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samodzielnie i że nie korzystałem ze źródeł innych niż wymienione w
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Abstract

Recently, web applications became the trending platform for development
of new and rewritten software. Many projects that deal with improving the
usability of scientific software focus efforts on web portals commonly known
as “science gateways” or “virtual laboratories”. Yet still, many users prefer
usage of a command line for reasons of speed, advanced features and greater
control. Unfortunately, virtual laboratories are usually not compatible with
each other (on the level of user experience and data formats) which make
it very hard to switch between them in case of a problem or lack of specific
feature.

This work presents different approach. Instead of creating a new layer be-
tween user and software the proposed solution creates the tracking tool that
intercepts communication between a shell and an operating system. Data
generated by user and system interactions include the history of executed
commands, system calls and shell environment variables. The gathered data
can later be used either for analysis and visualization of processes and files or
to generate scripts that recreate user’s workflow as closely as possible. The
tool is supposed to work as the best effort solution and do as much work
as possible but allow user to easily verify and manipulate the results. This
design features a flat learning curve allowing quick start while providing
good results but also providing advanced options for more advanced users
and needs. Since interfaces are built using simple text protocols they allow
multiple independent implementations for all or only specific modules. The
external technologies used in the developed prototype include strace, GNU
Bash shell and Python programming language.

This thesis covers all aspects of the tool design. Starting with moti-
vation and background that led to presented solution following with the
requirements’ definitions. Subsequent chapters cover concept development,
limitations and proof of concept implementation. Lastly, the final sections
present vision for the future and the summary of the work done.

KEYWORDS: tracking, interaction detection, script generation, workflows,
automation, CLI, system calls, analysis, heuristics, user experience
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Chapter 1

Introduction

This chapter presents an introduction to the subject of this thesis. It includes
motivation, the description of current trends, the research hypothesis and the
detailed goals of this work. It also briefly presents the main objectives of the
designed tool.

1.1 Background

The computers as we know today did not change a lot from the time they
were created. They changed the form, size and the location where they were
stored. They started as machines taking the whole room in the universities
and companies and then moved to small boxes in people’s houses. The idea
of the transistors that build computers stayed the same over the years and
only their number on a single chip changed from thousands to millions due
to the technology advancements in the process of miniaturization. When
this was not enough to push computers further they again started to grow.
At that time the technology made a full circle and the computers went back
from people’s homes to server rooms full of metal, plastic and noise.

Also the information theory developed by Claude Shannon did not
change over the years. He came up with the idea that every information
can be stored using probability, specifically with probability 1/2 which is the
same as with a coin toss [36]. Although the single bit can only represent two
states – true and false, zero and one, black and white – it can be grouped to
build more complex structures like bytes. Bytes then can be used to represent
any type of information like text, sounds and pictures.

Increasing abstraction level sacrifices the control for accessibility and us-
ability. Every tool imposes another level of abstraction on user although pro-
viding specific features. This theory is very evident in comparison of the pro-
gramming languages [39] where lower level languages are faster in execution
and harder to learn while those of the higher level are faster in development
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1. INTRODUCTION

but take more time to execute. High level tools allow users to start quickly
while having satisfying results. Unfortunately, as the need for the greater
control and efficiency rises user must turn to the lower level solutions.

The scientists are specialists in their respective fields and computers are
just another tools required for high efficiency of work. Requiring from the
users learning tools built only to create another layer of abstraction is not
optimal and should be avoided unless completely necessary. Additionally,
when users move between computers the tools they use may not be able to
work because of the specyfic environment or missing dependencies. This
may require switching to and learning different application.

1.2 Motivation, hypothesis and detailed goals

In order to fix the problems mentioned in the previous section the decision
was made to take slightly different approach than most popular solutions
which are presented in section 2.3. The motivation of this thesis was to ease
use of applications that scientists use on a daily basis by reducing the amount
of users’ required actions to the minimum. The solution of this problem
was building the tool that will be able to record actions performed by the
user, analyse those actions and effects they had on the operating system
and files, and finally create script that matches user’s workflow as closely
as possible.

The main and the most complex component in the presented solution are
advanced heuristics that will be used to parse, analyse and create internal
representation. Unfortunately, even the best algorithm will not always suc-
ceed or provide optimal data. Because of that the presented tool has been
provided as the best effort solution and might ask user for guidance in order
to improve the results and fix the possible mistakes.

The specific goals the created tool had to fulfil are:

1. Do as much as possible automatically: record actions, match argu-
ments, find relevant data,

2. Have a flat learning curve (or none at all): the tool should be easy to
learn but provide great flexibility for advanced users,

3. Work in the environment known to the potential user (no new level
of abstraction, transparency): since most programs run in a shell user
should not be required to use a browser or GUI for tasks involving their
usage,

4. Have no or minimal dependencies (applications, tools, frameworks):
this allows the designed tools to be portable and installable without the
administrator account,
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1.2. Motivation, hypothesis and detailed goals

5. Be portable and designed to use on different machines (PC, supercom-
puters, without root access): handle multiple environments (paths, file
names, variables) which will allow to perform the interaction detection
on personal computer but execute the generated script on different ma-
chine,

6. Allow the exchange of scripts (and internal representations): use a for-
mat that can be easily transferred between users and computers,

7. Give the same benefits as the similar tools that try to solve the same
problem but with different approach.

The methodology used to achieve the specified goals consisted of divid-
ing process of the automatic script creation into three parts: tracing, parsing,
and producing output (textual analyse, visual representation and executable
script generation). The minimization of learning curve could be done by uti-
lizing environment that is already known by users of a supercomputer and
scientific software namely the shell (e.g. Bash) along with common com-
mands. All commands executed by the user, running processes and their
children, must finally execute a system call. In that moment the designed tool
can record interactions between user and system. Those interactions include:
launching processes, opening and closing files, and reading and writing to
file descriptors. With the information about which process opened which
file along with information about what mode (read, write) was used for this
operation, the tool can create a data flow between different programs. Later
this flow can be used to recreate the order of commands executed and the
relations between them.

This sort of tracing does not require the adaptation to the created tool
from the user. The only required, additional actions are: enabling tracer be-
fore starting normal workflow and then using analytic or script generating
modules.
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Chapter 2

Techniques supporting in-silico
experiments

Firstly, this chapter presents the history of the automation and supporting
user in optimizing work on computer including social aspect of sharing work
and knowledge. Secondly, it overviews current technologies and trends in
information technology which can be applied to increase usability of such
systems. Next, there are presented current achievements in the field of sup-
porting scientific users in automating repeatable tasks by looking in detail on
three such systems: GridSpace, InSilicoLab and Galaxy. Lastly, it points out
lacks of competitive solutions and possible ways to improve.

2.1 Human-computer interfaces and user collaboration

The first computers started as mainframes, the big machines shared between
multiple users. The way of interaction between users and computers at this
time were the punch cards which required high level of skill and carefulness
since every mistake could cost hours of time and lots of money used for paper
and electricity. Because of that users of the same machine would naturally
collaborate, share knowledge and help each other fix mistakes.

The next step in the history was the creation of the terminals. At this time
users did not have to be in the same room as the computer because it could
be accessed remotely with simple but powerful text mode. This simplifica-
tion allowed to draw more people to write programs and quickly test and fix
mistakes. The remote access greatly reduced entry barrier but lowered the
level of collaboration.

Another big step in simplification of computer usage was the creation of
the graphical interfaces. This idea opened the concept of computers to every-
body by minimizing the learning curve and allowing more people to access,
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2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

learn and use the new technology. Graphical programs allowed people with-
out low level knowledge to calculate using spreadsheets, write texts using
word processors and paint using graphic programs.

The technology advancements allowed everyone to have a personal com-
puter. They were less powerful than the mainframes but allowed users
to work whenever they wanted and without competing for the system re-
sources. This again lead to collaboration reduction because people were
keeping all their work, results and scripts on private disks. Only necessary
code was shared because of the limitations of transfer methods and lack of
vision how their work could help someone else.

The latest presented revolution was the creation of Internet. World Wide
Web opened the way to share code, results and knowledge fast and easily
with anyone. Now Internet is full of shared scripts and codes, sites like
Github [20] with the slogan “Social coding” make big difference in getting
started and learning programming.

Unfortunately, they do not fix all the problems. Scientists are rarely found
on those pages and when they do they share code that is very specific to their
problem. This basically requires the potential user to learn technology and
get through the specific problem before he or she can use the found program.

2.2 Trends, technologies and models for software
development

Currently, the most rapidly evolving technologies are those based on the web
browsers and engines, namely HTML51 for layout, CSS32 for styling, and
JavaScript3 for manipulation. Those technologies, although created for use
on web pages, are now commonly used for desktop tasks. This is possible
by utilizing the browser engines: Gecko for Firefox4, Trident for Internet Ex-
plorer5, WebKit for Safari6, and Blink for Google Chrome7. Web technologies
can be used for example for desktop theming like in “Modern” mode of Mi-
crosoft Windows8, Gnome Shell9 and other. Node.js10 is using JavaScript en-
gine of Google Chrome to support usage of JavaScript for server side script-
ing to allow front-end programmers to work on back-end related work.

1https://developer.mozilla.org/pl/docs/HTML/HTML5.
2https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3.
3https://developer.mozilla.org/pl/docs/Web/JavaScript.
4https://www.mozilla.org/firefox/.
5http://windows.microsoft.com/en-gb/internet-explorer/download-ie.
6https://support.apple.com/kb/dl1531.
7https://www.google.com/intl/en/chrome/.
8http://msdn.microsoft.com/en-us/library/windows/apps/dn465800.aspx.
9http://www.gnome.org/gnome-3/.

10http://nodejs.org/.
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2.3. Virtual laboratories

The GUI programs allow new users to quickly start using them. Web tech-
nologies allow them to be simpler to create and extend. They fulfil promise
that Java could not keep: “Write once – run everywhere” [7]. Thanks to this,
the programmers do not have to worry about portability, look and techni-
cal details and instead they can concentrate on the most important aspect:
functionality.

The current trend for software development is making it as close to the
subject as possible. It can be achieved by creating programs with close col-
laboration with users or, thanks to the web technologies, creating them by
ourselves. The result of this approach is a great choice of applications, do-
main specific programming languages (DSLs) and tools. Those programs are
often created for a single use, project or person which allows them to be used
with the greatest human efficiency. Unfortunately, this user-centric approach
hurts portability between users and use cases.

A simple modification to make use of domain specific functionalities of-
ten requires full application rewrites. Every tool has its own design and user
experience which makes it harder to switch between the competitive solu-
tions. Additionally, those applications are often abandoned after the project
has ended or author does not have time for the development because they
are created by a single team or person for a single use case. This approach
wastes human power behind them and limits the innovations that could be
made by collaborating on a common project.

2.3 Virtual laboratories

One of the solutions for steep the learning curve of the command line and
low level programming languages are the “workbenches” like Mathemat-
ica11 and MATLAB12. Those are desktop programs that target computational
sciences and provide a simple syntax similar to the natural language. Their
distinguishing features are: visual feedback, graphical representations, hints,
history tracking and sharing. On the downside, they target only specific do-
main making them unusable for different types of computations they do not
provide.

Another solutions for steep the learning curve are those using web tech-
nologies: Virtual Laboratories or Science Gateways13. There are multiple so-
lutions distinguished by a different range of features, licences, governance
model, and targeted use cases. The next sub-sections present three repre-

11http://www.wolfram.com/mathematica/.
12http://www.mathworks.com/products/matlab/.
13Following [35]: “A Science Gateway is a community-developed set of tools, applications,

and data collections that are integrated through a portal or a suite of applications. Gateways
provide access to a variety of capabilities including workflows, visualization, resource dis-
covery, and job execution services”.
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2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

Figure 2.1. Screenshot of GridSpace interface [2]. It shows two columns: files
and experiments. Experiments columns are tabbed and each tab contains mul-
tiple snippets and output of executed snippets.

sentatives of this category differencing in accessibility, targeted audience and
provided features: GridSpace, InSilicoLab and Galaxy.

2.3.1 GridSpace

GridSpace is a “novel virtual laboratory framework enabling researchers to
conduct virtual experiments on Grid-based resources and other HPC infras-
tructures. (...)” [2][6][5][3][24].

GridSpace was created as the generic tool that will allow scientists to ac-
cess computational resources with ease and consistency. The main windows
shown in Fig. 2.1 present the two column layout. The left column allows
browsing files on the connected cluster while the right column displays the
tabbed list of experiments. The experiments are divided into two rows: the
snippets with all source codes and the inputs/outputs management, and the
lower row where the output of commands is shown.

The history of commands and snippets can be saved and executed mul-
tiple times. GridSpace offers its users the high level of control and flexibility
by allowing usage of many scripting languages like Bash, Python and Ruby.
That means it can be easily used for working on multiple tasks but will never
compete with tools created specifically for one problem.

The technology used for the implementation includes Java and SSH
both giving the developers great deal of flexibility and compatible tools.

8



2.3. Virtual laboratories

Figure 2.2. Screenshot of the InSilicoLab interface [25]. The screen is split into
3 parts: experiments, history and management; LFC file browser and tabbed
experiment details.

GridSpace currently can be executed on multiple clusters, is actively main-
tained and new features are added when needed. It is a mature software that
can easily be customised and integrated into the new tools. The layout and
features resemble the tools like Mathematica and MATLAB.

2.3.2 InSilicoLab

InSilicoLab is “a framework of application portals that support e-science re-
search by facilitating the access to computational software deployed on dis-
tributed computing infrastructures and the management of data and pro-
cesses involved in such scientific computations. (...)” [25][29][28][14][27].

InSilicoLab has its roots in GridSpace framework. It was built using the
same technologies but with different purpose in mind. The goal was to cre-
ate experiments for a single use only thus giving users most feedback and
maximally accelerating their work.

The main windows of InSilicoLab visible in Fig. 2.2 consist of the three
regions: on the left the executed experiments and the list of files while on
the right the experiment tabs. The experiment list panel shows currently
running, finished and cancelled experiments. This window may later be used
to check the results or execute the jobs again.

The experiments in the InSilicoLab portal are created for a specific use

9



2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

Figure 2.3. Screenshot of Galaxy interface [19]. Shows three column layout:
left with the list of tools, center with the tool content, forms and results, and right
with the the history of the run commands and options.

only. Currently, there are three deployed portals: for chemistry, CTA14 and
astronomy. The each one is customised to fit various needs of the users, e.g.
the chemistry version provides users with charts and tables of energies.

InSilicoLab uses Java, gLite and DIRAC to run jobs on clusters in grid
infrastructure. Downside of the user centric approach is the creation of new
experiments requires experienced developer. On the other hand, the results
of customized portal can be very rewarding with fast and easily manageable
results. Unfortunately, InSilicoLab does not currently allow the creation of
workflows, so for experiments that have connected inputs there is no solution
other than creating septate jobs and providing data manually.

2.3.3 Galaxy

Galaxy is an “open, web-based platform for data intensive biomedical re-
search. Whether on the free public server or your own instance, you can
perform, reproduce, and share complete analyses.” [19][22][12][4].

Galaxy project was created to support biomedical studies. The web portal
has a three column view and can be seen in Fig. 2.3. The left column contains
tools categorized in sections. Those tools are installed by the project admin-
istrator who can control which tools can be used on their instance. The right
column represents command history where all executed jobs are displayed.

14Cherenkov Telescope Array.
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2.4. Drawbacks of presented tools

When job starts user can cancel it or view its current status and output, or
execute it with a different set of parameters. The history can be saved for
the later use and usually represents user’s single workflow. The column in
the middle contains the detailed view of the selected tool. At the beginning
it shows a form with the specific fields for inputting information. While the
tool is running it shows the details of a job and provides access to standard
output and error streams.

Galaxy allows users to create their own tools and share them on the com-
mon website, where administrators can find them and install on their local
instances. Those tools can then be used standalone or, if developer prepared
them, as the parts of workflows. The workflows are created by the “drag
and drop” technique, similar to the component programming: users draw
the connections between outputs and inputs of the tools. Those workflows
can also be shared later.

2.4 Drawbacks of presented tools

This and the previous chapters show that creation of a tool that is at the same
time easy to use, powerful, and portable between users and environments
is a non trivial task. Usually, the designer has to choose if the tool will be
effective but targeted only for the limited use cases or provide advanced cus-
tomization options at the cost of requiring prior knowledge. The best option
is to create the tool that can be simply learned, but also easy to extend and
modify like for example embedding C code in Python for optimizing com-
putation intensive parts.

All of the mentioned tools in section 2.3 provide users with the assortment
of great features. They all ease access to computational resources, underlying
software and technologies but at the same time they make users dependent
on their solution and loose control of underlying layers like a shell. Being
dependent on a specific software can cause problems when the goals of the
authors no longer match needs of the users for when the project development
is cased.

In case of InSilicoLab and Galaxy when the new software or software ver-
sion shows up the users have to wait for the developers to add support which
can take hours, days or months. If the user depends on the bleeding edge
software, he or she has to temporary (or permanently) switch to the console,
defeating the purpose and dismissing the effectiveness of those tools. Even
if this problem does not appear now as the software is actively developed it
is not guaranteed to last long enough and requires users to trust and rely on
the specific solution.

InSilicoLab does not currently provide any community features while
Galaxy only allows sharing of the workflows built from the building blocks
that were already provided by the developer. According to the created re-
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2. TECHNIQUES SUPPORTING IN-SILICO EXPERIMENTS

quirements GridSpace comes the best. It is built with collaboration in mind
and allows sharing work between groups of users. It provides users with the
access to low level tools but eases this process by simplifying the access meth-
ods, providing graphical wrappers and automating common tasks. Unfortu-
nately, it does not provide domain-specific features, does not allow simple
creation of the workflows, and provides no easy way to share them.
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Chapter 3

Functional and non-functional
requirements

This chapter presents functional and non-functional requirements needed for
the correct implementation of the proposed system. Functional requirements
are split into the functional modules allowing easier implementation and
forcing better software quality from the viewpoint of software engineering.
Next, use cases needed for the validation of the tool are presented. Lastly,
non-functional requirements which should be taken into consideration while
developing software for the better use of available resources are listed.

3.1 Functional requirements

The overview of the tools presented in the previous chapter allows the cre-
ation of fields of improvements and the creation of completely new solution
based on the re-imagined concept.

The specified requirements are similar to the goals defined in section 1.2
and were as follows:

1. It should be transparent to the user: do not interfere with the normal
user’s worklow and instead trace and analyse,

2. It should require the minimal prior knowledge,

3. It should be automatic, but not smarter than the user: just the best-effort
solution,

4. It should support and embrace collaboration,

5. It should analyse what the user is doing and derive knowledge from
his or hers actions,

13



3. FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

6. It should allow to recreate user’s actions as closely as possible: with the
special filters and use of knowledge like repeated actions, overwrites,
etc.,

7. It has to transform specific solution to the more generic one.

Those points sum up to the one simple idea: the new tool should trans-
parently learn from user’s actions, made in his or hers natural environment,
and then recreate those actions by making the generic and parametrized in-
ternal representation, that can be later shared, modified and transformed into
a specific script.

The following sub-sections divide functional requirements into categories
that were later used to create the proof-of-concept implementation and set
the direction on the future development. The carefully conducted analysis
allowed the creation of the tool that meets the needs of users, does not contain
fundamental flaws and allows future extensions [41].

3.1.1 Transparent tracing and best effort automatization

The main objective of the designed system is for it to be as much as possible
transparent to the user, so it will not disturb his or hers daily routines. The
tracing tool is supposed to gather all required data without forcing the user
to run special commands, make forced stops or start over in case of made
mistakes. The tracer should only capture all user actions along with the ad-
ditional meta-data and analysis of the gathered data should be made later.

The automation of the tools relies heavily on the heuristic engine that will
make the decisions about parameter matching, data flow detection etc. Since
no algorithm can match all use cases it makes the designed tool not fully
automatic but rather the best-effort solution. In order to cover as much as
possible use cases, the tool should not forbid user from helping in making
decisions and should allow to make manual improvements, and direct the
tool in desired course by using special directives.

Despite the tracking executed processes and opened files the tool should
be able to match the parameters of consecutive commands, allowing them to
be set to variables and in addition have the ability to run parameter sweep
on those arguments1 in the most optimal form (script, array job2, etc).

3.1.2 Requirements for post tracing

There are two goals of the analytic tool. The first is to present relevant data
retrieved from parsing to the user and providing user with the information

1Parameter sweep means running the code multiple times using unique sets of input pa-
rameter values [23].

2Array jobs are parts of Job Arrays, that allow user submitting multiple sub-jobs perform-
ing the same (while using the same script.), but operating on many data sets [8].
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gained by running heuristic engine on output of the tracer program. The
information should include, but not be limited to: the opened files and their
modes, the amount of data read/written, the number of missing files, the
throughput of those files and the frequency of I/O operations. Optionally,
user should have access to the representation of the data flow in the text
and/or graphical form.

The second role of the analytic tool should be the manipulation of the
created internal representation of the data flow and process dependencies.
The manipulation should be manual (adding file or program nodes by hand)
or automatic (merging two alternative program executions).

3.1.3 Possible outputs of script generation

There are two separate requirements for generated scripts: the language of
generated script, and the more important: the type of generated script. The
simplest language to generate script is the same language from which the
data was gathered. After detecting program flow and matching parameters
only pasting of commands with substituted values is required. Implement-
ing generation for other languages is a simple task and it only requires the
usage of language specific functions like “subprocess” from Python [16] stan-
dard library.

The possible three types of generated scripts are as follows:

• Executable: this is the script that simply reruns relevant, user executed
commands,

• Batch: the same as above but with the additional “PBS” directives3.
More can be found in the section 3.1.4,

• Script-generating scripts: the scripts that will generate executable or
batch scripts with parametrized values. More can be found in section
3.1.4.

3.1.4 Aiding user in the effective supercomputer usage

Flawlessly migration from the local computers to the supercomputer and/or
improvements of the usage of shared resources can be achieved by generat-
ing batch scripts (as stated in the section 3.1.3) and script-generating scripts
with optimized directives. The optimization to “walltime” and “resource”
directives (setting them to the values closely matching real run time allows
shortening queue times for all users) can be made by analysing run time of a
program, spawned processes, run time depending on the input data size and
the additional metadata specified by the cluster administrator (like suggest-
ing the type of node for the specific executable). Also the frequency of I/O

3Portable Batch System is described on the official site of Adaptive Computing [9].
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operation and the amount of the data read can be used to suggest the type of
storage on which the data should be stored, for example Lustre for frequent
operations and GPFS for storing final results.

The role of script-generating script is to make parameter sweep, gener-
ate batch scripts and run them on the proper nodes. The parameter sweep
should be made intelligently by utilizing provided features of the resource
managers when possible (for example TORQUE provides “array jobs”, de-
scribed earlier) and falling back to generating multiple scripts when no better
solution was found.

3.2 Use cases for the validation

In order to ensure the proper direction for the designed software and allow
later validation the use cases must be defined. They should cover the basic
functions that can show the tool’s potential without requiring full system im-
plementation: this allows fast prototyping, incremental improvements and
direction reshaping. Since the main focus of this work is to improve the work
of scientists, almost all the use cases will cover data flows most commonly
appearing in their workflows.

The first two testing examples were prepared just for the testing purposes
of this work and represent the most commonly encountered data flows. They
consist of multiple files and processes and by proper handling of them the
designed tool should cover high amount of the available software. As they
do not provide any parameters, they can only be used for validating data
flow detection and not parameter matching.

The next two use cases are represented by the two real-world application
suites. Turbomole [21] is used in quantum chemistry and represents lots of
programs used in this field. The second suite is used in CTA project [10]
and consists of multiple executables that are executed depending on the type
of the input files. All those executables can alter their behaviour based on
the number and the type of the input files and program arguments. Both
of those suites can be used for the validation of flow detection, argument
management and alternative data flow merging.

Although the main focus of the created software is aiding scientific en-
vironment last considered use cases should include the other types of work.
Unfortunately, not much tools work on the same basis as the scientific soft-
ware where data flow can be easily detected because the consecutive pro-
cesses are connected by read and written files. In order to cover this use case
without having to heavily modify heuristic engine of the prototype the one
administrative workflow was chosen: the creation of virtual machine using
libvirt [30].
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3.3 Non-functional requirements

The requirements presented in chapter 4 cover the basic but essential func-
tional requirements and general concept of the designed system. This alone
can be used to implement the software which will fulfil the specified role al-
though it does not guarantee good user experience. To create the software
that not only addresses specified problem, but does it well, and improves
users’ experience in the targeted field, the additional technical requirements
are needed.

The following list enumerates the gathered non-functional requirements
and the functional additions that can be used to extend the designed system
and improve its usability:

• Tracer directives: the special, control directives that can be used to con-
trol tracer behaviour to better suit user needs or to later help the parser
with better understanding the data flow,

• Automatic paralleling: the feature that can be very effective in optimiz-
ing computer usage. It can be implemented by analysing the data flow
and finding the commands which can be executed in parallel, based on
the detection of common file that works as a “barrier”4,

• Automatic checks and warnings: e.g. generated scripts can include fea-
tures that check if the required files are present in the specified location
before the execution,

• Documentation and examples: although the detection of the data flow
is transparent, some modules require interaction from the user. Good
documentation can help users learn the tool faster, prevent possible
mistakes and inform about the advanced features,

• Open, standardized, text based API: allows creating multiple imple-
mentations in different languages and with different set of features,

• System modularization: allows the extensibility and exchange of spe-
cific module for the different implementation,

• Open source: allows collaboration, continuous improvements and
faster error detection and fixes.

4Type of synchronization method.
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Chapter 4

Concept of the action tracking
system

This chapter provides the overview of the system architecture. Starting with
the general concept, explaining the system as a whole and reasoning behind
the division into specified modules. The chapter also includes the description
and analysis of data flows that are the main concept on which the system can
be built. Lastly, it includes the description of the environment and tools used
in the proof-of-concept implementation.

4.1 General concept

To implement the functionalities covered in the chapters 3 and 4 the sys-
tem architecture was split into separate modules depending on functionality.
Those modules are connected using a simple text based APIs. This design
allows interchanging the single module between different implementations
in any language and from any developer who can implement required func-
tions and protocol handling. The approach is based on Unix philosophy,
proven successful over many years: “This is the Unix philosophy: Write pro-
grams that do one thing and do it well. Write programs to work together.
Write programs to handle text streams, because that is a universal inter-
face.”1. Although separated modules cover one simple functionality, they
share data structures and basic functions, and for that reason the library with
common code was created. The language of choice for this implementation
(for most modules) is Python as it provides the programmer with great flex-
ibility and syntax that helps maintain good practices while coding. More
importantly, Python as the interpreted language allows fast prototyping and
testing. Since the tools are not meant for computational operations, speed re-

1Quote by Doug McIlroy, the head of Bell Labs CSRC and inventor of the Unix pipe [15].
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Figure 4.1. The division of the system into independent modules connected by
open, textual interfaces. The modules represent the core functionalities of the
created prototype and can be further improved to cover all possible use cases
and data flows as described in the chapters 3 and 4 and extended as proposed
in the chapter 7.

duction does not have negative implication. If needed, speeding the critical
parts can be easily implemented in C language by using standard C-Python
interface. Lastly, Python is a very popular language as it is installed on all
major Linux distributions by default. This goes well with the requirement of
portability, transparency and targeted low learning curve.

The separate modules, which create full working system, are presented
in Fig. 4.1 and include: the tracing program used to record user-system in-
teractions, the parser used to analyse data gathered by the tracing program,
the analyser used to print the information gathered in the process of tracing
(found processes, files, I/O operations), the visualizer used to visualize data
that can be used to verify the detected data flows, and lastly, the generator
used to generate scripts based on the detected data flows.

To present the usage of all modules one prepared use case will be used
– TURBOMOLE. That example consists of one executable used to compute
results (ridft) and arbitrary number of standard system commands like direc-
tory listing and file reading.
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Figure 4.2. The idea of the transparent tracking of user-system interactions with
comparison to the normal workflow and virtual laboratories.

4.2 Methodology of transparent user action tracing

The main idea behind the project described in this thesis was to elaborate the
tool that can improve users daily routines by automatically analysing and
repeating executed tasks without breaking their habits and requiring extra
actions. The “proposed solution” in Fig. 4.2 presents the way of achieving
this goal by creating a transparent layer between user (represented by shell
or console program that user directly manipulates and executes commands
in) and operating system, that will track (or intercept) all events arising in the
process of interaction between user and computer.

Listing 4.1 presents the execution and output of three basic commands
that display and manipulate files and directories:

• “pwd”: print working directory;

• “ls”: list directory/file information, directory content, with the “-a”
argument that additionally shows “hidden“ files beginning with dot
(including “.” (single dot) – current directory and “..” (double dot) –
parent directory);

• “cd”: change directory, with the argument “..” (parent directory).

21



4. CONCEPT OF THE ACTION TRACKING SYSTEM

1 % pwd
2 /home/test
3 % ls -a
4 ./ ../
5 % cd ..
6 %

Listing 4.1. Exemplary commands entered by the user in the terminal with their
respective outputs after the execution. This example includes 3 file/directory
manipulation and information commands: “pwd” – print working directory, “ls” –
list (directories, files), and “cd” – change directory.

The last line represents the empty prompt line that indicates that shell is
waiting for the new command to be typed by the user.

On Unix systems those “high” level commands are used to perform all
actions on the system. They may be complex programs, scripts, or short
functions. Although they differ in functionality, and their implementation
vary greatly in source code length, they all use low level functions provided
by the operating system. Those simple instructions are the system calls that
are always used to perform actions involving processes and files.

1 pwd
2 ls -a
3 cd ..

Listing 4.2. The history of previously executed commands (as shown in Listing
4.1) as saved by the Bash shell.

The additional source of a valuable data is the history of commands exe-
cuted by the user. Listing 4.2 presents the history of commands as saved by
the shell from the executions of commands presented in Listing 4.1.

4.3 Finding relations between different processes

As stated in section 4.2, the main source of knowledge is the user-system
interaction that manifest itself as a list of system calls with the addition of
the history of executed programs. The knowledge obtained in this process
may now be used to create the flow between consecutive commands. This
connection can later be used to automatically create scripts.

At this point, it may look like the history of commands generated by the
shell is just enough for the user to automate tasks by himself or herself as it
only requires him or her to copy and paste commands to a file, add execution
rights and run it. Unfortunately, the history of commands is, although very
helpful, not enough on itself. The usage of the history alone requires user
to not make mistakes, run commands only once, and focus only on a single
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Figure 4.3. The relationship between two different processes and their relation-
ship which manifests itself as the flow of data that is being written by the first
process and read by the second process.

task as executing commands not connected to the main objective will also be
repeated. Since the history is shared between the sessions and terminals it
requires clean-up by hand to obtain only relevant commands. Lastly, the his-
tory can not be parametrized automatically, does not handle conditional ex-
ecution and requires many manual actions to create “optimized” executable
script that can be use multiple times.

The data flow is created by analysing the data that are being transferred
between the processes in a form of files. Some processes write files while
the others read the previously written text or binary data. By implementing
the complex heuristics the program can intelligently connect commands and
files (it is explained in chapters 4 and 5) to generate an internal representation
which can later be used to generate executable scripts.

4.4 Types of data flows, detection and analysis

The main idea on which the concept of this work is based is the detection of
the data flows. They are represented by reads and writes to files made by the
processes executed by the user explicitly or implicitly inside those processes
as presented in Fig. 4.3. The following subsections cover possible data flow
shapes, methods of detection and analysis.

4.4.1 Linear flow shape, a chain

The simplest possible data flow includes only one process and one file which
is created by this process. The possible example of this kind of flow is the
use of date command and redirecting output to a file. Slightly more complex
example is shown in Fig. 4.4 and contains five-element chain of three files
(input, intermediate and output) and two processes manipulating those files.
This kind of flow is very straightforward to analyse and recreate.
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Figure 4.4. The simplest possible data flow: a chain. In this example the chain
consists of one input file, one intermediate file and one output file, which are
accessed by two processes.

4.4.2 Tree flow shape, parallelization

The slightly more complex data flow is presented in Fig. 4.5. The tree is a
combination of multiple linear flows which are connected at some point in
a program that requires multiple inputs. The branches which are just linear
flows can be safely executed in parallel thus minimizing the total time needed
for the whole flow to finish.

4.4.3 Smart flow detection: ignoring redundant data

The smart flow detection is a key feature of the designed system, it differen-
tiates from the other solutions and greatly extends the idea of simple history
from provided by the command line shells. Fig. 4.6 visualizes files and pro-
cess gathered by the tracing program and founds relations and their lacks.
The filtering of non meaningful commands can be done by excluding com-
mands and files that are not connected to the final file or group of files. In Fig.
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Figure 4.5. The slightly more complex data flow: a tree. In the picture the
simplest version of this flow type with only two branches.

process one (P1) is not needed to create file 3 (F3) and can be safely ignored,
and not included in the generated script.

4.4.4 Flow corruption prevention

The other important use case to consider is the situation in which the user is
testing one of the programs by launching it multiple times. In this case the
data flow will be visible as shown in Fig. 4.7. One program (but different pro-
cess with its own PID) is executed multiple times and saves its output to the
same file. By analysing the flags used to open this file (and intermediate op-
erations between subsequent launches), the program can classify (with high,
but not 100% certainty) if consecutive executions were needed for a normal
flow creation or for testing purposes only. If the consecutive runs were not
required, the file was probably opened with the overwrite mode, truncated,
or removed before the following runs. Otherwise the file should be opened
with append flag.
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Figure 4.6. The relationships and their lacks can be used to automatically detect
if consecutive commands are connected.

Figure 4.7. The detection of the flow corruption caused by launching one pro-
gram multiple times can be avoided by analysis of the flags used for opening
files.
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Figure 4.8. Opening file for read and write can cause searching for predeces-
sors to fall into the infinite recursion. To avoid this, the tool should not visit the
same node twice while traversing graph.

4.4.5 Flow recursion while opening files for read and write

In all previous flow examples, files were opened for reading or for writing,
but not for both. The flow detection is based on going from written file to
writing process starting on user defined file. If the process is reading and
writing the same file, traversing graph will cause the recursion to be infinite
and crash the program. This situation can be avoided by preventing search-
ing function from entering the same node twice. Although the infinite recur-
sion is prevented by the defined rule, it may still be useful to analyse this
situation thoroughly. One of the possibilities is when the program is reading
the whole file, truncating it and then writing new contents. If this was the
case, this file should be treated as two different files. Another point to con-
sider is that although the file was opened for read and write, this does not
mean that any read and write operations actually happened and it should be
checked explicitly.

4.4.6 Flow parallelism

As demonstrated in the subsection 4.4.2, the parallelization of the traced data
flow can be done by running the tree branches at the same time up to com-
mands that depends on both outputs. For the tool it does not matter if in
time of tracking the tree branches were executed sequentially or in parallel
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Figure 4.9. In terms of data flows, parallel execution does not make flow parallel.
The parallelization of data flows happens only when two processes read and/or
write to the same file at the same time.

as long as they join in one point in time. The only situation in which the data
flow is actually parallel is when the two (or more) processes write and/or
read the same file at the same time. Fortunately, since the system calls are
always made in the sequential order the analysis tool can always properly
detect data flow and command execution order.

4.5 Merging of alternative data flows

As presented in section 4.4 there are multiple possible data flows. Many pro-
grams provide different execution paths depending on the initial conditions
like file contents and environmental variables. Some programs consist of
multiple executables from which some are more commonly used than the
others. This situation creates the possibility that one executable can create
different data flows. The simple example is presented in Fig. 4.10 where
FLOW1 presents the flow with two executables (first creates the intermediate
files from the initial files) and FLOW2 consists of only one executable which
is executed already on prepared intermediate files.

Since the user is offered transparent tracking, he or she should not be
forced to always present all possible data flows from the beginning. Rather,
the designed tool should ultimately allow automatic detection and merging
of those alternative data flows. This information can be later used to choose
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Figure 4.10. The example of two possible data flows for the same application
package containing two programs, in which the type of flow is determined by
the initial conditions. This can be used to demonstrate “alternative data flow
merging” functionality.

a specific flow at the script generation step or even at runtime according to
the detected environment and starting conditions.

4.6 Choice and analysis of external dependencies

In order to implement required functionalities swiftly and optimally, the
proper analysis and revision of the available and commonly used tools was
required. The following subsections provide a short overview of the environ-
ment that is being targeted by the designed tool, namely a shell and possible
combinations of the commands that may be executed in this environment,
and low level functions that are executed by the operating system to perform
operations represented by high level commands/programs.

4.6.1 Command Line Interface (bash), the execution environment

The designed tool in its current version targets text environment as it covers
most of the scientific and administrative tasks performed by the users. Shell,
in command line interface is an interactive (or batch) environment, that can
be used to execute arbitrary commands and present their results to the users.
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Shells function as REPL2, wait for an input on standard input (usually con-
firmed by the “enter key”), evaluate the command (call internal function,
execute program), and print the results to the standard streams: output and
error (usually a screen, but this can be redirected to file or socket). There are
two main families of the standard command lines shells for Linux (Unix and
Unix-like systems): sh (Bourne shell) and csh (C shell). According to the De-
bian3 popularity poll4, the sh family dominates the contents by high margin
(sh-like: 160 000 vs csh-like: 2 500). Based on this data, creating software for
Bash shell provides project with best possible combination of required devel-
opment time and possible market requirements.

GNU Bash [18] is GNU Project’s shell. It is the default shell in TOP 20
distributions on DistroWatch.com website5. This shell is fully compatible
with sh, contains many additions and improvements over the original and
incorporates many features Korn shell (ksh) and C shell (csh) brought to the
users.

4.6.2 Possible combinations of commands

Bash supports five types of commands which are presented below in the order
of priority6:

• Aliases: short functions that improve usability. The popular aliases in-
clude: “ll” for “ls -l” and “..” for “cd ..”,

• Spacial builtins: builtins that are, for historical reasons, treated with
special rules, not important in the terms of the created tool,

• Functions: the user defines functions, that offer more flexibility than
aliases, usually used for encapsulating the most commonly executed
sets of actions, for example: “function cdl cd $1; ls; ” which allows
user to execute “cdl PATH” that will enter directory and list all files
afterwards,

• Builtins: functions built into the shell. Implemented for the purpose
of the usability (“type” is a builtin that informs about the type of other
commands), speed (“cd” – the external program would be slower), or
to provide the essential functionalities of the shell itself (“bg”: puts the
job into the background),

2Read-Eval-Print-Loop.
3Debian project [37] – one of most popular Linux distributions.
4Debian’s popularity poll [38] – voluntaries can opt-in to send statistics of installed pack-

ages which are later accessible on this page.
5distrowatch.com [31] – the website which catalogues the information about Linux distri-

butions and packages.
6On the execution Bash searches the internal structures until it finds first that includes

command specified by the name entered by the user
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• External executables in $PATH: include all executables in the system as
long as they are directly in the directory specified in $PATH environ-
mental variable.

Knowing the type of command is essential for building a proper inter-
nal representation. The external executables are usually the same, for the
specified software, on different computers, but aliases and functions are usu-
ally user specific. This may prevent the execution of the generated script
on a different machine with a different environment. To solve this problem
the created program must gather the environment data and inform the user
about possible missing command beforehand so they can be manually (or
half-automatically) added to the generated script. The analysis of the com-
mand type can be done by subtracting three sets of commands: all commands
(gathered from the shell history), builtins (known beforehand from the speci-
fication), and executed processes (found in the tracing output). This subtrac-
tion will leave out “user definied” commands from the remaining groups:
“aliases” and “functions”.

The other possible classification of the executed commands is in terms of
data flows, specified in the section 4.4:

• The commands that modify files: reading and writing from and to
files, but also creation and removal, copying and moving, for example:
“touch test.txt – creates file”,

• The commands that modify file meta data: modifying file attributes,
timestamps, etc.,

• The commands that modify the environment: setting, unsetting and
exporting variables,

• The other commands: all not included in the previous points, for exam-
ple: bg. fg, etc.

The most important commands are naturally those that modify file con-
stants as they create the data flow. On the other hand, without the analysis
of the other types the system may not be able to reproduce all required steps
to accurately recreate the user executed flow and without the specific envi-
ronment it may not work at all since it may not find required executables in
$PATH. To avoid those problems, in the beginning, possibly the most impor-
tant builtins in terms of this project should be analysed. Below list include
those builtins and the potential problems:

• source, “.”: used to execute commands from a file. Firstly, those com-
mands are not visible in the history, secondly they are treated as sub
commands of the source (although they are executed in-line as the sep-
arate commands), and lastly, the sourced file can not be replaced with
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1 $ echo $MYVAR
2
3 $ export MYVAR=myvalue
4 $ echo $MYVAR
5 myvalue
6 $ true
7 $ echo $?
8 0
9 $ false

10 $ echo $?
11 1

Listing 4.3. Commands and their outputs executed in Bash shell.

the other arbitrary file, but only by one file that was specified as the
argument,

• export, set, unset: used to manage the environment which may change
$PATH (the order of directories in this variable determines lookup or-
der), or other variables that determine and change the behavior of
launched executables,

• exec: used to replace current shell with the specified program. It may
include change of the interpreter (e.g. from Bash to Python) which will
break the current model of analysis.

Bash allows “connecting” or “chaining” all presented types of commands
in multiple ways. Those methods allow better representation of the natural
flows and reduction of user time required for implementing them by intro-
ducing “syntactic sugar” optimized for shell specific operations. In order to
present those operators, four standard commands will be used: true – which
always succeeds (returns 0 exit status), false which always fails (returns 1 exit
status), export which sets environmental variable and exports it to sub-shells,
and echo which can print variable to the screen. Before presenting the pos-
sible operators and their roles, the one standard flow is presented in Listing
4.3 (note: variable “$?” represents exit code of the last executed command;
printing unset variable returns the empty value displayed as the new line).

• “;” – allows entering multiple commands on one line:

1 $ echo $MYVAR; export MYVAR=myvalue; echo $MYVAR; true; echo $
?; false; echo $?;

2
3 myvalue
4 0
5 1
6 $

32



4.6. Choice and analysis of external dependencies

• “&&”: the conditional (and) operator. Executes the next command(s)
only if the first command succeed:

1 $ true && echo "success"
2 success
3 $ false && echo "success"
4 $

• “||”: the conditional (or) operator. Executes the next command(s) only
if the first failed:

1 $ true || echo "success"
2 $ false || echo "success"
3 success

• “()”: the sub-shell operator. Launches new sub-shell for commands
inside parenthesis:

1 $ echo $MYVAR; export MYVAR=myvalue; echo $MYVAR;
2
3 myvalue
4 $ echo $MYVAR; (export MYVAR=myvalue); echo $MYVAR;
5
6
7 $

The presented operators are built into the shell interpreter and are not
visible in system calls. In order to properly analyse the flows containing
those characters cross check between the shell history and the list of launched
executables must be made.

Bash provides many additional operators and functionalities that are not
commonly used or not important in terms of this project. The remaining list
of characters that should be analysed by the designed system is presented
below (note: cmd – the suitable command):

• “cmd &”: the ampersand is used to put the job into the background.
Can be utilized for simple multiprocessing,

• “<(cmd)”: “process substitution” allows the process to appear as file
for another process. It is a simple form of IPC7,

• “CTLR+Z” keyboard shortcut: can be used to pause the job, which can
then be put to the background using bg builtin,

7Inter Process Communication
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• “#”: the comment sign. Everything after the comment sign is ignored
by the shell. Can be used for the implementation of the special control
directives.

The presented lists included the most important information and possi-
ble traps that should be considered while implementing the tracing module.
Those list are by no means complete and target only specific environment
and the current version of GNU Bash.

4.6.3 System call tracing: strace

In order to gather the information about system calls, presented in section
4.6.4, the tracing program must be able to intercept the calls between user
executed programs and the system. One possible solution to solve this prob-
lem is the usage of “strace” [26], the program which can be found in all stan-
dard Linux distributions like Debian, Ubuntu, Fedora, Red Hat and all their
derivatives. Since it can be found in the standard repositories and is usually
pre-installed its code base is mature and tested. It is also widely used by the
administrators for debugging purposes. Because of that strace can be used
as a tool of choice for the tracking system calls instead of programming this
kind of software using ptrace system call directly or using a preload technique
just for the purpose of this project.

Strace can track both system calls and signals sent and received by the
tracked process. The process tracing can be done by specifying command as
strace argument or by attaching it to already running program by passing
PID8 to it. While attached, strace intercepts all (or the specified list) system
calls and signals and logs them to the screen or to the file. The child processes
and threads are also tracked, as long as they are executed after attaching. The
additional features of strace include: logging time of when system call was
made and printing overall statistics of how much time each call type took
4.4.

There are three types of strace output lines (the sample output is presented
in Listing 4.5):

• signals: “— SIGINT (Interrupt) —”,

• system calls: “close(3) = 0”. Dominant in the output, they consist of the
three parts: the call name, the arguments and the return code and the
error name in case of error,

• the unfinished/resumed system calls: “select(4, [3], NULL, NULL,
NULL <unfinished ...>”. The result of functionality for preserving the
order of calls between different threads/processes in the process group.

8process identifier
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1 % time seconds usecs/call calls errors syscall
2 ------ ----------- ----------- --------- --------- ----------------
3 44.38 0.000213 213 1 execve
4 16.46 0.000079 10 8 mmap
5 16.04 0.000077 39 2 open
6 8.54 0.000041 21 2 fstat
7 5.62 0.000027 7 4 mprotect
8 3.54 0.000017 6 3 3 access
9 2.71 0.000013 13 1 munmap

10 0.83 0.000004 4 1 read
11 0.83 0.000004 2 2 close
12 0.62 0.000003 3 1 brk
13 0.42 0.000002 2 1 arch_prctl
14 ------ ----------- ----------- --------- --------- ----------------
15 100.00 0.000480 26 3 total

Listing 4.4. Output of strace command with ’-c’ switch, containing the statistics
of how much time each system call took for “true” program.

1 execve("/bin/true", ["true"], [/* 60 vars */]) = 0
2 brk(0) = 0x1411000
3 close(3) = 0
4 open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
5 close(3) = 0
6 arch_prctl(ARCH_SET_FS, 0x7f92ce0ed700) = 0
7 mprotect(0x7f92cdeda000, 16384, PROT_READ) = 0
8 mprotect(0x604000, 4096, PROT_READ) = 0
9 mprotect(0x7f92ce107000, 4096, PROT_READ) = 0

10 munmap(0x7f92ce0ef000, 89297) = 0
11 exit_group(0) = ?

Listing 4.5. Sample, partial output of strace executing true command

As presented, the output of strace provides the administrators and devel-
opers with all needed information for the fast problem detection and anal-
ysis. Also developers can use it as a flexible tool for detecting application
bottlenecks. Without this data it would be impossible to create data flow that
is crucial for this project to operate.

4.6.4 Description and usage of selected system calls

System calls are the most basic functions provided by the system to all pro-
grams. The operating system provides those methods in order to control
permissions and allows architecture independent way of performing tasks
on processes, descriptors, files and more. Those calls include starting pro-
cesses, opening and closing files, manipulating file descriptors, and reading
and writing data to open descriptors. Although computational part of the
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program codes does not utilize system calls and instructions like condition-
als and loops are not represented by those functions, they provide significant
amount of the information that can be used to debugging and analysing be-
haviour of the programs.

Presented below is the list of selected calls from Linux kernel which are
recognized by the tool prototype [32]:

• fork [26] – create a child process: fundamental call in Unix systems9.
Along with “exec” allows the creation of the running processes. This
chain starts with PID 1 (init) which uses fork and exec to run all pro-
grams in the system. The newly created process – “child” – is the ex-
act (except some points mentioned in manual, not important from the
point of view of this work) copy of its “parent”. Tracing this call allows
creating of PID node in the data flow representation,

• clone [26] – create a child process: similar to fork, but with different im-
plementation details,

• execve [26] – execute program: (usually) called after fork. This call re-
places the current process with the new process created from specified
file. Tracing this call allows adding the additional information like path
to PID node,

• chdir, fchdir [26] – change working directory: used to change current
working directory to the specified new one,

• open,openat [26] – open and possibly create a file: returns the file descrip-
tor to the file specified by “path”. Tracing this call allows creation of
file nodes,

• close [26] – close a file descriptor: closes specified file descriptor,

• unlink, unlinkat [26] – delete a name and possibly the file it refers to: re-
moves file (name) from the file system. Used by the programs like
“rm”,

• socket [26] – create an endpoint for communication: creates Unix “domain
socket” and returns file descriptor,

• pipe,pipe2 [26] – create pipe: creates simple data channel that can be
written on one end, and read on the second end. Can be used as IPC10

between the parent and the child processes,

9In current version of Linux “fork()” function call of standard C library, executes “clone”
system call underneath.

10Inter-process communication
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• read [26] – read from a file descriptor: reads the specified number of bytes
from file descriptor to buffer. Tracing this call allows the analysis of I/O
characteristics,

• write [26] – write to a file descriptor: writes the specified amount of bytes
from buffer to file descriptor,

• dup, dup2, dup3 [26] – duplicate a file descriptor: the family of functions
allowing duplication of file descriptors. Tracing this system calls allows
proper mapping between files (paths) and file descriptors,

• fcntl [26] – manipulate file descriptor: allows manipulation of open file
descriptors. Those operations include: duplication, descriptor flag ma-
nipulation, file flag manipulation, locking and more.
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Chapter 5

The prototype implementation

This chapter describes the implementation of all system modules that were
presented in Fig. 4.1 and described in chapter 3, i.e. the tracing tool, the
parsing tool, the visualizer, the analyser and finally the script generator. The
section concerning the parsing tool includes the description of the internal
representation that is used to exchange data between the modules. All sec-
tions contain basic information about this specific implementation, the most
important features of every module and how they relate to each other.

5.1 The tracing tool

The first module – presented in Fig. 5.1 – in the chain of commands is respon-
sible for gathering the data that were created in the process of interaction
between the user and the operating system. In accordance with the points
presented in the subsection 4.6.1, the targeted shell for this prototype is Bash.
This specific tool is the only one not implemented in Python but rather in

Figure 5.1. Part of architecture diagram: tracing module.
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1 [plgmgolik@zeus ~]$ tracer.sh
2 Initializing tracer - it make take a while... You can start typing

after prompt changes to ’monkey-trace: ’.
3 The trace session is starting NOW! To leave, press CTRL+D or close

terminal window.
4 monkey-trace: pwdd
5 bash: pwdd: command not found
6 monkey-trace: pwd
7 /people/plgmgolik
8 monkey-trace: ls
9 bin trace turbomole1 turbomole2

10 monkey-trace: cd turbomole1
11 monkey-trace: ls
12 auxbasis basis control coord energy mos
13 monkey-trace: ridft > ridft.log 2>&1
14 monkey-trace: tail -1 ridft.log
15 ridft ended normally
16 monkey-trace: exit
17 The trace session has finished successfully!
18 Your TRACE directory was: /mnt/auto/people/plgmgolik/trace
19 [plgmgolik@zeus ~]$

Listing 5.1. Exemplary usage of tracing module.

Bash, which was done to minimize the number of processes that have to run
between the standard shell and user invoked program.

The tracing tool was written in Bash using its specific functionalities and
features [1]. For actual tracing of system calls strace program was used. This
implementation allows the user who invoked the script to be presented with
his or hers standard environment. To ensure the user is aware of the modified
environment, he or she is presented with the welcome and closing messages
and – more importantly – the modified prompt. Listing 5.1 presents the sam-
ple session conducted on the Zeus [11] supercomputer.

The first and the last line in Listing 5.1 present the standard prompt on
the cluster and the invocation of the tracing program which was added to
the user’s $PATH variable. The next two lines contain the welcome message,
while the two before last present the closing message. The other lines are
executed in the traced environment and are the subject to system call, history
and environment tracing. The commands executed in the traced environ-
ment include misspelled command, directory print, listing and change, and
finally the invocation of computational command.

This functionality has been implemented using the following functional-
ities:

• Bash script: prints messages, prepares environment and launch the
proper tracing environment,
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1 BASH_RC=$(echo "
2 . ~/.bashrc\n
3 PS1=$TRACE_PROMPT\n
4 $CD_ALIAS\n
5 HISTFILE=$HISTORY_FILE\n
6 ")

Listing 5.2. Environment modifications used in tracing tool.

1 strace -f -o $STRACE_FILE -e "clone,execve,chdir,open,openat,close,
unlink,socket,pipe,pipe2,read,write,dup,dup2,fcntl" bash --
rcfile <(echo -e $BASH_RC) -i

Listing 5.3. Line which, after environment was set, launches the tracing
environment.

• Process substitution: the functionality that allows processes to act like
files for other processes. Used to load the environment for the sub shell
without affecting the parent shell, presented in Listing 5.2. Currently it
does the following things: sources user’s default “.bashrc” [40], sets
prompt, aliases “cd” command to “cd -P”, which resolves symbolic
links and sets Bash history file to the tracing directory,

• strace: used to record all system calls.

The final form of the tracing command can be seen in Listing 5.3. This
command launches strace (with options: save output to file, detect individual
processes, record only listed system calls) which will then execute Bash in the
sub shell in the interactive mode while loading “.bashrc” file using process
substitution from the echoed variable.

The data gathered by the tracing program can be broken into three main
categories, which serve different purposes and can be used to effectively gen-
erate the output script for the user. The first category consists of meta data
gathered on the environment initialization. This contains Bash environment
snapshot, along with paths of tracing output directory, runtime directory and
script directory. In the future the additional data can include host name and
other system information, that can be used to improve portability. The sec-
ond category includes history saved by Bash used to gather the information
about launched commands and their arguments. The last category consists
of system calls used to find executed processes, opened files and I/O opera-
tions.
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Figure 5.2. The part of architecture diagram: the parsing module.

1 lines_read : 4284
2 totall_syscalls : 4179
3 % syscalls : 97.54
4
5 handled_calls : 4179
6 unhandled_calls : 0
7 % handled : 100.0
8
9 ==============================

10 2446 : write
11 567 : open
12 539 : read
13 466 : close
14 33 : fcntl
15 29 : dup2
16 28 : clone
17 18 : pipe
18 18 : execve
19 17 : socket
20 16 : unlink
21 1 : chdir
22 1 : dup

Listing 5.4. Exemplary usage of the parsing module.
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5.2. The parser

5.2 The parser

The second module – presented in Fig. 5.1 – of the designed system is re-
sponsible for parsing, filtering and creating an internal representation. In
Listing 5.4 the output of the parsing module is presented. Although the user
executed only 7 commands the number of system calls exceeds 4100 invoca-
tions, while only tracing currently covered system calls. Tracing all system
calls for this example exceeds 32000 lines. This amount of data has to be
carefully filtered and organized in order to posses any level of significance.

The filtering is done by merging unfinished system calls with their con-
tinuations, and by ignoring insignificant system calls and ignoring repeated
signals. The organization is made twofold: firstly by creating objects from the
processes and files, and secondly by organizing the processes in hierarchy of
parents and children.

The parser creates an internal representation which can later be used by
other modules and, thanks to the text format, shared between computers and
users. The processes contain PID, parent PID, the map of open file descriptors
and files connected to them, current directory in the time of execution and
program path and arguments. The file objects contain path, flags, mode that
was used to open it, along with all I/O operations performed on them. The
additional functionality includes optionally saving lines of strace that were
used to create the process and file objects, or ones that interacted with them.

5.3 The internal representation format

Before continuing to the module that uses the internal representation to anal-
yse, visualize and generate scripts, there are several important decisions to
make about the format of the internal representation. Currently, the inter-
nal representation created by the parser has a format of the hierarchical list
of processes with files attached to them and I/O operations attached to the
files. This contradicts with the idea of generating scripts by following the
data flows upstream (from the final file to the first input file required to cre-
ate output), as this is easily done on the directed graph.

Unfortunately, keeping the data in the graph requires the usage of graph
database (like currently the most popular Neo4j [33]) or development of own
serialization method to hold this kind of data. Moreover the information
about time, execution order, consecutive program executions and other ad-
ditional data is lost, hard to store or mainpulate in graph databases.

In the later stages: visualization and script generation the directed graph
proves high usefulness. The graph used to recreate the data flow and gener-
ate script is created only from the relevant data after filtering repeated pro-
cesses, removed files, etc. In this structure files and processes are mapped to
the nodes, while the mode (read/write) is used to direct the edge. This graph
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Figure 5.3. The part of architecture diagram: the analyser and the visualizer
modules.

structure can ultimately be used to merge the alternative flows of programs
because it consist only of the valid, clean and relevant objects. Assuming the
validity of all the data the created graph represents the full program work-
flow.

5.4 The visualizer

The two modules presented in this and the next sections are used to analyse
the gathered data and to visualize the detected data flow.

The architecture scheme of the visualizer tool is presented in Fig. 5.3.
The command visible in Fig. 5.4 was gathered from the input presented in
Listing 5.1. This graph structure can be used to validate the detected data
flow or to help the users understand what interactions are made underneath
by the programs executed by them.

5.5 The analyser

The more important tool for analysis is the textual analyser presented in Fig.
5.3, which presents more detailed information than the graphical one. The
sample tool output is presented in Listing 5.5 and 5.6 and displays the data
saved in the same internal representation but printed with different options.

Listing 5.5 provides the detailed information about all files opened by the
process 32276 created from the execution of ridft program. The data visible
on this listing include PID, full path of the executed file, number of bytes
read and written to and from files, and number of the operations performed
on those files. The data count is also provided for every file along with the
specific flags and modes used for opening the file.
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Figure 5.4. The graph created by the the visualization tool. It presents only one
command that was filtered as relevant in the gathered data and all meaningful
files connected to it.

Listing 5.6 in addition to the data visible on the previous listing, presents
the individual I/O operations along with the amount of the data read and
written printed in order of appearance.

The analyser program provides the user with multiple filtering options
and printing settings. As shown in Listing 5.5 and 5.6 the individual I/O
operations can be hidden to give the better overview of all files and processes.
Moreover, the files can also be hidden in the situation when only processes
are important. By default system files and processes are hidden, but can be
shown using special switches. Most importantly, by default the main Bash
process is hidden as it is not relevant to this analysis. In special cases it may
also be required to show the child processes of user’s executed programs, as
by default only the processes explicitly executed by the user as shown and
their children’s files and I/O operations are flattened and displayed as their
parents.

This tool can also be used by the administrators to debug programs and
investigate their whereabouts. By analysing accessed files and sending sig-
nals, the administrator can discover undesired behaviour and validate per-

45



5. THE PROTOTYPE IMPLEMENTATION

1 [32276] /software/local/Turbomole/6.5/TURBOMOLE/bin/em64t-unknown-
linux-gnu/ridft [r: 260499 bytes (in 144 op), w: 65551 bytes (in
1584 op)]

2 ridft.log [bytes: 15324; operations: 389; flags: O_WRONLY|
O_CREAT|O_TRUNC]

3 /mnt/auto/people/plgmgolik/turbomole1/control [bytes:
240781; operations: 845; flags: O_RDWR|O_CREAT]

4 /mnt/auto/people/plgmgolik/turbomole1/coord [bytes: 1434;
operations: 2; flags: O_RDWR|O_CREAT]

5 /mnt/auto/people/plgmgolik/turbomole1/basis [bytes: 8632;
operations: 8; flags: O_RDWR|O_CREAT]

6 /mnt/auto/people/plgmgolik/turbomole1/statistics [bytes:
2025; operations: 45; flags: O_RDWR|O_CREAT]

7 /mnt/auto/people/plgmgolik/turbomole1/auxbasis [bytes: 8640;
operations: 8; flags: O_RDWR|O_CREAT]

8 /mnt/auto/people/plgmgolik/turbomole1/energy [bytes: 1159;
operations: 11; flags: O_RDWR|O_CREAT]

9 /mnt/auto/people/plgmgolik/turbomole1/mos [bytes: 48055;
operations: 420; flags: O_RDWR|O_CREAT]

Listing 5.5. Exemplary usage of analyser module: displaying files opened by
process.

missions.

5.6 The script generator

The script generator, presented in Fig. 5.5, is the last presented and also the
final module of the whole system. It is used to generate the executable script
from the detected data flow. In the most basic implementation the created
script could only include the commands executed by the user with applied
filters for de-duplication, removal of misspelled and non required for work-
flow commands. The current implementation includes two additional op-
tions: check for required files, and check for non zero exit code after every
executed command.

In Listing 5.7, lines from 1 to 8 present the files that were detected as
“written” with their corresponding number, which can be entered as the re-
sponse to the question asked in line 9 and confirmed in line 10. The content
between lines 11 and 16 can be copied and pasted to a text file, saved and
launched after adding the permission for execution (“chmod u+x”).

46



5.6. The script generator

1 [32276] /software/local/Turbomole/6.5/TURBOMOLE/bin/em64t-unknown-
linux-gnu/ridft [r: 260499 bytes (in 144 op), w: 65551 bytes (in
1584 op)]

2 ridft.log [bytes: 15324; operations: 389; flags: O_WRONLY|
O_CREAT|O_TRUNC]

3 w -> 28 bytes
4 w -> 38 bytes
5 w -> 1 bytes
6 w -> 76 bytes
7 w -> 46 bytes
8 w -> 1 bytes
9 w -> 1 bytes

10 w -> 29 bytes
11 w -> 1 bytes
12 w -> 1 bytes
13 w -> 1 bytes
14 w -> 44 bytes
15 w -> 1 bytes
16 w -> 59 bytes[32276] /software/local/Turbomole/6.5/

TURBOMOLE/bin/em64t-unknown-linux-gnu/ridft [r:
260499 bytes (in 144 op), w: 65551 bytes (in
1584 op)]

17 ridft.log [bytes: 15324; operations: 389; flags: O_WRONLY|
O_CREAT|O_TRUNC]

18 /mnt/auto/people/plgmgolik/turbomole1/control [bytes:
240781; operations: 845; flags: O_RDWR|O_CREAT]

19 /mnt/auto/people/plgmgolik/turbomole1/coord [bytes: 1434;
operations: 2; flags: O_RDWR|O_CREAT]

20 /mnt/auto/people/plgmgolik/turbomole1/basis [bytes: 8632;
operations: 8; flags: O_RDWR|O_CREAT]

21 /mnt/auto/people/plgmgolik/turbomole1/statistics [bytes:
2025; operations: 45; flags: O_RDWR|O_CREAT]

22 /mnt/auto/people/plgmgolik/turbomole1/auxbasis [bytes: 8640;
operations: 8; flags: O_RDWR|O_CREAT]

23 /mnt/auto/people/plgmgolik/turbomole1/energy [bytes: 1159;
operations: 11; flags: O_RDWR|O_CREAT]

24 /mnt/auto/people/plgmgolik/turbomole1/mos [bytes: 48055;
operations: 420; flags: O_RDWR|O_CREAT]

Listing 5.6. The exemplary usage of the analyser module: displaying I/O
operations performed on one file by one process.
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Figure 5.5. The part of architecture diagram: the script generating module.

1 [0] /mnt/auto/people/plgmgolik/turbomole1/ridft.log
2 [1] /mnt/auto/people/plgmgolik/turbomole1/control
3 [2] /mnt/auto/people/plgmgolik/turbomole1/coord
4 [3] /mnt/auto/people/plgmgolik/turbomole1/basis
5 [4] /mnt/auto/people/plgmgolik/turbomole1/statistics
6 [5] /mnt/auto/people/plgmgolik/turbomole1/auxbasis
7 [6] /mnt/auto/people/plgmgolik/turbomole1/energy
8 [7] /mnt/auto/people/plgmgolik/turbomole1/mos
9 Please provide number of targeted file [7]: 0

10 Generating backtrace from file [0] /mnt/auto/people/plgmgolik/
turbomole1/ridft.log

11 --- SCRIPT START ---
12 #!/bin/bash
13 ridft > ridft.log 2>&1
14 if [[ $? -ne 0 ]]; then echo ’Command ridft exited with error’; exit

2; fi
15 exit $?
16 --- SCRIPT END ---

Listing 5.7. Exemplary usage of parsing module.
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Chapter 6

Validation and testing

This chapter describes the installation and usage of the developed tool (co-
dename “monkey”). The next sections present the validation of the tool on
the prepared use cases. Lastly, the list of encountered bugs and applied fixes
is presented.

6.1 Installation and quick start guide

The system requires only one non-standard component used for the system
call tracing: strace. It can be installed from the standard repositories (either by
sudo apt-get install strace or yum install strace) or in case of lack of administra-
tive privileges from the source 1. The other requirements: Bash and Python
are installed by default on all the major Linux distributions.

The easy access to the program can be achieved in two ways depending
on user preferences: from the command line by adding it to $PATH vari-
able or from the menu of the desktop environment, which supports “Desktop
Entry Specification” [17], by manually entering required information to the
menu editor or by copying prepared “.desktop” file (also known as launcher)
to the specific location. The content of such file is presented in Listing 6.1.

Using this launcher allows user to start the tracing session directly from
the graphical interface. After choosing its menu entry the tracing program
will launch in the new terminal emulator window (specific for the desktop
environment).

Launching parser, analyser, visualizer, and generator can only be made
from the command line, as they currently only work in the text interface. All
those commands are launched using single executable that will internally
execute the specific tool, for example: “./monkey.sh parser”.

1http://sourceforge.net/projects/strace/. – home page of strace program on
which user may download its source code for the compilation without the administrator priv-
ileges.
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1 [Desktop Entry]
2 Name=mnkey-tracer.sh
3 Comment=monkey tracer
4 Comment[pl]=malpka
5 Exec=~/bin/monkey.sh
6 Icon=Icon=utilities-terminal
7 Terminal=true
8 Type=Application
9 Categories=ConsoleOnly;Utility;

10 # vi: encoding=utf-8

Listing 6.1. “.desktop” file for the tracing tool.

6.2 Prototype validation on different use cases

The next three following subsections briefly describe the analysed problem,
on which the tools were executed, along with the received outputs and their
analysis.

6.2.1 Artificially prepared use cases

Tests on the use cases were considered and executed throughout the whole
process of the software design process and implementation. Although sim-
ple, those use cases covered the most common usages of the popular pro-
grams. The situations which were not covered by those use cases still (after
breaking them down and filtering) can be reduced to match those basic, tree
shaped data flows. They test the most basic, yet crucial, functionality of the
program: detecting data flow by following opened read and write opera-
tions.

Fig. 6.1 presents the graph (created in the external program) of processes
and files (the nodes) connected by read and write operations (the directed
edges). The data flow is built from 6 processes and 8 files and connected by
13 operations.

As expected, the output of the analyser program and visualization shown
in Fig. 6.2 matches the real data flow shape perfectly as shown in Fig. 6.1.
Additionally, all required data were recorded properly, later validated and
the redundant commands were filtered by the parsing program. Those re-
sults fully validate the program operation, which allows progressing to the
real world tests in the next sections.

6.2.2 Scientific use case: using TURBOMOLE application

One of the use cases prepared for the program involved the tool for quan-
tum chemistry computations – TURBOMOLE. This program, in the process
of development, was used only to test the limited number of features and
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Figure 6.1. Use case that was used throughout the whole development process:
covers the most basic, but the most important aspects of the designed system.
This tree shaped structure includes 8 files and 6 processes that operate on
those files.
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Figure 6.2. The data flow detected by the system perfectly matches the real
data flow shown in Fig. 6.1. Presented structure was generated by the visual-
ization tool. It includes processes and files as the nodes and the directed edges
according to read or write operation.

1 x2t water.xyz >coord 2>preparation.txt
2 define < define.config >> preparation.txt 2>&1
3 ridft > ridft.log 2>&1

Listing 6.2. Exemplary usage of Turbomole suite – utilized in the system
validation.
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Figure 6.3. Graph generated after the tracing, parsing and visualizing gathered
data for TURBOMOLE suite. The presented structure is complex and contains
nodes connected by two-way directed edges which can lead to the infinite re-
cursion.

never all parts of the system. The usage of this suite is presented in List-
ing 6.2. Those commands are specific in a certain way: they operate on the
files with hard-coded names, the program searches for them in the current
directory. Another functionality tested by this use case is the manipulation
of standard streams: redirecting them to the files and to the different file de-
scriptors (“2>&1”: redirect standard error to standard output).

The detected data flow is presented in Fig. 6.3. The most important things
that can be read from this graphical output are the names of files opened
implicitly by the executed processes and fact that those files are opened for
read and write. This opening mode leads to the unexpected behaviour which
manifests itself by making consecutive processes depend on each other as
can be seen in Listing 6.3. Although in line 10 user requests to generate script
needed to recreate the file “coord” (which is modified only by the first two
commands), the generator creates script that contains all used commands as
visible in lines 20, 22 and 24. As stated before, this is caused by the file being
opened in read and write mode by all executed commands.

53



6. VALIDATION AND TESTING

1 [0] /mnt/auto/people/plgmgolik/turbomole2/coord
2 [1] /mnt/auto/people/plgmgolik/turbomole2/preparation.txt
3 [2] /mnt/auto/people/plgmgolik/turbomole2/control
4 [3] /mnt/auto/people/plgmgolik/turbomole2/basis
5 [4] /mnt/auto/people/plgmgolik/turbomole2/mos
6 [5] /mnt/auto/people/plgmgolik/turbomole2/auxbasis
7 [6] /mnt/auto/people/plgmgolik/turbomole2/ridft.log
8 [7] /mnt/auto/people/plgmgolik/turbomole2/statistics
9 [8] /mnt/auto/people/plgmgolik/turbomole2/energy

10 Please provide number of targeted file [8]: 0
11 Generating backtrace from file [0] /mnt/auto/people/plgmgolik/

turbomole2/coord
12 --- SCRIPT START ---
13 #!/bin/bash
14 if [[ ! -f /software/local/Turbomole/6.5/TURBOMOLE/jbasen/o ]]; then

echo ’File [/software/local/Turbomole/6.5/TURBOMOLE/jbasen/o]
not found!’; exit 1; fi

15 if [[ ! -f water.xyz ]]; then echo ’File [water.xyz] not found!’;
exit 1; fi

16 if [[ ! -f /software/local/Turbomole/6.5/TURBOMOLE/jbasen/h ]]; then
echo ’File [/software/local/Turbomole/6.5/TURBOMOLE/jbasen/h]

not found!’; exit 1; fi
17 if [[ ! -f define.config ]]; then echo ’File [define.config] not

found!’; exit 1; fi
18 if [[ ! -f /software/local/Turbomole/6.5/TURBOMOLE/basen/h ]]; then

echo ’File [/software/local/Turbomole/6.5/TURBOMOLE/basen/h] not
found!’; exit 1; fi

19 if [[ ! -f /software/local/Turbomole/6.5/TURBOMOLE/basen/o ]]; then
echo ’File [/software/local/Turbomole/6.5/TURBOMOLE/basen/o] not
found!’; exit 1; fi

20 x2t water.xyz >coord 2>preparation.txt
21 if [[ $? -ne 0 ]]; then echo ’Command x2t exited with error’; exit

2; fi
22 define < define.config >> preparation.txt 2>&1
23 if [[ $? -ne 0 ]]; then echo ’Command define exited with error’;

exit 2; fi
24 ridft > ridft.log 2>&1
25 if [[ $? -ne 0 ]]; then echo ’Command ridft exited with error’; exit

2; fi
26 exit $?
27 --- SCRIPT END ---

Listing 6.3. Output of the generator module executed on the data gathered
while validating system on the selected use case: Turbomole.
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1 monkey-trace: cp template.xml machine.xml
2 monkey-trace: cp template.qcow machine.qcow
3 monkey-trace: sed -i ’s/<RAM>/1024/g’ machine.xml
4 monkey-trace: ./start_vm.sh

Listing 6.4. Use case for the administrator workflow: virtual machine creation
and launch.

Other than mentioned above, no other flaws were found while testing
this use case.

6.2.3 Administrator’s use case: virtual machine creation

The last use case was created to test the other then scientific types of work-
flows. Listing 6.4 shows the commands that can be performed by the system
administrator to create a virtual machine using libvirt. The first two executed
commands are cp: used to copy template files to the new location. The next
command – sed – is used to replace a string that specifies amount of RAM
for a virtual machine in XML file. The last command is a Bash script that
executes “virsh define” and later “virsh start”.

Fig. 6.4 presents the data flow created from the traced actions shown
in Listing 6.4. The analysis of the visualizer output leads to finding out of
the problems predicted in the design phase. Without the algorithm modi-
fications, the script “./start_vm.sh” was not visible on the generated image
at all because it was not writing any data. This happened because the pro-
cesses that do not write any files are (by default) removed from the graph,
because in terms of data flow it is not relevant. To fix this, the special switch
that allows displaying those kind of processes was added and the process
was shown as the new node in the graph. Unfortunately, the “./start_vm.sh”
script is still stripped from the script generation component’s output because
there is no file that can be set as the final target of the data flow, and that is
connected to this process with write operation.

As predicted, the current implementation prevents this software to be
used in the environment in which processes are not connected by reading
and writing common files, or there is no final output file.

6.3 Discovered problems and shortcomings

Although the tool validation was successful and no fundamental flaws were
detected some minor bugs and lacks were found. Since they were not fore-
seen at the design stage but still before the final validation they are presented
in this section and not in chapter 7. All found lacks and problems are pre-
sented below along with possible fixes:
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Figure 6.4. Data flow created from tracing actions performed by the adminis-
trator to create a virtual machine using libvirt. The “start_vm.sh” node does not
open any file for writing. This prevents it from being a “target” node in script
generation.

• Missing handling of the environmental variables: this problem requires
the implementation of the initial environment read and watching for
the modifications of variables for the specific processes,

• Different versions of strace: which occurs if the systems are running
outdated versions of this utility. It can be circumvented by implement-
ing more complex regular expressions, and by testing the versions that
changed API,

• Different paths on different machines: may be bypassed by searching
for the executables in $PATH, before launching commands and using
the command name instead of the full path,

• Overwhelming analyser output: may be solved by adding more infor-
mation and/or more filtering options. Another possibility is imple-
menting interactive command line interface for example using ncurses
library,
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• Missing important system calls: more system calls can easily be added
to the library after a short analysis of the calls format and functionality,

• Slowdown of the executed commands: this problem can not be eas-
ily fixed as it is caused by the process of the tracing itself. The parser
tool (specifically underlying strace) has to intercept the system calls and
save them to the file causing slowdown because of additional comput-
ing and I/O operations, However, the parser is only needed until an
internal representation is (properly) created, so this point should not be
interpreted as a problem but rather as a known limitation,

• Handling the other types of workflows: this can be done by fixing all
the above listed problems (mainly environment handling), and by ad-
vancing heuristic module.

57





Chapter 7

Direction of the extensions

“The software is finished when it is obsolete” – this is the common saying
in computer engineers community. This chapter focuses on extending the
designed prototype and the vision of the whole tool suite. The first section
covers modifications that are needed in order to implement the functionali-
ties covered in the chapters 3 and 4. The next two sections cover new major
functionalities that – if developed correctly – will greatly improve the usabil-
ity of the system and may induce more users to use it. The last section covers
some extra features that can later be added to cover even more possible use
cases and user needs. Before attempting to extend the current implementa-
tion with new major features, firstly crucial functionalities missing from the
prototype but mentioned in the chapters 3 and 4, and in section 6.3 need to
be fully implemented.

7.1 Tracking and heuristic improvements

The first and the most obvious improvement is the implementation of the
additional system calls namely calls include stat and access: for reading file
information and tracking file permissions management. Another system call
worth implementing is wait: it can be used to better understand the pro-
gram behaviour and bottlenecks. The next group of calls consist of geteuid,
getuid, getegid, and getgid: they are used to read the effective and real user
data, and their addition will provide the possibility to detect errors caused
by wrong permissions. The system calls like brw, mmap and similar are used
to change program’s data segment size, map files into the memory (to speed
up processing), and perform other operations on the memory. The analysis
of these functions will lead to better coverage of the possible data flows in
the specific conditions. The last calls worth analysing include rt_sigprocmask
and rt_sigaction, which are used for the signal handling and manipulation.
After implementing this group of calls handling of “signals” should be im-
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plemented, as they are commonly used to control the program behaviour.
The second direction of the development should focus on the parame-

ter matching and analysis. This feature is crucial for the proper detection of
the data flows as parameters often include file names and directory names.
The analysis of the paths in the program parameters helps heuristic engine
in making decisions about the types of files opened by the program. The files
that are hard-coded in the program’s sources should be treated in a different
way than the file paths that are provided explicitly. Even other evaluation
should be made for the files specified by shell’s wildcards. The other im-
portant feature connected to the parameter analysis is the matching of the
arguments between multiple commands. There is important problem to con-
sider while doing parameter matching: sometimes the arguments with the
same names (e.g. “–force” in one program forces some kind of operation
while in other it is used to specify force in Newtons), but for different pro-
grams are not correlated with each other, while in other situations the options
that perform certain action or set certain value (e.g. “-f” for one program and
“–force” for other) for different programs are spelled differently, and can not
be easily matched. This functionality is highly dependent on the program
type and should be considered as highly unpredictable as the provided re-
sult quality can vary significantly.

The last group of the features to implement concerns the better analy-
sis of Bash features, especially the management of environmental variables.
Reading environmental variables is important as they are used for many pur-
poses, with the most important of them: holding list of locations where bi-
nary files ($PATH) and shared libraries ($LD_LIBRARY_PATH) are stored.
This includes the initial environment read and all further modifications in-
cluding those in the subshells. The most important of the lesser Bash fea-
tures includes the analysis of the conditional instructions (as they can alter
data flow direction), loop instructions and “globbing” used by users to pro-
vide multiple file names to a single program as this differs (from the point
of view of the program) significantly from providing all paths by hand. The
extended analysis of Bash functionalities can be implemented in the parser
and backed up on tracing program by utilizing trap on the “DEBUG” singal,
functionality in Bash.

7.2 Graphical parameter matching, data flow
manipulation and merging

Although, in accordance with the chapter 4 a transparent tracking is a key
feature and advancement over the graphical tools it does not mean that
graphical extensions can not be added to the tool suite to improve user expe-
rience. Such graphical tools can be added as the optional features in places
where the graphical interface provides more advantages than disadvantages.
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Figure 7.1. The screenshot from Eclipse IDE showing variable highlight. The
similar technique can be used to implement the graphical parameter matching
in the future software iterations.

There are currently two of the uses where it can make the work easier for
users: the graphical parameter matching and the graphical alternative flow
merging and management. Also by implementing the graphical tools more
users can be attracted to the project which will lead to more sharing possibil-
ities that are explained in the next section.

The graphical parameter matching is an extension of the third point in
section 7.1. As stated there, the process of the parameter matching is very
complicated and prone to algorithm errors, which can often easily be fixed
by the user. The console is a primary environment for the created tool so
it should be possible to manipulate connections between the parameters in
the command line in as simplest way as possible. Unfortunately, operating
on this kind of data, and displaying it in the console is hard to implement,
and user may find it hard to correlate different parameters. This kind of
problem is commonly solved in IDE1 as shown in Fig. 7.1. The highlight for
all instances of a single parameter can also be applied to distinguish program
names, files, variables and constants. The visualisation of those elements, for
the most people, will be much more effective for achieving good results in
the parameter matching than the command line interface.

The second application of the graphical interface in the designed sys-
tem, in which it improves user experience, is the graphical manipulation and
merging of the alternatives of data flows. The interface for this feature could
borrow ideas from the tools like Galaxy, described in the section 2.3.3, which
uses the drag and drop web interface to create workflows. This idea does
not contradict with the one of the main system concepts – the transparency –
which is supposed to keep user in his or hers normal working environment,
because it is the optional, additional feature. Moreover, it is supposed to be

1Integrated Development Environment.
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only used to improve (as defined in the chapter 4, the system is created as the
best-effort solution) detected data flow graph, but does not require user to
create if from the scratch or developer to prepare any initial data. This ap-
proach is a good compromise between the current generation of tools and the
concept presented in this work.

7.3 Platform for sharing

The last major feature goes in completely different direction, and is a natu-
ral response to the hypothesis in the section 2.1. One of the main points in
that chapter was that the collaboration between users leads to more innova-
tion and pushes business and science forward because common problems are
solved quicker and wheel does not have to be reinvented in different places
at the same time. That kind of approach is now very visible in software de-
velopment and DevOps2. The two most bright examples of this trend are:
GitHub [20] and Docker [13].

The first one is the biggest player in the market of the open source code
hosting platforms. It allows users to use its technology for free as long as their
projects are visible for other people (it also providing paid private reposito-
ries). The vast majority of the projects on this site are licensed using open
source licenses like MIT or GPL. Developers use GitHub for storing git repos-
itories, creating wikis, issue tracking and release planning. This global and
open community collaborates on many projects by creating patches for the
favourite software, reporting bugs or even just by learning on other people
experience and creating a great new projects of their own.

The second example of sharing platforms is Docker, which is the exten-
sion of Linux containers – “operating system–level virtualization”. It extends
the idea of LXC, by providing wrappers that ease the usage of lower level
tools. The most important feature of this platform is the community repos-
itory which can be used by anyone to create and share images of different
systems and packs of software. Docker is now a fast growing project thanks
to the vibrant community that provides new and experience users with the
high amount of ready-to-use images. If the user does not find the combina-
tion of software needed, he or she can quickly create the new container and
share it with the others.

Those examples show the superiority of the community based projects.
The basics for the collaboration are built into this projects’ core, as it is based
on the open, text protocols. The social sharing platform that could be created
for this project is only required to share the data prepared by already devel-
oped tools. The database provided by the proposed platform could hold the
traces for different programs, parse objects, ready-to-use data-flows or even
final scripts with parameter sweep.

2Development and Operations.
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7.4. Other possible improvements

This idea can bring the great advantage in the scientific community: new
users can quickly start with the new software without requiring to learn all
commands and combinations. They can start with the generated script that
will look for the dependencies or with the visualisation of data flow that will
help understand how the software works. This platform could also be used
by developers and administrators to prepare to show problematic use cases
of software.

The design of this platform would require creating the command line
tools and web site which will be used to browse all gathered data. Later on,
a graphical client could also be added which would be integrated with the
extensions mentioned in the previous section. Thanks to the open API and
modular design the social platform could be designed by different teams or
by community members.

7.4 Other possible improvements

The last section of this chapter includes some minor additional improve-
ments to the tools which combined can lead to a better usability and usage
efficiency:

• Support the other resource managers: while generating scripts it
should be possible to generate directives for the different resource man-
agers,

• More target languages for the script generator: now the only supported
language is Bash, it would allow more flexibility if more languages
could be implemented,

• System global monitoring: there are tools that can monitor the whole
system (e.g. Monks [34] – Linux Procmon alternative) and not only on
the terminal. This could potentially allow to record all day of activities
instead of focusing on just one “special” window,

• GUI monitoring: currently only actions in the terminal are tracked, an-
other worthy addition would be tracking the interactions with GUI (if
possible),

• Suggesting the types of storage based on the frequency and amount of
the data read and written to the files.
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Chapter 8

Summary and Future Work

The work on the development of the tools presented in this thesis started as a
research project intended to learn more about the nature of (low level) inter-
actions between user and computer. Those interactions are reflected in sys-
tem calls that are used underneath high level instructions and perform the
most basic operations. Those operations, although basic, provide the great
deal of information about the opened and closed files, read and written data
and handled signals. Those pieces of information can be used to analyse
program behaviour, find bugs and bottlenecks, but also to recreate the user
actions performed on the higher levels. As the project evolved the new di-
rection was set: using gathered data to transparently learn user’s actions and
recreate them in a smart way as closely as possible.

The list of the goals presented in section 1.2 along with validation is
shown below:

1. Do as much as possible automatically: This point is unmeasurable because
as the technology progresses it is always possible to do more. The cur-
rent implementation along with the presented design and possible im-
provements will provide user with high amount of usability,

2. Have a flat learning curve (or none at all): this requirement was met. The
transparent tracking and simple commands in the text interface along
with carefully considered user experience allow users to quickly start
with this project and learn the advanced features when needed,

3. Work in environment known to the potential user (no new level of abstraction,
transparency): fully met. The tracer is using the standard Bash shell
with only slightly modified prompt. Other tools act like the standard
text tools in Unix-like systems,

4. Have no or minimal dependencies (applications, tools, frameworks): met. The
tools have only two dependencies: Python which is installed by default
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in almost all Linux distributions and strace, which may not be installed
by default in all distributions, but then it is available in standard repos-
itories,

5. Be portable and designed to use on different machines (PC, supercomputer,
without root access): partially met. The created prototype does not yet
consider all possible use cases needed for the portability between ma-
chines. On the other hand, on the level of protocols and software stack
portability is ensured by open, text API, the open source implementa-
tion and minimal dependencies.

6. Allow the exchange of scripts (and internal representations): fully met. The
open text format is used to store system data. Additionally, the plans
for the future social platform will extend this concept,

7. Give the same benefits as similar tools that try to solve the same problem but
with different approach: the internal and simple user testing on the pro-
totype allows to check this point as met in the current state. Unfortu-
nately, the full evaluation of the efficiency can only be made after the
implementation of all crucial features. More complicated tests along
with the anonymous polls will fully verify the proposed idea.

The designed prototype implements only a subset of features required for
the validation of hypothesis and does not cover all possible use cases and has
deficiencies in user experience like handling of not allowed input. The main
focus of the future work should be on the implementation of those remaining
use cases and the important additional features like script parametrization,
PBS directives and improvements to portability. Later on, to increase the
usefulness of this tool, all the features presented in chapter 7 may be imple-
mented as needed.

Although the tool suite was designed primarily as the tool of aiding (sci-
entific) users work by automating workflows it has another potential use
case. All the tools up to the visualizer and the analyser can be used by ad-
ministrators (and possibly by users and developers) to analyse software be-
haviour, i.e. find bottlenecks, access files and executed programs, find bugs,
backdoors and detect the unwanted access. Possible improvements in this
direction include more detailed information and live-updating graph while
the traced program is running.

Finally, only the deployment in the production environment will allow to
verify the usefulness of the designed system. If idea will be proven successful
for the users the system will allow better collaboration which will lead to
more open science that benefits us all.
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