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Abstract

The subject of this thesis is collection and storage of the provenance data in a
Grid system. Provenance is defined as derivation path of a piece of data. Nowadays
Grid systems are equipped with tools and components forming collaborative space
for science, called virtual laboratories. These modern scientific environments allows
for executing in silico experiments in such disciplines as biochemistry, astronomy or
quantum physics. In each of those cases, scientists are highly interested in resem-
blances between experiments and results, tracing data entities or attaching metadata
to obtained results. All these requirements can be fulfilled by tracing, storing and
querying provenance in the system.

This thesis presents PROToS - provenance tracking system designed to meet specific
requirements of the ViroLab virtual laboratory. It is based around semantic modelling
of provenance and system’s data and motivated by the Semantic Grid vision. Apart
from design and implementation of the PROToS, also integration in challenging envi-
ronment of the ViroLab is presented.

Contents of this thesis is organized in chapters, as follows. First chapter introduces
subject of this work, presenting motivation and objectives to be achieved. Second
chapter describes background of the thesis, that is provenance, the ViroLab system
and its virtual laboratory. Third chapter presents most important existing provenance
systems along with brief analysis. Fourth chapter defines requirements for provenance
tracking system to be created. Fifth chapter overviews architecture of the system.
Also, identified use cases and project organization are presented. Sixth chapter de-
tails PROToS design and implementation, describing also technologies used. Seventh
chapter shows PROToS environment in the ViroLab virtual laboratory along with ex-
amples of real-world provenance usage. Eighth chapter is devoted to project’s status
and future work.
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Chapter 1

Introduction

This chapter provides a rationale for this work. First section con-
tains brief motivation for research in provenance tracking field. Sec-
ond one presents list of objectives to be filled. Finally, the organi-
zation of this thesis is given.

1.1. Motivation

Tracking origins and derivation paths of data (the provenance) in large scale,
high level system is recently gaining more interest. It is especially emphasized since
e-Science has become popular. The e-Science term [67], popularized by John Taylor
means new kind of scientific research, backed by the next generation infrastructure.
It is typically identified with Grids, offering virtualization of resources [70] and col-
laboration over virtual organizations [62]. A number of initiatives emerged to extend
science Grid systems with needed capabilities. An example could be the myGrid
[74] project. In this system, application data, workflow templates and annotations
including provenance information are stored in the common information repository.
Provenance in myGrid is generated from workflow execution events and involves lim-
ited semantic in form of ontology annotations. Other attempts to provenance tracking
include Karma provenance framework [72] and Virtual Provenance Data Model [77].
However, all these solutions have drawbacks and limitations. In most cases they are
too narrow-minded or tightly integrated with particular system, being hardly usable
in different environments. Moreover, the future of e-Science lies in the Semantic Grid
[59] so its ideas should be also incorporated.

Thus, need for profound research in this area still exists. So research should end with
design of provenance model and accompanying system suitable for broad range of Grid
systems of new era - the e-Science.
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1.2. Objectives

Goals of this work of primary importance can be summarized as follows:

1. research and design of semantic provenance model applicable in wide range of Grid
systems, enabling not only gathering of provenance data but also complex mining
queries over the data

2. perform research on requirements and possible applications of provenance system in
collaborative science space for bioinformatics, like the ViroLab virtual laboratory

3. design and implementation of the provenance tracking system for the ViroLab
virtual laboratory environment

4. research and design of provenance system integration within the ViroLab environ-
ment, involving necessary external components and interfaces

The provenance tracking infrastructure being developed, should be based on cur-
rent state of the art solutions, following best patterns and fixing identified shortcom-
ings. Research done in this field is summarized in section
Work of this thesis is bound to the ViroLab and its specific requirements. Yet, prove-
nance model to be designed should be generic enough to allow provenance tracking in
other environments. Therefore, additional source of provenance usage scenario should
be studied, as those from First Provenance Challenge [60]. Insight in various prove-
nance usage scenarios is given in sections [£.1 and [2.3.2]

What is more, designed and implemented provenance tracking component has to be

integrated in productional, final ViroLab system. Thus, has to prove itself in challeng-

ing and technically advanced environment of Grid system. System’s architecture shall

be prepared for implementing necessary reliability and performance improvements

easily. Also, implementation with industry standards and proven libraries should help

system achieve this goal. Design and implementation details are covered in section [0}

Technologies behind system’s prototype are presented in section [6.2]

In summary this work concentrates on

e performing thorough study of provenance modelling and tracking requirements in
modern virtual laboratories

e design and implementation of provenance tracking system prototype, fulfilling the
ViroLab user’s requirements

1.3. Organization of this document

The remainder of this thesis is organized as follows. Chapter 2 is devoted to
background of the thesis, introducing provenance, the ViroLab system and its virtual
laboratory. Chapter 3 gives overview of existing provenance systems and presents
brief analysis of theirs strong and weak spots. In chapter 4 requirements for the Vi-
roLab provenance system are defined. Next chapter - 5 contains overview of system’s
architecture along with use cases and project organization in Maven2. Chapter 6 is
completely devoted to details of the PROToS design and implementation, describing
also technologies used along with explanation for choices made. In chapter 7 examples
of provenance real-world usage are presented. Moreover, description of PROToS inte-
gration in the ViroLab virtual laboratory is given. Last chapter, number 8, contains
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information regarding project’s current state and future work to be done. Appendices
contains as follows: A - detailed guide to system’s configuration, B - sample deployment
of PROToS, C - administrator manual and D - data storage / retrieval manual.



Chapter 2

Background

This chapter presents background of this thesis work - the prove-
nance tracking system. First section introduces new tools for
e-Science, virtual laboratories. Successive section presents overview
of the ViroLab and its virtual laboratory. Next, basic information
about provenance and its usage is given. Finally, Grid technologies
constituting virtual laboratories are presented.

2.1. Virtual laboratories

Virtual laboratory can be defined as multiple, integrated components forming
collaborative space for science. Before the ViroLab, few other project adopted this
approach for conducting experiments, processing workflows and constructing Grid ap-
plications. Below we present state of the art in the virtual laboratory area. Kepler.

Kepler [22] is a system created for constructing workflows. Most important feature of

Kepler is advanced environment for visual building and execution of workflows. They

are described in the MoML language, destined for modeling workflows as clustered

graphs. This representation brings following advantages:

e Implementation independent - being based on XML, MoML is designed to work
with any tool.

e Semantic independent - MoML itself does not carry semantic information about
interconnections between components, offering ”director” mechanism instead.

e Integrated with Web - as MoML is based on XML with syntax similar to the
commonly used HTML.

e Rendering support - MoML models can contains annotations (hints) for rendering
utilities.



2.2. ViroLab

Workflows in the Kepler are constructed from following component’s classes: di-
rectors, actors, relations and ports. Actors encapsulate functionalities, as calls to Web
Services and Globus Jobs executions. Moreover, actor can encapsulate whole other
workflow.

Kepler’s virtual laboratory serves good users without technical knowledge, enabling
simple drag and drop workflow construction. Albeit easy to use, this approach is
not suitable for more complex workflows / experiments, containing many loops and
branches. Taverna. Taverna [34] is experiment construction workbench used in the

myGrid project. Experiments in Taverna are written with usage of the Simple Con-
ceptual Unified Flow Language (Scufl). This language enables describing conceptual
tasks as a single entities without implementation particulars. Scufl workflows are built
of services and Taverna environment provides following means of accessing them:

e WSDL files from local file system

Services used in already existing workflows

Standard UDDI registry

WSDL files from remote locations, pointed out by URL

Specific myGrid registry, called GRIMOIRES

This virtual laboratory is very popular, with more than 1000 services available.
Nonetheless, it can be pointed out that script-based experiment definition can be
much more productive than visual drag-and-drop one. Triana. Triana [35] is a

problem-solving environment, enabling easy workflow construction by using user-friendly
GUI. It allows for drag-and-drop building blocks of the workflow and define connection
between them. Also, user can edit workflow blocks and set adequate parameter values.
Workflow elements can take form of local operations, Grid jobs and remote Web Service
calls. Also, dynamic WS discovery and invocation is possible.

In conclusion Triana is simple and easy to use, but shares same disadvantages as other
”drag-and-drop” workflow construction environments.

2.2. ViroLab

2.2.1. Introduction

ViroLab [73], site: [37] is EU-funded project number 027446 from 6th Framework

Programme.

Its main mission is to develop a virtual laboratory enabling decision support in viral

disease treatment. Main ideas behind this project are:

e Integrating distributed medical knowledge to facilitate research and treatment in
virology diseases field. Nowadays, many large clinical patient databases are avail-
able. These can be used in various tasks, as discovering drug susceptibility. Great
challenge of the ViroLab is to provide uniform, user-friendly access to the data
for members of the medical scientific community.

e Providing users with complex tools taking advantage of available medical data.
These vary from simple drug ranking to very advanced automata model of the
HIV-1 co-receptor tropism. Every application is to be available in user-friendly

10
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and unified manner. What is more, one of most important feature of the ViroLab
is combining applications in workflow-like experiments.

e Basing on Grid architecture. Virtualization of the hardware, computing infrastruc-
ture, databases and services - in summary provides powerful environment for run-
ning bioinformatic applications. Bridge to infrastructure like clusters and EGEE
grid offers enough computing power.

The ViroLab project organization is split on several work packages, listed as
follows:
1. Project Management
Takes care of financial and administrative management of the ViroLab consortium.
Ensures on-schedule execution and communication with sponsor - EU Commission.
2. Virtual Organization
Responsible for building security infrastructure for the Grid, presentation layer and
middleware.
3. Structure of the ViroLab virtual laboratory
Most important work package, developing virtual laboratory, concerning such as-
pects as uniform data access, user session management, experiment execution,
resource brokering, user collaboration and provenance.
4. RetroGram: Virtualization, Enhancement and Individual Based Inter-
pretation
Handles development of the distributed decision support system, based on existing
drug ranking software. Includes tools for detailed studies on patients and obtained
treatment results.
5. Population and epidemiological based interpretation system
Responsible for carrying development of expert rules for clinical patient treatment.
Will also validate the ViroLab results basing on epidemiological studies.
6. Dissemination
Takes care of presenting ViroLab results to the public.

As stated, virtual laboratory is critical work package from end-user’s point of view.
Also, this is where provenance tracking system lies. Thus it is presented in separate
section [2.2.2]

2.2.2. Virtual Laboratory

The ViroLab virtual laboratory (V1vl [66] and [57], main site: [38]) is tool for

collaborative planning and executing in-silico experiments. Enables sharing, anno-
tating, discussing and saving results of these experiments. With provenance track-
ing enabled, mining results traces and exploring resemblances between experiments
is possible. Virtual laboratory provides tools for for writing experiments’s plans
(Experiment Planning Environment, EPE) and managing experiment’s execu-
tion (Experiment Management Interface, EMI).
Experiment is main concept behind VIvl. It is defined as process combining data
and services (activities) processing that data to obtain results. Data and services are
not restricted to a local machine, but can come from multiple, distributed resources.
In the VIvl, experiment’s lifecycle has following stages:

11
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Planning

In this stage, Developer creates and delivers valid experiment plan, containing

experiment identification (name and version), local input files and libraries, legal

information and most important - experiment script. It is a program written

computer programming language, interpreted by the VLvl components. Current

version of the V1vl uses JRuby [2I]. Script defines services and data used along with

control flow. It can be said that script constitute heart of the experiment. VLvl

provides also Experiment Repository for storing and versioning experiment

plans.

Execution

In this stage Fxperiment Users - Scientists and Virologists performs experiment

according to defined textbfplan. It is done by executing provided script in one of

two modes:

— local - requiring local installation of the runtime software. Script is passed to
the runtime by command-line tool.

— remote - allowing to run experiment on remote runtime server by using the
ViroLab portal tool (EMI) or development tool (EPE). In this case it is required
that experiment plan is available in the Experiment Repository.

Different execution modes adds required flexibility to the VIvl environment, ful-
filling needs of any type of user and organization. For example, local execution is
suitable for testing purposes whether remote mode is convenient for long-running
complex experiments.

Result management

In this stage user can evaluate, annotate and store outcome of his experiment.
This is very important as enables strong collaboration between scientists and lays
foundations for tracking provenance.

To sum up, experiment lifecycle defined for the VIvl supports collaborative work

of all types users, from developers to clinicians.

Fig. depicts abstract layers of the Virtual Laboratory.

This conceptual architecture consists of following:

Users of the system, acting in experiment lifecycle stages described above.
Interfaces, representing tools dedicated to particular user’s groups. These in-
clude mentioned earlier EPE - used by Developers, EMI and application-specific
components running inside the ViroLab portal, used by Scientists and Virologists.
Runtime, constituting bridge between interfaces and various services, both com-
putational and data. Runtime components allows for selecting resources and use
them in experiment’s execution.

Services performing computations and accessing distributed data sources. First
type can point to Web Services, WSRF, components or grid jobs. The latter
provide access to relational databases, files and other sources, all in unified and
vitalized way.

Infrastructure layer constitutes physical layer where all services run. Virtual
laboratory supports multiple solutions, ranging from single PC machines to large
Grid testbeds as EGEE and DEISA.

12
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Virologist

EPE _ |{ EMI || App-specific

Runtime
Services
Computation Data access
Infrastructure
EGEE | | Clusters | | PCs Networks

Figure 2.1. Conceptual layers of the ViroLab virtual laboratory. Figure does not
reflect real, complex architecture of the VLvl, but rather presents how components
are grouped.

Above description presents only background of the ViroLab virtual laboratory. In
fact, its architecture is far more complex. Thorough design and manual of the VLvl
is to be found on the web [38].

2.2.3. Virtual Laboratory Applications

The ViroLab Design Deliverable document contains detailed description of some
important applications, prepared to run in the ViroLab virtual laboratory environ-
ment. These are very important, being first source for later requirements analysis and
specification for various ViroLab’s sub-systems, as provenance tracking.

e Rule-based Decision Support System (Drug Ranking System; DRS)
This application helps clinical virologists chose drugs most efficient for treating pa-
tients. It is done by using publicly available, high quality databases relating virus
genotype to drug-susceptibility. To obtain personalized healthcare for a patient,
virologist should only enter list of virus mutations and use one of available rule
sets. Application also allows for commenting rule sets and results, thus sharing
knowledge between application’s users. Rule sets evolve in time, so one of appli-

13
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cation’s features are automatic updates. On each request, the DRS will contact

remote databases, check for rule set’s updates and eventually download them.

What is more, the DRS application can also be used as shingle step in more complex

experiments.

e From Genotype Information To Drug Resistance Interpretation

Scenario for this application extends the Drug Ranking System’s one. It allows

virologists to interpret bare HIV RNA strands. Application’s steps include:

— translation of the nucleotide sequence to the amino acid one. Results will be
available in some popular formats, for user’s convenience.

— comparison of the nucleotide sequence to reference strains. As as result, mu-
tations per-gene will be obtained. Reference sequences shall be obtained from
external databases.

— identification of the HIV virus subtype, based on amino acid sequences obtained
in previous step.

— drug resistance prediction, handled by the DRS application.

Also, virologists would like to attach overviews and statistics to results obtained in

the application. Finally, summary of all mutations per codon should be provided.

As in case of previous application, also this has to deal with different data formats.

Therefore, conversion to the common format will also be provided.

e [Establishing Large Databases of HIV Sequences

This application concentrates on serving HIV sequences data from various, dis-

tributed sources. Scenario of this application reuses some components from the

previous application. It consists of three main steps:

— data is gathered from sources available in the Grid

— data is processed - this is where previously described components enter. Main
transformations to be applied are mutations and substitutions identification,
sequence alignment and subtyping.

— data is exported to common format and made available to system’s users.

e Data Retriever (and applications accessing hospital data)

The application is build to gather various hospital data and present results as

combined datasets available on the Grid. What is more, these datasets are to be

presented in an unified format.

Main purpose of this application is accessing internal databases of hospitals. These

are scattered and built with different standards. Also, various security restrictions

apply, mostly related to protection of patient’s personal data. Proposed solution

overcomes these issues with so-called sandbox environment.

2.3. Provenance

2.3.1. Definition
From Merrian-Webster Online Dictionary [43]:

Provenance - origin, source. Comes from French - provenir to come forth,
originate, from Latin provenire, from pro- forth + venire to come more at.

In computer science applications, provenance is defined as:

14
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The provenance of a piece of data is the process that led to the data.
Other definition is:
A derivation path of a piece of data.

In complex Grid systems, as the ViroLab, provenance could include almost everything

action of user or component, such as:

e experiment’s call to a computational service, including type and identifier of argu-
ments and obtained results

e data load and store, realized by specific services and including particulars of used
data source (type, protocol, physical machine, geographical location)

e internal calls of system’s runtime, involving such details as class and implementa-
tion of used Grid Object, SQL/HQL/OQL query sent to a data source or concrete
computing resource used (host, port, architecture, OS..)

e abstract events describing complex workflow concerning particular domain, as "New
drug ranking in the DRS application’

e Gird monitoring data, involving scheduling time, service call performance and oth-
ers

e User’s actions involving GUI controls, defining abstract actions as ‘experiment run’
or ‘result save’

e parts of applications scenarios, as attaching annotations to data is sometimes
treated as a provenance (metadata)

All items listed above could be reckoned as provenance definition for the complex
virtual laboratory system.

2.3.2. Possible applications of provenance in virtual laboratories

Virtual laboratory as described in section can constitute first base for possible
provenance application scenarios.

As stated in respective section, experiment and its lifecycle are most important

concepts behind virtual laboratories. Following scenarios presents how provenance

could be applied along with experiment usage.

1. Data trace. When an experiment is executed, outcome of some processing could
be saved as result. Next, obtained results could be used in consequent experiments
as input of various services, producing another results. When provenance tracking
is enabled, such (common) scenario builds data graph, where data entities are
vertices and processing constitutes edges. Using gathered provenance data, user
can receive answer for queries like:

e from what pieces of data this piece was derived?

e how often particular service was called to obtain this piece of data?

e what pieces of data were derived from particular piece / pieces of data?
[ ]

how many operations (service calls) were required to obtain data X from data
Y ¢

Browsing provenance data graph can reveal much more information about data and
service dependencies than shown with example queries. What is more, powerful
techniques as statistical analysis are able to explore even greater level of detail.

15
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Experiments resemblances. Many experiments conducted in virtual laboratory
will be from particular domain, as HIV infection treatment. Using provenance data
gathered from many experiments of one type, user is able to discover similarities
between different traces. For example, following queries are possible:

what are most common data entities used for particular operation?

e how many steps are typically required to obtain data X ¢
e which experiments were conducted on data from particular location (hospital)
e who conducts experiment on patients with particular disease (hence: who could

help solve similar problems in treatment)

As presented, these queries are typically enhanced with similarity operators (’like’,
‘typical” and so on).

Annotation storage. Ability to send provenance data at any stage of experi-
ment’s lifecycle could be used for attaching annotations to actions, data entities
and service calls. Metadata attached could vary from text descriptions of experi-
ments or results to rating of application’s accuracy. The latter, when used properly,
can add another level of usefulness to virtual laboratory applications. For example,
previous queries could be rewritten as:

e what are highest ranked data entities used for particular operation?

e what are best operations required to obtain data X?

e in bioinformatics domain: what is the best treatment for particular disease?

This way, simple data and services annotations are enriched with semantic meaning.
Experiment repeat. Provenance record of the experiment execution can be used
for later repeat of exact or similar experiments. Even if experiment’s plan is lost,
with usage of the provenance it can be restored.

Experiment replay. Exhaustive gathering of provenance data, as described in
previous section leads to full record of processes. Using this data, user is able
to perform smart experiment replay, starting from chosen time point. What is
more, specific virtual laboratory component could be designed to perform such
replay automatically. Such usage could speed up complex experiments execution,
by starting new computation after time-consuming part.

Apart from virtual laboratory, another source of possible provenance applications

can be the Provenance Challenge [2§]. Scientists from all around the world, involved in
provenance development agreed that mining over large sets is useful and required. To
test capabilities of existing provenance systems, specific FRMI (Functional Magnetic
Resonance Imaging) workflow was defined along with set of useful queries concerning
this workflow.

Workflow is composed of following operations:

align_wrap - compares new image with reference one, determining how new image
should be adjusted to match reference brain.

reslice - transforms new brain image according to the parameter set - output of
the align_wrap operation.

softmean - all images resliced by previous operation are averaged into single image.
slicer - creates 2D atlas data set from the averaged image.

convert - transforms 2D atlas data set to specific graphical atlas image.

16



2.4. Grid computing

Paper [60] summarizes works done by the First Provenance Challenge. Queries
presented in this work are very good examples of what scientists require from the
provenance system side. Example queries follows:

e Find the process that led to Atlas X Graphic (thus retrieving full provenance of
given piece of data)

e Find the Stage 3, 4 and 5 details of the process that led to Atlas X Graphic (thus
retrieving partial trace)

e A user has annotated some anatomy images with a key-value pair center=UChicago.

Find the outputs of align_warp where the inputs are annotated with center=UChicago.
o A user has annotated some atlas graphics with key-value pair where the key is

studyModality. Find all the graphical atlas sets that have metadata annotation

studyModality with values speech, visual or audio, and return all other annotations
to these files.

As shown, Provenance Challenge queries are quite similar to those presented for
VLvl.
In summary quick analysis of possible provenance applications in typical scientific-driven
Grid environment shows provenance’s great potential. Furthermore, some applications
are necessary in modern virtual laboratories and can not be achieved without full
provenance tracking.

2.4. Grid computing

All contemporary virtual laboratories are Grid-aware. This is because Grid-enabled

Service-Oriented Architecture integrating and virtualizing resources fits best require-
ments of automated application creation.
History of the Grid dates back to the 1990s, when scientists put their interest in the
new idea of a virtual supercomputer. First significant summary of new infrastructure
appeared in 1998, when Ian Foster and Carl Kesselman published [68]. They defined
the Grid as:

..a hardware and software infrastructure that provides dependable, consis-
tent, pervasive and inexpensive access to high-end computational capabilities.

Since then, may other Grid system types emerged, as Data Grid, Collaboration Grid
or Network Grid. Principles that should be followed by all Grid systems were defined
by Foster in his next article [61]. He lists following rules:

e Built with open, general standards in such fundamental aspects as resource discov-
ery and access, authentication and authorization. This is crucial to achieve system
that is inter operable and available in global scale. What is more, standards assure
that system is general-purpose, not application specific, thus able to integrate and
use multiple resources.

e Delivering miscellaneous qualities of service from every dimension as security, per-
formance and reliability, to meet user requirements. This should allow system to
be much more usable than simple combination of it’s elements.

e Integrating and coordinating resources from different control domains, taking care
about such issues as security, payments or policy settings.
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Contemporary definitions, as those provided by Rajkumar Buyya in [58] tends to
view Grid as an distributed infrastructure, that enables integration, aggregation and
sharing of various, autonomous, geographically distributed resources (as computers,
networks or data), chosen dynamically in order to fulfill users’ quality of service de-
mands.

Typical architecture of the Grid system, designed to accomplish all goal mentioned
above, is divided into four virtual tiers, as presented in Fig. Brief description
follows:

1. Applications. Grid applications are created with usage of services provided by
lower middleware tiers to access resources and perform computations. Nowadays,
many applications are developed as portlets and deployed in grid portals, such as
Gridsphere [14]. Those portlet containers provides additional level of user-oriented
services, as programming interfaces to common resources and security entry point.

2. User middleware. Uses lower tier - system middleware to provide higher level
services required by the user. This includes application development tools, as
compilers or debuggers with necessary libraries. Provides also so-called resource
brokers, managers for Grid resources and processes.

3. System middleware. This tier does most of the work that identify system to be a
Grid. Provides uniform method of accessing distributed resources from the hetero-
geneous fabric tier. Takes care about resources discovery and registration. Manages
computational processes, scheduling and optimizing them to achieve best service
and resource utilization. Finally, assures quality of service demanded by the system
user.

4. Fabric. This tier makes up physical background of the Grid system. It consists of
networks connecting physical machines (of any kind, form PCs to supercomputers)
and data sources. Everything in this tier is basically called a resource.

As stated before, middleware tier is the most important one in mission to provide a
fully-fledged Grid system. Thus, standards concerning this tier have been established.
Initial one was created by the Open Grid Forum and called Open Grid Services Ar-
chitecture (OGSA, [24]). It is based on Web Services technologies (as SOAP and
WSDL) and addresses key services, as security, execution and resources management,
information and data. Same organization published in 2003 new standard - Open
Grid Services Infrastructure (OGSI, [25]). OGSI was meant to constitute infrastruc-
ture layer for OGSA, by essentially extending standard Web Services with statefulness.
Later this standard became obsolete in favor to the Web Services Resource Framework
(WSRF, [46]). This new standard, introduced by the OASIS in 2004 is in fact family
of complex specifications defining what operations could be implemented by Web Ser-
vices to become stateful. This complexity, especially concerning identification of the
WSRF-enabled services with WS-Addressing [45], raised great deal of controversy and
resulted in slow adoption of the standard in the Grid community.

Describes standards would have little impact without proper, open implementations.

There are several Grid frameworks, implementing those standards or subsets. Most

notable are listed below.

e Globus Toolkit [11]. Established in 1995 and now developed by the Globus Alliance,
Globus Toolkit is oldest and most popular open source framework. Currently at
version 4, offers support for OGSA / OGSI, WSRF, WS-Management and stateless
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Figure 2.2. Typical Grid system architecture virtual tiers. This is rather virtual model
presenting which components should be present in a Grid system and they should be
grouped.

Web Services technologies (WSDL, SOAP). Primary use of the Globus is devel-
opment of computational grid middleware and grid based application requiring
stateful Web Services.It consists of four components:

— Grid Security Infrastructure (GSI), based on X.509 Certificates, Public Key
Infrastructure and SSL to provide authorization, resource authentication, en-
cryption and single sign-on for Grid services.

— Globus Resource Allocation Manager (GRAM), a uniform interface to various
local schedulers (as LSF), providing remote execution features.

— Monitoring and Discovery Service (MDS), used to publish and discovery re-
source properties, as nodes capabilities.

— GridFTP - an extension of the FTP protocol for reliable, secure data manage-
ment in the Grid environment.

At present many large, productional Grid systems use Globus in middleware tiers,
for example CERN grid an US TeraGrid.

e UNICORE [36]. UNiform Interface to COmputing REsources (UNICORe in short)
project was initiated in 1997 as an middleware solution alternative for the Globus
Toolkit.From version 6 it partially supports WSRF standard, including WS-Resource-
Lifetime but without full implementation of WS-Notification. UNICORE architec-
ture is divided on three layers:

— User, accessing resources by running the UNICORE Client on a local machine.
It’s interface is made from Job Preparation Agent and Job Monitor Agent.
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These components are used to compose, submit and check status of jobs running
in the UNICORE-enabled Grid.

— Server, bound to a specific organization, defining so-called Usite, managing con-
nected UNICORE Clients. Usite consists of Gateway (entry point for Clients),
User database, Incarnation database (defining commands suitable for every
available target system) and Network Job Supervisor.

— Target System, offering computational power and resources. Target systems
are organized as Vsites. Each Vsite consists of two components: Target System
Interface and Batch Subsystem. Those components cooperate in executing
passed jobs on systems belonging to a Vsite.

Since UNICORE development was funded by the UE, many other UE funded
projects makes use of it. Among others, most notable ones are OpenMolGRID,
EUROGIRD or fresh Chemomentum project [6].

e Gridbus [13]. This project was founded by the University of Melbourne with focus
on eBusiness application (thus name GRID BUSiness). Nowadays is open source
project, developed by multi-institutional consortium. It provides technologies for
various applications, ranging from cluster economy to portals and simulation. Cur-
rent version support WSRF-compliant services along with standard, stateless Web
Services.

Gridbus applications includes such projects as NeuroGrid, HydroGrid and Aus-
tralian Virtual Laboratory.

What should be expressly noted, many present-day Grid projects uses only parts
of mentioned middleware solutions, as OGSA-DAI components from the Globus or
simply WSRF implementation. This is because developers have to build solutions
for particular needs, as virtual laboratories for e-science. Those Grids not necessarily
fits into middleware model proposed by off-the-shelf solutions, having need for extra
components and functionalities, like a provenance tracking system.



Chapter 3

Overview of provenance systems

First section of this chapter is devoted to overview of existing
provenance-enabled systems and solutions. Each important system
18 briefly described. Second section provides discussion of mentioned
systems with strong and weak spots emphasized.

3.1. Existing provenance systems

As stated before, provenance tracking in Grid systems is becoming very hot topic
lately. This section contains brief analysis of existing systems and theirs weak points.
It is based mainly on papers referred in text.

1. myGrid [74] and [76]

In myGrid system, provenance is represented with usage of semantic web tech-

nologies: RDF and ontologies. Data is collected on different levels: process, data,

organization and knowledge. Main sequence of provenance generation is composed

of two stages:

e Workflow execution generates events.

e Postprocessing annotates logged provenance events with semantic concepts.
They are taken from ontology description of services used in workflow execution.

What should be expressly noted, authors of myGrid concentrates on provenance
browsing capabilities. Easy construction of complex mining queries is a little bit
difficult in this model. Furthermore, browsing as implemented in myGrid does not
allow queries to cross provenance domain and query for application data.
2. Virtual Data Provenance Model [77]

This work concentrates on creating fully-functional provenance model with high
querying capabilities. Provenance information is presented as falling into one of
two types:
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3.1. Existing provenance systems

e prospective - describing workflow (modeled as procedure) to obtain piece of
data.

e retrospective - describing execution environment of a procedure (runtime prop-
erties, resources used).

Authors of the VDM state that only prospective provenance constitutes trace of a
piece of data. However they also find that retrospective information is required for
complete overview of the data. Information about data process environment is of
great value in data preparation and analysis in science-driven systems.
In fact, VDM defines provenance of a piece of data as a functional procedure that
was used to produce it and can be used to reproduce it. Moreover, data - procedure
association fidelity allows for later re-execution of process leading to particular
piece of data. In addition, metadata can be associated with datasets, procedures,
arguments, calls and workflows. Those annotations take form similar to the RDF
[29], that is triples subject — predicate — object. Subject is one of the five entities
to be annotated, predicate is the name of metadata entry and object contains
actual value. All data is stored in relational model, therefore information about
operations (such as argument) is represented by pure strings. Also, datasets used
by procedures (workflows) are stored by names. This way, all semantic information
about data is lost.

As far as querying capabilities are concerned, authors of the VDM distinguish three

query types:

e uirtual data relationship queries - core queries of the model. Focuses on prospec-
tive procedures and retrospective logs of procedure’s calls. Serves queries such
as: find procedures and calls by given name, find calls by given procedure, find
jobs running for more than specified time - retrospective one.

e annotation queries - queries making use of annotations capabilities of the VDM.
What is more, with this query type, user can select VDM objects (as dataset
or workflow) annotated with specified meta data entry. Servers queries such
as: select all annotations for defined object or find all objects with annotations
having defined predicate. present)

e lineage graph queries - making use of lineage relationship, as described in [75].
Can be derived for all data entities. Serves complex queries such as: find
datasets derivation path or find all ancestors of some dataset.

Model allows for more complex queries as combinations of above types. These
are described as Provenance Queries in Multiple Dimensions. Unique feature of
the VDM is the ability to update provenance database. Provenance data can
be modified or enriched with new information, such as procedures or annotations.
Queries of this type are referred to as Modification and Composition Queries.

All queries can be expressed in commonly used SQL language, which is an advan-
tage of using relational model for provenance data.

PROVENANCE project [64]

This very interesting project aimed to define provenance suited for SOA and build
adequate architecture on the top of the definition.

Authors presents concept of p-assertions. Each p-assertion represents stage in a
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process and is to be submitted by some actor involved in the process. Following
groups are distinguished:

e interaction p-assertions - document data flow between actors

e relationship p-assertions - document data flow within actors

e actor state p-assertions - documents internal state of an actor

Albeit presented model is interesting from theoretic point of view, it should be
pointed out that it is rather suited for being background of more complex model.
Karma provenance framework [72]

This framework is destined for workflows in SOA-based systems. In short, it allows

collecting following two of provenance information:

e process - known also as workflow trace. Documents workflow execution and
service calls particulars. Can be used for example to monitor workflow progress
in distributed Grid environment.

e data - derivation paths of a piece of data. Documents services, parameters and
input information that contributed in creation of every available piece of data.
This derivation data is gathered across all workflows executed in the system.
Also, services that used particular piece of data are part of the trace. Data
provenance could be used in determining quality of obtained information.

Karma was designed to met domain requirements of the Linked Environments

for Atmospheric Discovery (LEAD) [71], while preserving good performance in

workflow-oriented environment. Karma introduces notion of activity, taking place

at different levels of execution - workflow, service or application. Every part of each

level along with every data entity is identified by globally unique ID. For user’s

convenience, Karma generates three types of XML provenance documents, based

of mentioned activities:

e workflow - activities of particular workflow execution

e process - activities of particular service or application call, including input and
output

e data - applications that created or used particular piece of data, across all
executed workflows

Those provenance documents are created on the fly by the Karma. All recorded
activities are stored in relational database. System provides also simple graphical
tool for viewing and navigating provenance graphs (documents).

In [72] Authors provides also performance evaluation of the Karma as compared
to PRServ solution [65]. They reckon Karma as being faster, but restricted to
LEAD applications. The latter should be expressly noted, as virtual laboratory
applications defines slightly different requirements.

3.2. Discussion

All previously described models have certain limitations. For example, myGrid so-

lution does not offer easy way of adding metadata information to provenance records.
Also, however provenance data is enriched by ontologies, it only concern services in
very narrow scope. What is more, myGrid system querying capabilities can not span
multiple domains - in example provenance and application data.
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As far as the PROVENANCE project is concerned, model proposed by final report
is quite low level and generic. Albeit this could be seen as a feature, it lacks many
particulars that would definitely enhance level of provenance information stored and
query capabilities. As already stated, it rather should be part of a broader, more
complex provenance model /framework.

The VDM proposition is interesting in assuming particular computation model, sepa-
rating model’s elements - as experiment, operation, input and so on. This strongly en-
hances level of provenance details captured. Yet, it seems that semantic web modelling
with ontologies would be more adequate. Ontologies precisely capture environment
modeled. What is more, separation to concepts (models) and individuals (registries)
in ontologies are parallel to VDM'’s idea of prospective and retrospective provenance.
Finally, ontology-driven model would support more complex queries, enabling mining
over provenance data.

In conclusion listed solutions either focus on low-level models or do not support well
complex, mining queries over various repositories. Especially, queries spanning multi-
ple domains are not covered by existing models. Enriching data with semantic infor-
mation seems to be good road to follow in design of new, appropriate model.



Chapter 4

Requirements specification for provenance
sub-system

This chapter provides requirement specification for emerging prove-
nance system along with some insight into its features. First section
formulates requirements - both functional and non-functional, on
the basis of ViroLab’s applications analysis. Next section contains
architecture assumptions made to fulfill those requirements. Finally
overview of provenance tracking environment inside virtual labora-
tory 1s presented.

Based on the detailed study of Virtual Laboratory applications, two important
types of provenance data available in the system were identified.

These are:

1. annotation provenance: Extra information about some piece of data, depends on
specific application requirements. Exists solely as annotations, doesn’t provide
additional reasoning information.

2. actor provenance (event): A record of some action taken by an actor in system,
using Virtual Laboratory application. Could be connected with creating new piece
of data or changing existing piece. Enables Provenance sub-system to trace process
that led to some piece of data in details, including creating or changing other system
data involved in this process.

Emerging system should make possible recording those two types of provenance
data. What is more, it should be done in a way convenient for medical applications,
primary concern of the ViroLab project.

As it was already stated in the Chapter 3 - Related Work, provenance is very fresh
topic in the Grid systems. Therefore, only few systems approached the matter until
now. The VL provenance sub-system should base on research done in that projects
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and adapt some current approaches, but with specific ViroLab’s requirements kept in
mind.

4.1. Requirements

Requirements for the VLvl provenance system were gathered by detailed analysis
of described earlier, real world VL applications. Possible provenance use in these
applications is summarized below.

e Drug Ranking System (DRS)

Identified provenance tasks includes annotating results with meta data and tracking

statistic of the DRS, like most used rule set or typical mutations for specific patient

group. The latter can add much functionality to the DRS application desired and
used by clinical virologists, thus extending application use cases.
e From Genotype To Drug Resistance

Application’s use cases incorporate provenance for storing annotations on various

application stages. Other provenance usage in the application includes tracking

and mining origins of gathered results.
e [Establishing Large Databases Of HIV Sequences

One of possible provenance task is to store information about the process of gather-

ing data. Such information could be later used to perform fast updates. It should

be pointed out, that such usage would generate massive amounts of provenance
data.
e Data Retriever (and applications accessing hospital data)

Application description, as found in the Deliverable document, suggests that prove-

nance tracking system shall be used to store execution history data. This could

include tracking data requests along with events specific to applications running in
the sandbox environment.

Functional requirements

Gathering, storing and mining provenance data constitute main responsibilities of
the provenance tracking system. From end-user point of view, convenient and potent
provenance querying capabilities are even more important.

Therefore provenance sub-system has to fulfill following requirements:

1. Architecture should support reco