ll

AGH

AGH UNIVERSITY OF SCIENCE
AND TECHNOLOGY IN KRAKOW, POLAND

FACULTY OF COMPUTER SCIENCE,
ELECTRONICS AND TELECOMMUNICATIONS
Department of Computer Science

Automatic Script Generation
Based on User-System
Interactions

Maciej Golik

MASTER OF SCIENCE THESIS
IN COMPUTER SCIENCE

Supervisor: Marian Bubak PhD

Consultancy: Tomasz Szepieniec, MSc

KRAKOW, SEPTEMBER 2014

Aware of criminal liability for making untrue statements I declare
that the following thesis was written personally by myself and that
I did not use any sources but the ones mentioned in the dissertation
itself.

ll

AGH

AKADEMIA GORNICZO-HUTNICZA
IM. STANISEAWA STASZICA W KRAKOWIE

WYDZIAL INFORMATYKI, ELEKTRONIKI
I TELEKOMUNIKAC]I
Katedra Informatyki

Automatyczna generacja
skryptow na podstawie interakcji
uzytkownik-system
Maciej Golik

PRACA MAGISTERSKA
KIERUNEK STUDIOW: INFORMATYKA

Promotor: dr inz. Marian Bubak

Konsultacje: mgr inz. Tomasz Szepieniec

KrRAKOW, WRZESIEN 2014

Oswiadczam, sSwiadomy odpowiedzialno$ci karnej za poswiadcze-
nie nieprawdy, Ze niniejsza prace dyplomowa wykonalem osobiscie i
samodzielnie i ze nie korzystalem ze Zrédel innych niz wymienione w

pracy.

Abstract

Recently, web applications became the trending platform for development
of new and rewritten software. Many projects that deal with improving the
usability of scientific software focus efforts on web portals commonly known
as “science gateways” or “virtual laboratories”. Yet still, many users prefer
usage of a command line for reasons of speed, advanced features and greater
control. Unfortunately, virtual laboratories are usually not compatible with
each other (on the level of user experience and data formats) which make
it very hard to switch between them in case of a problem or lack of specific
feature.

This work presents different approach. Instead of creating a new layer be-
tween user and software the proposed solution creates the tracking tool that
intercepts communication between a shell and an operating system. Data
generated by user and system interactions include the history of executed
commands, system calls and shell environment variables. The gathered data
can later be used either for analysis and visualization of processes and files or
to generate scripts that recreate user’s workflow as closely as possible. The
tool is supposed to work as the best effort solution and do as much work
as possible but allow user to easily verify and manipulate the results. This
design features a flat learning curve allowing quick start while providing
good results but also providing advanced options for more advanced users
and needs. Since interfaces are built using simple text protocols they allow
multiple independent implementations for all or only specific modules. The
external technologies used in the developed prototype include strace, GNU
Bash shell and Python programming language.

This thesis covers all aspects of the tool design. Starting with moti-
vation and background that led to presented solution following with the
requirements’ definitions. Subsequent chapters cover concept development,
limitations and proof of concept implementation. Lastly, the final sections
present vision for the future and the summary of the work done.

KEYWORDS: tracking, interaction detection, script generation, workflows,
automation, CLI, system calls, analysis, heuristics, user experience

Contents

Contents

(L Introduction|

2 Techniques supporting in-silico experiments|

2.1 Human-computer interfaces and user collaboration|
2.2 Trends, technologies and models for software development]. .

P33 Virtual laboratories] o o v v e e e e e e e
2.3.1 GridSpace| e

2.3.3 alaxy|o
2.4 Drawbacks of presented tools|

[3 Functional and non-functional requirements|

3.1 Functional requirements|
B.I.1 Transparent tracing and best effort automatization]. . .
B.12 Requirements for post tracing].
B.1.3 Possible outputs of script generation].
B.1.4 Aiding user in the effective supercomputer usage . . .

B2 Use cases for the validationl

3.3 Non-functional requirements|

4 Concept of the action tracking system|

1ii

1.1 Background| 0.
1.2 Motivation, hypothesis and detailed goals|.

4.1 Generalconcept| 0oL
4.2 Methodology of transparent user action tracing|.
(4.3 Finding relations between different processes|
4.4 Types of data flows, detection and analysis|
441 Linear flow shape,achain.
442 Tree flow shape, parallelization|

[Y — =
W W — O O 0 N o Ot

[
Q1 =

15

CONTENTS

4.4.3 Smart flow detection: ignoring redundant datal. 24

4.4.4 Flow corruption prevention| 25

4.4.5 Flow recursion while opening files for read and write| . 27

446 Flow parallelism| 27

4.5 erging of alternativedataflows|. 28

4.6 Choice and analysis of external dependencies|. 29
4.6.1 Command Line Interface (bash), the execution environ- |

[mentl 29
4.6.2 Possible combinations of commands|. 30

4.6.3 System call tracing: strace| 34

4.6.4 Description and usage of selected system calls| 35

[>_The prototype implementation| 39
........................... 39
B2 Theparser 43
5.3 The internal representation format] 43

A Thevisualized 44

.5 Theanalyser| 44
b.6 Thescriptgenerator]. 46

{6 Validation and testing] 49
6.1 Installation and quick start guide| 49

6.2 Prototype validation on different use cases| 50
6.2.1 Artificially prepared usecases| 50

6.2.2 Scientific use case: using TURBOMOLE application| . . 50

2.3 Administrator” : virtual machine creati 55

[6.3 Discovered problems and shortcomings| 55

7 Ditech i ons 59
[7.1 Tracking and heuristic improvements| 59
[7.2" Graphical parameter matching, data flow manipulation and |

| MEIZING| o v v vt ettt 60
[73 Platformforsharing] 62
[7.4 Other possible improvements| 63

[8 Summary and Future Work| 65
[List of Figures| 67
[List of Listings| 69
Bibliography 71

iv

Chapter 1

Introduction

This chapter presents an introduction to the subject of this thesis. It includes
motivation, the description of current trends, the research hypothesis and the
detailed goals of this work. It also briefly presents the main objectives of the
designed tool.

1.1 Background

The computers as we know today did not change a lot from the time they
were created. They changed the form, size and the location where they were
stored. They started as machines taking the whole room in the universities
and companies and then moved to small boxes in people’s houses. The idea
of the transistors that build computers stayed the same over the years and
only their number on a single chip changed from thousands to millions due
to the technology advancements in the process of miniaturization. When
this was not enough to push computers further they again started to grow.
At that time the technology made a full circle and the computers went back
from people’s homes to server rooms full of metal, plastic and noise.

Also the information theory developed by Claude Shannon did not
change over the years. He came up with the idea that every information
can be stored using probability, specifically with probability 1/2 which is the
same as with a coin toss [36]]. Although the single bit can only represent two
states — true and false, zero and one, black and white — it can be grouped to
build more complex structures like bytes. Bytes then can be used to represent
any type of information like text, sounds and pictures.

Increasing abstraction level sacrifices the control for accessibility and us-
ability. Every tool imposes another level of abstraction on user although pro-
viding specific features. This theory is very evident in comparison of the pro-
gramming languages [39] where lower level languages are faster in execution
and harder to learn while those of the higher level are faster in development

1

1. INTRODUCTION

but take more time to execute. High level tools allow users to start quickly
while having satisfying results. Unfortunately, as the need for the greater
control and efficiency rises user must turn to the lower level solutions.

The scientists are specialists in their respective fields and computers are
just another tools required for high efficiency of work. Requiring from the
users learning tools built only to create another layer of abstraction is not
optimal and should be avoided unless completely necessary. Additionally,
when users move between computers the tools they use may not be able to
work because of the specyfic environment or missing dependencies. This
may require switching to and learning different application.

1.2 Motivation, hypothesis and detailed goals

In order to fix the problems mentioned in the previous section the decision
was made to take slightly different approach than most popular solutions
which are presented in section The motivation of this thesis was to ease
use of applications that scientists use on a daily basis by reducing the amount
of users’ required actions to the minimum. The solution of this problem
was building the tool that will be able to record actions performed by the
user, analyse those actions and effects they had on the operating system
and files, and finally create script that matches user’s workflow as closely
as possible.

The main and the most complex component in the presented solution are
advanced heuristics that will be used to parse, analyse and create internal
representation. Unfortunately, even the best algorithm will not always suc-
ceed or provide optimal data. Because of that the presented tool has been
provided as the best effort solution and might ask user for guidance in order
to improve the results and fix the possible mistakes.

The specific goals the created tool had to fulfil are:

1. Do as much as possible automatically: record actions, match argu-
ments, find relevant data,

2. Have a flat learning curve (or none at all): the tool should be easy to
learn but provide great flexibility for advanced users,

3. Work in the environment known to the potential user (no new level
of abstraction, transparency): since most programs run in a shell user
should not be required to use a browser or GUI for tasks involving their
usage,

4. Have no or minimal dependencies (applications, tools, frameworks):
this allows the designed tools to be portable and installable without the
administrator account,

1.2. Motivation, hypothesis and detailed goals

5. Be portable and designed to use on different machines (PC, supercom-
puters, without root access): handle multiple environments (paths, file
names, variables) which will allow to perform the interaction detection
on personal computer but execute the generated script on different ma-
chine,

6. Allow the exchange of scripts (and internal representations): use a for-
mat that can be easily transferred between users and computers,

7. Give the same benefits as the similar tools that try to solve the same
problem but with different approach.

The methodology used to achieve the specified goals consisted of divid-
ing process of the automatic script creation into three parts: tracing, parsing,
and producing output (textual analyse, visual representation and executable
script generation). The minimization of learning curve could be done by uti-
lizing environment that is already known by users of a supercomputer and
scientific software namely the shell (e.g. Bash) along with common com-
mands. All commands executed by the user, running processes and their
children, must finally execute a system call. In that moment the designed tool
can record interactions between user and system. Those interactions include:
launching processes, opening and closing files, and reading and writing to
file descriptors. With the information about which process opened which
file along with information about what mode (read, write) was used for this
operation, the tool can create a data flow between different programs. Later
this flow can be used to recreate the order of commands executed and the
relations between them.

This sort of tracing does not require the adaptation to the created tool
from the user. The only required, additional actions are: enabling tracer be-
fore starting normal workflow and then using analytic or script generating
modules.

Chapter 2

Techniques supporting in-silico
experiments

Firstly, this chapter presents the history of the automation and supporting
user in optimizing work on computer including social aspect of sharing work
and knowledge. Secondly, it overviews current technologies and trends in
information technology which can be applied to increase usability of such
systems. Next, there are presented current achievements in the field of sup-
porting scientific users in automating repeatable tasks by looking in detail on
three such systems: GridSpace, InSilicoLab and Galaxy. Lastly, it points out
lacks of competitive solutions and possible ways to improve.

2.1 Human-computer interfaces and user collaboration

The first computers started as mainframes, the big machines shared between
multiple users. The way of interaction between users and computers at this
time were the punch cards which required high level of skill and carefulness
since every mistake could cost hours of time and lots of money used for paper
and electricity. Because of that users of the same machine would naturally
collaborate, share knowledge and help each other fix mistakes.

The next step in the history was the creation of the terminals. At this time
users did not have to be in the same room as the computer because it could
be accessed remotely with simple but powerful text mode. This simplifica-
tion allowed to draw more people to write programs and quickly test and fix
mistakes. The remote access greatly reduced entry barrier but lowered the
level of collaboration.

Another big step in simplification of computer usage was the creation of
the graphical interfaces. This idea opened the concept of computers to every-
body by minimizing the learning curve and allowing more people to access,

5

2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

learn and use the new technology. Graphical programs allowed people with-
out low level knowledge to calculate using spreadsheets, write texts using
word processors and paint using graphic programs.

The technology advancements allowed everyone to have a personal com-
puter. They were less powerful than the mainframes but allowed users
to work whenever they wanted and without competing for the system re-
sources. This again lead to collaboration reduction because people were
keeping all their work, results and scripts on private disks. Only necessary
code was shared because of the limitations of transfer methods and lack of
vision how their work could help someone else.

The latest presented revolution was the creation of Internet. World Wide
Web opened the way to share code, results and knowledge fast and easily
with anyone. Now Internet is full of shared scripts and codes, sites like
Github [20] with the slogan “Social coding” make big difference in getting
started and learning programming.

Unfortunately, they do not fix all the problems. Scientists are rarely found
on those pages and when they do they share code that is very specific to their
problem. This basically requires the potential user to learn technology and
get through the specific problem before he or she can use the found program.

2.2 Trends, technologies and models for software
development

Currently, the most rapidly evolving technologies are those based on the web
browsers and engines, namely HTMLEEI for layout, CSS% for styling, and
]avaScriptE] for manipulation. Those technologies, although created for use
on web pages, are now commonly used for desktop tasks. This is possible
by utilizing the browser engines: Gecko for Firefox*| Trident for Internet Ex-
plorelﬂ WebKit for Safarﬂ and Blink for Google Chromeﬂ Web technologies
can be used for example for desktop theming like in “Modern” mode of Mi-
crosoft Windowﬂ Gnome Shel]ﬂ and other. Node.js@]is using JavaScript en-
gine of Google Chrome to support usage of JavaScript for server side script-
ing to allow front-end programmers to work on back-end related work.

Ihttps:/ /developer.mozilla.org/pl/docs/HTML/HTMLS5.

Zhttps:/ /developer.mozilla.org/en-US/docs/Web/CSS/CSS3.

3https:/ /developer.mozilla.org/pl/docs/Web /JavaScript.

*https:/ /www.mozilla.org/ firefox /.

Shttp:/ /windows.microsoft.com/en-gb/internet-explorer/download-ie.
®https:/ /support.apple.com/kb/dl1531.

7ht’cps: / /www.google.com/intl/en/chrome/.

8http:/ /msdn.microsoft.com/en-us/library /windows/apps /dn465800.aspx.
http:/ /www.gnome.org/gnome-3/.

Ohttp:/ /nodejs.org /.

2.3. Virtual laboratories

The GUI programs allow new users to quickly start using them. Web tech-
nologies allow them to be simpler to create and extend. They fulfil promise
that Java could not keep: “Write once — run everywhere” [7]. Thanks to this,
the programmers do not have to worry about portability, look and techni-
cal details and instead they can concentrate on the most important aspect:
functionality.

The current trend for software development is making it as close to the
subject as possible. It can be achieved by creating programs with close col-
laboration with users or, thanks to the web technologies, creating them by
ourselves. The result of this approach is a great choice of applications, do-
main specific programming languages (DSLs) and tools. Those programs are
often created for a single use, project or person which allows them to be used
with the greatest human efficiency. Unfortunately, this user-centric approach
hurts portability between users and use cases.

A simple modification to make use of domain specific functionalities of-
ten requires full application rewrites. Every tool has its own design and user
experience which makes it harder to switch between the competitive solu-
tions. Additionally, those applications are often abandoned after the project
has ended or author does not have time for the development because they
are created by a single team or person for a single use case. This approach
wastes human power behind them and limits the innovations that could be
made by collaborating on a common project.

2.3 Virtual laboratories

One of the solutions for steep the learning curve of the command line and
low level programming languages are the “workbenches” like Mathemat-
icaETI and MATLAHT_Z} Those are desktop programs that target computational
sciences and provide a simple syntax similar to the natural language. Their
distinguishing features are: visual feedback, graphical representations, hints,
history tracking and sharing. On the downside, they target only specific do-
main making them unusable for different types of computations they do not
provide.

Another solutions for steep the learning curve are those using web tech-
nologies: Virtual Laboratories or Science Gatewayﬁ There are multiple so-
lutions distinguished by a different range of features, licences, governance
model, and targeted use cases. The next sub-sections present three repre-

Mhttp:/ /www.wolfram.com/mathematica/.

Zhttp:/ /www.mathworks.com /products/matlab/.

I3Following [35]: “A Science Gateway is a community-developed set of tools, applications,
and data collections that are integrated through a portal or a suite of applications. Gateways
provide access to a variety of capabilities including workflows, visualization, resource dis-
covery, and job execution services”.

2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

.

. t.pl ik
Experiment Workbench You are logged in to | zeus.cyfronetpl as pigmgolik

Files (Unsaved experiment) . (Unsaved experiment)
-]
Menu ﬂ{iﬂ;—u Set the ex o bl ~
Upload files
a- [Unnamed snippet] ;,;gmn with zeus.cytronet.pl context: B [3=fy Acions ?
print "hello world"
£ bench/ hd No inputs defined for this snippet No outputs defined for this snippet.
E2 bin/
5 galaxy/
E null/s

2 storage/

4 4 4 4 A

5 vpns
‘Qutput

'plgrid/tools/python/2.7.2.el15' load complete.
Python 2.7.2 (default, Feb 21 2012, 18:40:14)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-50)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print "hello world"
hello world
Filter by file na e

Path: plgmgolik/
Releases

© 2012 Distril .omputing Envi [DICE) Team Please report any problems related to this portal to our |ssue Tracker Acknowledgements

Figure 2.1. Screenshot of GridSpace interface [2]. It shows two columns: files
and experiments. Experiments columns are tabbed and each tab contains mul-
tiple snippets and output of executed snippets.

sentatives of this category differencing in accessibility, targeted audience and
provided features: GridSpace, InSilicoLab and Galaxy.

2.3.1 GridSpace

GridSpace is a “novel virtual laboratory framework enabling researchers to
conduct virtual experiments on Grid-based resources and other HPC infras-
tructures. (...)” [2][6]1[51131124].

GridSpace was created as the generic tool that will allow scientists to ac-
cess computational resources with ease and consistency. The main windows
shown in Fig. present the two column layout. The left column allows
browsing files on the connected cluster while the right column displays the
tabbed list of experiments. The experiments are divided into two rows: the
snippets with all source codes and the inputs/outputs management, and the
lower row where the output of commands is shown.

The history of commands and snippets can be saved and executed mul-
tiple times. GridSpace offers its users the high level of control and flexibility
by allowing usage of many scripting languages like Bash, Python and Ruby.
That means it can be easily used for working on multiple tasks but will never
compete with tools created specifically for one problem.

The technology used for the implementation includes Java and SSH
both giving the developers great deal of flexibility and compatible tools.

8

2.3. Virtual laboratories

Log in... You are logged in as anonymousUser @

in silico

»
7 = ﬁ
'j Experiment Benzene...ground state...RHFISTO-2G =p =l 07' R

Started 2013-03-22 at 18:32:40
Status Completed
Menu @ v @ #H Identifier 1363973559995
LFC directory /grid/gaussianinsiicolab-test/c.PL. 0.GRID o.Cyfronet cn.Joanna Kocot - PL-Gridfexperiments
v Benzene...ground state.. _ fexperiment-1363973559995
-RHF/ST0-2G

Your Experiments

Reuse experiment input

—Experiment Input Data
Title
“ | Control “ 2‘,!‘““
GRIKERA
Filter by name
Symmetry GAMESS 2010 R1
LFC Catalogue
=] ‘ &= Geometry Specification
Cannat display LFC contents - no valid proxy. 1 cecce DA v
Filter by name
@ 2014 InSilicoLab v1.4 Report a problem

Figure 2.2. Screenshot of the InSilicoLab interface [25]. The screen is split into
3 parts: experiments, history and management; LFC file browser and tabbed
experiment details.

GridSpace currently can be executed on multiple clusters, is actively main-
tained and new features are added when needed. It is a mature software that
can easily be customised and integrated into the new tools. The layout and
features resemble the tools like Mathematica and MATLAB.

2.3.2 InSilicoLab

InSilicoLab is “a framework of application portals that support e-science re-
search by facilitating the access to computational software deployed on dis-
tributed computing infrastructures and the management of data and pro-
cesses involved in such scientific computations. (...)” [25][29][28][14][27].

InSilicoLab has its roots in GridSpace framework. It was built using the
same technologies but with different purpose in mind. The goal was to cre-
ate experiments for a single use only thus giving users most feedback and
maximally accelerating their work.

The main windows of InSilicoLab visible in Fig. consist of the three
regions: on the left the executed experiments and the list of files while on
the right the experiment tabs. The experiment list panel shows currently
running, finished and cancelled experiments. This window may later be used
to check the results or execute the jobs again.

The experiments in the InSilicoLab portal are created for a specific use

9

2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

Analyze Data Shared Data Cloud elp Use Using 0 bytes

Tools .?. History = 'ﬂ‘
Galaxy is an open source, web-based platform for data intensive biomedical
search tools ©) | research. If you are new to Galaxy start here or consult our help resources. AT TR
0 bytes Q=

Get Data

Lift-Over

Text Manipulation
Convert Formats
FASTA manipulation
Filter and Sort

Join, Subtract and Group Try G a I axy .

0 This history is empty. You can load

your own data or getdata from an
external source

Extract Features On the ClOUd
Fetch Sequences

Fetch Alignments

Get Genomic Scores

Operate on Genomic Intervals PI.I I

Statistics can have a persanal Galaxy within the infinite Universe

GraphiDisplay Data
Regional Variation
Multiple regression
Multivariate Analysis
Evolution

Motif Tools

Multinla 8 linnmants

< >

Figure 2.3. Screenshot of Galaxy interface [19]. Shows three column layout:
left with the list of tools, center with the tool content, forms and results, and right
with the the history of the run commands and options.

only. Currently, there are three deployed portals: for chemistry, CTAH and
astronomy. The each one is customised to fit various needs of the users, e.g.
the chemistry version provides users with charts and tables of energies.

InSilicoLab uses Java, gLite and DIRAC to run jobs on clusters in grid
infrastructure. Downside of the user centric approach is the creation of new
experiments requires experienced developer. On the other hand, the results
of customized portal can be very rewarding with fast and easily manageable
results. Unfortunately, InSilicoLab does not currently allow the creation of
workflows, so for experiments that have connected inputs there is no solution
other than creating septate jobs and providing data manually.

2.3.3 Galaxy

Galaxy is an “open, web-based platform for data intensive biomedical re-
search. Whether on the free public server or your own instance, you can
perform, reproduce, and share complete analyses.” [19][22][12][4].

Galaxy project was created to support biomedical studies. The web portal
has a three column view and can be seen in Fig. The left column contains
tools categorized in sections. Those tools are installed by the project admin-
istrator who can control which tools can be used on their instance. The right
column represents command history where all executed jobs are displayed.

4Cherenkov Telescope Array.

10

2.4. Drawbacks of presented tools

When job starts user can cancel it or view its current status and output, or
execute it with a different set of parameters. The history can be saved for
the later use and usually represents user’s single workflow. The column in
the middle contains the detailed view of the selected tool. At the beginning
it shows a form with the specific fields for inputting information. While the
tool is running it shows the details of a job and provides access to standard
output and error streams.

Galaxy allows users to create their own tools and share them on the com-
mon website, where administrators can find them and install on their local
instances. Those tools can then be used standalone or, if developer prepared
them, as the parts of workflows. The workflows are created by the “drag
and drop” technique, similar to the component programming: users draw
the connections between outputs and inputs of the tools. Those workflows
can also be shared later.

24 Drawbacks of presented tools

This and the previous chapters show that creation of a tool that is at the same
time easy to use, powerful, and portable between users and environments
is a non trivial task. Usually, the designer has to choose if the tool will be
effective but targeted only for the limited use cases or provide advanced cus-
tomization options at the cost of requiring prior knowledge. The best option
is to create the tool that can be simply learned, but also easy to extend and
modify like for example embedding C code in Python for optimizing com-
putation intensive parts.

All of the mentioned tools in section[2.3|provide users with the assortment
of great features. They all ease access to computational resources, underlying
software and technologies but at the same time they make users dependent
on their solution and loose control of underlying layers like a shell. Being
dependent on a specific software can cause problems when the goals of the
authors no longer match needs of the users for when the project development
is cased.

In case of InSilicoLab and Galaxy when the new software or software ver-
sion shows up the users have to wait for the developers to add support which
can take hours, days or months. If the user depends on the bleeding edge
software, he or she has to temporary (or permanently) switch to the console,
defeating the purpose and dismissing the effectiveness of those tools. Even
if this problem does not appear now as the software is actively developed it
is not guaranteed to last long enough and requires users to trust and rely on
the specific solution.

InSilicoLab does not currently provide any community features while
Galaxy only allows sharing of the workflows built from the building blocks
that were already provided by the developer. According to the created re-

11

2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

quirements GridSpace comes the best. It is built with collaboration in mind
and allows sharing work between groups of users. It provides users with the
access to low level tools but eases this process by simplifying the access meth-
ods, providing graphical wrappers and automating common tasks. Unfortu-
nately, it does not provide domain-specific features, does not allow simple
creation of the workflows, and provides no easy way to share them.

12

Chapter 3

Functional and non-functional
requirements

This chapter presents functional and non-functional requirements needed for
the correct implementation of the proposed system. Functional requirements
are split into the functional modules allowing easier implementation and
forcing better software quality from the viewpoint of software engineering.
Next, use cases needed for the validation of the tool are presented. Lastly,
non-functional requirements which should be taken into consideration while
developing software for the better use of available resources are listed.

3.1 Functional requirements

The overview of the tools presented in the previous chapter allows the cre-
ation of fields of improvements and the creation of completely new solution
based on the re-imagined concept.

The specified requirements are similar to the goals defined in section
and were as follows:

1. It should be transparent to the user: do not interfere with the normal
user’s worklow and instead trace and analyse,

2. It should require the minimal prior knowledge,

3. It should be automatic, but not smarter than the user: just the best-effort
solution,

4. It should support and embrace collaboration,

5. It should analyse what the user is doing and derive knowledge from
his or hers actions,

13

3. FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

6. It should allow to recreate user’s actions as closely as possible: with the
special filters and use of knowledge like repeated actions, overwrites,
etc,,

7. It has to transform specific solution to the more generic one.

Those points sum up to the one simple idea: the new tool should trans-
parently learn from user’s actions, made in his or hers natural environment,
and then recreate those actions by making the generic and parametrized in-
ternal representation, that can be later shared, modified and transformed into
a specific script.

The following sub-sections divide functional requirements into categories
that were later used to create the proof-of-concept implementation and set
the direction on the future development. The carefully conducted analysis
allowed the creation of the tool that meets the needs of users, does not contain
fundamental flaws and allows future extensions [41]].

3.1.1 Transparent tracing and best effort automatization

The main objective of the designed system is for it to be as much as possible
transparent to the user, so it will not disturb his or hers daily routines. The
tracing tool is supposed to gather all required data without forcing the user
to run special commands, make forced stops or start over in case of made
mistakes. The tracer should only capture all user actions along with the ad-
ditional meta-data and analysis of the gathered data should be made later.

The automation of the tools relies heavily on the heuristic engine that will
make the decisions about parameter matching, data flow detection etc. Since
no algorithm can match all use cases it makes the designed tool not fully
automatic but rather the best-effort solution. In order to cover as much as
possible use cases, the tool should not forbid user from helping in making
decisions and should allow to make manual improvements, and direct the
tool in desired course by using special directives.

Despite the tracking executed processes and opened files the tool should
be able to match the parameters of consecutive commands, allowing them to
be set to variables and in addition have the ability to run parameter sweep
on those argumentsﬂ in the most optimal form (script, array jobﬂ etc).

3.1.2 Requirements for post tracing

There are two goals of the analytic tool. The first is to present relevant data
retrieved from parsing to the user and providing user with the information

IParameter sweep means running the code multiple times using unique sets of input pa-
rameter values [23].

2 Array jobs are parts of Job Arrays, that allow user submitting multiple sub-jobs perform-
ing the same (while using the same script.), but operating on many data sets [8].

14

3.1. Functional requirements

gained by running heuristic engine on output of the tracer program. The
information should include, but not be limited to: the opened files and their
modes, the amount of data read/written, the number of missing files, the
throughput of those files and the frequency of 1/O operations. Optionally,
user should have access to the representation of the data flow in the text
and/or graphical form.

The second role of the analytic tool should be the manipulation of the
created internal representation of the data flow and process dependencies.
The manipulation should be manual (adding file or program nodes by hand)
or automatic (merging two alternative program executions).

3.1.3 Possible outputs of script generation

There are two separate requirements for generated scripts: the language of
generated script, and the more important: the type of generated script. The
simplest language to generate script is the same language from which the
data was gathered. After detecting program flow and matching parameters
only pasting of commands with substituted values is required. Implement-
ing generation for other languages is a simple task and it only requires the
usage of language specific functions like “subprocess” from Python [16] stan-
dard library.
The possible three types of generated scripts are as follows:

e Executable: this is the script that simply reruns relevant, user executed
commands,

e Batch: the same as above but with the additional “PBS” directives’]
More can be found in the section|3.1.4

e Script-generating scripts: the scripts that will generate executable or
batch scripts with parametrized values. More can be found in section

B14

3.1.4 Aiding user in the effective supercomputer usage

Flawlessly migration from the local computers to the supercomputer and/or
improvements of the usage of shared resources can be achieved by generat-
ing batch scripts (as stated in the section and script-generating scripts
with optimized directives. The optimization to “walltime” and “resource”
directives (setting them to the values closely matching real run time allows
shortening queue times for all users) can be made by analysing run time of a
program, spawned processes, run time depending on the input data size and
the additional metadata specified by the cluster administrator (like suggest-
ing the type of node for the specific executable). Also the frequency of I/O

3Portable Batch System is described on the official site of Adaptive Computing [9].

15

3. FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

operation and the amount of the data read can be used to suggest the type of
storage on which the data should be stored, for example Lustre for frequent
operations and GPFS for storing final results.

The role of script-generating script is to make parameter sweep, gener-
ate batch scripts and run them on the proper nodes. The parameter sweep
should be made intelligently by utilizing provided features of the resource
managers when possible (for example TORQUE provides “array jobs”, de-
scribed earlier) and falling back to generating multiple scripts when no better
solution was found.

3.2 Use cases for the validation

In order to ensure the proper direction for the designed software and allow
later validation the use cases must be defined. They should cover the basic
functions that can show the tool’s potential without requiring full system im-
plementation: this allows fast prototyping, incremental improvements and
direction reshaping. Since the main focus of this work is to improve the work
of scientists, almost all the use cases will cover data flows most commonly
appearing in their workflows.

The first two testing examples were prepared just for the testing purposes
of this work and represent the most commonly encountered data flows. They
consist of multiple files and processes and by proper handling of them the
designed tool should cover high amount of the available software. As they
do not provide any parameters, they can only be used for validating data
flow detection and not parameter matching.

The next two use cases are represented by the two real-world application
suites. Turbomole [21] is used in quantum chemistry and represents lots of
programs used in this field. The second suite is used in CTA project [10]
and consists of multiple executables that are executed depending on the type
of the input files. All those executables can alter their behaviour based on
the number and the type of the input files and program arguments. Both
of those suites can be used for the validation of flow detection, argument
management and alternative data flow merging.

Although the main focus of the created software is aiding scientific en-
vironment last considered use cases should include the other types of work.
Unfortunately, not much tools work on the same basis as the scientific soft-
ware where data flow can be easily detected because the consecutive pro-
cesses are connected by read and written files. In order to cover this use case
without having to heavily modify heuristic engine of the prototype the one
administrative workflow was chosen: the creation of virtual machine using
libvirt [30].

16

3.3. Non-functional requirements

3.3 Non-functional requirements

The requirements presented in chapter [cover the basic but essential func-
tional requirements and general concept of the designed system. This alone
can be used to implement the software which will fulfil the specified role al-
though it does not guarantee good user experience. To create the software
that not only addresses specified problem, but does it well, and improves
users’ experience in the targeted field, the additional technical requirements
are needed.

The following list enumerates the gathered non-functional requirements
and the functional additions that can be used to extend the designed system
and improve its usability:

e Tracer directives: the special, control directives that can be used to con-
trol tracer behaviour to better suit user needs or to later help the parser
with better understanding the data flow,

e Automatic paralleling: the feature that can be very effective in optimiz-
ing computer usage. It can be implemented by analysing the data flow
and finding the commands which can be executed in parallel, based on
the detection of common file that works as a “barrierf},

e Automatic checks and warnings: e.g. generated scripts can include fea-
tures that check if the required files are present in the specified location
before the execution,

e Documentation and examples: although the detection of the data flow
is transparent, some modules require interaction from the user. Good
documentation can help users learn the tool faster, prevent possible
mistakes and inform about the advanced features,

e Open, standardized, text based API: allows creating multiple imple-
mentations in different languages and with different set of features,

e System modularization: allows the extensibility and exchange of spe-
cific module for the different implementation,

e Open source: allows collaboration, continuous improvements and
faster error detection and fixes.

4Type of synchronization method.

17

Chapter 4

Concept of the action tracking
system

This chapter provides the overview of the system architecture. Starting with
the general concept, explaining the system as a whole and reasoning behind
the division into specified modules. The chapter also includes the description
and analysis of data flows that are the main concept on which the system can
be built. Lastly, it includes the description of the environment and tools used
in the proof-of-concept implementation.

4.1 General concept

To implement the functionalities covered in the chapters [3| and 4| the sys-
tem architecture was split into separate modules depending on functionality.
Those modules are connected using a simple text based APIs. This design
allows interchanging the single module between different implementations
in any language and from any developer who can implement required func-
tions and protocol handling. The approach is based on Unix philosophy,
proven successful over many years: “This is the Unix philosophy: Write pro-
grams that do one thing and do it well. Write programs to work together.
Write programs to handle text streams, because that is a universal inter-
face.”|'} Although separated modules cover one simple functionality, they
share data structures and basic functions, and for that reason the library with
common code was created. The language of choice for this implementation
(for most modules) is Python as it provides the programmer with great flex-
ibility and syntax that helps maintain good practices while coding. More
importantly, Python as the interpreted language allows fast prototyping and
testing. Since the tools are not meant for computational operations, speed re-

1Quote by Doug Mcllroy, the head of Bell Labs CSRC and inventor of the Unix pipe [[15].

19

4. CONCEPT OF THE ACTION TRACKING SYSTEM

shell environment

TRACING shell history

PARSING INTERNAL
MODULE MODULE REPRESENTATION

[y

system calls

By
data flow
visualization ¥
ANALYZING MANIPULATOR
MODULE MODULE
data flow

analysis
(files, processes,
connections. ete.)

batch (PBS) script

Figure 4.1. The division of the system into independent modules connected by
open, textual interfaces. The modules represent the core functionalities of the
created prototype and can be further improved to cover all possible use cases
and data flows as described in the chapters [3]and[4 and extended as proposed
in the chapter|[7}

GENERATOR
MODULE |

interactive script
> generator
(for parameter sweep)

duction does not have negative implication. If needed, speeding the critical
parts can be easily implemented in C language by using standard C-Python
interface. Lastly, Python is a very popular language as it is installed on all
major Linux distributions by default. This goes well with the requirement of
portability, transparency and targeted low learning curve.

The separate modules, which create full working system, are presented
in Fig. and include: the tracing program used to record user-system in-
teractions, the parser used to analyse data gathered by the tracing program,
the analyser used to print the information gathered in the process of tracing
(found processes, files, I/ O operations), the visualizer used to visualize data
that can be used to verify the detected data flows, and lastly, the generator
used to generate scripts based on the detected data flows.

To present the usage of all modules one prepared use case will be used
— TURBOMOLE. That example consists of one executable used to compute
results (ridft) and arbitrary number of standard system commands like direc-
tory listing and file reading.

20

4.2. Methodology of transparent user action tracing

NORMAL CLASIC
WORKFLOW SOLUTIONS
OPERATING s scall/ﬂ OPERATING
oyscdl SYSTEM y
. SYSTEM

SHELL

syscall

syscall

SHELL BROWSER

(virtual laboratory)

PROPOSED
SOLUTION

OPERATING
SYSTEM

syscall

tracing
> prograrm
(intercepting calls)

SHELL syseal

Figure 4.2. The idea of the transparent tracking of user-system interactions with
comparison to the normal workflow and virtual laboratories.

4.2 Methodology of transparent user action tracing

The main idea behind the project described in this thesis was to elaborate the
tool that can improve users daily routines by automatically analysing and
repeating executed tasks without breaking their habits and requiring extra
actions. The “proposed solution” in Fig. presents the way of achieving
this goal by creating a transparent layer between user (represented by shell
or console program that user directly manipulates and executes commands
in) and operating system, that will track (or intercept) all events arising in the
process of interaction between user and computer.

Listing 4.1| presents the execution and output of three basic commands
that display and manipulate files and directories:

e “pwd”: print working directory;

e “Is”: list directory/file information, directory content, with the “-a”
argument that additionally shows “hidden” files beginning with dot

(including “.” (single dot) — current directory and “..” (double dot) —
parent directory);

£“ o

e “cd”: change directory, with the argument “..” (parent directory).

21

N U W IN -

4. CONCEPT OF THE ACTION TRACKING SYSTEM

Listing 4.1. Exemplary commands entered by the user in the terminal with their
respective outputs after the execution. This example includes 3 file/directory
manipulation and information commands: “pwd” — print working directory, “Is” —
list (directories, files), and “cd” — change directory.

The last line represents the empty prompt line that indicates that shell is
waiting for the new command to be typed by the user.

On Unix systems those “high” level commands are used to perform all
actions on the system. They may be complex programs, scripts, or short
functions. Although they differ in functionality, and their implementation
vary greatly in source code length, they all use low level functions provided
by the operating system. Those simple instructions are the system calls that
are always used to perform actions involving processes and files.

pwd
1s —-a

cd ..

Listing 4.2. The history of previously executed commands (as shown in Listing
as saved by the Bash shell.

The additional source of a valuable data is the history of commands exe-
cuted by the user. Listing .2 presents the history of commands as saved by
the shell from the executions of commands presented in Listing [4.1]

4.3 Finding relations between different processes

As stated in section the main source of knowledge is the user-system
interaction that manifest itself as a list of system calls with the addition of
the history of executed programs. The knowledge obtained in this process
may now be used to create the flow between consecutive commands. This
connection can later be used to automatically create scripts.

At this point, it may look like the history of commands generated by the
shell is just enough for the user to automate tasks by himself or herself as it
only requires him or her to copy and paste commands to a file, add execution
rights and run it. Unfortunately, the history of commands is, although very
helpful, not enough on itself. The usage of the history alone requires user
to not make mistakes, run commands only once, and focus only on a single

22

4.4. Types of data flows, detection and analysis

INTERMEDIATE OUTPUT

INPUT FILE FILE
FILE

READ—»| PROCESS 1 —WRITE READ —» PROCESS 2 —WRITE:

FILE 1 DATA FLOW > FILE2

Figure 4.3. The relationship between two different processes and their relation-
ship which manifests itself as the flow of data that is being written by the first
process and read by the second process.

task as executing commands not connected to the main objective will also be
repeated. Since the history is shared between the sessions and terminals it
requires clean-up by hand to obtain only relevant commands. Lastly, the his-
tory can not be parametrized automatically, does not handle conditional ex-
ecution and requires many manual actions to create “optimized” executable
script that can be use multiple times.

The data flow is created by analysing the data that are being transferred
between the processes in a form of files. Some processes write files while
the others read the previously written text or binary data. By implementing
the complex heuristics the program can intelligently connect commands and
files (it is explained in chaptersfand 5) to generate an internal representation
which can later be used to generate executable scripts.

4.4 Types of data flows, detection and analysis

The main idea on which the concept of this work is based is the detection of
the data flows. They are represented by reads and writes to files made by the
processes executed by the user explicitly or implicitly inside those processes
as presented in Fig. The following subsections cover possible data flow
shapes, methods of detection and analysis.

4.4.1 Linear flow shape, a chain

The simplest possible data flow includes only one process and one file which
is created by this process. The possible example of this kind of flow is the
use of date command and redirecting output to a file. Slightly more complex
example is shown in Fig. and contains five-element chain of three files
(input, intermediate and output) and two processes manipulating those files.
This kind of flow is very straightforward to analyse and recreate.

23

4. CONCEPT OF THE ACTION TRACKING SYSTEM

Figure 4.4. The simplest possible data flow: a chain. In this example the chain
consists of one input file, one intermediate file and one output file, which are
accessed by two processes.

4.4.2 Tree flow shape, parallelization

The slightly more complex data flow is presented in Fig. The tree is a
combination of multiple linear flows which are connected at some point in
a program that requires multiple inputs. The branches which are just linear
flows can be safely executed in parallel thus minimizing the total time needed
for the whole flow to finish.

4.4.3 Smart flow detection: ignoring redundant data

The smart flow detection is a key feature of the designed system, it differen-
tiates from the other solutions and greatly extends the idea of simple history
from provided by the command line shells. Fig. 4.6 visualizes files and pro-
cess gathered by the tracing program and founds relations and their lacks.
The filtering of non meaningful commands can be done by excluding com-
mands and files that are not connected to the final file or group of files. In Fig.

24

4.4. Types of data flows, detection and analysis

P1 P2

P3

Figure 4.5. The slightly more complex data flow: a tree. In the picture the
simplest version of this flow type with only two branches.

process one (P1) is not needed to create file 3 (F3) and can be safely ignored,
and not included in the generated script.

4.4.4 Flow corruption prevention

The other important use case to consider is the situation in which the user is
testing one of the programs by launching it multiple times. In this case the
data flow will be visible as shown in Fig. One program (but different pro-
cess with its own PID) is executed multiple times and saves its output to the
same file. By analysing the flags used to open this file (and intermediate op-
erations between subsequent launches), the program can classify (with high,
but not 100% certainty) if consecutive executions were needed for a normal
flow creation or for testing purposes only. If the consecutive runs were not
required, the file was probably opened with the overwrite mode, truncated,
or removed before the following runs. Otherwise the file should be opened
with append flag.

25

4. CONCEPT OF THE ACTION TRACKING SYSTEM

P1 Pz

WRITE WRITE

/READ

Figure 4.6. The relationships and their lacks can be used to automatically detect
if consecutive commands are connected.

P1-1 P1-2 P1-3

WRITE WRITE WRITE
P2

Figure 4.7. The detection of the flow corruption caused by launching one pro-
gram multiple times can be avoided by analysis of the flags used for opening
files.

26

4.4. Types of data flows, detection and analysis

WRITE READ

Figure 4.8. Opening file for read and write can cause searching for predeces-
sors to fall into the infinite recursion. To avoid this, the tool should not visit the
same node twice while traversing graph.

4.4.5 Flow recursion while opening files for read and write

In all previous flow examples, files were opened for reading or for writing,
but not for both. The flow detection is based on going from written file to
writing process starting on user defined file. If the process is reading and
writing the same file, traversing graph will cause the recursion to be infinite
and crash the program. This situation can be avoided by preventing search-
ing function from entering the same node twice. Although the infinite recur-
sion is prevented by the defined rule, it may still be useful to analyse this
situation thoroughly. One of the possibilities is when the program is reading
the whole file, truncating it and then writing new contents. If this was the
case, this file should be treated as two different files. Another point to con-
sider is that although the file was opened for read and write, this does not
mean that any read and write operations actually happened and it should be
checked explicitly.

4.4.6 Flow parallelism

As demonstrated in the subsection [4.4.2) the parallelization of the traced data
flow can be done by running the tree branches at the same time up to com-
mands that depends on both outputs. For the tool it does not matter if in
time of tracking the tree branches were executed sequentially or in parallel

27

4. CONCEPT OF THE ACTION TRACKING SYSTEM

P1 P2

= write1
T\2 - P1 - write2
T3I - P2 - write1
'If3 - P1 - writa3

]

Figure 4.9. In terms of data flows, parallel execution does not make flow parallel.
The parallelization of data flows happens only when two processes read and/or
write to the same file at the same time.

as long as they join in one point in time. The only situation in which the data
flow is actually parallel is when the two (or more) processes write and/or
read the same file at the same time. Fortunately, since the system calls are
always made in the sequential order the analysis tool can always properly
detect data flow and command execution order.

4.5 Merging of alternative data flows

As presented in section [4.4]there are multiple possible data flows. Many pro-
grams provide different execution paths depending on the initial conditions
like file contents and environmental variables. Some programs consist of
multiple executables from which some are more commonly used than the
others. This situation creates the possibility that one executable can create
different data flows. The simple example is presented in Fig. where
FLOWTI presents the flow with two executables (first creates the intermediate
files from the initial files) and FLOW?2 consists of only one executable which
is executed already on prepared intermediate files.

S