LOCAL type was used

Script Script file with gem definition. Whole code must be
enclosed in class definition, which name has to be the
same as the Grid Object class name, and all method
signatures must be the same as Grid Object class

interface

Technology Gem Instance

Web service
Name Instance name

Endpoint Web service endpoint address - it may be direct Web
service port or URL address to WSDL file

MOCCA
Name Instance name

Endpoint H2O kernel location where component should be
deployed

Local Gem
Name Instance name, instance must be defined but it is not

used

Table 4.2. Required parameters during registration process for different gem technologies.

42

4.2. Classification of Gems

WS

WS

MOCCAWS

LG

WS MOCCA LG

WS

LG

MOCCA Mocca component
Web service
Local Script Gem

Other gems usage

HTTP services wrappers

Binary programs wrappers

Libraries integration

Implementation

WSExternal Web services

Java Web Start applications

Figure 4.2. Layers of the gem technology with relevant Grid Object implementation. Three
main implementation types are used (Mocca components, Web service and Local Gem)
to integrate bioinformatics applications availble as Web services, WWW services, binary
programs (also JAR files), libraries and implemented from scratch in the scope of this

thesis.

Finally, implementation must be published and registered as Instance in GRR. The
first step is independent of technology. Information needed to register Grid Object
class are listed in Table 4.1. Despite the fact that all the gems are accessed in
a uniform way from the experiment, GSEngine requires specialized information to
execute gem methods in different technologies. All information necessary to register
the gem created in any of the used technologies are listed in Table 4.2.

4.2.1. Technology layers

Three technologies used to integrate bioinformatics software in connection with
the type of application can be ordered and divided in seven categories. This division
is presented in Fig. 4.2 and described in this section.

External Web services. Integration is based on registering services interfaces,
which are created and maintained by an external provider. Services are often de-
scribed by WSDL descriptor. Example gems: ClustalW, T-Coffee.

Java Web Start applications. Binary Java applications with Graphical User
Interface are provided with Java Web Start technology. Especially, applications
for data visualization are integrated with this technology usage, which requires a
generation of the JNLP files with the application description.

HTTP services wrappers. Methods that solve bioinformatics problems are often
published as WWW portals and it is the only way to use those algorithms. In order

43

Analysis of Bioinformatics Applications and Gems

to use such Web-based services in the virtual laboratory, where services may be used
massively, it is necessary to wrap communication with WWW portals. Portals are
human-oriented and to take an automation step WWW pages have to be annotated
with the names of the used fields, as it was presented in 3.1. Communication is made
mainly with POST and GET methods from HTTP protocol. To support some
WWW services not being ready to handle massive requests and parallel analyses
of many tasks, a queuing system, described in section 4.3.1, was created. Some
examples of the gems are: CastP, ConSurf, PocketFinder.

Binary program wrapping. Running binary programs locally often requires
that their input data should be stored as a file in a local file system, and their options
have to be passed as a command line string or specially prepared parameters file.
Their outputs are available on a standard output or as a result file stored locally.
A standard error output should be also observed and analyzed in order to find
out whether the program has finished successfully. The process of integration of this
type of applications is described more precisely in section 4.3.2. The examples of the
gems implemented in this technology are: Fod, Pass, Mammoth, Gnuplot, R_gem.

Libraries integration. Libraries integration is possible only if a new application
is created in the same programming language as the library. It requires recognition
which library function should be available in the virtual laboratory; additionally,
a specialized programming code that prepares data and runs library function must
be created. Example gems wrapping Java library as Mocca components are: Weka-
Classifier, WekaClusterer.

Implementation. This layer is constituted by the gems that were developed from
scratch to provide special functionality, do not use external programs, and are not
wrappers for the specialized libraries. The examples of implemented gems are: Geo-
DataProvider, ClustalWUtils.

Other gems usage. The prepared gems are used to provide new functionality
which can be applied in many experiments. They are created as JRuby classes and
can use GSEngine API. The examples of such gems implemented as Local Gems
are: WekaClusteringInterface, ScopDb.

4.2.2. Usage scope layers

Bioinformatics processes have a quite well defined structure, as it was depicted
in section 4.1 and in Fig. 4.1. According to this structure bioinformatics applica-
tions can be divided into four usage layers, illustrated in Fig. 4.3. Those layers are
examined in this section.

Database access layer

Each bioinformatics experiment requires input data. Those data may be created
and supplied by a researcher, which means that one needs to put the data directly

44

4.2. Classification of Gems

Database access

Basic analysis

Specialized analysis

Results presentation Simple
data

Clusters Proteins Alignment

Sequence
and
Structure
Analysis

Binding
Sites
Prediction

Microarray
analysis

Reducing
data
dimensions

Clustering
Data
MiningStatistics

ConversionRetrieving

Figure 4.3. Layers of the gem scope of usage. Four main layers are recognized: Bioinfor-
matics Database access, for retrieving data and converting file formats to the one accepted
by appropriate software; Basic analysis, used in a variety of experiments, where statistical
analysis, data clustering, data mining and data dimensions reducing gems are available;
Specialized analysis used to solve specific type of problem and Results presentation for

visualizing data.

into an experiment code or may be retrieved from specialized databases based on
other information, such as data identifiers. It is often required to parse and format
the retrieved data in order to analyze them in an appropriate program or library.
Gems belonging to this layer are presented in Fig. 4.4 and detailed in section 5.1.

Basic analysis layer

Basic analysis gems can be used in a variety of bioinformatics experiments. As
we can see in Fig. 4.5, the following gems belong to this layer: statistical analysis
(described in section 5.2), data mining analysis (section 5.3), data clustering (section
5.4) and reducing data dimensionality (section 5.5). This layer is called “basic”
because the gems can be used in any type of bioinformatics process, not only in
specialized research.

Specialized analysis layer

It contains gems that are used to solve specific types of problems. In the scope
of this thesis the gems were created to perform: sequence and structure compari-
son for protein families (Chapter 6), comparing different methods and services in
ligand binding site prediction (Chapter 7) and performing microarray data analysis
(Chapter 8).

Results presentation layer

This layer groups all the gems that can be used to visualize the results of the
experiment performance. It contains especially Jmol, JalView, JTreeView and Gnu-

45

Analysis of Bioinformatics Applications and Gems

Database access

Retrieving

Conversion

ScopDb DbFetch Pdb

NCBIGeo ArrayExpress

ConvToARFF
ConvToGeo

Conv
ToDouble

Category Gem name

WS

WS

WS

LG Ex
t.

W
S

Ex
t.

W
S

Ex
t.W

S

WS

Figure 4.4. Bioinformatics database access layer. Two sub-layers are: Data retrieving,
with gems that access various databases and Format Conversion for adjusting data type

to one of the following formats: ARFF file, Geo Object model and Array of double.

Basic analysis

Category Gem name

Reducing
data
dimensions

PCA

Clustering

ClutoLib

Data
Mining

WekaAssociator

Statistics

R gem

WekaClassifier WekaClusterer Weka
Filter

WekaClustererClusterPerlLib

LG

LibMOCCA

BinWS

BinWS

LibMOCCALibMOCCA LibMOCCA

LibMOCCA

Figure 4.5. Basic analysis layer. Gems from this layer can be used in a variety of bioinfor-
matics experiments. Four main categories are covered: Statistics (R), Data mining (Weka),
Data clustering (Cluto, Cluster, Weka) and Reducing data dimension (PCA, MDS in R).

46

4.3. Additional Integration Mechanisms

plot programs. A detailed description of the available visualization techniques is
provided in Chapter 9.

4.2.3. Summary

The aim of this section was to develop a classification of the integrated gems in
comparison to previous section, where applications classification and selection were
discussed. Integrated gems have been divided in categories by taking gem’s devel-
opment technology into consideration. The second categorization was performed on
the basis of gem’s application in the research areas.

4.3. Additional Integration Mechanisms

In order to ensure that the whole bioinformatics software will work correctly in
the virtual laboratory some additional mechanisms were developed in the scope of
this thesis, in addition to the already existing gem technologies. Thanks to this
work, adding new applications that are technologically similar to the existing gems,
is easier. In this section two mechanisms are presented: a tasks queuing system used
when external service is not multitasking enough, and the architecture of binary
program wrapping.

4.3.1. Tasks queuing system

Bioinformatics services are often Web-based and user oriented. Due to their
architecture and to limitation on available computational resources, these services
often do not allow running many tasks simultaneously, so that tasks have to be
queued before sending them to the service. On the other hand communication with
Web services in SOAP protocol is limited by timeouts. However, the Web services
are often used as the virtual laboratory gems. To overcome these problems, an
architecture of the task queueing system that provides asynchronous computation
methods was designed. This system has been primarily developed for an integration
of web-based services doing ligand binding sites prediction (Chapter 7), but its
solution is general enough to use it in other gems where tasks may require queuing.

General architecture of the system that queues and executes computational tasks
is presented in Fig. 4.6. It consists of a set of general classes, some of which have
to be specialized in order to make the system work properly and obtain a concrete
problem solution. A detailed description of each class type is presented in Table 4.3.

The entry point to the system is a Service class. It defines external system
interface. The object of this class also defines system parameters, such as its name, a
maximal number of tasks analyzed in parallel and maximal processing time available
for each task. The Service object creates also an instance of TaskAnalyzer which is
then replicated and maintained by TaskManager. Service object is a Facade (design
pattern, [31]) to task manager. Each computation request is supplied with required
information and passed to TaskManager. Manager creates new Task object, gives an

47

Analysis of Bioinformatics Applications and Gems

Figure 4.6. General architecture of the tasks queueing system. Service class defines system
interface. Task manager keeps tasks queue, finished tasks list and starts task analysis

process in new TaskProcessor. Analysis is performed by TaskAnalyzer.

48

4.3. Additional Integration Mechanisms

Class Type Responsibilities

Service Specialization required System interface
Task Specialization possible but

not required
Task description, parameters and processing

results
TaskAnalyzer Specialization required Task analyzing, communication with analyzer

service
TaskManager General Managing tasks, creating, adding, running and

returning results
TaskProcessor General Starts tasks analyze in separate thread
TaskResult General Analyzing results or error information

TaskResultType General Result type - Success or Error
TaskStatus General Task status
TaskTimer General Observes currently processing tasks, if processor

has reached time limit analysis is stopped

Table 4.3. Tasks queuing system classes.

identifier as well as options for it and creates a list of result types that are expected
to be retrieved. Task creation is a static method in Task class. The created task is
then put at the end of a task queue, and QUEUED status is assigned to it. When
the manager object is created, task analyzer objects are initialized. The number of
analyzers is a parameter passed to the manager from the Service object. When a
new task is added to the tasks queue, the manager checks an available analyzers list.
If there is at least one TaskAnalyzer object, the manager removes it from the list,
creates a new processor for the task (TaskProcessor), removes the first task from the
queue and then with those three objects the task processing is started. A processor
thread is also added to the TaskTimer observer, which ensures that if the task is not
finished until the maximal time, task analysis will be stopped. The processor gets
an option list from Task object, and then calls analyze method on TaskAnalyzer.
When the analysis is finished, the processor gets results (TaskResult object) from
the analyzer and puts it into the Task. If the analysis fails, the processor creates new
TaskResult with information about error reason (TaskResultType is set to Error).
When the processing is finished TaskProcessor notifies the manager about it, the
processor is then removed from the timer observer, the task is put into the finished
tasks queue and manager the tries to run a next task if there is any waiting. As
TaskAnalyzer is responsible for performing the complete analyzing process and for
the production of the results, it must be always specialized for a concrete system.

System management

A Service class realizes an additional management interface IManagable. Meth-
ods from this interface are responsible for managing the service, the tasks queues
and for providing information about the service state. Each method requires passing
a user name and a password as a first parameter. These values must be passed as a

49

Analysis of Bioinformatics Applications and Gems

single string, separated with ’:’ (’user:password’). Before the method execution it is
compared to the values defined in the text file users.pwd, which have to be placed at
the same directory where Service has been run. If no according user:password string
has been found in this file an exception is thrown. The management methods are
not available through the virtual laboratory by default, but can be accessed only
from the locally placed client (from the place where Service has been run). The
following methods and types are defined for system managing:
• ParamType - Enumerate type with parameters names, available values are: name,

processors, timeout ;
• ListType - Enumerate type with tasks lists names, available values are: queued,

processing, finished ;
• get_parameters - returns a map with all the parameters and their values that

are currently set in the service;
• set_parameter(param_type, value) - set selected parameter from one avail-

able in ParamType definition, this method allows the manager to redefine the
number of parallel processing tasks or change the timeout for task processing;

• get_queue_length - returns a length of the list of the tasks that are waiting for
computing;

• get_tasks_ids(list_type) - get all task identifiers from the selected list, as
a result a map with task identifiers as a key and task information (such as task
status and task creation time) as a value is returned;

• remove_task(list_type, task_id) - remove the selected task from the se-
lected list. If no task is available an exception is thrown. When the task is
removed from currently processing tasks, the analysis process is stopped, an
information on the reason of processing cancellation is set in TaskResult object
and a Task is moved to the finished tasks list;

• remove_all_tasks(list_type) - remove all tasks from the selected list;
• reset_service - clear all the lists, remove all currently created processors and

reset Service properties to the default ones.
The presented solution is a generic framework. A concrete realization and usage of
this system is presented in section 7.3.

4.3.2. Binary program wrapping

Locally available applications have some common features that are present when
we try to run them from other applications. An frequent requirement is that program
input data should be placed in locally stored files, produced results are often available
as files on disk and finally analyzing standard output and standard error output is
required. Most of the programs can be configured by passing command line options
or preparing specified configuration file. In order to guarantee an extensible binary
application integration mechanism, BinaryProgramWrapper module was developed.
This module is responsible for (activities are listed in order):
• Creating an unique temporary directory for storing data. Directory name de-

pends on time and parameters passed to the module;

50

• Creating and storing files with input data. Those files should have correct names;
• Options preparing as a command line string or parameters file. An appropriate

object, that is specialized for handling program options, is injected into the
module;

• Running external program. Program name and location are configurable;
• Standard output and standard error output analysis. If any program requires

additional output analysis - a specialized object may be injected into the module
and this task is then redirected to this object;

• Reading output files. File names and localizations are passed to the module
when a method is called;

• Removing the temporary directory and returning results.
This module was used to integrate ligand binding site prediction applications, such
as Fod and Pass or protein structure alignment applications, such as Mammoth and
MultiProt.

4.3.3. Summary of extension mechanisms

The general mechanisms which were developed to support an integration process
were described in this section. We presented an architecture to tasks submission,
running and managing results of their execution that will be used to integrate the
services for prediction of ligand binding sites in protein (see Chapter 7) and general
command-line program wrapper that will be used to integrate for example Fod and
Pass programs (also described in Chapter 7).

4.4. Summary

An analysis of the process of bioinformatics experiments have led to the pro-
duction of a general bioinformatics experiment model and to the selection of the
applications that were integrated into the virtual laboratory. The model and the
list of the selected software were described at the beginning of this Chapter. On the
basis of the selected applications, two types of gems’ classifications were introduced:
the one based on used application technology, where seven different technology layers
have been distinguished and the second based on scope of usage, where Database
access, Basic analysis, Specialized analysis and Results presentation layers have been
found. Finally, two additional mechanisms for integrating applications: the tasks
queuing system and the wrapper for binary program, were developed in the scope
of this thesis.

Chapter 5

Database Access Layer and Basic Analysis
Layer Gems

This Chapter describes gems that can be used in any type of bioinformatics ex-
periment. It starts with the presentation of the available bioinformatics databases,
data format description and methods and gems used for obtaining data. Then two
packages of data analysis in virtual laboratory are shown: R statistical language
and Weka data mining library. Finally, the possibilities of data manipulation with
clustering libraries and data dimensionality reduction methods are introduced.

5.1. Bioinformatics Database Access Gems

Publicly available specialist databases are one of the most important factors
contributing to the rapid development of bioinformatics science. Thanks to those
systems researchers from all over the world can share their results and compare new
methods and algorithms in order to obtain better and faster programs. Complex
Web-based interfaces allow users to search and manage (by adding or modifying)
contents of databases. Data can be accessed in an easy way and the amount of
information available in the databases grows exponentially. This section examines
databases, file formats and created gems which are used in bioinformatics experi-
ments in the virtual laboratory.

5.1.1. Bioinformatics Databases

Databases accessible from the virtual laboratory experiments which were used
in this thesis are described below.

52

5.1. Bioinformatics Database Access Gems

Protein Data Bank

The Protein Data Bank (PDB)1 [16] archive is the single worldwide repository of
information about the 3D structures of large biological molecules, including proteins
and nucleic acids. These are the molecules of life that are found in all organisms
including bacteria, yeast, plants, flies, other animals, and humans. Understanding
the shape of a molecule helps to understand how it works. This knowledge can be
used to help deduce a structure’s role in human health and disease, and also in drug
development. The structures in the archive range from tiny proteins and bits of
DNA to complex molecular machines like the ribosome. Data available in Protein
Data Bank are stored in pdb files and can be found by passing four-chars identifier
structureId (also called pdbid). Database is equipped with advanced searching sys-
tem, available also as SOAP Web service. From a plenty of methods provided by
this service those which may be particularly interesting and usable in the virtual
laboratory are the methods concerning getting amino acid sequence for a selected
structure and chain, listing chains in a selected structure, getting the length of chains
and querying database with XML queries.

Structural Classification of Proteins

The SCOP database2 [53], created by manual inspection and abetted by a battery
of automated methods, aims to provide a detailed and comprehensive description of
the structural and evolutionary relationships between all proteins whose structure
is known. As such, it provides a broad survey of all known protein folds, detailed
information about the close relatives of any particular protein, and a framework for
future research and classification. A description is available as a set of tightly linked
hypertext documents which make the large database comprehensible and accessible.
In addition, the hypertext pages offer a panoply of representations of proteins, in-
cluding links to PDB entries, sequences, references, images and interactive display
systems. Proteins are classified to reflect both structural and evolutionary related-
ness. There are three principal levels in the hierarchy: Family (Clear evolutionarily
relationship), Superfamily (Probable common evolutionary origin) and Fold (Major
structural similarity). Searching SCOP database is also available from the PDB
querying system.

Gene Expression Omnibus

GEO3 serves as a public repository for a wide range of high-throughput exper-
imental data. These data include single and dual channel microarray-based ex-
periments measuring mRNA, miRNA, genomic DNA (arrayCGH, ChIP-chip, and
SNP), and protein abundance, as well as non-array techniques such as serial analysis
of gene expression (SAGE), mass spectrometry peptide profiling, and various types

1 http://www.rcsb.org/pdb/static.do?p=general_information/about_pdb/index.html
2 http://scop.mrc-lmb.cam.ac.uk/scop/intro.html
3 http://www.ncbi.nlm.nih.gov/projects/geo/info/overview.html

53

Database Access Layer and Basic Analysis Layer Gems

of quantitative sequence data. The basic record types within the primary database
are following:
Platform A Platform record defines the list of elements that may be detected and

quantified in that experiment (e.g., cDNAs, oligonucleotide probesets). Each
Platform record is assigned a unique and sTable GEO accession number (GPLxxx).

Sample A Sample record describes the conditions under which an individual Sam-
ple was handled, the manipulations it underwent, and the abundance measure-
ment of each element derived from it. Each Sample record is assigned a unique
and sTable GEO accession number (GSMxxx). A Sample entity must refer to
only one Platform and may be included in multiple Series.

Series A Series record links together a group of related Samples and provides a
focal point and a description of the whole study. Series records may also contain
Tables describing extracted data, summary conclusions, or analyses. Each Series
record is assigned a unique and sTable GEO accession number (GSExxx).

DataSet DataSet records are assembled by GEO curators. GEO Series data are
reassembled by GEO staff into GEO Dataset records (GDSxxx). A DataSet
represents a curated collection of biologically and statistically comparable GEO
Samples and forms the basis of GEO’s suite of data display and analysis tools.

Profile Profiles are derived from DataSets. A Profile consists of the expression
measurements for an individual gene across all the Samples in a DataSet.

5.1.2. Formats of bioinformatics data files

Data available in the databases can often be downloaded as a text file. The
knowledge about those files structure and organization is necessary for a proper
analysis and data modification. This section presents list of the most often used file
formats in the bioinformatics experiments.

PDB File

This file describes 3D structure of proteins. It is organized as a 80-column file
with some well defined sections. Each line in file is an individual and self-identifying
record. The first six columns of every line contain a record name, that is left-justified
and separated by a blank. From the available sections we can distinguish a title sec-
tion, primary and secondary structure description sections and a coordinate section.
The last one contains most of the information from the ViroLab gems’ and exper-
iments’ point of view, because in this section protein atoms positions are defined
in ATOM records. Exact ATOM record structure is presented in Table 5.1. All
sections and records description are presented in a file format documentation [13]
available at http://www.wwpdb.org/docs.html.

FASTA Format

FASTA is a text-based format for representing either nucleotide sequences or pep-
tide sequences, in which base pairs or amino acids are represented using single-letter
codes. The format also allows sequence names and comments to precede the se-
quences. A sequence in FASTA format begins with a single-line description, followed

54

5.1. Bioinformatics Database Access Gems

Columns Data Type Field Definition

1 - 6 Record name ’ATOM ’
7 - 11 Integer serial Atom serial number
13 - 16 Atom name Atom name
17 Character altLoc Alternate location indicator
18 - 20 Residue name resName Residue name
22 Character chainID Chain identifier
23 - 26 Integer resSeq Residue sequence number
27 AChar iCode Code for insertion of residues
31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms
39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms
47 - 54 Real(8.3) x Orthogonal coordinates for Z in Angstroms
55 - 60 Real(6.2) occupancy Occupancy
61 - 66 Real(6.2) tempFactor Temperature factor
77 - 78 String(2) element Element symbol, right-justified
79 - 80 String(2) charge Charge on the atom

Table 5.1. Atom record structure in PDB file.

by lines of sequence data. The description line is distinguished from the sequence
data by a greater-than (’>’) symbol in the first column. The word following the ’>’
symbol is the identifier of the sequence, and the rest of the line is the description
(both are optional). There should be no space between the ’>’ and the first letter
of the identifier. It is recommended that all lines of the text should be shorter than
80 characters. The sequence ends when another line starting with a ’>’ appears;
this indicates the start of another sequence. A sequence header may contain any
information, but a set of well described headers is available. Thanks to this header’s
format the sequence may be linked to data in an appropriate database. The sequence
can be written by using standard nucleotide / amino acid description characters and
also using some wildcards. A complete list of codes is presented in Table 5.2.

GEO

Microarray experiment data are available in two formats - raw data (RAW) or
preprocessed data (SOFT). Files with raw data are specific to the microarray plat-
form which was used in the experiment, e.g. Affymetrix CEL file or GenePix GPR
file. Preprocessed data are available in text files. A file with samples set is divided
into two parts: description and data. The description part consists of sections.
Each section starts with ’^’ sign and a section name and collects parameters, each
in separated line that starts with ’ !’. Among a plenty of dataset parameters the
most important are DATASET section parameters:

dataset_platform - a microarray platform identifier
dataset_feature_count - a number of genes that are analyzed in each sample
dataset_sample_organism - an organism on which experiment was performed

55

Database Access Layer and Basic Analysis Layer Gems

Nucleic
Acid Code

Meaning Amino Acid
Code

Meaning

A Adenosine A Alanine
C Cytosine B Aspartic acid or Asparagine
G Guanine C Cysteine
T Thymidine D Aspartic acid
U Uracil E Glutamic acid
R G A (puRine) F Phenylalanine
Y T C (pYrimidine) G Glycine
K G T (Ketone) H Histidine
M A C (aMino group) I Isoleucine
S G C (Strong interaction) K Lysine
W A T (Weak interaction) L Leucine
B G T C (not A) M Methionine
D G A T (not C) N Asparagine
H A C T (not G) O Pyrrolysine
V G C A (not T, not U) P Proline
N A G C T Q Glutamine
X masked R Arginine
- gap of indeterminate length S Serine

T Threonine
U Selenocysteine
V Valine
W Tryptophan
Y Tyrosine
Z Glutamic acid or Glutamine
X any
* translation stop
- gap of indeterminate length

Table 5.2. The complete list of accepted FASTA codes.

56

5.1. Bioinformatics Database Access Gems

dataset_sample_count - a number of separated microarray values (each sample
refers to one microarray)

dataset_value_type - a type of preprocessed value

The second part of dataset file contains gene expression level values. This part
contains a comment section, where all the samples in dataset are described (lines
start with ’#’ and contain sample identifiers), matrix values with header part (first
line are column headers: a gene identifier, a gene name, samples identifiers), and in
next lines gene expression levels assigned to the appropriate genes (genes descriptors
are provided in the first two columns of each line).

When a user wants to download data for a single sample, resulted file structure
is similar to that described above. Important parameters in the description sections
are:

Sample_type - a type of preprocessed value
Sample_organism - an organism on which microarray experiment was performed
Sample_platform_id - a microarray platform identifier
Sample_data_row_count -a number of genes that are analyzed in this sample.

Each sample of information is connected to one physically performed microarray
experiment. Data section contains at least two columns - gene identifier and expres-
sion level, but may be extended with additional two columns - transcript presence
and significance level.

A detailed description of a microarray dataset and sample terms is presented in
Chapter 8.

5.1.3. Bioinformatics data access gems in the virtual laboratory

Virtual laboratory capabilities may be enhanced by adding new gems. Database
access layer gems allow to download data from supported databases. This section
lists available gems, that are used in bioinformatics experiments.

PDB

Gem class: org.pdb.Pdb

SOAP Web service provided by Research Collaboratory for Structural Bioinformat-
ics (RCSB) Protein Data Bank. In the virtual laboratory four service methods are
available:
• getSequenceForStructureAndChain - downloading amino acid sequence for struc-

ture defined by pdbid identifier and one letter chain code,
• getChains - downloading chain codes for selected structure, identified by pdbid,
• getChainLength - returns chain length (number of residues in chain) for selected

protein (pdbid) and chain (chainid),
• runXmlQuery - advanced database queries can be executed. The query must

be structuralized in XML format. As a result of query execution, array of pdb
identifiers is returned.

57

Database Access Layer and Basic Analysis Layer Gems

This gem is used in a protein sequence and structure comparison experiment (pre-
sented in section 6.2), where amino acid sequences are downloaded, and as a part of
Scop gem, where advanced queries are executed.

DbFetch

Gem class: uk.ac.ebi.Dbfetch

Web service is provided by European Bioinformatics Institute . DbFetch allows
users to retrieve entries from various up-to-date biological databases using entry
identifiers or accession numbers. Querying databases is done with building query
string in “database:identifier” format. In bioinformatics experiments this gem is
used to download from PDB database files with protein crystal structure definition.
As a database identifier ’PDB’ string is used in this case4. Additionally, in order to
retrieve data, required data format may be defined when queries are being executed.
Methods to check available data format and style for every supported database are
available.

GeoDataRetriever

Gem class: cyfronet.gridspace.gem.microarray.GeoDataProviderService

Gem provides an access to microarray experiment data. A detailed description of
this gem is presented in section 8.2.

Scop

Gem class: cyfronet.gridspace.gem.bioinfo.data.ScopDb

The Gem is created in Local Gem technology. It uses PDB gem capabilities and
REST Web services provided by RCSB institution. Pdb database allows users to
search Scop database and get protein ids based on protein family identifier. In
order to obtain this identifier a special query is prepared and then HTML response
is parsed. This identifier is used to create XML query which is then executed on
PDB gem. As a result of this execution protein pdbid codes array, which belongs
to a sought family, is returned. This array may be empty if the queried family was
not found. A sequence diagram of the query execution in ScopDb gem is presented
in Fig. 5.1.

5.1.4. Data format conversion

A variety of bioinformatics software tools available in the virtual laboratory
requires additional elements to complete cooperation. These are format converters
which adapt data formats used by different programs and libraries. In the virtual
laboratory three types of data format may be converted:
ValuesArray Numeric data in double format. This format may be used for any of

bioinformatics data;
ARFF Text file used within Weka library. Contains header and data sections;

4 Complete list of accessible databases is available at http://www.ebi.ac.uk/cgi-bin/dbfetch

58

5.2. Statistical Analysis

Figure 5.1. ScopDb query execution diagram. At first, family protein identifier is obtained
from Web page, then, XML query is prepared and executed on Pdb gem.

GeoDataSet This object is available in microarray gems and experiments.
The conversion between these formats is described in Table 5.3.

5.2. Statistical Analysis

In bioinformatics experiments a statistical analysis may be used to obtain sim-
ple statistics values, such as correlation between data series. It is also suitable
for specialized tasks, such as testing biological hypothesis or deriving knowledge
from high-throughput data. In the virtual laboratory possibilities of the statistical
analysis have been provided by R package, which is described in this section.

5.2.1. Statistical computing in R

R [8] is a language and environment for statistical computing and graphics. R
provides a wide variety of statistical (e.g. linear and nonlinear modelling, classi-
cal statistical tests, time-series analysis, classification, clustering and many others)
and graphical techniques, and is highly extensible. It also provides a variety of
plotting options. R language is interpreted and object-oriented. One of the main
advantages of the R is that it can be easily extended via packages. It is a way
in which Bioconductor [1] project adds tools for the analysis and comprehension
of genomic data into R environment. The Bioconductor project aims to provide
access to a wide range of powerful statistical and graphical methods for the analysis
of genomic data. Analysis packages are available for: pre-processing Affymetrix
and cDNA array data; identifying differentially expressed genes; graph theoretical
analyses; plotting genomic data. Capabilities of the Bioconductor project are pre-

59

Database Access Layer and Basic Analysis Layer Gems

Input Output Description

ARFF ValuesArray ’@data’ part of ARFF file is directly converted, additional
information are not required, as a second result an identifiers array

with ARFF attributes and relation name is returned
GeoDataSet ValuesArray Gene expression level values are returned directly, no additional

information is required, additionally map with identifiers ’gds_id’,
’gds_platform’, ’gds_data_type’, ’gds_samples_count’,

’gds_features_count’ and ’samples’ is returned, ’gds_id’ is dataset
identifier, other parameters were described in section 5.1.2

ValuesArray ARFF Values are inserted into @data section, as a second parameter array
with attributes names is required to fill @attribute part of file

GeoDataSet ARFF ARFF header after this conversion contains dataset parameters (the
same set as in GeoDataSet->ValuesArray conversion), @attributes
are samples identifiers, gene expression levels are put into @data

section
ValuesArray GeoDataSet Complete map with dataset parameters is required, data are stored

as gene expression levels
ARFF GeoDataSet Complete map with dataset parameters is also required, but if

ARFF file was created in GeoDataSet->ARFF conversion, whole
required data are present in file header

Table 5.3. The description of conversion process between data formats used. The conver-
sion is possible between each of supported data types: text file in ARFF format, binary
values called ValuesArray and GeoDataSet object, that is used in microarray experiments.
The table also lists additional data not included in Input, but required to produce Output,

or excessive data produced, that may be required during reverse conversion process

60

5.2. Statistical Analysis

Figure 5.2. R gem running diagram. Data are downloaded from WebDav repository and
stored in a local file system. R environment is run in script mode. All files created by R

are send to WebDav. URLs to these files are returned.

sented in [32]. The knowledge of R scripting and Bioconductor packages enables the
researcher to perform the statistical analysis in the virtual laboratory.

5.2.2. R Gem

Gem class: cyfronet.gridspace.gem.r2

R gem is realized as a binary program wrapper. Scripts written in R language are
passed to R environment. The produced results are obtained from standard output
and are read from the working directory. The running diagram is presented in
Fig. 5.2. All data needed may be passed directly into the script or put onto a virtual
laboratory WebDav repository before executing the gem’s method. As parameters
the gem acquires script body, that is code, and inputs map with file names and
WebDav paths. The gem creates a temporary directory and then it downloads data
from WebDav repository, if passed inputs map is not empty. The files are saved in
the created directory and the script is passed to R environment. The results are
read from the standard output. Also temporary directory is examined on new files
added. If there is any file created later than those passed as inputs, it is read and
put into WebDav repository with an appropriate name. An array with standard
output and all the WebDav file names is created as a result of the script execution.

61

Database Access Layer and Basic Analysis Layer Gems

5.3. Data Mining

Data mining is defined as an automatic or semiautomatic process of discovering
meaningful patterns in data. Useful patterns allow researchers to make nontrivial
predictions on new data. Data mining in the virtual laboratory is available thanks
to Weka library, which is described in this section.

5.3.1. Weka library

The Weka [68] workbench is a collection of state-of-the-art machine learning
algorithms and data preprocessing tools. It is written in Java and provides API
to use it in own Java applications. Weka also can be used as a separate program.
Library includes methods for all the standard data mining problems: regression,
classification, clustering, association rule mining, and attribute selection. There are
many algorithms available for solving problems in all the categories. Additionally
a set of data loaders from different sources is available. Most of machine learning
methods can be tuned through properties.

Classifiers Provide learning methods to generate predictions on new instances,
also known as supervised learning. The first step is model building on a training
set, the second one is testing algorithm on a testing data set, which should be
different from the training one. Available in weka.classifiers.* packages.

Clusterers Provide algorithms for seeking groups of examples that combine to-
gether. Unsupervised learning. Available in weka.clusterer package.

Associators Algorithms used for seeking association among features which means
discovering any structure in the data that may be “interesting”.
Available in weka.associations package.

Filters Objects that manipulate data. The whole examples as well as only a single
feature may be removed from dataset. Available in weka.filters.* packages.

Data loading Loading may be performed from different types of sources - ARFF
file, CSV file or directly from a database using JDBC engine.

5.3.2. ARFF file

ARFF file is a default data file type used inWeka library. ARFF (Attribute–Relation
File Format) is an ASCII text file that describes a list of instances sharing a set of
attributes. ARFF files have two distinct sections. The first one is the Header
information, which is followed by the Data information. The Header of the ARFF
file contains the name of the relation, a list of the attributes (the columns of the
data), and their types. Attribute declarations take the form of an ordered sequence
of ’@attribute’ statements. The order in which the attributes are declared indicates
the column position in the data section of the file. An attribute has a name and a
datatype. Weka supports four data types:

62

5.3. Data Mining

Figure 5.3. Class diagram of Weka data handling part. Basic methods defined in WekaGem
are enhanced by the ones that operate on data in WebDav repository.

• numeric - integer, real,
• nominal - list of available values in form: { value1, value2, ... },
• string,
• date.
The data section of the ARFF file contains the data declaration line (’@data’) and
the actual instances lines. Each instance is represented in a single line, with carriage
return denoting the end of the instance description.

5.3.3. Weka gems

Weka library in the virtual laboratory consists of two main parts. Data handling
part, presented in Fig. 5.3, is responsible for retrieving data from external database
and returning those data in ARFF format, splitting dataset onto training and testing
subsets and analyzing classifier prediction accuracy. The second part is composed
of Mocca components and depicted in Fig. 5.4. Both parts were developed in Java
technology. Each type of machine learning algorithm provided by Weka (listed in
section 5.3.1) has been packed into a separate Mocca component and can be used
to analyze one type of problem: classifying, clustering, associations learning and
data filtering. All the components can handle data passed directly as a method
parameter or stored in WebDav repository then only data location is passed to the
component. The ability of using data stored in central repository may take an effect
on the amount of data that is required to pass between Mocca components. Also

63

Database Access Layer and Basic Analysis Layer Gems

Figure 5.4. Weka Mocca components.64

5.3. Data Mining

using WebDav repository is a good way to analyze the same data and results in
different experiments or with different algorithms.

WekaURLGem

Gem class: cyfronet.gridspace.gem.weka.WekaURLGem

Operates on data and allows user to download data from SQL database and return
ARFF file. It splits dataset into two parts - testing and training. Classifier prediction
can be checked using compare method, which tests the value assigned by classifier
with the original value presented in the testing dataset. Every method has an
equivalent, that operates on the data stored in WebDav repository. Besides, two
methods for storing in and loading data from WebDav are available. The gem is
created in Web service technology.

Machine learning Mocca components are created in a similar way. Every com-
ponent requires full Java name of concrete algorithm. It is also possible to provide
a set of options that are specific to the selected algorithm. When an algorithm
is assigned to a component, calling data mining methods is enabled. Apart from
that, every component provides a set of functions to check and change currently set
options. Machine learning components are listed below:

WekaAssociator

Gem class: cyfronet.gridspace.gem.weka.WekaAssociator

Mocca component which provides methods for learning association rules from the
ARFF dataset, that is passed directly or stored in WebDav repository. The found
associations are returned as a String value.

WekaClassifier

Gem class: cyfronet.gridspace.gem.weka.WekaClassifier

Mocca component that provides supervised learning algorithms. When classifier is
assigned, the next step is classifier training on a selected attribute. After that new
datasets may be classified. Classification creates a new dataset with an attribute
column changed accordingly to a classification result.

WekaClusterer

Gem class: cyfronet.gridspace.gem.weka.WekaClusterer

Mocca component. Unsupervised learning algorithms are available in Clusterer com-
ponent. Two types of methods are available: the first one returns data clusters
description as a String value, the second requires two method calls: firstly, clusterer
must be built on a dataset, and after that, data passed in clusterData method may
be assigned to appropriate clusters. An array with assigned clusters numbers’ to
data instances is created as a result of the second method call.

65

Database Access Layer and Basic Analysis Layer Gems

Figure 5.5. Structure of an example experiment for classifiers comparison. Blue arrows
are operations on Classifier gem, grey ones are data manipulation performed by WekaURL

gem.

WekaFilter

Gem class: cyfronet.gridspace.gem.weka.WekaFilter

Mocca component. Within this component the modification of datasets by removing
attributes (columns in ARFF file) or instances (data rows in ARFF file) may be
performed.

5.3.4. Weka experiments

A sample experiment available in the virtual laboratory contains Weka Classifiers
comparison. Ten different classifiers are used in this experiment. Each of them
is trained and tested on the same dataset. Prediction quality is printed for each
classifier. The experiment has the following steps, as can be seen in Fig. 5.5:
1. Creation of an array with classifiers names;
2. Creation of a Web service proxy object which is used to split dataset into training

and testing data, and to delete predicted data;
3. Creation of a classifier object; Splitting dataset into training and testing data.

In this example we use dataset Primary Tumor Domain from the University
Medical Centre, Institute of Oncology, Ljubljana;

4. For each classifier in the array one should:
a) Assign next classifier,

66

5.4. Data Clustering

b) Train classifier with the training dataset,
c) Test classifier and print prediction quality,
d) Remove predicted data from repository;

5. Remove split (both training and testing) datasets.

5.4. Data Clustering

Clustering algorithms divide data into meaningful groups - clusters - so that
intra-cluster similarity is maximized and the inter-cluster similarity is minimized.
This step may be used as an initial analysis in data mining. Clustering may also
reduce the number of data that should be analyzed in other problems, such as a
microarray analysis, when overall data will be reduced only to the selected repre-
sentatives of the clusters. This section describes clustering libraries and gems made
available in the virtual laboratory.

Cluster

Perl module for Cluster 3.0 software has been integrated into the virtual labora-
tory. This library provides hierarchical clustering algorithm with different distance
functions and cluster-distance functions to use, k-means clustering and self organiz-
ing maps algorithm. Library was originally developed for clustering gene expression
data, but analysis of any data is possible, because the program handles array of
double values. For hierarchical clustering the whole dendrogram is returned. If the
user wants to get clusters, a cutoff value is required to pass to the method call.

Gem technology: Binary program wrapper.

Cluto

Cluto [2] is a software package for clustering low and high dimensional datasets
and also for analyzing the characteristics of various clusters. Cluto provides three
different classes of clustering algorithms that operate either directly in the object’s
feature space or in the object’s similarity space. These algorithms are based on the
partitional, agglomerative, and graphpartitioning paradigms. Cluto’s algorithms
have been optimized for operating on very large datasets both in terms of the num-
ber of objects as well as the number of dimensions. Cluto provides two types of
accepted data formats: graph data, analyzed by scluster program and matrix data,
analyzed by vcluster. The second approach is used in Cluto gem. Matrix data can
be annotated with column and row names. For each clustering process different
algorithms, similarity functions and criterion functions can be used. Cluto manual
contains a complete list of available parameters.

Gem technology: Binary program wrapper.

Weka Clustering

Local Gem that uses Weka Clusterer component to perform clustering. Two
algorithms are available: K-Means and Cobweb. Gem creates ARFF file from double
data (format converter is used), sets up an appropriate algorithm to Weka Clusterer

67

component and performs clustering. When results are obtained, another conversion
is performed, from ARFF to array of double.

Gem technology: Local Gem, uses WekaClusterer, FormatConverter

Microarray Clustering implementation

It is an own implementation of clustering microarray data library. It allows to
use hierarchical agglomerative algorithm or Isodata algorithm. Detailed description
is presented in section 8.2.

Gem technology: Implementation

5.5. Reduction of Data Dimension

Principal Component Analysis and Multi Dimensional Scaling are widely used
techniques for reducing data dimensionality.

PCA performs a linear mapping of the data to a lower dimensional space in
such a way, that the variance of the data in the low-dimensional representation
is maximized. In practice, the correlation matrix of the data is constructed and
the eigenvectors on this matrix are computed. The eigenvectors that correspond to
the largest eigenvalues (the principal components) can now be used to reconstruct
a large fraction of the variance of the original data.

Gem technology: Local Gem, uses R gem

MDS is a set of related statistical techniques often used in information visualiza-
tion for exploring similarities or dissimilarities in data. MDS is a special case of
ordination. An MDS algorithm starts with a matrix of item–item similarities, then
assigns a location to each item in N-dimensional space, where N is specified a priori.

Gem technology: Local Gem, uses R gem
Both types of the presented dimensionality reduction may be performed in the

virtual laboratory. R gem is used to perform these operations, only numeric values
(double type) are accepted.

5.6. Summary

In this Chapter we were familiarized with databases that are used in experiments,
gems that provide an access to these databases (5 gems) and used data formats. The
subsequent sections outlined gems from “Basic analysis” layer. Statistical analysis
with R (1 gem), Data mining in Weka library (5 gems), Data clustering with one
of the available programs (3 gems: Cluster, Cluto, and WekaClustering) and Di-
mensionality reduction (2 gems) were the main areas that were covered by this
layer. Adding these gems required to use various technologies, including binary
program wrapping (R gem), library integration using MOCCA component frame-
work, composing gem from the others (ScopDb, WekaClustering, PCA, MDS), as
well as own implementation of the algorithms (FormatConverter, GeoDataRetriever,
WekaURLGem).

Chapter 6

Protein Sequence and Structure
Comparison

This Chapter presents the developed gems and experiments created for performing
comparison of proteins that belong to the same family. Firstly, a sequence and
structure alignment problems will be described. In the second section a structure
of the experiments and the problem solution will be introduced. After that, created
gems and classes will be listed. Finally, the results of performed experiments will be
depicted.

6.1. Problem Description

Protein structure may be defined at four different levels, as it was presented
in Chapter 2.1. Protein comparison is a wide and complex problem. Common
structure motifs and conservative areas in a protein family may be found by per-
forming amino acid sequences comparison, secondary structures comparison and 3D
structures comparison. Detection of areas in protein that may be responsible for
protein function or prediction of ligand binding sites may be done with knowledge
about conservative areas. Moreover, sequence and structure comparison performed
on all levels of protein description may lead to finding a consensus sequence as well
as a consensus structure. Development of protein structure prediction and analysis
methods require standardized way to test their quality. Methods that align two
crystal structures, one of which may be experimentally determined (e.g. with X-ray
crystallography) and the second one originates from in silico experiment, allow to
estimate the quality of protein structure prediction. These two types of protein
comparison, that are based on the approach presented in Fig. 6.1 are available as

69

Protein Sequence and Structure Comparison

experiments in virtual laboratory. This model is known as “Early Stage” and it has
been developed by professor Irena Roterman–Konieczna [59, 60] with her team.

Folding simulation path leads from amino acid sequence and contingency table to
the complete protein three-dimensional structure. This structure may be compared
with that experimentally found and available in PDB database. Protein unfolding
path enables comparison of proteins that belong to the same family (or another,
freely created protein set). Calculated F and Y angles values (determining structure
between next two amino acids) are changed to the nearest values of the dihedral
angles belonging to the ellipse path, by using shortest-distance criterion [21, 19].
The position on this ellipse determines structural code that is assigned to every
residue. Protein amino acid sequence may be obtained directly from PDB database
or from pdb file. Three types of data: primary structure that comes from amino
acid sequence, secondary structure (a sequence of structural codes) and tertiary
structure (pdb file with selected chain) combined together create background for
similarity search in protein family.

Input data required to perform this experiment is a set of pdb identifiers and
selected chains for each protein.

6.1.1. Sequence alignment

Sequence alignment problem may be presented as a compound of two sub-problems:
pairwise sequence alignment and multiple sequence alignment1.

Pairwise sequence alignment

Alignment of two sequences is done with assumption that they are homologous
(they share common ancestor). Gaps are inserted into both sequences in order to
get the most similarities on the other positions. Two elements are necessary to
determine the best sequence alignment:
• Scoring matrix - is used to score each non-gap position in the alignment. They

are defined separately for nucleotide sequences and amino acid sequences. Nu-
cleotide scoring matrices are relatively simple - S(α,β) > 0 if a and b are the
same nucleotide, and S(α,β) ≤ 0 if they differ. Designer of scoring matrices for
amino acid sequence alignments should take into account several criteria: chem-
ical/physical similarity, observed substitution frequencies, size, charge, etc. Two
of the most commonly used models of scoring matrices are PAM and BLOSUM.
In the virtual laboratory experiment also an identity matrix is used for aligning
structural code sequences.

• Gap penalties function - it may be computed in any form, but most commonly
used is affinity gap penalty function, which is defined for l length gap as follows:
W (l) = gopen+gext(l − 1), where gopen is a penalty for creating a gap and gext

is a penalty for extending a gap on next position. Such function definition
is related to replications process nature, where 3-nucleotides length gap (for a
DNA sequence) is almost as probable as a one nucleotide gap.
1 Section is based on [35]

70

6.1. Problem Description

native
structure

predicted
structure

AA
sequence

Late-stage folding
simulation
+
Energy minimization

Partial unfolding

Early-stage
conformation

Step-back
conformation

The Φes, Ψes
discrete
probability profiles

The Φsb, Ψsb
probability profile
for all amino acids

Structural codes
sequence

conformational
structural codes
sequence

sequence-to-structure
contingency table

sequence-to-structure
contingency table

FO
LD

IN
G

 S
IM

U
LA

T
IO

N
 P

A
T
H

S
T
E
P-B

A
C

K
 U

N
FO

LD
IN

G
 PA

T
H

Figure 6.1. Two paths of protein structure analysis scheme. It is based on scheme available
in [20]. Dotted horizontal arrows denote equivalent stages of both paths.

71

Protein Sequence and Structure Comparison

Algorithms for solving the sequence alignment problem are often designed using
dynamic programming technique. It is a method of breaking a problem apart into
reasonably sized sub-problems, and using these partial results to compute the final
answer. When sequences are compared in their entirety, a global alignment is per-
formed. Sometimes it is required to match only a small fragment of the sequence.
Local alignment is a technique where the best matching of two subsequences is found
and areas that are not similar are not taken into consideration (score for alignment
in those areas is not counted and do not produce abysmal value).

The alignment score for the same pair of sequences may be slightly different if
we use another gap penalties function or scoring matrix, but similar, strongly con-
servative areas will be matched irrespectively of the selected algorithm parameters.

Multiple sequence alignment

Time complexity for the multiple sequence alignment problem (finding global
optimum for n sequences is strongly dependent on the sequence length and is an
NP-complete problem) causes that using direct methods is impracticable. The most
widely used approach to multiple sequence alignments uses a heuristic search known
as a progressive technique. All progressive alignment methods require two stages: a
first stage in which phylogenetic tree, called a guide tree, that represents relation-
ships between the sequences is constructed, and a second step in which the multiple
sequence alignment is built by adding the sequences sequentially to the growing
MSA according to the sequence distances defined in the guide tree. Progressive
alignments cannot be globally optimal. A variety of algorithm improvements, like
an evolution distance usage in scoring matrix and modifying of gap penalties along
to gap sequence position have been developed.

One of the most popular multiple sequence alignment solution has been imple-
mented in ClustalX software (also available as Web service under ClustalW name).
Another programs that solve this problem are Muscle, T-Coffee, KAlign.

6.1.2. Structure alignment

Structural alignment2 attempts to establish equivalences between polymer struc-
tures based on their shape and three-dimensional conformation. The outputs of a
structural alignment are a superposition of the atomic coordinate sets and a mini-
mal root mean square deviation (RMSD) between the structures. The RMSD of two
aligned structures indicates their divergence from one another. Most of structure
alignment programs are able to compute amino acid sequence alignment which is
based on created protein atoms superposition. This type of protein comparison
is particularly important when proteins with low sequence similarity are compared
and evolutionary similarity cannot be found with using standard sequence alignment
methods. Reducing computational complexity is done by analyzing only a selected
subset of all atoms in each protein. This approach is based on physical/chemical
atom properties. For simplicity and efficiency, often only the alpha carbon positions

2 http://en.wikipedia.org/wiki/Structural_alignment

72

6.2. Experiment

are considered, since the peptide bond has a minimally variant planar conformation.
There are plenty of available implementations of different algorithms, that solve
structure alignment problem. Some of them are able to compare only two struc-
tures, another may be used in multiple structure alignment problems. The most
popular are: Distance Alignment Matrix (DALI), Combinatorial extension (CE),
GANSTA+, MAtching Molecular Models Obtained from THeory (MAMMOTH),
Rapid Alignment of Proteins In terms of DOmains (RAPIDO), Sequential Structure
Alignment Program (SSAP).

6.2. Experiment

The implemented experiment follows the step–back path of protein comparison,
which was presented in Fig. 6.1. The experiment diagram is presented in Fig. 6.2.

The input data are protein pdb identifiers with selected chains for each protein.
Researcher may put it directly into the script or pdb identifiers may be obtained
from SCOP database if the researcher uses protein family name. In the second case
all chains for each protein in the family are considered as input data.

For each chain and protein in the dataset the required information is created.
This experiment section is organized as follows (used gem or classes names are
presented in brackets):
• Protein crystal structure defined in pdb file is obtained (DbFetch),
• Pdb file is filtered for only those parts that define atom positions that belong to

the selected chain (PdbUtils),
• Amino acid sequence is created for residues described in pdb file (PdbUtils).

It is possible to download a complete sequence from PDB database, but there
are small differences between sequences obtained directly from the database and
residues described in pdb file for some proteins. The sequence obtained from
pdb file is often shorter than sequence from PDB database. Because of the fact
that pdb file is used in comparison with other two levels, the first approach to
create amino acid sequence is used,

• Structural codes generation, based on pdb file (EarlyFolding),
• Crystal structure data filtering for structure alignment step (PdbUtils). Mam-

moth gem is used in the experiment to perform structural alignment step. This
program uses only alpha carbon atoms positions in computations. In order to
reduce the amount of data passing to the gem, the positions of other atoms are
removed from pdb file. This step is optional.

All data types created in this experiment section are stored in the local file sys-
tem. Those data are rather constant, it means that the determined sequence, the
secondary and the tertiary structure for selected chain in the protein wouldn’t be
different if we want to compare the same protein with another one during next
experiment run. This step makes experiment performing faster, especially if next
experiment run differs only in small subset of input data. Before each step of this
section the script tries to find specified file in the file system. If this file is present

73

Protein Sequence and Structure Comparison

Figure 6.2. Scenario of the Protein Sequence and Structure Comparison experiment. For
input pdb codes the amino acid (AA) sequence and pdb files are downloaded, then struc-
tural codes (SC) are computed. AA and SC sequences are aligned in ClustalW, while
crystal structures are aligned in Mammoth. For aligned sequences W score and W profiles

are computed. Finally, resulted plots and modified pdb files are generated.

74

6.2. Experiment

Figure 6.3. Data passed to ClustalW service in FASTA format. Lines starting with ’>’
are data identifiers, the remaining lines are input sequences.

information is read from the disk, if not - data downloading and appropriate step is
performed.

Analyzing three levels of protein description is the third part of the experiment.
Amino acid sequence alignment as well as structural code sequence alignment is per-
formed with ClustalW gem. For performing computations on ClustalW Web service
data must be structured in one of the accepted formats (an example of used FASTA
format is presented in Fig. 6.3). Also options list is necessary to run computations.
Options that have been set in the experiment are: ’email’, ’outorder ’ and ’matrix ’.
Option ’outorder ’ is set to ensure that the aligned sequences will be returned in
the same order as input sequences were passed to the service, ’matrix ’ option is a
selection of scoring matrix: for amino acid sequences the ’blosum’ matrix is chosen,
while identity matrix ’id’ is used during structural codes alignment. Computations
in the Clustal service are asynchronous, jobid is assigned to each request. ClustalW
provides methods for checking job status for the task with a known jobid. Waiting
for finishing computation and checking status is done in a loop. When a job status is
’DONE’ the alignment results may be retrieved from the service; this data requires
encoding from Base64 format. The best sequence alignment found is returned as
a result (example presented in Fig. 6.4). Crystal structure alignment is performed
with Mammoth gem usage. As input data the program requires a set of pdb files
to analyze and information on which chain and in which the protein computation
should be performed. In this experiment data passed to Mammoth are preprocessed
during the data gathering part, in this step pdb files are filtered (non–used chains
are removed, as well as the positions of atoms other than alpha carbon). Mammoth
program creates sequence alignment based on protein atoms conformation. The
output of Mammoth gem is standardized to the ClustalW output obtained during
sequence and structural codes alignment.

The aligned sequences are next analyzed in ClustalWUtils for finding W score
[20]. W value is computed for every position in alignment sequence as follows:
W = log10

(
F

(N/M)+1

)
, where F is a maximal code frequency for a particular position,

75

Protein Sequence and Structure Comparison

Figure 6.4. Example of sequences alignment for protein family. Visualization is done in
Jalview [67]program.

N - is the total number of aligned sequences and M denotes the number of codes
(M = 8 for structural code alignment and M = 21 for amino acid sequences, indels
marked as ’–’ are also included). The resulted W value is then averaged, in this
experiment averaging window has a length of five residues, but can be easily changed
by a researcher. W value is then normalized to [0; 1] range, in order to compare the
results obtained in experiment runs, when protein families with different number of
members are analyzed. W value counted as it was depicted before, together with
protein sequence alignment, allow to count W profile for every protein in the input
dataset. From the aligned sequence only residue / structural code positions are
selected (insertions/deletions are omitted) and appropriate W value is added to the
profile. This approach is presented in Fig. 6.6.

W values for all three types of an alignment (amino acid sequences, structural
code sequences and crystal structures) are then plotted as a linear chart withGnuplot
gem. Gnuplot script with one data series on a line chart is defined in script.gpl file
(that is why three charts are created). W profiles for every protein as well as chain in
input dataset are also created with Gnuplot. Plotting script is defined in multplot.plt
file. This script is parametrized with a protein name, a selected chain, a chain length
(the number of residues) for each protein before that script is passed to Gnuplot gem.
With that script multichart plot is created - three W profiles for every protein are
drawn as a Blue - White - Red maps. Plotting W scores for sequence alignments
on one chart is not possible because every alignment may create a resulting aligned
sequence with a different length. W profiles for one protein have always the same
length (number of amino acid codes, structural codes and amino acid codes based
on crystal structure alignment is constant).

The last stage in the experiment is creating output data - CSV files for every
protein and chain. Those files contain all W profiles for appropriate protein and
chain assigned to residues. CSV file is organized as follows: First line is the header,
in the next lines in the first column the residue number is put, then successively the
amino acidW profile, the structural codeW profile and the crystal structureW pro-
file. The same data are put into pdb files. Because the pdb format is restricted [13],

76

6.2. Experiment

1IJ9 EEEEFGFEEEEEFEEEECDGEFCGEEEEEEF
1VCA EEEEFGFEEEEEFEEEECDGEFCGEEEEEEE
1VSC EEEEFGFEEEEEFEEEECDGEFCGEEEEEE
1ZXQ EEEFFGBEEEEEFEEEECFFEEFCEE

1IJ9 EEEEFGFEEEEEFEEEECDGEFCGEEEEEEF
1VCA EEEEFGFEEEEEFEEEECDGEFCGEEEEEEE
1VSC EEEEFGFEEEEEFEEEECDGEFCGEEEEEE-
1ZXQ EEEFFGB-EEEEEFEEE---ECFFEEFCEE-

A 0000000000000000000000000000000
B 0000001000000000000000000000000
C 0000000000000000030001300001000
D 0000000000000000003000000000000
E 4443000344443444400040004433441
F 0001403000001000000003110010001
G 0000040000000000000300030000000

- 0000000100000000011100000000002

 4443443344443444433343334433441

W
N
o
r
m

W
_
A
v
g

W
S
c
o
r
e

1
.
0
0
0

0
.
4
2
6

0
.
4
2
6

0
.
9
3
1

0
.
3
8
4

0
.
4
2
6

0
.
9
3
1

0
.
3
8
4

0
.
4
2
6

0
.
9
3
1

0
.
3
8
4

0
.
3
0
1

0
.
9
3
1

0
.
3
8
4

0
.
4
2
6

0
.
8
6
2

0
.
3
4
3

0
.
4
2
6

0
.
8
6
2

0
.
3
4
3

0
.
3
0
1

0
.
9
3
1

0
.
3
8
4

0
.
3
0
1

1
.
0
0
0

0
.
4
2
6

0
.
4
2
6

1
.
0
0
0

0
.
4
2
6

0
.
4
2
6

0
.
9
3
1

0
.
3
8
4

0
.
4
2
6

0
.
9
3
1

0
.
3
8
4

0
.
4
2
6

0
.
9
3
1

0
.
3
8
4

0
.
3
0
1

1
.
0
0
0

0
.
4
2
6

0
.
4
2
6

1
.
0
0
0

0
.
4
2
6

0
.
4
2
6

0
.
9
3
1

0
.
3
8
4

0
.
4
2
6

0
.
8
6
2

0
.
3
4
3

0
.
4
2
6

0
.
7
9
2

0
.
3
0
1

0
.
3
0
1

0
.
8
6
2

0
.
3
4
3

0
.
3
0
1

0
.
8
6
2

0
.
3
4
3

0
.
3
0
1

0
.
8
6
2

0
.
3
4
3

0
.
4
2
6

0
.
7
9
2

0
.
3
0
1

0
.
3
0
1

0
.
8
6
2

0
.
3
4
3

0
.
3
0
1

0
.
9
3
1

0
.
3
8
4

0
.
3
0
1

0
.
9
3
1

0
.
3
8
4

0
.
4
2
6

0
.
8
6
2

0
.
3
4
3

0
.
4
2
6

0
.
8
6
2

0
.
3
4
3

0
.
3
0
1

0
.
9
3
1

0
.
3
8
4

0
.
3
0
1

0
.
6
6
7

0
.
2
2
5

0
.
4
2
6

0
.
5
0
0

0
.
1
2
5

0
.
4
2
6

0
.
0
0
0
-
0
.
1
7
6
-
0
.
1
7
6

Figure 6.5. W score computing method. Figure presents: input sequences (structural
codes), aligned sequences, codes frequency on every position, highest frequency on partic-
ular position, W scores (basic W formula used, averaged with 3 codes averaging window

and normalized). This example is based on the one presented in [20].

1IJ9 EEEEFGFEEEEEFEEEECDGEFCGEEEEEEF
1VCA EEEEFGFEEEEEFEEEECDGEFCGEEEEEEE
1VSC EEEEFGFEEEEEFEEEECDGEFCGEEEEEE-
1ZXQ EEEFFGB-EEEEEFEEE---ECFFEEFCEE-

1
.
0
0
0

0
.
9
3
1

0
.
9
3
1

0
.
9
3
1

0
.
9
3
1

0
.
8
6
2

0
.
8
6
2

0
.
9
3
1

1
.
0
0
0

1
.
0
0
0

0
.
9
3
1

0
.
9
3
1

0
.
9
3
1

1
.
0
0
0

1
.
0
0
0

0
.
9
3
1

0
.
8
6
2

0
.
7
9
2

0
.
8
6
2

0
.
8
6
2

0
.
8
6
2

0
.
7
9
2

0
.
8
6
2

0
.
9
3
1

0
.
9
3
1

0
.
8
6
2

0
.
8
6
2

0
.
9
3
1

0
.
6
6
7

0
.
5
0
0

0
.
0
0
0

1
.
0
0
0

0
.
9
3
1

0
.
9
3
1

0
.
9
3
1

0
.
9
3
1

0
.
8
6
2

0
.
8
6
2

1
.
0
0
0

1
.
0
0
0

0
.
9
3
1

0
.
9
3
1

0
.
9
3
1

1
.
0
0
0

1
.
0
0
0

0
.
9
3
1

0
.
8
6
2

0
.
8
6
2

0
.
7
9
2

0
.
8
6
2

0
.
9
3
1

0
.
9
3
1

0
.
8
6
2

0
.
8
6
2

0
.
9
3
1

0
.
6
6
7

0
.
5
0
0

1ZXQ EEEFFGBEEEEEFEEEECFFEEFCEE

Figure 6.6. W protein profile computing example. This Figure presents W profile for
1ZXQ protein and structural code sequence.

77

Protein Sequence and Structure Comparison

based on the original pdb file, two new ones are created. File with ’_aa_sc’ suffix
added to base name has amino acid W profile put into ’temperature’ field and W
profile for structural codes alignment in ’occupancy’ field. The second file, with
’_td’ suffix contains W profile values of crystal structure put in ’temperature’ field.
Modified pdb files allow researchers to check W profiles values in external protein
visualizers. In many of them protein structure colouring based on ’temperature’ (e.g.
Jmol, VMD - in this program ’temperature’ field is called ’beta’) and ’occupancy’
(e.g. VMD, Jmol doesn’t support this field) is available. The experiment finishes
with creating html file, that collects links to all charts created during experiment
execution. The complete code of the developed experiment is listed in Appendix
B.1.

6.3. Gems and Classes Used in Experiment

In the previous section the detailed experiment structure was presented. In this
section gems and classes used in experiment and those available as alternatives are
listed. Gems are divided into groups by responsibilities.

6.3.1. Data gathering

The first experiment stage is gathering of required data. Those data are pdb
codes list and chains, amino acid sequences, structural codes sequences and protein
crystal structures. Gems that allow researchers to accomplish this step are listed
below.

ScopDb

Gem class: cyfronet.gridspace.gem.bioinfo.data.ScopDb

Gem provides methods to access to the Structural Classification of Proteins database
[53]. It retrieves pdb identifiers that belong to the protein family with name passed
as a method parameter. In order to find the pdb code, at first protein family
identifier is searched on the appropriate HTML page from RCSB portal. With this
identifier a new query in a XML format is created and passed to Pdb gem. Resulted
pdb codes are returned in String array. Using these data in the experiment requires
additional knowledge about chain names for each protein. This knowledge may be
obtained from PDB database by using appropriate method on Pdb gem.

Technology: Local Gem, uses methods provided by Pdb gem.

Pdb

Gem class: org.pdb.Pdb

Pdb gem is an external Web service that provides methods for querying Protein Data
Bank database. Four methods, selected from those available in complete Web service

78

6.3. Gems and Classes Used in Experiment

API3, are available in the virtual laboratory. Those methods perform: retrieving
amino acid sequence for selected structure and chain ID, retrieving list of available
chains in structure, checking chain length and querying PDB database with complex
queries in a XML format.

Technology: External Web service. Provided by RCSB [9, 16].

DbFetch

Gem class: uk.ac.ebi.Dbfetch

Gem provides an access to various biological databases. Every database has unified
identifier and can handle specific query. Queries are build in “DB_identifier:query”
format. During execution of protein sequence and structure comparison experiment
this gem is used to obtain protein crystal structures which are available as pdb
files.

Technology: External Web service. Provided by EBI [42].

EarlyFolding

Gem class: cyfronet.gridspace.gem.EarlyFolding

The main problem that this gem solves is protein structure prediction. It also
allows to analyse protein structure and computes structural codes for the examined
crystal structure (Step-Back path presented in Fig. 6.1). This method is used in the
experiment.

Technology: External Web service. Provided by CM UJ.

PdbUtils

Additional class created for this experiment. Provides and realizes interface
that allows user to: select only atom records from pdb file that belong to selected
chain; select only Cα atoms; or create amino acid sequence that is based on residues
described in pdb file for selected chain. The two additional methods for putting W
score into pdb files for appropriate amino acid residues are available.

Technology: JRuby class.

6.3.2. Sequence alignment

In the virtual laboratory sequence alignment is performed with the usage of
programs provided as Web services by European Bioinformatics Institute [42].

ClustalW

Gem class: uk.ac.ebi.ClustalW
3 Complete API description is available at

http://www.rcsb.org/pdb/software/static.do?p=/software/webservices/PdbWebService.html

79

Protein Sequence and Structure Comparison

ClustalW [66] is a fully automatic program for global multiple alignment of DNA
and protein sequences. The alignment is progressive and considers the sequence
redundancy. Trees can also be calculated from multiple alignments.

Technology: External Web service

ClustalW2

Gem class: uk.ac.ebi.ClustalW2

ClustalW2 [44] is a second version of ClustalW application.

Technology: External Web service

Muscle

Gem class: uk.ac.ebi.Muscle

MUSCLE [28, 29] stands for MUltiple Sequence Comparison by Log-Expectation.
MUSCLE is claimed to achieve both better average accuracy and better speed than
ClustalW or T-Coffee, depending on the chosen options. Multiple alignments of
protein sequences are important in many applications, including phylogenetic tree
estimation, secondary structure prediction and critical residue identification.

Technology: External Web service

TCoffee

Gem class: uk.ac.ebi.TCoffee

T-Coffee [54] is a multiple sequence alignment program. The main characteristic
of T-Coffee is that it will allow to combine results obtained with several alignment
methods. For instance if there is available an alignment coming from ClustalW, an
other alignment coming from Dialign, and a structural alignment with some users
modification, T-Coffee combines all that information and produces a new multiple
sequence having the best agreement with all these methods. By default, T-Coffee
will compare all sequences two by two, producing a global alignment and a series of
local alignments (using lalign). The program will then combine all these alignments
into a multiple alignment.

Technology: External Web service

6.3.3. Structures alignment

The second main task in protein sequence and structure comparison experiment
is performing a multiple alignment of crystal structures. There are three gems that
are able to perform multiple structure alignment (Mammoth, MultiProt, SSM) and
one that may be used to pairwise structure alignment (Dali). Pairwise alignment
is an useful technique to analyze protein structure prediction quality, when in silico
created crystal structure is compared to that experimentally found, available in PDB
database. In the virtual laboratory EarlyFolding gem performs a protein structure

80

6.3. Gems and Classes Used in Experiment

prediction. All mentioned gems require as input data pdb codes mapped to protein
structures. Aligned amino acid sequences are created as results of all analyses using
crystal structure alignment.

Mammoth

Gem class: cyfronet.gridspace.gem.structure_comp.Mammoth

Mammoth gem is a wrapper for Mammoth-mult [48] application. Mmult program is
a Backbone Atom Alignment algorithm implementation [56]. From whole pdb file,
on which Mammoth program operates, only alpha carbon (Cα) atoms positions are
taken into consideration. All input structures are placed in one pdb file, where every
protein structure is terminated with TER line. As a result of program execution
a new file set is created. From those files the most important is the one with ’aln’
extension. Multiple sequence alignment based on structure conformation is written
in this file. Mammoth program renames input proteins to its own identifiers. The
gem has to remember the order in which analyzed sequences were placed in input
file and it has to perform inverse renaming after mmult execution. Mammoth-mult
is written in FORTRAN language. This language does not allow to dynamic array
creation, so all parameters, such as the number of protein that may be aligned at
once, have to be defined before compilation. The default constraint to number of
protein structures was set to 30. Mmult used in Mammoth gem has been recompiled,
maximal number of aligned proteins is set to 50. There is also a constraint on the
protein chain length - chains with more than 880 residues are not allowed.

The diagram of Mammoth gem running is presented in Fig. 6.7. Performing
structure alignment request is handled as follows:
1. Create temporary directory for handling particular request;
2. Create mmult input, all structures passed to the gem as a pdb_identifier =>

crystal structure map are written to one input file, every two structures are
separated by TER line, only Cα atoms position are put into the file;

3. Execute mmult program;
4. When mmult is finished, read aligned sequences from ’aln’ file. Other created

files may be also retrieved but it must be stated in the options passed to the
gem;

5. Remove temporary directory;
6. Modify ’aln’ output - replace mmult protein identifiers with those present in in-

put data. Identifiers are remembered during mmult input file creation. Modified
’aln’ output is a result of the method execution.

One of the most important mmult features is its quickness. For maximal allowed
problem size the program finishes in several minutes.

Technology: Web service, binary program wrapper

MultiProt

Gem class: cyfronet.gridspace.gem.structure_comp.MultiProt

81

Protein Sequence and Structure Comparison

Figure 6.7. Mammoth gem running diagram. Input pdb files are stored in a temporary
directory as a one file which is the input for Mammot-mult. Aligned sequences are read

from ’aln’ file and returned after identifiers modification.

MultiProt [64] is an acronym for Multiple Alignment of Protein Structures. Compu-
tations performed in MultiProt program are based on a complete protein geometry.
This approach is more time consuming than Mammoth-mult algorithm, especially
for large protein sets. MultiProt does not have strictly defined memory limits for
number of aligning structures. MultiProt software is distributed as a binary pro-
gram for Unix systems, so that some problems may occur if it is run on non standard
architectures. The gem uses several programs belonging to MultiProt and Staccato
software packages. In order to obtain the sequence alignment four of them are used.
MultiProt gem running diagram is depicted in Fig. 6.8. During analysis process
following steps are performed:
1. Create temporary directory for handling particular request, a second directory

named trans, for storing partial results is created inside;
2. Store input structures passed in a map (the same type as in Mammoth gem) as

files in the local file system, MultiProt uses separate files for every structure;
3. Run multiprot with all files passed as the command line parameters (wildcard

*.pdb is used);
4. When multiprot is finished, select from the results an appropriate file. The

files have names that match to pattern /NR_res.sol/, where NR is a number of
aligned structures. File with the greatest number of aligned structures, which
should be the same number as the size of input data set, is selected as input to
the next step;

5. Run trans_mult with selected /NR_res.sol/ file, a number of the best solution
available in this file (aligned marked as 0 solution) and the name of inner tem-
porary directory;

6. Inside trans directory run mkdssps program;

82

6.3. Gems and Classes Used in Experiment

Figure 6.8. MultiProt gem running diagram. Four programs are used to create sequence
alignment on the basis of structure alignment: multiprot, trans_mult, mkdssps and stac-

cato. Results are read from standard output.

7. Run staccato program, read standard output where aligned sequences can be
found;

8. Remove temporary directories;
9. Modify output, remove unnecessary information and change staccato identifiers

to the same as was passed in input map.
Performing MultiProt computations takes remarkably longer than Mammoth. For
the same dataset, that consists of 45 proteins that belong to the IGG family, running
time is near 75 minutes and it is about 6 times longer than the same computations
performed in Mammoth gem.

Technology: Web service, binary program wrapper

SSM

Gem class: cyfronet.gridspace.gem.structure_comp.Ssm

SSM is a wrapper for Secondary Structure Matching4 service provided by EBI. SSM
gem communicates with the service in HTTP protocol. Each request is handled
in a separated thread. For computation request for pdb files following steps are
performed:
1. Create temporary directory for handling particular request, store input struc-

tures passed in a map;
2. Create compressed tarball from input pdb files;

4 http://www.ebi.ac.uk/msd-srv/ssm/

83

Protein Sequence and Structure Comparison

3. Prepare POST request with created tarball as an argument, send it to the SSM
server. The Session ID is read from returned HTML page.

4. Remove temporary directory
5. Wait for results.
6. Download results in FASTA format, return this file as a result
This service does not accept any options to set.

Dali

Gem class: uk.ac.ebi.Dali

Dalilite [36] is a tool for a pairwise structure comparison. It may be used for com-
paring protein structure prediction quality, performed in EarlyFolding, with original
crystal structure, obtained from the PDB database by using DbFetch gem.

Technology: External Web service, provided by EBI [42]

6.3.4. Results preparing and analysis

The last part of the experiment is a numerical analysis of obtained sequences and
structures alignments and results visualization. The gems and objects used in this
part are described below. Additionally, PdbUtils class described in section 6.3.1, is
used to update pdb files with W score profile values.

ClustalWUtils

Gem class: cyfronet.gridspace.gem.structure_comp.ClustalWUtils

Gems created for W score computing, algorithm is described in section 6.2. Beside
the methods for W score and W profile computing, the gem provides a method that
analyzes aligned sequences strings. Most of programs return sequences divided into
some parts. This method joins appropriate parts of aligned strings and returns a
map with protein identifiers as keys and complete sequences as values.

Technology: Web service, own implementation

CSVUtils

This class provides one method for creating CSV files with W profile values for
selected protein. The file is organized as follows: protein name and selected chain are
written in the first line, column headers are put into second line and then next rows
contain W profile values for appropriate residues (residue number in first column),
amino acid W profile in column 2, structural code W profile in column 3 and crystal
structure W profile in column 4.

Technology: JRuby class, own implementation

GnuPlotUtils

A simple class for transforming data into format that Gnuplot accepts. Two
methods are available - the first one for creating data used in plain charts with one

84

6.4. Experiment Run and Results

data series (x value is residue number, and y isW score) and the second for creating
charts as color maps (x is in [1..2], y is a residue number and z is W score).

Technology: JRuby class, own implementation

Gnuplot

The gem is a wrapper for a binary program with the same name. Its detailed
description is presented in Chapter 9. Two Gnuplot scripts for drawing charts are
prepared. The first script defines linear chart with W score for aligned sequences.
Three separate charts of this type are created in the experiment - one for amino acid
sequence alignment score, one for structural codes score and the last one for crystal
structures alignment score. The script is accessible as a script.gpl file. The second
script creates multiplot chart. On this plot three profiles are drawn as a color map
plots (pm3d technique in Gnuplot). W profile values are represented in Red - White
- Blue color scale. Script is defined in multiplot.plt file. This plot type is used for
creating plots for every protein and every chain from among input data.

Additional scripts

A set of functions used for storing and reading data generated during experiment
execution (e.g. pdb files with protein crystal structure, structural codes for protein)
is additionally defined in results_handling.rb script file. There are also available
some functions for storing results, like plots, CSV files, updated PDB files defined
in this script.

6.4. Experiment Run and Results

The prepared set of gems and scripts is suited to solve a protein comparison
problem. The key parts of an experiment may be computed with gems used inter-
changeably. These key parts are data retrieval (gems that are available to use are:
ScopDb, DbFetch, Pdb and EarlyFolding), sequence alignment (many services from
EBI available: ClustalW, ClustalW2, Muscle, T-Coffee) and structure alignment
(mostly Mammoth and MultiProt gems are used, also SSM gem is available). The
defined experiment structure and the input data organization allow researcher to
easily change the initial data set and compare results obtained with using different
gems.

The experiment was executed to analyse the mechanism of signal transduction in
immunoglobulins. The proteins belonging to the immunoglobulin super-family like
ICAM, VCAM and IgG were analyzed. As a processor of sequences and structural
codes alignment, the ClustalW gem was used. The Mammoth gem was employed
for computing structures alignment. Proteins and their chains selected from used
super-families to analysis are listed below:
• ICAM: 1ZXQ:A
• VCAM: 1VSC:A; 1IJ9:A; 1VCA:A
• IgG: 1CLY:L; 1CLZ:L; 1EMT:L; 2DD8:L; 2IG2:L; 1MCO:L; 2JB6:L,A; 2ZPK:L,M;

2ADF:L; 1ADQ:L; 1AD9:L; 2J6E:L; 1N0X:L; 1HZH:L; 1NSN:L; 1MIM:L; 1AE6:L;

85

Protein Sequence and Structure Comparison

Figure 6.9. Experiment results. Three types of W score value for ICAM + VCAM + IgG
super-family are presented: amino acid alignment (upper-left), structural code alignment

(upper-right) and structures alignment.

15C8:L; 2VXV:L; 1IBG:L; 1JNL:L; 1JNN:L; 1MRC:L; 2MCG:1,2; 1MRD:L;
1MRE:L; 1MRF:L; 2AGJ:L; 2JB5:L; 1UZ8:L; 1DQD:L; 2Z4Q:A,B; 1IGC:L; 2CMR:L;
2VXQ:L; 4BJL:A,B

An organization of the input data as a hashmap with protein id as a key and array
of used chains as a value together with Ruby language features allow researcher to
easily combine data belonging to different input data groups. An experiment was
performed separately for proteins belonging to each super-family (except ICAM) and
for all combinations of listed super-families (ICAM + VCAM, ICAM + IgG, VCAM
+ IgG and ICAM + VCAM + IgG). The results for W score obtained for ALL group
(ICAM + VCAM + IgG super-family) are presented in Fig. 6.9. Additionally, W
profiles for protein 2DD8 and chain L are depicted in Fig. 6.10, where all levels of
comparison have been included. A Red-White-Blue color scale has been used to
show protein’s conservation regions. A dark blue color means that selected region
is highly conservative. A protein structure visualization was performed in VMD
software. As a result of the experiment execution a set of W profiles pictures for
each protein, CSV files with numerical data about W profiles and PDB files that
can be visualized are produced.

86

6.4. Experiment Run and Results

Figure 6.10. Results of Protein Sequence and Structure Comparison experiment. W pro-
files for 2DD8 protein are shown. Protein structures are visualized in VMD, while color

maps are generated during experiment execution in Gnuplot.

87

6.5. Summary

In this Chapter the experiment created for solving protein structure and sequence
comparison problem was presented. Thirteen new gems and some additional classes
used in the experiment were developed in order to prepare complete solution. The
created gems are applicable in the following problems: data retrieving (4 gems),
multiple sequence alignment (4 gems), multiple structure alignment (4 gems), W
score computing (1 gem). Three additional classes were also developed: the one
for input data handling and two others for results handling and analyzing. This
experiment was executed with using various protein families as an input dataset:
ICAM (one protein), VCAM (three proteins), IgG (36 proteins, 41 selected chains),
and all their combinations. Obtained results were analyzed and will be described in
“Conservative structural element in proteins engaged in immunological signal trans-
duction” paper [61], which is currently in preparation.

Chapter 7

Comparison of Services for Predicting
Ligand Binding Site

The comparison of services for predicting ligand binding site on a protein surface
is the core of this Chapter. In the first section the problem will be stated. Later,
every service will be presented. Afterwards a specific usage of the general task queuing
architecture, introduced in section 4.3.1, is described. Finally, the created experiment
is shown.

7.1. Problem Description

One1 of the greatest challenges for researchers in bioinformatics field is under-
standing of the functioning of biological systems. Structural genomics, as the most
comprehensive approach, is used. The aim of structural genomics is determination of
the primary and tertiary structures of all proteins of a given organism, identification
of function and evaluation of functional integrity of these proteins. Another goal,
justifying the huge investments already made in structural genomics initiatives, is
the ability to predict druggability of a particular protein based solely on its 3D struc-
ture. Three different groups of prediction of ligand binding sites strategies can be
distinguished. Methods that are tailored to detect pockets and clefts on the basis of
pure geometric criteria constitute the first group. CastP [27], PocketFinder (an im-
plementation of LIGSITE [34]), Ligsite_csc [37] and Pass [18] services, that belong
to this group, have been made available in the virtual laboratory. The prediction
methods of the second group, in addition to structural data use biophysical and/or
chemical properties. That includes computations of pKa, electrostatic energy, sol-

1 Section is based on [57]

89

Comparison of Services for Predicting Ligand Binding Site

vent mapping, physical potential, favourable regions for van der Waals (CH3) probes
on the protein surface or hydrophobicity deficiency. From this group, Q-SiteFinder
[45] and Fod [22] have been made available in the virtual laboratory. The third
group of methods relies on knowledge derived from biochemical data and different
types of databases. Services that implement this type of algorithm are ConSurf [43],
SuMo [40, 39] and WebFeature [46]. Services from every group require protein’s 3D
structure, in the form of pdb file. As a result of performing computations in any of
these services, a list of chains and residues that are found as binding site is created.

In most cases mentioned services are available as WWW portals. Integration
of these portals into the virtual laboratory require wrapping a communication with
a service in HTTP protocol. The integration performed in the scope of this thesis
allows users to run large scale analyses that are executed for more than one protein
on many services.

7.2. Description of Available Services

This section describes every gem available in the virtual laboratory, that may be
used to perform ligand binding site prediction.

CastP

Computed Atlas of surface topography of proteins [17, 27]. CastP belongs to
the first group of services that performs prediction on the basis of pure geometric
criteria.

Availability http://sts.bioengr.uic.edu/castp/
Methods pdb file, pdb id
Results pockets atoms (.poc), list of residues that form the biggest pocket (.txt)
Technology Web service, HTTP communication wrapper

ConSurf

Server for the Identification of Functional Regions in Proteins [43] belongs to
the third group of methods that relies on knowledge derived from biochemical data
and different types of databases (in this case SWISS-Prot and UniProt sequence
databases are used). Only one chain from passed protein structure may be analyzed
at once. In order to perform computation for the whole protein the request must be
repeated with different value of ’chain’ parameter.

Availability http://consurf.tau.ac.il/
Methods pdb file, pdb id. Analysis based on pdbid is a searching of precalculated

results available in the ConSurf database.
Results Amino Acid Conservation Scores, Confidence Intervals and Conservation

Colors (.gradesPE) and list of residues with Conservation Color equal or
greater than specified (.txt)

Technology Web service, HTTP communication wrapper

90

7.2. Description of Available Services

Fod

FOD [22] is a representative of the second group of algorithms.

Methods pdb file
Results ∆H̃ profile (.dat), list of residues with ∆H̃ higher or equal to maximum

∆H̃ minus quarter of the ∆H̃ range
Technology Web service, binary program wrapper

Ligsite_csc

Ligsite_csc [37] is an implementation of the LIGSITE algorithm [34].

Availability http://gopubmed2.biotec.tu-dresden.de/pocket
Methods pdb file, pdb id
Results list of atoms (ligand.txt), list of pockets (pocket.txt), list of residues

(.txt)
Technology Web service, HTTP communication wrapper

Pass

PASS [18] service belongs to the first group of methods, that predicts binding
sites on the basis of the geometric criteria.

Methods pdb file
Results probe spheres (probes.pdb) and list of residues forming the biggest pocket

(.txt)
Technology Web service, binary program wrapper

PocketFinder

This is one of two services provided by Faculty of Biological Sciences in University
of Leeds. It belongs to the first group of methods. This service has limitation on
protein size. Protein cannot have more than 10 000 atoms.

Availability http://www.modelling.leeds.ac.uk/pocketfinder/
Methods pdb file, pdb id
Results atoms forming pockets (.pdb), list of residues for the largest pocket (.txt)
Technology Web service, HTTP communication wrapper

QSiteFinder

QSiteFinder is the second service provided by Faculty of Biological Sciences in
University of Leeds [45]. This service has the same limitation on protein size as
PocketFinder.

Availability http://www.modelling.leeds.ac.uk/qsitefinder/
Methods pdb file, pdb id
Results atoms forming pockets (.pdb), list of residues for the largest pocket (.txt)
Technology Web service, HTTP communication wrapper

91

Comparison of Services for Predicting Ligand Binding Site

SuMo

SuMo [39] service belongs to the third group of methods [40]. Calculation are
much longer than in other services - for a protein of medium size it takes several
minutes. Available service resources are also limited - often calculation request is
put into a queue where it is waiting (even some hours) for start of processing.

Availability http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome
Methods pdb file, pdb id
Results text file (txt), list of residues for the highest ranked hit(s) (txt)
Technology Web service, HTTP communication wrapper

WebFeature

WebFeature [46] service belongs to the third group of methods. Unfortunately,
running more than one task at the same time is not allowed.

Availability http://feature.stanford.edu/webfeature/
Methods pdb file, pdb id
Results archive of points files (sig.tar) and list of residues reflecting one of spec-

ified z-score specificity cutoffs: 100%, 99% and 95%(.txt)
Technology Web service, HTTP communication wrapper

ResultsConverter

Every service returns results that are written in a specific format. In some
of those formats the numbers of residues, that are found as binding site are put
directly into the file. Others require additional data and computation in order to
assign appropriate residues to the found binding site. Comparison of the results
from different services requires common data format. Therefore a set of format
converters, that are available under unified interface, as ResultsConverter gem, has
been created. Every converter provide set of methods that are responsible for:
• get_atoms_from_pocket - looks for residues that are assigned to the largest

pocket irrespective of chain in which residues are placed, this method returns
correct values only for structures that contain only one chain

• get_atoms_and_chains - returns a list of residues that are present in the largest
pocket, and additionally chain identifiers assigned to every residue, are given

• get_atoms_for_chain - this method allows user to search the largest pocket in
which at least one residue belong to chain that identifier was passed as method
parameter

ResultsConverter gem is a Facade (design pattern, [31]) to specialized converters.
Converter is selected on the basis of its name, provided as a parameter to the
method. Conversion rules from a service specific format to the common format and
short description of these formats are presented in Table 7.1.

92

7.2. Description of Available Services

Se
rv
ic
e

Fi
le
(s
)
ty
pe

D
es
cr
ip
ti
on

an
d
ru
le
s
of

co
nv
er
si
on

C
as
tP

’p
oc
’

Fi
le

co
nt
ai
ns

in
fo
rm

at
io
n
ab

ou
t
re
si
du

es
,t
ha
t
ar
e
fo
un

d
as

po
ck
et
s,
th
es
e
lin
es

ar
e
re
w
rit
te
n
fr
om

or
ig
in
al

pd
b
fil
e,

ea
ch

lin
e
ho
w
ev
er

co
nt
ai
ns

a
nu

m
be
r
(r
ow

s
67
-7
0)

id
en
tif
yi
ng

a
po

ck
et

nu
m
be
r.

T
he

po
ck
et

w
ith

th
e
hi
gh

es
t
nu

m
be
r
is
as
si
gn

ed
to

th
e
m
os
t
pr
ob

ab
le

bi
nd

in
g
si
te
.
T
hi
s
fil
e
is
pa
rs
ed

to
tw
o-
le
ve
lm

ap
w
ith

po
ck
et

nu
m
be
r
as

a
pr
im

ar
y
ke
y,
ch
ai
n
id
en
tifi

er
as

a
se
co
nd

ar
y
ke
y
an
d
re
si
du

es
nu

m
be
rs

as
va
lu
es
.
Po

ck
et

w
ith

th
e
hi
gh

es
t
nu

m
be
r
or

th
at

w
ith

ap
pr
op
ria

te
ch
ai
n
is
se
le
ct
ed

fr
om

th
e
m
ap
,
it
de
pe
nd

s
on

m
et
ho

d
th
at

is
us
ed
.

C
on

Su
rf

’g
ra
de
sP

E’
Fi
le

co
nt
ai
ns

in
fo
rm

at
io
n
ab

ou
t
re
si
du

e
co
ns
er
va
tio

n
(c
ol
or

va
lu
e:

1
-
va
ria

bl
e,

9
-
co
ns
er
va
tiv

e)
.
A

su
pp

ly
of

co
ns
er
va
tiv

e
le
ve
li
s
re
qu

ire
d
to

ex
tr
ac
t
re
si
du

es
th
at

ar
e
fo
un

d
as

bi
nd

in
g
si
te
.
R
es
id
ue

nu
m
be
r,
w
hi
ch

is
pr
es
en
t
in

lin
e
id
en
tifi

er
co
lu
m
n,

ar
e
ad
de
d
to

lis
t
of

bi
nd

in
g
si
te

re
si
du

es
if
a
re
si
du

e
co
lo
r
is
gr
at
er

or
eq
ua
lt
o
th
e
su
pp

lie
d
va
lu
e.

Fo
d

’fo
d’

Ev
er
y
re
si
du

e
ha
s
as
si
gn

ed
va
lu
e
th
at

ch
ar
ac
te
riz

es
its

ab
ili
ty

to
fo
rm

bi
nd

in
g
si
te
.
T
hr
es
ho

ld
va
lu
e
is

se
t
to

th
r

=
m

a
x
−

0.
25
∗

(m
a
x
−

m
in

),
al
lr
es
id
ue
s
th
at

ha
ve

sc
or
e
eq
ua
lo

r
gr
ea
te
r
th
an

a
th
re
sh
ol
d
ar
e
ad
de
d
to

th
e
lis
t
of

re
tu
rn
ed

re
si
du

es
.

Li
gs
ite

_
cs
c

’p
oc
ke
t’
,

’p
db

’,
’li
ga
nd

’

’p
oc
ke
t’
fil
e
de
fin

es
re
pr
es
en
te
rs

of
fo
un

d
po

ck
et
s.

P
oc
ke
t
ra
di
us

fo
r
w
hi
ch

co
m
pu

ta
tio

n
w
as

pe
rf
or
m
ed

is
re
qu

ire
d
as

a
m
et
ho

d
pa
ra
m
et
er
.
A
s
th
e
ne
xt

st
ep
,f
ro
m

’li
ga
nd

’
fil
e
al
ln

um
be
rs

of
re
si
du

es
th
at

be
lo
ng

to
an
y
of

fo
un

d
po

ck
et

ar
e
re
ad
.
R
es
id
ue

is
as
si
gn

ed
to

po
ck
et

if
it
is
cl
os
e

en
ou

gh
to

po
ck
et

ce
nt
er
,r
es
id
ue

po
si
tio

n
is
re
ad

fr
om

’p
db

’fi
le
.

Pa
ss

’p
ro
be
s’
,

’p
db

’
’p
ro
be
s’
fil
e
de
fin

es
pr
ob

es
po

si
tio

n,
w
hi
ch

ar
e
cl
us
te
re
d
w
ith

hi
er
ar
ch
ic
al

cl
us
te
rin

g
al
go
rit
hm

an
d

’c
ut
_
off

’v
al
ue

se
t
to

2.
0.

To
ev
er
y
cl
us
te
r
re
si
du

es
fr
om

’p
db

’
fil
e
ar
e
as
cr
ib
ed
.
A
ss
ig
nm

en
t
is
ba
se
d

on
re
si
du

e
po

si
tio

n
an
d
its

di
st
an
ce

to
th
e
pr
ob

es
th
at

fo
rm

th
e
cl
us
te
r.

A
s
a
re
su
lt
th
e
la
rg
es
t
cl
us
te
r

is
re
tu
rn
ed
.

Po
ck
et
Fi
nd

er
,

Q
Si
te
Fi
nd

er
’p
db

’
’p
db

’fi
le

co
nt
ai
ns

ad
de
d
se
ct
io
ns

w
ith

at
om

s
po

si
tio

ns
th
at

be
lo
ng

s
to

fo
un

d
bi
nd

in
g
si
te
s.

T
ho

se
po

si
tio

ns
ar
e
co
m
pa
re
d
w
ith

AT
O
M
s
lin
es

an
d
fr
om

th
os
e
lin
es

re
si
du

e
nu

m
be
rs

ar
e
re
ad
.

Su
M
o

’t
ex
t’

R
es
ul
ts

ar
e
gr
ou

pe
d
in
to

se
ct
io
ns

th
at

ar
e
or
de
re
d
fr
om

th
e
hi
gh

es
t
pr
ed
ic
tio

n
sc
or
e.

R
es
id
ue
s

be
lo
ng

in
g
to

ev
er
y
se
ct
io
n
ar
e
di
re
ct
ly

in
cl
ud

ed
in
to

se
ct
io
n
de
sc
rip

tio
n.

T
he

hi
gh

es
t
ra
nk
ed

se
ct
io
n

co
nt
ai
ns

re
su
lte

d
re
si
du

es
nu

m
be
rs
.
M
or
e
th
an

on
e
se
ct
io
n
m
ay

ha
ve

th
e
sa
m
e
sc
or
e,

in
th
is
ca
se

re
su
lts

fr
om

al
ls
ec
tio

ns
ar
e
jo
in
ed

W
eb
Fe
at
ur
e

’s
ig
ni
fic
an
t

hi
ts
’

Fi
le
s
se
t
fr
om

ex
tr
ac
te
d
ta
r
ar
ch
iv
e
an
d
fil
e
w
ith

th
re
sh
ol
d
va
lu
es

fo
r
ev
er
y
m
od

el
ar
e
re
qu

ire
d
to

pe
rf
or
m

an
al
ys
is
.
A
dd

iti
on

al
ly

z-
sc
or
e
sp
ec
ifi
ci
ty

cu
to
ffs

is
re
qu

ire
d
as

m
et
ho

d
pa
ra
m
et
er
.
Ev

er
y
lin
e
in

fil
e
co
nt
ai
ns

a
re
si
du

e
id
en
tifi

er
an
d
z-
sc
or
e
va
lu
e.

If
z-
sc
or
e
is
no

t
le
ss

th
an

pa
ra
m
et
er

re
si
du

e
is

ad
de
d
to

re
su
lt.

Table 7.1. Results format description and rules of conversion from every specific format to
common format for ligand binding site prediction services.

93

Comparison of Services for Predicting Ligand Binding Site

7.3. Integration of Gems Using Task Queuing System

Every gem described in this Chapter that was created and integrated into the
virtual laboratory is based on the general task queuing system architecture that was
described in section 4.3.1, if it is a web-based portal wrapper, or on the wrapper
architecture, depicted in section 4.3.2, for gems that have to us specified program
locally. Some of the classes were specialized for solving ligand binding site prediction
problem. System architecture is depicted in Fig. 7.1.

Classes that are mentioned below were specialized during system development.

ProteinService defines gem interface and queuing system parameters. Available
methods for every gem (except general methods listed in Service class)
are:
get_results_from_file - analysis is based on provided pdb file
get_results_from_pdb - analysis is based on provided pdb structure

identifier
ProteinTask defines task description. Two static methods for creating and setting

up Task object are added. Additionally, enumerable ProteinTaskType
class is added. Enum type defines if task is created for pdb file or for
pdb identifier request.

ProteinTaskManager two new methods for creating concrete task type are added
to the general TaskManager class.

ProteinTaskProcessor this object has the knowledge about Task type and it calls
ProteinTaskAnalyzer method depending on it.

ProteinTaskAnalyzer is a task information analyzer, derived classes are specialized
for appropriate web-based service. All classes share common interface.

The task creation process is performed when computation request is sent to the gem.
The sequence diagram presented in Fig. 7.2 describes task creation process for pdb
file computation request. This process is performed as follows:
1. Send request from the Experiment script to the selected Service.
2. If the list of files that are requested to download and the selected options are

correctly defined, request is passed to Manager. The appropriate request param-
eters are created.

3. Manager calls static method from ProteinTask class in order to create Task
object. The options passed as request parameter are then set to Task object.
Writting file, file name and task identifier to Task object is also done in this
step, performed inside ProteinTask’s static method.

4. The created object is returned to Manager.
5. The newly created Task is added at the end of FIFO queue, where all tasks that

not have been computed yet are waiting.
6. The method tries to run the first waiting task from FIFO queue. Running new

task is depicted in Fig. 7.3. Running new tasks performed when new task is
added to queue and when any of actually performed computations is finished
ensures that task starvation is not possible [65].

94

7.3. Integration of Gems Using Task Queuing System

Figure 7.1. Class diagram for binding site prediction services. It is a concrete realization
of the general task queuing architecture, presented in section 4.3.1. ProteinService class
defines the system interface. ProteinTaskAnalyzer is responsible for communication with
WWWportals. Additionally, ProteinTask, ProteinTaskManager and ProteinTaskProcessor

are specialized version of the general ones from task queuing system.

95

Comparison of Services for Predicting Ligand Binding Site

Figure 7.2. Sequence diagram for Task creation process performed when
get_results_from_file method is called.

7. Created task identifier is returned to the Service and then to the Experiment
script.

Performing task computations is the next important process. Its sequence diagram
is shown in Fig. 7.3. This process is organized as follows:
1. The notification about the necessity of running a new task to analyze is passed to

the task manager. There are two types of notification: first, new task to analysis
from ProteinService call, and second, information from processor about finish
currently processing task.

2. The try_to_run_next_task method, which is responsible for handling tasks
running, is called.

3. The first analyzer object from the available analyzers queue is dequeued. If the
queue is empty, it means that all the analyzers are currently processing assigned
tasks, running new task is finished and the task stays in QUEUED status.

4. New processor object is created for gathered task and analyzer objects. The
processor runs analysis in a new thread.

5. The newly created Processor is added to the Timer’s observed processors list.
This is done for securing processing time limit and ensuring that no one task will
be starved.

6. Analysis execution on Processor is started. PROCESSING status is set on Task.
7. Task analysis process is executed in a separated thread. New ProteinTaskResult

object is created as a result of executing analysis method on Analyzer object.

96

7.3. Integration of Gems Using Task Queuing System

Figure 7.3. Sequence diagram for running Task. Manager creates a new ProteinTaskPro-
cessor to which a reference to an Analyzer is added. Processor runs analysis in new Thread.

Timer observes analysis and terminates it if maximal analysis time is exceeded.

8. Processor adds result obtained from Analyzer to task and performs finished
analysis notification on Manager. Manager adds Analyzer to available analyzers
queue, then FINISHED status is set on Task object, which is added to processed
tasks list. If there is any task waiting in the tasks queue, Manager tries to run
next Task (process starts again from point 2).

7.3.1. Analyzers

There are two types of ligand binding site prediction services available in the
virtual laboratory. The first group are web-based applications, and the second
group are locally available, binary applications. Respectively, two groups of ob-
jects responsible for analysis are created. Firstly, objects that use HTTP protocol
for communication and parsing HTML responses, and secondly, analyzers that are
local binary program wrappers. Class diagram for analyzers’ part of the system is
depicted in Fig. 7.4. ProteinTaskAnalyzer is a main class and it is a base class for
specialized analyzers objects. This class provides basic methods used by analyzers
from web-based services group. From all methods we can list: POST request headers
defining and preparing, options handling, validations and adding options to headers,

97

Comparison of Services for Predicting Ligand Binding Site

Figure 7.4. Class diagram for analyzers part of the system.

checking HTTP response code and downloading files. Every specialized analyzer
redefines start_computation method. This method is responsible for performing
complete communication process with appropriate WWW service. Detailed com-
munication process with every WWW service was developed on basis of web pages
content, and HTTP packets analysis, performed with using Wireshark software.
Analyzers from WWW services group use a standard Ruby module, Net::Http, for
communication, sending requests and receiving responses from services. The second
group, analyzers that execute binary programs, have been developed in a way de-
scribed in section 4.3.2. FodAnalyzer and PassAnalyzer belong to this group. Both
of them derive from LocalServiceTaskAnalyzer class. This class is responsible for
creating temporary data files, reading and removing those files.

7.3.2. Options validation

Almost every one of the services allows users to tune the analysis process by
setting selected parameters. A set of classes for defining available options and their
value ranges was developed in order to securing correct communication with binding
site prediction services. Those classes allow also to checking values assigned to
options that user has set. Class diagram for option mechanism is presented in
Fig. 7.5. Option class constructor creates object and assigns name, usage name

98

7.3. Integration of Gems Using Task Queuing System

and option description to it. Usage name is a string value that is meaningful for
developers, it is an accepted name that may be set in the parameters map, passed
to a gem in an analysis request. Options descriptions are used when a user calls
the method on the service that lists available options, acceptable values and their
descriptions. The most important method, that Option object provides, is checking
correctness of option value, if it has been set in acceptable option values range.
This method is called check_value. Analyzer object defines options list and sets
up their value ranges, when it is created. Those options are put into a map, which
is indexed with use_name values of created options. When the analysis request
is called, passed options connected with this request are checked. This process is
performed as follows: firstly, the option object is got from options map, based on
option name passed in parameters. After that, on the selected object, check_value
method is called, with the value passed in the input parameters map as a method
parameter. When an option has not been found (because wrong name was set as
a key in the input parameters map) or option’s value is not correct (a value for a
selected key does not belong to the acceptable values range), analysis process is not
performed. Error information is returned to user, as a result of this failed analysis.

Three specialized options classes are available to use. These classes differ by
accepted value types. These classes are:
StringOption String analysis is based on the defined regular expression. Value is

checked if it matches the expression.
NumericOption NumericOption analysis is available for double type. Minimal

and maximal values, by default set to 0.0, create acceptable values range. Check-
ing option’s value is done by comparing a passed value to option’s minimal and
maximal attributes. If the value is greater or equal than the minimum and less
or equal than the maximum it is accepted. Redefined description method adds
to the standard description an information about accepted range of values.

SelectOption Option value may be selected only from a set of defined values. Re-
defined description method adds to the standard description a list of acceptable
values.

Every Option sub-class redefines the check_value method. This method returns
true if a value has been accepted and false in other case.

7.3.3. The parameters of the created services

Available services have been parametrized with different configurations. The
configurable parameters set consists of maximum number of parallely processed
tasks, processing timeouts and service name. Values set in every service are listed
in Table 7.2.

7.3.4. Running services

There are two additional Shell scripts created in order to conveniently run and
stop all the gems created for this experiment. A ’servers_start.sh’ script runs all

99

Comparison of Services for Predicting Ligand Binding Site

Gem name Max parallel
tasks processing

Task
processing
timeout [s]

Default files to
retrieve

CastP 10 360 ’poc’, ’poc_info’
ConSurf 5 3600 ’gradesPE’, ’blast’,

’alignment’
Fod 5 3600 ’fod’

Ligsite_csc 5 3600 ’pdb’, ’pocket’,
’ligand’

Pass 5 3600 ’pass’
PocketFinder 2 3600 ’pdb’, ’pockets’
QSiteFinder 2 3600 ’pdb’, ’pockets’

SuMo 10 86400 ’text’
WebFeature 1 3600 ’significant_hits’

Table 7.2. Parameters values for available binding site prediction services.

Ruby Web services. A ’servers_shutoff.sh’ script firstly tries to find a PID value for
each service and then sends a KILL signal to an appropriate process.

7.4. The Prediction Experiment of Ligand Binding Sites

The experiment that performs comparison of available services on a dataset
created from locally stored pdb files has been developed in the virtual laboratory.
This experiment may be executed from ViroLabEPE environment. All input data
files have to be placed in one directory. The path to this directory is set as a variable
value in the main experiment script. A set of used services is also configurable and
may be changed by the researcher. A set of tasks to be computed on every service is
created for a list of pdb files that are present in input directory and for a set of used
services. An initial subset of complete task list is created for every used gem. A size
of initial tasks subset is the same for every service. This value is not connected with
gem’s maximal number of parallely processing tasks parameter. A subset size value is
configurable in experiment script. Described experiment model has been developed
in order to optimize data sending time. It is important especially for large data sets.
The experiment scenario is depicted in Fig. 7.6.As a result of sending a task to a
gem, a task identifier is returned. When the initial dataset sending is completed,
the experiment enters into a loop. In this loop the checking status of every task
from every service is performed. If a task has status TaskStatus::FINISHED, it is
taken from the gem and a new computation request is sent to this gem, if the task
queue for this service, created in the experiment, is not empty. The task result
is examined on its status if an analysis has finished with success or error. If the
task result type is an error, it may be caused by problems in communication with
WWW services, a not correctly defined PDB file, web-based services limitations,

100

7.4. The Prediction Experiment of Ligand Binding Sites

Figure 7.5. Class diagram for Options mechanism.

Figure 7.6. A model of the experiment of comparison of the binding site prediction services.
Tasks created from pdb files are sent to the service which is created as a task queuing

system. Results of analysis from each service are converted to the common format.

101

Comparison of Services for Predicting Ligand Binding Site

e.g. on analyzed protein size, or by exceeded time of an analysis. As a result of
an analysis, one file with an ’_ERROR’ suffix in its name and an error information
included in its body is written to the disk. If task’s result type is success (OK), all
the files retrieved from a service are written to the disk. From these files a subset
of required files for further analysis is selected. This subset is dependent on a used
service, and it is described in Table 7.1, in section 7.2. Selected files are passed to the
ResultsConverter gem in order to convert specific file formats to a simple form of an
information about predicted ligand binding site. A common result format consists
of only a chain name and residues numbers that form a predicted binding site. For
every analyzed protein, defined in pdb file, Jmol visualizing script is created, when
results from all services are available on the disk. This script allows users to select
and color residues predicted as a binding site by the specified service. It is done
by providing a service name. When any of services returns an error for a pdb file,
this service is omitted in a script and a group of residues for this service cannot be
selected in the visualization software. This part of the experiment is presented in
Fig. 7.7.The complete code of the experiment is listed in Appendix B.2.

7.4.1. Additional classes and scripts

A set of classes and script files is created besides the main experiment’s script and
gems depicted in section 7.2. Additional classes and scripts that provide methods
for managing tasks and analysis results are listed below.

file_utils.rb

A script. Provides functions to access to files: files reading and writting, gener-
ating file name from a service name, a pdb file name, a chain and a result type, and
also method for reading pdb files from disk and putting these files into map.

service_utils.rb

A script. This script includes functions for aiding tasks sending to services. These
functions are: examining pdb file on protein chains; checking available computation
type for selected service, if it must be done separately for every chain (ConSurf
service) or if it may be done for complete protein; definitions of required files to
download from every service lists; definition of files extensions required to store files
into the disk; unpacking WebFeature archives and defining map with data (a file
name as a key and a file content as a value).

TaskListCreator

A class. It provides method for creating list of tasks left to be computed. This list
is created from an input data directory content, a list of used services and a content
of the directory with results. It is useful especially when the experiment performing
has been interrupted. By using this object the experiment may be continued from
near the same state as it was before interruption. Additionally a report about state
may be generated.

102

7.5. Summary and Results

Figure 7.7. Results conversion and visualization in the experiment of binding sites pre-
diction services comparison. Common format of each result is analyzed and put into the

Jmol visualization script.

task_utils.rb

A script. This script provides functions that operate on tasks maps. These
functions are: getting tasks left to be computed by the service; getting next task to
be computed by the service; removing the task from the not computed tasks list;
adding and removing the task from a currently processing tasks list.

Those classes and script allow developers to design well structuralized main ex-
periment script.

7.5. Summary and Results

The seven external, web-based services for predicting a ligand binding site in pro-
tein were integrated as a gems in the virtual laboratory with usage of the developed
task queuing mechanism (See section 4.3.1). Additionally, two binary applications

103

Figure 7.8. Visualization of predicted binding sites for 1ITQ protein. At the left upper cor-
ner, an original structure is drawn with ribbons. Predicted binding sites are colored at the
bottom right as follows: red - Consurf results, blue - CastP results, yellow - PocketFinder

results and green - QSiteFinder results.

have been integrated with usage of general wrapper, which was created for this
purpose as described in section 4.3.2. For performing comparison of these services,
which was the key reason for integration in the virtual laboratory, a ResultsConverter
gem, which is responsible for creating a common results’ format, has been developed.

The experiment, that operates on pdb files from a single directory, was executed
for analyzing hydrolases as a large set of proteins. A TaskListCreator object was
used for resuming computation if an experiment has failed due to problems with
services. Each time a set of files from every service generated for analyzed files and
a set of results converted to comparable format was created. Additionally, a script
for visualizing the residues that were recognized as binding sites was created. Sample
results of visualization of human reneal dipeptidase (1ITQ) protein in Jmol software
is presented in Fig. 7.8. Detailed analysis of services comparison is presented in [57]

Chapter 8

Microarray Data Analysis

An experiment created for performing microarray data analysis is described in
this Chapter. Firstly, an overview of microarray technology is presented. Afterwards
the system for downloading microarray datasets and creating new datasets as well
as the clustering library that operates on created data model are introduced. Finally,
a structure of the created experiment is shown.

8.1. Problem Description

Microarray technique is an approach that allows to perform a transcriptome
analysis. Transcriptome is a complete set of cell’s mRNA molecules. Microarray
is a small chip covered with thousands or tens of thousands of spots. Two mi-
croarray technologies are the most popular: oligonucleotides microarrays, made in
silica technologies, and spotted microarray, made from glass and covered with a
special chemical substance, that allows DNA hybridization process. Spots contain
nucleotide probes for hybridize complementary DNA sequences. Analyzed sample
has to be marked with special fluorescent dye, green and red dyes are used. Mi-
croarray is placed into prepared solution for several hours. DNA from analyzed
sample hybridizes to probes on microarray spots. The probes may be built from
short oligonucleotide sequences, that consist of 25 nucleotides. In this case gene
identification is performed by using many short fragments of every gene that are
placed in microarray. Gene expression is marked only if all spots for a particular
gene have bound to DNA sequences. The second type of microarray probes are
relatively long cDNA sequences of 500 - 2000 basis length. This type is used in
spotted microarrays, just one spot is required for marking gene expression. Despite
the fact that microarray chip is small, a complete set of genes for the specified
organism may be often placed on a single chip, it depends on an organism’s genome

105

Microarray Data Analysis

length. Thanks to usage of fluorescent dyes, the gene expression in analyzed sample
may be recognised. Microarray scanners read amount of dye from the spots. Various
techniques are used in order to the make process more reliable. Instead of reading
only one type of fluorescent dye, a red to green fluorescent intesity ratio is com-
puted. Additionally, log scale is used in order to normalize induction / repression
regions. Finally, using different chemical dyes may influence on gene expression
value. Performing microarray analysis on the same sample with two different dyes
and computing gene expression on the basis of difference between values for every
dye is used.

Microarray experiments are large-scale techniques. Huge amount of data is pro-
duced in every experiment. Organisms’ genomes consist of thousands of genes, in
every microarray experiment many chips are used for marking gene expression in
a different time for the same specimen or analysis of a group of species. Various
techniques, such as cluster searching and analysis by using clustering algorithms,
especially hierarchical clustering, PCA method and Data mining are used during
microarray data analysis process.

Gene expression analysis with microarray technique has been applied to a wide
variety of important biological problems including mapping metabolic pathways,
tissue typing, environmental monitoring and answering a wide range of questions
pertaining to medical diagnosis of disease states [41]. Gene expression time series
may be helpful in farmacogenomics, that allow medicians to choose treatment with
maximized the efficacy with using inormation about individuals’ expression patterns
change in response to different techniques. Gene expression patterns also are useful
in searching for gene function and with comparison to reference values in patient’s
diagnose process.

Microarray experiments results are available over the Internet. Data are grouped
into experiments, with assigned experiment identifier and samples identifiers. Ex-
periments are annotated with organism name. In the virtual laboratory a set of
gems and experiments have been developed. Researcher may conduct microarray
data analysis with knowledge only on required data identifiers. Analysis may be
executed on available datasets or new datasets, created from selected samples for
the same organism type and microarray type. Finally, microarray data clustering
and visualization may be performed.

8.2. Microarray Analysis in Virtual Laboratory

Gems available in the virtual laboratory are divided on two groups: a set of
classes to retrieving data from databases and converting data into object model and
a set of implemented clustering algorithms.

8.2.1. Datasets creation

Data analysed inside microarray gems are organised in object model. The data
model allows to easily adding new data sources by creating new classes that realize
the defined interface. Among data the model concepts we can list:

106

8.2. Microarray Analysis in Virtual Laboratory

Figure 8.1. Microarray data model class diagram. GeoDataProvider uses data retriever to
download dataset from appropriate database or to create a new one from samples identi-

fiers.

Sample is consisted of all gene expressions that can be read from one microarray
chip. Data are annotated with sample identifier, platform identifier (microarray
type and producer), stored value type and organism name on which analysis was
performed.

Dataset is a set of Samples created within one microarray experiment. Every
sample have to be the same platform type as complete dataset type, also stored
value types have to be agreed. New dataset may be created if these limitations
are taken into consideration. Datasets are created from samples identifiers.

Gene expression are data transformed from the set of samples into one array
that describes one gene expression in every sample. Additionaly it contains
information that allows gene identifying.

Data available in databases are often provided in text fromat with well defined
structure. Because text format is rather difficult to operate on, data are converted
into object data model. The structure of classes belong to this model is presented
in Fig. 8.1. Microarray data model consists of following classes:

107

Microarray Data Analysis

GeoSample Sample equivalent. Identifier is set when object is created with value
passed as constructor parameter. Provides methods to access to microarray data
and description. GeoSample object is created by the data provider. GeoSample
objects may be analysed separately or as a set of samples inside GeoDataSet.
For NCBI database GeoSample is created from information parsed from HTML
page with appropriate Sample identifier location.

GeoDataSet Set of samples, microarray experiment. GeoDataSet is created by
addingGeoSamples to it. First addedGeoSample determines microarray platofrm
type and value type of whole dataset. It is required that every next added sample
have the same value of both these parameters. GeoDataSet provides methods
that allow user to get information about dataset’s samples: number of samples
in dataset; gene expression for complete dataset and for specified sample, which
is identified by sample_id identifier; printing dataset in text format, compatibile
with a NCBI database dataset formats; getting gene expression information by
creating list of GeneData objects.

GeneData is a object that contains information about one gene expression profile
in a complete dataset. If we can recognize GeoDataSet as a matrix, GeoSample
is one column in matrix values and GeneData is one matrix row.

AGeoDataProvider class is an interface that allows to access to data. This object
provides methods for downloading data from handled databases and returning these
data in text fromat. Data from existing datasets are downloaded directly, but for
newly created ones and for single sample are created from information available
in database. The second group are methods for downloading data and converting
their textual form into classes described above. Data provider uses communication
object for handling appropriate database. For NCBI database it is NCBIDataRe-
triever class. DataRetriever is able to download two types of gene expression values.
SOFT data are preprocessed and normalized and can be directly passed to further
analysis. RAW data are values directly read from microarray scanner, before next
steps of analysis process some normalization and statistical computation must be
performed on these data. SOFT data are main type on which computation in the
virtual laboratory’s experiments will be performed. When DataRetriever operates
on complete datasets available in database, it uses FTP protocol to download archive
with text data files. A path to the dataset archive is created on the basis of dataset
identifier. When archive is downloaded, it is unpacked and files with data are parsed.
When single Samples are downloaded, DataRetriever uses HTTP protocol and the
HTTP response with the complete HTML page is parsed. The address of the web
page is created on the basis of the sample identifier. When a new dataset is created
a single sample approach is used, because new dataset is built by adding samples to
it. The sequence diagram for creating new dataset process is presented in Fig. 8.2.
Requesting new dataset to be created by GeoDataProvider is completed by following
steps:
1. Creation of the new GeoDataSet object with specified identifier,
2. For every sample identifier that was passed as parameter array do:

a) Create GeoSample object with specified sample identifier,

108

8.2. Microarray Analysis in Virtual Laboratory

Figure 8.2. Sequence diagram for creating a new dataset from samples identifiers for NCBI
database. Samples objects are created on the basis of Web pages and are added to the

GeoDataSet object.

b) Call method on NCBIDataRetriever for downloading information about sam-
ple,

c) Communicate with Web page and download information. The Web page
address is generated on the basis of the sample identifier,

d) Return result in a text format,
e) Parse result within GeoDataProvider object. Extract information about mi-

croarray type, expression values type and gene expressions,
f) Set values to GeoSample object,
g) Add a new GeoSample to GeoDataSet object,

3. As a result new GeoDataSet object is created from separate samples.
Class names prefix “Geo” stands from Gene Expression Omnibus1.

8.2.2. Data clustering

A library with functions to clustering data, that operate on Geo* objects has
been developed and provided in the virtual laboratory. Two types of clustering
algorithms are available: agglomerative clustering and Isodata2 algorithm.

1 www.ncbi.nlm.nih.gov/geo/
2 http://fourier.eng.hmc.edu/e161/lectures/classification/node12.html

109

Microarray Data Analysis

Hierarchical clustering. An agglomerative version [24] of the hierarachical clus-
tering algorithm relies on a distance matrix between elements. Two nearest elements
are joined into one cluster iteratively. A dendrogram that depicts complete cluster-
isation process (joining all elements into one cluster) is created. A threshold value
for a distance between clusters that cannot be joined together provides to creating
more than one cluster as a result. Clustering process is dependent on elements’
distance metrics, linkage criteria (counting distance between clusters) and a way in
how cluster is represented.

Isodata algorithm. Isodata stands for Iterative Self-Organizing Data Analysis
Technique. It is more sophisticated version of K-means clustering algorithm. This
algorithm requires on start a K value, that means expected cluster number to create,
the same as in K-means algorithm, but resulted cluster numbers may be different
from the expected value. Isodata algorithm is able to split and merge the created
clusters, these operations depend on the number of elements that are assigned to
each cluster and cluster structure. Centers of clusters are choosen from the data set
at the beginning of algorithm execution. After that, each sample is assigned to the
closest cluster center, on the basis of a distance counted with the usage of selected
samples metrics. Clusters with too few members are then discarded. If currently
too few clusters are created (threshold value is K/2), clusters are split. This step
is done on basis of a standard deviation of the distance from every sample to the
cluster center, and a number of elements assigned to each cluster. In the case of too
many clusters created, they are merged on the basis of a distance matrix between
cluster centers. Isodata is an iterative algorithm. For clusters created in every loop,
the samples are asigned at the loop begining and the full process is iterated. The
biggest problem in using Isodata algorithm is defining set of parameters required to
performing clusterization. Required parameters are:
• number of clusters desired,
• maximum number of iterations allowed,
• maximum number of pairs of clusters which can be merged in a single iteration,
• a threshold value for minimum number of samples in each cluster can have (used

for discarding clusters),
• a threshold value for standard deviation (used for split operation),
• a threshold value for pairwise distances (used for merge operation).
This number of parameters to set requires having large knowledge about the data.
If we are clustering microarray data, setting these parameters properly is not always
possible.

Library implementation. A class diagram for the created clustering library is
presented in Fig. 8.3. Four modules are included in this library:

Data model. Classes that have information about cluster, samples assigned to
cluster and cluster representation.
• Cluster - Contains all samples asigned to cluster, allows adding and removing

samples. Provides information about cluster score. Important cluster element

110

8.2. Microarray Analysis in Virtual Laboratory

Figure 8.3. Class diagram for microarray data clustering library.

111

Microarray Data Analysis

is its representation, which is a cluster value available to external usage. Addi-
tionaly, a method for writting cluster state, and its all samples to XML format
is created.

• HierarchicalCluster - It is an extension of Cluster class, that allows joining
other clusters into this cluster, in order to create clusters hierarchy. This class
provides also methods for managing included clusters and redefines methods for
access to samples. How this method is recursively called on clusters included in
the main cluster, and then generated results are gathered.

• ClusterRepresentation - Cluster representation is based on selecting one el-
ement from samples assigned to cluster, on which further computation will be
performed. Three types of cluster representation sub class are available: median
(middle element), mean (mean from all elements, computed in every dimension)
and user (used in Isodata algorithm, representation is set externally and it is
independet of samples asigned to cluster).

Metrics. A way how data are clustered is dependent on selected metrics. Two type
of metrics are used in library:
• Linkage criteria - it is a metric between clusters. It determines the distance

between a set of samples as a function of a two samples distance. Available
criteria are:
— Complete Linkage (max{d(a, b) : a ∈ A, b ∈ B}),
— Single Linkage (min{d(a, b) : a ∈ A, b ∈ B}) and
— Average Linkage (UPGMA, 1

|A||B|
∑

a∈A

∑
b∈B d(a, b)).

A selected sample metric is used for counting linkage value. Sample metric is set
when Linkage criteria object is created.

• Distance Measurements Between Data Points - available metrics are: Eu-
clidean, Manhattan and Pearson Correlation.

Algorithm instrumentation. Clustering algorithms may perform computation
of clustering score on the basis of information provided by classes belonging to
instrumentation module. Currently available measure, modularity score, provide
information about reasonability of further joining examples into clusters.

Algorithms. Two different algorithms are developed in clustering library:
• Agglomerative clustering - This algorithm creates HierarchicalCluster ob-

jects. At the begining every example creates single cluster. In each subsequent
iteration the two closest clusters, in the sense of selected metrics, are joined
into one. Both Linkage criteria and samples distance metrics have an influence
on clusters similarity. Clusters grouping is broken when the distance between
clusters exceed a threshold value. An array of HierarchicalCluster objects is
returned as a clusterization result. HierarchicalCluster objects may be reviewed
recursively, every cluster contains its sub-clusters.

• Isodata - An algorithm that operates on Cluster objects. Any of available Sam-
ples metrics may be used. An array of Cluster objects, with assigned samples,
is returned as a result.

112

Figure 8.4. The structure of microarray data analysis experiment. Dataset is created from
sample identifiers. Conversion to ARFF format is required for analysis in Weka library.

Results are converted back to the GeoDataset.

A way how data model used in library and clustering algorithms are designed allows
user to cluster GeoSample objects as well as GeneData objects. Clustering samples
may be useful in assigning a new patient to one of reference gene expression values,
while clustering genes may be useful in analysing gene function and drugabillity
process.

8.3. Sample Microarray Experiment in Virtual Laboratory

The created experiment presents how to use data provider, format converters and
perform data clusterization. The model of the experiment is depicted in Fig. 8.4.
A set of sample identifiers from NCBI Gene Expression Omnibus database is an
input dataset. These identifiers are used to create GeoDataSet object within Geo-
DataProvider gem. Because Weka library is used to perform clusterization process
(gems that provide Weka functionality), a GeoDataSet object has to be converted
to ARFF fromat, in order to use these data within WekaClusterer gem. A Cobweb
algorithm is used in clusterization process. As a result of clusterization, ARFF file
is returned. It is necessary to convert these result back into GeoDataSet object.
The last step of this experiment is results visualization.

8.4. Summary

The created solution provides a possibility of analysis microarray data using one
of the available clustering technologies. Three clustering libraries (Cluto, Cluster
and Weka) have been integrated and may be used with data format converters.
Additionaly a clustering library that operates directly on microarray data model has
been developed. The developed data model and data providers allow researcher to
analyse currently available microarray datasets as well as to create new datasets by
joining samples from different experiments. The data may be obtained from NCBI

Microarray Data Analysis

GEO or EBI ArrayExpress databases, but new databases may be easily added by
implementing defined data retrieval interface.

114

Chapter 9

Results Presentation Layer

This chapter presents the applications that are often used in the last stage of
an experiment. The visualizers are used by researchers in the results analysis. In
the virtual laboratory numerical data may be plotted with the usage of Gnuplot pro-
gram, which is presented first. Then, applications integrated with Java Web Start
technology for protein structure visualization, like Jmol and ProteinWorkshop, and
Jalview for visualizing sequence alignments are introduced. Finally, the integration
of a microarray clustered data visualization with JavaTreeView is presented.

9.1. Plotting Numerical Data With Gnuplot

Gnuplot is a command-driven interactive function and data plotting program.
Gnuplot can produce output directly on screen, or in many formats of graphics files,
including PNG, EPS, SVG, JPEG and many others. The program can be used both
interactively and in batch mode using scripts. The second approach is used to run
it in the virtual laboratory. Plotting two-dimensional functions and data points in
many different styles (points, lines, error bars) and plotting three-dimensional data
points and surfaces (also in many different styles, like contour plot, mesh) as well
as algebraic computation in integer, float and complex arithmetic are possible in
gnuplot. This program is used as the plotting engine of GNU Octave, Maxima and
gretl, and it can be used from various scripting languages, including Ruby, via Ruby
Gnuplot.

The integration of the gnuplot was performed by wrapping its binaries and pub-
lishing as a Web service. Two methods are accessible: plot, for drawing a single
serie plots, and multiplot, where data from many series may be included. Both

115

Results Presentation Layer

methods take two arguments: a gnuplot script and input data. In the first case, an
input is a single file, while in multiplot method it is an array of data files. Both
methods are organized as follows:
1. Create temporary directory for handling plotting request,
2. Store input data file (many files in multiplot) in this directory,
3. Analyse script body, replace the ’input’ string in the script with correct name of

created file (in multiplotmethod replaced string patterns are input{NR}, where
{NR} is the next number that comes out of the length of input data array),

4. Set the name of results plot in the script,
5. Store corrected script in the temporary directory,
6. Execute gnuplot,
7. Remove temporary directory,
8. Read result file, if the file was correctly created its URL path is returned, in the

other case an information about error is the result.
The usage of gnuplot scripts directly, instead of gnuplot wrappers, like Ruby Gnu-
plot, enables researchers to use the complete gnuplot capabilities. An example script
and the results obtained for this script execution are presented in Fig. 9.1. This is
the result of execution an Protein Sequence and Structure comparison experiment
(see Chapter 6) on particular data.

9.2. Protein Structure Visualization with Jmol and
ProteinWorkshop

Protein structure visualization is a quite complex task, but the programs that
realize it aid researchers working on different aspects of protein structure. The vi-
sualization is often based on the information from pdb file. The variety of available
solutions give a plenty of functions for showing structures, like different representa-
tion of structure (e.g. spacefill, balls and sticks, cartoons, ribons, surfaces), different
coloring schemes (e.g. by atom type, basing on secondary structure, by group or
other values from pdb file), selecting atoms or measurements. From the most popular
structure visualizers two Java-based applications, Jmol and ProteinWorkshop, were
selected and integrated into the virtual laboratory. The integration was performed
with Java Web Start Technology.

Java Web Start is a technology that enables deploying standalone Java software
applications over the network. It uses The Java Network Launching Protocol &
API (JNLP), which provides a browser-independent architecture for deploying Java
2 technology-based applications to the client desktop. Application must be packaged
in JAR files to work with Java Web Start and correct JNLP file must be provided
to make an application accessible. The JNLP file is an XML document which is
outlined with ’jnlp’ as the root element and ’information’, ’security ’, ’resources ’,
and ’application-desc’ as its subelements. The base path from which application
should be downloaded is defined as ’codebase’ in ’jnlp’ element. The ’information’
element defines application title, vendor and description. Each application is, by

116

9.2. Protein Structure Visualization with Jmol and ProteinWorkshop

Figure 9.1. An example of the gnuplot script and the plot. This is a part of the script
used to generate multi series plot in protein sequences and structures comparison experi-
ment. The results presents W profiles for L chain of Igg-Fab fragment of engineered human
monoclonal antibody CTM01protein (structure ID: 1AD9), obtained for ALL families com-

parison. See details in Chapter 6.

117

Results Presentation Layer

default, run in a restricted execution environment, similar to the Applet sandbox.
The ’security’ element can be used to request unrestricted access. The ’resources ’
is used to specify all the resources, such as Java class files, native libraries, and
system properties, that are part of the application. All required jar files to run
application, listed in this section, must be accessible from the same server as it
was stated in ’codebase’ value. The ’application’ indicates that the JNLP file is
launching an application (as opposed to an applet). This element has an optional
attribute, ’main-class ’, which can be used to specify the name of the application’s
main class. Arguments can be specified to the application by including one or more
nested ’argument’ elements.

9.2.1. Protein Workshop

The Protein Workshop [52] is a tool for quickly generating high quality images
of large macromolecular structures. The workshop provides easy-to-use controls
for manipulating structural presentation based on features such as hydrophobic-
ity, residue and conformation. This software is based on the Java2 platform and
the graphics library uses JOGL; to run this software the platform must support
OpenGL. Protein Workshop is deployed in Protein Data Bank using Java Webstart.
Its integration with the virtual laboratory is based on modified JNLP file. When the
user runs Protein Workshop application, it is downloaded from its provider servers
(www.pdb.org), but an URL to analyzed file is modified. The appropriate URL from
the virtual laboratory or location on the user’s disk is inserted as an ’structure_url ’
argument. Additionally, the options that Protein Workshop handles may be set.
Multiple structures (defined in separated pdb files) also may be loaded at once. An
example of the structure visualization rendered in the Protein Workshop software is
shown in Fig. 9.2.

9.2.2. Jmol

Jmol [5] is an open-source Java viewer for three-dimensional chemical structures,
with features for chemicals, crystals, materials and biomolecules. Features include
reading a variety of file types and output from quantum chemistry programs, and
animation of multi-frame files. It consists of three main components: a web browser
applet, a standalone Java application and an integratable Java component. Ren-
dering in Jmol may be driven by scripts, which is one of the its advantages. In the
virtual laboratory Jmol is accessible in two ways, presented below.

Simple Jmol application, available to download from the virtual laboratory
Http server with using Java Web Start. It may be used to execute one Jmol script.
An example of its usage is an experiment for comparing binding site prediction
services, where the researcher wants to show only one of obtained result (and gener-
ated Jmol scripts for their visualization), or every of protein should be visualize in a
separated Jmol application. As a main class the org.openscience.jmol.app.Jmol
is used. A path to the visualization script is inserted as an argument in JNLP file.

118

9.2. Protein Structure Visualization with Jmol and ProteinWorkshop

Figure 9.2. The Protein Workshop visualization example.

An example of protein structure visualization performed in Jmol is shown in
Fig. 7.8.

Enhanced Jmol visualizer, has been developed, which embeeds Jmol viewer
and extends it capabilities with possibility of changing visualized structures and
dynamically selecting residues that were predicted as binding sites in the different
services without necessity of using Jmol scripts. This program requires a path to
XML file with result definitions. In this file all information about analyzed proteins
have to be included. The example of input file is presented on Listing. A ’structure’
element defines its name, which is displayed in a listbox, a path to pdb file which
has to be opened. Every result is defined in ’service’ element, which also has ’name’
attribute that is displayable. Residues numbers are listed in ’chain’ elements, they
are used to perform selection in Jmol viewer.
<inputs>

<s t ru c tu r e>
<name>PDB_ID_1</name>
<path>path/ to /pdb/ f i l e</path>
<s e r v i c e name="SERVICE1">

<chain id="A">
1 2 3 4 5 6

</ chain>
<chain id="B">

37 39

119

Results Presentation Layer

Figure 9.3. Enhanced Jmol viewer main window.

</chain>
. . .

</ s e r v i c e>
<s e r v i c e name="SERVICE2">

. . .
</ s e r v i c e>
. . .

</ s t r u c tu r e>
<s t ru c tu r e>

. . .
</ s t r u c tu r e>
. . .

</ inputs>

The application window is presented in Fig. 9.3. On the left panel there are
available combo boxes for selecting structure to display and coloring results. The
complete protein may be displayed in one of available representations: balls and
sticks, cartons, ribbons or surface. The results for selected service are always dis-
played as coloured spacefills (available colors are white, red, blue, yellow, green and
grey) or may be hidden. Results from many services may be displayed at the same
time, but only one protein may be examined at once. If selected protein is changed,
the visualization settings from last available protein are lost.

9.3. Sequences Alignment in Jalview

Jalview [67] is a Java multiple alignment editor and analysis tool. Its primary
function is the editing and visualization of sequence alignments, and their interactive
analysis. Tree building, principal components analysis, physico-chemical property

120

conservation and sequence consensus analyses are built in to the program. Web ser-
vices enable Jalview to access remote alignment and secondary structure prediction
programs, as well as to retrieve protein and nucleic acid sequences, alignments, pro-
tein structures and sequence annotation. Sequences, alignments, trees, structures,
features and alignment annotation may also be exchanged with the local filesystem.
Multiple visualizations of an alignment may be worked on simultaneously, and the
user interface provides a comprehensive set of controls for colouring and layout.
Alignment views are dynamically linked with Jmol structure displays, a tree viewer
and spatial cluster display, facilitating interactive exploration of the alignment’s
structure. The application provides its own Jalview project file format in order to
store the current state of an alignment and analysis windows1.

Jalview may be obtained with Java Web Start. It is integrated in the virtual
laboratory with the same technology. Defined JNLP file downloads Jalview from
its provider website (’http://www.jalview.org/webstart’ as ’codebase’). A path
to the file with generated alignments is set as open argument’s value. Additional
arguments, like coloring scheme, defaultly defined as Clustal coloring in JNLP file,
may be set. As a main class, jalview.bin.Jalview is used. An example of Jalview’s
alignment visualization is presented in Fig. 6.4.

9.4. Microarray Clustering Results in JTreeView

Java TreeView is an open source, cross-platform gene expression visualization
tool. It may be used for interactively displaying clustered gene expression data.
Tree view uses three files for displaying clusterization results: a .cdt (clustered data
table) file, which contains the original gene data (gene and samples names and
expressions), but reordered, to reflect the clustering, a .gtr file (gene tree), and a
.atr file (array tree). These tree file reflect the history of how the cluster was built,
and can be used to contruct how the tree(s) should look.

JTreeView is integrated in the virtual laboratory with Java Web Start technology.
The paths to cdt, gtr and atr files are execution attributes. The results have to
be converted from used data model (described in section 8.2.2) and their XML
represenations to the files used by JTreeView (cdt, gtr and atr files).

9.5. Summary

In the scope of this thesis the wide range of applications that are able to visualize
data have been integrated in the virtual laboratory. Most of them are available using
Java Web Start technology. There are applications for visualizing specialized data,
such as protein structure (ProteinWorkshop, Jmol), sequence alignments (Jalview)
or gene expression (JTreeView) as well as simple numerical data (Gnuplot). Numer-
ical data may be also displayed with using R scripts and the R gem capabilities. The
visualizers are often complex applications and may be used not only for presenting
data obtained by experiment executions, but also for analyzing these data.

1 This description comes from JalView documentation

Results Presentation Layer

Figure 9.4. Gene expression visualization in JTreeView software.

122

Chapter 10

Conclusions and Future Work

This Chapter summarizes the thesis goals that were achieved during the work on
it and presents tasks recognized as future work to enrich the virtual laboratory as a
bioinformatics framework.

10.1. Summary

The main goal of this thesis was to prepare a set of applications suited to solve
common problems in the field of bioinformatics, as well as to integrate them into
the virtual laboratory. This goal has been successfully achieved. The applications
were integrated and registered in the virtual laboratory. The experiments that use
prepared applications were developed.

All the achieved sub-goals, that were identified in Chapter 1 are listed below:
• Analysis of the available bioinformatics applications - as a result of this

analysis the main bioinformatics research areas to be supported were selected.
Additionally, bioinformatic databases that are required to obtain needed data
were identified.

• Classification of the bioinformatics applications and their division into
a number of categories. Two classifications of applications have been devel-
oped: by scope of usage and by technology. On the basis of the first one, the
complete set of applications that were integrated into the virtual laboratory has
been chosen.

• The design of integration of the selected applications. On the foun-
dation of the available grid object implementation technologies and selected
applications, two integration mechanisms were developed, as well as to every
application an appropriate integration technology were assigned.

123

Conclusions and Future Work

Technology Gems

Local gem 4
Implementation 6

Libraries integration 4
Binary program wrappers 8
HTTP service wrappers 8

Java Web Start applications 4
External Web service 8

Table 10.1. Created gems statistics, classification by technology

• Creating a set of ViroLab gems and preparing experiments. The pre-
sented sets of gems and experiments were created. The most advanced bioin-
formatic experiments are protein sequence and structure comparison as well as
a comparison of ligand binding site prediction services. In every experiment
gems responsible for performing main computation parts may be substituted by
another application (algorithm) that solves the same problem.

• Preparing general methods and tools to make using the bioinformatics
applications easier in the virtual laboratory experiments. The created
integration mechanisms facilitate adding new applications to the virtual labora-
tory. In the other hand, some additional gems, like data format converters, were
created for ensuring correct cooperation between gems in the same experiment.

During the work on this thesis the following artifacts were created:
• Two new mechanisms: task queuing system and binary program wrapper, that

are extensions used for integration new applications,
• 42 gems suited to solve bioinformatics problems,
• two main experiments: protein sequence and structure comparison and a com-

parison of ligand binding site prediction services,
• some additional sample experiments, where gems usage were explained.
The created gems may be divided into categories, according to classifications pre-
sented in section 4.2: by gem technology (see Figure 4.2), listed in Table 10.1 and
by their scope of usage (see Figure 4.3), listed in Table 10.2.

The ViroLab virtual laboratory is a complete environment for running scientific
applications. The enrichment of the virtual laboratory capabilities by new gems was
performed with usage of existing gem technologies, as well as using two mechanisms
that were added during this work. The advantages of using the virtual laboratory
as a framework for bioinformatics applications are as follows:
• adding new applications and integrating databases is relatively easy and may be

performed for most of bioinformatics applications, irrespectively of technology
the application is made,

• thanks to Grid Object model application technology is transparent to the user,
so researcher can use any of existing gems in the bioinformatic experiments,
especially if there are more applications suited to solve the same type of problem,

124

10.2. Future work

Layer Subcategories

Results
presentation

5

numerical
data 1

protein
structure 2

sequences alignment 1 microarray data 1

Specialized
analysis 21

Protein Comparison 9

Sequences align. 4
Structures align. 4

Additional 1

Binding Site pred. 10

Services 9
Additional 1

Microarray 2

Data preparing 1
Data clustering 1

Basic
analysis 11

Statistics 1 Clustering 3 Data mining 5 Dimensions 2

Database
access 5

Database access 4 Conversion 1

Table 10.2. Created gems statistics, classification by scope of usage

• managing results of the experiment execution is organized, and allows user to
access and browse these data easily.

10.2. Future work

The prepared large set of gems and created experiments do not exhausted a
possibilities of enhancing the virtual laboratory capabilities. In the future, the
following work could be done to improve the virtual laboratory as a bioinformatic
framework.
• New applications integration. There are many research areas in the bioin-

formatic field, that are not covered by this thesis. Adding new software that
may be applicable on the field of phylogenetic analysis, protein interaction mod-
elling, drug researching, pattern recognition or decission support may enlarge
the number of possible users.

• Integration of applications with Graphical User Interface. Currently this
type of application is integrated with using the Java WebStart technology. The
better way to integrate them might be using plugin architecture inside ViroLab
user interfaces. The other type of solution may be applets, AJAX, JavaFX that
could be applicable in EMI interface.

• Graphical workbench for using bioinformatics services. The structure of
the general bioinformatic problem, presented in this thesis, shows bioinformatic
experiment as a multiple application pipeline. Creating experiments may be
easier with using graphical environment to connect gems in appropriate order.
This step however requires some additional work, like defining accepted and
produced data formats for every gem and creating converters.

• Integration of a mechanism to run own local command-line applica-
tions. Many researchers use their own programs to create or analyze experiment
results. The enhanced binary program wrapper may be applicable to use these

125

programs during experiment execution in the same way as “standard” gems are
used.

These proposed enhancements will enable the further development of virtual labo-
ratory as a convenient and flexible environment for applications of bioinformatics
and other research domains.

Bibliography

[1] Bioconductor project homepage, http://www.bioconductor.org/.
[2] Cluto homepage, http://glaros.dtc.umn.edu/gkhome/views/cluto.
[3] Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical

College, http://www.bioinformatics.cm-uj.krakow.pl.
[4] H2O homepage, http://dcl.mathcs.emory.edu/h2o/.
[5] Jmol: an open-source Java viewer for chemical structures in 3D,

http://www.jmol.org/.
[6] JRuby homepage, http://www.jruby.org/.
[7] Official ViroLab webpage, http://virolab.org/.
[8] R Project homepage, http://www.r-project.org/.
[9] RCSB PDB homepage, http://www.pdb.org.
[10] Ruby language homepage, http://www.ruby-lang.org/.
[11] Virolab EPE homepage, http://virolab.cyfronet.pl/trac/epe.
[12] ViroLab virtual laboratory, http://virolab.cyfronet.pl/.
[13] PDB File Format - Contents Guide Version 3.20, September 2008.
[14] T. Arodz. Bioinformatics course, AGH, 2008/2009.
[15] A. D. Baxevanis and F. B. F. Ouellette. Bioinformatics: A Practical Guide to the

Analysis of Genes and Proteins. Wiley-Interscience, April 2001.
[16] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucl. Acids Res.,
28(1):235–242, January 2000.

[17] A. T. Binkowski, S. Naghibzadeh, and J. Liang. CASTp: Computed Atlas of Surface
Topography of proteins. Nucl. Acids Res., 31(13):3352–3355, July 2003.

[18] G. P. Brady and P. F. Stouten. Fast prediction and visualization of protein binding
pockets with PASS. J Comput Aided Mol Des, 14(4):383–401, May 2000.

[19] M. Brylinski, L. Konieczny, P. Czerwonko, W. Jurkowski, and I. Roterman.
Early-stage folding in proteins (In Silico) sequence-to-structure relation. Journal of
Biomedicine and Biotechnology, 2 (2):65–79, 2005.

[20] M. Brylinski, L. Konieczny, A. Kononowicz, and I. Roterman. Conservative secondary
structure motifs already present in early-stage folding (in silico) as found in serpines
family. Journal of Theoretical Biology, 251:275–285, 2008.

[21] M. Brylinski, L. Konieczny, and I. Roterman. SPI–structure predictability index for
protein sequences. In Silico Biology, 5:0022, 2004.

127

Bibliography

[22] M. Brylinski, K. Prymula, W. Jurkowski, M. Kochanczyk, E. Stawowczyk,
L. Konieczny, and I. Roterman. Prediction of Functional Sites Based on the Fuzzy
Oil Drop Model. PLoS Computational Biology, 3(5):e94+, May 2007.

[23] M. Bubak, T. Gubala, M. Malawski, B. Balis, W. Funika, T. Bartynski, E. Ciepiela,
D. Harezlak, M. Kasztelnik, J. Kocot, D. Krol, P. Nowakowski, M. Pelczar, J. Wach,
M. Assel, and A. Tirado-Ramos. Virtual Laboratory for Development and Execution
of Biomedical Collaborative Applications. In Computer-Based Medical Systems, 2008.
CBMS ’08. 21st IEEE International Symposium on, pages 373–378, 2008.

[24] P. Cichosz. Systemy uczace sie. Wydawnictwa Naukowo-Techniczne, 2 edition, 2007.
[25] E. Ciepiela, J. Kocot, T. Gubala, M. Malawski, M. Kasztelnik, and M. Bubak. Virtual

Laboratory Engine GridSpace Engine. In M. Bubak, M. Turala, and K. Wiatr, editors,
Proceedings of Cracow Grid Workshop - CGW’07, pages 53–58, Krakow, Poland,
October 2007. ACC CYFRONET AGH.

[26] S. J. Cox, editor. Soaplab - a unified Sesame door to analysis tools, number ISBN -
1-904425-11-9. All Hands Meeting, Martin Senger, Peter Rice, Tom Oinn, September
2003.

[27] J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz, and J. Liang. CASTp:
computed atlas of surface topography of proteins with structural and topographical
mapping of functionally annotated residues. Nucl. Acids Res., 34:W116–118, July
2006.

[28] R. C. Edgar. Muscle: a multiple sequence alignment method with reduced time and
space complexity. BMC bioinformatics, 5(1), August 2004.

[29] R. C. Edgar. Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucl. Acids Res., 32(5):1792–1797, March 2004.

[30] W. Funika, D. Harezlak, D. Krol, P. Pegiel, and M. Bubak. Developer and User Inter-
faces to the Virolab Virtual Laboratory. In M. Bubak, M. Turala, and K. Wiatr, edi-
tors, Proceedings of Cracow Grid Workshop - CGW’07, pages 47–52, Krakow, Poland,
October 2007. ACC CYFRONET AGH.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[32] R. Gentleman, V. Carey, W. Huber, R. Irizarry, and S. Dudoit, editors. Bioinformatics
and Computational Biology Solutions Using R and Bioconductor (Statistics for Biology
and Health). Springer, 1 edition, August 2005.

[33] T. Gubala, M. Kasztelnik, M. Malawski, and M. Bubak. Development and Execu-
tion of Collaborative Application on the ViroLab Virtual Laboratory. In M. Bubak,
M. Turala, and K. Wiatr, editors, Proceedings of Cracow Grid Workshop - CGW’07,
October 2007, Krakow, Poland, 2007. ACC-Cyfronet AGH. to appear.

[34] M. Hendlich, F. Rippmann, and G. Barnickel. LIGSITE: automatic and efficient
detection of potential small molecule-binding sites in proteins. Journal of Molecular
Graphics and Modelling, 15(6):359–363, December 1997.

[35] P. G. Higgs and T. Attwood. Bioinformatics and Molecular Evolution. Blackwell
Publishing Limited, January 2005.

[36] L. Holm and J. Park. Dalilite workbench for protein structure comparison. Bioinfor-
matics, 16(6):566–567, June 2000.

[37] B. Huang and M. Schroeder. LIGSITEcsc: Predicting ligand binding sites using

128

Bibliography

the Connolly surface and degree of conservation. BMC Structural Biology, 6:19+,
September 2006.

[38] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn. Tav-
erna: a tool for building and running workflows of services. Nucleic Acids Research,
34(Web Server issue):729–732, July 2006.

[39] M. Jambon, O. Andrieu, C. Combet, G. Deleage, F. Delfaud, and C. Geourjon. The
SuMo server: 3D search for protein functional sites. Bioinformatics, 21(20):3929–3930,
October 2005.

[40] M. Jambon, A. Imberty, G. Deléage, and C. Geourjon. A new bioinformatic approach
to detect common 3D sites in protein structures. Proteins, 52(2):137–145, August
2003.

[41] D. E. Krane and M. L. Raymer. Fundamental Concepts of Bioinformatics. Benjamin
Cummings, September 2002.

[42] A. Labarga, F. Valentin, M. Anderson, and R. Lopez. Web Services at the European
Bioinformatics Institute. Nucl. Acids Res., 35(Web Server issue), June 2007.

[43] M. Landau, I. Mayrose, Y. Rosenberg, F. Glaser, E. Martz, T. Pupko, and N. Ben-Tal.
ConSurf 2005: the projection of evolutionary conservation scores of residues on protein
structures. Nucleic Acids Res, 33(Web Server issue), July 2005.

[44] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan,
H. Mcwilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson,
T. J. Gibson, and D. G. Higgins. Clustal w and clustal x version 2.0. Bioinformatics,
23(21):2947–2948, November 2007.

[45] A. T. Laurie and R. M. Jackson. Q-SiteFinder: an energy-based method for the
prediction of protein-ligand binding sites. Bioinformatics, 21(9):1908–1916, May 2005.

[46] M. P. Liang, D. R. Banatao, T. E. Klein, D. L. Brutlag, and R. B. Altman. WebFEA-
TURE: An interactive web tool for identifying and visualizing functional sites on
macromolecular structures. Nucleic Acids Research, 31 (13):3324–3327, 2003.

[47] R. Lopez. 2Can Support Portal, http://www.ebi.ac.uk/2can/home.html.
[48] D. Lupyan, A. Leo-Macias, and A. R. R. Ortiz. A new progressive-iterative algorithm

for multiple structure alignment. Bioinformatics, June 2005.
[49] M. Malawski, T. Bartynski, and M. Bubak. Invocation of operations from script-based

Grid applications. Future Generation Computer Systems, May 2009.
[50] M. Malawski, T. Gubala, and M.Bubak. Wirtualne Laboratorium dla chorob za-

kaznych - ViroLab. rozdzial skryptu, red I. Roterman-Konieczna, (w przygotowaniu).
[51] M. Malawski, D. Kurzyniec, and V. Sunderam. MOCCA - towards a distributed

CCA framework for metacomputing. In Proceedings of 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Joint Workshop on
High-Performance Grid Computing and High-Level Parallel Programming Models -
HIPS-HPGC, April 4-8, 2005, Denver, Colorado, USA, page 174a. IEEE Computer
Society Press, 2005.

[52] J. L. Moreland, A. Gramada, O. V. Buzko, Q. Zhang, and P. E. Bourne. The Molecular
Biology Toolkit (MBT): a modular platform for developing molecular visualization
applications. BMC bioinformatics, 6, 2005.

[53] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural
classification of proteins database for the investigation of sequences and structures.
Journal of molecular biology, 247(4):536–540, April 1995.

129

Bibliography

[54] C. Notredame, D. G. Higgins, and J. Heringa. T-coffee: A novel method for fast and
accurate multiple sequence alignment. Journal of molecular biology, 302(1):205–217,
September 2000.

[55] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice and Experience,
18(10):1067–1100, August 2006.

[56] A. R. Ortiz, C. E. Strauss, and O. Olmea. Mammoth (matching molecular models
obtained from theory): an automated method for model comparison. Protein science
: a publication of the Protein Society, 11(11):2606–2621, November 2002.

[57] K. Prymula and I. Roterman. Catalytic residues in hydrolases; analysis of tools
destined to ligand-binding site prediction. 2009.

[58] B. Rost and J. Liu. The PredictProtein server. Nucleic Acids Res, 31(13):3300–3304,
July 2003.

[59] I. Roterman. The geometrical analysis of peptide backbone structure and its local
deformations. Biochimie, 77 (3):204–216, 1995.

[60] I. Roterman. Modeling the optimal simulation path in the peptide chain
folding–studies based on geometry if alanine heptapeptide. Journal of Theoretical
Biology, 177 (3):283–288, 1995.

[61] I. Roterman, M. Malawski, and T. Jadczyk. Conservative structural element in pro-
teins engaged in immunological signal transduction.

[62] G. D. Schuler, J. A. Epstein, H. Ohkawa, and J. A. Kans. Entrez: molecular biology
database and retrieval system. Methods in enzymology, 266:141–162, 1996.

[63] M. Senger, P. Rice, A. Bleasby, T. Oinn, and M. Uludag. Soaplab2: more reliable
Sesame door to bioinformatics programs.

[64] M. Shatsky, R. Nussinov, and H. J. Wolfson. A method for simultaneous alignment
of multiple protein structures. Proteins, 56(1):143–156, July 2004.

[65] A. Silberschatz, P. B. Galvin, and G. Gagne. Podstawy Systemow Operacyjnych.
Wydawnictwa Naukowo-Techniczne, 2005.

[66] J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,
22(22):4673–4680, November 1994.

[67] A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Bar-
ton. Jalview Version 2–a multiple sequence alignment editor and analysis workbench.
Bioinformatics, 25(9):1189–1191, May 2009.

[68] I. H. Witten and E. Frank. Data mining : practical machine learning tools and
techniques. Morgan Kaufmann series in data management systems. Morgan Kaufman,
June 2005.

Appendix A

Glossary

The Glossary explains terms used in this thesis, to make bioinformatic definitions
intelligible and unequivocal. This Glossary is based on Glossaries from [35] and [41].

A Adenine. One of two purines that are used as nitrogenous bases.
activator Any substance that increases the velocity if an enzyme-catalyzed reaction
active site The region on the three-dimensional surface of a protein where catalysis

occurs.
alignment A pairing pf two homologous nucleotide or protein sequences for the

purpose of identifying the location of accumulated changes since they last shared
a common ancestor.

alleles Different versions of any given gene within a species of organism.
alpha carbon The central carbon in an amino acid to which side chains (R-groups)

are bound.
anti-parallel Showing opposite orientation; in the case of double-stranded DNA,

this means that if one strand is 5’ to 3’ orientation, its complementary strand
will be in the opposite, 3’ to 5’ orientation.

backbone (of an amino acid) Consist of amide, an alpha carbon, and a car-
boxylic acid, or carboxylate group.

base pair (1) The interaction between purines and pyrimidines in double-stranded
DNA. (2) The smallest unit of measure of double-stranded DNA length.

C Cytosine. One of two pyrimidines that are used as nitrogenous bases in DNA
and RNA molecules.

cDNA Complementary DNA. DNA synthesized from an RNA template by a reverse
transcriptase enzyme.

131

Glossary

central dogma of molecular biology Process by which information is extracted
from nucleotide sequence of a gene and then used to make a protein.

chromosome In prokaryotes, the DNA molecule containing a cell’s genome. In
eukaryotes, a linear DNA molecule complexed with proteins that contains a large
amount of genetic information.

codon Group of three nucleotides in an RNA copy of the coding portion of a gene,
corresponding to a specific amino acid.

consensus sequence A sequence that represents the most common nucleotide or
amino acid at each position in two or more homologous sequences.

deleterious mutation A mutation that has an adverse effect on the fitness of an
organism.

deoxyribonucleic acid (DNA) A usually double-stranded biopolymer of linked
nucleotides in which the sugar residue is deoxyribose. The molecular basis of
heredity.

enzyme A biological catalyst (usually a protein) that causes a specific chemical
reaction to proceed more quickly by lowering its activation energy.

eukaryote An organism whose cells contain complex structures enclosed within
membranes. Almost all species of large organisms are eukaryotes, including
animals, plants and fungi.

exon A nucleic acid sequence that is represented in the mature form of an RNA
molecule after either portions of a precursor RNA (introns) have been removed
by cis-splicing or by two or more precursor RNA molecules have been ligated by
trans-splicing.

family Consist of protein that are more than 50% identical in amino acid sequence
across their entire length.

G Guanine. One of two purines that are used as a nitrogenous base.
gap penalty A reduction in the score for an alignment that is invoked to minimize

the introduction of gaps.
gaps A dash or series of dashes introduced to an alignment to reflect the occurence

of an indel in one of two aligned sequences sincte they last shared a common
ancestor.

gene A specific sequence of nucleotides in DNA or RNA that is essential for a
specific function; the functional unit of inheritance controlling the transmission
and expression of one or more traits.

gene expression Process of using the information stored in DNA to make an RNA
molecule and then a corresponding protein.

genome The sum total of an organism’s genetic material.
genotype All or part of the genetic constitution of an individual or group.
global alignment A sequence alignment method that provides a score for aligning

two sequences in their entirety.
homologs Sequences that share a common ancestor.
hydrophilic Easily dissolved in a watery solution; literally, “water friendly”.
hydrophobic Having limited interaction with water molecules; literally, “afraid of

water”.

132

Glossary

indel event An insertion/deletion event.
intron A DNA region within a gene that is not translated into protein.
length penalty Used by sequence alignmentalgorithms to penalize the introduc-

tion of long gaps.
local alignment A sequence alignment method that searches for subsequences that

align well.
locus A fixed position on a chromosome.
microarray An ordered grid of DNA probes fixed at known positions on a solid

substrate.
multiple sequence alignment An alignment of three or more homologous se-

quences.
mutation Change in a nucleotide sequence that occurs due to mistake in DNA

replication or repair processes. Strictly, changes prior to passage through the
filter of selection.

native structure Unique structure into which a particular protein is usually folded
within a living cell.

natural selection Differential success between individuals in passing on genes to
subsequent generations due to differencies in fitness; leads to changes in allele
frequencies (evolution).

neutral mutation A mutation that has no effect on the fitness of an organism.
nucleic acid A macromolecule composed of chains of monomeric nucleotides.
nucleotides Molecules that, when joined together, make up the structural units of

RNA and DNA.
oligonucleotide A short nucleic acid polymer, typically with twenty or fewer bases.
orthologs Sequences that share similarity because of a speciation event that al-

lowed them to evolve independently from an ancestral sequence.
paralogs Sequences that share similarity because they are descendants of a dupli-

cated ancestral gene.
peptide A chain of several amino acids.
peptide bond The covalent chemical bond between carbon and nitrogen in a pep-

tide linkage.
pharmacogenomics Field that uses information about an individual’s genetic

makeup to maximize the efficacy of treatments, while at the same time mini-
mizing the unwanted side effects.

phenotype The visible properties of an organism that are produced by interaction
of its genotype and environment

phylogenetic tree A graphical representation of the evolutionary relationship among
three or more genes or organisms.

point accepted mutation A mutation that has been “accepted” by natural selec-
tion in the sense that organisms bearing the mutation have survived.

polynucleotide A polymeric chain of nucleotides; DNA or RNA molecules.
polypeptide A polymeric chain of amino acids; protein.
primary structure Sequence in which the various amin acids are assembled into

a protein.

133

Glossary

probe A piece of labeled DNA or RNA or an anti-body that can specifically interact
with a molecule of interest.

prokaryotes Are a group of organisms that lack a cell nucleus (= karyon), or any
other membrane-bound organelles.

promoter sequence Sequences that are recognized by RNA polymerases as being
associated with a gene.

protein backbone The non-side-chain atoms in a polypeptide chain.
proteome The sum total of an organism’s proteins.
purine Nucleotides whose nitrogenous bases have a two-ring structure; usually gua-

nine and adenine.
pyrimidine Nucleotides whose nitrogenous bases have a one-ring structure; usually

cytosine, thymine and uracil.
quaternary structure The intermolecular interactions that occur when multiple

polypeptides associate; overall structure formed by interacting proteins.
reading frame Linear sequence of codons in a protein-coding gene starting with

the start codon and ending with a stop codon.
residue The portion of an amino acid that remains as a part of a polypeptide chain.

In the context of a peptide or protein, amino acids are generally refered to as
residues.

reverse transcriptase A special enzyme used to convert RNA to DNA.
ribosome Complex of proteins and rRNA thar are responsible for catalyzing trans-

lation.
ribozyme RNA molecules that are capable of catalyzing specific chemical reactions

such as self-cleavage.
RNA polymerase Enzyme responsible for transcription; converts the information

in DNA molecules into RNA molecules.
scoring matrix Matrix used to score each nongap position in the alignment.
secondary structure Structural features such as alpha helices and beta sheets of

a protein that arise from primary structure.
sequence (1) The linear order of nucleotides in a DNA or RNA molecule or the

order of amino acids in a protein. (2) The act of determining the linear order of
nucleotides or amino acids in a molecule.

side chain A short chain or group of atoms attached to the central carbon of an
amino acid that confers a distinctive chemistry.

start codon Triplet codon (specifically, AUG) at which both prokaryotic and eu-
karyotic ribosomes begin to translate an mRNA.

stop codon One of three codons (specifically, UGA, UAG and UAA) that does not
instruct ribosome to insert a specific amino acid an, thereby, causes translation
of an mRNA to stop.

superfamily Groups of protein families that are related by detecTable levels of
sequence similarity that are reflective of an ancient evolutionary relationship.

tetriary structure The overal three-dimensional shape of a folded polypeptide
chain.

topology The topographical features of a molecule; its configuration.

134

transcription The first step in the process of gene expression; making an RNA
copy of a gene.

transcriptome The complete set of an organism’s RNA sequences.
transition Mutation in which a purine (A or G) is replaced with another purine

or in which pyrimidine (C or T) is replaced by another pyrimidine.
translation Process of converting the information from the nucleotide sequences

in RNA to the amino acid sequences that make a protein.
transversion Mutation in which a purine (A or G) is replaced with pyrimidine (C

or T) or vice versa.
triplet code A set of three nucleotides that can be used to specify a particular

amino acid during translation by ribosomes.

Appendix B

The experiments

The complete codes of the main virtual laboratory experiments created in the
scope of this thesis are listed in this Appendix.

B.1. ProteinStructureAndSequenceComparison

B.1.1. Main script
puts "Protein Sequence and Structure Comparison Experiment"

#------------- 1. Require section --
#Grid objects usage
require "cyfronet/gridspace/goi/core/g_obj"
#Local classes usage
require ’ProteinUtils’
require ’GnuPlotUtils’
require ’CSVUtils’
#Input data - protein families
require ’InputData’
#Handling and storing result files
require ’results_handling’
require ’base64’#Decoding ClustalW output
#------------- End of Require section --

#------------- 2. Global Variables and Constants section -------------------------
Email = "Setup@YourEmail.org"
#------------- End of Global Variables and Constants section ---------------------

#------------- 3. Grid Objects and Local Objects section -------------------------
puts "Creating Gems"
#Pdb gem to retrieve sequence from pdbid code
pdb = GObj.create(’org.pdb.Pdb’)

#EarlyFolding gem
folding = GObj.create(’cyfronet.gridspace.gem.EarlyFolding’)
folding.soap.streamhandler.client.receive_timeout = 60000

#Dbfetch
dbfetch = GObj.create(’uk.ac.ebi.Dbfetch’)

136

B.1. ProteinStructureAndSequenceComparison

#ClustalW
clustalw = GObj.create(’uk.ac.ebi.ClustalW’)

#ClustalWUtils
clw_utils = GObj.create(’cyfronet.gridspace.gem.structure_comp.ClustalWUtils’)

#Mammoth
mammoth = GObj.create(’cyfronet.gridspace.gem.structure_comp.Mammoth’)
mammoth.soap.streamhandler.client.receive_timeout = 60000

#Gnuplot
gnuplot = GObj.create(’cyfronet.gridspace.gem.GnuPlot’)

Local objects
pdb_utils = PdbUtils.new
csv_utils = CSVUtils.new
gpl_utils = GnuPlotUtils.new

#------------- End of Grid Objects and Local Objects section ---------------------

#------------- 4. Data section ---
@sequences = {}
@structural_codes = {}
@structures = {}
@mm_structures = {}
@fold_structures = {}
#------------- End of Data section ---

5. Select Input protein family (definitions in InputData file)
@proteins_map = @all
puts "Selected family: #{@family_names[@proteins_map]}"

#------------- 6. Collecting Data section --
puts "Collecting input data"
for pdbid in @proteins_map.keys
7. Full pdb file - reading from disk or if it’s not present - downloading from database
puts ’Getting PDB: ’+ pdbid
structure = get_full_pdb_structure(pdbid)
if structure == nil
puts ’Downloading PDB: ’+ pdbid
structure = dbfetch.fetchData("PDB:#{pdbid}", ’pdb’, ’raw’)
write_full_pdb_structure(pdbid, structure)

end

8. selecting informations for all chains for protein
for chain in @proteins_map[pdbid]
key = "#{pdbid}_#{chain}"

9. Get only atoms from appropriate chain
chain_structure = pdb_utils.filter_pdb_for_chain(structure, chain)
@structures[key] = chain_structure

10. Get Aminoacid sequence from pdb file. It is also possible to download sequence from database with pdb
gem

sequence = pdb_utils.get_aminoacid_sequence_from_file(chain_structure, chain)
puts ’Sequence for ’+ key + ’ obtained from PDB file:’
puts sequence
@sequences[key] = sequence

11. Perform step back stage, get structural code
code = get_sc_sequence(key)
if code == nil
code = folding.get_structural_code(chain_structure)
write_sc_sequence(key, code)

end
puts "Structural code for protein #{key} (Step-Back Unfolding path):"
puts code
@structural_codes[key] = code

12. Prepare structure for multiple structure alignment in Mammoth
#(it is not necessary but it is optimization step for not passing too much data to gem)

137

The experiments

mm_structure = get_filtered_pdb_structure(key)
if mm_structure == nil

mm_structure = pdb_utils.filter_pdb_for_ca_atoms(chain_structure)
write_filtered_pdb_structure(key, mm_structure)

end
@mm_structures[key] = mm_structure

end
end
#------------- End of Collecting Data section ------------------------------------

#------------- 13. Aminoacids codes alignment section ----------------------------
Create input data
clustal_aa_sequence = ”
for key in @sequences.keys.sort

clustal_aa_sequence += ">"+ key + "\n"
clustal_aa_sequence += @sequences[key] + "\n"

end
puts ’ClustalW Amino-Acid sequence: ’
puts clustal_aa_sequence
write_alignment_input(’aa’, clustal_aa_sequence)

14. Perform ClustalW analysis for AA-sequence
#create and set ClustalW parameters
params = {}

params[’email’] = Email
params[’outorder’] = ’input’
params[’matrix’] = ’blosum’

data = {}
data[’type’] = ’sequence’
data[’content’] = clustal_aa_sequence

15. Run clustal computations and wait for results
jobid = clustalw.runClustalW(params, [data])
puts ’ClustalW jobid: ’+ jobid

result = clustalw.checkStatus(jobid)
puts ’ClustalW status: ’+ result

while result==’RUNNING’
puts "ClustalW - AA Alignment waitign 5 seconds for data"
sleep 5
result = clustalw.checkStatus(jobid)

end
puts ’Downloading ClustalW AA alignment results’

16. Decoding results
aa_aligment_result = Base64.decode64(clustalw.poll(jobid, ’toolaln’))
write_alignment_output(’aa’, aa_aligment_result)
#------------- End of Aminoacids codes alignment section -------------------------

#------------- 17. Structural codes alignment section ----------------------------
Create input data
clustal_sc_sequence = ”
for key in @structural_codes.keys.sort

clustal_sc_sequence += ">"+ key + "\n"
clustal_sc_sequence += @structural_codes[key]

end
puts ’ClustalW Structural codes sequence: ’
puts clustal_sc_sequence
write_alignment_input(’sc’, clustal_sc_sequence)

18. Perform ClustalW analysis for Structural Codes - sequence
#create and set ClustalW parameters
params = {}

params[’email’] = Email
params[’outorder’] = ’input’
params[’matrix’] = ’id’#it is identity matrix, different than used in AA alignment

138

B.1. ProteinStructureAndSequenceComparison

data = {}
data[’type’] = ’sequence’
data[’content’] = clustal_sc_sequence

19. Run clustal computations and wait for results
jobid = clustalw.runClustalW(params, [data])
puts ’ClustalW jobid: ’+ jobid
result = clustalw.checkStatus(jobid)
puts ’ClustalW status: ’+ result
while result==’RUNNING’

puts "ClustalW - Structural Codes Alignment waitign 5 sec for data"
sleep 5
result = clustalw.checkStatus(jobid)

end
puts ’Downloading ClustalW SC alignment results’
structural_result = Base64.decode64(clustalw.poll(jobid, ’toolaln’))
write_alignment_output(’sc’, structural_result)
#------------- End of Structural codes alignment section -------------------------

#------------- 20. Crystal Structures alignment section --------------------------
#21. Create Mammoth input
mm_input = {}
for key in @mm_structures.keys.sort

key.match(/(\w+)_(\w)/)
chain = $2
mm_input[key] = chain

end

#21. Run Mammoth computations
puts ’Performing Crystal structure alignment’
mm_result = mammoth.compare_structures(@mm_structures, mm_input, nil)

puts ’Downloading Crystal structure alignment results’
mm_alignment_result = mm_result[’aln’]
write_alignment_output(’mm’, mm_alignment_result)
#------------- End of Crystal Structures alignment section -----------------------

#------------- 22. Printing alignment results section ----------------------------
puts
puts ’Alignment results:’
puts
puts ’Aminoacids Alignment:’
puts aa_aligment_result
puts
puts ’Structural codes alignment:’
puts structural_result
puts
puts ’Crystal Structure alignment:’
puts mm_alignment_result
#------------- End of Printing alignment results section -------------------------

#------------- 23. Calculate W Score section -------------------------------------
24. Number of codes used in AA and SC alignments definition
AMINOACIDS = 21
STRUCTURAL = 8
#averaging window parameter
averaging_window_size = 5

25. Completing sequences (joining parts in one sequence for each protein) and counting W score
puts "Analyzing Aminoacids alignment"
aa_hash = clw_utils.get_complete_sequences(aa_aligment_result)
aa_score = clw_utils.get_w_score_for_sequences(aa_hash.values, averaging_window_size, AMINOACIDS)
puts "Analyzing Structural codes alignment"
sc_hash = clw_utils.get_complete_sequences(structural_result)
sc_score = clw_utils.get_w_score_for_sequences(sc_hash.values, averaging_window_size, STRUCTURAL)
puts "Analyzing Crystal structure alignment"

139

The experiments

mm_hash = clw_utils.get_complete_sequences(mm_alignment_result)
mm_score = clw_utils.get_w_score_for_sequences(mm_hash.values, averaging_window_size, AMINOACIDS) #it
also uses AA representations
#------------- End of Calculate W Score section ----------------------------------

#------------- 26. Plotting W Score section --------------------------------------
#AA alignment
aa_input = gpl_utils.get_gnuplot_input(aa_score)
#Structural code alignment
sc_input = gpl_utils.get_gnuplot_input(sc_score)
#Crystal Structure alignment
mm_input = gpl_utils.get_gnuplot_input(mm_score)

27. Plot each type of data
#Reading gnuplot script
up = GS_UserProxyFactory.create_user_proxy()
script = up.get_file("script.gpl")
#Input data and data names
inputs = [aa_input, sc_input, mm_input]
names = [’Amino Acids’, ’Structural Codes’, ’Structures’]
#Plotting and downloading plots
w_score_pictures = {}
for i in 0 ... inputs.length

script1 = script.gsub("NAME", names[i]) #print data name on plot
puts "Plotting #{names[i]} W score"
url = gnuplot.plot(script1, inputs[i])
puts "W-score plot for #{names[i]} alignment is available at: #{url}"
write_picture(names[i], @proteins_map, url) #downloading picture
w_score_pictures[names[i]] = url

end
#------------- End of Plotting W Score section -----------------------------------

#------------- 28. Creating proteins W profiles section --------------------------
aa_profiles = clw_utils.get_w_profiles_for_proteins(aa_score, aa_hash)
sc_profiles = clw_utils.get_w_profiles_for_proteins(sc_score, sc_hash)
mm_profiles = clw_utils.get_w_profiles_for_proteins(mm_score, mm_hash)
#------------- End of Creating proteins W profiles section -----------------------

#------------- 29. Creating Final results section --------------------------------
proteins_pictures = {}
#For each protein do
for protein in aa_profiles.keys

protein.match(/(\w+)_(\w)/)
protein_name = $1
protein_chain = $2
samples_count = aa_profiles[protein].length

30. Adjusting Gnuplot script for protein - Name, Chain and Residues number (X Axis length)
script = up.get_file("multiplot.plt")
script.gsub!("SAMPLES_COUNT", samples_count.to_s)
script.gsub!("PROTEIN_NAME", protein_name)
script.gsub!("PROTEIN_CHAIN", protein_chain)

31. Create Multiplot inputs
inputs = [

gpl_utils.create_multiplot_input(aa_profiles[protein]),
gpl_utils.create_multiplot_input(sc_profiles[protein]),
gpl_utils.create_multiplot_input(mm_profiles[protein])

]

32. Plotting multiplot protein W profiles
url = gnuplot.multiplot(script, inputs)
puts "Result for protein #{protein} are available at #{url}"
write_picture(protein, @proteins_map, url)

33. Creating CSV file with data for appropriate protein

140

B.1. ProteinStructureAndSequenceComparison

csv_file = csv_utils.create_csv_file(protein, @structures[protein], aa_profiles[protein],
sc_profiles[protein], mm_profiles[protein], ?; , ’,’)
write_csv(protein, @proteins_map, csv_file)

34. Updating pdb file with amino acids (temperature - beta field) and structural codes (occupancy field) w
_score

pdb1 = pdb_utils.put_w_scores_into_pdb_file(@structures[protein], aa_profiles[protein],
sc_profiles[protein], 0, 1)

write_modified_pdb(protein, ’_aa_sc’, @proteins_map, pdb1)

35. Updating pdb file with crystal structure (temperature - beta field) w _score
pdb2 = pdb_utils.put_w_score_into_pdb_file(@structures[protein], mm_profiles[protein])
write_modified_pdb(protein, ’_td’, @proteins_map, pdb2)
proteins_pictures[protein] = url

end

36. Create HTML file with collected results
write_html(@proteins_map, w_score_pictures, proteins_pictures)

#------------- End of Creating final results section -----------------------------

puts "Protein Sequence and Structure Comparison Experiment FINISHED!"

B.1.2. ProteinUtils.rb
class PdbUtils

PDB_FILE_CA_POSITION = 13
PDB_FILE_RES_NAME_POSITION = 17
PDB_FILE_CHAIN_POSITION = 21

PDB_FILE_RES_POSITION = 22
PDB_FILE_RES_LEN = 5

PDB_FILE_OCCU_POSITION = 54
PDB_FILE_TEMP_POSITION = 60
CA = ’CA’

def initialize
@aa_name = {
’A’=> ’ALA’, ’C’=> ’CYS’, ’D’=> ’ASP’, ’E’=> ’GLU’,
’F’=> ’PHE’, ’G’=> ’GLY’, ’H’=> ’HIS’, ’I’=> ’ILE’,
’K’=> ’LYS’, ’L’=> ’LEU’, ’M’=> ’MET’, ’N’=> ’ASN’,
’P’=> ’PRO’, ’Q’=> ’GLN’, ’R’=> ’ARG’, ’S’=> ’SER’,
’T’=> ’THR’, ’V’=> ’VAL’, ’W’=> ’TRP’, ’Y’=> ’TYR’

}

@name_aa = @aa_name.invert
end

def filter_pdb_for_chain(pdb_file, chain)
file_lines = pdb_file.split("\n")
filtered = ”
last_line = ”
id = 0
for i in 0 ... file_lines.length
if file_lines[i].match(/^ATOM/)
if file_lines[i][PDB_FILE_CHAIN_POSITION, 1] == chain
id += 1
last_line = file_lines[i]
last_line[6, 5] = ’%5d’% id
filtered += last_line
filtered += "\n"

end
end

end

141

The experiments

id += 1
ter_line = "TER "+ "%5d"% id + " "+ last_line[17, 10] + (" "* 53) + "\n"
filtered += ter_line
return filtered

end

def filter_pdb_for_ca_atoms(pdb_file)
file_lines = pdb_file.split("\n")
filtered = ”
last_line = ”
id = 0
for i in 0 ... file_lines.length
if file_lines[i].match(/^ATOM/)
if file_lines[i][PDB_FILE_CA_POSITION, 2] == CA
id += 1
last_line = file_lines[i]
last_line[6, 5] = ’%5d’% id
filtered += last_line
filtered += "\n"

end
end

end

id += 1
ter_line = "TER "+ "%5d"% id + " "+ last_line[17, 10] + (" "* 53) + "\n"
filtered += ter_line
return filtered

end

def get_aminoacid_sequence_from_file(pdb_file, chain)
file_lines = pdb_file.split("\n")
res_id = ”
residues = ”
for i in 0 ... file_lines.length

if file_lines[i].match(/^ATOM/) and \
file_lines[i][PDB_FILE_CHAIN_POSITION, 1] == chain and \
file_lines[i][PDB_FILE_RES_POSITION, PDB_FILE_RES_LEN] != res_id #new resiude
res_name = file_lines[i][PDB_FILE_RES_NAME_POSITION, 3]
res = @name_aa[res_name]
residues += res
res_id = file_lines[i][PDB_FILE_RES_POSITION, PDB_FILE_RES_LEN]

end
end
return residues

end

def put_w_score_into_pdb_file(pdb_file, w_score, move_w = 0) #use temperature field in pdb file
return put_w_into_temp_and_occu_fields(pdb_file, nil, w_score, 0, move_w)

end

def put_w_scores_into_pdb_file(pdb_file, w_score1, w_score2, move_w1 = 0, move_w2 = 0) #use temper-
ature and occupancy field in pdb file

return put_w_into_temp_and_occu_fields(pdb_file, w_score2, w_score1, move_w2, move_w1)
end

private
def put_w_into_temp_and_occu_fields(pdb_file, occu_w_score, temp_w_score, move_occu = 0, move_temp = 0)
res_file = ”
lines = pdb_file.split("\n")
last_res_id = ”
ind = -1
for i in 0 ... lines.length
if lines[i].match(/^ATOM/)
res = lines[i][PDB_FILE_RES_POSITION, PDB_FILE_RES_LEN]
if res != last_res_id

142

B.1. ProteinStructureAndSequenceComparison

last_res_id = res
ind += 1

end
new_line = lines[i]

if occu_w_score != nil
index = ind - move_occu
w_val = 0.0
if index >= 0 and index < occu_w_score.length
w_val = occu_w_score[index]
w_val *= 1000 #w value is in 0.0 .. 1.0, but we’ve got abcd.xy format available in file, and it is possible

to rescale
w_val = 999.99 if w_val >= 1000.0

end
new_line[PDB_FILE_OCCU_POSITION, 6] = "%6.2f"% w_val.to_s

end
if temp_w_score != nil

index = ind - move_temp
w_val = 0.0
if index >= 0 and index < temp_w_score.length

w_val = temp_w_score[ind]
w_val *= 1000 #w value is in 0.0 .. 1.0, but we’ve got abcd.xy format available in file, and it is

possible to rescale
w_val = 999.99 if w_val >= 1000.0

end
new_line[PDB_FILE_TEMP_POSITION, 6] = "%6.2f"% w_val.to_s

end
res_file += new_line + "\n"

else
res_file += lines[i] + "\n"

end
end
return res_file

end
end

B.1.3. GnuPlotUtils.rb
class GnuPlotUtils

def get_gnuplot_input(w_score)
input = ”
#first column is residue number, second - w value
for i in 0 ... w_score.length
input << (i).to_s + ’ ’+ w_score[i].to_s + "\n"

end
return input

end

def create_multiplot_input(values)
input = ”

for i in 1 .. 2
#for color map values have to be doubled
#x - residue number
#y - 1 or 2
#z - w value
for j in 1 .. values.length
input += "#{j} #{i} #{values[j-1]}\n"
end

input += "\n"
end
input

end
end

143

The experiments

B.1.4. CSVUtils.rb
require ’csv’

class CSVUtils
PDB_FILE_RES_POSITION = 22

PDB_FILE_RES_LEN = 5

def create_csv_file(pdb_name, pdb_file, aa_w_score, sc_w_score, td_w_score, separator = ?, , float_point
= ’.’) #only temperature_field is used
#create resiudes ids array
res_ids = Array.new
last_res_id = ”
lines = pdb_file.split("\n")
for i in 0 ... lines.length
if lines[i].match(/^ATOM/)
res = lines[i][PDB_FILE_RES_POSITION, PDB_FILE_RES_LEN]
if res != last_res_id
res_ids << res
last_res_id = res

end
end

end
#check length - res_ids length should be the same as aa_w_score and td_w_score and 2 positions shorter than

sc_w_score
if res_ids.length != aa_w_score.length or res_ids.length - td_w_score.length > 1 \
or res_ids.length != sc_w_score.length + 2
raise "Wrong data length for protein #{pdb_name}! Residues: #{res_ids.length},

AA W Score: #{aa_w_score.length}, SC W Score: #{sc_w_score.length}, 3D W Score: #{td_w_score.length}"
end

csv_file = ”
#create protein name
row = [pdb_name]
CSV.generate_row(row, row.length, csv_file, separator)
#create headers
row = [’residue’, ’AA W Score’, ’SC W Score’, ’3D W Score’]
CSV.generate_row(row, row.length, csv_file, separator)
#create first line
row = [res_ids[0], aa_w_score[0], nil, td_w_score[0]]
CSV.generate_row(row, row.length, csv_file, separator)
#create inner lines
for i in 1 ... res_ids.length - 1
row = [res_ids[i], aa_w_score[i], sc_w_score[i-1], td_w_score[i]]
CSV.generate_row(row, row.length, csv_file, separator)

end
#create last line
len = res_ids.length - 1
row = [res_ids[len], aa_w_score[len], nil, td_w_score[len]]
CSV.generate_row(row, row.length, csv_file, separator)
if float_point != ’.’
csv_file.gsub!(’.’, float_point)

end
return csv_file

end
end

B.1.5. results_handling.rb
require ’InputData’
require ’net/http’
#Folders:

RESULTS = ’../results/’

144

B.1. ProteinStructureAndSequenceComparison

COMPLETE_PDB_PATH = RESULTS + ’pdb_structures/complete_pdb/’
FILTERED_PDB_PATH = RESULTS + ’pdb_structures/filtered_pdb/’

AA_SEQUENCE_PATH = RESULTS + ’sequences/aa_sequence/’
SC_SEQUENCE_PATH = RESULTS + ’sequences/sc_sequence/’

ALIGNMENT_PATH = RESULTS + ’alignments/’

writting pdb structure files onto disk

def write_full_pdb_structure(key, structure)
write_structure(key, structure, COMPLETE_PDB_PATH)

end

def write_filtered_pdb_structure(key, structure)
write_structure(key, structure, FILTERED_PDB_PATH)

end

def write_structure(key, structure, dir)
filename = key.gsub(’:’, ’_’) + ’.pdb’
filepath = dir + filename
file = File.new(filepath, "w")
file.write(structure)
file.close

end

def get_full_pdb_structure(key)
return get_pdb_structure(COMPLETE_PDB_PATH, key)

end

def get_filtered_pdb_structure(key)
return get_pdb_structure(FILTERED_PDB_PATH, key)

end

def get_pdb_structure(dir, key)
file_path = dir + key.gsub(’:’, ’_’) + ’.pdb’
results = nil
if File.exist?(file_path)
results = IO.read(file_path)

end
return results

end

writting sequence files

def write_aa_sequence(key, code)
filename = key.gsub(’:’, ’_’) + ’_aa.txt’
filepath = AA_SEQUENCE_PATH + filename
file = File.new(filepath, "w")
file.write(code)
file.close

end

def write_sc_sequence(key, code)
filename = key.gsub(’:’, ’_’) + ’_sc.txt’
filepath = SC_SEQUENCE_PATH + filename
file = File.new(filepath, "w")
file.write(code)
file.close

end

def get_sc_sequence(key)
filename = key.gsub(’:’, ’_’) + ’_sc.txt’
filepath = SC_SEQUENCE_PATH + filename
results = nil
if File.exist?(filepath)

145

The experiments

results = IO.read(filepath)
end
return results

end

alignments
def write_alignment_input(type, input)
filename = type + ’_align_input.txt’
filepath = ALIGNMENT_PATH + filename
file = File.new(filepath, "w")
file.write(input)
file.close

end

def write_alignment_output(type, output)
filename = type + ’_align_output.txt’
filepath = ALIGNMENT_PATH + filename
file = File.new(filepath, "w")
file.write(output)
file.close

end

@pictures_dir = {
@vcam => RESULTS + ’pictures/vcam/’,
@vcam_icam => RESULTS + ’pictures/vcam_icam/’,
@igg => RESULTS + ’pictures/igg/’,
@all => RESULTS + ’pictures/all/’,
@igg_vcam => RESULTS + ’pictures/igg_vcam/’,
@igg_icam => RESULTS + ’pictures/igg_icam/’,
@temp_doubled => RESULTS + ’pictures/old/’,

}
pictures
def write_picture(name, proteins_map, url)
dir = @pictures_dir[proteins_map]
path = dir + name.gsub(’ ’, ’_’).gsub(’:’, ’_’) + ’.png’

address = URI.parse(url)
@http = Net::HTTP.new(address.host, address.port)
resp = @http.get2(address.path)

png = File.new(path, "wb")
png.write(resp.body)
png.close

end

def write_csv(name, proteins_map, csv_file)
dir = @pictures_dir[proteins_map]
path = dir + name.gsub(’:’, ’_’) + ’.csv’

csv = File.new(path, "w")
csv.write(csv_file)
csv.close

end

def write_modified_pdb(protein, suffix, proteins_map, pdb)
dir = @pictures_dir[proteins_map]
path = dir + protein.gsub(’:’, ’_’) + suffix + ’.pdb’

file = File.new(path, "w")
file.write(pdb)
file.close

end

@texts = {
’AminoAcids’ => ’W Score for Amino Acid alignment sequences (21 codes)’,
’StructuralCodes’ => ’W score for Structural codes alignment sequences (8 codes)’,

146

B.2. ProteinPocketsTests

’Structures’ => ’W Score for 3D Structure alignment (21 codes)’
}
@html_names = {
@vcam => ’vcam.html’,
@vcam_icam => ’vcam_icam.html’,
@igg => ’igg.html’,
@all => ’all.html’,
@igg_vcam => ’igg_vcam.html’,
@igg_icam => ’igg_icam.html’,

}
def write_html(proteins_map, w_score_pictures, proteins_pictures)

body = ”
body += "<html>\n"
#write creation time
body += "<head>\n"
body += " <meta http-equiv=\"Creation-Date\" content=\"Time.now.gmtime\" />\n"
body += "</head>"

#write body
body += "<body>\n"

#write w scores
for type in @texts.keys
url = w_score_pictures[type]
if url != nil

body += "<div align=\"center\"> \n"
body += "#{@texts[type]}\n"
body += " \n"
body += "</div>\n"

end
end
#write bar

body += "<hr>\n"

#write proteins profiles
body += "<div align=\"center\">\n"
for protein in proteins_pictures.keys.sort

body += "
\n"

end
body += "</div>\n"

#close tags
body += "</body>\n"
body += "</html>\n"

#write_file
filepath = @pictures_dir[proteins_map] + @html_names[proteins_map]
file = File.new(filepath, "w")
file.write(body)
file.close

end

B.2. ProteinPocketsTests

B.2.1. Main script
ProteinPocketsTests.rb
Experiment Name : ProteinPocketsTests
Author Email Address : jadczyk@student.agh.edu.pl
Organization :
License File : ExperimentLicense.txt

147

The experiments

ViroLab specific requires
require "cyfronet/gridspace/goi/core/g_obj"
require "cyfronet/gridspace/dac/DACConnectClass.rb"

require "file_utils.rb"
require "service_names.rb"
require "services_utils.rb"
require "tasks_utils.rb"
require "TaskListCreator"

#Directories variables
FILES_DIR = "../pdb/"#select directory with your pdb files
RESULTS_DIR = "../results/"#select directory where results should be store
Use_Separate_Results_Dir = false #if true - separate dir is created in RESULTS_DIR for each analyzed file
#if false - all results are store in RESULTS_DIR

CreateAllTasks = true #if false - try to search which files left to compute on which Service, if true - all files are
treated as tasks

#Services - uncoment service which You want use
Services = {

CASTP => GObj.create(’cyfronet.gridspace.gem.pocket.CastP’),
CONSURF => GObj.create(’cyfronet.gridspace.gem.pocket.ConSurf’),
FOD => GObj.create(’cyfronet.gridspace.gem.pocket.Fod’),
PASS => GObj.create(’cyfronet.gridspace.gem.pocket.Pass’),

LIGSITE => GObj.create(’cyfronet.gridspace.gem.pocket.Ligsite_csc’),
PFINDER => GObj.create(’cyfronet.gridspace.gem.pocket.PocketFinder’),
QFINDER => GObj.create(’cyfronet.gridspace.gem.pocket.QSiteFinder’),
SUMO => GObj.create(’cyfronet.gridspace.gem.pocket.SuMo’),
WEBFEATURE => GObj.create(’cyfronet.gridspace.gem.pocket.WebFeature’),
}

#Additional info
UserEmail = ’setup.your@email.com’

Converter = GObj.create(’cyfronet.gridspace.gem.pocket.ProteinResultsConverter’)
Converter.soap.streamhandler.client.receive_timeout = 360 #seconds

#reading available files and files paths from direcotry
pdb_files_names = get_pdb_files(FILES_DIR)
pdb_files_paths = get_pdb_files_paths(FILES_DIR, pdb_files_names)
pdb_files_map = {}

for path in pdb_files_paths.keys
puts path + ’ => ’+ pdb_files_paths[path]

end

initial_tasks = {}
tasks_left = {}
processing_tasks = {}
log_tasks = {}

if CreateAllTasks
#initialize maps -> starting tasks (all), processing_tasks (empty), log_tasks
for service in Services.keys

initial_tasks[service] = Hash.new
processing_tasks[service] = Hash.new

for file_name in pdb_files_paths.keys
chains = get_chains(service, pdb_files_paths[file_name])
if is_all_chains_identifier(chains)
#add initial tasks
initial_tasks[service][file_name] = Array.new
initial_tasks[service][file_name] << chains
#add log info
id = "#{file_name}:#{chains}"

148

B.2. ProteinPocketsTests

if log_tasks[id] == nil
log_tasks[id] = Hash.new

end
log_tasks[id][service] = ProcessingStatus::NOT_COMPLETED
else
#add initial tasks
initial_tasks[service][file_name] = chains
#add log info
for ch in chains
id = "#{file_name}:#{ch}"
if log_tasks[id] == nil
log_tasks[id] = Hash.new

end
log_tasks[id][service] = ProcessingStatus::NOT_COMPLETED

end
end

end
end

else
task_list = TaskListCreator.new
initial_tasks, processing_tasks, log_tasks =
task_list.get_tasks_list(FILES_DIR, RESULTS_DIR, Services.keys, Use_Separate_Results_Dir)

end

#deep copy of initial set of tasks
tasks_left = Marshal::load(Marshal.dump(initial_tasks))

puts ’Processing started!’
begin
#put initial set of tasks to services
MaxTasks = 6
for service in Services.keys
tasks_todo = get_tasks_todo(service, tasks_left, MaxTasks)
puts service + ’:’+ tasks_todo.join(’ ’)
for task in tasks_todo
options = nil
if service == CONSURF
options = {’chain’=> task[1], ’user_email’=> UserEmail}
end

taskid = Services[service].get_results_from_file(
task[0], get_file(task[0], pdb_files_paths, pdb_files_map),

options, get_output_types(service))
puts ’TaskID: ’+ taskid
add_processing_task(service, processing_tasks, task, taskid)
puts processing_tasks[service][id]
remove_task_todo(service, tasks_left, task)
end

end

while not processing_tasks.empty?
retrieved = 0
for service in processing_tasks.keys

for id in processing_tasks[service].keys
puts "taksid:"+ processing_tasks[service][id]
status = Services[service].get_status(processing_tasks[service][id])
puts "Service: #{service}, Task: #{id} - #{ProteinTaskStatus.to_s(status)}"
if status == 3 #ProteinTaskStatus::FINISHED
#get result from service
retrieved += 1
puts "Retrieving from service: #{service} task with ID: #{processing_tasks[service][id]}"
result = Services[service].get_result(processing_tasks[service][id])
#handle results
if result.result_type == ProteinTaskResultType::OK
puts "Service: #{service}, Task: #{id} - Result OK!"
#add log info
log_tasks[id][service] = ProcessingStatus::OK

149

The experiments

file_type = "w"
file_type = "wb"if service == WEBFEATURE
id.match(/(\S+):(\S+)/)
name = $1

chain = nil
chain = $2 if service == CONSURF
#store all result files
for output in get_output_types(service)
path = create_path(RESULTS_DIR, name, chain, service, get_result_extension(service, output),

Use_Separate_Results_Dir)
store_file(path, result.results[output], file_type)

end

pocket_info = ”
write_default = true
if service== CONSURF
gradesPE = result.results[’gradesPE’]
colors = [’7’, ’8’, ’9’]
for color in colors
conv_options = { ’chain’=> chain, ’color’=> color}
pocket_info = Converter.get_atoms_and_chains(service, gradesPE, name, conv_options)
path = create_path(RESULTS_DIR, name, chain + "_#{color}", service, ’common.txt’,

Use_Separate_Results_Dir)
store_file(path, pocket_info, "w")

end
write_default = false
elsif service == LIGSITE
pocket = result.results[’pocket’]
binding = result.results[’ligand’]
pdb = get_file(name, pdb_files_paths, pdb_files_map)
conv_options = { ’pdb’=> pdb, ’binding’=> binding}
pocket_info = Converter.get_atoms_and_chains(service, pocket, name, conv_options)
elsif service == PASS
output = result.results[’pass’]
conv_options = { ’pdb’=> get_file(name, pdb_files_paths, pdb_files_map)}

pocket_info = Converter.get_atoms_and_chains(service, output, name, conv_options)
elsif service == WEBFEATURE

tar_file = result.results[’significant_hits’]
files = get_webfeature_sig_files(name, tar_file)
options = [95, 99, 100]
for opt in options
conv_options = { ’opt’=> opt }
pocket_info = Converter.get_atoms_and_chains(service, files, name, conv_options)
path = create_path(RESULTS_DIR, name, nil, "#{opt}_"+ service, ’common.txt’,

Use_Separate_Results_Dir)
store_file(path, pocket_info, "w")

end
write_default = false

else
#default - for services: CASTP, FOD, PFINDER, QFINDER, SUMO
output = result.results[get_output_types(service)[0]]
conv_options = nil
pocket_info = Converter.get_atoms_and_chains(service, output, name, conv_options)

end

if write_default
path = create_path(RESULTS_DIR, name, nil, service, ’common.txt’, Use_Separate_Results_Dir)
store_file(path, pocket_info, "w")

end

puts "Service: #{service}, Task: #{id} - Results Stored!"
else #ERROR

puts "Service: #{service}, Task: #{id} - Error!"
#add log info
log_tasks[id][service] = ProcessingStatus::ERROR
id.match(/(\S+):(\S+)/)

150

B.2. ProteinPocketsTests

name = $1
chain = nil
chain = $2 if service == CONSURF
error_info = result.error_info
path = create_path(RESULTS_DIR, name, chain, service, ’ERROR.txt’, Use_Separate_Results_Dir)
store_file(path, error_info, "w")

end

#remove this task from processing tasks map
remove_processing_task(service, processing_tasks, id)
#try to send next task to this service
next_task = get_next_task(service, tasks_left)
if next_task != nil

puts "Sending new task: #{next_task[0]}:#{next_task[1]} to service #{service}"
options = nil
if service == CONSURF
options = {’chain’=> next_task[1], ’user_email’=> UserEmail}

end
taskid = Services[service].get_results_from_file(

next_task[0], get_file(next_task[0], pdb_files_paths, pdb_files_map),
options, get_output_types(service))

add_processing_task(service, processing_tasks, next_task, taskid)
remove_task_todo(service, tasks_left, next_task)

end
end

end
end

if retrieved == 0
puts "No results available - waiting 10 sec."
sleep(10.0) #wait 10 seconds

else
puts "Retrieved: #{retrieved} files"

end
end

rescue Exception => e
puts ’Error during computations! ’+ e
puts e.backtrace.join("\n")

ensure
#write log
log_file = ”
for id in log_tasks.keys.sort
for service in log_tasks[id].keys.sort
log_file += "#{id} => #{service} => "+ ProcessingStatus.to_s(log_tasks[id][service]) + "\n"
end

end
log_file_path = RESULTS_DIR + File::Separator + ’all.log’
store_file(log_file_path, log_file, "w")

end

puts ’Experiment finished’

B.2.2. file_utils.rb
require ’fileutils’

reading file
def read_file(file_path)

if(! File.exist?(file_path))
raise ’File not found! ’+ file_path.to_s

end
file_body = IO.read(file_path)
return file_body

end

151

The experiments

#saving file
def store_file(file_path, filebody, mode)
#try to create dir if it doesn’t exist
dirpath = File.dirname(file_path)
FileUtils.mkdir_p dirpath

outfile = File.new(file_path, mode)
outfile.write(filebody)
outfile.close

end

def create_path(directory, name, chain, service, ext, use_separate_dir)
path = ”
if chain == nil
path = directory + File::Separator + name + ’_’+ service + ’.’+ ext
path = directory + File::Separator + name + File::Separator + name + ’_’+ service + ’.’+

ext if use_separate_dir
else
path = directory + File::Separator + name + ’_’+ chain + ’_’+ service + ’.’+ ext
path = directory + File::Separator + name + File::Separator + name + ’_’+ chain + ’_’+

service + ’.’+ ext if use_separate_dir
end

return path
end

def create_webfeature_tmp_dir()
path = "tmp_dir_"+ (Time.now.to_f * 10000).to_i.to_s + File::Separator
FileUtils.mkdir_p path
return path
end

#reading pdb files names from dir
def get_pdb_files(dir_path)
pdb_files = Array.new
Dir.foreach(dir_path) { |filename|

if(filename.match(/.*\.pdb\Z/i))
pdb_files << filename

end
}
return pdb_files

end

def get_pdb_files_paths(dir_path, pdb_files)
pdb_paths = Hash.new
for pdb in pdb_files

pdb.match(/(.*)\.pdb\Z/i)
file_key = $1
pdb_paths[file_key] = File.join(dir_path, pdb)
end

return pdb_paths
end

def get_file(pdb_file_name, pdb_file_paths, pdb_file_map)
if(pdb_file_map[pdb_file_name] == nil)
#read file from disk
pdb_file_map[pdb_file_name] = read_file(pdb_file_paths[pdb_file_name])

end
return pdb_file_map[pdb_file_name]

end

152

B.2. ProteinPocketsTests

B.2.3. service_names.rb
CASTP = ’CastP’
CONSURF = ’ConSurf’
FOD = ’Fod’
LIGSITE = ’Ligsite’
PASS = ’Pass’
PFINDER = ’PocketFinder’
QFINDER = ’QSiteFinder’
SUMO = ’SuMo’
WEBFEATURE = ’WebFeature’

B.2.4. services_utils.rb
require "service_names.rb"
require "file_utils.rb"

ALL_IDENTIFIER = "ALL"

@@outputs = {CASTP => [’poc’], CONSURF => [’gradesPE’], FOD => [’fod’], LIGSITE => [’pocket’, ’ligand’],
PASS => [’pass’], PFINDER => [’pdb’], QFINDER => [’pdb’], SUMO => [’text’],

WEBFEATURE => [’significant_hits’] }

@@ext = {
CASTP => { ’pdb’=> ’pdb’, ’mouth’=> ’mouth’, ’mouth_info’=> ’mouthInfo’, ’poc’=> ’poc’, ’poc_info’=>

’pocInfo’},
CONSURF => {’gradesPE’=> ’gradesPE’, ’blast’=> ’blast’, ’fasta’=> ’homol.html’, ’alignment’=> ’aln’,

’tree’=> ’tree.txt’,
’rasmolisd’=> ’rasmolisd.txt’, ’rasmol’=> ’rasmol.txt’, ’pdb’=> ’ent’, ’consurf’=> ’pipe.pdb’},

FOD => { ’fod’=> ’dat’},
LIGSITE => {’pdb’=> ’pdb’, ’pocket’=> ’pocket.pdb’, ’ligand’=> ’ligand.txt’},
PASS => { ’pass’=> ’probes.pdb’},
PFINDER => {’pdb’=> ’pdb’},
QFINDER => {’pdb’=> ’pdb’},
SUMO => { ’text’=> ’txt’},
WEBFEATURE => {’significant_hits’=> ’sig.tar’, ’insignificant_hits’=> ’insig.tar’,
’coordinates’=> ’points.tar’, ’features’=> ’features.tar’},

}

#used for split task into subtasks for ConSurf analyzer
def get_chains_identifiers(pdb_file)
lines = pdb_file.split("\n")
chains = Array.new
for l in lines

if l.match(/^ATOM/)
ch = l[21, 1] #PDB specification - column 22 - chain identifier
if ! chains.include?(ch)
chains << ch

end
end

end
return chains
end

def get_chains(service, file_path)
if service != CONSURF

return ALL_IDENTIFIER
end
return get_chains_identifiers(read_file(file_path))

end

def is_all_chains_identifier(identifier)
return identifier == ALL_IDENTIFIER

end

153

The experiments

def get_output_types(service)
return @@outputs[service]
end

def get_result_extension(service, result_type)
return @@ext[service][result_type]

end

def get_webfeature_sig_files(name, tar_file)
#create tmp dir
tmp_dirname = create_webfeature_tmp_dir
#create tmp file (store data)
tmp_file_path = name + ’.tar’
store_file(tmp_dirname + tmp_file_path, tar_file, "wb")
#untar file in tmp dir
res = ‘tar xf #{tmp_dirname}#{tmp_file_path} -C #{tmp_dirname}‘
#read all files whose match to /zscore/
sig_dir = tmp_dirname + "sig/"
files = {} #result
Dir.foreach(sig_dir) { |file|
if file.match(/zscores.sort$/)
body = read_file(sig_dir + file)
files[file] = body
end

}
#remove whole tmp dir
‘rm -Rf #{tmp_dirname}‘
return files

end

class ProcessingStatus
OK = 0
ERROR = 1
NOT_COMPLETED = 2
@@StatusMap = { OK => ’OK’, ERROR => ’ERROR’, NOT_COMPLETED => ’Not completed’}

def ProcessingStatus.to_s(status)
@@StatusMap[status]

end
end

class ProteinTaskStatus
CREATED = 0
QUEUED = 1
PROCESSING = 2
FINISHED = 3

def ProteinTaskStatus.to_s(status)
status_map = { 0 => ’Created’, 1 => ’Queued’, 2=> ’Processing’, 3 => ’Finished’}
return status_map[status]

end
end

class ProteinTaskResultType
OK = 0
ERROR = 1
NO_RESULT = -1

end

B.2.5. task_utils.rb
def get_tasks_todo(service, tasks_left, maxTasks)
results = Array.new
service_tasks = tasks_left[service]

154

B.2. ProteinPocketsTests

if service_tasks != nil
available_tasks = service_tasks.keys
found = 0
index = 0
while (found < maxTasks and index < available_tasks.length)
tasks_chains = tasks_left[service][available_tasks[index]]
len = maxTasks - found
len = tasks_chains.length if tasks_chains.length < (maxTasks - found)
for i in 0 ... len
results << ["#{available_tasks[index]}", "#{tasks_chains[i]}"]

end
found += len
index += 1

end
end
return results

end

def get_next_task(service, tasks_left)
return get_tasks_todo(service, tasks_left, 1)[0]

end

def remove_task_todo(service, tasks_left, task)
filename = task[0]
chainid = task[1]
tasks_left[service][filename].delete(chainid)
tasks_left[service].delete_if { |key, array|array.empty? }
tasks_left.delete_if { |key, hash|hash.empty? }

end

def add_processing_task(service, processing_tasks, task, taskid)
identifier = "#{task[0]}:#{task[1]}"
if processing_tasks[service] == nil

processing_tasks[service] = Hash.new
end
processing_tasks[service][identifier] = taskid

end

def remove_processing_task(service, processing_tasks, identifier)
processing_tasks[service].delete(identifier)
processing_tasks[service].delete_if { |key, hash|hash.empty? }
processing_tasks.delete_if { |key, hash|hash.empty? }

end

B.2.6. TaskListCreator.rb
require ’service_names’
require ’file_utils’
require ’services_utils’

class TaskListCreator

def get_tasks_list(inputs_dir, results_dir, services, use_separate_dir)
pdb_files_names = get_pdb_files(inputs_dir)
pdb_files_paths = get_pdb_files_paths(inputs_dir, pdb_files_names)
pdb_files = pdb_files_paths.keys

initial_tasks = {}
processing_tasks = {}
log_tasks = {}

for name in pdb_files
dir = results_dir + File::Separator
dir = results_dir + File::Separator + name + File::Separator if use_separate_dir

155

The experiments

for service in services
chains = get_chains(service, pdb_files_paths[name])
#get necessary results file names for service (only common files)
files = get_results_files_for_service(name, service, chains)
#get error file name for service
errors = get_error_files_for_service(name, service, chains)
#check files presence
chains = get_tasks_left(files, errors, dir, chains)
#if both file type are not available - add task to compute
if not chains.nil?
#add task
initial_tasks[service] = Hash.new if initial_tasks[service] == nil
processing_tasks[service] = Hash.new if processing_tasks[service] == nil
if is_all_chains_identifier(chains)
#add initial tasks
initial_tasks[service][name] = Array.new if initial_tasks[service][name] == nil
initial_tasks[service][name] << chains
#add log info
id = "#{name}:#{chains}"
log_tasks[id] = Hash.new if log_tasks[id] == nil
log_tasks[id][service] = ProcessingStatus::NOT_COMPLETED

else
#add initial tasks
initial_tasks[service][name] = chains
#add log info
for ch in chains
id = "#{name}:#{ch}"
if log_tasks[id] == nil
log_tasks[id] = Hash.new

end
log_tasks[id][service] = ProcessingStatus::NOT_COMPLETED

end
end

end
end

end
return initial_tasks, processing_tasks, log_tasks

end

private
def get_results_files_for_service(name, service, chains)
results = Hash.new
if service == WEBFEATURE

chain_res = Array.new
opts = [’95’, ’99’, ’100’]
for opt in opts
file_name = name + ’_’+ opt + "_"+ service + ".common.txt"
chain_res << file_name
end

results[chains] = chain_res
elsif service == CONSURF
colors = [’7’, ’8’, ’9’]
for chain in chains
chain_res = Array.new
for color in colors
file_name = name + ’_’+ chain + "_"+ color + ’_’+ service + ".common.txt"
chain_res << file_name
end

results[chain] = chain_res
end

else
file_name = name + ’_’+ service + ".common.txt"
chain_res = [file_name]
results[chains] = chain_res

end
return results

156

end

def get_error_files_for_service(name, service, chains)
results = Hash.new
if service == CONSURF

for chain in chains
file_name = name + ’_’+ chain + ’_’+ service + ’.ERROR.txt’
chain_res = [file_name]
results[chain] = chain_res

end
else

file_name = name + ’_’+ service + ’.ERROR.txt’
chain_res = [file_name]
results[chains] = chain_res

end
return results

end

def are_all_files_available(dir, files)
presence = true
for file in files

if not is_file_available(dir, file)
presence = false
break

end
end
return presence

end

def is_file_available(dir, file)
path = File::join(dir, file)
return File::exist?(path)

end

def get_tasks_left(files, errors, dir, chains)
if is_all_chains_identifier(chains)
if not are_all_files_available(dir, files[chains]) and not are_all_files_available(dir, errors[chains])
return chains
else
return nil
end

else
res_chains = Array.new
for chain in chains

if not are_all_files_available(dir, files[chain]) and not are_all_files_available(dir, errors[chain])
res_chains << chain

end
end
if res_chains.empty?
return nil

else
return res_chains

end
end

end
end

Appendix C

Gems API

This Appendix presents the complete API of developed gems. The gems are organized in sections corresponding
to the usage scope layers, presented in section 4.2.2.

C.1. Bioinformatic database access gems
Scop
Gem class: cyfronet.gridspace.gem.bioinfo.data.ScopDb
Description: Searching SCOP database for protein families.
Technology: Local Gem, JRuby class.
Methods:

• get_family_pdbids(family_name:String) : String[]
search SCOP database on family name; family_name: the name of sought family; returns: an
array of pdbid codes of proteins that belong to sought family or empty array if family was not
found

DbFetch
Gem class: uk.ac.ebi.Dbfetch
Description: Retrieve entries from various up-to-date biological databases using entry identifiers
or accession numbers
Technology: External Web service
Methods:

• fetchData(query:String, format:String, style:String) : String[]
Fetch an entry in a defined format and style; query: the entry identifier in db:id format;
format: the name of the format required; style: the name of the style required; returns: an
array of strings containing the entry. Generally this will contain only one item which contains
the whole entry.

• getDBFormats(db:String) : String[]
Get a list of format names for a given database; db: database name to get available formats
for; returns: an array of strings containing the format names.

• getFormatStyles(db:String, format:String) : String[]
Get a list of style names available for a given database and format; db: database name to get
available styles for; format: the data format to get available styles for; returns: an array of
strings containing the style names.

158

C.1. Bioinformatic database access gems

• getSupportedDBs() : String[]
Get a list of database names usable with WSDbfetch; returns: an array of strings containing
the database names.

• getSupportedFormats() : String[]
Get a list of database and format names usable with WSDbfetch; returns: an array of strings
containing the database and format names.

• getSupportedStyles() : String[]
Get a list of database and style names usable with WSDbfetch; returns: an array of strings
containing the database and style names.

Pdb
Gem class: org.pdb.Pdb
Description: The Interface for the RCSB PDB Web service. A number of different functions are
provided.
Technology: External Web service.
Methods:

• getChainLength(structureId:String, chainId:String) : Integer
Finds the length of the given chain; structureId: a PDB Structure Identifier (aka PDB ID);
chainId: an author-assigned Chain Identifier; returns: the length of the given chain.

• getChains(structureId:String) : String[]
Finds all the chain identifiers for a given structure; structureId: a PDB Structure Identifier
(aka PDB ID); returns: an array of the author-assigned chain identifiers for the given structure.

• getSequenceForStructureAndChain(structureId:String, chainId:String) : String
Finds the sequence for the given chain; structureId: a PDB Structure Identifier (aka PDB
ID); chainId: an author-assigned Chain Identifier; returns: a sequence.

• runXmlQuery(xmlQuery:String) : String[]
This is the most important Web service call provided by RCSB-PDB, since it allows to access
all of the advanced search functionality via a Web service. Runs any RCSB advanced query.
This works by posting the XML representation of an advanced query; xmlQuery: the XML
representing a RCSB advanced query; returns: an array of PDB IDs.

GeoDataProviderService
Gem class: cyfronet.gridspace.gem.microarray.GeoDataProviderService
Description: Retrieving microarray data from NCBI Geo and EBI ArrayExpress databases. Down-
loading existing datasets and samples as well as creating new datasets is possible.
Technology: Web service. Service was implemented as a Ruby class
Methods:

• create_dataset(samples_ids:String[], db_type:String) : String
Create microarray dataset from microarray samples; samples_ids: an array of samples iden-
tifiers; db_type: database identifier; returns: text file with created dataset.

• create_dataset_obj(samples_ids:String[], db_type:String) : GeoDataSet
Create microarray dataset from microarray samples; samples_ids: an array of samples iden-
tifiers; db_type: database identifier; returns: created dataset object.

• get_dataset(gds_id:String, db_type:String) : String
Download microarray dataset from database; gds_id: dataset identifier; db_type: database
identifier; returns: text file with downloaded dataset.

• get_dataset_obj(gds_id:String, db_type:String) : GeoDataSet
Download microarray dataset from database; gds_id: dataset identifier; db_type: database
identifier; returns: downloaded dataset object.

• get_sample(gsm_id:String, db_type:String) : String
Download single microarray sample from database; gsm_id: sample identifier; db_type: database
identifier; returns: text file with downloaded sample.

159

Gems API

• get_sample_obj(gsm_id:String, db_type:String) : GeoSample
Download single microarray sample from database; gsm_id: sample identifier; db_type: database
identifier; returns: downloaded sample object.

FormatConverter
Gem class: cyfronet.gridspace.gem.bioinfo.data.FormatConverter
Description: Performs conversion between various data formats.
Technology: Web service. Service was implemented as a Ruby class
Methods:

• convert_arff_to_double(arff:String) : Double[],String[]
arff: data file in ARFF format; returns: an array with data, an array with attributes names.

• convert_arff_to_geo(arff:String, params:Hash) : GeoDataSet
arff: data file in ARFF format; params: dataset parameters; returns: dataset object.

• convert_double_to_arff(values:Double[], params:String[]) : String
values: attributes values; params: attributes names; returns: data file in ARFF format.

• convert_double_to_geo(values:Double[], params:Hash) : GeoDataSet
values: gene expression levels; params: dataset parameters; returns: dataset object.

• convert_geo_to_arff(gds:GeoDataSet) : String,Hash
gds: dataset; returns: data file in ARFF format, dataset parameters.

• convert_geo_to_double(gds:GeoDataSet) : Double[],Hash
gds: dataset; returns: an array with data, dataset parameters.

C.2. Basic analysis gems
R_gem
Gem class: cyfronet.gridspace.gem.r2
Description: Execute scripts that are written in R language.
Technology: Web service, service is a binary program wrapper, written in Ruby .
Methods:

• check_R_version() : String
Checks the version of the R program installed on a remote host; returns: Result of executing
R –version.

• execute_R_code(code:String, inputs:Hash) : String[]
Executes R code given in the code parameter; code: script to execution; inputs: contains
pairs id => file name; returns: an array of URLs with created results

WekaAssociator
Gem class: cyfronet.gridspace.gem.weka.WekaAssociator
Description: Data mining tool for discovering association rules in data.
Technology: Mocca component, Weka library integration, written in Java.
Methods:

• assignAssociator(associatorPath:String, options:String[])
Create an associator object and set options to it; associatorPath: complete Java classpath
for assigned Associator; options: options to set for an associator.

• createAssociations(dataset:String) : String
Create associations rules; dataset: instances data; returns: created rules.

• createAssociationsURL(dataURL:String, dataUser:String) : String
Create associations rules from dataset stored in WebDav repository; dataURL: an URL of
instances; dataUser: ’user:password’; returns: created rules.

WekaClassifier
Gem class: cyfronet.gridspace.gem.weka.WekaClassifier
Description: Creating, training and testing classifiers. Supervised learning.

160

C.2. Basic analysis gems

Technology: Mocca component, Weka library integration, written in Java.
Methods:

• assignClassifier(classifierPath:String, options:String[])
Create a classifier object and set options to it; classifierPath: complete Java classpath for
assigned Classifier; options: options to set for a classifier.

• train(dataset:String, attributeName:String) : long
Learn classifier for predict attribute; dataset: instances data; attributeName: attribute to
learn for further predictions; returns: learning time.

• classify(dataset:String) : String
Classify instances for attribute passed in training time; dataset: instances data; returns:
instances with predicted data.

• trainURLData(dataURL:String, dataUser:String, attributeName:String) : long
Learn classifier. Data provided are stored in WebDav repository; dataURL: an URL of in-
stances; dataUser: ’user:password’; attributeName: attribute to learn for further predictions;
returns: learning time.

• classifyURLData(dataURL:String, dataUser:String, classifiedDataURL:String,
classifiedDataUser:String) : String
Classify instances which are stored in WebDav repository. Store results also in repository;
dataURL: an URL of instances; dataUser: ’user:password’ for reading data; classifiedDataURL:
address to store classified data; classifiedDataUser: ’user:password’ for storing data; re-
turns: URL of classified data.

WekaClusterer
Gem class: cyfronet.gridspace.gem.weka.WekaClusterer
Description: Using Weka clusterers. Unsupervised learning.
Technology: Mocca component, Weka library integration, written in Java.
Methods:

• assignClusterer(clustererPath:String, options:String[])
Create a clusterer object and set options to it; clustererPath: complete Java classpath for
assigned Clusterer; options: options to set for a clusterer.

• clusterDataSet(dataset:String) : String[]
Divide data into clusters; dataset: instances data; returns: All clusters descriptions.

• clusterURLDataSet(dataURL:String, dataUser:String, clusteredDataURL:String,
clusteredDataUser:String) : String[]
Divide data stored in WebDav repository into clusters. Store results also in repository;
dataURL: an URL of instances; dataUser: ’user:password’ for reading data; clusteredDataURL:
address to store clustered data; clusteredDataUser: ’user:password’ for storing data; returns:
An array with clustered data URLs.

• buildClusterer(dataset:String) : int
Cluster dataset and build clusterer; dataset: instances data; returns: number of clusters
created.

• clusterData(data:double[][]) : int[]
Divides data onto clusters; data: data to cluster; returns: an array of clusters’ numbers to
which every item has been assigned.

WekaFilter
Gem class: cyfronet.gridspace.gem.weka.WekaFilter
Description: Methods for filtering input data sets in ARFF format.
Technology: Mocca component, Weka library integration, written in Java.
Methods:

• assignFilter(filterPath:String, options:String[])
Create a filter object and set options to it; filterPath: complete Java classpath for assigned
Filter; options: options to set for a filter.

161

Gems API

• filterDataSet(dataset:String) : String
Filter data; dataset: instances data; returns: Instances after filtering.

• filterURLDataSet(dataURL:String, dataUser:String, filteredDataURL:String,
filteredDataUser:String) : String[]
Filter data stored in WebDav repository. Store results also in repository; dataURL: an URL
of instances; dataUser: ’user:password’ for reading data; filteredDataURL: address to store
filtered data; filteredDataUser: ’user:password’ for storing data; returns: URL of filtered
data.

WekaURLGem
Gem class: cyfronet.gridspace.gem.weka.WekaURLGem
Description: Methods for managing data used in Weka gems, and also for testing classifier predic-
tion.
Technology: Web service, implementation is written in Java.
Methods:

• compare(originalData:String, predictedData:String, attributeName:String)
Compare two datasets on selected attribute; returns: prediction quality

• loadDataFromDatabase(dbUrl:String, query:String, username:String, password:String)
: String
Load data from database; returns: data file in ARFF format

• splitData(data:String, trainingDataPercent:Integer) : SplitData
Split dataset into training and testing parts; returns: a SplitData object with training and
testing data as its fields

• loadDataFromDatabasetoURL(dataUrl:String, dataUser:String, dbUrl:String,
query:String, username:String, password:String) : String
Load data from database and store it in WebDav repository; returns: stored data URL

• loadDataFromURL(dataUrl:String, dataUser:String) : String
Load data from WebDav repository; returns: data file in ARFF format

• saveDataToURL(dataset:String, dataUrl:String, dataUser:String) : String
Store data in WebDav repository; returns: URL address where data were stored

• compareURLData(originalURLData:String, originalDataUser:String,
predictedURLData:String, predictedDataUser:String, attributeName:String)
Compare two datasets that are stored in WebDav repository on selected attribute; returns:
prediction quality

• splitURLData(dataURL:String, dataUser:String, splitDataURL:String,
splitDataUser:String, trainingDataPercent:Integer) : SplitURLData
Split data stored in repository into training and testing set; returns: a SplitURLData object
with addresses of training and testing data as its fields

ClutoLib
Gem class: cyfronet.gridspace.gem.bioinfo.clustering.ClutoLib
Description: Perform clustering with Cluto software.
Technology: Web service, binary program wrapper, written in Ruby .
Methods:

• cluster(data:Double[], options:Hash) : Integer[]
Cluster data, clusterization algorithm should be set in options; returns: a number of cluster
to which every data instance has been assigned

ClusterLib
Gem class: cyfronet.gridspace.gem.bioinfo.clustering.ClusterLib
Description: Perform clustering with Cluster software.
Technology: Web service, binary program wrapper, written in Ruby .
Methods:

162

C.3. Protein sequence and structure analysis gems

• cluster(data:Double[], options:Hash) : Integer[]
Cluster data, clusterization algorithm should be set in options; returns: a number of cluster
to which every data instance has been assigned

WekaClustering
Gem class: cyfronet.gridspace.gem.bioinfo.clustering.WekaClustering
Description: Perform clustering in Weka library software.
Technology: Local gem, written in JRuby , uses WekaClusterer gem.
Methods:

• clusterCobweb(dataset:String, cutoff:Double) : Integer[]
Cluster data with Cobweb algorithm; dataset: instances data (ARFF format); cutoff: cutoff
value; returns: a number of cluster to which every data instance has been assigned

• clusterKmeans(dataset:String, k:Integer) : Integer[]
Cluster data with simple K-means algorithm; dataset: instances data (ARFF format); k:
number of clusters to create; returns: a number of cluster to which every data instance has
been assigned

PCA
Gem class: cyfronet.gridspace.gem.bioinfo.dimensions.PCA
Description: Perform PCA operation on data.
Technology: Local gem, written in JRuby , uses R_gem.
Methods:

• pca(data:Double[][], dimension:Integer) : Double[][]
perform PCA on data; data: input data; dimension: a number of dimensions to which input
data should be reduced; returns: an array with processed data

MDS
Gem class: cyfronet.gridspace.gem.bioinfo.dimensions.MDS
Description: Perform MDS operation on data.
Technology: Local gem, written in JRuby , uses R_gem.
Methods:

• mds(data:Double[][], dimension:Integer) : Double[][]
perform MDS on data; data: input data; dimension: a number of dimensions to which input
data should be reduced; returns: an array with processed data

C.3. Protein sequence and structure analysis gems
ClustalW

Gem class: uk.ac.ebi.ClustalW
Description: Sequence alignment in ClustalW1.
Technology: External Web service.
Methods:

• runClustalW(params:Hash, content:Hash) : String
Submits a ClustalW job to the service; params: an instance of the inputParams2 data struc-
ture; content: a list of data structures describing the query sequence data; returns: a string
containing the job ID (jobid).

• checkStatus(jobid:String) : String
Get the status of a job; jobid: the job identifier of the job to check status of; returns: a string
indicating the status of the job. Current values are: DONE: job has finished, and the results
can then be retrieved; ERROR: the job failed or no results where found; NOT_FOUND: the

1 The complete API is available at http://www.ebi.ac.uk/Tools/webservices/services/clustalw
2 http://www.ebi.ac.uk/Tools/webservices/services/clustalw#inputparams

163

Gems API

job id is no longer available (job results are deleted after 24 h); PENDING: the job is in a
queue waiting processing; RUNNING: the job is currently being processed.

• poll(jobid:String, type:String) : Base64
Wait until the job has finished and get the specified type of result data; jobid: the job
identifier of the job to check status of; type: a string specifying the type of result to retrieve;
returns: a base64 encoded string containing the result data.

ClustalW2
Gem class: uk.ac.ebi.ClustalW2
Description: Sequence alignment in ClustalW23.
Technology: External Web service.
Methods:

• runClustalW2(params:Hash, content:Hash) : String
Submits a ClustalW2 job to the service; params: an instance of the inputParams data struc-
ture; content: a list of data structures describing the query sequence data; returns: a string
containing the job ID (jobid).

• checkStatus(jobid:String) : String
Get the status of a job; jobid: the job identifier of the job to check status of; returns: a string
indicating the status of the job.

• poll(jobid:String, type:String) : Base64
Wait until the job has finished and get the specified type of result data; jobid: the job
identifier of the job to check status of; type: a string specifying the type of result to retrieve;
returns: a base64 encoded string containing the result data.

Muscle
Gem class: uk.ac.ebi.Muscle
Description: Sequence alignment in Muscle4.
Technology: External Web service.
Methods:

• runMuscle(params:Hash, content:Hash) : String
Submits a Muscle job to the service; params: an instance of the inputParams data structure;
content: a list of data structures describing the query sequence data; returns: a string
containing the job ID (jobid).

• checkStatus(jobid:String) : String
Get the status of a job; jobid: the job identifier of the job to check status of; returns: a string
indicating the status of the job.

• poll(jobid:String, type:String) : Base64
Wait until the job has finished and get the specified type of result data; jobid: the job
identifier of the job to check status of; type: a string specifying the type of result to retrieve;
returns: a base64 encoded string containing the result data.

TCoffee
Gem class: uk.ac.ebi.TCoffeeW
Description: Sequence alignment in T-Coffee5.
Technology: External Web service.
Methods:

• runTCoffee(params:Hash, content:Hash) : String
Submits a T-Coffee job to the service; params: an instance of the inputParams data structure;
content: a list of data structures describing the query sequence data; returns: a string
containing the job ID (jobid).

3 The complete API is available at http://www.ebi.ac.uk/Tools/webservices/services/clustalw2
4 The complete API is available at http://www.ebi.ac.uk/Tools/webservices/services/muscle
5 The complete API is available at http://www.ebi.ac.uk/Tools/webservices/services/tcoffee

164

C.3. Protein sequence and structure analysis gems

• checkStatus(jobid:String) : String
Get the status of a job; jobid: the job identifier of the job to check status of; returns: a string
indicating the status of the job.

• poll(jobid:String, type:String) : Base64
Wait until the job has finished and get the specified type of result data; jobid: the job
identifier of the job to check status of; type: a string specifying the type of result to retrieve;
returns: a base64 encoded string containing the result data.

Mammoth
Gem class: cyfronet.gridspace.gem.structure_comp.Mammoth
Description: Align sequences based on structure alignment in Mammoth software.
Technology: Web service, binary program wrapper written in Ruby .
Methods:

• compare_structures(pdb_structures:Hash, pdb_ids:Hash, options:String[]) : Hash
Run Mammoth for comparing pdb_structures; returns: a map with results, where alignment
result type is converter to a map with pdbid as a key and aligned sequence as values

• get_available_results_types() : Hash
returns: names and descriptions of available result types to download

MultiProt
Gem class: cyfronet.gridspace.gem.structure_comp.MultiProt
Description: Align sequences based on structure alignment in MultiProt software.
Technology: Web service, binary program wrapper written in Ruby .
Methods:

• compare_structures(pdb_structures:Hash, pdb_ids:Hash, options:String[]) : Hash
Run MultiProt and Staccato for comparing pdb_structures and creating sequences alignment;
returns: a map with results, where alignment result type is converter to a map with pdbid as
a key and aligned sequence as values

SSM
Gem class: cyfronet.gridspace.gem.structure_comp.Ssm
Description: Multiple structures alignment in Secondary Structure Matching service6.
Technology: Web service, HTTP communication wrapper written in Ruby .
Methods:

• compare_structures(pdb_structures:Hash) : Hash
Creates request to SSM server and handles complete communication; returns: an sequence
alignment based on structures alignment in FASTA format

Dali
Gem class: uk.ac.ebi.Dali
Description: Pairwise structure alignment in DaliLite software7.
Technology: External Web service.
Methods:

• runDaliLite(params:Hash) : String
Submits a DaliLite job to the service; params: an instance of the inputParams data structure
with structures to alignment; returns: a string containing the job ID (jobid).

• checkStatus(jobid:String) : String
Get the status of a job; jobid: the job identifier of the job to check status of; returns: a string
indicating the status of the job.

• poll(jobid:String, type:String) : Base64
Wait until the job has finished and get the specified type of result data; jobid: the job

6 http://www.ebi.ac.uk/msd-srv/ssm/ssmstart.html
7 The complete API is available at http://www.ebi.ac.uk/Tools/webservices/services/dalilite

165

Gems API

identifier of the job to check status of; type: a string specifying the type of result to retrieve;
returns: a base64 encoded string containing the result data.

ClustalWUtils
Gem class: cyfronet.gridspace.gem.structure_comp.ClustalWUtils
Description: Computing W score and W profile for aligned sequences.
Technology: Web service, service implementation is written in Ruby .
Methods:

• get_complete_sequences(aligned_sequences:String) : Hash
Analyze aligned sequences and concatenate appropriate strings into one for every found identi-
fier, it is useful for parsing results from various services; returns: a map with sequence identifier
as key and complete aligned sequence as value

• get_w_profiles_for_proteins(w_score:Double[],
aligned_sequences:String[]) : Double[][]
Count W profile for every aligned sequene; returns: an array of W profile values, in the same
order as aligned_sequences were provided.

• get_w_score_for_sequences(aligned_sequences:String[],
average_window:Integer, codes:Integer) : Hash
Count W score for aligned sequences; average_window: a length of averaging window; codes:
number of codes that are valid for aligned sequences; returns W score values.

C.4. Protein binding site prediction gems
CastP

Gem class: cyfronet.gridspace.gem.pocket.CastP
Description: CASTp [17, 27] is an online tool that locates and measures pockets and voids on 3D
protein structures. It is based on the alpha shape and the pocket algorithm developed in computa-
tional geometry. In CASTp, voids are defined as buried unfilled empty space inside proteins after
removing all hetero atoms that are inaccessible to water molecules (modeled as a spherical probe
of defined radius, 1.4 A) from outside. Pockets are defined as concave surface with constrictions
at the opening on the surface regions of proteins. Unlike voids, pockets allow easy access of water
probes from the outside.
Technology: Web service, HTTP communication wrapper, implementation is written in Ruby with
Task queuing system mechanism.
Methods:

• get_results_from_file(filename:String, filebody:String, options:Hash) : String
Submits a pdb file request to the service; filename: file identifier; filebody: content of the
pdb file; returns: a string containing the task ID (taskid).

• get_results_from_pdbid(pdbid:String, options:Hash) : String
Submits a pdb id request to the service; pdbid: structure identifier; returns: a string containing
the task ID (taskid).

• get_status(taskid:String) : Integer
Get the status of a task; taskid: the task identifier (obtained from one of the computation
request methods); returns: a Integer indicating the status of the job (0 – CREATED ; 1 –
QUEUED ; 2 – PROCESSING ; 3 – FINISHED).

• get_results(taskid:String) : ProteinTaskResult
Download results from service if task is in FINISHED status; returns: TaskResult object which
may be OK or ERROR type.

• get_available_options() : Hash
List available options; returns: A map with option name as a key and option description as a
value.

166

C.4. Protein binding site prediction gems

ConSurf
Gem class: cyfronet.gridspace.gem.pocket.ConSurf
Description: ConSurf [43] calculates conservation scores for residues of a given 3D - structure of
a protein or a domain. It is designed to identify hot spots and surface patches that are likely
to be in contact with other proteins, domains, peptides, DNA, RNA or ligands. The underlying
assumption is that key residues that are important for binding should be conserved throughout
evolution, just like residues that are crucial for maintaining the protein fold. First, the sequence
is extracted from the Protein Data Bank (PDB) file and used as a template in search for close
homologues using PSI-BLAST. Selected hits (using Expectation value and Maximum Number of
Homologues as criterion) are being aligned using Multiple Sequence Alignment (MSA) program.
The MSA is used to build a phylogenetic tree using the neighbor joining (NJ) algorithm. The
conservation scores are calculated using either an empirical Bayesian or the Maximum Likelihood
method. There is also ConSurf Database (ConSurfDB) that offers precalulted results for entries
from PDB.
Technology: Web service, HTTP communication wrapper, implementation is written in Ruby with
Task queuing system mechanism.
Methods:

• The same as CastP

Fod
Gem class: cyfronet.gridspace.gem.pocket.Fod
Description: FOD [22] calculates distribution of hydrophobicity in terms of deficiency/excess inter-
preted as a measure of structural and functional specificity. The observed distribution of hydropho-
bicity in the protein body is compared to the idealized one expressed by a three-dimensional Gauss
function. The differences between these two quantities calculated for each residue in a structure
are presented as ∆H̃ profile. Residues with high ∆H̃ values are expected to form ligand binding
site(s).
Technology: Web service, Binary program wrapper, implementation is written in Ruby .
Methods:

• The same as CastP, except get_results_from_pdbid - no available

Ligsite_csc
Gem class: cyfronet.gridspace.gem.pocket.Ligsite_csc
Description: LIGSITEcsc [37] is an extension and implementation of the LIGSITE algorithm.
LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation
of the involved surface residues. First, instead of capturing protein-solvent-protein events, as it is in
the case of LIGSITE method, surface-solvent-surface events are being captured using the protein’s
Connolly surface. Second, the pockets identified are re-ranked by the degree of conservation of the
involved surface residues.
Technology: Web service, HTTP communication wrapper, implementation is written in Ruby with
Task queuing system mechanism.
Methods:

• The same as CastP

Pass
Gem class: cyfronet.gridspace.gem.pocket.Pass
Description: PASS [18] is a simple computational tool that uses geometry to characterize regions
of buried volume in proteins and to identify positions likely to represent binding sites. The PASS
algorithm is designed to fill the cavities in a protein structure with a set of spheres and to identify
a few of these spheres (Active Site Points, ASPs) that most likely represent the centers of binding
pockets. Crevice filling is performed in layers using three-point Connolly-like sphere geometry. An
initial coating of probe spheres is calculated with the protein as substrate, then additional layers
of probes are accreted onto the previously found probe spheres. Only probes with low solvent

167

Gems API

exposure are retained, and the routine finishes when an accretion layer produces no new buried
probe spheres.
Technology: Web service, Binary program wrapper, implementation is written in Ruby .
Methods:

• The same as CastP, except get_results_from_pdbid - no available

PocketFinder
Gem class: cyfronet.gridspace.gem.pocket.PocketFinder
Description: Pocket-Finder implements LIGSITE [34] which is based on POCKET algorithm but
circumvents most of its drawbacks. LIGSITE is a method for the automatic detection of pockets
on the surface of proteins that may act as binding sites for small molecule ligands. In the first
stage a regular Cartesian grid is generated. Next, grid points are labeled as solvent or protein
depending whether they are accessible or inaccessible to solvent modeled by a probe sphere (radius
set to 1.4 Å). Then for each point 7 directions (x, y, z and four cubic diagonals) are scanned in
order to identify protein-solvent-protein (PSP) events. Pockets and cavities are defined as regions
of grid points with a defined minimum number of PSP events.
Methods:

• The same as CastP

QSiteFinder
Gem class: cyfronet.gridspace.gem.pocket.QSiteFinder
Description: QSite-Finder [45] is a method for ligand binding site prediction. It uses the interaction
energy between the protein and a simple van der Waals probe to locate energetically favourable
binding sites. Energetically favourable probe sites are clustered according to their spatial proximity
and clusters are then ranked according to the sum of interaction energies for sites within each
cluster.
Methods:

• The same as CastP

SuMo
Gem class: cyfronet.gridspace.gem.pocket.SuMo
Description: SuMo [40] is a method designed to detect similar three-dimensional (3D) sites in
proteins. First, the PDB file containing the atomic coordinates for a protein structure is converted
into a data structure suiTable for fast comparison. Then the comparison step follows, using pre-
formatted data that may come from this database. The basis for this method is a representation
of the protein structure by a set of stereochemical groups that are defined independently from the
notion of amino acid. Heuristics for finding similarities uses graphs of triangles of chemical groups
to represent the protein structures.
Methods:

• The same as CastP, except get_results_from_pdbid - no available

WebFeature
Gem class: cyfronet.gridspace.gem.pocket.WebFeature
Description: WebFEATURE [46] is a structural analysis tool that allows to scan query structures
for functional sites in both proteins and nucleic acids. It is the public interface to the scanning
algorithm of the FEATURE package, a supervised learning algorithm for creating and identifying
3D, physicochemical motifs in molecular structures. Given an input structure or Protein Data
Bank identifier (PDB ID), and a statistical model of a functional site, WebFEATURE returns
rankscored hits in 3D space that identify regions in the structure where similar distributions of
physicochemical properties occur relative to the site model.
Methods:

• The same as CastP

168

C.5. Results presentation gems

ResultsConverter
Gem class: cyfronet.gridspace.gem.pocket.ResultsConverter
Description: Conversion predicted binding site description from a service specific format to the
common format.
Technology: Web service, service implementation is written in Ruby .
Methods:

• get_atoms_for_pocket(service_name:String, results:String, name:String, options:Hash)
: String
Get residue numbers for predicted binding site. Suitable only for one–chain protein.

• get_atoms_and_chains(service_name:String, results:String, name:String, options:Hash)
: String
Get residue numbers and chain identifiers for predicted binding site.

• get_atoms_for_chain(service_name:String, results:String, name:String, options:Hash,
chain:String) : String
Get residue numbers and chain identifiers for the most probably binding site that contains at
least one residue that belongs to the selected chain.

• get_available_converters() : String[]
List available format converters.

C.5. Results presentation gems
Gnuplot

Gem class: cyfronet.gridspace.gem.GnuPlot
Description: Create plots from numerical data.
Technology: Web service, binary program wrapper in Ruby .
Methods:

• plot(params:String, inData:String) : String
Create plot with one input data file; params: GnuPlot script with ’input ’ string means the
place to put path to data file; inData: content of input data file; returns: an URL to the
created plot.

• multiplot(params:String, inputs:String[]) : String
Create plot with mutliple input data files; params: GnuPlot script with ’inputNR’ string
means the places to put path to data files (NR can not be greater than size of inputs array);
inputs: an array with content of input data files; returns: an URL to the created plot.

ProteinWorkshop
Gem class: cyfronet.gridspace.gem.bioinfo.visualize.ProteinWorkshop
Description: Create visualization of protein structure in ProteinWorkshop software.
Technology: Web service, Java Web Start generator, written in Ruby .
Methods:

• visualize_structure(structure_path:String, options:Hash) : String
Creates JNLP file for ProteinWorkshop application. The path to the visualized protein,
structure_path , is set as program argument.

Jmol
Gem class: cyfronet.gridspace.gem.bioinfo.visualize.Jmol
Description: Create visualization of protein structure in Jmol software or visualize many structures
at once in enhanced Jmol application.
Technology: Web service, Java Web Start generator, written in Ruby .
Methods:

169

Gems API

• visualize_structure(jmol_script:String, options:Hash) : String
Create JNLP file to Jmol application. A path to the jmol_script is set as an application
argument.

• visualize_structures(xml_data:String, options:Hash) : String
Create JNLP file to the developed wrapper for Jmol visualization. A path to XML script that
contains information about predicted binding sites is set as an application argument.

• create_jmol_script(results:Hash) : String
Create Jmol script from predicted binding sites. Input is a map with service name as a key
and results from this service as a value.

• create_xml_script(results:Hash) : String
Create XML script from predicted binding sites. Input is a multi–stage map file_id => service
=> predicted site

JalView
Gem class: cyfronet.gridspace.gem.bioinfo.visualize.JalView
Description: Create visualization of sequences alignment in JalView.
Technology: Web service, Java Web Start generator, written in Ruby .
Methods:

• visualize_sequences(alignment_path:String, options:Hash) : String
Creates JNLP file for JalView application.

JTreeView
Gem class: cyfronet.gridspace.gem.bioinfo.visualize.JTreeView
Description: Create visualization of microarray data in JTreeView.
Technology: Web service, Java Web Start generator, written in Ruby .
Methods:
• visualize_data(files_paths:String[], options:Hash) : String

Creates JNLP file for JTreeView application. Paths to cdt , gtr and atr files are required.

170

