
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ INFORMATYKI, ELEKTRONIKI I TELEKOMUNIKACJI

KATEDRA INFORMATYKI

PRACA DYPLOMOWA MAGISTERSKA

Multi-stage optimization of workflow execution in clouds

Wieloetapowa optymalizacja wykonania grafów zadań w chmurze obliczeniowej

Autor: Tomasz Dziok

Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Maciej Malawski

Kraków, 2016

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994

r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto

przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego ut-

woru albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia

wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudon-

imu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystyczne wykonanie albo

publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także

uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005

r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.) "Za naruszenie przepisów

obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzial-

ność dyscyplinarną przed komisją dyscyplinarną albo przed sądem "żeńskim samorządu studenckiego,

zwanym dalej "sądem koleżeńskim", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) oso-

biście i samodzielnie i że nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Foremost, I would like to express my
sincere gratitude to my supervisor Ma-
ciej Malawski, for the continuous sup-
port of my M.Sc. study, motivation,
enthusiasm, and immense knowledge.
His guidance helped me a lot during
my research and writing of this the-
sis. Besides my supervisor, I would also
like to thank Kamil Figiela for valuable
discussions and consultancy. Finally I
would like to thank my wife and parents
for their endless love and support.

Contents

1. Introduction .. 1

1.1. Motivation.. 1

1.2. Cloud Computing .. 1

1.3. Scientific Workflows.. 2

1.4. Problem Statement... 2

1.5. Goal of Thesis.. 2

1.6. Summary.. 3

2. State of the Art Overview .. 4

2.1. Workflow Overview... 4

2.2. Linear Programming.. 4

2.2.1. Definition ... 4

2.2.2. Example ... 5

2.3. Related Work ... 6

2.4. Summary.. 6

3. Adaptive Algorithm ... 7

3.1. Introduction ... 7

3.2. Assumptions .. 7

3.3. Input/Output .. 8

3.4. High Level Flow .. 8

3.5. Description of Each Algorithm Step ... 10

3.6. Illustrative Example... 10

3.7. Optimization Models ... 15

3.7.1. Global Planning Phase Model.. 15

3.7.2. Global Planning Phase Alternative Model ... 16

3.7.3. Local Planning Phase Model.. 16

3.8. Summary.. 17

4. Implementation .. 18

4.1. High level description.. 18

5

4.2. Experiment Input ... 18

4.3. Flow Diagrams .. 19

4.4. Generated Output... 20

4.5. Languages and Tools ... 21

4.6. How To Run... 22

4.7. Source Code... 22

4.8. Summary.. 22

5. Experiments and Results ... 23

5.1. Experiments Description ... 23

5.2. Experiments Environment ... 23

5.3. Workflows Description .. 24

5.3.1. Montage ... 24

5.3.2. Cybershake... 25

5.3.3. Genome .. 25

5.4. Workflow Scheduling Experiments ... 25

5.4.1. Montage ... 26

5.4.2. Cybershake... 28

5.4.3. Genome .. 30

5.5. Workflow Disturbance Experiments.. 32

5.5.1. Montage ... 32

5.5.2. Genome .. 32

5.6. Workflow Comparison Experiments.. 33

5.7. Summary.. 33

6. Conclusions and Future Work .. 34

6.1. Accomplished tasks ... 34

6.2. Algorithm Summary.. 34

6.3. Future Work... 35

6.4. Summary.. 35

A. File Formats and Outputs ... 39

A.1. Input files format ... 39

A.2. Output files format... 40

B. Publication .. 47

6

LIST OF FIGURES 7

List of Figures

1.1 Sample DAG . 2

1.2 Montage workflow structure . 3

2.1 Linear programming example input data . 5

3.1 High level flow of scheduling algorithm . 9

3.2 Example algorithm flow - iteration 1 . 11

3.3 Example algorithm flow - iteration 2 . 12

3.4 Example algorithm flow - iteration 3 . 13

3.5 Example algorithm flow results - time and cost plots . 14

4.1 Implementation - experiments flow diagram . 19

4.2 Implementation - planner and executor flow diagram 20

5.1 Experiment results - montage - random disturbance . 26

5.2 Experiment results - montage - static mode . 26

5.3 Experiment results - montage - tasks overestimation . 27

5.4 Experiment results - montage - tasks underestimation 27

5.5 Experiment results - cybershake - random disturbance 28

5.6 Experiment results - cybershake - static mode . 28

5.7 Experiment results - cybershake - tasks overestimation 29

5.8 Experiment results - cybershake - tasks underestimation 29

5.9 Experiment results - genome - random disturbance . 30

5.10 Experiment results - genome - static mode . 30

5.11 Experiment results - genome - tasks overestimation . 31

5.12 Experiment results - genome - tasks underestimation 31

5.13 Experiment results - montage - different disturbances 32

5.14 Experiment results - genome - different disturbances 32

5.15 Experiment results - workflows comparison . 33

T. Dziok Multi-stage optimization of workflow execution in clouds

Abstract

Scheduling of scientific workflows in IaaS clouds with pay-per-use pricing model and multiple types of

virtual machines is an important challenge. Most static scheduling algorithms assume that the estimates

of task runtimes are known in advance, while in reality the actual runtime may vary. To address this

problem, there is proposal of an adaptive scheduling algorithm for deadline constrained workflows

consisting of multiple levels. The algorithm provides a global approximate plan for the whole workflow

in a first phase, and a local detailed schedule for the current level of the workflow in the second one.

By applying this procedure iteratively after each level completes, the algorithm is able to adjust to the

runtime variation. Each phase uses optimization models that are solved using Mixed Integer Program-

ming (MIP) method. The preliminary simulation results using data from Amazon infrastructure, and

both synthetic and Montage workflows, show that the adaptive approach has advantages over a static one.

This work contains:

1. Introduction to presented topics [chapters 1. Introduction and 2. State of the Art Overview].

2. Overview of existing solutions [chapter 2. State of the Art Overview].

3. Detailed description of presented algorithm [chapter 3. Adaptive Algorithm].

4. Implementation details [chapter 4. Implementation].

5. Results of performed experiments [chapter 5. Experiments and Results].

6. Conclusions and future work [chapter 6. Conclusions and Future Work].

7. Appendix with file formats and outputs [appendix A. File Formats and Outputs].

8. Appendix with article presented in Parallel Processing and Applied Mathematics with presented

algorithm [appendix B. Publication].

1. Introduction

This chapter introduces topics covered in this work and presents its goal. Section 1.1 describes mo-

tivation why this work has been started. Next two ones (1.2 and 1.3) quickly introduce cloud comput-

ing [19] [20] and scientific workflows [21] [22]. Then section 1.4 contains problem statement and in 1.5

there is a goal of thesis with listed tasks which should be completed.

1.1. Motivation

Every year cloud computing becomes more and more popular. There are a lot of applications of

clouds. Among them are scientific workflows which are used in almost all areas of science. They become

more complex and time consuming (even up to a few days). Efficient usage of available resources in

clouds are crucial point when taking into account the cost of scientific research. In other words effective

usage allows to save money.

There are many scheduling algorithms, but unfortunately not many of them are dedicated to work-

flows which address uncertainties. These uncertainties are big issue because they have influence on real

execution time which affects costs and given deadline. Additionally they come from various, independent

sources. Handling them during scheduling workflows is an interesting challenge.

The problems described above are topics of my interests and they constitute the reasons for preparing

this work.

1.2. Cloud Computing

Cloud computing is another episode of dynamic development of computer science. There are a few

types of clouds. In this work, IaaS (Infrasturcture as a Service) [5] is in an area of interest. Basically

it means that user can request on demand specified number of various types of preconfigured virtual

machines. Generally, each type is characterised by performance and price. Besides virtual machines it

is possible to request other resources like for example, storage. What is important, whole management

of available resources is performed remotely by dedicated software or webservices. Cloud resources are

available for all - not only for chosen companies or organisations. In other words, everybody can gain

access and this is why popularity of the cloud computing is increasing.

1

1.3. Scientific Workflows 2

1.3. Scientific Workflows

Scientific Workflow is a series of computional tasks which must be executed to achieve the final result

of experiment or simulation. They are widely used in science world and become more and more popular

every year. Workflows are used e.g. for generating mosaic of the sky from multiple images (Montage, is

presented on Fig. 1.2), in genome sequence processing (Epigenomic) or for characterizing earthquakes

(Cybershake). Execution of complex workflows could take even up to a few days. Basic workflow is

presented on Fig. 1.1. On Pegasus website [26] the workflows gallery is available.

Level 1

Level 2

Level 3

1 2

3 4

5

Figure 1.1: DAG example

1.4. Problem Statement

Problem is characterized as follows: there is a workflow (set of tasks) which must be executed on

available cloud infrastructure with minimized total cost under given deadline constraint.

There is an information about dependencies between tasks (that one must be executed before another

one). Each task has estimated required resources. Infrastructure is a set of available virtual machines

characterized by performance (CPU, RAM, etc.) and price per time unit.

As a result there is an expectation to have information on which virtual machine each task should be

executed to keep total time under deadline and minimize total cost.

1.5. Goal of Thesis

The goal of thesis is to design, implement and verify an algorithm that optimizes the workflow

execution in the cloud by minimizing total cost under the given deadline with uncertain tasks estimates.

To achieve the above goal, the following tasks are defined:

1. Analyze problem.

T. Dziok Multi-stage optimization of workflow execution in clouds

1.6. Summary 3

Figure 1.2: Montage workflow structure. Each node represents up to a hundreds of tasks. (Source: [26])

2. Review existing solutions.

3. Design adaptive algorithm.

4. Implement adaptive algorithm.

5. Verify adaptive algorithm.

6. Summarize results and define future work.

1.6. Summary

This chapter provides motivation to conduct this work followed by a short introduction to cloud

computing and scientific workflows. After that there is a problem statement and goal of thesis with

defined tasks provided.

T. Dziok Multi-stage optimization of workflow execution in clouds

2. State of the Art Overview

This chapter introduces scientific workflows (section 2.1) which are the subject of this work. Then

there is a a description of linear programming (section 2.2) used in work to model and solve goal of

thesis. At the end (section 2.3) there are presented related works in this area.

2.1. Workflow Overview

As mentioned in introduction section, workflows are basically series of tasks. From formal point of

view, workflow can be presented as a Directed Acyclic Graph where node represents one task and edge

dependency between tasks. On the basis of dependencies between tasks it is possible to group them into

levels. Each level contains independent tasks which can be executed in parallel. This fact gives more

opportunities to optimize workflow execution by executing in parallel tasks from the same level.

Such workflows can be classified according to tasks number (even up to 1,000,000 number of tasks),

width (in wide workflow there are sets of tasks which can be executed in parallel, in narrow one by one)

or tasks size in relation to pricing unit time: fine-grained (task execution time is lower then pricing unit

time) or coarse-grained (task execution time is longer than unit time).

2.2. Linear Programming

2.2.1. Definition

Linear programming is a optimization method which allows to achieve the best solution (minimum

or maximum) represented in a mathematical model as linear relationships.

Linear programming consists of linear function to be maximized (or minimized) known as an objec-

tive function, problem constraints and non-negative variables.

Linear programs (are problems that) can be expressed in canonical form as:

maximize cTx

subject to Ax ≤ b
and x ≥ 0

where:

x represents the vector of variables (to be determined)

c and b are vectors of known coefficients

4

2.2. Linear Programming 5

A is a known matrix of coefficients

and (.)T is the matrix transpose

cTx is a objective function

inequalities are the constraints which specify the search space over which the objective function is to be

optimized.

Linear programming can be applied in many areas of science and engineering.

Mixed integer linear programming (MIP) is a variant of linear programming in which only some of

the variables are constrained to be integers, while other variables are allowed to be non-integers.

2.2.2. Example

One of the popular examples of usage is a planning production in a factory to minimize total cost

under given deadline.

A Factory which produces three different products: A, B and C will be provided as an example. They

can be produced on two assembly lines: I (faster and more expensive) and II (slower and cheaper). There

is an order forNA A products,NB B andNC C ones. Client gives deadline T to complete the order. From

factory point of view crucial information is a plan describing which (and how many) products should be

produced on each assembly line to minimize total cost under given deadline.

Assembly line I II

Cost/hour CI CII

Product/Assembly line I II

A EA
I EA

II

B EB
I EB

II

C EC
I EC

II

(a) The left table presents cost per hour Cl for line for l assembly line, on the right there is an efficiency per hour Ep
l for l line

and p product

Product Order amount

A NA

B NB

C BC

Product/Assembly line I II

A XA
I XA

II

B XB
I XB

II

C XC
I XC

II

(b) On left side there is a product order, on right production plan - variable Xp
l represents how many products p will be produced

on line l

Figure 2.1: Tables above represent available assembly lines and performance, then ordered products and

unknown variables.

The objective is to minimize total cost:

min
L∑
l

P∑
p
Cl ∗Xl,p

Constraints are:

to meet deadline:
L∑
l

P∑
p
El,p ∗Xl,p < T

amount of the ordered products: ∀p ∈ P
L∑
l

Xp
l = Np, where P = {A,B,C} and L = {I, II}

T. Dziok Multi-stage optimization of workflow execution in clouds

2.3. Related Work 6

and Xp
l variables non-negative: ∀x ∈ X : x ≥ 0

There are a few ways of solving the problem defined above. But this is out of scope of this work.

Worth to comment is that such solution may not exist at all. Basically it could be impossible to complete

the order under specified deadline.

2.3. Related Work

Mathematical programming has been applied to the problem of workflow scheduling in clouds. The

model presented in [11] is applied to scheduling small-scale workflows on hybrid clouds using time

discretization. Large-scale bag-of-task applications on hybrid clouds are addressed in [12]. The cloud

bursting scenario described in [13], where a private cloud is combined with a public one, also addresses

workflows. None of these approaches address the problem of inaccurate estimates of actual task runtimes.

Adaptive approach is known in engineering systems [14]. Dynamic algorithms for workflow schedul-

ing in clouds have been proposed e.g. in [17], where there is an assumption of the dynamic stream of

workflows. In [15] the goal is to minimize makespan and monetary cost, assuming an auction model,

which differs from this approach where there is an assumption of cloud pricing model of Amazon EC2.

In [6] there are presented scheduling workloads of workflows with unknown task runtimes - here also

workflows are treated as stream.

MIP approach to schedule multi-level workflows is used in work [1], but the dynamic nature of cloud

is not considered. In other works there were analysis of impact of uncertainties of runtime estimations

on the quality of scheduling bag-of-task in [3] and workflow ensembles in [2], with the conclusion that

these uncertainties cannot be always neglected.

Uncertainties which may come almost from all sides are described in details in [7].

Task estimation for workflow scheduling is a non-trivial problem, but several approaches exist, e.g.

those based on stochastic modeling and workflow reductions [8]. It is also possible to create perfor-

mance models to estimate workflow execution time using application and system parameters, as pro-

posed in [16]. The error of these estimates is less than 20% for most cases, which gives a hint on the size

of possible uncertainties.

2.4. Summary

In this chapter there is information about scientific workflows and then a short introduction to linear

programming with an example. At the end related work papers are listed.

T. Dziok Multi-stage optimization of workflow execution in clouds

3. Adaptive Algorithm

This chapter describes adaptive algorithm for multi-stage optimization of workflow executions in

IaaS clouds under a deadline constraint. At the beginning there is a general description (sections 3.1 and

3.2), then input and output are described (section 3.3). After that there is a presentation of high-level flow

with a detailed description of each phase (sections 3.4 and 3.5). This is followed by execution of sample

workflow with comments to each step (section 3.6). At the end optimization models used in algorithm

(section 3.7) are presented .

3.1. Introduction

Algorithm provides an adaptive method for minimizing cost of workflow execution on IaaS clouds

under a deadline constraint. Algorithm is run many times during workflow execution. Each execution

is just one iteration which consists of two phases: global planning phase and local planning phase. In

first phase the algorithm approximately assigns VMs to whole workflow under deadline constraint. As

a result of a second phase it returns detailed assignments between VM and each task - but only for the

first available subset of independent tasks (level). Then tasks from this subset are executed. After that

algorithm updates remaining deadline with real execution time and starts next iteration. Thanks to that

it is able to adjust to differences between an estimated and actual execution time. This approach can be

considered as a hybrid between static and dynamic scheduling algorithms.

For example, if we have deadline for 3 days, but in runtime it shows a possibility to finish in 2

days (e.g. when tasks were overestimated) algorithm will minimize total cost by choosing slower and

cheaper VMs. And as a result workflow will be executing for 3 days. In second scenario when tasks are

underestimated algorithm tries to keep deadline and selects more powerful VMs.

3.2. Assumptions

The main assumption is that workflow can be divided into levels. Tasks from each level are indepen-

dent and can be executed simultaneously on multiple VMs. Level of task is a length of the longest path

from an entry node. What is important, tasks from one level can have different estimates of execution

time.

7

3.3. Input/Output 8

3.3. Input/Output

The algorithm requires:

1. Information about available infrastructure (VMs)

(a) The performance expressed in metric called CCU (which is a result of a benchmark, as in

Cloud Harmony Compute Units [18])unit time (e.g. hour)

(b) List of available VM instances

2. Workflow (see Fig. 1.1) represented as directed acyclic graph (DAG):

(a) Nodes represent tasks

(b) Edges represent dependencies between tasks

(c) Each task has estimated execution time on a VM with performance of 1 CCU

3. Global deadline for the whole workflow.

3.4. High Level Flow

The algorithm is shown in Fig. 3.1 and consists of the following steps described below.

T. Dziok Multi-stage optimization of workflow execution in clouds

3.4. High Level Flow 9

Start

1) Load input data

2) Perform approximate work-
flow planning (global planning
phase) with cost minimization

3a) Solution found?
3b) Perform approximate work-
flow planning (global planning
phase) with time minimization

4) Perform the local plan-
ning for the first available

level (local planning phase)

5) Execute tasks from de-
tailed planned level (ex-
ecution phase) and col-

lect actual execution time

6) Workflow
finished?

7) Update remaining time
for the whole workflow

Stop

Yes

No

No

Yes

Figure 3.1: High level flow of scheduling algorithm.

T. Dziok Multi-stage optimization of workflow execution in clouds

3.5. Description of Each Algorithm Step 10

3.5. Description of Each Algorithm Step

1. In this step all required data is loaded: information about workflow, available infrastructure (list of

VMs) and global deadline. Detailed input is described above in section 3.3.

2. In global planning phase algorithm assigns VMs to all not finished levels. Tasks estimated exe-

cution time could have different values in the same level which makes calculation complex and

time consuming. To simplify optimization model used in this phase, algorithm calculates average

tasks execution time for each level and uses as input. The goal of this phase is to find assignments

with minimal total execution cost under global deadline. As a result algorithm returns which VMs

will execute tasks from given level and also how many tasks should be executed on each VM.

Additionally algorithm returns information about estimated execution time and cost for each level.

3. Next step is introduced to check if the solver finds a solution. If yes, then algorithm goes to the

4th step. If solution is not found (e.g. global deadline is too short), the optimization is run again

without deadline constraint, but with time minimization as an objective. Execution cost is skipped

in this model. This is one of the possible ways of handling this situation. Returned results are the

same as in the previous model with global deadline constraint.

4. Local planning phase assigns individual tasks to VMs in the current level. It uses the results from

previous step as an input: VMs assigned to this level and number of tasks which should be exe-

cuted on each VM. In this phase there are used exact task estimates, so tasks could have different

estimates (in global planning phase algorithm calculates average estimates). The objective of op-

timization is to minimize the total execution time. Total cost is not taken into account because the

VMs are already chosen and the estimated execution time for each level is known – so the cost

does not change. As a result the algorithm returns information on which VM task will be executed.

5. In this step tasks from local planning phase are executed on assigned VMs. Actual task execution

time is collected and used in next iterations. Tasks may be executed on real VMs instances or in a

cloud simulator (which allows to easily test many scenarios).

6. The algorithm finishes if there are no remaining levels to be scheduled (all tasks are executed).

7. Remaining total time is decreased by real execution time and then algorithm performs planning for

remaining part of the workflow, repeating process from step 2. Thanks to such iterative planning

the algorithm adjusts to the current situation of workflow execution.

3.6. Illustrative Example

To illustrate the operation of described algorithm, an example below has been prepared using the

simple workflow from Fig. 1.1. The input is provided in Table 3.2a. The workflow consists of 3 levels,

so the algorithm is executed in three iterations, as shown in Fig. 3.2, Fig. 3.3 and Fig. 3.4. The results are

presented and commented in Fig. 3.5.

T. Dziok Multi-stage optimization of workflow execution in clouds

3.6. Illustrative Example 11

Task ID T1 T2 T3 T4 T5

Est. Task Size 22 18 10 10 20

VM ID Performance (CCU) Cost per Time Unit

A 5 10
B 10 25

(a) Input to the illustrative example algorithm execution: estimated task sizes, VM performance and costs for the workflow

shown in Fig. 1.1. Global deadline is 15.

Level L1 L2 L3

Number of Tasks 2 2 1
Avg. Task Time 20 10 20

Planned Time 8 2 4
Planned Cost 80 45 40

Assigned VMs A A, B A
(number of tasks) (2) (1), (1) (1)

(b) Iteration 1, Global planning phase. Estimated cost of executing workflow is 165 and the total time is 14. Algorithm

plans to use almost all of the available time, selects cheaper instance (A) and minimizes the total cost.

Task ID / Level T1 T2 L1

VM A A
Planned Time 5 4 9
Planned Cost 50 40 90

(c) Iteration 1, Local planning phase. In this phase algorithm uses exact values of task estimates - because of that

total execution time and cost is different from global phase for this level (8 vs. 9). Planned time for level is 9, planned

cost is 90.

Task ID / Level T1 T2 L1

VM A A
Actual Time 3 2 5

∆ Time -2 -2 -4
Actual Cost 30 20 50

∆ Cost -20 -20 -40

(d) Iteration 1, Execution phase. In this case tasks from level 1 were overestimated - execution time was shorter than

estimated (planned 9, actual 5).

Figure 3.2: 1st iteration. In Global planning phase there are all 3 levels used, in local planning phase

the first one - L1. Execution took less time than estimated. Algorithm updates remaining time with actual

value (now 10 time units remained) and current total cost is 50.

T. Dziok Multi-stage optimization of workflow execution in clouds

3.6. Illustrative Example 12

Level L2 L3

Number of Tasks 2 1
Avg. Task Time 10 20

Planned Time 4 4
Planned Cost 40 40

Assigned VMs A A
(number of tasks) (2) (1)

(a) Iteration 2, Global planning phase. Due to more time available than expected, algorithm assigned all tasks to the

cheapest VM - to minimize the total cost. Previously there was selected VM A and B to level L2, now VM A is

assigned to both tasks from level L2.

Task ID T3 T4 L2

VM A A
Planned Time 2 2 4
Planned Cost 20 20 40

(b) Iteration 2, Local planning phase. Planned time for level is 4, planned cost is 40.

Task ID T1 T2 L2

VM A A
Actual Time 4 4 8

∆ Time +2 +2 +4
Actual Cost 40 40 80

∆ Cost +20 +20 +40

(c) Iteration 2, Execution phase. Tasks from level L2 were underestimated - execution time was longer than expected.

Actual level execution time is 8 and cost 80.

Figure 3.3: 2nd iteration. In the first phase algorithm selects cheaper VMs due to more available time

comparing to the first iteration (L1 was overestimated). Execution phase shows that L2 was underes-

timted. Total cost is 130 and remaining time is 2.

T. Dziok Multi-stage optimization of workflow execution in clouds

3.6. Illustrative Example 13

Level L3

Number of Tasks 1
Avg. Task Time 20

Planned Time 2
Planned Cost 50

Assigned VMs B
(number of tasks) (1)

(a) Iteration 3, Global planning phase - algorithm selects the most powerful VM B to keep the deadline constraint.

Task ID T5

VM B
Planned Time 2
Planned Cost 50

(b) Iteration 3, Local planning phase. Level L3 has only one task so level execution time equals to the task execution

time.

Task ID T5

VM B
Actual Time 2

∆ Time -
Actual Cost 50

∆ Cost –

(c) Iteration 3, Execution phase - in this case estimate for T5 was exact.

Figure 3.4: 3rd iteration. Before this iteration L3 was assigned to VM A, but due to less available time

for L3 then before (due to underestimated L2) in global planning phase the algorithm selects the most

powerful VM B to keep the deadline constraint. Total time is 15, total cost is 180 and the workflow

completed in the given deadline.

T. Dziok Multi-stage optimization of workflow execution in clouds

3.6. Illustrative Example 14

Global Deadline

0

5

10

15

1 2 3 4

Iteration

T
im

e Local
Planning
Level 3
Level 2
Level 1

0

50

100

150

1 2 3 4

Iteration

C
os

t Local
Planning
Level 3
Level 2
Level 1

Figure 3.5: Execution time and cost of the algorithm, shown level by level. In the first iteration, the

global planning phase estimates the completion time of level 1 as 8 (purple bar) and the local planning

estimates it to be 9 (solid line). In iteration 2, it turns out that the level L1 finished at time 5 (grey bar).

Both global and local planning for level 2 (red bar and solid line) predict the finish time to be 9. The

actual execution of level 2 completes at time 13 (grey bar), so in iteration 3 both global and local phases

plan the execution of level 3 (orange bar) to complete just within the deadline. The execution in iteration

4 shows that the level 3 actually completed as planned. As we see the assignments of tasks to VMs

change whenever the actual execution time differs from the estimated one.

T. Dziok Multi-stage optimization of workflow execution in clouds

3.7. Optimization Models 15

3.7. Optimization Models

Algorithm uses three optimization models: the first one for global planning phase, the second one in

the case when deadline cannot be met, and the third one for the local planning phase. Since the domain

is discrete, each model belongs to a mixed-integer programming (MIP) class. In all three models there is

an assumption of simplicity that VMs start immediately and have no latency. Thanks to that the problems

are solved quicker. However, there is an assumption that all possible delays are included in the error of

estimates, which is taken into account in step 7 of the algorithm. Below there is a description of the

models with reference to the source code in the public repository [29]

3.7.1. Global Planning Phase Model

Model used in global planning phase assigns VMs and sub-deadlines to each level. Sub-deadlines

are evaluated during computation based on global deadline for the whole workflow. Instead of scheduling

individual tasks, it uses an approximation of average task runtimes. For each level, it calculates an average

task size and based on this, an estimated cost of executing its tasks on a given VM. As a result, it is known

which VMs should be used for each level and how many tasks should be executed on given VM. The

objective is to minimize total cost of the whole workflow execution.

Input to this global planning phase is defined by the following data:

– m is number of VMs

– n is number of levels

– V is a set of VMs

– L is a set of levels

– d is global deadline

– Ll is number of tasks in level l

– T a
l,v is average estimated execution time of task from level l on VM v

– pv is cost of running VM v for one time unit

– Cl,v = pvT
a
l,v is average estimated cost of executing task from level l on VM v

The search space is defined by the following variables:

– Ql,v is integer matrix which provides how many tasks from level l will be executed on VM v

– T e
l is vector of real numbers which stores execution time for level l (estimated sub-deadlines)

– T v
l,v is matrix which stores execution time for VM v on level l. Al,v is used as an auxiliary variable

to simplify defining constraints

T. Dziok Multi-stage optimization of workflow execution in clouds

3.7. Optimization Models 16

The objective is to minimize total cost:

Minimize:
L∑
l

V∑
v
Cl,v ∗Ql,v

Search space is constrained to keep the total execution time below the deadline, divide the deadline

into sub-deadlines and to enforce them, and to ensure that all the tasks from each level are executed. This

is achieved by following constraints:

– enforce workflow deadline:
L∑
l

T e
l ≤ d

– determine VM working time for each level:

∀l ∈ L, ∀v ∈ V : T v
l,v = Ql,v ∗ T a

l,v

– determine time for level (sub-deadline) - which is equal to the longest working vm time:

∀l ∈ L, ∀v ∈ V : T e
l ≥ T v

l,v

– make sure that execution time for vm in level is less or equal to level execution time:

∀l ∈ L : T e
l ≤

V∑
v
T v
l,v

– enforce that all tasks from level are executed:

∀l ∈ L :
V∑
v
Ql,v = Ll

– enforce that values from matrix Q are not negative:

∀l ∈ L, v ∈ V : Ql,v ≥ 0

3.7.2. Global Planning Phase Alternative Model

Model used in global planning phase when deadline cannot be met is used when searching for solution

using the first model fails. It can happen e.g. when real execution time of previous level takes much more

time than expected and global deadline for workflow can not be met. In comparison to the previous

model, the algorithm ignores global deadline constraint and the objective function minimizes total time

of workflow execution:

Minimize:
L∑
l

T e
l

Defined constraints are almost the same as in global planning phase - all are used without the first

one (enforce global deadline)

3.7.3. Local Planning Phase Model

Model used in local planning phase assigns one VM (from VMs assigned to level) to each task from

a single level. The goal is to minimize time of level execution, which is equal to the time of the longest

working VM.

Input to this optimization problem is defined by the following data:

– m is number of VMs

T. Dziok Multi-stage optimization of workflow execution in clouds

3.8. Summary 17

– k is number of tasks in current level

– K is a set of tasks

– V is a set of VMs (only VMs assigned to current level – results from global planning phase)

– T e
k,v is an estimated execution time of task k on VM v

– Nv is a number of tasks which will be executed on VM v (results from global planning phase)

Search space is defined by the following variables:

– Ak,v is binary matrix which provides if task k will be executed on VM v

– T r
v is vector of real numbers which provides how long each VM v works

– w is helper variable which stores the longest working time for VMs from V

The objective is to minimize time of the longest working VM:

Minimize: max(T r
v |v ∈ V)

that is implemented as

Minimize: w.

Search space is constrained to ensure that all the tasks are executed, to assign given number of tasks

on each VM, and to assign the correct value to w which is the longest working VM. This is achieved by

the following constraints:

– determine working time for each VM:

∀v ∈ V :
K∑
k

T e
k,v ∗Ak,v = T r

v

– determine time of the longest working VM:

∀v ∈ V : T r
v ≤ w

– enforce number of tasks assigned to each VM:

∀v ∈ V :
K∑
k

Ak,v = Nv

– enforce that each task should be executed:

∀k ∈ K :
V∑
v
Ak,v = 1

3.8. Summary

This chapter describes adaptive multi-stage algorithm for minimizing cost of workflow execution on

IaaS clouds under deadline constraint. At the beginning there is a description of algorithm idea - split

workflow to levels and execute two-phase planning for each level. Flow is described in Fig. 3.1 and then

each step is explained. Illustrative example presented in Fig. 3.2, Fig. 3.3, Fig. 3.4 and Fig. 3.5 allows

to easily understand how algorithm works. At the end there is a description of optimization models

implemented using mixed-integer programming language.

T. Dziok Multi-stage optimization of workflow execution in clouds

4. Implementation

This chapter describes implementation of presented algorithm and optimization models. At the begin-

ning there is a high level description (section 4.1) and a description of experiments input (section 4.2).

Two flow diagrams (section 4.3) show how experiment runner, workflow planner and executor work.

Then there is showed generated output (section 4.4) which includes planning results. At the end there are

used languages and tools listed (section 4.5), how to run tutorial (section 4.6) followed by link to public

repository with a quick layout description (section 4.7). There is also presented a project organisation

and a high level flow of application presented on diagrams. At the end there is a sample output generated

by application.

4.1. High level description

Application consists of modules specified below:

1. Experiment runner

2. Input data loader

3. Global planning phase main planner

4. Global planning phase alternative planner

5. Local planning phase planner

6. Task executor at simulated cloud

7. Output data presenter

4.2. Experiment Input

There are three types of experiments implemented. Except standard workflow planning and executing

experiment, application provides two more experiments: workflow comparison and disturbance. Experi-

ments are described in the next chapter 5. Experiments and Results. Experiments inputs are described by

.json files which include a lists of experiments. They define .dag files with workflows and .json files with

infrastructure descriptions. Sample input file with description is attached in appendix A.1

18

4.3. Flow Diagrams 19

4.3. Flow Diagrams

Whole flow is split into two levels: first one is experiment phase (Fig. 4.1), second one is workflow

schedule and execution phase (Fig. 4.2).

(a) Experiment Runner Flow.

Figure 4.1: Experiment Runner Flow - experiments are read and dispatched to proper runner.

T. Dziok Multi-stage optimization of workflow execution in clouds

4.4. Generated Output 20

(a) Workflow Scheduling and Execution Flow.

Figure 4.2: Workflow Scheduling and Execution Flow. This is implementation of adaptive algorithm

described in the previous chapter 3. Adaptive Algorithm. After each step all observers are notified. In

current implementation only one observer is registered, which saves all notification and results in the

file. Thanks to this approach it is easy to implement other ones, e.g. gui which could visualize whole

experiment in the real time.

4.4. Generated Output

During execution of the whole experiment output is saved in files. Such files (group in directories)

are generated:

results

{experimentName}/

{timestamp}/

{workflowDescription}/

T. Dziok Multi-stage optimization of workflow execution in clouds

4.5. Languages and Tools 21

{date}/

cmpl/ {raw solution from cmpl}

iteration-0-global-main

iteration-0-local

iteration-1-global-alternative

iteration-1-local

iteration-2-global-main

iteration-2-local

csvResults/ {data for plot generation}

schedule_cost_illustrative.csv

schedule_time_illustrative.csv

plots/ {generated plots}

schedule_cost_illustrative.pdf

schedule_time_illustrative.pdf

execution.log {experiment execution data}

execution.log file contains:

1. Information about input data.

2. Information when each action was performed and finished.

3. Results of each planner execution (results from global planning phase and local planning phase).

4. Iteration summary.

5. Timestamps before each log entry.

Generated output is presented in appendix A.2.

Below you can find the output (without timestamps) from illustrative workflow scheduling experi-

ment, which contains summary of input data, information which step is executed, results from planner

and task executor after each iteration:

4.5. Languages and Tools

Languages and tools used in implementation:

– optimization models are implemented in CMPL modeling language [27]

– solutions are computed by CBC solver [28]

– input data is loaded from files: workflow from DAG, infrastructure from JSON

– plots are generated in R language

– main application and task executor are implemented in Java 8

T. Dziok Multi-stage optimization of workflow execution in clouds

4.6. How To Run 22

– all dependencies are handled by gradle (e.g. gson, log4j, junit; details are available in build.gradle

file)

4.6. How To Run

Requirements:

– java 8

– gradle 2.3

– R-3.1.2 (with libraries: ggplot2, reshape2, grid)

– cmpl (1.10.0) with cbc solver (included in cmpl package)

Both R and cmpl bin directories must be included in the PATH system environment. Both programs are

executed during experiments.

To run experiment execute pl.edu.agh.ki.mgr.workflowplanner.app.ExperimentRunner class with

experiment description file as program argument, e.g.

pl.edu.agh.ki.mgr.workflowplanner.app.ExperimentRunner experiments/disturbance/disturbance-

montage5000.json

4.7. Source Code

Source code (including R scripts and sample test data) is available in the repository [29]. Repository

layout (all files are stored under main directory WorkflowPlanner):

– experiments - contains test data for experiments (workflows, infrasturucture, experiments defini-

tions)

– lib - contains jCMPL.jar dependency

– models - contains optimization models written in cmpl language

– RScripts - contains scripts which generate plots

– src - contains source code including unit tests

4.8. Summary

This chapters presents implementation of the algorithm and the optimization models. There are high

level flows, requirements to run experiment, sample input and generated output. Then used languages

and tools are listed. At the and there is a link to public repository with source code.

T. Dziok Multi-stage optimization of workflow execution in clouds

5. Experiments and Results

This chapter describes performed experiments which evaluated the algorithm. Section 5.1 shows

performed experiments and then section 5.2 describes testing environment including used VMs and

hardware. Then each workflow is characterized (section 5.3) and next sections present results of the

experiments.

5.1. Experiments Description

Algorithm implementation has been evaluated by performing a series of experiments. Platform which

allows to execute experiments contains implementation of presented algorithm and simple cloud simu-

lator which executes tasks on VMs. Experiments have been performed on different workflows and on

different VMs.

Algorithm has been evaluated in three experiments. First one is planning workflow execution on

available infrastructure with given deadline. Tasks runtimes are modified in a different way: random,

with task under and over estimations. Second one is workflow disturbance experiments which show how

time and cost change depending on runtime disturbance. The last one is workflow comparison which

compares relative cost and time execution of different workflows. Detailed description is in the sections

below.

5.2. Experiments Environment

Experiments have been executed on ASUS K55VM laptop with:

– Intel Core i7-3610QM CPU @ 2.30GHZ

– 8GB RAM

– SSD hard drive

– Windows 7 64bit

Average experiment execution time took from a few seconds up to a few minutes.

Available Amazon VMs have been used as an infrastructure in the experiments. VM m3.large is used

as a reference VM type. For performance estimation of other instance type is used the ECU value as

provided by Amazon.

23

5.3. Workflows Description 24

Tasks are executed in a simple simulator. It executes one level of tasks on the assigned VMs and

introduces runtime variations of task execution times to simulate the behaviour of the real infrastructure.

It is possible to configure runtime variations so that they allow to easily test different scenarios.

Used VMs:

VM | CCU | Price

t2.micro | 1 | 2

t2.small | 1 | 3

t2.medium | 1 | 6

m3.medium | 3 | 8

m3.large | 6 | 17

m3.xlarge | 13 | 33

m3.2xlarge | 26 | 67

c4.large | 8 | 15

c4.xlarge | 16 | 30

c4.2xlarge | 31 | 59

c4.4xlarge | 62 | 118

c4.8xlarge | 132 | 237

c3.large | 7 | 13

c3.xlarge | 14 | 26

c3.2xlarge | 28 | 52

c3.4xlarge | 55 | 103

c3.8xlarge | 108 | 206

Runtime disturbances have been generated using the normal distribution with the standard deviation

of 0.25 and the mean of µ, with µ from -0.25 (overestimation) to 0.25 (underestimation). In some experi-

ments in order to simulate shorter/longer execution time, disturbance has been multiplied by 0.75 or 1.25

respectively. In some cases disturbance was equal to zero which means that real execution time equals

estimated one.

5.3. Workflows Description

Workflows used in experimets are taken from workflow gallery available in pegasus gallery. Each of

them can be split into independent levels. They are described below.

5.3.1. Montage

Montage is a workflow [10] created by NASA/IPAC to create mosaics of the sky from many input

images. In experiments version with 5000 tasks (11 levels) has been used. Task runtime estimations have

been taken from logs from previous workflow execution on real Amazon infrastructure [4]. Since the

real Montage workflow consists of very small tasks (having execution time in the order of seconds), they

T. Dziok Multi-stage optimization of workflow execution in clouds

5.4. Workflow Scheduling Experiments 25

have been artificially extended by multiplying execution time by 3600. The deadline has been set to 3500

time units (hours).

5.3.2. Cybershake

Cybershake workflow is used by the Southern California Earthquake Center to characterize earth-

quake hazards in a region. In experiments version with 1000 tasks (4 levels; respectively 6, 496, 497,

1 task in level) has been used. In fact, only two levels in this workflow could be easily run in parallel.

Deadline has been set to 2000 hours (units).

5.3.3. Genome

Genome is another workflow. In experiments version with 400 tasks (9 levels) has been used. Dead-

line has been set to 3200 hours (units).

5.4. Workflow Scheduling Experiments

This experiment is the base one. It uses the following input:

– workflow

– infrastructure

– global deadline

– type of runtime disturbances provider

– flag if real execution time should be taken while updating remaining global deadline (adaptive or

static version)

and then executes the whole algorithm. As results, the application generates two plots - the same as in

the illustrative example (Fig. 3.5)

Following subsections contain results for workflows described above. Each workflow has been exe-

cuted with four different parameters set:

– disturbance - random, adaptive - true

– disturbance - random, adaptive - false

– disturbance - real runtime shorter with disturbance (tasks are overestimated), adaptive - true

– disturbance - real runtime longer with disturbance (tasks are underestimated), adaptive - true

T. Dziok Multi-stage optimization of workflow execution in clouds

5.4. Workflow Scheduling Experiments 26

5.4.1. Montage

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

T
im

e

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

C
os

t

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.1: [Montage] Workflow planning and execution with random disturbance. As we can see algo-

rithm plans workflow to stick to given deadline regardless of real task execution time. Estimated cost

changes after each iteration because different VMs are selected.

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

T
im

e

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

C
os

t

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.2: [Montage] Workflow planning and execution with random disturbance but in static mode - al-

gorithm does not update remaining deadline with real time but plans in advance. As we can see algorithm

plans workflow to minimize cost but starting from second iteration it exceeds the given deadline.

T. Dziok Multi-stage optimization of workflow execution in clouds

5.4. Workflow Scheduling Experiments 27

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

T
im

e

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

C
os

t

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.3: [Montage] Workflow planning and execution when runtimes are shorter than estimated (case

with tasks overestimation). As we can see algorithm minimizes total cost by choosing slower and cheaper

VMs. At the same time it uses all available given deadline and sticks to it.

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

T
im

e

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

C
os

t

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.4: [Montage] Workflow planning and execution when runtimes are longer than estimated (case

with tasks underestimation). As we can see algorithm tries to keep given deadline by choosing more

powerful VMs (and more expensive). In fact deadline has not been met in the last iteration, but it was

impossible in a current implementation of algorithm.

T. Dziok Multi-stage optimization of workflow execution in clouds

5.4. Workflow Scheduling Experiments 28

5.4.2. Cybershake

Results for Cybershake

Global Deadline

0

500

1000

1500

2000

1 2 3 4 5

Iteration

T
im

e

Local
Planning
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

20000

40000

1 2 3 4 5

Iteration

C
os

t

Local
Planning
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.5: [Cybershake] Workflow planning and execution with random disturbance. As we can see

algorithm plans workflow to stick to given deadline regardless of real task execution time. Estimated

cost increases after each iteration because more expensive VMs are selected.

Global Deadline

0

500

1000

1500

2000

1 2 3 4 5

Iteration

T
im

e

Local
Planning
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

10000

20000

30000

40000

50000

1 2 3 4 5

Iteration

C
os

t

Local
Planning
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.6: [Cybershake] Workflow planning and execution with random disturbance but in static mode

- algorithm does not update remaining deadline with real time but plans in advance. As we can see

algorithm plans workflow to minimize cost but starting from third iteration it exceeds given deadline.

T. Dziok Multi-stage optimization of workflow execution in clouds

5.4. Workflow Scheduling Experiments 29

Global Deadline

0

500

1000

1500

2000

1 2 3 4 5

Iteration

T
im

e

Local
Planning
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

10000

20000

30000

40000

50000

1 2 3 4 5

Iteration

C
os

t

Local
Planning
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.7: [Cybershake] Workflow planning and execution when runtimes are shorter than estimated

(case with tasks overestimation). As we can see algorithm minimizes total cost by choosing slower and

cheaper VMs. At the same time it uses whole available given deadline and sticks to it in 1st and 2nd

iteration. Starting from third iteration total time is lower than then deadline. At the same time total cost

is lower comparing to estimation from the first iteration.

Global Deadline

0

500

1000

1500

2000

1 2 3 4 5

Iteration

T
im

e

Local
Planning
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

20000

40000

60000

1 2 3 4 5

Iteration

C
os

t

Local
Planning
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.8: [Cybershake] Workflow planning and execution when runtimes are longer than estimated

(case with tasks underestimation). As we can see algorithm tries to keep given deadline by choosing

more powerful VMs (and more expensive). In fact deadline was not met beacuse it was impossible in a

given deadline.

T. Dziok Multi-stage optimization of workflow execution in clouds

5.4. Workflow Scheduling Experiments 30

5.4.3. Genome

Results for Genome

Global Deadline

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10

Iteration

T
im

e

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

250000

500000

750000

1000000

1250000

1 2 3 4 5 6 7 8 9 10

Iteration

C
os

t

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.9: [Genome] Workflow planning and execution with random disturbance. As we can see algo-

rithm plans workflow to stick to given deadline in a first part of levels. Then it selects slower VMs.

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10

Iteration

T
im

e

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

250000

500000

750000

1000000

1250000

1 2 3 4 5 6 7 8 9 10

Iteration

C
os

t

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.10: [Genome] Workflow planning and execution with random disturbance but in static mode

- algorithm does not update remaining deadline with real time but plans in advance. As we can see

algorithm plans workflow to minimize cost but starting from 6th iteration it exceeds given deadline.

T. Dziok Multi-stage optimization of workflow execution in clouds

5.4. Workflow Scheduling Experiments 31

Global Deadline

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10

Iteration

T
im

e

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

250000

500000

750000

1000000

1250000

1 2 3 4 5 6 7 8 9 10

Iteration

C
os

t

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.11: [Genome] Workflow planning and execution when runtimes are shorter than estimated (case

with tasks overestimation). As we can see algorithm minimize total cost by choosing slower and cheaper

VMs. At the same time total cost is lower comparing to estimation from the first iteration.

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10

Iteration

T
im

e

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Workflow execution time.

0

500000

1000000

1500000

1 2 3 4 5 6 7 8 9 10

Iteration

C
os

t

Local
Planning
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(b) Workflow execution cost.

Figure 5.12: [Genome] Workflow planning and execution when runtimes are longer than estimated (case

with tasks underestimation). As we can see algorithm tries to keep given deadline by choosing more

powerful VMs (and more expensive). In fact deadline was not met beacuse it was impossible in a given

deadline.

T. Dziok Multi-stage optimization of workflow execution in clouds

5.5. Workflow Disturbance Experiments 32

5.5. Workflow Disturbance Experiments

This experiment presents how the completion time and total cost depend on the varying estimation

error µ. The errors have been generated using the normal distribution with the standard deviation of 0.25

and the mean of µ, with µ from -0.25 (overestimation) to 0.25 (underestimation).

5.5.1. Montage

3000

3500

4000

4500

−0.2−0.1 0.0 0.1 0.2

Estimation Error

T
im

e

Algorithm
Type:

Adaptive
Static

(a) Workflow execution time.

32500

35000

37500

40000

42500

−0.2−0.1 0.0 0.1 0.2

Estimation Error

C
os

t

Algorithm
Type:

Adaptive
Static

(b) Workflow execution cost.

Figure 5.13: [Montage] In plot (a) we observe that adaptive algorithm succeeds to meet the deadline in

more cases than the static algorithm. Even for the largest error (µ = 0.25) the deadline overrun is only

5%, while for the static algorithm it is over 25%. The next plot (b) shows that the adaptation costs more,

i.e. in most cases the cost is higher for adaptive algorithm, but never more than by 5%. This is explained

by the need to choose more expensive VMs to complete the workflow before the deadline.

5.5.2. Genome

3000

4000

5000

6000

−0.2−0.1 0.0 0.1 0.2

Estimation Error

T
im

e

Algorithm
Type:

Adaptive
Static

(a) Workflow execution time.

1000000

1200000

1400000

−0.2−0.10.0 0.1 0.2

Estimation Error

C
os

t

Algorithm
Type:

Adaptive
Static

(b) Workflow execution cost.

Figure 5.14: [Genome] We can see that this workflow (4 levels, only 2nd and 3rd could be run in parallel)

is very susceptible on disturbances. Results are not as clear as in the Montage workflow.

T. Dziok Multi-stage optimization of workflow execution in clouds

5.6. Workflow Comparison Experiments 33

5.6. Workflow Comparison Experiments

These experiments compare behaviour of workflows when tasks are under or over estimated. Gener-

ally, observed behaviour is similar in all the cases.

0.0

0.5

1.0

C
yb

er
S

ha
ke

10
00

G
en

om
e4

00

M
on

ta
ge

50
00

R
el

at
iv

e
T

im
e Estimation

Accuracy:

Overestimation
Exact estimation
Underestimation

(a) Workflow execution time.

0.00

0.25

0.50

0.75

1.00

1.25

C
yb

er
S

ha
ke

10
00

G
en

om
e4

00

M
on

ta
ge

50
00

R
el

at
iv

e
C

os
t Estimation

Accuracy:

Overestimation
Exact estimation
Underestimation

(b) Workflow execution cost.

Figure 5.15: Plots which show that all three workflows behave in a similar way. Overestimation and

underestimation represent error distribution shifted by -0.25 and 0.25, respectively. Relative execution

time is normalized to the deadline, while the relative cost is normalized to the cost of execution with

exact estimates (errors with µ = 0 and standard deviation of 0.25). The deadline overrun for large errors

is caused by the fact that when the task runtimes are underestimated in the final level, the algorithm

cannot adjust to them. Improving the algorithm would require adding a learning capability to predict the

estimation error based on previous levels.

5.7. Summary

In this chapter presented performed experiments which evaluated planning algorithm are presented.

Experiments has been performed on different workflows (each one is described) and with different run-

time disturbances. Plots present that algorithm works as expected.

T. Dziok Multi-stage optimization of workflow execution in clouds

6. Conclusions and Future Work

This work presents the adaptive algorithm for scheduling workflows in clouds with inaccurate esti-

mates of runtimes under global deadline constraint. The results of preliminary evaluation shows that the

implemented algorithm works as designed and is able to meet the given deadline while minimizing the

cost.

6.1. Accomplished tasks

All tasks defined in 1.5 are accomplished:

1. Problem analysis - chapter 2. State of the Art Overview.

2. Review existing solutions - chapter 2. State of the Art Overview.

3. Design adaptive algorithm - chapter 3. Adaptive Algorithm.

4. Implement adaptive algorithm - chapter 4. Implementation.

5. Verify adaptive algorithm - chapter 5. Experiments and Results.

6. Summarize results and define future work - chapter 6. Conclusions and Future Work.

6.2. Algorithm Summary

The algorithm adapts to the actual situation at runtime:

1. When tasks are executed quicker than estimated – the algorithm selects slower (and cheaper) VMs,

and minimizes the total cost.

2. When tasks are executed slower than estimated – the algorithm selects faster (and more expensive)

VMs, which increases total cost, but allows not to exceed the deadline for the whole workflow.

3. When estimated execution time for tasks from the same levels has a big variation, then there are

visible differences between estimated time in global planning phase and local planning phase.

4. When execution of tasks is longer than estimates (which is the worst case scenario) then the total

cost increases, but this is a general problem for all scheduling algorithms.

34

6.3. Future Work 35

5. When deadline is exceeded (or it is not possible to plan execution under deadline) then the algo-

rithm minimizes the total time regardless of costs.

6.3. Future Work

During implementation and evaluation a few ways that could be enhanced in the future work have

been found. They include:

1. Improvement of pricing in optimization models by e.g. reusing already assigned VMs.

2. Extending models with data transfer time and cost (now it is included in task estimates).

3. Splitting levels with many tasks to smaller ones with ’logic’ independent levels (see results for

Genome and Cybershake workflows).

4. Improvement of task estimation (i.e. take into account multi-core CPUs).

5. Use machine learning to predict estimates errors based on real execution time of previous levels

(see workflow comparison experiment and scheduling with tasks underestimation).

6. Use this algorithm as a part of engine to execute workflows in computing clouds, followed by more

systematic testing.

6.4. Summary

Scheduling workflows in IaaS clouds with runtimes uncertainties are an interesting challenge. There

are different approaches to achieve this. One of them is presented in details in this work which ac-

complishes given requirements. Presented algorithm is published in Parallel Processing and Applied

Mathematics (see appendix B. Publication).

T. Dziok Multi-stage optimization of workflow execution in clouds

Bibliography

[1] Malawski, Maciej and Figiela, Kamil and Bubak, Marian and Deelman, Ewa and Nabrzyski, Jarek.

Scheduling Multilevel Deadline-Constrained Scientific Workflows on Clouds Based on Cost Opti-

mization. Scientific Programming, 2015

[2] Malawski, Maciej and Juve, Gideon and Deelman, Ewa and Nabrzyski, Jarek. Algorithms for cost-

and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds. Future

Generation Computer Systems, 2015.

[3] Malawski, Maciej and Figiela, Kamil and Nabrzyski, Jarek. Cost minimization for computational

applications on hybrid cloud infrastructures. Future Generation Computer Systems, 2013.

[4] Figiela, Kamil and Malawski, Maciej. Modeling, Optimization and Performance Evaluation of Sci-

entific Workflows in Clouds. IEEE, 2014.

[5] Bhardwaj, Sushil and Jain, Leena end Jain, Sandeep Cloud Computing: a study of infrastructure as

a service (IaaS). International Journal of Engineering and Information Technology (pages 60-63),

2010

[6] Ilyushkin, Alexey and Ghit, Bogdan and Epema, Dick. Scheduling workloads of workflows with

unknown task runtimes. IEEE, 2015.

[7] Andrei Tchernykh, Uwe Schwiegelsohn, Vassil Alexandrov, El-ghazali Talbi. Towards Understand-

ing Uncertainty in Cloud Computing Resource Provisioning. Procedia Computer Science (pages

1772-1781), 2015.

[8] Chirkin, Artem M. and Belloum, A. S. Z. and Kovalchuk, Sergey V. and Makkes, Marc X. Execution

Time Estimation for Workflow Scheduling. IEEE, 2014.

[9] Deelman, Ewa and others. Pegasus, a workflow management system for science automation. Future

Generation Computer Systems, 2015.

[10] Juve, Gideon and Chervenak, Ann and Deelman, Ewa and Bharathi, Shishir and Mehta, Gaurang

and Vahi, Karan. Characterizing and profiling scientific workflows. Future Generation Computer

Systems (pages 682–692), 2013.

36

BIBLIOGRAPHY 37

[11] Genez, Thiago A. L. and Bittencourt, Luiz F. and Madeira, Edmundo R. M. Using Time Dis-

cretization to Schedule Scientific Workflows in Multiple Cloud Providers. IEEE Sixth International

Conference on Cloud Computing (pages 123–130), 2013.

[12] Ruben Van den Bossche and Kurt Vanmechelen and Jan Broeckhove Online cost-efficient schedul-

ing of deadline-constrained workloads on hybrid clouds. Future Generation Computer Systems,

2013.

[13] Luiz Fernando Bittencourt and Edmundo Roberto Mauro Madeira HCOC: a cost optimization

algorithm for workflow scheduling in hybrid clouds. J. Internet Services and Applications (pages

207–227), 2011.

[14] Abdelzaher, Tarek and Diao, Yixin and Hellerstein, Joseph and Lu, Chenyang and Zhu, Xiaoyun

Introduction to Control Theory And Its Application to Computing Systems. Performance Modeling

and Engineering (pages 185–215), 2008.

[15] Fard, Hamid Mohammadi and Prodan, Radu and Fahringer, Thomas A Truthful Dynamic Workflow

Scheduling Mechanism for Commercial Multicloud Environments. IEEE Transactions on Parallel

and Distributed Systems (pages 1203–1212), 2013.

[16] Pietri, Ilia and Juve, Gideon and Deelman, Ewa and Sakellariou, Rizos A Performance Model to

Estimate Execution Time of Scientific Workflows on the Cloud. Proceedings of the 9th Workshop on

Workflows in Support of Large-Scale Science (pages 11–19), 2014.

[17] Mao, Ming and Humphrey, Marty Auto-scaling to minimize cost and meet application deadlines in

cloud workflows. SC ’11, 2011.

[18] CloudHarmony. What is CCU? CPU benchmarking in Cloud. http://blog.

cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.

html. CloudHarmony, 2014.

[19] Voorsluys, William and Broberg, James and Buyya, Rajkumar Introduction to Cloud Computing.

Cloud Computing: Principles and Paradigms (pages 1–41), 2011

[20] Marston, Sean and Li, Zhi and Bandyopadhyay, Subhajyoti and Zhang, Juheng and Ghalsasi, Anand

Cloud computing - The business perspective. Decision Support Systems (pages 176–189), 2011.

[21] Juve, Gideon and Chervenak, Ann and Deelman, Ewa and Bharathi, Shishir and Mehta, Gaurang

and Vahi, Karan Characterizing and profiling scientific workflows. Future Generation Computer

Systems (pages 682–692), 2013.

[22] Bharathi, Shishir and Chervenak, Ann and Deelman, Ewa and Mehta, Gaurang and Su, Mei Hui

and Vahi, Karan Characterization of scientific workflows. 2008 3rd Workshop on Workflows in

Support of Large-Scale Science, WORKS 2008

[23] Rees, D. G. Linear Programming, An Introduction.. The Statistician, 1987

T. Dziok Multi-stage optimization of workflow execution in clouds

http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html

BIBLIOGRAPHY 38

[24] Bisschop, Johannes Linear Programming Tricks. AIMMS - Optimization Modeling (pages 63–75),

2006

[25] Amazon AWS Pricing. http://aws.amazon.com/ec2/pricing/.

[26] Pegasus Pegasus Workflows Gallery. https://pegasus.isi.edu/workflow_

gallery/.

[27] Mike Steglich. CMPL (Coin Mathematical Programming Language. https://projects.

coin-or.org/Cmpl 2015

[28] John Forrest Cbc (Coin-or branch and cut) open-source mixed integer programming solver.

https://projects.coin-or.org/Cbc.

[29] Tomasz Dziok, Repository with optimization models. https://bitbucket.org/tdziok/

mgr-cloudplanner.

T. Dziok Multi-stage optimization of workflow execution in clouds

http://aws.amazon.com/ec2/pricing/
https://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/workflow_gallery/
https://projects.coin-or.org/Cmpl
https://projects.coin-or.org/Cmpl
https://projects.coin-or.org/Cbc
https://bitbucket.org/tdziok/mgr-cloudplanner
https://bitbucket.org/tdziok/mgr-cloudplanner

A. File Formats and Outputs

A.1. Input files format

This is a sample experiment definition for the scheduling experiment:

{

"workflowScheduleExperiments": [

{

"simulatorParameters": {

"executionTimeModifier": "GaussianShorterExecutionTime",

"adjustToRealTime": true

},

"infrastructureDescription": {

"filePath": "experiments/infrastructure/awsAllVmTypes.json",

"name": "All AWS Instances"

},

"workflowDescription": {

"filePath": "experiments/dag/montage5000_real.dag",

"name": "Montage5000"

},

"deadline": 3500,

"resultsDirectory": "results"

}

]

}

It is possible to pass a list of different experiments in one input file. Most of properties are self-

descriptive. Worth mentioning are simulatorParameters. First one executionTimeModifier defines accu-

racy of task estimates (if they are executed shorter, longer, random, exact, etc.) during execution phase.

Second one adjustToRealTime says if real execution time should be taken into account when updating

remaining deadline at the end of iteration. If set to false then global deadline is decreased by estimated

total time from level planning. So in this mode algorithm does not adjust to current task execution time.

Below you can find layout of input files including files with experiments, workflows and infrastruc-

ture:

39

A.2. Output files format 40

experiments/

comparison/ {comparison experiments}

comparison-montage.json

dag/ {workflow description}

montage5000.json

disturbance/ {disturbance experiments}

disturbance-montage.json

infrastructure/ {infrastructure description}

awsAllVmTypes.json

schedule/ {schedule experiments}

schedule-montage5000.json

A.2. Output files format

This is output (without timestamps) from illustrative workflow scheduling experiment, which con-

tains summary of input data, information which step is executed, results from planner and task executor

after each iteration:

Executing experiment:

SimulatorParameters[

executionTimeModifier=PaperExecutionTimeModifier,

adjustToRealTime=true]

InfrastructureDescription[

filePath=experiments/infrastructure/illustrativeVMs.json,

name=2 Instances]

WorkflowDescription[

filePath=experiments/dag/illustrative_2_2_1.dag,

name=illustrative_2_2_1-toLess]

Deadline 6

ResultsDirectory results

UPDATE: Simulation started

> ---------------------------------

> Input data

> ---------------------------------

> Infrastructure:

> VM Id | VM CCU | VM price

> 0 | 5 | 10

> 1 | 10 | 25

> ---------------------------------

> Workflow:

T. Dziok Multi-stage optimization of workflow execution in clouds

A.2. Output files format 41

> Level Id | Average level CCU | Task count

> 0 | 20 | 2

> 1 | 10 | 2

> 2 | 20 | 1

> ---------------------------------

> Global deadline: 6

> ---------------------------------

UPDATE: Iteration started. Level: 0

UPDATE: Global planning started. Level: 0

UPDATE: Global planning failed. Level: 0.

Error: jCmpl error: No solution found so far

UPDATE: Global planning alternative succeed. Level: 0

UPDATE: Local planning started. Level: 0

UPDATE: Local planning succeed. Level: 0

UPDATE: Executing tasks started. Level: 0

UPDATE: Executing tasks finished. Level: 0

UPDATE: Iteration finished. Level: 0

> ---------------------------------

> Global planning results

> Used model: Alternative model (minimize time,

deadline can not be meet)

> Estimate cost: 185

> Estimate time: 8

> Level Id | #Tasks | Avg CCU | Est time | Est cost | VMs[#Tasks]

> 0 | 2 | 20 | 4 | 90 | 0[1], 1[1]

> 1 | 2 | 10 | 2 | 45 | 0[1], 1[1]

> 2 | 1 | 20 | 2 | 50 | 1[1]

> ---------------------------------

> ---------------------------------

> Local planning results

> Level: 0

> Estimate time: 4

> Estimate cost: 115

> TaskId | TaskCCU | VmId | VmCCU | Est time | Est cost

> 0 | 22 | 1 | 10 | 3 | 75

> 1 | 18 | 0 | 5 | 4 | 40

> ---------------------------------

> ---------------------------------

> Level execution

> Level Id: 0

T. Dziok Multi-stage optimization of workflow execution in clouds

A.2. Output files format 42

> Real cost: 70

> Real time: 2

> Task Id | VM Id | Real time | Real cost

> 0 | 1 | 2 | 50

> 1 | 0 | 2 | 20

> ---------------------------------

> **********************************

> Iteration results

> Iteration Id: 0

> Remaining time before scheduling: 6

> ---------------------------------

> Global planning results for all remaining level

> Estimate time: 8

> Estimate cost: 185

> ---------------------------------

> Local planning results for next level

> Estimate time: 4

> Estimate cost: 115

> ---------------------------------

> Execution results for last level

> Execution time: 2

> Execution cost: 70

> ---------------------------------

> (level execution time - estimated time from global planning) = -2

> (level execution time - estimated time from local planning) = -2

> (level execution cost - estimated cost from global planning) = -20

> (level execution cost - estimated cost from local planning) = -45

> ---------------------------------

> Total time elapsed: 2

> Total current cost: 70

> **********************************

UPDATE: Iteration started. Level: 1

UPDATE: Global planning started. Level: 1

UPDATE: Global planning succeed. Level: 1

UPDATE: Local planning started. Level: 1

UPDATE: Local planning succeed. Level: 1

UPDATE: Executing tasks started. Level: 1

UPDATE: Executing tasks finished. Level: 1

UPDATE: Iteration finished. Level: 1

> ---------------------------------

T. Dziok Multi-stage optimization of workflow execution in clouds

A.2. Output files format 43

> Global planning results

> Used model: Main model (minimize total cost under given deadline)

> Estimate cost: 95

> Estimate time: 4

> Level Id | #Tasks | Avg CCU | Est time | Est cost | VMs[#Tasks]

> 1 | 2 | 10 | 2 | 45 | 0[1], 1[1]

> 2 | 1 | 20 | 2 | 50 | 1[1]

> ---------------------------------

> ---------------------------------

> Local planning results

> Level: 1

> Estimate time: 2

> Estimate cost: 45

> TaskId | TaskCCU | VmId | VmCCU | Est time | Est cost

> 2 | 10 | 1 | 10 | 1 | 25

> 3 | 10 | 0 | 5 | 2 | 20

> ---------------------------------

> ---------------------------------

> Level execution

> Level Id: 1

> Real cost: 90

> Real time: 4

> Task Id | VM Id | Real time | Real cost

> 2 | 1 | 2 | 50

> 3 | 0 | 4 | 40

> ---------------------------------

> **********************************

> Iteration results

> Iteration Id: 1

> Remaining time before scheduling: 4

> ---------------------------------

> Global planning results for all remaining level

> Estimate time: 4

> Estimate cost: 95

> ---------------------------------

> Local planning results for next level

> Estimate time: 2

> Estimate cost: 45

> ---------------------------------

> Execution results for last level

T. Dziok Multi-stage optimization of workflow execution in clouds

A.2. Output files format 44

> Execution time: 4

> Execution cost: 90

> ---------------------------------

> (level execution time - estimated time from global planning) = 2

> (level execution time - estimated time from local planning) = 2

> (level execution cost - estimated cost from global planning) = 45

> (level execution cost - estimated cost from local planning) = 45

> ---------------------------------

> Total time elapsed: 6

> Total current cost: 160

> **********************************

UPDATE: Iteration started. Level: 2

UPDATE: Global planning started. Level: 2

UPDATE: Global planning failed. Level: 2.

Error: jCmpl error: No solution found so far

UPDATE: Global planning alternative succeed. Level: 2

UPDATE: Local planning started. Level: 2

UPDATE: Local planning succeed. Level: 2

UPDATE: Executing tasks started. Level: 2

UPDATE: Executing tasks finished. Level: 2

UPDATE: Iteration finished. Level: 2

> ---------------------------------

> Global planning results

> Used model: Alternative model (minimize time,

deadline can not be meet)

> Estimate cost: 50

> Estimate time: 2

> Level Id | #Tasks | Avg CCU | Est time | Est cost | VMs[#Tasks]

> 2 | 1 | 20 | 2 | 50 | 1[1]

> ---------------------------------

> ---------------------------------

> Local planning results

> Level: 2

> Estimate time: 2

> Estimate cost: 50

> TaskId | TaskCCU | VmId | VmCCU | Est time | Est cost

> 4 | 20 | 1 | 10 | 2 | 50

> ---------------------------------

> ---------------------------------

> Level execution

T. Dziok Multi-stage optimization of workflow execution in clouds

A.2. Output files format 45

> Level Id: 2

> Real cost: 50

> Real time: 2

> Task Id | VM Id | Real time | Real cost

> 4 | 1 | 2 | 50

> ---------------------------------

> **********************************

> Iteration results

> Iteration Id: 2

> Remaining time before scheduling: 0

> ---------------------------------

> Global planning results for all remaining level

> Estimate time: 2

> Estimate cost: 50

> ---------------------------------

> Local planning results for next level

> Estimate time: 2

> Estimate cost: 50

> ---------------------------------

> Execution results for last level

> Execution time: 2

> Execution cost: 50

> ---------------------------------

> (level execution time - estimated time from global planning) = 0

> (level execution time - estimated time from local planning) = 0

> (level execution cost - estimated cost from global planning) = 0

> (level execution cost - estimated cost from local planning) = 0

> ---------------------------------

> Total time elapsed: 8

> Total current cost: 210

> **********************************

UPDATE: Simulation finished

UPDATE: Started plots generation

UPDATE: Executing R script started.

Command: [Rscript.exe,

RScripts\workflowScheduleTimePlot.R,

results\...\schedule_time_illustrative_2_2_1-toLess_D6.csv,

results\...\schedule_time_illustrative_2_2_1-toLess_D6,

6, 8]

UPDATE: Executing R script succeed.

T. Dziok Multi-stage optimization of workflow execution in clouds

A.2. Output files format 46

Script name: RScripts\workflowScheduleTimePlot.R

UPDATE: Executing R script started.

Command: [Rscript.exe, RScripts\workflowScheduleCostPlot.R,

results\...\schedule_cost_illustrative_2_2_1-toLess_D6.csv,

results\...\schedule_cost_illustrative_2_2_1-toLess_D6,

252]

UPDATE: Executing R script succeed.

Script name: RScripts\workflowScheduleCostPlot.R

T. Dziok Multi-stage optimization of workflow execution in clouds

B. Publication

Below there is attached article published in Parallel Processing and Applied Mathematics with pre-

sented algorithm.

Dziok, Tomasz and Figiela, Kamil and Malawski, Maciej Adaptive Multi-level Workflow Scheduling

with Uncertain Task Estimates. Parallel Processing and Applied Mathematics (pages 90-100), Springer

International Publishing, ISBN 978-3-319-32151-6, 2016

47

Adaptive Multi-level Workflow Scheduling
with Uncertain Task Estimates

Tomasz Dziok, Kamil Figiela, and Maciej Malawski(B)

Department of Computer Science, AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

{kfigiela,malawski}@agh.edu.pl

Abstract. Scheduling of scientific workflows in IaaS clouds with pay-
per-use pricing model and multiple types of virtual machines is an
important challenge. Most static scheduling algorithms assume that the
estimates of task runtimes are known in advance, while in reality the
actual runtime may vary. To address this problem, we propose an adap-
tive scheduling algorithm for deadline constrained workflows consisting
of multiple levels. The algorithm produces a global approximate plan for
the whole workflow in a first phase, and a local detailed schedule for
the current level of the workflow. By applying this procedure iteratively
after each level completes, the algorithm is able to adjust to the run-
time variation. For each phase we propose optimization models that are
solved using Mixed Integer Programming (MIP) method. The prelimi-
nary simulation results using data from Amazon infrastructure, and both
synthetic and Montage workflows, show that the adaptive approach has
advantages over a static one.

Keywords: Cloud · Workflow · Scheduling · Optimization · Adaptive
algorithm

1 Introduction

Scientific workflow is a widely accepted method for automation of complex com-
putational processes on distributed computing infrastructures, including IaaS
clouds [7]. When using clouds and their pay-per-use pricing model with multiple
types of virtual machine (VM) resources, usually called instances, the problem of
scheduling and cost optimization becomes a challenge. The specific problem we
address in this paper is that most static scheduling algorithms assume that the
estimates of task runtimes are known in advance, while in reality these estimates
may be inaccurate. These discrepancies may be a result of inherent uncertainty
in performance models of the application, or may be caused by unexpected
dynamic behavior of the infrastructure. On the other hand, dynamic scheduling
approaches that adapt to such uncertainties cannot be easily used for scheduling

M. Malawski—This work is partially supported by EU FP7-ICT project PaaSage
(317715), Polish grant 3033/7PR/2014/2 and AGH grant 11.11.230.124.

c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 90–100, 2016.
DOI: 10.1007/978-3-319-32152-3 9

Adaptive Multi-level Workflow Scheduling with Uncertain Task Estimates 91

under deadline or budget constraints, since meeting a constraint requires some
form of advance planning based on estimates.

In this paper, we propose an adaptive scheduling algorithm for deadline con-
strained workflows that consist of multiple levels. Such levels are present in real
scientific workflows and they often have up to 1 000 000 tasks [7,13]. The main
idea behind the algorithm is to produce a global approximate plan for the whole
workflow in a first phase, and a local detailed schedule for the current level of the
workflow. The algorithm is then invoked iteratively after each level completes
the execution, in this way being able to adjust to the runtime variation from
the estimated execution times. Another advantage of this approach is that we
can reduce the complexity of scheduling of the whole workflow by reducing it
into two smaller problems that can be solved using Mixed Integer Programming
(MIP). The algorithm has been evaluated by simulation using data from Amazon
infrastructure and workflows from Pegasus Workflow Gallery [13].

This paper is organized as follows: in Sect. 2 we discuss other scheduling mod-
els and algorithms for workflows. Section 3 contains detailed description of the
algorithm proposed in this paper, and its illustration on a simple example is given
in Sect. 4. In Sect. 5 we outline the optimization models used. Then in Sect. 6
we show results for real workflows. Finally, in Sect. 7 we present conclusions and
future work.

2 Related Work

Mathematical programming has been applied to the problem of workflow
scheduling in clouds. The model presented in [12] is applied to scheduling small-
scale workflows on hybrid clouds using time discretization. Large-scale bag-of-
task applications on hybrid clouds are addressed in [4]. The cloud bursting
scenario described in [3], where a private cloud is combined with a public one,
also addresses workflows. None of these approaches addresses the problem of
inaccurate estimates of actual task runtimes.

Adaptive approach is known from engineering systems [1]. Dynamic algo-
rithms for workflow scheduling in clouds have been proposed e.g. in [17], where
they assume the dynamic stream of workflows. In [9] the goal is to minimize
makespan and monetary cost, assuming an auction model, which differs from
our approach where we assume a cloud pricing model of Amazon EC2.

Fig. 1. DAG example

In our earlier work [14], we also used the MIP
approach to schedule multi-level workflows, but the
dynamic nature of cloud is not considered. We have
also analyzed the impact of uncertainties of runtime
estimations on the quality of scheduling for bag-of-
task in [15] and workflow ensembles in [16], with the
conclusion that these uncertainties cannot be always
neglected.

Task estimation for workflow scheduling is a
non-trivial problem, but several approaches exist,

92 T. Dziok et al.

Fig. 2. High level flow of scheduling algorithm.

e.g. those based on stochastic modeling and workflow reductions [5]. It is also
possible to create performance models to estimate workflow execution time using
application and system parameters, as proposed in [18]. The error of these esti-
mates is less than 20 % for most cases, which gives a hint on the size of possible
uncertainties.

3 Adaptive Scheduling Algorithm

Our algorithm provides an adaptive method for optimizing cost of workflow exe-
cution in IaaS clouds, under a deadline constraint. We assume that the workflow
tasks can be divided by their levels, where a level of a task is a length of the
longest path from an entry node. Tasks from one level can have different esti-
mates of execution time. It can be considered as a hybrid between static and
dynamic scheduling algorithms.

The algorithm requires: (a) workflow (see Fig. 1) represented as directed
acyclic graph (DAG), where nodes represent tasks and edges dependencies
between them; (b) information about available infrastructure, i.e. the perfor-
mance and cost of available VM instance types; and (c) global deadline for the
whole workflow. We assume that (a) all tasks in each level are independent and
can be executed in parallel on multiple VMs; (b) each VM has price per hour

Adaptive Multi-level Workflow Scheduling with Uncertain Task Estimates 93

and a performance metric called CCU (which is a result of a benchmark, as in
Cloud Harmony Compute Units [6]); (c) each task has estimated size which is
execution time on a VM with performance of 1 CCU; (d) tasks in one level could
have different estimated size; and (e) execution time of a task on given VM is
inversely proportional to VM performance expressed in CCU.

The objective of the algorithm is to minimize the execution cost under a
deadline constraint. The algorithm is run before each level of tasks begins its
execution. Each time it consists of two phases. In the first global planning phase,
the algorithm uses an approximation that tasks in each level are uniform, and
finds assignments between the tasks and VMs for the whole workflow. In the
second local planning phase, a detailed plan is prepared for the closest level of
individual tasks. After a level completes, the algorithm takes into account the
real execution time of already completed tasks, and based on that updates the
remaining time. Thanks to that it is able to adjust to differences between an
estimated and actual execution time.

The algorithm is shown in Fig. 2, and consists of the following steps.

1. First, the information about workflow, available infrastructure (list of VMs)
and global deadline are loaded.

2. In this step (global planning phase) algorithm assigns VMs to levels. For each
level, we calculate average estimated task execution time and we pass it as
input. The aim of this optimization is to find assignments between VMs and
levels with minimal total cost under global deadline. As a result, the algorithm
returns information which VMs are assigned to each level and also how many
tasks should be executed on each VM. It also returns estimated execution
time and cost for levels.

3. If the solver does not find a solution, the optimization is run again without
deadline constraint, but with time minimization as an objective. This may be
the case when the deadline is too short. We then fallback to minimization of
deadline overrun and we ignore the cost objective.

4. Next, we perform local planning phase that assigns individual tasks to VMs
in the current level. It uses the results from step 2 as an input: VMs assigned
to this level and number of tasks which should be executed on each VM. The
objective of optimization is to minimize the total execution time. Total cost is
not taken into account, because the VMs are already chosen and the estimated
execution time for each one is known – so the cost does not change. As a result
the algorithm returns information on which VM task will be executed.

5. Then we execute tasks on VMs assigned in local planning phase and collect
the actual task execution time. Tasks may be executed on real VMs instances
or in a cloud simulator (which allows to test many scenarios easily).

6. The algorithm finishes if there are no remaining levels to be scheduled.
7. We update remaining total time with actual execution time and perform

planning for remaining part of the workflow, repeating process from step 2.

94 T. Dziok et al.

4 Illustrative Example

To illustrate the operation of our algorithm, we prepared an example using the
simple workflow from Fig. 1. The input is provided in Table 1. The workflow
consists of 3 levels, so the algorithm is executed in three iterations, as shown in
Table 2. The resulting execution times and costs in all iterations are presented
and commented in Fig. 3.

Table 1. Example input to the algorithm: estimated task sizes, VM performance and
costs for the workflow shown in Fig. 1. We assume the global deadline is 15.

Global Deadline

0

5

10

15

1 2 3 4

Iteration

T
im

e Local
Planning
Level 3
Level 2
Level 1

0

50

100

150

1 2 3 4

Iteration

C
o
s
t Local

Planning
Level 3
Level 2
Level 1

Fig. 3. Execution time and cost of the algorithm, shown level by level. In the first
iteration, the global planning phase estimates the completion time of level 1 is 8 (purple
bar) and the local planning estimates it to be 9 (solid line). In iteration 2, it turns out
that the level L1 finished at time 5 (grey bar). Both global and local planning for level
2 (red bar and solid line) predict the finish time for time 9. The actual execution of
level 2 completes in time 13 (grey bar), so in iteration 3 both global and local phases
plan the execution of level 3 (orange bar) to complete just within the deadline). The
execution in iteration 4 shows that the level 3 actually completed as planned (Color
figure online).

5 Optimization Models

We use three optimization models in the algorithm: the first one for global plan-
ning phase, the second one in the case when deadline cannot be met, and the
third one for the local planning. Since the domain is discrete, each model belongs
to a mixed-integer programming (MIP) class. In all three models we assume for
simplicity that VMs start immediately and have no latency. Thanks to that the
problems are solved quicker. On the other hand, we assume that all possible
delays are included in the error of estimates, which is taken into account in step
7 of the algorithm. Here we outline the main features of the models, and for the
details we refer to the source code in the public repository [8].

Adaptive Multi-level Workflow Scheduling with Uncertain Task Estimates 95

Table 2. Planning and execution flow for illustrative example. The assignments of
tasks to VMs change whenever the actual execution time differs from the estimated
one.

Model used in global planning phase assigns VMs and sub-deadlines to
each level, but instead of scheduling individual tasks, it uses an approximation
of average task runtimes. For each level, it calculates an average task size, and
based on this, an estimated cost of executing its tasks on a given VM. As a
result, it is known which VMs should be used for each level and how many tasks
should be executed on selected VM. The objective is to minimize total cost of
the whole workflow execution.

Input to this approximate planning is defined with the following data: m is
number of VMs, n is number of levels, V is a set of VMs, L is a set of levels,
d is global deadline, Ll is number of tasks in level l, T a

l,v is average estimated
execution time of task from level l on VM v, pv is cost of running VM v for one
time unit, Cl,v = pvT a

l,v is average estimated cost of executing task from level l
on VM v.

The search space is defined with the following variables: Al,v is binary matrix
which tells if VM v will execute at least one task from level l, Ql,v is integer
matrix which tells how many tasks from level l will be executed on VM v, T e

l

is vector of real numbers which stores execution time for level l (estimated sub-
deadlines), T v

l,v is matrix which stores execution time for VM v on level l. Al,v

is used as an auxiliary variable to simplify defining constraints.

96 T. Dziok et al.

The objective is to minimize total cost: Minimize:
L∑
l

V∑
v

Cl,v ∗ Ql,v. We con-

strain the search space to keep the total execution time below the deadline, to
divide the deadline into sub-deadlines and to enforce them, and to ensure that
all the tasks from all the levels are executed.

Model used in global planning phase when deadline cannot be met is
used when searching for solution using the first model fails. It can happen e.g.
when real execution time of previous level takes much more time than expected.
Comparing to the previous model, the algorithm ignores global deadline con-
straint and the objective function minimizes total time of workflow execution:

Minimize:
L∑
l

T e
l .

Model used in local planning phase assigns VMs to each task from a single
level. The goal is to minimize time of level execution, which is equal to the time
of the longest working VM. The input to this optimization problem is defined
with the following data: m is number of VMs, k is number of tasks in current
level, K is a set of tasks, V is a set of VMs (only VMs assigned to current level –
results from global planning phase), T e

k,v is an estimated execution time of task
k on VM v, Nv is a number of tasks which will be executed on VM v (results
from global planning phase).

Search space is defined with the following variables: Ak,v is binary matrix
which tells if task k will be executed on VM v, T r

v is vector of real numbers
which tells how long does each VM v work, w is helper variable which stores the
longest working time for VMs from V .

The objective is to minimize time of the longest working VM: Minimize:
max(T r

v |v ∈ V) that is implemented as Minimize: w. We constrain the search
space to ensure that all the tasks are executed, to assign given number of tasks on
each VM, and to assign the correct value to w which is the longest working VM.

Implementation of Algorithm and Models. Optimization models are imple-
mented in CMPL modeling language [19]. As a solver we use CBC [11]. Input
data is loaded from DAG files (workflows) and JSON files (infrastructure). The
simulator which executes the tasks and introduces the runtime variations is
implemented in Java. Source code (including optimization models) is available
in the repository [8].

6 Evaluation Using Synthetic Workflows

For evaluation of the algorithm we implemented a simple simulator. Its goal is to
execute one level of tasks on the assigned VMs and to introduce the runtime vari-
ation of task execution times to simulate the behavior of the real infrastructure.

We present here the results of our adaptive algorithm obtained using Montage
workflow [13] representing astronomical image processing, consisting of 5000
tasks. As estimates of task sizes we used data from the logs of our earlier runs
performed on Amazon EC2 [10]. We used the m3.large as a reference VM type

Adaptive Multi-level Workflow Scheduling with Uncertain Task Estimates 97

and for performance estimation of other instance types we used the ECU value
as provided by Amazon [2]. As the error of estimates we introduced a normal
distribution with the standard deviation of 0.25. Since the real Montage workflow
consists of very small tasks (having execution time in the order of seconds), we
artificially extended them by multiplying their execution time by 3600. The
deadline was set to 3500 time units (hours).

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

T
im

e

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

Global Deadline

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

T
im

e

Local
Planning
Level 11
Level 10
Level 9
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

(a) Static Algorithm (b) Adaptive Algorithm

Fig. 4. Execution time plot for Montage 5000 workflow with random errors of estimates.

We compared our adaptive algorithm to its static scheduling variant as a
baseline. The static scheduling works in the same way as our algorithm, but it
plans all the levels in advance. This means it does not update the global and
local planning phases after execution of each level, so it does not adjust to the
runtime variations.

Figure 4 shows the results of the static and adaptive scheduling algorithms,
presented in the same convention as in the illustrative example (Fig. 3). We
can observe that in the plot (b) the adaptive algorithm adjusts to the actual
execution time after each level, while the static algorithm (a) does not, which
leads to the deadline overrun.

Figure 5 presents how the completion time and total cost depend on the vary-
ing estimation error µ. The errors were generated using the normal distribution
with the standard deviation of 0.25 and the mean of µ, with µ from −0.25 (over-
estimation) to 0.25 (underestimation). In plot (a) we observe that our adaptive
algorithm succeeds to meet the deadline in more cases than the static algorithm.
Even for the largest error (µ = 0.25) the deadline overrun is only 5 %, while
for the static algorithm it is over 25 %. On the other hand, plot (b) shows that
the adaptation costs more, i.e. in most cases the cost is higher for adaptive algo-
rithm, but never more than by 5 %. This is explained by the need to choose more
expensive VMs to complete the workflow before the deadline.

In addition to Montage, we tested our algorithms using other workflows from
the gallery [13]. Generally, we observed similar behavior as in the case of Mon-
tage. Sample results are shown in Fig. 6, where overestimation and underestima-
tion represent error distribution shifted by -0.25 and 0.25, respectively. Relative

98 T. Dziok et al.

3000

3500

4000

4500

−0.2−0.1 0.0 0.1 0.2

Estimation Error

T
im

e

Algorithm
Type:

Adaptive

Static

32500

35000

37500

40000

42500

−0.2−0.1 0.0 0.1 0.2

Estimation Error

C
o

s
t

Algorithm
Type:

Adaptive

Static

(a) Workflow execution time. (b) Workflow execution cost.

Fig. 5. Workflow execution time/cost depending on the estimation error.

0.0

0.5

1.0

C
y
b

e
rS

h
a

k
e

1
0

0
0

G
e

n
o

m
e

4
0

0

M
o

n
ta

g
e

5
0

0
0

R
e

la
ti
v
e

 T
im

e Estimation
Accuracy:

Overestimation

Exact estimation

Underestimation

0.00

0.25

0.50

0.75

1.00

1.25

C
y
b

e
rS

h
a

k
e

1
0

0
0

G
e

n
o

m
e

4
0

0

M
o

n
ta

g
e

5
0

0
0

R
e

la
ti
v
e

 C
o

s
t Estimation

Accuracy:

Overestimation

Exact estimation

Underestimation

(a) Workflow execution time. (b) Workflow execution cost.

Fig. 6. Plots with normalized execution time/cost for other workflows.

execution time is normalized to the deadline, while the relative cost is normalized
to the cost of execution with exact estimates (errors with µ = 0 and standard
deviation of 0.25). The deadline overrun for large errors is caused by the fact
that when the task runtimes are underestimated in the final level, the algorithm
cannot adjust to them. Improving the algorithm would require adding a learning
capability to predict the estimation error based on previous levels, which will be
the subject of future work.

7 Conclusions and Future Work

In this paper we presented the adaptive algorithm for scheduling workflows in
clouds with inaccurate estimates of run times. The preliminary evaluation results
have shown that the implemented algorithm works as designed, and is able to
meet the given deadline while minimizing the cost.

Adaptive Multi-level Workflow Scheduling with Uncertain Task Estimates 99

The algorithm adapts to the actual situation at runtime: when tasks exe-
cute quicker than estimated – the algorithm selects slower (and cheaper) VMs,
and minimizes the total cost. When tasks execute slower than estimated – the
algorithm selects faster (and more expensive) VMs, which increases total cost,
but allows not exceeding the deadline for the whole workflow. When deadline is
exceeded (or it is not possible to plan execution under deadline) then the algo-
rithm minimizes the total time regardless of cost. When estimated execution
time for tasks from the same levels has a big variation, then there are visible
differences between estimated time in global planning phase and local planning
phase. When execution of tasks is longer is final levels (which is the worst case
scenario) then the total cost increases, but this is general problem for all adaptive
scheduling algorithms.

During implementation and evaluation we found out a few ways that could
be enhanced in future work. They include improvement of pricing in optimiza-
tion models by e.g. reusing already assigned VMs, extending models with data
transfer time and cost, or splitting levels with many tasks on smaller ones on
‘logic’ independent levels. It would be also interesting to improve task estimation
(i.e. take into account multi-core CPUs) or use machine learning in estimating
task execution time. After more systematic testing, we plan to use this algorithm
as a part of engine to executing workflows in computing clouds.

References

1. Abdelzaher, T., Diao, Y., Hellerstein, J.L., Lu, C., Zhu, X.: Introduction to control
theory and its application to computing systems. In: Liu, Z., Xia, C.H. (eds.)
Performance Modeling and Engineering, pp. 185–215. Springer, Heidelberg (2008)

2. Amazon: AWS pricing (2015). http://aws.amazon.com/ec2/pricing/
3. Bittencourt, L.F., Madeira, E.R.M.: Hcoc: A cost optimization algorithm for work-

flow scheduling in hybrid clouds. J. Internet Serv. Appl. 2(3), 207–227 (2011)
4. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Online cost-efficient schedul-

ing of deadline-constrained workloads on hybrid clouds. Future Gener. Comput.
Syst. 29(4), 973–985 (2013)

5. Chirkin, A.M., Belloum, A.S.Z., Kovalchuk, S.V., Makkes, M.X.: Execution time
estimation for workflow scheduling. In: 2014 9th Workshop on Workflows in Sup-
port of Large-Scale Science, pp. 1–10. IEEE, November 2014

6. CloudHarmony: What is ECU? CPU benchmarking in Cloud (2010). http://blog.
cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html

7. Deelman, E., et al.: Pegasus, a workflow management system for science automa-
tion. Future Gener. Comput. Syst. 46, 17–35 (2015)

8. Dziok, T.: Repository with optimization models (2015). https://bitbucket.org/
tdziok/mgr-cloudplanner

9. Fard, H.M., Prodan, R., Fahringer, T.: A truthful dynamic workflow scheduling
mechanism for commercial multicloud environments. IEEE Trans. Parallel Distrib.
Syst. 24(6), 1203–1212 (2013)

10. Figiela, K., Malawski, M.: Modeling, optimization and performance evaluation of
scientific workflows in clouds. In: 2014 IEEE Fourth International Conference on
Big Data and Cloud Computing, p. 280. IEEE, December 2014

100 T. Dziok et al.

11. Forrest, J.: Cbc (coin-or branch and cut) open-source mixed integer programming-
solver (2012). https://projects.coin-or.org/Cbc

12. Genez, T.A.L., Bittencourt, L.F., Madeira, E.R.M.: Using time discretization to
schedule scientific workflows in multiple cloud providers. In: 2013 IEEE Sixth Inter-
national Conference on Cloud Computing, pp. 123–130. IEEE, June 2013

13. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3),
682–692 (2013)

14. Malawski, M., Figiela, K., Bubak, M., Deelman, E., Nabrzyski, J.: Scheduling
Multilevel Deadline-Constrained Scientific Workflows on Clouds Based on Cost
Optimization. Scientific Programming, New York (2015)

15. Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computational
applications on hybrid cloud infrastructures. Future Gener. Comput. Syst. 29(7),
1786–1794 (2013)

16. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms for cost and
deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds.
Future Gener. Comput. Syst. 48, 1–18 (2015)

17. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: SC 2011. SC 2011, ACM, Seattle, Washington (2011)

18. Pietri, I., Juve, G., Deelman, E., Sakellariou, R.: A performance model to estimate
execution time of scientific workflows on the cloud. In: Proceedings of the 9th
Workshop on Workflows in Support of Large-Scale Science, pp. 11–19. WORKS
2014, IEEE Press, Piscataway, NJ, USA (2014)

19. Steglich, M.: CMPL (Coin mathematical programming language) (2015). https://
projects.coin-or.org/Cmpl

	Introduction
	Motivation
	Cloud Computing
	Scientific Workflows
	Problem Statement
	Goal of Thesis
	Summary

	State of the Art Overview
	Workflow Overview
	Linear Programming
	Definition
	Example

	Related Work
	Summary

	Adaptive Algorithm
	Introduction
	Assumptions
	Input/Output
	High Level Flow
	Description of Each Algorithm Step
	Illustrative Example
	Optimization Models
	Global Planning Phase Model
	Global Planning Phase Alternative Model
	Local Planning Phase Model

	Summary

	Implementation
	High level description
	Experiment Input
	Flow Diagrams
	Generated Output
	Languages and Tools
	How To Run
	Source Code
	Summary

	Experiments and Results
	Experiments Description
	Experiments Environment
	Workflows Description
	Montage
	Cybershake
	Genome

	Workflow Scheduling Experiments
	Montage
	Cybershake
	Genome

	Workflow Disturbance Experiments
	Montage
	Genome

	Workflow Comparison Experiments
	Summary

	Conclusions and Future Work
	Accomplished tasks
	Algorithm Summary
	Future Work
	Summary

	File Formats and Outputs
	Input files format
	Output files format

	Publication

