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Abstract

Quantum game theory is a relatively new �eld of study that combines quantum

mechanics and classical game theory. Theoretical analysis of quantum games may be

challenging due to complex matrix calculations involving numerous trigonometric

expressions, which scale exponentially with increasing number of players. In this thesis,

we focus on software-aided analysis of quantum games in Eisert-Wilkens-Lewenstein

scheme as well as introduce, evaluate and compare symbolic and numerical approaches

towards such analysis. We propose algorithms for �nding best responses and Nash

equilibria in pure strategies as well as best response cycles which can be used for

constructing mixed strategies with probabilistic Nash equilibria. We also demonstrate

the functionalities of our library ewl, which can be utilized for deriving complex

formulas in symbolic form, on the example of Quantum Prisoner’s Dilemma with

di�erent parametrizations. Finally, we execute two- and three-player variants of this

game on quantum simulators as well as on a real quantum IBM Q device, compare

the results with theoretical expectations, and draw conclusions on the current state of

quantum gate-based devices.



Streszczenie

Kwantowa teoria gier jest stosunkowo nową dziedziną nauki, która łączy mechanikę

kwantową i klasyczną teorię gier. Teoretyczna analiza gier kwantowych może być

trudna ze względu na skomplikowane obliczenia macierzowe z wieloma wyrażeni-

ami trygonometrycznymi, które rosną wykładniczo wraz ze wzrostem liczby graczy.

W niniejszej pracy skupimy się na wspomaganej programowo analizie gier kwan-

towych w schemacie Eiserta-Wilkensa-Lewensteina oraz opiszemy i porównamy

symboliczne i numeryczne podejścia do takiej analizy. Zaproponujemy algorytmy

do znajdowania najlepszych odpowiedzi i równowag Nasha w strategiach czystych,

a także cykli najlepszych odpowiedzi, które mogą być wykorzystywane do kon-

struowania strategii mieszanych posiadających probabilistyczne równowagi Nasha.

Na przykładzie kwantowego dylematu więźnia z różnymi parametryzacjami zademon-

strujemy również funkcjonalności autorskiej biblioteki ewl, która może być wyko-

rzystana do wyprowadzania złożonych formuł w postaci symbolicznej. Uruchomimy

również dwu- i trzyosobowe warianty tej gry na symulatorach kwantowych oraz na

rzeczywistym urządzeniu kwantowym IBM Q, porównamy wyniki z przewidywaniami

teoretycznymi i sformułujemy wnioski na temat obecnego stanu urządzeń opartych

o bramki kwantowe.
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1 Introduction

The subject of this thesis is software-aided analysis and search of Nash equilibria

in quantum games. However, this task is only the tip of the iceberg, as it requires

the knowledge of best reply correspondence, which depends on the expected payo�

function, which in turn depends on the distribution of game outcomes due to the

probabilistic nature of quantum computing. In the �rst chapter, the motivation for this

thesis as well as research objectives will be discussed.

1.1 Motivation

Quantum game theory is a relatively new �eld of study that combines quantum

mechanics and classical game theory. Generalization of classical games to the quantum

domain signi�cantly expands the space of possible game states and players’ strategies,

revealing properties not found in the classical counterparts, and therefore becoming

an intriguing subject of research.

In recent years there has been an increasing number of publications that introduce

various ideas for quantum extensions of classical games to the quantum domain such

as quantum poker [14], quantum tic-tac-toe [16], or quantum blackjack [27]. A more

general approach towards so-called quantization is the EWL scheme [8] which is

applicable to any two-player binary choice symmetric game, resulting in quantum

games such as Quantum Prisoner’s Dilemma [8, 6, 35, 36] or Quantum Absent-Minded

Driver [13].

Theoretical analysis of quantum games relies on complex matrix computations with

trigonometric expressions of multiple variables, which can be particularly prone to

human error when performed manually. Moreover, since quantum operators acting on

a n-qubit system are represented as unitary matrices of complex numbers of shape

2n × 2n, the problem scales exponentially with increasing number of players, which

makes the formulas almost impossible to derive manually for three or more players.

The general motivation of this thesis is to explore possible ways to facilitate the

analysis of quantum games in the EWL protocol on classical computers, propose and

implement symbolic and numerical methods of �nding Nash equilibria, then evaluate

their performance on several sample quantum games, and �nally compare the formulas

against the results from publications.
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1 Introduction

1.2 Research questions

The following research questions provide a starting point for the research conducted

in this thesis:

• Which properties of quantum games would be interesting or useful to analyze

automatically?

• Can existing software for scienti�c computing reproduce various formulas re-

lated to quantum games as they are published?

• If yes, can these tools be utilized for analysis of more general cases of quantum

games, for instance with more players?

• Is there a generic method for �nding best reply correspondence or Nash equilibria

in pure strategies for arbitrary quantum games in the EWL protocol?

• Are the results of running quantum games on a real quantum device consistent

with theoretical expectations?

1.3 Research hypothesis

In this thesis we will try to demonstrate that existing software for scienti�c computing

may be successfully utilized for the purpose of theoretical analysis of various properties

of quantum games in the EWL protocol, including �nding best responses for arbitrary

strategies of the opponent, �nding Nash equilibria in pure strategies, or proving the

lack of existence of such strategy pro�les.

1.4 Research objectives

The objective of this thesis is to conduct research in the �eld of software-aided analysis

of quantum games, in particular:

• prepare software tools for calculating expected payo�s of individual players in

arbitrary quantum game in the EWL protocol

• verify the correctness of obtained formulas related to quantum games by com-

paring them with the theoretical results from existing publications

• execute sample quantum games in the EWL protocol on IBM Q device using

Operators library instead of manually decomposing quantum entanglement

operators J and J† into simpler quantum gates

• experimentally verify theoretical expectations of quantum game outcomes with

the results from a real quantum device

• propose, evaluate and compare symbolic and numerical methods for �nding best

response in quantum games in the EWL protocol

• check the applicability of �xed-point de�nition of Nash equilibrium to �nd such

type of equilibria in pure states

2



1.5 Related works

1.5 Related works

In [8], Eisert, Wilkens and Lewenstein propose a quantization scheme of two-player

binary choice symmetric games which can also involve quantum entanglement (named

the EWL protocol after the initials of the originators’ names) and demonstrate its use

on the example of Prisoner’s Dilemma. It is shown that for maximally entangled initial

state, the quantum variant of the game has more favourable Nash equilibrium than

its classical counterpart. Moreover, there exists a particular quantum strategy called

miracle move which always gives at least reward if played against any classical strategy

which gives the quantum player an advantage over the classical player.

In [15], a quantum version of Prisoner’s Dilemma is executed on a real IBM Q

quantum device using Qiskit framework. The work focuses mainly on the construction

of entanglement operator J known from EWL protocol which was non-trivial at the

time due to a limited set of available gates, therefore manual decomposition of J
and J† operators into basic quantum gates supported by a speci�c IBM Q backend

was necessary. The paper also yields valuable results on quantum noise present due

to decoherence phenomenon occurring in quantum computers, as well as describes,

implements and compares two error mitigation techniques.

In [6], a full SU(2) parametrization with 3 degrees of freedom is used instead of the

original EWL parametrization from [8]. The analysis is continued in [35], con�rming

that the quantum version of the game is more pro�table for both players, as well as

showing that in such variant of Quantum Prisoner’s Dilemma there always exists a

counter-strategy that gives the highest possible payo�. In the following part of the work,

mixed strategies that consist of strategies from best response cycles are introduced,

leading to the existence of mixed Nash equilibrium located in the saddle point of

expected payo� function. Also, some economical examples of utilizing quantum game

Nash equilibria are proposed.

In [36], other types of equilibria are introduced, both for pure and mixed states. It is

also shown that the Nash equilibria of these games in quantum mixed Pauli strategies

are closer to Pareto optimal results than their classical counterparts. The paper also

provides examples of equlibria for a few popular 2× 2 quantum games.

In [34], instead of using original angle-based parametrizations and trigonometric

functions, the authors introduce algebra of quaternions, which cleverly facilitates

calculation of probabilities of possible game outcomes. Based on the knowledge of

best reply correspondence in analytic form for the game of chicken (meaning coward),

various types of Nash equilibria both in pure and mixed states are found and analyzed.

However, the paper contains no instructions on how to obtain the best response

function for a generic 2× 2 quantum game.

Apart from publications, there also exist various software tools related to game

theory such as Nashpy [37] or Gambit [24], implementing a wide variety of e�cient

algorithms for numerical analysis of classical games in terms of the existence of Nash

equilibria, Pareto e�ciency and other various properties, however with no support for

quantum games.

3



1 Introduction

1.6 Structure of the work

The thesis consists of nine chapters and an appendix.

Chapter 2 introduces basic terms and de�nitions related to quantum computing and

quantum gate-based devices. Chapter 3 provides the background in the �eld of classical

game theory. Chapter 4 presents the overview of quantum games, introduces the Eisert-

Wilkens-Lewenstein (EWL) protocol and de�nes several popular parametrizations.

Chapter 5 introduces a number of variants of Quantum Prisoner’s Dilemma with

various parametrizations. Chapter 6 presents ewl library, a Python tool for symbolic

analysis of quantum games in EWL protocol with IBM-Q intergration. Chapter 7

describes proposed algorithms for �nding best responses and Nash equilibria in pure

states. Chapter 8 presents the results of the experiments with running quantum games

on quantum simulators and real quantum devices as well as symbolic and numerical

approaches towards software-aided analysis of quantum games. Chapter 9 discusses

achieved goals, conclusions and future works.

Appendix A presents various attempts to �nd best response function symbolically us-

ing Mathematica with source code listings. Appendix B contains the abstract submitted

for PPAM 2022 conference.
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2 Quantum computing

In this chapter we will introduce basic terms and de�nitions related to quantum

computing which are necessary for proper comprehension of quantum games.

2.1 Introduction

In a classical computer, the information is represented using bits which can be either 0

or 1. The quantum equivalent of a simplest unit of information is quantum bit or qubit,
which is a superposition (linear combination) of two base states, |0〉 and |1〉 [29].

2.2 Dirac notation

In quantum mechanics, Dirac notation (also known as bra-ket notation) introduced by

Paul Dirac is used to mathematically represent quantum states and operators.

A ket denotes a column vector:

|ψ〉 =


α0

α1
.
.
.

αn−1

 , αi ∈ C, (2.1)

while bra represents its Hermitian conjugate as a row vector:

〈ψ| = |ψ〉† =
[
α∗0 α∗1 . . . α∗n−1

]
(2.2)

where z∗ denotes complex conjugate of z ∈ C.

Inner product, scalar product or dot product of two vectors is denoted with bra-ket
(hence the name of the notation) and returns a scalar:

〈ψ|φ〉 =
[
α∗0 α∗1 . . . α∗n−1

]

β0
β1
.
.
.

βn−1

 =
n−1∑
i=0

α∗i βi ∈ C. (2.3)

Outer product of two vectors is a matrix and can be written as ket-bra:

|ψ〉 〈φ| =


α0

α1
.
.
.

αn−1

 [β∗0 β∗1 . . . β∗n−1
]
∈ Cn×n (2.4)

where (|ψ〉 〈φ|)ij = αiβ
∗
j ∈ C.

5



2 Quantum computing

2.3 Tensor product

In order to represent multi-qubit systems, tensor product or Kronecker product of two

vectors is de�ned as

|ψ〉 ⊗ |φ〉 =


α0

α1
.
.
.

αm−1

⊗

β0
β1
.
.
.

βn−1

 =



α0β0
α0β1

.

.

.

α0βn−1
α1β0
α1β1

.

.

.

α1βn−1
.
.
.

αm−1β0
αm−1β1

.

.

.

αm−1βn−1



(2.5)

and can be also abbreviated as |ψ〉 |φ〉 or |ψφ〉.
Moreover, tensor product or Kronecker product of two matrices Am×n = [aij ] and

Bp×q = [bij ] is de�ned as

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

.

.

.

.

.

.

.
.
.

.

.

.

am1B am2B . . . amnB

 ∈ Cmp×nq (2.6)

which expands to

a11b11 . . . a11b1q . . . a1nb11 . . . a1nb1q
.
.
.

.
.
.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

a11bp1 . . . a11bpq . . . a1nbp1 . . . a1nbpq
.
.
.

.
.
.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

am1b11 . . . am1b1q . . . amnb11 . . . amnb1q
.
.
.

.
.
.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

am1bp1 . . . am1bpq . . . amnbp1 . . . amnbpq


. (2.7)

6



2.4 Quantum states

2.4 Quantum states

Quantum states are represented as vectors from Hilbert space over the �eld of complex

numbers. Two base quantum states are

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
, (2.8)

which form an orthonormal basis in single-qubit states called computational basis. In

general, the arbitrary state of a single qubit can be expressed as

|ψ〉 = α |0〉+ β |1〉 , (2.9)

which means the quantum state |ψ〉 is a superposition (linear combination) of the base

states |0〉 and |1〉 with amplitudes α and β, respectively, where α, β ∈ C must satisfy

the normalization condition

|α|2 + |β|2 = 1. (2.10)

An example state in quantum superposition is

|ψ〉 =
1√
2
|0〉+

1√
2
|1〉 . (2.11)

Moreover, each quantum state can expressed using three angles θ, φ, γ ∈ R as

|ψ〉 = eiγ
(

cos θ2 |0〉+ eiφ sin θ
2 |1〉

)
(2.12)

where eiγ is the global phase, irrelevant due to the fact that has no physically observable

consequences. Therefore, quantum states can be represented with only two parameters

θ, φ ∈ R as

|ψ〉 = cos θ2 |0〉+ eiφ sin θ
2 |1〉 (2.13)

where eiφ physically signi�cant relative phase [29].

We can visualize the quantum state on the Bloch sphere as a unit vector that forms

an angle θ with positive z-axis as well as angle φ with positive x-axis, as visualized in

Fig. 2.1.

y

z

x

θ

ϕ

｜ 〉0

｜ 〉1

Figure 2.1: The Bloch sphere
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2 Quantum computing

In the general case of multi-qubit systems, |00 . . . 0〉 , |00 . . . 1〉 , . . . , |11 . . . 1〉 form

an orthonormal basis also called computational basis. Therefore, an arbitrary n-qubit

pure state can be expressed as a superposition of 2n possible classical states:

|ψ〉 =

2n−1∑
i=0

αi |i〉 =


α0

α1
.
.
.

α2n−1

 (2.14)

where the amplitudes ai ∈ C must satisfy the normalization condition

2n−1∑
i=0

|αi|2 = 1. (2.15)

Apart from pure quantum states, there also exist mixed states which are classical

probabilistic mixtures of pure quantum states, fundamentally di�erent from superposi-

tion. Since such states cannot be expressed as state vectors, a generalization of state

vectors for mixed states is the density matrix de�ned as

ρ =
n∑
i=1

pi |ψi〉 〈ψi| . (2.16)

A density matrix represents a pure state if and only if it can be written as an outer

product of a state vector |ψ〉 with itself:

ρ = |ψ〉 〈ψ| . (2.17)

2.5 Quantum entanglement

Two or more qubits are entangled if and only if the quantum state of one of the qubits

determines the quantum state of another qubit. Moreover, if the quantum state of a

single qubit determines the state of all remaining qubits, such system is said to be

maximally entangled. For instance,

|ψ〉 =
1√
2

(|00〉+ |11〉) (2.18)

is one of Bell states, which are maximally entangled states among two-qubit states.

An entangled state cannot be expressed as a tensor product of single qubits, or

alternatively, there exist no single-qubit quantum states |ψi〉 such that

|ψ〉 =
n⊗
i=1

|ψi〉 . (2.19)

Quantum entanglement the foundation of quantum communication protocols such

as superdense coding or quantum teleportation.
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2.6 Quantum operators

2.6 Quantum operators

Quantum state of n qubits can be transformed into another n-qubit quantum state

using quantum operators also known as quantum gates, which are represented as

unitary matrices of size 2n × 2n. A matrix U is unitary if and only if

U †U = UU † = I (2.20)

where † (dagger) denotes the Hermitian conjugate of matrix Um×n = [uij ] de�ned as

U † = (U∗)T =


u∗11 u∗21 . . . u∗m1

u∗12 u∗22 . . . u∗m2
.
.
.

.

.

.

.
.
.

.

.

.

u∗1n u∗2n . . . u∗mn

 . (2.21)

Since unitarity implies reversibility, quantum computations (except for measurement)

are reversible.

Application of quantum operator U on a pure quantum state |ψ〉 is written as U |ψ〉.
For a quantum state represented with a density matrix ρ, the application of quantum

operator U is realized as AρA†.
Some of the most commonly used single-qubit quantum operators are:

• identity (analogous to no-op instruction in classical computers):

I =

[
1 0
0 1

]
(2.22)

• Pauli-X (also called NOT gate, since it changes |0〉 7→ |1〉 and |1〉 7→ |0〉):

X = σx =

[
0 1
1 0

]
(2.23)

• Pauli-Y:

Y = σy =

[
0 −i
i 0

]
(2.24)

• Pauli-Z:

Z = σz =

[
1 0
0 −1

]
(2.25)

• Sqrt-X (such that (
√
X)2 = X):

√
X =

1

2

[
1 + i 1− i
1− i 1 + i

]
(2.26)

• Hadamard:

H =
1√
2

(X + Z) =
1√
2

[
1 1
1 −1

]
(2.27)

9



2 Quantum computing

• Phase shift (leaves |0〉 untouched and changes |1〉 7→ eiϕ |1〉):

P (ϕ) =

[
1 0
0 eiϕ

]
(2.28)

• Rotation-X:

Rx(θ) = e−i
θ
2X =

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
(2.29)

• Rotation-Y:

Ry(θ) = e−i
θ
2Y =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
(2.30)

• Rotation-Z:

Rz(θ) = e−i
θ
2Z =

[
e−

iθ
2 0

0 e
iθ
2

]
(2.31)

Pauli matrices X,Y, Z together with identity matrix I form a basis in the space

of 2 × 2 quantum operators, meaning that each single-qubit quantum gate can be

expressed as a linear combination of these four basis gates. Also, the rotation gates

represent rotations on the Bloch sphere along three main axes.

Since quantum gates are linear operators, their behavior can be fully described only

with the output of their application on quantum states from the computational basis:

U |ψ〉 = U

(
n−1∑
i=0

ψi |i〉
)

=
n−1∑
i=0

ψiU |i〉 . (2.32)

CNOT gate is a two-qubit quantum operator that swaps the amplitudes of states

|10〉 and |11〉, or alternatively, conditionally applies NOT gate on the target qubit if

the control qubit is |1〉:

CNOT10 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.33)

There also exists another variant of CNOT gate that interchanges the amplitudes of

quantum states |01〉 and |11〉:

CNOT01 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (2.34)

Another commonly used two-qubit quantum operator is SWAP gate that simply swaps

two qubits involved in the operation:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.35)
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2.7 Measurement

2.7 Measurement

Since quantum states cannot be directly observed, in order to obtain a numerical result,

a quantum system needs to be manipulated or tested in the process called measurement.
During measurement, the wave function representing the quantum state of qubits

collapses to a new quantum state from the measurement basis, with probabilities

depending on the amplitudes of the original state.

For instance, measurement in the computational basis of a quantum state

|ϕ〉 = α |0〉+ β |1〉 (2.36)

will collapse either to |0〉 or |1〉 as classical bits with probabilities |α|2 and |β|2, respec-

tively. In general, an arbitrary pure n-qubit quantum state

|ψ〉 =
2n−1∑
i=0

αi |i〉 , (2.37)

when measured, will collapse to |i〉 with probability

pi = |αi|2 . (2.38)

According to no-cloning theorem, a quantum state cannot be copied, therefore it

is not possible to perform multiple measurements of the same quantum state. Also,

when qubits are entangled, measurement of one qubit a�ects other qubits as well.

2.8 Quantum circuits

A sequence of quantum operators applied on a system of qubits can be represented as

a quantum circuit where qubits are depicted as horizontal wires and quantum gates are

denoted as rectangular boxes labeled with the symbol of the gate. Quantum circuits

terminated with measurement blocks are called quantum algorithms. The double lines

represent classical registers that store the result of measurements as classical bits.

Apart from being the output of the algorithm, they can also be used to classically

control other quantum gates. An example quantum circuit is shown in Fig. 2.2.

|ψ〉 • H •

|0〉 H • X •

|0〉 X X Z |ψ〉

Figure 2.2: Quantum circuit for quantum teleportation
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2.9 Quantum gate devices

Currently, there are two kinds of quantum computers available: quantum gate-based
devices also known as universal quantum computers, and quantum annealers, for instance

D-Wave
1
, designed speci�cally for solving optimization problems by minimizing an

objective function in a particular form. In this thesis, however, we focus on quantum

gate-based devices, as they allow direct implementation of quantum circuits realizing

quantum games in the EWL scheme.

The most popular provider of access to quantum gate-based devices is IBM, up to

127 qubits
2
. However, as of 2022, only 6 systems with at most 7 qubits are available

for public use, free of charge. Parameters of IBM Q systems are summarized in Tab.

2.1. Running the quantum circuit on a real quantum device is described in detail in

section 8.2 of this thesis.

Table 2.1: Comparision of parameters of IBM Q systems (as of June 18, 2022)

Backend name Number
of qubits

Quantum
volume CLOPS3 Processor type Available for

public use

ibmq_armonk 1 1 n/d Canary r1.2 Yes

ibmq_lima 5 8 2.7K Falcon r4T Yes

ibmq_belem 5 16 2.5K Falcon r4T Yes

ibmq_quito 5 16 2.5K Falcon r4T Yes

ibmq_manila 5 32 2.8K Falcon r5.11L Yes

ibmq_oslo 7 32 2.6K Falcon r5.11H Yes

ibmq_santiago 5 32 n/d Falcon r4L No

ibmq_bogota 5 32 2.3K Falcon r4L No

ibmq_jakarta 7 16 2.4K Falcon r5.11H No

ibm_nairobi 7 32 2.6K Falcon r5.11H No

ibm_lagos 7 32 2.7K Falcon r5.11H No

ibm_perth 7 32 2.9K Falcon r5.11H No

ibmq_guadalupe 16 32 2.4K Falcon r4P No

ibm_peekskill 27 1 n/d Falcon r8 No

ibmq_toronto 27 32 1.8K Falcon r4 No

ibm_hanoi 27 64 2.3K Falcon r5.11 No

ibm_auckland 27 64 2.4K Falcon r5.11 No

ibm_cairo 27 64 2.4K Falcon r5.11 No

ibmq_mumbai 27 128 1.8K Falcon r5.1 No

ibmq_montreal 27 128 2K Falcon r4 No

ibmq_kolkata 27 128 2K Falcon r5.11 No

ibmq_brooklyn 65 32 1.5K Hummingbird r2 No

ibm_washington 127 64 850 Eagle r1 No

1https://www.dwavesys.com/
2https://quantum-computing.ibm.com/services?services=systems
3

circuit layer operations per second
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2.10 Summary

2.10 Summary

In this chapter, we introduced the mathematical formalism used to describe quantum

states and operators, as well as explained fundamental concepts in quantum mechanics

such as superposition or quantum entanglement.
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3 Classical game theory

In this chapter we will introduce basic terms and de�nitions related to classical game

theory that will be frequently used in the later part of the thesis.

3.1 Introduction

Formally, game theory is the branch of mathematics focused on the study of optimal

strategies of involved parties (players) in case of a con�ict of interest. Each player

chooses a certain action (strategy) and depending on strategies of all players, receives

an appropriate payo�, represented as a numerical value (the higher, the better) [30].

3.2 Definitions

Assume thatN is a �nite set of n players and each player is denoted by i. Let Si denote

the set of possible pure strategies available to player i. A pure strategy provides a

complete information how player plays the game.

De�nition 3.2.1 (Pure strategy pro�le). A pure strategy pro�le is a n-tuple composed

of strategies si of all players, i.e.

s = (s1, s2, . . . , sn) (3.1)

such that ∀ i ∈ N : si ∈ Si.
De�nition 3.2.2 (Payo� function). A payo� function is a mapping

pi : S1 × S2 × . . .× Sn → R (3.2)

that maps strategy pro�le to outcome of the game (payo�) for player i.

De�nition 3.2.3 (Normal-form game). A game in normal form is a triple Γ = (N,S,p)
where

• N = {1, 2, . . . , n} is a �nite set of n players,

• S = S1 × S2 × . . .× Sn is a set of strategy pro�les,

• p = (p1, p2, . . . , pn) is a tuple of payo� functions.

For readability purposes, a strategy pro�le of all players excluding player i will be

denoted as s−i. Analogously, S−i =×n
j=1,j 6=i Sj denotes the set of all strategy pro�les

excluding player i. Moreover, strategy pro�le s will be represented as (si, s−i).
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De�nition 3.2.4 (Mixed strategy). A mixed strategy of player i is a classical probability

distribution mi : Si → [0, 1] of pure strategies available to that player where∑
si∈Si

mi(si) = 1. (3.3)

Each pure strategy si can be interpreted as a mixed strategy mi such that

mi(s
′
i) =

{
1 si = s′i
0 si 6= s′i

. (3.4)

3.3 Classification

Among the classic games, we can distinguish the following classes of games:

De�nition 3.3.1 (Finite game). A game in normal form is said to be �nite if and only

if S is a �nite set.

De�nition 3.3.2 (Constant-sum game). In a constant-sum game, for each strategy

pro�le, the sum of payo�s for each player is always sequal to C ∈ R, i.e.

∀ (s1, s2, . . . , sn) ∈ S :
n∑
i=1

pi(si) = C. (3.5)

De�nition 3.3.3 (Zero-sum game). A zero-sum game is a constant-sum game where

C = 0, i.e.

∀ (s1, s2, . . . , sn) ∈ S :
n∑
i=1

pi(si) = 0. (3.6)

De�nition 3.3.4 (Bimatrix game). In a bimatrix game, there are two players and each

has a �nite number of possible strategies, p and q, respectively. In such game, payo�s

can be represented by two matrices A,B ∈ Rp×q for player 1 and 2, respectively:

p1(si, sj) = Aij and p2(si, sj) = Bij . (3.7)

hence the name. Alternatively, the payo�s in a bimatrix game can be represented as a

single matrix P = Rp×q×n, so that pk(si, sj) = Pijk.

De�nition 3.3.5 (Symmetric game). A game is symmetric if S1 = S2 = . . . = Sn and

for each permutation π : N → N

pπ(i)(s1, s2, . . . , sn) = pi(sπ(1), sπ(2), . . . , sπ(n)). (3.8)

In other words, the payo�s depend only on the strategies used in the strategy pro�le

and not on who is playing them.
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3.4 Nash equilibrium

De�nition 3.4.1 (Best response). A pure strategy si of player i is a best response to a

strategy pro�le of all other players s−i if

∀s′i ∈ Si : pi(si, s−i) ≥ pi(s′i, s−i). (3.9)

De�nition 3.4.2 (Nash equilibrium in pure states). A strategy pro�le s∗ is a Nash

equilibrium in pure states if and only if

∀ i ∈ N ∀ si ∈ Si : pi(s
∗
i , s
∗
−i) ≥ pi(si, s∗−i). (3.10)

Alternatively, a strategy pro�le s∗ is a Nash equilibrium if si∗ is a best response to s∗−i
for each i ∈ I . In other words, no player can increase his payout by unilaterally (i.e.

without changing the strategy of all the other players) changing his strategy.

De�nition 3.4.3 (Nash equilibrium in pure states in a two-player game). In a two-

player game, a strategy pro�le (s1, s2) is a Nash equilibrium in pure states if and only

if s1 is a best response to s2 and vice versa.

3.5 Prisoner’s Dilemma

In general form, Prisoner’s Dilemma is a non-cooperative symmetric bimatrix game

with the following payo� matrix

P =

[
(r, r) (s, t)
(t, s) (p, p)

]
∈ R2×2×2 (3.11)

where r is the reward payo� if both players decide to cooperate, p is the punishment

payo� when both players defect, t is temptation payo� and s is sucker’s payo� in case

the �rst player defects while the second cooperates, respectively.

For the dilemma to exists, these values need to satisfy the conditions s < p < r < t
and 2r > s + t. By substituting the concrete common payo� values r = 3, p = 1,

t = 5 and s = 0 we obtain [
(3, 3) (0, 5)
(5, 0) (1, 1)

]
. (3.12)

Note that these values are not meant to represent the number of years to be spent in

prison – instead, the higher the payo�, the milder the sentence.

3.6 Summary

In this chapter we introduced the basic concepts of game theory, de�ned the major

classes of games, provided a de�nition of Nash equilibrium, and introduced a classical

game called Prisoner’s Dilemma.
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In this chapter we will introduce basic concepts related to quantum game theory.

4.1 Introduction

Quantum game combines classical game theory with quantum mechanics and focuses

primarily on design, classi�cation and analysis of quantum games, which are an

extension of classical games to the quantum domain. Recently, a particularly interesting

topic is the quantization of existing classical games, resulting in quantum games such

as quantum poker [14], quantum tic-tac-toe [16], or quantum blackjack [27].

4.2 Characteristics

In order for a game to be considered quantum, it must exhibit three following properties

as presented in [15]:

1. Quantum game utilizes the concepts of quantum computing.
The state of the game is expressed as a quantum state. Players act by applying

quantum operators on their qubits. The result of the game is a measurement of

quantum state of the game.

2. Quantum game is reducible to its classical counterpart.
If we limit the set of available pure strategies to base strategies, the game reduces

to its classical counterpart.

3. Quantum game extends the properties of its classical counterpart.
There must exist some kind of quantum advantage, for instance new kinds

of equilibria not found in the classical counterpart, for instance arising from

superposition of quantum states, the presence of quantum entanglement, or the

probabilistic nature of quantum measurement.
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4.3 Eisert-Wilkens-Lewenstein protocol

EWL protocol is a quantization scheme of classical games proposed by Eisert, Wilkens

and Lewenstein that applies to any two-player binary choice symmetric game [8].

Figure 4.1 shows the general quantum circuit of a quantum game in the EWL protocol.

|0〉
J

UA

J†
|0〉 UB

Figure 4.1: Quantum circuit of a quantum game in the EWL protocol

The result statevector of the quantum state can be calculated as

|ψ〉 = J† (UA ⊗ UB) Jv (4.1)

where the initial vector v is usually |00〉, and the entanglement operator J is publicly

known to all players. The amplitudes of the �nal statevector can be easily converted

to observational basis probabilities:

p = |ψ〉 |ψ〉† = ||ψ〉|2 . (4.2)

As mentioned in Eq. 3 in [12], the EWL protocol can be generalized to arbitary

number of players. In case of n-player game, n ∈ N, the following formula is used:

|ψ〉 = J†

(
n⊗
i=1

Ui

)
J |0〉⊗n (4.3)

where {Ui}ni=1 is the sequence of players’ strategies and J is the n-qubit entanglement

operator, e.g.

J =
1√
2

(
I⊗n + iσ⊗nx

)
(4.4)

where I is the identity matrix and σx is Pauli matrix X .

The expected payo� for player i can be calculated as

$i =
∑
j

pj$i,j . (4.5)

4.4 Parametrizations

In quantum games in the EWL protocol, players’ strategies are single-qubit quantum

operators. The only mathematical requirement is that they must be unitary matri-

ces. Since the universal quantum gate has 3 degrees of freedom, strategies can be

parametrized with three angles. However, it is possible to limit the space of available

strategies using parametrizations with fewer degrees of freedom.
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4.4 Parametrizations

The original parametrization proposed by the authors of the EWL scheme in [8] is

U(θ, φ) =

[
eiφ cos

(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
e−iφ cos

(
θ
2

)] , θ ∈ [0, π], φ ∈ [0, π2 ]. (4.6)

However, Benjamin and Hayden commented that "it seems unlikely that the restriction

can re�ect any reasonable physical constraint (limited experimental resources, say)

because this set is not closed under composition" [2].

In order to overcome that issue, alternative parametrizations may be utilized, which

are assumed to include set {U(θ, 0, 0) : θ ∈ [0, π] } as well as the base strategies of

the quantum game. However, as shown in later part of the thesis, the choice of

parametrization used in the quantum game strongly a�ects its properties such as best

responses or the existence of Nash equilibria.

Another parametrization with only 2 degrees of freedom is Frąckiewicz-Pykacz

parametrization introduced in [12] and used in [36]:

U(θ, φ) =

[
eiφ cos

(
θ
2

)
ieiφ sin

(
θ
2

)
ie−iφ sin

(
θ
2

)
e−iφ cos

(
θ
2

)] , θ ∈ [0, π], φ ∈ [0, 2π]. (4.7)

This parametrization provides a strong isomorphism of the quantum game and gives

the same Nash equilibria in mixed strategies as full SU(2) parametrization of EWL.

Apart from parametrizations with 2 angles, there are several frequently used parametriza-

tions with 3 degrees of freedom that fully cover the set of all unitary matrices, for

instance U(θ, φ, α) parametrization de�ned as

U(θ, φ, α) =

[
e−iφ cos

(
θ
2

)
eiα sin

(
θ
2

)
−e−iα sin

(
θ
2

)
eiφ cos

(
θ
2

)] , θ ∈ [0, π], φ, α ∈ [−π, π]. (4.8)

Another parametrization is mentioned in Eq. 2 in [11] and [12]:

U(θ, α, β) =

[
eiα cos

(
θ
2

)
ieiβ sin

(
θ
2

)
ie−iβ sin

(
θ
2

)
e−iα cos

(
θ
2

)] , θ ∈ [0, π], α, β ∈ [0, 2π). (4.9)

Another parametrization from Eq. 2.24 in [15]:

U(θ, φ, λ) =

[
e−

i(φ+λ)
2 cos

(
θ
2

)
−e− i(φ−λ)2 sin

(
θ
2

)
e
i(φ−λ)

2 sin
(
θ
2

)
e
i(φ+λ)

2 cos
(
θ
2

) ] , θ ∈ [0, π], φ, λ ∈ [0, 4π).

(4.10)

Another parametrization from Eq. 45 in [33]:

U(θ, γ, δ) =

[
ei(γ+δ) cos

(
θ
2

)
iei(γ−δ) sin

(
θ
2

)
ie−i(γ−δ) sin

(
θ
2

)
e−i(γ+δ) cos

(
θ
2

)] . (4.11)

Another parametrization as described in IBM Qiskit Textbook [1]:

U(θ, φ, λ) =

[
cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiφ sin

(
θ
2

)
ei(λ+φ) cos

(
θ
2

)] . (4.12)

However, the analysis of quantum games with full SU(2) parametrization does not

yield interesting properties because of the fact that for each strategy, there always

exists a counter-strategy which gives the player the highest payout.
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4.5 Summary

In this section we introduced quantum game theory, presented the rules that a game

must follow in order to be considered quantum, as well as de�ned several parametriza-

tions with 2 or 3 degrees of freedom that will be extensively used in the later part of

the thesis.
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In this chapter we will introduce the quantum version of Prisoner’s Dilemma as well as

de�ne four variants of Quantum Prisoner’s Dilemma with di�erent parametrizations.

5.1 Introduction

Quantum Prisoner’s Dilemma is a generalization of Prisoner’s Dilemma introduced in

section 3.5 to the quantum domain using the EWL protocol described in section 4.3.

Assuming there are two players, traditionally named Alice and Bob, the �rst qubit

is assigned to Alice while the second is assigned to Bob. Two base strategic deci-

sions, cooperate and defeat, are associated with two base quantum states |0〉 and

|1〉, respectively. In order to enable quantum properties of the game, the qubits are

entangled using publicly-known entanglement operator J . Then, players individually

play their strategies by applying quantum gates on their respective qubits. Finally, the

measurement is the outcome of the game.

Similarly to the original version of the game, there are exactly 4 possible game

outcomes |00〉 , |01〉 , |10〉 , |11〉 which directly represent CC, CD, DC and DD from

the classical counterpart, respectively, with analogous payo� values. However, an

important di�erence is the randomness due to the nature of the measurement, therefore

expected value of payo� should be analyzed.

5.2 Variant with original EWL parametrization

This variant was originally described in [8] and uses parametrization from Eq. 4.6:

U(θ, φ) =

[
eiφ cos

(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
e−iφ cos

(
θ
2

)] (5.1)

where θ ∈ [0, π] and φ ∈ [0, π2 ]. For φA = φB = 0 the game reduces to its classical

counterpart with mixed strategy of C and D with probabilities cos
(
θ
2

)2
and sin

(
θ
2

)2
,

respectively. Two base strategies, C (cooperate) and D (defeat), are de�ned as in Eq. 4

and Eq. 5 in [8]:

C = U(0, 0) =

[
1 0
0 1

]
,

D = U(π, 0) =

[
0 1
−1 0

]
.

(5.2)
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Additionally, paper [8] also introduces parameter γ ∈ [0, π2 ] which is a measure of

quantum entanglement of the game with J matrix being de�ned as

J = exp(−iγD ⊗D/2). (5.3)

For γ = 0, the game is separable andD⊗D is the equilibrium in dominant strategies

just like in the classical variant. For γ = π
2 , the game is maximally entangled. In such

case, Jv = [1, 0, 0, i]/
√

2, or equivalently

|ψ〉 =

√
2 (|00〉+ i|11〉)

2
. (5.4)

There are two players, Alice and Bob, who use single-qubit strategiesUA = U(θA, φA)
and UB = U(θB, φB), respectively. In contrast to the classical counterpart, D ⊗D is

no longer a Nash equilibrium. Instead, there exists an unique Nash equilibrium Q⊗Q
where

Q = U(0, π2 ) =

[
i 0
0 −i

]
(5.5)

with payo�s $A(Q,Q) = $B(Q,Q) = 3 whereas $A(D,D) = $B(D,D) = 1. Addi-

tionally, Q⊗Q turns out to be Pareto optimal as well.

In a case where Alice can use quantum strategy but Bob is limited to classical

strategies, Alice can play the following so-called miracle move from Eq. 9 in [8]:

M = U(π2 ,
π
2 ) =

1√
2

[
i −1
1 −i

]
, (5.6)

which gives her expected payo�

$A(M,U(θB, 0)) ≥ 3 (5.7)

for any θB ∈ [0, π].
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5.3 Variant with U(θ, φ, α) parametrization

This variant has been described in [6]. The most important di�erence from the previ-

ously discussed variant of the game is that this version uses parametrization with 3

degrees of freedom from Eq. 4.8:

U(θ, φ, α) =

[
e−iφ cos

(
θ
2

)
eiα sin

(
θ
2

)
−e−iα sin

(
θ
2

)
eiφ cos

(
θ
2

)] (5.8)

where θ ∈ [0, π] and φ, α ∈ [−π, π]. This parametrization produces arbitrary single-

qubit gates from SU(2) group. Two base strategies, C (cooperate) and D (defeat), are

de�ned as follows:

C = U(0, 0, 0) =

[
1 0
0 1

]
,

D = U(π, 0, π2 ) =

[
0 i
i 0

]
.

(5.9)

Two players, Alice and Bob, use single-qubit strategies UA = U(θA, φA, αA) and

UB = U(θB, φB, αB), respectively.

In Eq. 3 we can �nd formula for J gate:

J =
1√
2

(I + iσx ⊗ σx) =
1√
2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

 (5.10)

where σx represents Pauli matrix (quantum NOT gate).

Using formula from Eq. 4.1 and converting amplitudes to observational basis proba-

bilities using Eq. 4.2 we can obtain the equations for the four possible outcomes of the

game:(
cos

(
θA

2

)
cos

(
θB

2

)
cos (φA + φB)− sin

(
θA

2

)
sin

(
θB

2

)
sin (αA + αB)

)2

(
sin

(
θA

2

)
cos

(
θB

2

)
cos (αA − φB)− cos

(
θA

2

)
sin

(
θB

2

)
sin (φA − αB)

)2

(
sin

(
θA

2

)
cos

(
θB

2

)
sin (αA − φB) + cos

(
θA

2

)
sin

(
θB

2

)
cos (φA − αB)

)2

(
cos

(
θA

2

)
cos

(
θB

2

)
sin (φA + φB) + sin

(
θA

2

)
sin

(
θB

2

)
cos (αA + αB)

)2

.

(5.11)
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As mentioned in [6], this variant of Quantum Prisoner’s Dilemma has no single

strategy Nash equilibrium because there is no dominant strategy. Eq. 5 shows the

general formula for Bob’s best response for arbitrary strategy U(θA, φA, αA) of Alice:

θB = θA + π

φB = αA

αB = φA − π
2 .

(5.12)

From this substitution we get $A = 0 and $B = 5 regardless of the parameters of the

initial Alice’s strategy. Analogous substitutions are also valid for Alice’s best response.

An interesting property of this variant of the game is the existence of cycles of best

responses for arbitrary initial strategy. Without loss of generality, let us assume that

Alice plays

UA = U(θA, φA, αA). (5.13)

According to Eq. 5.12, Bob’s best response for UA is

UB = U(θA + π, αA, φA − π
2 ). (5.14)

We can also apply the same formula to obtain Alice’s best response for UB,

U ′
A

= U(θA, φA − π
2 , αA − π

2 ). (5.15)

Apparently, U ′
A
6= UA, so let us apply the formula again to get

U ′
B

= U(θA + π, αA − π
2 , φA − π). (5.16)

Finally, let us calculate Alice’s best response one more time

U ′′
A

= U(θA, φA − π, αA − π), (5.17)

which according to [6] and [35] happens to be equal to the original Alice’s strategy,

revealing the following cycle of best responses:

UA → UB → U ′
A
→ U ′

B
→ UA (5.18)

where X → Y indicates that Y is the best response for X . Moreover, the property

holds for arbitrary θA, φA, αA so it fully covers the set of possible strategies.

As shown in [36], these cycles can be used to form mixed strategies {UA, U
′
A
} and

{UB, U
′
B
} where Nash equilibria may exist. Mixed strategies are the subject of research

performed by Piotr Kotara’s for his master’s thesis [20].

A similar variant of the game is described in [35] with the only di�erence being the

base strategy D de�ned as

D = U(π, 0, 0) =

[
0 1
−1 0

]
. (5.19)
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5.4 Variant with U(θ, α, β) parametrization

Another variant of Quantum Prisoner’s Dilemma has been described in [12] with

another full SU(2) parametrization from Eq. 4.9:

U(θ, α, β) =

[
eiα cos

(
θ
2

)
ieiβ sin

(
θ
2

)
ie−iβ sin

(
θ
2

)
e−iα cos

(
θ
2

)] , θ ∈ [0, π], α, β ∈ [0, 2π). (5.20)

Two base strategies, C (cooperate) and D (defeat), are de�ned in Eq. 4 and Eq. 5 in [8]:

C = U(0, 0, 0) = I =

[
1 0
0 1

]
,

D = U(π, 0, 0) = iσx =

[
0 i
i 0

]
.

(5.21)

Alice playsUA = U(θ1, α1, β1) and Bob playsUB = U(θ2, α2, β2) (using digits instead

of name initial to preserve the original notation). Eq. 7 shows the observational basis

probabilities:(
cos (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
+ sin (β1 + β2) sin

(
θ1
2

)
sin

(
θ2
2

))2

(
cos (α1 − β2) cos

(
θ1
2

)
sin

(
θ2
2

)
+ sin (α2 − β1) sin

(
θ1
2

)
cos

(
θ2
2

))2

(
sin (α1 − β2) cos

(
θ1
2

)
sin

(
θ2
2

)
+ cos (α2 − β1) sin

(
θ1
2

)
cos

(
θ2
2

))2

(
sin (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
− cos (β1 + β2) sin

(
θ1
2

)
cos

(
θ2
2

))2

.

(5.22)
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5.5 Variant with Frąckiewicz-Pykacz parametrization

This variant was originally described in [12] and uses parametrization from Eq. 28:

U(θ, φ) =

[
eiφ cos

(
θ
2

)
ieiφ sin

(
θ
2

)
ie−iφ sin

(
θ
2

)
e−iφ cos

(
θ
2

)] (5.23)

where θ ∈ [0, π] and φ ∈ [0, 2π]. Similarly as in previous cases, two base strategies for

cooperation and defeat are de�ned as

C = U(0, 0) =

[
1 0
0 1

]
,

D = U(π, 0) =

[
0 i
i 0

]
.

(5.24)

As justi�ed in [12], the parametrization is designed so that the quantum scheme

is invariant with respect to isomorphic transformations of an input game. Simulta-

neously, it does not provide the players with the counter strategies like full SU(2)
parametrizations do, allowing for Nash equilibria to exist in a wider class of quantum

games. Eq. 10 in [36] describes the observational basis probabilities:(
cos

(
θA

2

)
cos

(
θB

2

)
cos (φA + φB) + sin

(
θA

2

)
sin

(
θB

2

)
sin (φA + φB)

)2

(
cos

(
θA

2

)
sin

(
θB

2

)
cos (φA − φB)− sin

(
θA

2

)
cos

(
θB

2

)
sin (φA − φB)

)2

(
cos

(
θA

2

)
sin

(
θB

2

)
sin (φA − φB) + sin

(
θA

2

)
cos

(
θB

2

)
cos (φA − φB)

)2

(
cos

(
θA

2

)
cos

(
θB

2

)
sin (φA + φB)− sin

(
θA

2

)
sin

(
θB

2

)
cos (φA + φB)

)2

.

(5.25)

5.6 Summary

In this chapter we presented several variants of Quantum Prisoner’s Dilemma from

various publications that will be further analysed in the later part of the thesis.
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6 EWL library

This chapter introduces ewl library [39] which is a Python tool for symbolic analysis

of quantum games in EWL protocol with IBM Q integration. The library has been

developed by the author in cooperation with Piotr Kotara who also uses it in his

master’s thesis [20]. In this chapter we will discuss the motivation behind developing

such tool as well as present its core functionalities and additional features.

6.1 Motivation

Quantum game analysis heavily relies on complex matrix computations where the

elements are sums and products of trigonometric expressions involving multiple vari-

ables. Many relevant conclusions are drawn from the form and other characteristics

of these trigonometric expressions, which needed to be appropriately simpli�ed or

otherwise transformed.

However, this kind of calculations is particularly prone to human error because of

the length and complexity of such mathematical expressions. Moreover, some valuable

simpli�cation opportunities may be easily missed. Finally, with the increasing number

of players, the sizes of the matrices grow exponentially, making them nearly impossible

to analyze manually.

6.2 Functionalities

The library provides a layer of abstraction for generalized EWL circuits for arbitrary

number of players with customizable base strategies representing the possible moves

from the classical counterpart of the game. The initial quantum state can be passed

in Dirac notation as a linear combination of kets, e.g. (|00〉+ i |11〉) /
√

2. Based on

this information, the library automatically derives the corresponding entanglement

operator J and its Hermitian conjugate, J†.

The next step is to de�ne the strategies used by each respective player. Each strategy

must be a unitary matrix as it represents a single-qubit quantum gate. The library

comes with several built-in parametrizations, including the original one from EWL

paper [8] as well as other popular parametrizations with 2 or 3 degrees of freedom

as described in [12, 33, 36]. The library has been designed to be easily extendable,

allowing users to de�ne and use custom parametrizations.

Among many features of the library, the most useful functionality is the ability to

calculate the result quantum state as a vector of amplitudes in the computational basis.

Optionally, the result can be further processed by symbolic expressions engine which
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6 EWL library

cleverly applies well-known trigonometric identities, reduction formulas and Euler’s

identity in order to simplify the expression.

From the amplitudes one can easily derive the probabilities of possible game results

in the observational basis. Similarly to the previous cases, the library also performs

expression simpli�cation, often taking advantage of the fact that the parameters are

real-valued.

Finally, based on the payo� matrix and previously mentioned probabilities, the

library calculates the payo� functions as a linear combination of probabilities and their

respective payo�s in a symbolic form.

The library has also been extended to support mixed strategies and apply Kraus

operators on density matrices representing quantum state in analytic form. Using the

library we were able to successfully recreate the calculations from [35] and obtain

function shown in Eq. 7 in a symbolic form as well as visualize the payo� on a 3D plot

identical to the one presented in Fig. 4.

6.3 Symbolic calculations and parameters

The true power of the library lies in the symbolic expression engine used, SymPy [25],

which is written in Python, open-sourced and licensed under the New BSD license. Its

elegant and convenient API makes it easy to handle matrices of symbolic expressions

with multiple possibly real-valued parameters.

The ewl library directly uses SymPy expressions as input and output interface as

well as for simpli�cation of statevector amplitudes and payo� functions, with particular

emphasis on trigonometric identities implemented under the hood of SymPy.

Furthermore, the library allows for parametrization of not only player strategies

but also initial quantum state, base strategies as well as payo� matrix, so that the

analysis can be generalized to an entire family of quantum games. It is also possible to

substitute a speci�c value of parameter at any time for further analysis of a certain

case of the quantum game.

The only drawback seems to be the insu�cient performance and high memory

consumption of SymPy when used for simpli�cation of probabilities of possible out-

comes of quantum game with three or more players. This is due to the fact that SymPy

is written entirely in Python which is an interpreted language running on a virtual

machine. Moreover, SymPy expressions are implemented as immutable objects and

thus need to be copied with each transformation. A common practice is to implement

computationally expensive operations in compiled languages such as C, C++ or Rust to

achieve best possible performance, implement wrapper functions that synchronously

call native functions and hide them behind a thin layer of abstraction.

Apart from its functionalities, a particularly noteworthy feature is support for ren-

dering mathematical expressions in graphical form in Jupyter Notebook environment

as well as possibility of converting formulas to LATEX form.
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6.4 Qiskit integration

The library integrates with Qiskit, the open-source software development kit created

and developed by IBM speci�cally for interacting with quantum computers and simula-

tors, allowing for veri�cation of theoretical results on numerous available real quantum

devices.

Running the Quantum Prisoner’s Dilemma on IBM Q was the topic of Filip Galas’

master’s thesis [15]. At the early stage, Qiskit only o�ered a set of basic gates which

did not include the universal one-bit quantum gate. The main part of the work was the

decomposition of J gate into a product of matrices, each of which would be a quantum

gate supported by Qiskit.

In 2020, IBM introduced Operators class
1
, which makes it possible to create uni-

versal quantum gates directly from arbitrary NumPy arrays of �oating-point numbers,

while performing the complex decomposition under the hood.

This particular feature allows ewl library to convert arbitrary quantum games in the

EWL protocol into a corresponding Qiskit quantum circuits simply by passing NumPy

arrays of the matrices of entanglement operator J and Hermitian conjugate J† along

with pure strategies {Ui}ni=1 of n players.

The library also greatly simpli�es visualizing quantum circuit of the game after

transpiling and optimization for a selected backend. Apart from running quantum

games on IBM Q devices, it is also possible to execute them on quantum simulators

such as statevector simulator or QASM simulator, optionally with speci�ed noise model

for quantum gates such as bit �ip, phase �ip etc. applied during simulation.

6.5 Testing

The implementation of the library is thoroughly tested and covered with unit and

functional tests written using PyTest framework [21]. In particular, all quantum games

described in chapter 5 are embedded in the library for demonstrative purposes and

used as test examples, including veri�cation of payo�s for each combination of base

strategies, probabilities in the observational basis as well as known best responses.

It is also worth mentioning that while preparing a set of unit tests to verify the

correctness of the calculations performed by the library, we were able to found serious

inconsistencies in at least two papers which unfortunately a�ected further calcula-

tions, as well as detect a typo in quite relevant formula in yet another article. These

inconsistencies will be described in more detail and corrected in chapter 8 of the thesis.

1https://qiskit.org/documentation/tutorials/circuits_advanced/02_operators_
overview.html
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6 EWL library

6.6 Usage

The library can be used both from regular Python scripts as well as in Jupyter Notebook

environment (either hosted locally or using IBM Quantum Lab
2
). The package is

published on PyPI
3

and can be easily installed in user’s environment with a single

command. The repository with source code of the library and numerous example

notebooks is also available on GitHub
4
. The library is licensed under the MIT License.

6.7 Author contribution

The library was developed in cooperation with Piotr Kotara, who in particular enriched

the library with support for mixed strategies as well as added the possibility to specify

a custom noise model. The following functionalities were designed and implemented

by the author of this thesis:

• symbolic calculation of amplitudes of the state vector, probabilities of game

outcomes and expected payo�s for each player for pure strategies

• implementation of popular parametrizations

• support for symbolic parameters and substitutions

• utilities for plotting expected payo� function

• integration with IBM Q simulators and devices via Qiskit

• veri�cation of results and unit testing

• library setup, CI, deployment on PyPI, example notebooks

Based on the results of the experiments performed for this thesis, an abstract for PPAM

2022 conference was submitted, which is attached in Appendix B. We would also like

to thank the KQIS organizers for the invitation and the opportunity to present the

functionalities of the library as well as our research results
5
.

6.8 Summary

In this section we have described ewl library which serves as a very useful tool for

analysis of quantum games in the EWL protocol, mostly due to its ability to perform

complex symbolic calculations as well as seamless integration with real quantum

devices. In particular, the library was used to obtain and verify formulas for probabilities

of possible quantum game outcomes as well as payo� functions in analytic form that

will be presented in the following chapters of the thesis.

2https://lab.quantum-computing.ibm.com
3https://pypi.org/project/ewl/
4https://github.com/tomekzaw/ewl/
5https://www.informatyka.agh.edu.pl/pl/blog/kqis-58-piotr-kotara-and-tomasz-
zawadzki-software-aided-analysis-of-quantum-games/
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7 Algorithms

In this chapter we will present the mathematical foundations of proposed algorithms

for �nding best responses in parametrized 2× 2 quantum games which is preliminary

to �nding Nash equilibria in pure strategies.

7.1 Finding best responses

Let us denoteU as the currently used parametrization function as described in chapter 5

and X as a space of its valid parameter values. Let xA,xB ∈ X denote vectors of

strategy parameters for Alice and Bob, respectively, such that

UA = U(xA) and UB = U(xB). (7.1)

Let us de�ne Bob’s best response for arbitrary Alice’s move xA as a function in terms

of parameter vectors as

best response
B
(xA) = argmax

x∗
B
∈X

$B(U(xA), U(x∗
B
)). (7.2)

Alice’s best response function with respect to Bob’s move xB can be de�ned analo-

gously as

best response
A
(xB) = argmax

x∗
A
∈X

$A(U(x∗
A
), U(xB)). (7.3)

There always exists at least one best response for given strategy. In a general case,

there may exist more than one best response, so the above functions are assumed to

return the set of all best responses.

The function maximization problem can be approached symbolically (algorithm 1)

or numerically (algorithm 2).

Algorithm 1: Finding best response function symbolically

Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values

$B(xA,xB) – Bob’s expected payo� function

Output: best response
B
(xA) – Bob’s best response function

expr ← $A(U(xA), U(xB))
return SymbolicArgMax(expr, xB, X)
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Algorithm 2: Finding best response numerically

Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values

$B(xA,xB) – Bob’s expected payo� function

xA – Alice’s strategy

Output: x∗
B

– Bob’s best response for xA

p(xB) := $A(U(xA), U(xB))
return NumericMaximize(p, xB, X)

In the speci�c case of two-player quantum game with full SU(2) parametrization, for

arbitrary strategy of the opponent, there always exists a winning strategy that a�ects

the outcome of the game in such a way as to reach the quantum state with the largest

payo� from the payo� matrix. In such case, it is su�cient to �nd parameters such

that the probability of the game outcome being the one with largest payo� is equal

to one, similarly as shown in [35]. Thanks to this observation, we can signi�cantly

decrease the complexity and thus di�culty of the task, reducing the problem to a

single equation, or alternatively to a system of equations with the zero vector as the

right-hand side.

For instance, in Quantum Prisoner’s Dilemma, the state with maximum payo� for

Bob is |01〉. Therefore, in order to obtain the formula for Bob’s best response, it is

su�cient to �nd the solutions of the equation

p01(θB, φB, αB) = 1 (7.4)

or, alternatively, solve the following system of equations
p00(θB, φB, αB) = 0

p10(θB, φB, αB) = 0

p11(θB, φB, αB) = 0

(7.5)

for variables θB, φB, αB as a function of parameters θA, φA, αA representing arbitrary

but known Alice’s move.

In the general case of a quantum game using parametrization with 1 or 2 degrees

of freedom, the method described above cannot be directly applied. This is due to

the fact that the set of possible strategies is a proper subspace of SU(2) group and

therefore may not include the winning strategy. In other words, for some strategies

of the opponent, there may not exist a valid vector of parameters that gives the best

possible payo� from the payo� matrix.

A fairly natural idea would be to �rst maximize the probability corresponding to

the quantum state representing the outcome of the game with the highest payo�

from the payo� matrix, then maximize the probability of the second best state, and

so on. However, this algorithm does not always produce optimal solutions. Consider

the following counterexample with [0, 0.9, 0.1, 0] and [0.2, 0.8, 0, 0] representing two

34



7.1 Finding best responses

vectors of probabilities of possible game outcomes with payo�s [3, 5, 0, 1], respectively.

Although the probability of the state with the best payout is higher in the �rst case

since 0.9 > 0.8, the expected payo� is worse as 4.5 < 4.6.

Therefore, in the general case, the only valid method so far seems to be the maxi-

mization of the entire expected payo� function, which is a linear combination of the

probabilities of all possible game outcomes and the corresponding payo�s from the

game matrix. As it turns out, symbolic maximization of such parametrized trigonomet-

ric expressions is not a simple task. Numerical methods, on the other hand, not only

may miss a global maximum, but also heavily depend on the choice of starting point.
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7.2 Nash equilibria as fixed points

In a two-player game, Nash equilibrium is a pair of strategies (UA, UB) such that UA is

the best response for UB and simultaneously UB is the best response for UA.

A pair of strategies (U(xA), U(xB)) is a Nash equilibrium if

xB ∈ best response
B
(xA) and xA ∈ best response

A
(xB). (7.6)

Assuming that only a single best response exists, the following pair of statements

can be merged into

xA = best response
A
(best response

B
(xA)), (7.7)

which can be expressed as a �xed point equation

xA = f(xA) (7.8)

where f = (best response
A
◦ best response

B
) is a composition of best response func-

tions, xA is a �xed point of f , and xB = best response
B
(xA).

In case of a symmetric 2× 2 game, best response
A

= best response
B
, so e�ectively

f = best response
2
, or alternatively xA is a 2-periodic point of best response function.

Similarly to the previously described task of �nding best response functions, this

problem can also be approached symbolically or numerically. If the analytic form of

best response function is known, strategies that may be part of Nash equilibria can be

easily obtained as symbolic expressions by solving the �xed point equation

xA − f(xA) = 0. (7.9)

In a general case, if there exists m and n di�erent best responses of Alice and Bob,

respectively, it is necessary to solve the equation for each combination of best response

functions and combine the results as shown in algorithm 3, i.e.

m⋃
i=1

n⋃
j=1

{xA ∈ X | xA − best response
(i)
A

(best response
(j)
B

(xA)) = 0 } . (7.10)

Otherwise, if the analytic form of the best response function is unknown, numerous

numerical methods of �xed-point search can be employed in order to �nd Nash equi-

libria. However, due to discrete nature of numerical computing, this requires searching

the entire grid of valid parameter values constrained by appropriate boundaries or

running the algorithm multiple number of times with randomizing the initial strategy,

as proposed in algorithm 4.
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Algorithm 3: Finding Nash equilibria symbolically

Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values

$A(xA,xB) – Alice’s expected payo� function

$B(xA,xB) – Bob’s expected payo� function

Output: E – list of Nash equilibria in pure strategies

E ← []

for brA ∈ SymbolicBestResponseFunctions(U,X, $A) do
for brB ∈ SymbolicBestResponseFunctions(U,X, $B) do

expr ← brA(brB(xA))− xA

s← SymbolicSolveEquation(expr, 0,xA)
E.insert(s)

end
end
return E

Algorithm 4: Finding Nash equilibria numerically

Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values

$A(xA,xB) – Alice’s expected payo� function

$B(xA,xB) – Bob’s expected payo� function

N – number of iterations of the algorithm

Output: E – list of found Nash equilibria in pure strategies

E ← []

i← 0
while i < N do

xA ← RandomStrategy(X)
xB ← NumericBestResponse(U,X,xA, $B)
x′

A
← NumericBestResponse(U,X,xB, $A)

if U(x′A) ≈ U(xA) then
E.insert((xA,xB))

end
i← i+ 1

end
return E
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7.3 Mixed strategies based on best response cycles

Assuming that UA → UB → UA, a pure Nash equilibrium can be seen as a special case

of best response cycle. However, in some quantum games there are no such cycles of

length 2 and thus no Nash equilibria in pure strategies. The concept two mutual best

responses in two-player games may be easily generalized to cycles of length 2n such

that

U
(1)
A

B−→ U
(1)
B

A−→ U
(2)
A

B−→ U
(2)
B

A−→ . . .
A−→ U

(n)
A

B−→ U
(n)
B

A−→ U
(1)
A

(7.11)

where X
A−→ Y denotes that Y ∈ best response

A
(X) and analogously for

B−→.

A proposed symbolic approach towards �nding best response cycles symbolically is

shown in algorithm 5, whereas the numerical approach is presented as algorithm 6.

Algorithm 5: Finding best response cycles symbolically

Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values

$A(xA,xB) – Alice’s expected payo� function

$B(xA,xB) – Bob’s expected payo� function

L – length of best response cycle

Output: C – list of best response cycles in pure strategies

C ← []

brsA[m]← SymbolicBestResponseFunctions(U,X, $A)
brsB[n]← SymbolicBestResponseFunctions(U,X, $B)

for seqA ∈ (Zm)L/2 do
for seqB ∈ (Zn)L/2 do

expr ← xA

i← 0
while i < L/2 do

brA ← brsA[seq
A
[i]]

brB ← brsB[seq
B
[i]]

expr ← brA(brB(expr))
i← i+ 1

end
expr ← expr − xA

s← SymbolicSolveEquation(expr, 0,xA)
C.insert(s)

end
end
return C
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Algorithm 6: Finding best response cycle numerically

Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values

$A(xA,xB) – Alice’s expected payo� function

$B(xA,xB) – Bob’s expected payo� function

Output: C – best response cycle found

i← 0
xA ← RandomStrategy(X)
prev ← [xA]

while True do
xB ← NumericBestResponse(U,X,xA, $B)
prev.insert(xB)
xA ← NumericBestResponse(U,X,xB, $A)
prev.insert(xA)
i← i+ 1
j ← 0
while j ≤ i do

if U(xA) ≈ U(prev[2 ∗ j]) then
return prev[2 ∗ j : 2 ∗ i]

end
j ← j + 1

end
end

Having found a cycle of best responses, one can construct the following mixed

quantum strategies {(
pi, U

(i)
A

)}n
i=1

and

{(
qi, U

(i)
B

)}n
i=1

(7.12)

for Alice and Bob, respectively, each consisting of n pure strategies, where pi, qi ∈ [0, 1]
are mixing probabilities such that

n∑
i=1

pi =

n∑
i=1

qi = 1. (7.13)

As shown in [6], in Quantum Prisoner’s Dilemma with U(θ, φ, α) parametrization

there exists a best response cycle of length 4. As described in [35], alternating pairs

of these pure strategies form two mixed strategies of Alice and Bob with a mixed

quantum Nash equilibrium located on the saddle point of the payo� function where

pi = qi = 1
2 . This speci�c example is discussed in detail and further analyzed by Piotr

Kotara in his master’s thesis [20].

This work, however, focuses primarily on algorithmic methods of �nding such best

response cycles, either assuming that the best response function is already known in

analytic form or without such knowledge, taking into account that there may exist

more than one best response.
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7.4 Analysis of the complexity

When proposing algorithms, one should also estimate its computational as well as

space complexity in terms of size of the input.

As for symbolic algorithms, their computational and space complexity heavily

depends on the size and di�culty of symbolic expressions used for global optimization

or equation solving as well as on the complexity of speci�c implementations used to

solve these problems.

If there existsm and n unique best responses of Alice and Bob, respectively, the com-

putational complexity of algorithm 3 is O(mn · f(p)) where f(p) is the computational

complexity function of solving a single equation symbolically. For �nding best response

cycles of length L, the computational complexity of algorithm 5 isO(mL/2nL/2 ·f(p)).

For numerical algorithms, a reasonable parameter of the complexity function seems

to be the number of variables (i.e. strategy parameters). However, single-qubit

parametrizations have at most 3 degrees of freedom. Moreover, the numerical methods

of �nding best response or Nash equilibria proposed in this chapter are strongly based

on Powell or Nelder-Mead optimization algorithms, so they naturally inherit their

computational complexity.

If N denotes the number of iterations to �nd a Nash equilibrium, the computational

complexity of algorithm 4 is O(N · f(p)) where f(p) is the computational complexity

of �nding a global maximum of payo� function numerically.

If g(p) represents the length of numerical best response cycle and, the computational

complexity of algorithm 6 is O(f(p) · g(p)2), but can be reduced to O(f(p) · g(p))
using a hash table.

7.5 Summary

In this chapter we presented symbolic and numerical algorithms for �nding best

responses, Nash equilibria in pure states as well as best response cycles in two-player

quantum games. These algorithms which will be evaluated and compared later in the

experimental part of the thesis.

40



8 Experiments

In this chapter, we will describe the experiments that were conducted as part of our

research on software-aided analysis quantum games. We will start from running

speci�c examples of quantum games on quantum simulators and real quantum devices

in order to verify the theoretical results. Next, we will analyze and evaluate symbolic

and numerical methods for �nding best responses, best response cycles and Nash

equilibria.

8.1 Environment

Unless stated otherwise, all experiments described in this chapter of the thesis were

carried out on a 14-inch MacBook Pro (2021) with 8-core Apple M1 Pro CPU, 14-core

GPU, 16-core Neural Engine, 16GB uni�ed memory while connected to 67W USB-C

Power Adapter plugged to the power supply, running macOS Monterey 12.2.1.

The computational part was carried out using Python 3.9.2 via Jupyter Notebook

environment with SymPy 1.9 or, independently, using Mathematica 13.0.1. Due to

the fact that one of the low-level dependencies of Qiskit are not yet compatible with

M1-based Macs, some of the experiments interfacing with IBM Q simulators or devices

were executed by Qiskit 0.34.2 running on Python 3.8.9 via dynamic binary translator

Rosetta 2.

8.2 Running two-player variant of Quantum Prisoner’s
Dilemma on IBM Q

As a �rst experiment, we will run a quantum game on a real quantum device and

compare theoretical results with actual measurements. Running Quantum Prisoner’s

Dilemma on IBM Q was the topic of Filip Galas’ master’s thesis [15]. At the time,

the main limitation was the set of available quantum gates, which meant that Filip

had to manually decompose the matrix of entanglement operator J as well as its

Hermitian conjugate J† into products of simple unitary matrices, each of which would

be convertible into a quantum gate supported by Qiskit.

As mentioned in section 6.4, as of 2020, Qiskit supports creating quantum operators

from arbitrary unitary matrices of �oating-point numbers. The purpose of the experi-

ment was to test this particular feature while using the convenient interface provided

by the ewl library as well as compare the results afterwards.

Figure 8.1 shows the quantum circuit of a two-player quantum game in the EWL pro-

tocol. Two horizontal lines represent two individual qubits, q0 and q1, both initialized
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to |0〉. The purple rectangles represent the quantum gates of entanglement operator J ,

two players’ strategies U0 and U1, and Hermitian conjugate of previously mentioned

entanglement operator, J†, respectively. The vertical light gray bars represent the

barriers which divide the circuit into chunks, preventing the transpiler from applying

optimizations between di�erent parts of the circuit. Finally, the black squares represent

the measurement blocks which collapse the quantum state into either |0〉 or |1〉 and

then copy the results from individual qubits into the corresponding bits of the classical

register marked as double horizontal line.

q0

q1

2meas

0

1
J

U0

U1

0

1
J

0 1

Figure 8.1: Visualization of the quantum circuit of a two-player quantum game in the

EWL protocol created using Qiskit

Before a quantum circuit can be run on a real quantum device, �rst it must be

transpiled, i.e. adapted to its architecture. During transpilation, a generic quantum

circuit is converted into an equivalent one that uses only the set of quantum gates

available on a particular quantum device. This process usually results in a noticeable

increase in the number of quantum gates resulting from the decomposition of more

complex gates into the basic ones. Transpilation is performed automatically when the

job is submitted but can be also triggered manually, for instance for demonstrative

purposes. Figure 8.2 shows the quantum circuit from �gure 8.1 after transpiling for

ibmq_quito quantum device. Since this backend is a 5-qubit system, the other three

qubits are marked as ancilla (additional).
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Figure 8.2: Visualization of the quantum circuit of a two-player quantum game in the

EWL protocol after transpilation for ibmq_quito backend
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8.2 Running two-player variant of Quantum Prisoner’s Dilemma on IBM Q

In order to execute a quantum circuit on a real quantum device, one needs to submit

a job using the secret API key assigned to his IBM Quantum
1

account to enqueue

the experiment. Depending on the workload, the waiting time can range from a few

minutes up to several hours.

Since quantum circuits are terminated with measurement blocks, the result will

always be a classical bitstring (in this case 00, 01, 10 or 11, with di�erent probabilities).

Thus, in order to experimentally validate theoretical results, quantum circuits need to

be run certain number of times to obtain the number of occurrences of each �nal state.

The default number of shots is 1024.

Apart from executing a quantum circuit on a real quantum device, Qiskit also

provides various tools for quantum simulation. Statevector simulator numerically

calculates the exact state of the quantum system as Schrödinger wavefunction after

running the circuit and returns the observational basis probabilities as a vector of 2n

�oating-point numbers where n is the number of qubits. In general, for more complex

quantum circuits, the computations can be performed using GPU instead of CPU.

Another quantum simulation tool available in Qiskit is QASM simulator. By default,

it behaves like a perfect quantum computer with randomness but without noises.

However, it can be also con�gured to mimic the behaviour of a real quantum device

by using the provided noise model.

Table 8.1 shows the results of playing the Quantum Prisoner’s Dilemma using

U(θ, α, β) parametrization with Alice playing quantum strategy U(π2 ,
π
2 , 0) while

Bob plays classical strategy U(0, 0, 0) = C . The results obtained from the statevector

simulator exactly match the probabilities calculated by the ewl library. The distribution

of game results obtained from QASM simulator also seems to be reasonable since for

�nal states 01 and 11, deviations from the expected value of 0.5 occur due to randomness

– similarly like �ipping a coin 100 times does not always result in heads falling exactly

50 times. For states 00 and 10, the results are also both equal to zero, beacuse the ideal

QASM simulator (i.e. without noise model) does not produce any quantum errors and

thus cannot reach a state with zero probability. Finally, the results obtained from a

real quantum device ibmq_quito are quite close to the theoretical results, but include

quantum errors from decoherence, which are especially noticeable in the results for

states 00 and 10. For convenience, the results are visualized in Fig. 8.3.

Table 8.1: Probabilities and distribution of results of running the Quantum Prisoner’s

Dilemma on two di�erent quantum simulators and on a real quantum device

Final state Theoretical
results

Statevector
simulator

QASM
simulator

Quantum
device

00 0 0 0 0.030

01 0 0 0 0.038

10 0.5 0.5 0.507 0.479

11 0.5 0.5 0.493 0.453

1https://quantum-computing.ibm.com/
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Figure 8.3: Comparision of the results of running the Quantum Prisoner’s Dilemma on

QASM simulator and ibmq_quito backend
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8.3 Visualization of payoff function

8.3 Visualization of payo� function

As mentioned in chapter 5, a particularly useful functionality of the ewl library is the

ability to symbolically calculate the observational basis probabilities of the outcomes

and thus obtain the payo� function in analytic form. The objective of this experiment

was to test out the symbolic capabilities of the library when it comes to computing

payo� function in a quantum game with a custom conditional parametrization.

As the use case for this experiment we have chosen Alice’s expected payo� function

in Quantum Prisoner’s Dilemma with a custom single-degree-of-freedom parametriza-

tion de�ned in Eq. 5.2 in [15] as

f(s) =

{
U(π − 2sπ, 0, 0) for s ∈ [0, 12 ]

U(0,
(
s− 1

2

)
π,
(
s− 1

2

)
π) for s ∈ (12 , 1]

(8.1)

where U is the parametrization from Eq. 4.10. In particular, for certain values of

parameter s, the strategy becomes

f(0) = U(π, 0, 0) = X

f(12) = U(0, 0, 0) = I

f(1) = U(0, π2 ,
π
2 ) = Z.

(8.2)

As mentioned in [15], the payo� values for the graph were calculated numerically

by running IBM Q simulator for each point of the 20 × 20 grid. In this experiment

we aim at obtaining the expected Alice’s payo� function in analytic form as well as

visualizing it on a three-dimensional plot.

Let us try to de�ne this game using ewl library in order to obtain the payo� function

in symbolic form. Assuming that Alice plays UA = f(s1) and Bob plays UB = f(s2)
where s1, s2 ∈ [0, 1], the �rst player’s payo� function is, after simpli�cation

$A(s1, s2) =



− sin2 (πs1) sin2 (πs2) + 4 sin2 (πs1)− sin2 (πs2) + 1 for s1 ≤ 1
2 ∧ s2 ≤ 1

2

7 sin2 (πs1) sin2 (πs2)− 4 sin2 (πs1)− 5 sin2 (πs2) + 5 for s1 ≤ 1
2

−3 sin2 (πs1) sin2 (πs2) + 5 sin2 (πs1) + sin2 (πs2) for s2 ≤ 1
2

3 sin2 (πs1) sin2 (πs2) + sin2 (π (s1 + s2)) for s1 ≤ 1
2 ∨ s2 ≤ 1

2

cos (π (2s1 + 2s2)) + 2 otherwise

.

(8.3)

It is worth noting that similarly to the used parametrization, the resulting payo�

function is also de�ned by the cases. Nevertheless, SymPy engine still manages to

gracefully apply trigonometric simpli�cations. Finally, based on the payo� function in

the symbolic form, the library is able to reproduce the 3D plot from Fig 5.1 in [15].
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Figure 8.4: Alice’s expected payo� function plot in Quantum Prisoner’s Dilemma with

respect to strategy parameters s1, s2 (compare to Fig. 5.1 in [15])
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8.4 Analysis of the case with three players

Since the library has proven itself for the two-player variant of the quantum game,

let us observe how it behaves when used for analysis of the case with three players.

Assume that Alice, Bob and Charlie play the following strategies:

U1 = U(θ1, α1, β1)

U2 = U(θ2, α2, β2)

U3 = U(θ3, α3, β3)

(8.4)

where U is parametrization from Eq. 4.8. Apparently, the library was able to success-

fully calculate the amplitudes of the �nal statevector and convert them to observational

basis probabilities of 8 possible game outcomes (i.e. |000〉 , |001〉 , . . . , |111〉, respec-

tively) as well as apply exponential and trigonometric simpli�cations using SymPy:

sin2
(
θ1
2

)
sin2

(
θ2
2

)
sin2

(
θ3
2

)
sin2 (β1 + β2 + β3) + cos2

(
θ1
2

)
cos2

(
θ2
2

)
cos2

(
θ3
2

)
cos2 (α1 + α2 + α3)

sin2
(
θ1
2

)
sin2

(
θ2
2

)
cos2

(
θ3
2

)
sin2 (β1 + β2 − α3) + cos2

(
θ1
2

)
cos2

(
θ2
2

)
sin2

(
θ3
2

)
cos2 (α1 + α2 − β3)

sin2
(
θ1
2

)
cos2

(
θ2
2

)
sin2

(
θ3
2

)
sin2 (β1 − α2 + β3) + cos2

(
θ1
2

)
sin2

(
θ2
2

)
cos2

(
θ3
2

)
cos2 (α1 − β2 + α3)

sin2
(
θ1
2

)
cos2

(
θ2
2

)
cos2

(
θ3
2

)
sin2 (β1 − α2 − α3) + cos2

(
θ1
2

)
sin2

(
θ2
2

)
sin2

(
θ3
2

)
cos2 (α1 − β2 − β3)

sin2
(
θ1
2

)
cos2

(
θ2
2

)
cos2

(
θ3
2

)
cos2 (β1 − α2 − α3) + cos2

(
θ1
2

)
sin2

(
θ2
2

)
sin2

(
θ3
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)
sin2 (α1 − β2 − β3)
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(
θ1
2

)
cos2

(
θ2
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)
sin2

(
θ3
2

)
cos2 (β1 − α2 + β3) + cos2

(
θ1
2

)
sin2

(
θ2
2

)
cos2

(
θ3
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)
sin2 (α1 − β2 + α3)

sin2
(
θ1
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(
θ2
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cos2
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cos2 (β1 + β2 − α3) + cos2

(
θ1
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)
cos2

(
θ2
2

)
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(
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)
sin2 (α1 + α2 − β3)

sin2
(
θ1
2

)
sin2

(
θ2
2

)
sin2

(
θ3
2

)
cos2 (β1 + β2 + β3) + cos2

(
θ1
2

)
cos2

(
θ2
2

)
cos2

(
θ3
2

)
sin2 (α1 + α2 + α3)



.

(8.5)

Currently, the validity of the above formula cannot be veri�ed independently due to

the fact that no articles on three-player quantum games in the EWL protocols have been

found by the author. However, for each possible combination of the classical strategies,

{C,D}3, the actual results match the expected ones. Moreover, the probabilities sum

up to 1 for arbitrary values of parameters {θi, αi, βi}3i=1.

It is worth mentioning that it took 5 min 8 s on average to calculate the observational

basis probabilities for three-player variant of the quantum game, compared to only

1.6 s for the two-player case. However, the actual symbolic operations, including tensor

product calculation, matrix multiplication and squaring the statevector amplitudes,

took only 55 ms on average. The remaining 99.9% of the execution time was spent

on exponential and trigonometric simpli�cation. However, given the complexity of

this computation, the execution time of a few minutes is still acceptable, especially

considering how long it would take a human as well as how prone to human error it

would be. Moreover, the solution in the form of an analytic function depending on the

strategy parameters carries more information than a numerical solution for speci�c

values. The scalability of the symbolic part of ewl library with respect to the number

of players for separable, partially entangled and maximally entangled initial quantum

states was measured in Piotr Kotara’s master thesis [20].
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8.5 Running three-player variant of Quantum Prisoner’s
Dilemma on IBM Q

Having calculated the formulas for the observational basis probabilities of all possible

game outcomes depending on the parameters of strategies of three players in section 8.4,

let us run a speci�c case of such quantum game on a real quantum device. Figure 8.5

shows the general quantum circuit of a quantum game in the EWL protocol with three

players.

q0

q1

q2

3meas

0

1

2

J

U0

U1

U2

0

1

2

J

0 1 2

Figure 8.5: Visualization of the quantum circuit of a three-player quantum game in the

EWL protocol created using Qiskit

Similarly as in section 8.2, the quantum game was executed on statevector simulator,

QASM simulator and ibmq_quito backend. Table 8.2 shows the results of playing

using U(θ, α, β) parametrization where Alice plays U(π2 ,
π
2 , 0), Bob plays U(π2 ,

π
2 ,

π
4 )

and Charlie plays U(0, 0, 0) = C . For convenience, the results are also visualized in a

bar plot presented in Fig. 8.6.

Table 8.2: Probabilities and distribution of results of running the three-player quantum

game in the EWL protocol on two di�erent quantum simulators and on a

real quantum device

Final state Theoretical
results

Statevector
simulator

QASM
simulator

Quantum
device

000 0.25 0.25 0.265 0.155

001 0.125 0.125 0.146 0.159

010 0.125 0.125 0.115 0.138

011 0.25 0.25 0.236 0.135

100 0 0 0 0.085

101 0.125 0.125 0.121 0.135

110 0.125 0.125 0.117 0.105

111 0 0 0 0.089
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Figure 8.6: Comparision of the results of running the three-player quantum game on

QASM simulator and ibmq_quito backend

Like previously, the output of statevector simulator exactly matches the probabilities

calculated by the ewl library, con�rming the correctness of the formulas for this

particular case. The distribution of game outcomes obtained from QASM simulator

is close to theoretical results and the deviations occur due to randomness which is

naturally incorporated into this simulation technique.

However, when it comes to running three-player quantum game on a real quantum

device, the distribution of game outcomes is far from ideal. For instance, let us con-

sider two �nal states, |000〉 and |100〉, whose theoretical probabilities are 0.250 and

0, respectively. On ibmq_quito the frequencies of these two game outcomes were

0.195 and 0.085, correspondingly. In both cases, the results are o� by approximately

0.1 which is a signi�cant error.

Let us also consider �nal states |001〉 and |011〉 with expected probabilities of 0.125

and 0.25, respectively. On ibmq_quito, the actual rates of occurrence were 0.159 and

0.135, correspondingly, meaning that the game outcome with twice the probability

was actually reached fewer times during the experiment.

Unlike the two-player case, running the three-player variant of quantum game on a

real quantum device ibmq_quito did not yield satisfactory results. Most likely, the

root cause of such signi�cant errors is high decoherence due to the length of the

transpiled version of the quantum circuit in terms of number of quantum gates. In

[20] it is shown that the default transpiler produces a lengthy, non-optimal quantum

circuit with even for a separable entanglement operator J . For reference, the actual

quantum circuit after transpiling and optimization is presented in Fig. 8.7.
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Figure 8.7: Visualization of the quantum circuit of a three-player quantum game in the

EWL protocol after transpilation for ibmq_quito backend
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8.5 Running three-player variant of Quantum Prisoner’s Dilemma on IBM Q

Another important factor is the architecture of the quantum device itself. During

transpilation, quantum gates operating on 3 or more qubits are decomposed into 1-

or 2-qubit gates supported by the underlying architecture of the quantum device. For

instance, ibmq_quito supports only the following 5 gates:

• CX – controlled-X (CNOT) gate


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

,

• ID – identity gate

[
1 0
0 1

]
,

• RZ – rotation along z-axis, RZ(λ) =

[
e−i

λ
2 0

0 ei
λ
2

]
,

• SX – Sqrt-X gate,

√
X =

1

2

[
1 + i 1− i
1− i 1 + i

]
,

• X – Pauli-X gate

[
0 1
1 0

]
.

Moreover, there are some limitations related to CNOT gate. Figure 8.8 shows the

topology of three di�erent 5-qubit IBM Q systems, including ibmq_quito, where qubits

are represented with graph nodes and edges between them denote the possibility of

applying CNOT gate on a speci�c pair of qubits. As shown in Fig. 8.7, while transpiling

for ibmq_quito, qubits 0, 1 and 3 are chosen to represent the quantum state of the game,

whereas qubits 2 and 4 are marked as auxiliary. As a consequence, CNOT gate cannot

be directly applied between qubits 0 and 3. Instead, CNOT(q0, q3) gets decomposed

into SWAP(q0, q1), CNOT(q1, q3) and SWAP(q0, q1). Then, each SWAP(q0, q1) can be

further transpiled into CNOT(q0, q1), CNOT(q1, q0) and CNOT(q0, q1).

For such purposes, ibmq_yorktown backend would be de�nitely a better choice

because of the fact that its qubit layout contains three nodes which form a triangle.

Unfortunately, it is no longer available for public use.

1

0 32

4

ibmq_yorktown v2.3.0

0 2 3 41

ibmq_athens v1.3.1

3

1 20

4

ibmq_quito v1.0.5

Figure 8.8: Topology diagrams of three 5-qubit IBM Q systems (ibmq_yorktown,

ibmq_athens and ibmq_quito) with non-isomorphic qubit layouts
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8 Experiments

8.6 Verification of published formulas

One of the features of ewl library is the ability to symbolically calculate formulas

which are critial for further processing such as observational basis probabilities of

game outcomes or payo� functions for each respective player. Therefore, before we

proceed to �nding best responses and Nash equilibria for sample quantum games

introduced in chapter 5, let us verify the correctness of the formulas calculated by

ewl library in comparision to the results published in the references. The results were

summarized in Tab. 8.3.

Table 8.3: Consistency of formulas calculated using ewl library with results from pub-

lications for di�erent variants of Quantum Prisoner’s Dilemma

Parametrization Reference Equality of formulas

U(θ, α, β) [36] X
U(θ, φ, α) [6] 7

U(θ, φ, α) [35] 7

U(θ, φ) [12] X*

Quantum Prisoner’s Dilemma with U(θ, φ, α) parametrization was described in

section 5.3 with the probabilities of game outcomes presented on page 5 in [6]:(
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(8.6)

However, the results from ewl library are as follows:(
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(8.7)
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8.6 Verification of published formulas

While the probabilities are identical for state |00〉, the formulas do not match for states

|01〉, |10〉 and |11〉 due to sign changes in several places. Speci�cally, the di�erences

(after simpli�cation) are as follows:

∆p01 =−
(

sin
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,
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(8.8)

which are non-zero for some inputs. In order to determine which formula is correct,

let us reproduce the calculations from the original publication. The initial vector is

given by formula on page 6:

v = [1, 0, 0, 0] . (8.9)

The matrix form of the entanglement operator J is de�ned in Eq. 3 on page 7:

J =
1√
2

(I + iσx ⊗ σx) =
1√
2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

 . (8.10)

The parametrization of players’ strategies is de�ned in Eq. 4 on page 7:

U(θ, φ, α) =

[
e−iφ cos

(
θ
2

)
eiα sin

(
θ
2

)
−e−iα sin

(
θ
2

)
eiφ cos

(
θ
2

)] . (8.11)

Assume that UA = U(θA, φA, αA) and UB = U(θB, φB, αB), or equivalently:

UA =

 e−iφA cos
(
θA

2

)
eiαA sin

(
θA

2

)
−e−iαA sin

(
θA

2

)
eiφA cos

(
θA

2

) ,
UB =

 e−iφB cos
(
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2

)
eiαB sin

(
θB

2

)
−e−iαB sin

(
θB

2

)
eiφB cos

(
θB

2

) .
(8.12)
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8 Experiments

Let us calculate the �nal statevector according to Eq. 2 from page 6:

ψ = J† (UA ⊗ UB) Jv. (8.13)

After substituting the matrices as well as performing exponential and trigonometric

simpli�cations, the result statevector is equal to:
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 . (8.14)

Finally, after converting the statevector to observational basis probabilities by multiply-

ing each coordinate by its Hermitian conjugate (or alternatively, squaring its module)

we obtain the following vector of probabilities of game outcomes:

(
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. (8.15)

which is identical to Eq. 8.7, con�rming the correctness of the probabilities calculated

by ewl library. The above matrix calculations as well as exponential and trigonometric

simpli�cations were performed independently using two di�erent symbolic engines,

SymPy and Mathematica. Consequently, the correct Bob’s expected payo� function is

$B = 3
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(8.16)

Let us check if this error a�ects the later part of the publication. Eq. 5 on page 8 in

[6] shows the parameters of Bob’s best response for arbitrary strategy of Alice:

θB = θA + π

φB = αA

αB = φA − π
2 .

(8.17)
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8.6 Verification of published formulas

Applying this substitution to the original probabilities from the article we obtain

[0, 1, 0, 0] and therefore $B = 5 which is the maximum possible payo�. However, if

we substitute this formula to the correct observational basis probabilities we obtain


0(

sin2
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 (8.18)

which is not equal to [0, 1, 0, 0] for some inputs. In particular, Bob’s expected payo� is

$B = 5

(
sin2
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)
cos (2αA) + cos2
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cos (2φA)
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(8.19)

which also depends on Alice’s strategy parametrs and is not equal to 5 for some inputs.

The correct formula for Bob’s best response should be as follows:

θB = θA + π

φB = −αA

αB = −φA − π
2 .

(8.20)

Substituting Eq. 8.20 into Eq. 8.7 we obtain [0, 1, 0, 0], or alternatively $B = 5. However,

this is not the only best response. Consider the following formula:

θB = π − θA

φB = −αA

αB = −φA + π
2 .

(8.21)

Applying the substitution Eq. 8.21 into Eq. 8.7 we also get [0, 1, 0, 0] and thus $B =
5, regardless of Alice’s move. It is worth mentioning that the above best response

substitutions were found manually by trial and error. In the following sections we will

try to �nd best responses automatically using symbolic analysis of the payo� function.

In section 5.3 we also introduced a similar variant of Quantum Prisoner’s Dilemma

with U(θ, φ, α) parametrization, originally described in [35]. The only di�erence

from the previously discussed version of the game is the base strategy D de�ned as

U(π, 0, 0) instead of U(π, 0, π2 ). The observational basis probabilities presented on
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8 Experiments

page 178 in [35] are cited from [6] and thus identical to those from Eq. 8.6:(
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(8.22)

However, using ewl library to calculate the probabilities we obtain:(
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(8.23)

Similarly to the previous case, the probabilities from the original publication and from

ewl library match only for state |00〉. For the following states |01〉, |10〉 and |11〉 the

di�erences after simpli�cation are as follows:
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(8.24)
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8.6 Verification of published formulas

which again are non-zero for some inputs. Moreover, the probabilities in Eq. 8.23 di�er

from those presented in Eq. 8.7, showing that the choice of the base strategy D indeed

a�ects the quantum game.

Analogously to the previously discussed variant of the quantum game, let us check

how this error a�ects the later part of the article. On page 181 in [35] there is a formula

for Bob’s best response depending on the parameters of Alice’s strategy identical to

Eq. 5 in [6]. Substituting it into the original probabilities from Eq. 8.22 we obtain (after

simpli�cation): 
4 sin2

(
θA

2

)
cos2

(
θA

2

)
sin2 (αA + φA)

0
cos2 (θA)

4 sin2
(
θA

2

)
cos2

(
θA

2

)
cos2 (αA + φA)

 (8.25)

which is not equal to [0, 1, 0, 0] for some inputs. Bob’s expected payo� is

$B = (8− 4 cos (2αA + 2φA)) sin2

(
θA

2

)
cos2

(
θA

2

)
. (8.26)

Applying the best response substitution from the publication into probabilities calcu-

lated by ewl library presented in Eq. 8.23 we obtain:
4 sin2

(
θA

2

)
cos2

(
θA

2

)
sin2 (αA + φA)(

sin2
(
θA

2

)
cos (2αA) + cos2

(
θA

2

)
cos (2φA)

)2(
sin2

(
θA

2

)
sin (2αA)− cos2

(
θA

2

)
sin (2φA)

)2
0

 (8.27)

which again is not equal to [0, 1, 0, 0] for some inputs. Bob’s expected payo� is

$B = 5

(
sin2

(
θA

2

)
cos (2αA) + cos2

(
θA

2

)
cos (2φA)

)2

+ 12 sin2

(
θA

2

)
cos2

(
θA

2

)
sin2 (αA + φA).

(8.28)

The correct substitution for Bob’s best response is:

θB = θA + π

φB = −αA − π
2

αB = −φA.

(8.29)

Similarly to the previous case, there also exists another best response:

θB = π − θA

φB = −αA + π
2

αB = −φA.

(8.30)

Substituting Eq. 8.29 or Eq. 8.30 into Eq. 8.23 we obtain [0, 1, 0, 0] and therefore $B = 5
which is the expected result.
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In section 5.5 we presented another variant of Quantum Prisoner’s Dilemma with

2-parameter strategies. The probabilities of game outcomes are presented in Eq. 7 in

[12]:(
cos (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
+ sin (β1 + β2) sin

(
θ1
2

)
sin

(
θ2
2

))2

(
cos (α1 − β2) cos

(
θ1
2

)
sin

(
θ2
2

)
+ sin (α2 − β1) sin

(
θ1
2

)
cos

(
θ2
2

))2

(
sin (α1 − β2) cos

(
θ1
2

)
sin

(
θ2
2

)
+ cos (α2 − β1) sin

(
θ1
2

)
cos

(
θ2
2

))2

(
sin (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
− cos (β1 + β2) sin

(
θ1
2

)
cos

(
θ2
2

))2

.

(8.31)

However, these probabilities do not sum up to 1. Using ewl library to calculate the

observational basis probabilities we obtain:(
cos (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
+ sin (β1 + β2) sin

(
θ1
2

)
sin

(
θ2
2

))2

(
cos (α1 − β2) cos

(
θ1
2

)
sin

(
θ2
2

)
+ sin (α2 − β1) sin

(
θ1
2

)
cos

(
θ2
2

))2

(
sin (α1 − β2) cos

(
θ1
2

)
sin

(
θ2
2

)
+ cos (α2 − β1) sin

(
θ1
2

)
cos

(
θ2
2

))2

(
sin (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
− cos (β1 + β2) sin

(
θ1
2

)
sin

(
θ2
2

))2

.

(8.32)

The inconsistency only occurs for state |11〉:

∆p11 =−
(

sin (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
− cos (β1 + β2) sin

(
θ1
2

)
cos

(
θ2
2

))2

+

(
sin (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
− cos (β1 + β2) sin

(
θ1
2

)
sin

(
θ2
2

))2

.

(8.33)

More precisely, the only di�erence is the use of cos function instead of sin at the very

end of the expression. So we conclude that the correct payo� function is

$B = 3

(
cos (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
+ sin (β1 + β2) sin

(
θ1
2

)
sin

(
θ2
2

))2

+ 5

(
sin (α2 − β1) sin

(
θ1
2

)
cos

(
θ2
2

)
+ cos (α1 − β2) cos

(
θ1
2

)
sin

(
θ2
2

))2

+

(
sin (α1 + α2) cos

(
θ1
2

)
cos

(
θ2
2

)
− cos (β1 + β2) sin

(
θ1
2

)
sin

(
θ2
2

))2

.

(8.34)
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8.7 Finding best response symbolically

In order to be able to �nd Nash equilibria as �xed points of the composition of best

response functions as described in section 7.2, �rst we need to know the best response

substitutions in analytic form.

The purpose of this experiment was to utilize existing symbolic calculations engine

such as SymPy or Mathematica in order to obtain Bob’s best response functions for

two di�erent variants of Quantum Prisoner’s Dilemma (either with 2 or 3 parameters

per each player) as a symbolic expression with respect to the parameters of Alice’s

strategy, for instance

(θ∗
B
, φ∗

B
, α∗

B
) = best response

B
(θA, φA, αA). (8.35)

The source code of all attempts to �nd best response function in symbolic form using

Mathematica which are described in this section can be found in Appendix A.

The �rst approach was to directly use built-in functions for global symbolic opti-

mization such as Maximize or ArgMax, i.e.

best response
B
(θA, φA, αA) = argmax

(θB,φB,αB)∈X
$B(U(θA, φA, αA), U(θB, φB, αB)). (8.36)

Under the hood, for global non-linear constrained optimization problems Mathematica

uses e�cient methods based on Karush–Kuhn–Tucker (KKT) conditions. However, it

turned out that Mathematica does not support symbolic parameters inside trigonomet-

ric expressions simultaneously when performing symbolic optimization.

The next attempt to �nding best response function was to compute the gradient

of the payo� function as partial derivatives of all parameters and solve a system of

equations with the zero vector on the right side, i.e.

∇$B(θB, φB, αB) = 0 (8.37)

in real numbers using the built-in Solve function. Unfortunately, this time Mathemat-

ica raised an error with message informing that the problem cannot be solved with

methods available to Solve function.

In the speci�c case of quantum game with full SU(2) parametrization, instead of

trying to maximize the payo� function, we can maximize the probability of the game

outcome with the highest payo� by solving an equation

p01 = 1 (8.38)

or, alternatively, by �nding a solution of the following system of equations

p00 = p10 = p11 = 0. (8.39)

However, using the built-in Solve function we get the same error again, most likely

due to multiple trigonometric expressions present in the input.
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As a next step, we focused on possible ways to eliminate trigonometric expressions

from the input. For instance, for each variable or parameter x in the original formula,

we could replace sinx with a new symbol, y. However, it is not clear how to replace

cosx, which can be either

√
1− x2 or its negation. Another idea would be to expand

expressions with sin or cos functions into Taylor series and operate on polynomials

which are way easier to handle when it comes to solving equations. Alternatively,

we could utilize various polynomial approximation techniques, e.g. using Chebyshev

polynomials, but unforunately most of the methods are designed speci�cally for single-

dimensional cases.

The �nal approach was to substitute sin and cos of each parameter θ with two new

variables, x and y, i.e.

x = sin θ

y = cos θ
(8.40)

as well as capture the relationship between x and y from Pythagorean trigonometric

identity sin2 θ + cos2 θ = 1 as the following constraint:

x2 + y2 = 1. (8.41)

As a consequence, we reduced the problem from function maximization to solving the

following system of equations without trigonometric expressions:−a1a5x1x6 − a1a6x1x5 − a2a3x2x3 + a2a4x2x4

a1a5x2x4 + a1a6x2x3 − a2a3x1x5 + a2a4x1x6

a1a5x1x5 − a1a6x1x6 + a2a3x2x4 + a2a4x2x3

 =

0

0

0

 . (8.42)

This time Mathematica did not raise any erorrs but still could not solve this task in a

reasonable time of less than 12 hours.

In summary, all attempts to �nd Bob’s best response function in analytic form using

Mathematica either timed out or failed due to lack of direct support for certain types of

equations. All of the attempts mentioned above were also implemented and executed

in SymPy, however with no signi�cant improvements.

Apart from the analysis of Quantum Prisoner’s Dilemma withU(θ, φ, α) parametriza-

tion, analogous experiments were conducted on the example of Quantum Prisoner’s

Dilemma with Frąckiewicz-Pykacz parametrization (as described in section 5.5) which

involves only 2 degrees of freedom, meaning there are only 2 variables and 2 symbolic

parameters in the formulas. However, this parametrization does fully cover SU(2)
group, thus the only valid method for �nding Bob’s best response is to maximize the

expected payo� function. In particular, the task cannot be reduced to solving a system

of equations with observational basis probabilities on the left-hand side and zeros on

the right-hand side due to reasons discussed in section 7.1.
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8.8 Finding best response numerically

Since all attempts to �nd Bob’s best response function in symbolic form were unsuc-

cessful, let us use numerical methods instead. Similarly as in the previous section, we

will be searching for global maxima of Bob’s payo� function from Eq. 8.16, i.e.

$B = 3

(
cos

(
θA

2

)
cos

(
θB

2

)
cos (φA + φB)− sin

(
θA

2

)
sin

(
θB

2

)
sin (αA + αB)

)2

+ 5

(
sin

(
θA

2

)
cos

(
θB

2

)
cos (αA + φB) + cos

(
θA

2

)
sin

(
θB

2

)
sin (φA + αB)

)2

+

(
cos

(
θA

2

)
cos

(
θB

2

)
sin (φA + φB)− sin

(
θA

2

)
sin

(
θB

2

)
cos (αA + αB)

)2

(8.43)

where θB ∈ [0, π] and φB, αB ∈ [−π, π] are variables representing Bob’s strategy while

the parameters of Alice’s move are denoted with θA ∈ [0, π] and φA, θA ∈ [−π, π]. For

this variant of Quantum Prisoner’s Dilemma we already know that there are exactly

two best responses, each with expected payo� equal to 5.

In this experiment we will evaluate the performance of two di�erent derivative-free

optimization methods:

• Powell [31]

• Nelder-Mead [28]

For each algorithm we will choose the initial point in three di�erent ways:

• zero – starting point is always [0, 0, 0]

• Alice – starting point is the strategy of the opponent

• random – starting point is randomly selected with uniform distribution

Since the parametrization uses trigonometric functions, we can either narrow the

search to one period of the function in each dimension or search the entire space R3

and normalize the coordinates afterwards:

• True – search bounds are enabled and set to Ω = [0, π]× [−π, π]× [−π, π]

• False – search bounds are disabled but the result is normalized to Ω afterwards

The experiment consisted of N = 10000 runs for each combination of settings

described above. For each iteration, Alice’s strategy was randomly selected with

uniform distribution. Next, Bob’s best response was found using according numerical

optimization method using implementations provided by scipy.optimize2
module

from SciPy library [38]. A single run was considered successful if the resulting payo�

was greater than or equal to 4.9995 (ε = 0.0005). Success rate was calculated as the

ratio of successful runs to all runs and expressed as a percentage. The results of the

experiment are summarized in Tab. 8.4.

2https://docs.scipy.org/doc/scipy/tutorial/optimize.html
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8 Experiments

Table 8.4: Comparision of success rates of 12 di�erent variants of a numerical method of

searching for best response in Quantum Prisoner’s Dilemma with U(θ, φ, α)
parametrization

Optimization method Start point Bounds Success rate

Powell zero False 99.94%

Powell random False 99.23%

Powell Alice False 99.35%

Nelder-Mead zero False 96.60%

Nelder-Mead random False 99.52%

Nelder-Mead Alice False 99.01%

Powell zero True 86.94%

Powell random True 76.34%

Powell Alice True 79.14%

Nelder-Mead zero True 45.89%

Nelder-Mead random True 41.47%

Nelder-Mead Alice True 43.55%

Clearly, the methods with bounds disabled performed much better. In case of non-

bounded optimization, the choice of the starting point has little e�ect on success

rate. The highest success rate of 99.94% was achieved by Powell method with bounds

disabled and zero as initial point. The performance of this method is even better than

initially expected and hopefully will generalize to other variants of Quantum Prisoner’s

Dilemma as well as other quantum games.
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8.9 Finding Nash equilibria symbolically

So far, the only quantum game for which we know the best response substitutions

in analytic form is Quantum Prisoner’s Dilemma with U(θ, φ, α) parametrization.

Speci�cally, for each arbitrary strategy of the opponent, there are exactly two di�erent

best responses, shown in Eq. 8.20 and Eq. 8.21.

In this section we will use this information in order to prove that this variant

of the game does not have any Nash equilibria in pure states. However, instead of

performing the calculations manually, we will use symbolic calculations engine, SymPy,

to automate the process and eliminate the risk of human error.

Let us de�ne the best response substitution from Eq. 8.20 as the following function:

br1(θ, φ, α) =
(
θ + π, −α, −φ− π

2

)
. (8.44)

Similarly, let us rewrite the second best response substitution Eq. 8.21 as another

function:

br2(θ, φ, α) =
(
π − θ, −α, −φ+ π

2

)
. (8.45)

As described in section 7.2, Nash equilibria in pure states are �xed points of a function

composition of best response functions. Since there are two di�erent best responses,

regardless of the player, there are exactly 22 = 4 combinations and thus 4 function

compositions that need to be checked.

Assume that the initial strategy of Alice, expressed as parameter values, is

x0 = (θ, φ, α). (8.46)

Imagine that Bob plays the �rst best response, which is

x1 = br1(x0) =
(
θ + π, −α, −φ− π

2

)
. (8.47)

Then, Alice also responds with br1(x1), or equivalently

x11 = br1(br1(x0)) =
(
θ + 2π, φ+ π

2 , α− π
2

)
. (8.48)

Since the space of parameter values is periodic, let us de�ne a relation≡ ⊂ R3×R3

that holds when two points match when normalized to Ω = [0, π]× [−π, π]× [−π, π]
which is the original boundary for parameter values that contains a single period of

underlying trigonometric function in each respective dimension:

x1 ≡ x2 ⇐⇒ ∃ a, b, c ∈ Z : x2 − x1 = (aπ, 2bπ, 2cπ). (8.49)

For readability purposes, instead of checking the equivalence with the initial strategy,

we will calculate the di�erence of the �nal and the initial strategy in terms of parameter

values and then check whether is it equivalent to a zero vector:

x1 ≡ x2 ⇐⇒ x2 − x1 ≡ (0, 0, 0). (8.50)
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In this case the di�erence is

∆x11 = x11 − x0 =
(
2π, π2 ,−π

2

)
6≡ (0, 0, 0) , (8.51)

meaning that playing the �rst best response twice, once by Bob and then once by

Alice, does not return to the original strategy. However, there are still 3 remaining

combinations that need to be checked:

x12 = br2(br1(x0)) =
(
−θ, φ+ π

2 , α+ π
2

)
x21 = br1(br2(x0)) =

(
−θ + 2π, φ− π

2 , α− π
2

)
x22 = br2(br2(x0)) =

(
θ, φ− π

2 , α+ π
2

)
.

(8.52)

The di�erences are as follows:

∆x12 = x12 − x0 =
(
−2θ, π2 ,

π
2

)
6≡ (0, 0, 0)

∆x21 = x21 − x0 =
(
−2θ + 2π,−π

2 ,−π
2

)
6≡ (0, 0, 0)

∆x22 = x22 − x0 =
(
0,−π

2 ,
π
2

)
6≡ (0, 0, 0)

(8.53)

Since none of the combinations of best response functions results in a strategy that

is equivalent to the initial move, we proved that Quantum Prisoner’s Dilemma with

U(θ, φ, α) parametrization has no Nash equilibria in pure states.

The most relevant conclusion of this experiment is that knowing all the best re-

sponse substitutions for a speci�c variant of a quantum game in analytic form, we can

automatically �nd all Nash equilibria or prove that there are no Nash equilibria in pure

states simply by solving a �xed-point equation symbolically.
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8.10 Finding best response cycles symbolically

The method of �nding Nash equilibria in pure states described in section 7.2 and

evaluated in section 8.9 can be also generalized to best response cycles. The only

di�erence is that instead of checking each pair of best response functions, we need to

check each combination of the desired length of the cycle.

In this section we will search for all best response cycles of length 4, i.e. consisting

of two moves per each player, for instance

UA1 → UB1 → UA2 → UB2 → UA1 (8.54)

where the �rst and the last element are identical strategies, equivalent in terms of

parameter values.

Similarly to the previous section, we will perform the analysis on the example of

Quantum Prisoner’s Dilemma with U(θ, φ, α) parametrization as described in sec-

tion 5.3. Again, we assume that the �rst player’s initial strategy is

x0 = (θ, φ, α). (8.55)

Since there are exactly 2 best response substitutions and we search for best response

cycles of length 4, there is exactly 24 = 16 following combinations that need to be

checked:

x1111 = br1(br1(br1(br1(x0)))) = (θ + 4π, φ+ π, α− π)

x1112 = br2(br1(br1(br1(x0)))) = (−θ − 2π, φ+ π, α)

x1121 = br1(br2(br1(br1(x0)))) = (−θ, φ, α− π)

x1122 = br2(br2(br1(br1(x0)))) = (θ + 2π, φ, α)

x1211 = br1(br1(br2(br1(x0)))) = (−θ + 2π, φ+ π, α)

x1212 = br2(br1(br2(br1(x0)))) = (θ, φ+ π, α+ π)

x1221 = br1(br2(br2(br1(x0)))) = (θ + 2π, φ, α)

x1222 = br2(br2(br2(br1(x0)))) = (−θ, φ, α+ π)

x2111 = br1(br1(br1(br2(x0)))) = (−θ + 4π, φ, α− π)

x2112 = br2(br1(br1(br2(x0)))) = (θ − 2π, φ, α)

x2121 = br1(br2(br1(br2(x0)))) = (θ, φ− π, α− π)

x2122 = br2(br2(br1(br2(x0)))) = (−θ + 2π, φ− π, α)

x2211 = br1(br1(br2(br2(x0)))) = (θ + 2π, φ, α)

x2212 = br2(br1(br2(br2(x0)))) = (−θ, φ, α+ π)

x2221 = br1(br2(br2(br2(x0)))) = (−θ + 2π, φ− π, α)

x2222 = br2(br2(br2(br2(x0)))) = (θ, φ− π, α+ π) .

(8.56)
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Like in the previous section, we calculate the di�erences as follows:

∆x1111 = x1111 − x0 = (4π, π, −π) 6≡ (0, 0, 0)

∆x1112 = x1112 − x0 = (−2θ − 2π, π, 0) 6≡ (0, 0, 0)

∆x1121 = x1121 − x0 = (−2θ, 0, −π) 6≡ (0, 0, 0)

∆x1122 = x1122 − x0 = (2π, 0, 0) ≡ (0, 0, 0)X

∆x1211 = x1211 − x0 = (−2θ + 2π, π, 0) 6≡ (0, 0, 0)

∆x1212 = x1212 − x0 = (0, π, π) 6≡ (0, 0, 0)

∆x1221 = x1221 − x0 = (2π, 0, 0) ≡ (0, 0, 0)X

∆x1222 = x1222 − x0 = (−2θ, 0, π) 6≡ (0, 0, 0)

∆x2111 = x2111 − x0 = (−2θ + 4π, 0, −π) 6≡ (0, 0, 0)

∆x2112 = x2112 − x0 = (−2π, 0, 0) ≡ (0, 0, 0)X

∆x2121 = x2121 − x0 = (0, −π, −π) 6≡ (0, 0, 0)

∆x2122 = x2122 − x0 = (−2θ + 2π, −π, 0) 6≡ (0, 0, 0)

∆x2211 = x2211 − x0 = (2π, 0, 0) ≡ (0, 0, 0)X

∆x2212 = x2212 − x0 = (−2θ, 0, π) 6≡ (0, 0, 0)

∆x2221 = x2221 − x0 = (−2θ + 2π, −π, 0) 6≡ (0, 0, 0)

∆x2222 = x2222 − x0 = (0, −π, π) 6≡ (0, 0, 0)

(8.57)

Among 16 possible combinations of best response chains of length 4 (i.e. 2 moves

per each player), we found exactly 4 best response cycles:

U(θ, φ, α)
br1−−→ U

(
θ + π,−α,−φ− π

2

)
br1−−→ U

(
θ + 2π, φ+ π

2 , α− π
2

)
br2−−→ U

(
−θ − π,−α+ π

2 ,−φ
)

br2−−→ U(θ + 2π, φ, α)

U(θ, φ, α)
br1−−→ U

(
θ + π,−α,−φ− π

2

)
br2−−→ U

(
−θ, φ+ π

2 , α+ π
2

)
br2−−→ U

(
θ + π,−α− π

2 ,−φ
)

br1−−→ U(θ + 2π, φ, α)

U(θ, φ, α)
br2−−→ U

(
π − θ,−α,−φ+ π

2

)
br1−−→ U

(
2π − θ, φ− π

2 , α− π
2

)
br1−−→ U

(
3π − θ,−α+ π

2 ,−φ
)

br2−−→ U(θ − 2π, φ, α)

U(θ, φ, α)
br2−−→ U

(
π − θ,−α,−φ+ π

2

)
br2−−→ U

(
θ, φ− π

2 , α+ π
2

)
br1−−→ U

(
θ + π,−α− π

2 ,−φ
)

br1−−→ U(θ + 2π, φ, α).
(8.58)

The �nal strategies are equivalent to the initial strategy because

U(θ − 2π, φ, α) ≡ U(θ, φ, α) ≡ U(θ + 2π, φ, α). (8.59)

Moreover, since θ, φ, α are not �xed, all 4 best response cycles hold for arbitrary initial

strategy of Alice or Bob.
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8.11 Finding Nash equilibria numerically

In section 8.7 we made a number of attempts towards �nding the best response function

in a symbolic form using Mathematica and SymPy for two di�erent variants of Quantum

Prisoner’s Dilemma. However, no such attempt was successful. As a consequence,

we changed the approach from symbolic to numerical optimization. In section 8.8 we

implemented and evaluated 12 di�erent variants of a numerical method for �nding

best response to a given strategy and selected the one with highest success rate.

In this section we will apply the algorithm of �nding best response numerically in

order to �nd Nash equilibria in pure states on the example of Quantum Prisoner’s

Dilemma with the EWL original parametrization U(θ, φ) with 2 degrees of freedom

as introduced in [8] for which the best response substitutions are not known in a

symbolic form.

In the �rst example we will search for a Nash equilibrium in pure states starting

from strategy U(0, 0) as described in the publication. The results
3

are presented in Tab.

8.5. Each consecutive row represents a move of Alice or Bob which is the best response

found numerically for the previous move of the opponent from the row above, along

with the expected payo� of the current player.

Table 8.5: A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with original EWL parametrization starting from strategy U(0, 0)

Player θ φ Expected payo�

Alice 0.000000 0.000000 n/a

Bob 3.141593 3.137909 5.0

Alice 0.000011 1.570802 3.0

Bob 0.000000 1.570791 3.0

Alice 6.283185 1.570802 3.0

Bob 6.283185 1.570791 3.0

Alice 6.283185 1.570802 3.0

Bob 6.283185 1.570791 3.0

Alice 6.283185 1.570802 3.0

Bob 6.283185 1.570791 3.0

After a few moves, the sequence of best responses collapses to a cycle of length

2 where Alice plays UA = U(6.283185, 1.570802) while Bob responds with UB =
U(6.283185, 1.570791). Since UA ≈ UB ≈ U(2π, π2 ) ≡ U(0, π2 ), we conclude that we

found a Nash equilibrium (
U(0, π2 ), U(0, π2 )

)
(8.60)

with payo�s $A = $B = 3, which is the expected result as mentioned in the original

publication [8] on the page 3.

3

A single-precision �oating number has about 7 decimal digits of precision (log10 2
23 ≈ 6.92). While

the precision of the method has not been tested yet, the results shown in Tab. 8.7 sum to 3.141593 ≈ π
and all 6 decimal digits are correct.
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As the second example, instead of starting from U(0, 0), we will randomize the

initial strategy of Alice and run the experiment multiple number of times. The results

of a single run are shown in Tab. 8.6.

Table 8.6: A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with original EWL parametrization starting from random strategy

Player θ φ Expected payo�

Alice 2.030715 2.818488 n/a

Bob 1.044621 1.510837 4.933883

Alice 6.208956 1.609381 3.499695

Bob 6.278414 1.532301 3.002761

Alice 0.000299 1.609292 3.000011

Bob 0.000019 1.532301 3.0

Alice 6.283184 1.609292 3.0

Bob 6.283185 1.532301 3.0

Alice 6.283185 1.609292 3.0

Bob 6.283185 1.532301 3.0

For each run of the experiment, the �nal values of θA and θB were always close to

6.283185 ≈ 2π. However, φA and φB varied signi�cantly, as shown in Tab. 8.7.

Table 8.7: Final values of parameters φA and φB of best response cycles of length 2 in

Quantum Prisoner’s Dilemma with original EWL parametrization starting

with random initial strategy for 10 sample runs of the experiment

θA φA θB φB φA + φB

6.283185 1.723622 6.283185 1.417971 3.141593

6.283185 1.576331 6.283185 1.565262 3.141593

6.283185 1.603082 6.283185 1.538511 3.141593

6.283185 1.511496 6.283185 1.630097 3.141593

6.283185 1.570684 6.283185 1.570909 3.141593

6.283185 1.531750 6.283185 1.609842 3.141593

6.283185 1.813776 6.283185 1.327817 3.141593

6.283185 1.702410 6.283185 1.439183 3.141593

6.283185 1.570834 6.283185 1.570758 3.141593

6.283185 1.549452 6.283185 1.592141 3.141593

Apparently, for each execution of the experiment, φA + φB ≈ 3.141593 ≈ π, so we

conclude that we found a whole family of best response cycles of length 2 in form of

{ (U(0, x), U(0, π − x)) : x ∈ [0, π] } . (8.61)
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In this section we will evaluate the numerical method from section 8.11 on the example

of Quantum Prisoner’s Dilemma with U(θ, φ, α) parametrization from [6] which was

described in section 5.3. In this variant of the game there are no Nash equilibria, but

for arbitrary initial startegy there exist exactly 4 di�erent best response cycles of

length 4 (i.e. 2 moves per each player) as shown symbolically using SymPy library in

section 8.10 of the thesis.

Table 8.8: A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with U(θ, φ, α) parametrization starting from random strategy

Player θ φ α Expected payo�

Alice 2.271152 -0.118018 -0.081848 n/a

Bob -0.870404 0.081856 -1.452776 5.000000

Alice -2.270383 1.453049 1.487888 4.999995

Bob 0.871299 1.653691 0.117743 5.000000

Alice 2.270338 -0.117733 -0.082893 5.000000

Bob -0.871261 0.082902 -1.452838 5.000000

Alice -2.269523 1.453107 1.486841 4.999995

Bob 0.872155 1.654738 0.117685 5.000000

Alice 2.269483 -0.117675 -0.083941 5.000000

Bob -0.872115 0.083949 -1.452903 5.000000

Alice -2.268748 1.453130 1.485877 4.999996

Bob 0.872926 1.655703 0.117663 5.000000

Alice 2.268713 -0.117652 -0.084905 5.000000

Bob -0.872885 0.084913 -1.452932 5.000000

Alice -2.268020 1.453131 1.484945 4.999996

Bob 0.873651 1.656635 0.117661 5.000000

Alice 2.267989 -0.117650 -0.085838 5.000000

Bob -0.873609 0.085846 -1.452939 5.000000

Alice -2.267319 1.453127 1.484048 4.999996

Bob 5.408823 -1.484063 0.117665 5.000000

Alice 2.267279 -0.117653 -0.086732 5.000000

Bob -0.874319 0.086739 -1.452943 5.000000

After only a few iterations, the numerical method was able to �nd a best response

cycle UA1 → UB1 → UA2 → UB2 → UA1 composed of the following strategies:

UA1 = U(−2.267319, 1.453127, 1.484048)

UB1 = U(5.408823,−1.484063, 0.117665)

UA2 = U(2.267279,−0.117653,−0.086732)

UB2 = U(−0.874319, 0.086739,−1.452943).

(8.62)
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As the second example we will evaluate this method on the example of Quantum

Prisoner’s Dilemma with Frąckiewicz-Pykacz parametrization with 2 degrees of free-

dom where the best response function in analytic form is unknown. The results of a

single run of the experiment are presented in Tab. 8.9.

Table 8.9: A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with Frąckiewicz-Pykacz parametrization starting from random

strategy

Player θ φ Expected payo�

Alice 4.731055 4.626624 n/a

Bob 1.755219 0.797327 4.003305

Alice 0.020601 5.500531 4.183335

Bob 3.141649 5.500531 4.999788

Alice 6.283185 0.788142 5.0

Bob 3.141595 0.788142 5.0

Alice 6.283185 5.500531 5.0

Bob 3.141595 5.500531 5.0

Alice 6.283185 0.788142 5.0

Bob 3.141595 0.788142 5.0

Alice 6.283185 5.500531 5.0

Bob 3.141595 5.500531 5.0

Alice 6.283185 0.788142 5.0

Bob 3.141595 0.788142 5.0

Alice 6.283185 5.500531 5.0

Bob 3.141595 5.500531 5.0

Similarly to the previous example, there is a pattern of 4 consecutive strategies

that starts to repeat. The numerical method was able to detect a best response cycle

UA1 → UB1 → UA2 → UB2 → UA1 composed of the following strategies:

UA1 = U(6.283185, 0.788142)

UB1 = U(3.141595, 0.788142)

UA2 = U(6.283185, 5.500531)

UB2 = U(3.141595, 5.500531).

(8.63)

with the maximum possible payo� $A = $B = 5 after each move.

To sum up, the main advantage of using numerical methods for �nding Nash equilib-

ria as well as best response cycles is the fact that it does not require knowing the best

response functions in analytic form. However, this kind of analysis is strictly dependent

on the choice of the initial strategy and it is necessary to run the experiment a number

of times and manually generalize the results afterwards in order to draw reasonable

conclusions. Moreover, the current solution only �nds a single global maximum, while

in general there may exist more than one best response.
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In this chapter we presented the results of a number of experiments related to software-

aided analysis of various properties of quantum games on the example of multiple

variants of Quantum Prisoner’s Dilemma with di�erent parametrizations.

In section 8.1 we presented the environment in terms of hardware and software

used for experimental part of the thesis.

In section 8.2 we executed the two-player variant of Quantum Prisoner’s Dilemma on

a quantum simulator and a real quantum device, compared the results with theoretical

expectations as well as explained how quantum circuit is prepared for such execution.

In section 8.3 we demonstrated the abilities of ewl library as well as the underlying

symbolic calculations engine, SymPy, by re-creating a three-dimensional plot of payo�

function for a quantum game with a custom parametrization described in [15].

In section 8.4 we used ewl library to obtain formulas for a generalized variant of

Quantum Prisoner’s Dilemma with three players which we executed on a quantum

simulator and a real quantum device in section 8.5.

In section 8.6 we compared the results obtained using the ewl library with formulas

from other publications, found several calculation errors in three independent publica-

tions and provided the correct formulas which are necessary for further processing.

In section 8.7 we described numerous attempts to �nd best response substitutions

in a symbolic form using Mathematica. Due to lack of support for certain types of

equations, the problem cannot be solved directly. Therefore, we also presented a few

approaches towards reducing the complexity of the input, however the task still could

not be solved in a reasonable time. In section 8.8 we evaluated 12 di�erent variants of

a numerical method of �nd best responses numerically.

In section 8.9, based on the known best response substitutions, using SymPy we

proved that a variant of Quantum Prisoner’s Dilemma does not have any Nash equilibria

in pure states. Then, in section 8.10 we symbolically showed that there exist exactly 4

best response cycles of length 4 in that variant of quantum game.

In section 8.11 and section 8.12 we performed analogous experiments using numerical

methods for variants of Quantum Prisoner’s Dilemma for which the best response

functions are unknown.

General conclusions drawn from the experiments will be presented in section 9.2.
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In this chapter, we will summarize the achieved goals in terms of research objectives,

formulate general conclusions, and suggest possible directions for further research.

9.1 Achieved goals

Realizing the complexity of the calculations related to the analysis of quantum games,

we began our work by designing and implementing a utility tool for performing

symbolic calculations of various properties of quantum games in the EWL protocol.

As a result, we created a Python library named ewl that combines quantum games

with symbolic calculations and interfaces with IBM Q systems, o�ering the following

functionalities:

• symbolic calculation of entanglement operator J , amplitudes of the state vector,

distribution of possible game outcomes and payo� functions in analytic form

for arbitrary initial state of the game and arbitrary number of players

• implementation of several popular quantum strategy parametrizations as well

as possibility to de�ne custom ones

• integration with IBM Q quantum simulators as well as real quantum devices

using Qiskit framework

Symbolic expressions calculated by the library were critical for further experiments.

Moreover, thanks to the library, it was possible to �nd minor inconsistencies in quite

relevant formulas in 3 independent publications as described in section 8.6.

Being able to execute arbitrary quantum games in the EWL protocol on IBM Q

simulators and devices, we successfully performed the following experiments as an

extension of Filip Galas’ master thesis [15], in particular we:

• executed two-player variant of Quantum Prisoner’s on statevector simulator,

QASM simulator as well as a real quantum device ibmq_quito and compared

the results with theoretical expectations

• repeated the experiment for a generalized case of the game with three players

and explained the in�uence of the underlying logical architecture of the quantum

device as well as the transpiling process

In the theoretical part of the thesis we focused on the derivation and description of

algorithms for searching for best responses and Nash equilibria. More speci�cally, we:
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• formulated the best response search task as an optimization problem

• proposed a numerical algorithm for �nding best response based on existing

optimization methods such as Powell or Nelder-Mead

• evaluated the performance of 12 di�erent variants of this numerical algorithm

• presented an alternative way of �nding the best response in the special case of

quantum games with full SU(2) parametrizations by solving a system of equa-

tions and explained why it cannot be applied for other classes of parametrizations

• described a symbolic approach towards �nding Nash equilibria in pure states

• reduced the task of �nding best response strategy from trigonometric function

maximization to solving a simple system of equations

Finally, we tested the algorithms on real-world examples of quantum games and:

• symbolically proved that Quantum Prisoner’s Dilemma withU(θ, φ, α) parametriza-

tion has no Nash equilibria in pure states

• symbolically found 4 best response cycles of length 4 in the aforementioned

variant of quantum game

• numerically found Nash equilibrium in Quantum Prisoner’s Dilemma with orig-

inal U(θ, φ) parametrization when starting from U(π, 0) strategy

• numerically found a whole family of best response cycles of length 2 in the

aforementioned game starting from a random strategy

• numerically found a best response cycle of length 4 in Quantum Prisoner’s

Dilemma with U(θ, φ, α) as well as Frąckiewicz-Pykacz parametrization
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9.2 Conclusions

The research conducted for this thesis leads to the following conclusions:

• Existing software for scienti�c computing may be successfully utilized for the

purpose of theoretical analysis of various properties of quantum games in the

EWL protocol. In particular, ewl library is a useful tool for deriving complex

formulas describing generalized variants of such quantum games, for instance

with more players.

• When implementing quantum games for IBM Q, Operators library can be

used to construct arbitrary quantum gates instead of manual decomposition of

entanglement operator.

• For three-player variant of Quantum Prisoner’s Dilemma, the results of the

experiment are far from ideal. Most likely, high decoherence is caused by the

length of the transpiled version of the quantum circuit in terms of number of

quantum layers due to the underlying logical architecture of quantum device.

• Knowing the best response function in analytic form we can �nd or prove the

lack existence of Nash equilibria in pure strategies by solving a �xed-point

equation symbolically.

• Due to lack of direct support for certain types of parametrized functions and

equations, Mathematica was not able to �nd best response function symbolically.

Despite numerous attempts of reducing the complexity of the input, the task

still could not be solved in a reasonable time, similarly using SymPy.

• Among 12 tested variants of the numerical algorithm of �nding best response,

Powell method with bounds disabled as zero as starting point achieved the

highest hit rate of 99.94%.

• When it comes to symbolic calculations, Mathematica is a clear winner in terms

of performance, because its kernel is implemented in C/C++, whereas SymPy is

written entirely in Python, which is an interpreted language. Moreover, SymPy

expressions are immutable and thus have a larger memory footprint. On the

other hand, SymPy is open-source, free of charge, and o�ers an elegant Python

interface and therefore can be easily and directly integrated with Qiskit, as

opposed to Mathematica which uses custom WolframScript language and has

closed-source codebase.

• Finding best responses and Nash equilibria using numerical methods is far more

e�cient than using symbolic algorithms, however involves numerical errors and

requires many iterations. On the other hand, the major advantage of symbolic

approach is the exactness of the solution and the possibility to draw conclusions

from its analytic form.
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9.3 Future works

Among many possible ideas for future research, the most desirable direction would be

de�nitely related to �nding best response function symbolically. Despite numerous

attempts involving simpli�cation of the input as well as reduction to other kinds of

problems, we were not able to obtain a generic formula for the best reply to arbitrary

strategy of the opponent using Mathematica or SymPy. If we knew the best response

function in analytic form, we could �nd whole families of Nash equilibria in sym-

bolic form for arbitrary quantum game in the EWL scheme, which is ine�ective and

challenging with the numerical approach.

Another possible improvement is related to the numerical algorithms of �nding best

response, which currently are limited to �nding only one global maximum, while in

general there may exist more such points. Instead, methods such as SHGO [9] may be

utilized to �nd multiple global maxima to avoid the possibility of missing some best

responses or equilibria strategy pro�les.

Finally, the ewl library, which was developed as part of the work, greatly facilitates

the analysis more general variants of quantum games in the EWL protocol, for instance

involving symbolic parameters or simply with more players, and thus provides new

opportunities for quantum game theory researchers. A particularly interesting topic

seems to be the study of in�uence of the underlying quantum computer architecture,

especially connections between qubits, on the noise levels in quantum games with

three or more players.
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Mathematica provides a number of functions speci�cally for symbolic global opti-

mization, including Maximize, ArgMax and MaxValue. A simple example of using

Mathematica to �nd global maximum of a real-valued scalar function in a symbolic

form is shown in Fig. A.1.

In[1]:= Maximize[a * x^2 + b * x + c, {x}, Reals]

Out[1]= 

c (b  0 && a  0) || (b  0 && a < 0)
-b2+4 a c

4 a
(b > 0 && a < 0) || (b < 0 && a < 0)

∞ True

,

x 

-
b
2 a

(b > 0 && a < 0) || (b < 0 && a < 0)

0 (b  0 && a  0) || (b  0 && a < 0)
Indeterminate True



Figure A.1: Symbolic global maximization of function f(x) = ax2 + bx+ c of a single

variable x ∈ R with three real-valued parameters a, b, c in Mathematica

The �rst approach towards �nding the best response function in symbolic form using

Mathematica was simply to maximize Bob’s expected payo� function from Eq. 8.16

for variables θB, φB, αB with respect to parameters θA, φA, αA using built-in Maximize
function. The expected result was to obtain the best response substitutions presented

in Eq. 8.20 or Eq. 8.21. However, as presented in Fig. A.2, the attempt was unsuccessful.

In[1]:= Maximize[

3 * (Cos[θA / 2] * Cos[θB / 2] * Cos[ϕA + ϕB] - Sin[θA / 2] * Sin[θB / 2] * Sin[αA + αB])^2

+ 5 * (Sin[θA / 2] * Cos[θB / 2] * Cos[αA + ϕB] + Cos[θA / 2] * Sin[θB / 2] * Sin[ϕA + αB])^2

+ (Cos[θA / 2] * Cos[θB / 2] * Sin[ϕA + ϕB] - Sin[θA / 2] * Sin[θB / 2] * Cos[αA + αB])^2,

{θB, αB, ϕB}, Reals]

Out[1]= Maximize3 Cos
θA

2
 Cos

θB

2
 Cos[ϕA + ϕB] - Sin[αA + αB] Sin

θA

2
 Sin

θB

2


2

+

5 Cos
θB

2
 Cos[αA + ϕB] Sin

θA

2
 + Cos

θA

2
 Sin

θB

2
 Sin[αB + ϕA]

2

+

-Cos[αA + αB] Sin
θA

2
 Sin

θB

2
 + Cos

θA

2
 Cos

θB

2
 Sin[ϕA + ϕB]

2

, {θB, αB, ϕB}, 

Figure A.2: An attempt to symbolically �nd a global maximum of Bob’s expected payo�

function using Maximize function in Mathematica
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In order to simplify the input as well as for readability purposes, let us introduce

new symbols, denoting the variables with lower-case letters and the parameters with

capital letters in the following way:

A := θA

2

B := φA

C := αA

x := θB

2

y := φB

z := αB.

(A.1)

As shown in Fig. A.3, this subtle simpli�cation of the input to eliminate division by 2

inside trigonometric functions does not introduce any improvements.

In[1]:= Maximize[3 * (Cos[A] * Cos[x] * Cos[B + y] - Sin[A] * Sin[x] * Sin[C + z])^2

+ 5 * (Sin[A] * Cos[x] * Cos[C + y] + Cos[A] * Sin[x] * Sin[B + z])^2

+ (Cos[A] * Cos[x] * Sin[B + y] - Sin[A] * Sin[x] * Cos[C + z])^2,

{x, y, z}, Reals]

Out[1]= Maximize(-Cos[C + z] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + y])2 +

5 (Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z])2 +

3 (Cos[A] Cos[x] Cos[B + y] - Sin[A] Sin[x] Sin[C + z])2, {x, y, z}, 

Figure A.3: Another attempt to symbolically �nd a global maximum of Bob’s expected

payo� function using Maximize function in Mathematica

As it turned out, none of the previously mentioned functions supports symbolic

parameters along with trigonometric expressions, although they are supported sep-

arately, as shown in Fig. A.4. When Mathematica kernel cannot �nd the answer, it

simply returns the input.

In[1]:= Maximize[-x^2 + A, x]

Out[1]= {A, {x  0}}

In[2]:= Maximize[Cos[x / 2], x]

Out[2]= {1, {x  0}}

In[3]:= Maximize[Cos[x + A], x]

Out[3]= Maximize[Cos[A + x], x]

Figure A.4: An attempt to symbolically �nd global maximum of a simple parametrized

trigonometric expression using Maximize in Mathematica

Since Mathematica cannot solve the problem directly, we need to research other

approaches. In the documentation we can �nd Solve1
function for solving systems of

equations or inequalities which also supports symbolic parameters, as shown on the

example of quadratic equation in Fig. A.5.

1https://reference.wolfram.com/language/ref/Solve.html
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In[1]:= Solve[a * x^2 + b * x + c  0, {x}, Reals]

x  -
b

2 a
-
1

2

b2 - 4 a c

a2
if a <

b2

4 c
&& c > 0 || c < 0 && a >

b2

4 c
,

x  -
b

2 a
+
1

2

b2 - 4 a c

a2
if a <

b2

4 c
&& c > 0 || c < 0 && a >

b2

4 c


Figure A.5: Symbolic solution of equation ax2 + bx + c = 0 with single variable

x ∈ R and three real-valued parameters a, b, c using Solve function in

Mathematica

Because this variant of Quantum Prisoner’s Dilemma uses full SU(2) parametrization

with 3 degrees of freedom that fully covers the set of unitary strategies, there always

exists a response with expected payo� equal to 5 which is the maximum value from

the payo� matrix. Therefore, for this speci�c variant of the quantum game, instead of

maximizing the expected payo� function, we can solve the following equation:

$B(θB, φB, αB) = 5. (A.2)

Unfortunately, as presented in Fig. A.6, this equation cannot be solved in real numbers

with the methods available to Solve function from Mathematica.

In[1]:= Solve[3 * (Cos[A] * Cos[x] * Cos[B + y] - Sin[A] * Sin[x] * Sin[C + z])^2

+ 5 * (Sin[A] * Cos[x] * Cos[C + y] + Cos[A] * Sin[x] * Sin[B + z])^2

+ (Cos[A] * Cos[x] * Sin[B + y] - Sin[A] * Sin[x] * Cos[C + z])^2  5,

{x, y, z}, Reals]

Solve : This system cannot be solved with the methods available to Solve.

Out[1]= Solve(-Cos[C + z] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + y])2 +

5 (Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z])2 +

3 (Cos[A] Cos[x] Cos[B + y] - Sin[A] Sin[x] Sin[C + z])2  5, {x, y, z}, 

Figure A.6: An attempt to symbolically solve equation from Eq. A.2 using Solve
function in Mathematica

Another approach would be to �nd all local optima of Bob’s expected payo� function

by solving the following system of equations involving partial derivatives:

∂$B

∂θB

(θB, φB, αB) = 0

∂$B

∂φB

(θB, φB, αB) = 0

∂$B

∂αB

(θB, φB, αB) = 0

(A.3)

or, alternatively, ∇$B = 0, and then �nd the global maximum among the results.
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As shown in Fig. A.7, Mathematica is able to symbolically calculate partial deriva-

tives, however it still fails to �nd a solution the system of equations which would lead

to Bob’s best response substitution. Although the right-hand sides are now equal to

zero, it is still non-trivial to solve the system of equations as each left-hand side is a

sum of multiple components composed of products of trigonometric expressions.

In[1]:= f = 3 * (Cos[A] * Cos[x] * Cos[B + y] - Sin[A] * Sin[x] * Sin[C + z])^2 +

5 * (Sin[A] * Cos[x] * Cos[C + y] + Cos[A] * Sin[x] * Sin[B + z])^2 +

(Cos[A] * Cos[x] * Sin[B + y] - Sin[A] * Sin[x] * Cos[C + z])^2

Out[1]= (-Cos[C + z] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + y])2 +

5 (Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z])2 +

3 (Cos[A] Cos[x] Cos[B + y] - Sin[A] Sin[x] Sin[C + z])2

In[2]:= D[f, x]

Out[2]= 2 (-Cos[C + z] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + y])

(-Cos[x] Cos[C + z] Sin[A] - Cos[A] Sin[x] Sin[B + y]) +

10 (-Cos[C + y] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + z])

(Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z]) +

6 (-Cos[A] Cos[B + y] Sin[x] - Cos[x] Sin[A] Sin[C + z])

(Cos[A] Cos[x] Cos[B + y] - Sin[A] Sin[x] Sin[C + z])

In[3]:= Solve[D[f, x]  0 && D[f, y]  0 && D[f, z]  0, {x, y, z}, Reals]

Solve : This system cannot be solved with the methods available to Solve.

Out[3]= Solve[2 (-Cos[C + z] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + y])

(-Cos[x] Cos[C + z] Sin[A] - Cos[A] Sin[x] Sin[B + y]) +

10 (-Cos[C + y] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + z])

(Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z]) +

6 (-Cos[A] Cos[B + y] Sin[x] - Cos[x] Sin[A] Sin[C + z])

(Cos[A] Cos[x] Cos[B + y] - Sin[A] Sin[x] Sin[C + z])  0 &&

2 Cos[A] Cos[x] Cos[B + y] (-Cos[C + z] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + y]) -

10 Cos[x] Sin[A] Sin[C + y] (Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z]) -

6 Cos[A] Cos[x] Sin[B + y]

(Cos[A] Cos[x] Cos[B + y] - Sin[A] Sin[x] Sin[C + z])  0 &&

10 Cos[A] Cos[B + z] Sin[x] (Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z]) +

2 Sin[A] Sin[x] (-Cos[C + z] Sin[A] Sin[x] + Cos[A] Cos[x] Sin[B + y]) Sin[C + z] -

6 Cos[C + z] Sin[A] Sin[x]

(Cos[A] Cos[x] Cos[B + y] - Sin[A] Sin[x] Sin[C + z])  0, {x, y, z}, ]

Figure A.7: An attempt to symbolically solve system of equations from Eq. A.3 using

Solve function in Mathematica

Instead of trying to maximize Bob’s expected payo� function, let us focus on the

observational basis probabilities. Substitutions Eq. 8.20 and Eq. 8.21 for already known

Bob’s best responses were �tted manually so that p01 = 1 and p00 = p10 = p11 = 0 to

maximize the probability of the state with the highest payo�, thus resulting in the best

possible response. Note that this method is only applicable to quantum games with

full SU(2) parametrization that fully covers the set of all unitary strategies.
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Two attempts to solve equation p01 = 1 and system of equations p00 = p10 = p11 =
0 are shown in Fig. A.8 and Fig. A.9, respectively. Similarly to all previous attempts,

those tasks cannot be solved with the methods available to Solve function.

In[1]:= Solve[(Sin[A] * Cos[x] * Cos[C + y] + Cos[A] * Sin[x] * Sin[B + z])^2  1,

{x, y, z}, Reals]

Solve : This system cannot be solved with the methods available to Solve.

Out[1]= Solve(Cos[x] Cos[C + y] Sin[A] + Cos[A] Sin[x] Sin[B + z])2  1, {x, y, z}, 

Figure A.8: An attempt to symbolically solve equation p01 = 1 using Solve function

in Mathematica

In[1]:= Solve[
(Sin[A] * Sin[x] * Sin[C + z] - Cos[A] * Cos[x] * Cos[B + y])^2  0
&& (Sin[A] * Sin[C + y] * Cos[x] + Sin[x] * Cos[A] * Cos[B + z])^2  0
&& (Sin[A] * Sin[x] * Cos[C + z] - Sin[B + y] * Cos[A] * Cos[x])^2  0,

{x, y, z}, Reals]

Solve : This system cannot be solved with the methods available to Solve.

Out[1]= Solve(-Cos[A] Cos[x] Cos[B + y] + Sin[A] Sin[x] Sin[C + z])2  0 &&

(Cos[A] Cos[B + z] Sin[x] + Cos[x] Sin[A] Sin[C + y])2  0 &&

(Cos[C + z] Sin[A] Sin[x] - Cos[A] Cos[x] Sin[B + y])2  0, {x, y, z}, 

Figure A.9: An attempt to symbolically solve system of equations p00 = p10 = p11 = 0
using Solve function in Mathematica

It is worth mentioning that in the latter case, instead of using observational ba-

sis probabilities which introduce squares of trigonometric expressions, we can use

statevector amplitudes directly, as shown in Fig. A.10.

In[1]:= Solve[
Sin[A] * Sin[x] * Sin[C + z] - Cos[A] * Cos[x] * Cos[B + y]  0
&& Sin[A] * Sin[C + y] * Cos[x] + Sin[x] * Cos[A] * Cos[B + z]  0
&& Sin[A] * Sin[x] * Cos[C + z] - Sin[B + y] * Cos[A] * Cos[x]  0, {x, y, z}, Reals]

Solve : This system cannot be solved with the methods available to Solve.

Out[1]= Solve[-Cos[A] Cos[x] Cos[B + y] + Sin[A] Sin[x] Sin[C + z]  0 &&
Cos[A] Cos[B + z] Sin[x] + Cos[x] Sin[A] Sin[C + y]  0 &&
Cos[C + z] Sin[A] Sin[x] - Cos[A] Cos[x] Sin[B + y]  0, {x, y, z}, ]

Figure A.10: An attempt to symbolically solve system of equationsψ00 = ψ10 = ψ11 =
0 using Solve function in Mathematica

Apparently, Solve function does not support such complex equations or systems

of equations consisting of multiple trigonometric expressions. Therefore, we need

to somehow simplify the input in order to avoid trigonometric functions if possible.
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A Finding best response function symbolically using Mathematica

Among many ideas how to convert the input, the most promising approach so far is to

introduce two new symbols, x and y, for each variable or parameter θ, and substitute

x = sin θ

y = cos θ.
(A.4)

In order to capture the relationship between x and y, we can utilize Pythagorean

trigonometric identity sin2 θ + cos2 θ = 1 as the following constraint:

x2 + y2 = 1. (A.5)

Let us apply the following substitutions, using xi for new variables and ai for newly

introduced parameters:

a1 := sin θA

2

a3 := sinφA

a5 := sinαA

a2 := cos θB

2

a4 := cosφB

a6 := cosαB

x1 := sin θA

2

x3 := sinφA

x5 := sinαA

x2 := cos θB

2

x4 := cosφB

x6 := cosαB

(A.6)

along with the following contraints:

a1
2 + a2

2 = 1

a3
2 + a4

2 = 1

a5
2 + a6

2 = 1

x1
2 + x2

2 = 1

x3
2 + x4

2 = 1

x5
2 + x6

2 = 1.

(A.7)

After applying this reduction to system of equations p00 = p10 = p11 = 0 we obtain:−a1a5x1x6 − a1a6x1x5 − a2a3x2x3 + a2a4x2x4

a1a5x2x4 + a1a6x2x3 − a2a3x1x5 + a2a4x1x6

a1a5x1x5 − a1a6x1x6 + a2a3x2x4 + a2a4x2x3

 =

0

0

0

 . (A.8)

Surprisingly, this time Mathematica does not raise an error but unfortunately still

fails to solve this system of equations in a reasonable time of less than 12 hours, as

shown in Fig. A.11.

In[1]:= Solve[
-a1 * a5 * x1 * x6 - a1 * a6 * x1 * x5 - a2 * a3 * x2 * x3 + a2 * a4 * x2 * x4  0 &&
a1 * a5 * x2 * x4 + a1 * a6 * x2 * x3 - a2 * a3 * x1 * x5 + a2 * a4 * x1 * x6  0 &&
a1 * a5 * x1 * x5 - a1 * a6 * x1 * x6 + a2 * a3 * x2 * x4 + a2 * a4 * x2 * x3  0 &&
a1^2 + a2^2  1 && a3^2 + a4^2  1 && a5^2 + a6^2  1 &&
x1^2 + x2^2  1 && x3^2 + x4^2  1 && x5^2 + x6^2  1,

{x1, x2, x3, x4, x5, x6}, Reals]

Figure A.11: An un�nished attempt to symbolically solve system of equations ψ00 =
ψ10 = ψ11 = 0 using Solve function in Mathematica
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Based on the results of the performed experiments, an abstract has been prepared

and submitted for 14th International Conference on Parallel Processing and Applied

Mathematics
1

in cooperation with dr inż. Katarzyna Rycerz and inż. Piotr Kotara.
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1 Introduction

In this paper, we present the library supporting analysis of Eisert–Wilkens–
Lewenstein (EWL) scheme [1] proposed as a quantum extension for 2× 2 games
on the example of Prisoners Dilemma. The proposed solution is based on modern
approach combining symbolic and numerical calculations with the actual access
to quantum simulators and real devices provided by IBM-Q. In particular, the
library provides high-level functions for searching Nash equilibria in pure strate-
gies as well as finding the best response cycles which lead to the existence of
Nash equilibria in mixed states.

2 EWL library

EWL abstraction. EWL scheme is presented in the Fig. 1. Each player (rep-
resented by one qubit) applies his strategy as a unitary matrix UA or UB . The
J gate is used to introduce quantum correlations between qubits. The payoff
function is calculated as an expectation value of the measurement output after
applying J† gate.

|0⟩
J

UA

J†

|0⟩ UB

Fig. 1. Quantum circuit for EWL protocol

The library provides a layer of abstraction for generalized EWL circuits for
arbitrary number of players with customizable base strategies representing the
possible moves from the classical counterpart of the game. It automatically de-
rives the corresponding entanglement operator J and its Hermitian conjugate,
J† from the given quantum state initial to users moves. The library comes with
several built-in parametrizations [1,2], also allowing for using custom ones.

B Abstract for PPAM 2022
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Symbolic calculations are provided by integration with SymPy package3. This
allows for direct usage of symbolic expressions as an interface and also for sim-
plification of statevector amplitudes and payoff functions. It also allows for easy
switching from symbolic to numerical approach if necessary.
Qiskit4 integration allows for verification of theoretical results on numerous
available real IBM-Q quantum devices or simulators including noise models.
Algorithms. The library includes algorithms calculating the unitary matrix J
of the EWL scheme entanglement operator, symbolic and numerical approach
to finding best responses in parametrized 2 × 2 quantum games and, based on
that, finding pure Nash equilibria or cycles of best responses.

3 Experiment Results

The example comparison of numerical search for the best response is shown in
Tab. 1. Success rate was calculated with 0.01% tolerance. More examples of
library usage can be found on GitHub5.

Table 1. Comparison of numerical search for best response

Optimization method Start point Bounds Success rate

Powell zero True 86.94%
Powell zero False 99.94%
Powell random True 76.34%
Powell random False 99.23%
Powell Alice True 79.14%
Powell Alice False 99.35%

Nelder-Mead zero True 45.89%
Nelder-Mead zero False 96.60%
Nelder-Mead random True 41.47%
Nelder-Mead random False 99.52%
Nelder-Mead Alice True 43.55%
Nelder-Mead Alice False 99.01%

References

1. Quantum games and quantum strategies 83, http://dx.doi.org/10.1103/

PhysRevLett.83.3077

2. Frackiewicz, P., Pykacz, J.: Quantum games with strategies induced by basis change
rules. International Journal of Theoretical Physics 56(12), 4017–4028 (2017)

3 https://www.sympy.org/
4 http://qiskit.org
5 https://github.com/tomekzaw/ewl/blob/master/examples/example.ipynb

85





List of Figures

2.1 The Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Quantum circuit for quantum teleportation . . . . . . . . . . . . . . . 11

4.1 Quantum circuit of a quantum game in the EWL protocol . . . . . . . 20

8.1 Visualization of the quantum circuit of a two-player quantum game in

the EWL protocol created using Qiskit . . . . . . . . . . . . . . . . . 42

8.2 Visualization of the quantum circuit of a two-player quantum game in

the EWL protocol after transpilation for ibmq_quito backend . . . . 42

8.3 Comparision of the results of running the Quantum Prisoner’s Dilemma

on QASM simulator and ibmq_quito backend . . . . . . . . . . . . . 44

8.4 Alice’s expected payo� function plot in Quantum Prisoner’s Dilemma

with respect to strategy parameters s1, s2 (compare to Fig. 5.1 in [15]) 46

8.5 Visualization of the quantum circuit of a three-player quantum game

in the EWL protocol created using Qiskit . . . . . . . . . . . . . . . . 48

8.6 Comparision of the results of running the three-player quantum game

on QASM simulator and ibmq_quito backend . . . . . . . . . . . . . 49

8.7 Visualization of the quantum circuit of a three-player quantum game

in the EWL protocol after transpilation for ibmq_quito backend . . . 50

8.8 Topology diagrams of three 5-qubit IBM Q systems (ibmq_yorktown,

ibmq_athens and ibmq_quito) with non-isomorphic qubit layouts . 51

A.1 Symbolic global maximization of function f(x) = ax2 + bx + c of

a single variable x ∈ R with three real-valued parameters a, b, c in

Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2 An attempt to symbolically �nd a global maximum of Bob’s expected

payo� function using Maximize function in Mathematica . . . . . . . 77

A.3 Another attempt to symbolically �nd a global maximum of Bob’s ex-

pected payo� function using Maximize function in Mathematica . . . 78

A.4 An attempt to symbolically �nd global maximum of a simple parametrized

trigonometric expression using Maximize in Mathematica . . . . . . 78

A.5 Symbolic solution of equation ax2 + bx+ c = 0 with single variable

x ∈ R and three real-valued parameters a, b, c using Solve function

in Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.6 An attempt to symbolically solve equation from Eq. A.2 using Solve
function in Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.7 An attempt to symbolically solve system of equations from Eq. A.3

using Solve function in Mathematica . . . . . . . . . . . . . . . . . . 80

87



List of Figures

A.8 An attempt to symbolically solve equation p01 = 1 using Solve func-

tion in Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.9 An attempt to symbolically solve system of equations p00 = p10 =
p11 = 0 using Solve function in Mathematica . . . . . . . . . . . . . 81

A.10 An attempt to symbolically solve system of equations ψ00 = ψ10 =
ψ11 = 0 using Solve function in Mathematica . . . . . . . . . . . . . 81

A.11 An un�nished attempt to symbolically solve system of equationsψ00 =
ψ10 = ψ11 = 0 using Solve function in Mathematica . . . . . . . . . 82

88



List of Tables

2.1 Comparision of parameters of IBM Q systems (as of June 18, 2022) . . 12

8.1 Probabilities and distribution of results of running the Quantum Pris-

oner’s Dilemma on two di�erent quantum simulators and on a real

quantum device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Probabilities and distribution of results of running the three-player

quantum game in the EWL protocol on two di�erent quantum simula-

tors and on a real quantum device . . . . . . . . . . . . . . . . . . . . 48

8.3 Consistency of formulas calculated using ewl library with results from

publications for di�erent variants of Quantum Prisoner’s Dilemma . 52

8.4 Comparision of success rates of 12 di�erent variants of a numerical

method of searching for best response in Quantum Prisoner’s Dilemma

with U(θ, φ, α) parametrization . . . . . . . . . . . . . . . . . . . . . 62

8.5 A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with original EWL parametrization starting from strategy

U(0, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.6 A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with original EWL parametrization starting from random

strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.7 Final values of parameters φA and φB of best response cycles of length

2 in Quantum Prisoner’s Dilemma with original EWL parametrization

starting with random initial strategy for 10 sample runs of the experiment 68

8.8 A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with U(θ, φ, α) parametrization starting from random strategy 69

8.9 A sequence of best responses found numerically in Quantum Prisoner’s

Dilemma with Frąckiewicz-Pykacz parametrization starting from ran-

dom strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

89





List of Algorithms

1 Finding best response function symbolically . . . . . . . . . . . . . . . 33

2 Finding best response numerically . . . . . . . . . . . . . . . . . . . . 34

3 Finding Nash equilibria symbolically . . . . . . . . . . . . . . . . . . . 37

4 Finding Nash equilibria numerically . . . . . . . . . . . . . . . . . . . 37

5 Finding best response cycles symbolically . . . . . . . . . . . . . . . . 38

6 Finding best response cycle numerically . . . . . . . . . . . . . . . . . 39

91





List of Symbols

General

R real numbers

C complex numbers

Z set of integers

Zn group of integers modulo n, i.e. {0, 1, . . . , n}
i imaginary unit, i2 = −1

z∗ complex conjugate of z

|z| absolute value of z

∆x di�erence of two values

x ≈ y x is approximately equal to y

exp(x), ex exponential function

f : A→ B function f mapping elements from A to B

argmax
x∈X

f(x) arguments of the maxima

Linear algebra

v row vector

v> column vector

aij element of matrix in row i and column j

Aij element of matrix A in row i and column j

Am×n = [aij ] matrix of shape m× n composed of elements aij

Cm×n set of matrices of complex numbers of shape m× n
A+B sum of two matrices

AB product of two matrices

A∗ complex conjugate of matrix

A> matrix transposition of matrix

A† Hermitian conjugate of matrix

exp(A), eA matrix exponential

93



LIST OF ALGORITHMS

Set theory

∀ universal quanti�er

∃ existential quanti�er

x ∈ X x is an element of set X , x belongs to set X⋃n
i=1Xi set sum of sets X1, X2, . . . , Xn

A \B set di�erence

A×B Cartesian product of sets A and B

An n-th Cartesian product of set A

×n
i=1Ai Cartesian product of sets Ai

{ai}ni=1 sequence of (a1, a2, . . . , an)

{1, 2, . . . , n} set of consecutive integers starting from 1 to n

Quantum theory

|ψ〉 ket, column vector

〈ψ| bra, row vector

〈φ|ψ〉 bra-ket, inner product, scalar product or dot product

|φ〉 〈ψ| ket-bra, outer product

A⊗B tensor (Kronecker) product of two matrices⊗n
i=1Ai tensor product of matrices Ai

|ψ〉⊗n tensor product of |ψ〉 with itself n times∑n
i=1 |ψi〉 superposition of quantum states |ψi〉

σx, σy, σz Pauli matrices X,Y, Z

ρ density matrix

Game theory

$X payo� function of player X

brX best response function of player X

θX strategy parameter of player X

A→ B strategy B is a best response for A

u ≡ v equivalence of two vectors of strategy parameters

s−i sequence s without i-th element, i.e. {sj}ni=1,i 6=j

94



Bibliography

[1] MD SAJID ANIS et al. Qiskit: An Open-source Framework for Quantum Computing.

2021. doi: 10.5281/zenodo.2573505.

[2] Simon C Benjamin and Patrick M Hayden. “Comment on “Quantum Games

and Quantum Strategies””. In: Physical Review Letters 87.6 (2001), p. 069801. doi:

10.1103/PhysRevLett.87.069801.

[3] Simon C Benjamin and Patrick M Hayden. “Multiplayer quantum games”. In:

Physical Review A 64.3 (2001), p. 030301. doi: 10.1103/PhysRevA.64.030301.

[4] John Bostanci and John Watrous. “Quantum game theory and the complexity

of approximating quantum Nash equilibria”. In: arXiv preprint arXiv:2102.00512
(2021). doi: arXiv:2102.00512.

[5] Bryan Randolph Bruns. “Names for games: locating 2 × 2 games”. In: Games 6.4

(2015), pp. 495–520. doi: 10.3390/g6040495.

[6] Kay-Yut Chen and Tad Hogg. “How well do people play a quantum prisoner’s

dilemma?” In: Quantum Information Processing 5.1 (2006), pp. 43–67. doi: 10.
1007/s11128-006-0012-7.

[7] Jens Eisert and Martin Wilkens. “Quantum games”. In: Journal of Modern Optics
47.14-15 (2000), pp. 2543–2556. doi: 10.1080/09500340008232180.

[8] Jens Eisert, Martin Wilkens, and Maciej Lewenstein. “Quantum games and

quantum strategies”. In: Physical Review Letters 83.15 (1999), p. 3077. doi: 10.
1103/PhysRevLett.83.3077.

[9] Stefan C Endres, Carl Sandrock, and Walter W Focke. “A simplicial homology

algorithm for Lipschitz optimisation”. In: Journal of Global Optimization 72.2

(2018), pp. 181–217. doi: 10.1007/s10898-018-0645-y.

[10] Adrian P Flitney and Lloyd CL Hollenberg. “Nash equilibria in quantum games

with generalized two-parameter strategies”. In: Physics Letters A 363.5-6 (2007),

pp. 381–388. doi: 10.1016/j.physleta.2006.11.044.

[11] Piotr Frackiewicz. “Application of the EWL protocol to decision problems with

imperfect recall”. In: arXiv preprint arXiv:1012.0806 (2010). doi: 10.48550/
arXiv.1012.0806.

[12] Piotr Frąckiewicz and Jarosław Pykacz. “Quantum games with strategies induced

by basis change rules”. In: International Journal of Theoretical Physics 56.12 (2017),

pp. 4017–4028. doi: 10.1007/s10773-017-3423-6.

95

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1103/PhysRevLett.87.069801
https://doi.org/10.1103/PhysRevA.64.030301
https://doi.org/arXiv:2102.00512
https://doi.org/10.3390/g6040495
https://doi.org/10.1007/s11128-006-0012-7
https://doi.org/10.1007/s11128-006-0012-7
https://doi.org/10.1080/09500340008232180
https://doi.org/10.1103/PhysRevLett.83.3077
https://doi.org/10.1103/PhysRevLett.83.3077
https://doi.org/10.1007/s10898-018-0645-y
https://doi.org/10.1016/j.physleta.2006.11.044
https://doi.org/10.48550/arXiv.1012.0806
https://doi.org/10.48550/arXiv.1012.0806
https://doi.org/10.1007/s10773-017-3423-6


Bibliography

[13] Piotr Frąckiewicz, Katarzyna Rycerz, and Marek Szopa. “Quantum absentminded

driver problem revisited”. In: Quantum Information Processing 21.1 (2022), pp. 1–

21. doi: 10.1007/s11128-021-03377-6.

[14] Franz G Fuchs, Vemund Falch, and Christian Johnsen. “Quantum Poker—a game

for quantum computers suitable for benchmarking error mitigation techniques

on NISQ devices”. In: The European Physical Journal Plus 135.4 (2020), p. 353.

doi: 10.1140/epjp/s13360-020-00360-5.

[15] Filip Galas. “Quantum games on IBM-Q”. In: (2019).

[16] Allan Go�. “Quantum tic-tac-toe: A teaching metaphor for superposition in

quantum mechanics”. In: American Journal of Physics 74.11 (2006), pp. 962–973.

doi: 10.1119/1.2213635.

[17] Faisal Shah Khan. “Calculating Nash equilibrium and Nash bargaining solution

on quantum annealers”. In: arXiv preprint arXiv:2112.12583 (2021). doi: arXiv:
2112.12583.

[18] Faisal Shah Khan et al. “Quantum games: a review of the history, current state,

and interpretation”. In: Quantum Information Processing 17.11 (2018), pp. 1–42.

doi: 10.1007/s11128-018-2082-8.

[19] Vassili Kolokoltsov. “Quantum games: a survey for mathematicians”. In: arXiv
preprint arXiv:1909.04466 (2019). doi: arXiv:1909.04466.

[20] Piotr Kotara. “Analiza użycia schematu EWL na urządzeniach kwantowych typu

NISQ”. In: (2022).

[21] Holger Krekel et al. pytest. 2004.

[22] Steven Landsburg. “Nash equilibria in quantum games”. In: Proceedings of the
American Mathematical Society 139.12 (2011), pp. 4423–4434. doi: arXiv:1110.
1351.

[23] Carlton E Lemke and Joseph T Howson Jr. “Equilibrium points of bimatrix

games”. In: Journal of the Society for industrial and Applied Mathematics 12.2

(1964), pp. 413–423. doi: 10.1137/0112033.

[24] Richard D McKelvey, Andrew M McLennan, and Theodore L Turocy. “Gambit:

Software tools for game theory”. In: (2006).

[25] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Computer
Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103.

[26] David A Meyer. “Quantum strategies”. In: Physical Review Letters 82.5 (1999),

p. 1052. doi: 10.1103/PhysRevLett.82.1052.

[27] Yushi Mura and Hiroki Wada. “Quantization of blackjack: Quantum basic strat-

egy and advantage”. In: Progress of Theoretical and Experimental Physics 2021.10

(2021), 103A02. doi: 10.1093/ptep/ptab125.

[28] John A Nelder and Roger Mead. “A simplex method for function minimization”.

In: The computer journal 7.4 (1965), pp. 308–313. doi: 10.1093/comjnl/7.4.
308.

96

https://doi.org/10.1007/s11128-021-03377-6
https://doi.org/10.1140/epjp/s13360-020-00360-5
https://doi.org/10.1119/1.2213635
https://doi.org/arXiv:2112.12583
https://doi.org/arXiv:2112.12583
https://doi.org/10.1007/s11128-018-2082-8
https://doi.org/arXiv:1909.04466
https://doi.org/arXiv:1110.1351
https://doi.org/arXiv:1110.1351
https://doi.org/10.1137/0112033
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1103/PhysRevLett.82.1052
https://doi.org/10.1093/ptep/ptab125
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308


Bibliography

[29] Michael A Nielsen and Isaac L Chuang. “Quantum computation and quantum in-

formation”. In: Phys. Today 54.2 (2001), p. 60. doi: 10.1017/CBO9780511976667.

[30] Tadeusz Płatkowski. “Wstęp do teorii gier”. In: Uniwersytet Warszawski (2012).

[31] Michael JD Powell. “An e�cient method for �nding the minimum of a function

of several variables without calculating derivatives”. In: The computer journal
7.2 (1964), pp. 155–162. doi: 10.1093/comjnl/7.2.155.

[32] David Robinson and David Goforth. The topology of the 2x2 games: a new periodic
table. Vol. 3. Psychology Press, 2005. doi: 10.4324/9780203340271.

[33] Katarzyna Rycerz and Piotr Frąckiewicz. “A quantum approach to twice-repeated

2 × 2 game”. In: Quantum Information Processing 19.8 (2020), pp. 1–20. doi:

10.1007/s11128-020-02743-0.

[34] Azharuddin Shaik and Aden Ahmed. “Best Response Analysis in Two Person

Quantum Games”. In: Advances in Pure Mathematics 2014 (2014). doi: 10.4236/
apm.2014.47045.

[35] Marek Szopa. “Dlaczego w dylemat więźnia warto grać kwantowo?” In: Studia
Ekonomiczne 178178 (2014), pp. 174–189. issn: 2083-8611.

[36] Marek Szopa. “E�ciency of classical and quantum games equilibria”. In: Entropy
23.5 (2021), p. 506. doi: 10.3390/e23050506.

[37] The Nashpy project developers. Nashpy: v0.0.34. doi: 10.5281/zenodo.6620830.

[38] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scienti�c Comput-

ing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

[39] Tomasz Zawadzki and Piotr Kotara. A Python tool for symbolic analysis of quan-
tum games in EWL protocol with IBM Q integration. https://github.com/
tomekzaw/ewl.

97

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.4324/9780203340271
https://doi.org/10.1007/s11128-020-02743-0
https://doi.org/10.4236/apm.2014.47045
https://doi.org/10.4236/apm.2014.47045
https://doi.org/10.3390/e23050506
https://doi.org/10.5281/zenodo.6620830
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/tomekzaw/ewl
https://github.com/tomekzaw/ewl

	Introduction
	Motivation
	Research questions
	Research hypothesis
	Research objectives
	Related works
	Structure of the work

	Quantum computing
	Introduction
	Dirac notation
	Tensor product
	Quantum states
	Quantum entanglement
	Quantum operators
	Measurement
	Quantum circuits
	Quantum gate devices
	Summary

	Classical game theory
	Introduction
	Definitions
	Classification
	Nash equilibrium
	Prisoner's Dilemma
	Summary

	Quantum games
	Introduction
	Characteristics
	Eisert-Wilkens-Lewenstein protocol
	Parametrizations
	Summary

	Quantum Prisoner's Dilemma
	Introduction
	Variant with original EWL parametrization
	Variant with U(, , ) parametrization
	Variant with U(, , ) parametrization
	Variant with Frąckiewicz-Pykacz parametrization
	Summary

	EWL library
	Motivation
	Functionalities
	Symbolic calculations and parameters
	Qiskit integration
	Testing
	Usage
	Author contribution
	Summary

	Algorithms
	Finding best responses
	Nash equilibria as fixed points
	Mixed strategies based on best response cycles
	Analysis of the complexity
	Summary

	Experiments
	Environment
	Running two-player variant of Quantum Prisoner's Dilemma on IBM Q
	Visualization of payoff function
	Analysis of the case with three players
	Running three-player variant of Quantum Prisoner's Dilemma on IBM Q
	Verification of published formulas
	Finding best response symbolically
	Finding best response numerically
	Finding Nash equilibria symbolically
	Finding best response cycles symbolically
	Finding Nash equilibria numerically
	Finding best response cycles numerically
	Summary

	Summary
	Achieved goals
	Conclusions
	Future works

	Finding best response function symbolically using Mathematica
	Abstract for PPAM 2022
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	Bibliography

