

ICT 269978

Integrated Project of the 7
th

 Framework Programme

COOPERATION, THEME 3

Information & Communication Technologies

ICT-2009.5.3, Virtual Physiological Human

Work Package: WP2

Data and Compute Cloud Platform

Deliverable: D2.1

Analysis of the State of the Art; Work Package

Definition

Version: 1.3

Date: 27/05/2011

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 2 of 80

DOCUMENT INFORMATION

IST Project Num FP7 – ICT - 269978 Acronym VPH-Share

Full title Virtual Physiological Human: Sharing for Healthcare – A Research Environment

Project URL http://www.vphshare.org

EU Project officer Joël Bacquet

Work package Number 2 Title Data and Compute Cloud Platform

Deliverable Number 2.1 Title Analysis of the State of the Art; Work Package Definition

Date of delivery Contractual 2011-05-31 Actual 2011-05-31

Status Version 1.3 Final 

Nature Prototype  Report  Dissemination  Other 

Dissemination
Level

Public (PU)  Restricted to other Programme Participants (PP) 

Consortium (CO)  Restricted to specified group (RE) 

Authors (Partner) Marian Bubak, Tomasz Bartyński, Marek Kasztelnik, Maciej Malawski, Jan
Meizner, Piotr Nowakowski (CYFRONET)

Spiros Koulouzis (UvA)

David Chang, Stefan Zasada (UCL)

Enric Sarries (AOSAE)

Responsible
Author

Piotr Nowakowski Email p.nowakowski@cyfronet.pl

Partner CYFRONET Phone n/a

Abstract (for
dissemination) This deliverable details the state of the art in research area relevant to the development and

integration work which is to occur in Work Package 2 throughout the lifecycle of the VPH-

Share project. It also presents a general overview of the key challenges involved in

developing a cloud platform for VPH-Share and a conceptual overview of how WP2 aims

to overcome these challenges.

Keywords cloud platforms, PaaS, IaaS, distributed systems, cloud resource management,
distributed data access

The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any

particular purpose. The user thereof uses the information at its sole risk and liability. Its owner is not liable for damages

resulting from the use of erroneous or incomplete confidential information.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 3 of 80

Version Log

Issue Date Version Author Change

2011-05-15 0.1 Piotr Nowakowski (ed.);
contributing authors from
CYFRONET, UvA, UCL, AOSAE

First version for internal review

2011-05-25 1.0 Norman Powell, Steven Wood,
Piotr Nowakowski

Updates and changes
following internal review

2011-05-27 1.3 Jan Meizner, Enric Sarries, Piotr
Nowakowski

Further updates; revised
section on cloud security

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 4 of 80

Contents

Executive Summary ... 7

1 Introduction .. 8

2 Work Package Definition and High-Level Overview .. 8

2.1 Deployment of a VPH-Share application workflow ... 9

2.2 Classes of Atomic Services ... 12

2.2.1 Resource requirements ... 12

2.2.2 Genericity ... 12

2.2.3 Persistence.. 13

3 Key Challenges Involved in Developing a Cloud Platform for VPH-Share 13

3.1 Management of cloud resources .. 13

3.2 Management of HPC resources ... 14

3.3 Access to Binary Data ... 14

3.4 Security.. 15

4 Analysis of the State of the Art and Recommendations for VPH-Share 15

4.1 Cloud application deployment and execution ... 15

4.1.1 Virtualization ... 15

4.1.2 Cloud stacks ... 18

4.1.3 Public cloud services.. 23

4.1.4 Hybrid clouds ... 26

4.1.5 Cloud federations ... 27

4.1.6 Cloud APIs and libraries .. 27

4.2 Cloud resource allocation management .. 27

4.2.1 Deploying an application in the cloud ... 28

4.2.2 Estimating resource demands .. 30

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 5 of 80

4.2.3 Optimizing resource allocation .. 31

4.2.4 Cost model for clouds .. 32

4.2.5 Sample solutions, models and techniques for resource allocation management32

4.2.6 Cloud allocation simulators ... 34

4.2.7 Recommendations for VPH-Share ... 35

4.3 Access to high-performance computing environments ... 37

4.3.1 State of the art assessment ... 38

4.3.2 Recommendations for VPH-Share ... 42

4.4 Access to large binary data in the cloud .. 43

4.4.1 Cloud storage concept and services ... 43

4.4.2 Federated cloud storage ... 45

4.4.3 Transport protocols .. 46

4.4.4 State of the art assessment ... 46

4.4.5 Recommendations for VPH-Share ... 47

4.5 Data reliability and integrity ... 48

4.5.1 Data storage reliability and availability in commercial clouds 49

4.5.2 Improving cloud data availability and integrity – on-going research initiatives50

4.5.3 Recommendations for VPH-Share ... 51

4.6 Security for cloud applications .. 51

4.6.1 Definitions of security terms in a virtualized environment 51

4.6.2 Network and OS security ... 52

4.6.3 Related cloud technologies and architectures .. 54

4.6.4 Restful Web service security for VPH-Share atomic services 61

4.6.5 Recommendations for VPH-Share ... 62

5 Conclusions .. 63

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 6 of 80

6 References .. 63

List of Key Words/Abbreviations .. 78

LIST OF FIGURES

Figure 1: WP2 in the VPH-Share architecture ... 9

Figure 2: Creation of an Atomic Service on the basis of an existing application, component or

standalone tool ... 10

Figure 3: Deployment of VPH-Share Atomic Service Instances... 11

Figure 4: x86 Protected Mode with and without hardware virtualization support 17

Figure 5: Classification of cloud services .. 23

Figure 6: Generic Service Toolkit architecture .. 29

Figure 7: The AHE Architect is composed of many components. Including client/API,

HARC, RealityGrid Steering System, resource manager and job submission and web services

.. 38

Figure 8: Typical steps involved in handling user actions by the ACD security mechanism in

AHE ... 40

Figure 9: Relations between container, folder and data object .. 44

Figure 10: Data cloud storage .. 46

Figure 11: Layers of the OpenTC Architecture [198] ... 58

Figure 12: sHype architecture ACSAC05] .. 59

Figure 13: Distributed services being performed in each TVD [201] 60

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 7 of 80

EXECUTIVE SUMMARY

This document fulfils a dual purpose: it defines the work to be done in Work Package 2 of the

VPH-Share project by providing a general overview of the aims of this WP and the means by

which WP2 plans to meet these goals, and it also contains an in-depth description of the state

of the art relevant to the research and development tasks in WP2. More specifically, the

deliverable can be divided into an introductory section, which establishes some basic

concepts and presents the basic use cases of interaction with WP2 mechanisms and tools, and

a state of the art analysis section, which lists the existing solutions and ongoing work in the

following areas:

 deployment and execution of applications in cloud infrastructures;

 access to high performance computing (non-cloud) infrastructures;

 access to large binary data in the cloud;

 data integrity, availability and retrievability;

 security aspects related to cloud computations.

The analysis presented in this document is meant as a starting point for the development of a

detailed WP2 architecture, which is expected to coalesce by Project month 6 and will be

described in a separate WP2 deliverable (D2.2). Thus, each section comes with specific

recommendations for developers of VPH-Share tools and suggests specific technologies and

components to be adopted by WP2. In general, the following conclusions can be drawn from

to-date analysis:

 Regarding access to computational resources, we need to be able to deploy applications in

public clouds as well as on private cloud infrastructures. For reasons detailed in Section

4.1 It seems advisable to retain compatibility with AWS (Amazon Web Services)

solutions while using OpenStack as a management platform for private (project-oriented)

cloud installations;

 Access to legacy HPC infrastructures can be ensured by integrating an Application

Hosting Environment (AHE) client in the virtual machines on which VPH-Share

applications are to be hosted;

 Data access should be provided by way of an OCCI (Open Cloud Computing Interface)

client facilitating storage and retrieval of binary data objects in various underlying (cloud-

specific) repositories;

 A project-wide registry of managed binary data objects has to be maintained and an

automated Atomic Service should exist to periodically check the integrity of such objects,

migrate them between storage resources (upon request) and provide direct access with the

use of the VPH-Share Master Interface (developed by WP6);

 All of the above components must implement a common security policy, enforced with

the use of project-wide security tokens, issued by a trusted authority and accepted by all

VPH-Share modules which expose an external (SOAP or REST) interface.

This document is meant as a live deliverable – should additional technologies become

relevant to WP2 development at the design/implementation stage, we intend to issue

extensions to the topics discussed here, taking into account ongoing developments.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 8 of 80

1 INTRODUCTION

The goal of Work Package 2 (Data and Compute Cloud Platform) is to develop, integrate and

maintain an environment which will enable the VPH-Share workflows, as well as any

application making use of VPH-Share resources, to operate on top of the cloud and high-

performance computing infrastructure provided by the project.

In order to fulfill this task, Work Package 2 needs to deliver a consistent service-based

system which will enable end-users to deploy the basic components of VPH-Share

application workflows (known as Atomic Services) on the available computing resources,

and then enact workflows using these services. Both types of activity need to be supported

concurrently – note that the developer of an application workflow is not necessarily the

person interacting with the workflow once it has been prepared. Thus, the end-user interfaces

(and – by extension – the Work Package 2 services which support them) must cater to both

groups of users. This division of responsibilities will be further elaborated upon in Section 2.

Given the above requirements, the primary aim of this document is to provide a basis for the

development of a detailed architecture of WP2 services. We will investigate the current state

of the art in distributed computing and binary data access solutions, and formulate

recommendations for VPH-Share. The document is structured as follows:

 Section 2 outlines the purpose of Work Package 2 and shows how WP2 fits into the

overall vision of VPH-Share. It also discusses generic use cases, explaining how the

services provided by WP2 will be used in support of the actions performed by end users

of Project software. Finally, it establishes some basic concepts and terms which will

subsequently be used to describe the features of WP2 software.

 Section 3 lists the key issues which arise from the use cases discussed in Section 2,

setting the stage for a detailed description of the state of the art with regard to specific

areas of interest.

 Section 4 presents the current state of the art in each of the fields identified in Section 3,

listing ongoing scientific and commercial initiatives and providing recommendations for

the VPH-Share infrastructure.

 Section 5 summarizes the presented descriptions and contains general conclusions.

2 WORK PACKAGE DEFINITION AND HIGH-LEVEL OVERVIEW

Work Package 2 is responsible for maintaining the interface between the end-user tools,

developed (among others) in WP6 and the actual computing and data storage resources, as

depicted in Figure 1. According to the Project’s Description of Work [1], the WP2 approach

is not to develop low-level cloud middleware or services, but rather to build on top of

existing solutions. Thus, we intend to use available IaaS providers (e.g. Amazon EC2)

together with privately-deployed open source cloud platforms (e.g. Eucalyptus, Nimbus). The

proposed solutions will be positioned above such IaaS layer, tailoring for collaborations

which either have access to local resources or intend to outsource the infrastructure to

commercial providers.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 9 of 80

Figure 1: WP2 in the VPH-Share architecture

The services developed in Work Package 2 will provide a basis for higher-level services and

tools developed in other technical Work Packages of the Project. The computational

workflows from WP5 will be integrated with the platform and the user tools (WP6) will

provide access to the services. Hence, in order to provide a consistent basis for the

development and integration of Project middleware, our work needs to be based upon in-

depth analysis of the state of the art in distributed infrastructures for high-performance

computing and large-scale data management. Moreover, due to the sensitivity of data which

will be managed with the use of VPH-Share tools, we need to devote special attention to

mechanisms ensuring security and reliability of any data stored in the resulting infrastructure.

In addition to purely technical considerations, we also have to take into account the

requirements for the VPH-Cloud cloud platform resulting from Task 2.7, where all VPH

flagship workflow leaders will contribute the descriptions of their applications and services.

Such combined approach of “application pull” and “technology push” will result in the

design and the first prototype which will be subject to iterative evaluation and refinement

throughout the remainder of the Project’s life cycle.

In line with the considerations presented above, we will now outline the process by which

Work Package 2 services will be exploited in support of the basic use cases of the VPH-Share

project. While a specific, in-depth description of each WP2 module will be included in the

second WP2 deliverable (due by Month 6 of the Project), the aim of this introductory session

is to give the reader an overall impression of how Work Package 2 fits into the general VPH-

Share vision and which areas need to be covered by the state of the art analysis in order to

ensure that the WP2 objectives are met.

2.1 Deployment of a VPH-Share application workflow

As mandated by the Description of Work [1], the VPH-Share workflows consist of Atomic

Services, encapsulating domain-specific functionality of the VPH-Share applications. In

order to ensure smooth deployment of the pilot applications in the VPH-Share infrastructure,

WP2 must deliver tools which will expose the features of atomic services (as defined in

DoW) while ensuring that application developers remain unconstrained with respect to the

technologies in which their applications are developed. In short, WP2 must enable

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 10 of 80

deployment of arbitrary applications on the available cloud and HPC resources. The IaaS [2]

model, also called a Resource Cloud, is naturally suited to this type of integration as instead

of predefined “building blocks” from which applications can be constructed (such as services

or components) it instead provides users with a platform on which to deploy their own

software. The purpose of this section is to outline how VPH-Share applications will be

constructed and deployed, as well as to firmly establish certain concepts which will be

consistently applied throughout the remainder of the Project.

The deployment use case (i.e. preparation of a VPH-Share application for use) is briefly

illustrated in Figure 2. It should be noted that this task falls to the application developer, i.e. a

person intimately familiar with the implementation specifics of a given application. This

action needs to occur once per lifetime of the VPH-Share application. Once completed, the

application can be accessed by end users numerous times with no further developer

involvement.

Figure 2: Creation of an Atomic Service on the basis of an existing application, component or standalone tool

As can be seen, the application developer’s interaction with the VPH-Share environment

begins with the Master UI delivered by WP6 (step 1), where the developer requests the

creation of a new atomic service (step 2a). In response, the WP2 component responsible for

AS management spawns (step 2b) and exposes (step 2c) a fresh Virtual Machine, residing in

the cloud. Upon receiving the IP (and administrative login information) for this VM, the

developer may proceed to install the software belonging to his/her application (step 3). Once

complete, this machine can be registered with VPH-Share mechanisms whereupon it becomes

an atomic service (step 4). The project infrastructure stores information on atomic services in

its registry (maintained by Work Package 4) and can provide it to end users as well as

automated tools such as the Workflow Composer. In this way, atomic services are managed

by the VPH-Share infrastructure. It should be noted that, at least as far as cloud computing

resources are concerned, operating an instance of an atomic service, deployed and running on

leased computing resources, can be expensive as it would require the Project to finance such

resources whether they are exploited or not. Thus, we envision a situation where atomic

services are stored in the form of virtual system images and instantiated on demand, as

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 11 of 80

requested by end users or workflow enactment middleware. We therefore define the

following concepts, which will be applied throughout this deliverable and over the course of

WP2 development:

 Virtual Machine: A virtual host spawned from a preconfigured operating system

template and exposed to application developers so that they can install and deploy their

applications (or components thereof). Virtual machines make no assumptions regarding

the technologies with which applications are developed – the developer obtains

administrative login information for his/her virtual machine and can deploy arbitrary

software, libraries, modules etc. It is also possible to preinstall certain software on virtual

machines, if required by the VPH-Share infrastructure (for instance, security modules,

client service wrappers etc.)

 Atomic Service: A Virtual Machine on which components of VPH-Share-specific

application software have been installed, wrapped as a virtual system image and

registered with VPH-Share management tools provided by Work Package 2. Note that

atomic services are not necessarily instantiated, i.e. they should be treated as images

rather than actual network hosts. WP2 takes care of instantiating such services as required

by the end users, leading to the concept of an Atomic Service Instance, presented below.

An important assumption is that the atomic service exposes its functionality through a

web service interface, mediated by the Virtual Machine’s web server software (such as

Apache [3]).

 Atomic Service Instance: A specific atomic service deployed on computing resources

(cloud-based or otherwise) and providing VPH-Share application functionality through a

web service (SOAP or REST) interface, typically in the form of a publicly-accessible host

exposing a WS API (which is also registered with VPH-Share mechanisms and can be

queried by developers). Atomic Service Instances need to be secured against unauthorized

access through a token-based security mechanism, developed in Task 2.6.

While a single Virtual Machine is always used to create and store exactly one atomic service,

a number of separate instances can be launched for a single atomic service. The decision

when to deploy instances (and how many of them should be launched) rests with the WP2

deployment planning and execution environment. This concept is briefly outlined in Figure 3.

Figure 3: Deployment of VPH-Share Atomic Service Instances

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 12 of 80

As can be seen, the Workflow Composer tool, accessible through the VPH-Share Master

Interface, is responsible for informing the WP2 backend which atomic services are required

to execute a given workflow. The backend responds by launching the required atomic service

instances and passes a list of instances back to the WFC, which can then commence

executing the workflow.

2.2 Classes of Atomic Services

It is worth noting that several different classes of atomic services may coexist in the VPH-

Share infrastructure. More specifically, three distinct classifications can be introduced, as

outlined in the following subsections.

2.2.1 Resource requirements

In terms of the underlying resources needed to provide the functionality of atomic services

(and their instances), the following distinction can be made:

 Cloud-based Atomic Services: these atomic services are based on cloud resources and

are deployed either in private clouds or in public cloud infrastructures made available to

the Project. Specifically, in order to create instances based on these atomic services, the

WP2 tools need to interact with the underlying resources through one or more of the

available cloud computing stacks, as discussed in section 4.2.3).

 Non-cloud Atomic Services: a separate category of atomic services which do not operate

on cloud resources but nevertheless expose the same API to the WP2 management tools.

This category specifically includes HPC clients developed within Task 2.3 and may also

include plugins for other (legacy) non-cloud computing platforms. Section 4.3 contains

more information regarding such services.

2.2.2 Genericity

In terms of the actual purpose of each atomic service, the following classes can be

distinguished:

 Application-Specific Atomic Services: These atomic services will be specifically

constructed as parts of VPH-Share application workflows, as reported in [1]. An atomic

service may encapsulate an entire VPH-Share application or parts thereof – the decision

which approach to pursue rests with workflow developers. The purpose of each of these

services is to provide application-specific functionality for the workflows which are

prepared and enacted using WP6 tools on behalf of the end users of the VPH-Share

platform.

 Generic Atomic Services: These atomic services are associated with the platform itself

rather than with any particular application. They enable end-users as well as automated

VPH-Share tools to perform administrative tasks, ensure security, support post-processing

of application results (to enable their visualization in the Master Interface) and facilitate

automatic maintenance of VPH-Share datasets (including direct access to data mediated

by Task 2.4, and data availability/provenance tracking within Task 2.5). Generic atomic

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 13 of 80

services can be exploited directly by the WP6 user interfaces or indirectly, by VPH-Share

application developers who can embed them in their application workflows.

2.2.3 Persistence

From the point of view of their persistence, atomic service instances can be divided into the

following categories:

 Instances deployed on demand: as mentioned above, most atomic service instances will

need to be instantiated on demand so as to conserve cloud resources. In such cases, WP2

management tools will be able to spawn an instance for a given atomic service when

requested by WP6 workflow management, and then despawn it once a given workflow

has concluded. We foresee this as the primary mode of operation for application-specific

atomic services.

 Persistent instances: in certain cases – such as for generic atomic services which

perform regularly-scheduled maintenance tasks or are otherwise time-critical (and cannot

tolerate delays associated with instantiating a fresh atomic service) – WP2 will be able to

maintain a given atomic service in an “always ready” state by preinstantiating an instance

which is persistently deployed on computing resources and can accept incoming requests.

Clearly, the need for responsiveness will have to be balanced against the additional cost

incurred by maintaining such an instance– the decision on whether to spawn static

instances will have to be made by the WP2 tools on the basis of load-balancing

algorithms, or delegated to the system administrator with the use of WP6 interfaces.

Having briefly outlined how WP2 will support the requirements imposed upon it by the

Description of Work we can proceed with a more detailed explanation of the specific areas of

responsibility for WP2 technical tasks and the technologies which fall within the scope of

each of these tasks.

3 KEY CHALLENGES INVOLVED IN DEVELOPING A CLOUD PLATFORM FOR VPH-
SHARE

In order to provide a platform which supports management and provisioning of cloud and

HPC resources consistent with the above description, Work Package 2 needs to build upon

existing resource management technologies. We intend to apply industry standards whenever

possible and extend them where required by the specifics of VPH-Share. Thus, we intend to

focus our analysis of the state of the art on the following fields.

3.1 Management of cloud resources

Cloud computing is a relatively fresh concept in information technology and a number of

approaches and competing platforms have recently appeared on the market (see Section 4.1.3

for an in-depth discussion of these platforms). Since no global standards regarding the

management and integration of cloud resources have been codified thus far, we need to

evaluate the de facto industry standards and choose the most promising solutions while

making sure that we do not subject ourselves to “vendor lock-in” by choosing a single

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 14 of 80

platform to the exclusion of all others. This leads to the following questions, which will need

to be addressed further on in this deliverable:

 What technologies are currently being used to expose and access cloud resources in IaaS

solutions available on the open market? What are their advantages and constraints? To

what extent do they permit fine-grained management of cloud resources? What are their

associated security and billing models?

 What middleware platforms exist for management of private cloud installations? Do they

ensure cross-compatibility with public computing clouds?

 What is the relative maturity of the technologies discussed above? Are there any legal

issues which would preclude VPH-Share from making use of these technologies?

3.2 Management of HPC resources

In addition to managing cloud resources and deploying workflows on such resources, VPH-

Share will also need to ensure compatibility with existing HPC infrastructures. Thus, a

separate section of the document needs to be dedicated to reviewing the state of the art in

non-cloud HPC platforms, which involves answering the following questions:

 What other (non-cloud) distributed computing infrastructures are currently being

exploited within the scientific community? What are the requirements (technical and

otherwise) for accessing such infrastructures?

 How can arbitrary code (i.e. atomic services) be deployed on non-cloud HPC resources?

How to ensure consistent management of such code along with cloud-based resources?

3.3 Access to Binary Data

Work Package 2 is tasked with providing access to binary data in parallel with atomic

services and their associated instances. This task calls for a separate study aimed at

describing and selecting optimal data management solutions from the point of view of VPH-

Share requirements. Important issues include:

 What tools and technologies are provided by existing cloud computing stacks (both public

and private) for the purposes of storing and manipulating binary data? To what extent

does the owner of binary data have control over where such data is physically stored and

who is permitted to access it?

 What access protocols are in use to store and access binary data? Are these protocols

consistent with the access restrictions foreseen in the scope of medical data management

in the VPH-Share project?

 What security mechanisms are used to protect binary data? How can the Project ensure

that such data is not leaked, either by way of unauthorized use of VPH-Share tools or

through malicious access to physical resources by the infrastructure provider?

 What guarantees can be provided to end users of the VPH-Share platform regarding

consistency and availability of binary data in the cloud? How to ensure that these

guarantees are met?

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 15 of 80

3.4 Security

Security is an issue which should be addressed in parallel to the functional characteristics of

the WP2 infrastructure. While each of the topics outlined above necessarily touches upon

security issues, ensuring consistent security enforcement throughout the Project requires us to

devote a separate section to the concept of securing distributed computing systems (of which

VPH-Share is a prime example). Thus, the following questions arise:

 What security mechanisms are associated with de facto cloud computing and HPC

standards and how can these be integrated with one another to provide a uniform security

layer for VPH-Share?

 How to ensure secure enactment of the use cases outlined in Section 2.1 and how to make

sure that each component of the distributed computing platform (including VPH-Share

tools, atomic services and their instances) is appropriately secured against unauthorized

access?

 How to integrate security in a way which does not place undue burden on the end users of

VPH-Share application workflows? Is a Project-wide Single Sign-On mechanism feasible

given the security requirements imposed by individual Tasks?

The remainder of the deliverable is intended as an in-depth analysis of each of the aspects

presented in this section. In addition to discussing the current state of the art related to cloud,

HPC and binary data management, we will also discuss how the technologies outlined here

can be adapted for the purposes of VPH-Share and whether they need to be extended given

the Project’s requirements. The conclusions drawn from this analysis will serve as a starting

point for the initial iteration of the WP2 technical architecture, which will be the focus of

Deliverable 2.2, due by Project Month 6.

4 ANALYSIS OF THE STATE OF THE ART AND RECOMMENDATIONS FOR VPH-SHARE

4.1 Cloud application deployment and execution

In this section we plan to describe results of analysis of various technologies and services

related to executing applications in the cloud. The scope of our research was very broad,

including aspects of virtualization that practically always back the cloud stacks, the stacks

themselves, various public cloud providers and, finally, aspects of hybrid clouds, federations

and APIs accompanied by libraries enabling manageable use of those APIs.

4.1.1 Virtualization

In theory, cloud computing infrastructures could be built without any virtualization at all,

since there exist numerous methods for out-of-band management of physical machines

(including control over boot sequences). This includes the so-called Baseboard Management

Controller (BMC) integrated into servers (on the motherboard or as an add-on PCI card) such

as HP iLO [4], Dell DRAC [5], IBM RSA [6], Oracle (formerly Sun) ILOM [7], Intel RMM

[8] or Supermicro Intelligent Management (Nuvoton WPCM450 Controller) [9], in addition

to external devices such as LAN/WAN controlled Switched PDUs. Those devices support

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 16 of 80

proprietary command-line interfaces over telnet or ssh and some of them (BMCs) also

provide standard protocols such as IPMI [10]. Thus, they can be combined with technologies

allowing remote (network) booting of an OS (such as PXE [11][12]) and mechanisms for

provisioning mass storage resources via networks, either NAS (e.g. NFS) or SAN (e.g. FC or

iSCSI), to create infrastructures with automatic provisioning of full physical (non-virtualized)

nodes exposing custom OSs to users. However, complete lack of virtualization would

introduce serious problems; specifically:

 significantly increased resource granularity (except storage, which could be provided as

needed, over a network) – generally, the smallest CPU/memory unit would be equal to the

entirety of resources provided by the least powerful machine;

 increased number of physical machines, as each user would require a full node (and not

e.g. 1 core out of many provided by modern servers) – this would greatly exacerbate the

storage, power and cooling requirements, thereby increasing operating costs;

 in order to provide various types of machines, the provider would need to maintain

various types of physical nodes (e.g. single/dual/quad core processors etc.), which would

create a highly heterogeneous infrastructure, very difficult to maintain;

 the infrastructure required to control those nodes would become much more complex and,

as such, vulnerable to misconfigurations and failures.

Thus, although virtualization is not required per se in a cloud infrastructure, it remains

important and allows flexibility which is an essential aspect of modern cloud platforms.

There are various virtualization mechanisms. At the most basic level, we could divide them

into two groups – Virtual Machine Manager (VMM, Hypervisor)-based and Operating

System-based (also called containers). Hypervisors allow running full operating systems,

including separate kernels and user space code, within each VM. As such, they provide better

separation and more robust features, including the ability to run custom kernels or kernel

modules. On the other hand, container-based VMs run separate user-space code and share

common kernels with host OSs. As a result, such VMs have limited features, especially

kernel-related (such as iptables in Linux), and lack support for custom kernel modules. They

usually won’t run OSs which differ from the core OS (perhaps allowing several variants –

akin to Linux distributions). There are exceptions, such as Branded Solaris Zones [13], which

allow running Linux inside a Solaris Zone – but this is achieved through emulation of Linux

system calls by the Solaris kernel, and not by running a true Linux OS. Despite those

drawbacks, OS-level virtualization also has some merits – for instance, reduced overhead on

host and guest machines. However, as this overhead is not particularly significant on VM-

based platforms, it is usually not considered a critical issue. For this reason OS-level

virtualization is not commonly applied in clouds – as confirmed by our analysis of the

available cloud stacks (described later on in this section), most stacks officially support

hypervisor-based technologies, such as Xen [14] or KVM [15]. (Of note is the fact that

OpenStack seems to support a single container-based virtualization solution, namely LXC

[16] and there is ongoing effort to provide support for OpenVZ [17]).

Hypervisors can be augmented by custom hardware virtualization extensions. The most

important of them (VT-x for Intel [18], AMD-V for AMD [19]) enable running VMM in a

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 17 of 80

special ring of the x86 protected mode (called Ring -1 or Root Ring 0), while guest OSs

reside in the standard Ring 0 (Non-Root Ring 0), as shown in Fig 1. Without this virtualized

guest, the OS kernel would need to run in a less privileged mode (Ring 1 or 3) which would

prevent it from accessing restricted CPU instructions and restricted memory regions. Coping

with such issues, e.g. in VMWare Workstations [20], involves rewriting instructions and

shadowing parts of memory on the VMM level, while in Xen it relies on the so-called

paravirtualization (modifying the kernel of the guest VM so it doesn’t require privileged

access). Both techniques work, but have important drawbacks – including greater overhead

and limited ability to run unmodified OSs.

Figure 4: x86 Protected Mode with and without hardware virtualization support

In addition to the already-mentioned mechanisms, Intel and AMD also provide additional

extensions which are not crucial but allow better access to hardware and/or reduce overhead –

this includes VT-d/AMD-Vi for direct device access (IOMMU virtualization) or VT-c for I/O

and network virtualization.

Each type of virtualization is implemented by various software packages. The most notable

examples of hypervisor-based solutions include:

 Xen [14] – highly stable technology providing support for both paravirtualized and fully

virtualized guests (with hardware support). It is backed by Citrix and used in their Linux

distribution dedicated for virtualization (XenServer); however major Linux distributions

such as RHEL or Ubuntu are withdrawing official Xen support in favor of KVM as it is

fully integrated into the standard Linux kernel. Xen is supported by all cloud stacks which

we have analyzed (even though some of them recommend KVM over Xen);

 KVM [15] – built on the top of the QEMU x86 emulator; however CPU emulation is

replaced with full hardware-assisted virtualization. The hypervisor is built into the Linux

kernel. Paravirtualization is not supported, hence hardware support is required (otherwise

CPU emulation would be needed, which is way too slow for production use). KVM is not

as mature as Xen in many aspects – e.g. support for more than 16 VCPUs per VM was

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 18 of 80

added quite recently (as of RHEL 6 the limit is 64 [21]); however as the project has been

taken over by Red Hat (a big player in the market) and is currently the basic technology

not just for RHEL but for other popular distributions (such as Ubuntu), it should be well

supported and extended in the future. KVM is supported by all of the analyzed stacks.

 VMWare ESX/ESXi [22] – a commercial (but with a free version) bare-metal hypervisor

frequently used in industrial applications. VMWare ESX/ESXi is selectively supported by

some cloud stacks (such as OpenStack). It comes with a very restrictive default license,

disallowing provision of computational services to third parties without special

agreements.

 MS Hyper-V [23] – Hypervisor based on MS Windows 2008 Server, supporting various

versions of Windows and some Linux releases (SUSE/RHEL are officially supported)

[24] as guest OSs. Special Linux kernel drivers are released [25] under the GPL v2

license and are integrated with the Linux kernel. Hyper-V supports up to 4 VCPUs per

guest [24] and requires a 64-bit CPU with hardware-assisted virtualization (Intel

VT/AMD-V).

The most notable OS-level virtualization solutions include:

 OpenVZ [17] – Open-source component of the commercial product called Parallels

Virtuozzo Containers. It supports multiple containers with a Linux OS under a Linux host

(same or different distribution), providing the required isolation (including network

isolation and enforcing limits on containers). There is ongoing work to fully support

OpenVZ under OpenStack [26] (partial support via libvirt is already available). OpenVZ

requires a custom-patched Linux kernel.

 Linux-VServer [27] – another solution similar to OpenVZ, also requiring a customized

kernel. Less popular than OpenVZ.

 Linux Containers (LXC) [16] – a purely user-space solution (using existing kernel

mechanisms so no patching is required – however, the kernel may need to be

reconfigured). Supports creating containers. LXC is supported by OpenStack [28].

 FreeBSD Jails [29] – a mechanism providing container-based isolation for the FreeBSD

OS, capable of running another instance of the FreeBSD userland (attempts have also

been made to run other OSs, such as Debian Linux under the FreeBSD kernel [30]). This

technology was originally intended as an isolation mechanism and not a “pureblood”

virtualization solution, so it doesn’t provide all the features of the previously-described

systems.

 Solaris Containers (Zones) [13] – a similar isolation mechanism for the Solaris OS. In

addition to running Solaris guests, it is capable of running certain Linux distributions (so-

called branded zones) though Linux system call emulation.

4.1.2 Cloud stacks

In the course of our search for a suitable technology allowing in-house (private) cloud

deployment we have studied four software stacks – Eucalyptus [31], OpenNebula [32],

OpenStack [26] – including its computational (Nova) and storage (Swift) components – and

Nimbus [33]. In the following subsection we present the results of this analysis.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 19 of 80

4.1.2.1 Eucalyptus

Eucalyptus is by far the most popular cloud stack in use today. It doesn’t require any specific

Linux distribution and works well on common releases including CentOS 5.x and Ubuntu

10.x (as Ubuntu Enterprise Cloud). Eucalyptus supports both Xen and KVM so it can be

deployed on said systems without the need to manually install a hypervisor which is not well

supported in a specific distribution. Eucalyptus provides three types of Amazon-like

services/APIs: EC2, S3 and EBS, with good compatibility. Deployment is highly complex as

Eucalyptus requires installing numerous services (some may be grouped on a single node for

smaller deployments), including: Cloud Controller, Walrus, Cluster Controller, Storage

Controller and several Node Controllers. Those services are generally heavyweight.

Eucalyptus may operate in one of four network modes: MANAGED, MANAGED-

NOVLAN, STATIC and SYSTEM. The first one is the most feature-rich but requires an

Ethernet switch configured to allow arbitrarily tagged VLAN (802.1Q) frames to be

forwarded. NOVLAN requires a dedicated physical network without any DHCP server

running on it. STATIC also prevents external DHCP servers from operating in the network

(at the very least, the server must be configured to ignore Eucalyptus VMs) and precludes

static mapping of MAC addresses to IPs since IPs are assigned by the Eucalyptus DHCP

server. This mode provides much fewer features than the managed modes. Finally, SYSTEM

provides the most basic set of features but is also the least complicated as it can rely on any

DHCP server already present in the network.

We have tested this stack on a 16-node cluster with the following specifications: Westmere

EP 2.93GHz, 48GB 1333MHz DDR3 RAM, 1 x Hitachi HUS154530VLS300 300GB

15000rpm SAS drive using CentOS 5.5 with Xen 3.1.2. Our tests confirm stability and

production readiness of Eucalyptus; however we also ran into several issues. The most

important are:

 poor efficiency of Walrus and, generally, of VM deployment;

 the SYSTEM networking mode has some glitches which could significantly slow down

OS configuration (even though the VM is ready, Eucalyptus does not acquire information

about its IP).

However, despite its glitches, Eucalyptus appears to be a reasonably stable solution, useful

for larger private clouds (it could be too heavy for smaller deployments).

4.1.2.2 OpenNebula

OpenNebula is a lightweight cloud stack which only requires a small set of scripts written in

Ruby set up on the main (controlling) node. No specific scripts need to be installed on

Worker Nodes (running the VMs) – all necessary scripts are uploaded and executed when

needed by the main node through the ssh protocol. As the stack is not complex, there are no

hard requirements related to the operating system; however two specific factors may

influence OS selection: the stack runs much more smoothly on KVM than on Xen and it

requires shared storage – either an NFS volume (which should be well supported by any

distribution) or cluster FS over SAN (e.g. GFS2, supported in RHEL/CentOS over iSCSI). In

addition to an inbuilt (XML-RPC) API, OpenNebula provides an OCCI API and a limited

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 20 of 80

EC2 API. There are three network configuration modes. Two are based on an onevnet

mechanism which assigns MAC addresses to the VM generated from the given IPv4 address

(the last 32 bits of MAC are equal to the IP). IP is either configured by a small script running

inside the VM, extracting the IP address from the prepared MAC address (a type of stateless

auto-configuration), or it may be assigned by an external DHCP server. The third network

mode relies on contextualization in which each VM runs a specific script from a mounted

volume and may use custom methods to assign an IP address.

We have tested this stack on 12 cluster nodes with the following specification: HP ProLiant

BL2x220c G5, 2 x Intel Xeon L5420 16 GB RAM 667 MHz DDR2 1xHP GJ0120CAGSP

120GB 5400rpm SATA drive using CentOS 5.5 with Xen and KVM and GFS2 over iSCSI

(2 TB) as Shared Storage. Our tests confirm that the presented features are generally adequate

for a private cloud installation; however we have also identified some problems that need to

be taken into account:

 EC2 compatibility is not stable and causes serious problems – it may need to be fixed if

such compatibility is required (the OCCI API works as expected);

 we have had problems booting certain VMs under Xen (everything seems to work under

KVM);

 there are some minor glitches, including problems with resource discovery on non-US

locales (e.g. Polish hosts).

In our opinion, OpenNebula appears to be a good choice for small private cloud deployments,

especially when no complex functionality is required.

4.1.2.3 OpenStack computations (Nova/Glance)

We have analyzed two releases of OpenStack: the next-to-current one (Bexar) and the current

one (Cactus). In both cases we’ve analyzed Nova components and, additionally, for the

Cactus release we've also tested the Imaging Service (Glance) used to distribute VM images.

OpenStack is a large, feature-rich stack targeted for building Compute Clouds (described in

this section) and Storage Clouds (described in the following section). Due to some complex

dependencies, it’s de facto meant to run on Ubuntu 10.04 or later. Another supported (but

discouraged) distribution is RHEL6. RHEL/CentOS 5.x are not supported and it is very

difficult to set up OpenStack on these OSs due to numerous missing dependencies.

OpenStack officially supports multiple hypervisors [28], including KVM, Xen, Hyper-V,

WMWare ESX and UML as well as one OS-level virtualization solution – LXC. There is also

ongoing work to fully support other solutions such as OpenVZ [34]. In contrast with the other

stacks described in this section, there is no strict division between “management” and

“worker” nodes. Instead, there is the notion of Cloud Controller and Compute Nodes;

however, in a default setup, Cloud Controllers can also run the Nova compute service and, as

such, act both as management and worker nodes (running VMs). The CC node is distinct only

in the sense that it runs some additional services – both Nova-specific (API, network,

scheduler) end external (RDBMS – MySQL or PostgreSQL and RabbitMQ). Those

additional services are accessed and used by all nodes to obtain configuration and run VMs.

OpenStack provides two mechanisms used to distribute VM images. The legacy mechanism,

called Nova ObjectStore (not to be confused with OpenStack ObjectStore – Swift) is a simple

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 21 of 80

service running on computing nodes and storing images in the file system. The new

mechanism, called Image Service (Glance) is a registry which provides centralized access to

images stored by one of the following backends: local file system, OpenStack Object Storage

(Swift), S3 (Amazon or compatible service) or HTTP (read-only mode). Open Stack Nova

provides an EC2 API which does not fully support all the features offered by Amazon but

provides decent compatibility. There are also three network configuration modes controlled

by so-called network managers: VlanManager, FlatDHCPManager and FlatManager. The

first one is the default and most feature-rich – it automatically creates a VLAN (or multiple

VLANs – one for each subnet) and bridges bound to appropriate VLAN interfaces, and

provides IPs through a DHCP mechanism. Of course, this mode has the tallest requirements

as it calls for a switch supporting VLANs, configured in such a way that it allows OpenStack

VLAN-tagged frames to pass through. However, only predefined VLAN tags need to be

configured as tag IDs may be assigned by the OpenStack DB. The second mode also uses

DHCP to provide IP addresses but it does not automatically create VLANs – instead, the

cloud administrator has to provide a separate unused network interface (with connectivity),

either physical or virtual (e.g. a manually created VLAN). The last mode has the least

requirements: it can share a single network and does not conflict with other DHCP servers

(because it does not use any); however it requires manual configuration of appropriate

network bridges by the administrator and restricts guest VMs to those using specific Debian-

like network configuration (in this mode OpenStack injects static network configuration into

the VM image).

As already mentioned, we have tested two releases of OpenStack Nova – the Bexar release

was tested on a 13-node cluster with the following specification: HP ProLiant BL2x220c G5,

2 x Intel Xeon L5420 16 GB RAM 667 MHz DDR2 1xHP GJ0120CAGSP 120GB 5400rpm

SATA, while the Cactus release was tested on 10 SuperMicro nodes with 4 x Intel Xeon E7-

8867L 128 GB RAM 1333 MHz DDR3 ST3450857SS 450 GB 15000rpm SAS HDD. Both

systems ran under Ubuntu 10.04 LTS with KVM. We tested all available network modes.

During tests the following issues were observed:

 VMs have problems getting network configuration when using FlatManager. This is

related to problems with injecting appropriate configurations (however, VLANManager

works seamlessly).

 Nova schedulers have some issues – the default (Zone) scheduler deploys VMs at random

and overloads some nodes while leaving others practically idle. The second standard

scheduler (Simple) works well (following a small patch which increases the allowed

number of cores per node) but it doesn’t offer advanced features. Note that developers are

working on more advanced schedulers such as Heterogeneous Architecture Scheduler

[35] and Policy & Constraint based Scheduler [36].

 On the second cluster (with 40 cores per node) we were able to hit the KVM VCPU limit

per VM (16 using the presented software stack); however, it seems that since RHEL6 this

limit was raised to 64 VCPUs (also in the stock kernel) so it should be possible to use the

KVM version for OpenStack

 When trying to boot a large number of VMs at once (above 50), the Cloud Controller

node is overloaded by the Nova-API service and some VMs fail to boot. Optimization of

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 22 of 80

this service or a load balancing strategy may be needed if a large number of VMs are to

be instantiated concurrently.

In spite of those limitations, most likely caused by the relative immaturity, OpenStack

remains a very feature-rich and promising cloud platform. After resolving some issues it

might be a good candidate for large and medium-sized private cloud systems as it strikes a

good balance between functionality and system requirements.

4.1.2.4 OpenStack storage (Swift)

As already mentioned, OpenStack also supports a Storage Cloud Solution called Swift. This

solution is used, e.g. by the RackSpace public cloud provider, as the basis of their storage

service called Cloud Files [37]. Its architecture is based on two management services called

Proxy and Auth Service which need to be deployed on a separate node (or nodes) connected

to both public and private network as well as several Storage Nodes in the private network.

Storage Nodes are grouped into so-called Zones – each need to contain at least one node. To

provide an adequate level of redundancy there should be at least 5 zones and they should use

separate network/power subsystems [38]. Storage nodes need to use highly efficient hard

drives and network connectivity. RAID is not recommended as redundancy is provided by the

stack itself and RAID would just slow down write operations (according to developers) [39].

The stack provides a dedicated RackSpace CloudFiles API. There is also work on an S3-

compatible API [40] but, as of this deliverable’s submission date, S3 support remains highly

experimental.

We have tested the stack on 16 nodes (1 dedicated Proxy/Auth node and 15 Storage nodes

grouped into 5 zones) – each with the following specification: HP ProLiant BL2x220c G5, 2

x Intel Xeon L5420 16 GB RAM 667 MHz DDR2 1xHP GJ0120CAGSP 120GB 5400rpm

SATA. As expected of a production-grade stack used by large cloud IaaS providers, we’ve

experienced few problems with the native RackSpace CloudFiles API.

4.1.2.5 Nimbus

Nimbus is a relatively small and lightweight stack based partially on the Globus Toolkit. Its

architecture consists of a dedicated Service Node, running more complex parts of the

software stack and responsible for API and scheduling VMs, and VMM nodes, running much

lighter software responsible for operating the VMs. There are no strict requirements

regarding the OS: Nimbus may use either Xen or KVM. Xen seems to be better supported

but, as we have verified, KVM also works. The stack may use standard schedulers such as

PBS to schedule VM execution. Communication between services is done using the ssh

protocol. Images may be provided either by a dedicated storage service called Cumulus,

installed on a Service Node, or by a LANTorrent mechanism. There are two network

configuration mechanisms: Local, running a DHCP server at each VMM node, and Global,

generating DHCP configuration files that could be integrated with an existing (auxiliary)

DHCP server running in the network. Nimbus offers several APIs: a WSRF-based native

API, Amazon EC2 WSDL and Query API for the computational features, and an Amazon S3

API for Cumulus.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 23 of 80

We have tested the stack on 9 nodes (1 Service and 8 VMM) with the following specification:

HP ProLiant BL2x220c G5, 2 x Intel Xeon L5420 16 GB RAM 667 MHz DDR2 1xHP

GJ0120CAGSP 120GB 5400rpm SATA running Ubuntu 10.04 LTS and KVM. During our

tests we ran into serious issues with EC2 API accessibility. In light of these problems we did

not perform in-depth tests, as, in our opinion, the three stacks described in the previous

sections are better suited for use in any type of private cloud deployment.

4.1.3 Public cloud services

There are numerous commercial entities providing services using the cloud model [41]. Such

services could roughly be classified into three groups, as shown in Figure 5.

Figure 5: Classification of cloud services

Infrastructure as a Service (IaaS) is the most basic type of service, which enables the client to

run custom software, including a custom operating system. Platform as a Service (PaaS)

provides a much higher level of abstraction and, as such, simplifies service usage but imposes

some restrictions on the user such as the need to apply technologies supported by the

platform (however, users can still develop their own solutions based on the provided

platform). Finally, in the Software as a Service (SaaS) model, the user is provided with a

special-purpose application. This model does not require any knowledge related to software

development as the user is simply using the provided software, although – naturally – it does

restrict the user to features provided by the software. The aforementioned diversity of public

cloud solutions makes it hard to choose the appropriate platform, even though there are some

criteria which should be taken into account, including cost, efficiency and geographical

location. As a result, some solutions such as CloudCmp [42] were developed to assist the user

in making this decision. Below we present some notable examples of various types of cloud

systems, both commercial and scientific.

4.1.3.1 Commercial public cloud providers

Commercial cloud providers offer services to all potential users willing to pay for them

(barring violations of the agreed-upon terms of service). This allows any entity to acquire a

relatively large amount of resources when needed without the need to buy and maintain large

IT infrastructures. Of course commercial clouds can also be used by scientific projects

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 24 of 80

providing those projects have sufficient funds for it or obtain scientific grants as is the case

with VPH-Share [43].

Notable commercial cloud providers include:

 Amazon Web Services [44] – currently the market leader in IaaS provision, offering

multiple cloud services, particularly the Elastic Compute Cloud (EC2) which supports

arbitrary user VMs in the cloud, and the Simple Storage Service (S3) for storing large

quantities of data. AWS also offers many additional services, such as:

 Computations: Elastic MapReduce – supports computations using Apache Hadoop

running on EC2 resources, with Auto Scaling – allowing up- and downscaling EC2

instances as required; Both services are provided at no additional cost.

 Storage: Elastic Block Storage (EBS), i.e. persistent volumes which may be mounted

and used as raw storage devices by EC2 instances – this facilitates creating a custom

file system which is preserved when the instance shuts down. EBS may also be used

as a boot device for EC2. The user is charged for the volume of the stored data and

the number of I/O requests. The AWS Import/Export service allows storing or

obtaining large quantities of data to/from S3 by sending physical devices via

traditional mail (internal HDD or external device with eSATA or USB interface). The

cost of this service is calculated as the sum of a flat fee for each device and the time

needed to upload data.

 Messaging: Simple Queue Service (SQS) enabling creation of queues for sending

simple messages, Simple Notification Service (SNS) – supports topic-based HTTP

notification; Simple Email Service (SES) – enables distribution of large quantities of

e-mail messages (such as newsletters).

 Content Delivery: CloudFront – allows serving content originally stored on S3, from

various locations that are nearest to the user, to reduce the latency and maximize data

rates.

 Monitoring: CloudWatch – may be used to monitor EC2 instances.

 Database: SimpleDB – provides a scalable non-relational data store; Relational

Database Service (RDS) – provides a highly scalable access to MySQL RDBMS

(support for Oracle 11g is planned) with the ability to run a separate standby instance

in another part of the world (i.e. in a separate Availability Zone).

 Rackspace [45] – another popular IaaS provider, offering three types of services,

including a computational service called CloudServers which can run custom cloud

instances (like Amazon EC2). In contrast to Amazon, instances have dedicated storage

and as such are persistent. The RackSpace storage service called CloudFiles enables

storage of arbitrary data in the cloud (much like Amazon S3), while Cloud Load

Balancers provide a load balancing mechanism for various protocols such as HTTP(s),

LDAP(s), FTP, IMAP, POP3(s) and SMTP. For all services, RackSpace uses its custom

RESTful API. Rackspace is currently applying the previously described OpenStack.

 Google – offers a PaaS solution called Google App Engine [46], which allows running

software created using a vendor-supplied SDK that is available for Java (version 6) and

Python (version 2.5.2). Google also offers various SaaS services such as GoogleDocs,

Gmail, Google Calendar etc.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 25 of 80

 Microsoft – offers a PaaS solution called MS Azure [47], composed of Windows Azure

and SQL Azure. The former allows running custom applications created for the .NET

platform as a Web application (Web role) or a standalone tool (Worker role). It is also

possible to run Windows Server 2008 R2 Virtual Machines from customized VHD

images using the so-called Virtual Machine role. This mode of Windows Azure could be

categorized as IaaS. The latter component, SQL Azure, supports cloud-based relational

databases and should also be considered IaaS. In addition to Azure, Microsoft offer pools

of SaaS solutions called Microsoft Online Services – including such services as Exchange

Online, SharePoint Online or Office 365 (beta version).

 Salesforce [48] – offers various cloud-based solutions dedicated to the business

community, including Force.com. PaaS enables creation of custom business applications

(using a graphical editor) and provides a SaaS CRM system called Sales Cloud.

 Heroku [49] is a Ruby PaaS solution. It provides a simple deployment mechanism based

on Git or a dedicated client. The deployed application is run in the cloud as a dedicated

process (called “dyno”). It executes in the context of a dedicated user account and

provides all the required elements of the Ruby software stack such as the Ruby VM,

application server, web service interfaces and middleware. External users access such

applications through a multi-layer infrastructure consisting of a HTTP reverse proxy,

HTTP cache and the so-called “routing mesh”, responsible for load balancing between

dynos. Ruby apps may use various solutions (such as Rails and Sinatra), and use a user-

supplied RDBMS – either PostgreSQL (the default one) or another system provided as an

add-on (Amazon RDS/MySQL, MongoDB, Redis or CouchDB).

 PiCloud [50] – a Python-based PaaS with a minimal API comprising a single dedicated

library. It can run arbitrary Python functions in the cloud (with the simple cloud.call()

function) as well as control the status of executed functions and retrieve results once a

given task is completed. There are also additional features such as data storage, all

encapsulated by the presented library.

 GoGrid [51] is an IaaS provider offering several types of services: Cloud Servers –

typical computational cloud solution running OS images in a virtualized environment;

Dedicated Servers – permanent physical machines billed in monthly/yearly cycles; Load

Balancers – assigning specific IPs to be balanced between servers. Users may choose to

use Round Robin or Least Connect (send connection to the server with the lowest load)

and, additionally, select a persistence option to trace SSL sessions or connections from

specific source IP addresses and redirect them to the same server (e.g. to prevent sessions

from breaking down). Another standard service is Cloud Storage, which can be accessed

with standard protocols such as SCP, FTP, SAMBA/CIFS or RSYNC. Each service can

be controlled through a web interface, iPhone Client or dedicated GoGrid REST API.

Additionally, some advanced features are provided, including the Content Delivery

Network which can acquire data from the location nearest to the user (equivalent to

Amazon’s CloudFront) and dedicated hardware firewalls (Fortinet by default; Cisco ASA

5510 on special request).

4.1.3.2 Scientific public cloud providers

Despite the fact that the cloud market is largely dominated by commercial service providers,

some clouds are dedicated purely to scientific research. An example of this approach is the

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 26 of 80

group of small clouds described by the University of Chicago on the “Science Clouds”

website [52], including Nimbus at the University of Chicago, Stratus at the University of

Florida, Wispy at Purdue University, Kupa at Masaryk University.

Another example of a much larger scientific cloud platform is the set of cloud services

provided to scientists by the FutureGrid Project [53]. It offers access to various cloud

platforms such as Eucalyptus, Open Nebula and Nimbus and allows conducting

computational experiments on the infrastructure it controls.

NASA Nebula Cloud (http://nebula.nasa.gov) is a cloud computing infrastructure deployed at

the NASA Ames Research Center. It is housed in a container-based datacenter and is

developed using open-source software, including the OpenStack system. The goal is to

provide compatibility with Amazon EC2 APIs and provide a facility through which to share

NASA resources and data with the public. The Nebula project is one of the contributors to the

OpenStack platform.

SARA (a Dutch high-performance computing center) has launched an HPC cloud

environment for evaluation purposes. This infrastructure (which can be found at

http://www.cloud.sara.nl/) bases on OpenNebula, although SARA has developed a cloud

management console, subsequently contributed to the OpenNebula project.They seek

applications which cannot be run on existing HPC, cluster and Grid infrastructures –

including e.g. laptop cloning, scientific code which requires custom libraries, large database

processing, etc. Beta users are invited to evaluate this installation.

CC1 is a project (2009-13) run by the Institute of Nuclear Physics, Polish Academy of

Sciences in Krakow. The goal is to build a private cloud and make it publicly available for

scientists as well as commercial startups. CC1 develops its own cloud management software

based on OpenNebula and intends to tackle many low-level issues, including the provisioning

of private networks and user-friendly Web tools.

The Open Cloud Consortium (http://opencloudconsortium.org/) is an initiative to build an

open cloud infrastructire for researchers, focusing mainly on bioinformatics, astronomy and

data mining applications. The participants are required to contribute a container-based

datacenter and 100GB/s network links. The Open Science Data Cloud supports e.g.

BioNimbus and Sloan Digital Sky Survey projects.

4.1.4 Hybrid clouds

Hybrid clouds are based on connecting in-house (private) clouds with public clouds. This

allows exercising tight control over critical data (processed in-house) while allowing some

less confidential data to be processed in the public realm. Although hybrid clouds are not yet

very popular [54], some solutions have specifically been developed to support them.

OpenNebula and Nimbus provide special EC2 drivers which allow deploying images in the

Amazon public cloud. This makes it possible to create hybrid clouds, bridging local

installations and Amazon. On the service providers’ side, there are such initiatives as the

Amazon Virtual Private Cloud (Amazon VPC) [55] (still in beta) which can isolate sections

of AWS resources and connect them with regular private clouds using VPN. GoGrid also

http://nebula.nasa.gov/
http://www.cloud.sara.nl/
http://opencloudconsortium.org/

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 27 of 80

offers a hybrid solution, based on using the vendor-provided Dedicated Server as the

“private” part and additional Cloud Instances as the “public” part of the infrastructure (when

more resources are needed, or for less critical data processing).

4.1.5 Cloud federations

Cloud federations work by extending the concept of a hybrid cloud in such a way that not

only are public and private clouds integrated, but computations can be freely moved between

multiple clouds of both types. The task is very complex since various providers use their

own, incompatible APIs (as discussed in previous sections). In spite of such problems, it is

clear that federated solutions are important [56]. At present there are still no generic and

common standards in this area – just some partial solutions like those described in the above

section, with some standardization efforts related to establishing common image formats (e.g.

OVF); however work is ongoing and ambitious plans such as live migration between clouds

are being made [57]. It should be noted that VPH-Share is an attempt at addressing this issue

in the scope of medical data management and application deployment.

4.1.6 Cloud APIs and libraries

As already mentioned, there are multiple nonstandard APIs used by various public cloud

providers. Despite being similar (mostly REST-based), they are not compatible. Cloud stacks

also come with their own APIs; however – fortunately – most of them support EC2/S3 APIs,

which, despite being custom (developed by Amazon), have become a de facto standard in the

area of cloud computing. In addition to those APIs, standardization efforts have led to the

creation of the Open Cloud Computing Interface [58] by the Open Grid Forum. This interface

is already supported by e.g. OpenNebula, while other cloud stacks, as well as some service

providers, are also working on implementation of OCCI potentially paving the way for future

API standardization. Another way to provide an interoperable API is suggested by the authors

of Deltacloud [59]. Instead of imposing a custom API on service providers and cloud stack

developers, they have decided to develop a tool providing its own REST API capable of

interfacing with multiple cloud APIs already offered by various providers. The project also

offers a dedicated Ruby client.

As most APIs are REST-based, they can easily be invoked from most languages without

additional libraries. However it’s definitely simpler to use a joint, standardized API. Some

providers such as Amazon offer a dedicated cloud SDK (currently for Java, .NET, PHP and

mobile devices – Android and iOS). AWS APIs bindings for other languages are supported

by third-party libraries such as the Ruby library provided by RightScale (right_aws) [60]. On

the same site there are also additional libraries for other providers, including GoGrid.

4.2 Cloud resource allocation management

Cloud computing [61], [62] provides indisputable advantages for its users. It is perceived as

an environment with a theoretically infinite capacity where resources are provisioned on

demand and the user is charged on a pay-per-use basis. This makes the computing

infrastructure very elastic and scalable, while reducing the service provider’s operating costs

[63]. Nevertheless, cloud computing also carries many threats due to the fact that the actual

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 28 of 80

computation is performed on a third-party physical infrastructure which is beyond the control

of the end user. The issues associated with this mode of operation include compromised or

leaked data [64], [65], or poor reliability of the infrastructure itself [66].

Within the VPH-Share project Atomic Services will be deployed in a cloud environment,

including private and public clouds. The services will access and process sensitive medical

data. One of the main WP2 challenges is therefore to deploy Atomic Services in a way that

ensures optimal performance, is cost-effective and preserves security constraints.

Applications in the cloud can be scaled both horizontally (by choosing the capabilities of the

virtual machine(s) on which they are deployed) and vertically (by instantiating many virtual

machines for each Atomic Service). Making such decisions requires the platform to model

application performance and resource assignment and therefore calls for a heuristic resource

allocation manager. The majority of existing managers implement an algorithm involving:

 estimating resource demands based on online and/or historical performance monitoring;

 optimizing the allocation according to given criteria;

 choosing resource assignments.

This chapter gives an overview of the state of the art in cloud resource allocation. It identifies

scientific issues associated with the first two steps and studies potential approaches to solving

those problems. The final step of the presented algorithm is covered in Section 4.2.3.

4.2.1 Deploying an application in the cloud

One of the most important challenges we face in the scope of VPH-Share project is to provide

a simple way of migrating existing applications, which are typically standalone executables,

into the cloud environment, as outlined in Section 2.1. This process need to fulfil the

following requirements:

 support for wrapping existing command-line applications with minimal developer

involvement;

 the application needs to expose a remote interface – in the scope of the Project we will

use SOAP [67] or RESTful [68] Web services;

 the application needs to deal with a dynamic environment (IP address, amount of RAM,

etc. can be changed);

 the wrapper has to be started whenever the underlying Virtual Machine is turned on.

As this problem is not new, or indeed specific to VPH-Share, there exist numerous tools and

frameworks which support similar scenarios. SoapLab [69] is an example of such a tool. It

allows developers to dynamically generate and deploy a web service on top of existing

command-line applications. It delivers two solutions for generating web services. The first

one creates a generic web service, where parameters are passed using a key-value schema.

The second one is much more advanced – it can generate a web service with a custom

interface. All the steps involved in generating web service can be performed without in-depth

knowledge of computer science. The Generic Service Toolkit [70] is another example of a

command-line tool wrapper. It delivers a framework for configuring the requisite

infrastructure for remotely run command-line applications, starting with a definition of a

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 29 of 80

machine farm where the command-line application will be executed, through wrapping

command-line tools as web services, and finally providing a portal which allows users to

invoke the wrapped applications (see Figure 6).

Figure 6: Generic Service Toolkit architecture

(source: http://www.extreme.indiana.edu/gfac/userguide.html)

The presented solutions are perfect for applications which are functionally complete – i.e. do

not require any processing of the parameters sent to the web service or REST. For example, if

a command-line tool processes large files, sending such files using SOAP might not be the

best idea. An even more complicated situation may occur in a cloud environment, where

dedicated cloud storage is used to host large files. In such cases, the optimal solution would

be to send file location information to the web service and add additional logic to download

files, assign them with unique names and pass their location to the command-line tool. A

reverse procedure could be applied to files produced by the application. In such a scenario,

the person responsible for wrapping command-line tools would need to implement additional

web service logic. To simplify this process two types of tools can be applied:

 command-line wrapping libraries;

 Web/REST service libraries.

Nowadays, most programming languages provide a library, which simplifies the process of

wrapping and using command-line applications with a dedicated API. An example, written in

Java, is the Apache Commons Exec library [71]. The situation is even more straightforward

in dynamic languages like Ruby [72] or Python [73], because developer-friendly libraries are

included in the SDK. If a command-line application is to be made accessible via an API, its

features have to be exposed remotely. For this purpose one of the available frameworks for

creating Web or REST services can be used. Java SDK in version 1.6 has built-in support for

Web and REST services, but numerous advanced libraries also exist (which implement a

greater portion of the WS-* specification). One of the most well-known tools is CXF [74]. In

Ruby, soap4r can be used, while in Python pywebsvcs [75] fulfils a similar function.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 30 of 80

4.2.2 Estimating resource demands

In order to estimate resource demands of an Atomic Service and prepare an optimal

deployment plan, it is necessary to study the characteristics of the service in question. This

includes:

 resource demands, such as CPU, memory and storage;

 input and output data transfer through the network;

 well-defined interaction model.

While the first two aspects are self-explanatory, the last one calls for a more detailed

explanation. Although an Atomic Service exposes a HTTP-based interface it may not employ

a request-response interaction model. It is possible for a single request to involve several

processing steps – for instance submitting a request and obtaining a request ID, polling for

request status and retrieving results. Therefore the duration of a single HTTP request does not

provide meaningful data for performance analysis.

Regardless of whether performance data is used in an offline or online manner, it must be

collected and resource consumption must be associated with each request. [76] suggests an

interesting approach that relies on black-box application monitoring and correlation of system

load with application logs. The idea is to investigate machine-level load indicators such as

CPU or memory usage. This approach has many advantages from the VPH-Share

perspective:

 it is universal and can be applied to arbitrarily complex Atomic Services;

 it is unintrusive and doesn’t affect running Atomic Services; furthermore, it doesn’t

require any additional effort on the part of service developers;

 software components required by the Atomic Service are not instrumented so they can be

easily updated or replaced;

 the Atomic Service can use legacy or third-party components which don’t provide source

code.

Assuming that system load is generated only by serving requests (i.e. there is only one

Atomic Service installed on a machine), one can implement the following stepwise algorithm

to discover how serving requests affects the load of the server:

 split server logs into n intervals;

 assign m request types for each interval;

 represent the number of request of type j in interval i as an element of an n by m matrix;

 construct a vector representing the load for each system resource;

 compute the correlation between columns of the matrix and the given vector.

A completely different approach is to insert probes into the software and collect low-level

information on application performance [77]. According to [78], instrumentation techniques

can be categorized as:

 source code instrumentation [79] that modifies the source code of the application;

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 31 of 80

 binary wrapping [80] that replaces library functions with wrappers invoking original

functions;

 binary editing [81];

 runtime patching that modifies the code of a running process in system memory [82].

4.2.3 Optimizing resource allocation

When discussing dynamic resource allocation on the cloud for VPH-Share workflows, there

is a need to define the optimization problem in terms of goals (or criteria) which will be

optimized. These criteria can be classified as quantitative properties of the solution, as well as

some quantitative constraints that need to be fulfilled. As there are often multiple conflicting

criteria which cannot be simultaneously optimized, there is a need for multicriterial

optimization strategies which take into account the necessary trade-offs.

The first performance criterion to minimize is time. This usually includes the sum of

computing time and resource acquisition overhead, resulting in task completion time which is

the most important metric from the point of view of end users. In the case of public clouds,

the resource acquisition overhead is on the order of 1-5 minutes [83], so it can be considered

negligible for long-running services. Similar overheads can be achieved on private clouds

running Eucalyptus, OpenStack or other systems described in Section 4.1.2. On the other

hand, in the case of private clouds with a limited amount of resources, resource acquisition

may involve longer queues and the problem becomes similar to batch scheduling in clusters

and grid systems.

The second most widely used criterion for optimization is cost, which obviously results from

the Amazon pay-per-use pricing model. The actual cost depends on the application

performance characteristics: for CPU-intensive applications the CPU-hour cost dominates,

while for data-intensive workloads the cost of data transfers becomes the most important

[84]. Armbrust et al. [63] notice that the price of transferring data decreases more slowly than

the price of computation. Another issue comes up in the context of parallel workloads:

usually the parallel efficiency of programs run on cloud resources is not close to 100%, which

means that adding computing nodes to an application yields improvements which are not

directly proportional to cost increases. This is an example of a trade-off which has to be taken

into account.

Arguably the third most important criterion for resource allocation optimization is resource

reliability. Public clouds typically offer some form of SLA which is usually fulfilled, barring

infrequent (but inevitable) service outages. On the other hand, the resources offered by

private clouds or research projects such as FutureGrid (futuregrid.org) are free but often

highly unreliable. Some tasks in the workflow may need to be allocated to more reliable

resources, while others – such as parameter sweep workloads – may be successfully executed

on less reliable ones.

Finally, there are some qualitative requirements, such as minimum amount of memory or disk

space availability; and quantitative ones, such as access to locally available datasets (moving

computations to data) or security perimeter limitations.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 32 of 80

4.2.4 Cost model for clouds

One of the main advantages of cloud computing is that it introduces a business and cost

model where computing power is billed per CPU-hour usage. This is an important change of

perspective and allows treating computing as a commodity. For business operations this

means a shift from capital expenditure to operational expenditure, which is usually

convenient and economically desirable. Similar budget considerations apply to research

projects where grant funding is required to buy and operate computing hardware, while

adopting a pay-per-use model would be more economical.

However, it turns out that fully understanding the cost model of the cloud is not a trivial task

and, in fact, becomes an additional complex problem which needs to be solved. The

following issues have to be taken into account:

 multiple cloud providers (Amazon EC2, RackSpace, etc.) with varying pricing models;

 multiple instance types with different performance characteristics;

 hourly billing cycle;

 data transfer costs for inbound and outbound network traffic;

 cloud storage costs and related data transfer rates;

 discounts for using “local” storage (e.g. there are no transfer costs between Amazon S3

and EC2).

The performance of different cloud instance types can be assessed using different

benchmarks. Examples include scientific benchmarks, such as the NAS parallel benchmark

suite [85]. Benchmarks for typical business applications can be found on the CloudHarmony

portal [86]. They try to normalize the performance of different instance types using a unit

called CCU (similar to the Amazon-introduced EC2 Compute Unit (ECU), which is

equivalent to 1.0-1.2 GHz 2007 Xeon performance).

One important aspect is the market model offered by “spot instances” at Amazon, which

provides the opportunity to buy instances based on availability. Historical data can be found

e.g. at [87].

4.2.5 Sample solutions, models and techniques for resource allocation
management

Multicriterial optimization usually involves finding a set of Pareto-optimal solutions, i.e.

eliminating all solutions dominated by others, which are better with respect to one criterion

without sacrificing any of the others. From these Pareto-optimal solutions, an arbitrary

decision has to be taken to select the final solution, either taking into account a trade-off or

some aggregation function (e.g. a weighted sum) over the relevant criteria. Such decisions

can be taken either directly by users, or by systems based on a defined policy. An example of

using Pareto-optimization is discussed in [88]. This publication presents a system responsible

for provisioning resources in a cloud-like environment in such way as to minimize costs and

maximize performance. As these criteria are often found to be in conflict, the authors propose

a Multi-Objective Genetic Algorithm (MOGA) [89] to produce the approximation of a

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 33 of 80

Pareto-optimal set of solutions and then apply a normalized objective function to select one

solution.

A very promising nonlinear programming approach to minimization of execution cost is

presented by Pandey et al. [90]. The authors focus on cost analysis of operating an intrusion

detection workflow. They denote the workflow as a Directed Acyclic Graph in which nodes

represent computational tasks while edges correspond to data dependencies. Their model

includes a set of storage sites, a set of computing sites and a set of tasks. It also assumes that

the cost of computation for a known size of input data is known. This cost becomes inversely

proportional to computation time while the cost of data transfers is fixed by providers. In this

way, the total cost of executing the workflow can be defined and subsequently minimized by

finding a feasible set of datasets that need to be transferred from storage to computing sites

such that the total transfer and computation cost is minimal and all data dependencies are

preserved. The model is expressed using the Modelling Language for Mathematical

Programming (AMPL) [91] and solved using DONLP2 [92].

Chandra et al. [93] proposes a generalized processor-sharing server [94] as an abstraction of

resources and represents application load as a system of queued requests. For every

application there is a maximum acceptable time within which the request must be served.

Optimization is based on minimization of a utility function which grows each time the

maximum response time is exceeded.

A similar approach is presented by Van et al. [95] who investigate optimal planning and

virtual resource management for clouds preserving SLA contracts. Optimal placement is

based on utility functions and a Constraint Satisfaction Problem (CSP) solved with the

CHOCO tool.

The EC-funded FP7 RESERVOIR project [96] brings significant contribution in the area of

exploiting cloud environments. Its main goal is to create an ecosystem where business

application can be executed in a federated cloud taking into account the defined criteria. Each

cloud provider creates and manages RESERVOIR sites – a physical infrastructure with

defined hardware and additional RESERVOIR software installed. A set of RESERVOIR sites

creates a RESERVOIR Cloud. By using this federation, the user is able to execute business

applications. A Service Applications is a set of software components, which, composed

together, solves the stated problem. Every component of the Service Application can be

deployed on different a RESERVOIR site. The decision on where the application should be

deployed is taken by the Service Manager component, which consumes the Service

Application manifest. From the manifest, the Service Manager derives a list of resources,

their configurations, pricing policy, etc. for every component of the application. While

existing cloud infrastructures are quite inflexible in defining the best deployment plan (they

usually take into account only one indicator, such as price, computing power etc.), the

Service Manager tends to rely on multiple criteria while deploying applications. Once the

specification of the application is retrieved, deployment can be performed: the Service

Manager contacts the underlying layer – the Virtual Execution Environment Host (VEE Host)

– to process the deployment, based on the data retrieved from RESERVOIR sites (e.g.

available hardware and software, performance, SLA, pricing policy) and application

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 34 of 80

requirements. While the application is being deployed, the Service Manager monitors the

environment and checks whether the defined high-level/business SLA is fulfilled. If not, the

application can be reconfigured (e.g. the number of VEE Hosts can be increased or

decreased, or additional memory can be added to existing VMs). The VEE Host is also

responsible for guaranteeing service-level agreements on the technical level (by monitoring

overload, used CPU, etc.) It can change the configuration of managed VMs, or even migrate

some parts of the application to other VEE Hosts.

Another interesting system dealing with cloud management is Haizea [97]. It is a lease

manager where the lease is a contract between the user (I want access to resource X for the

period Y) and the provider (who agrees to deliver the required resources). In Haizea resources

are understood as the required hardware, software and a reservation period time. Haizea is

designed specifically for the cloud, thus it factors in the cloud-related overhead (e.g. image

migration time, booting time) when delivering the required service. Owing to integration with

OpenNebula (Haizea can replace the OpenNebula manager) it can manage clouds based on

Xen, KVM or VMWare.

An interesting idea for minimizing High Throughput Computing costs is demonstrated in

[98]. The authors notice that in order to ensure on-demand access to resources, providers

must overprovision their infrastructure. They claim that by deploying backfill virtual

machines on idle nodes, providers can increase IaaS cloud utilization from 37.5% to 100%.

A significant contribution to resource allocation management is represented by autonomic

computing [99]. Autonomic environments feature important self-management properties, i.e.

self-configuration, self-healing, self-optimization and self-protection – thus they are also

referred to as self-* systems [100]. There are attempts to apply autonomic resource allocation

in small-scale data centres [101], [102]. Although mature and advanced techniques such as

machine learning [102], queuing models with heuristics [103] and control theory [104] are

available, building a fully self-managing system remains a challenge [105].

4.2.6 Cloud allocation simulators

Dynamic resource allocation and distributed resource management on grids and clouds raise

many challenges due to their inherent complexity. In addition to theoretical studies, the

proposed algorithms have to be subjected to experimental evaluation, either in real or

simulated environments. Regarding experimental test-beds, projects such as Grid’5000

(https://www.grid5000.fr) and DAS-4 (http://www.cs.vu.nl/das4/) have been deployed in

Europe, while FutureGrid (https://portal.futuregrid.org/) is provided in the USA. These

projects enable running computer science experiments on dedicated resources using on-

demand provisioned middleware or cloud computing stacks. As experimental evaluation of

algorithms on real computing platforms is not always feasible, a number of simulation

toolkits dedicated to the problem have been developed. Among them the most interesting

ones from our perspective are GridSim, CloudSim, GSSIM and GroudSim.

GridSim [106] is a simulation toolkit developed in Java and based on the SimJava discrete

event simulation package. It has been mainly used to model various scheduling and

metascheduling approaches for grids. The infrastructure model consists of many grid sites

https://www.grid5000.fr/
http://www.cs.vu.nl/das4/
https://portal.futuregrid.org/

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 35 of 80

with local schedulers which can be accessed using resource brokers. The toolkit has been

applied to analyse various grid economy models, i.e. scenarios where resource providers

charge their users for resource utilization. The toolkit takes into account network topology

and energy-related costs. GridSim is available at http://www.cloudbus.org/gridsim/.

CloudSim [107] is a new simulation framework developed by the authors of GridSim. The

resource model it implements is dedicated to cloud computing, where there are many cloud

providers, each operating multiple data centres. The application model reflects the hierarchy

introduced by virtualization: users can run virtual machines in data centres and execute

application tasks on these virtual machines. CloudSim helps simulate various cloud

computing scenarios, including public, private and hybrid IaaS infrastructures, as well as

possible PaaS deployments on top of IaaS clouds. CloudSim is available at

http://www.cloudbus.org/cloudsim/.

GSSIM is a grid scheduling simulator based on GridSim, which features several

improvements. It provides a flexible framework for generation of workloads, resources and

other events, and pluggable scheduler mechanisms for brokers and resource providers. It

supports a job model based on the GRMS schema to model complex jobs; however job

dependencies are not fully supported. GSSIM also provides repositories for workloads,

plugins and experiments, in order to facilitate reusability and reproducibility of scheduling

simulation experiments. GSSIM is available at http://www.gssim.org/.

GroudSim [108] is a recently developed grid and cloud simulator. In addition to performance

improvements with respect to GridSim, GroudSim supports a hybrid grid and cloud

infrastructure model. GroudSim is available at http://www.assembla.com/spaces/groudsim.

From among the toolkits described above, GridSim seems to be the most popular; however it

requires many extensions and additional plugins which usually need to be developed for

specific scheduling scenarios and algorithms. The recently-developed CloudSim and

GroudSim packages implement a resource model which corresponds to cloud infrastructures.

CloudSim is currently under active development and therefore appears to be the most

promising from the cloud computing perspective.

4.2.7 Recommendations for VPH-Share

The specifics of the VPH-Share project are such that a number of workflows and applications

are already available (or well into implementation) at the outset of the project, as described in

[1]. It is important to note that most of these tools were not specifically designed for

operation in the cloud, or indeed in any distributed environment – we are frequently dealing

with standalone applications, using command-line interfaces and expecting to find their input

data in local file systems. A key objective of WP2 is to enable developers to easily migrate

and expose the functionality of their tools in the cloud. Thus, the deployment solutions need

to meet two key criteria:

 migration must be associated with minimal development effort on the part of application

contributors;

http://www.cloudbus.org/gridsim/
http://www.cloudbus.org/cloudsim/
http://www.gssim.org/
http://www.assembla.com/spaces/groudsim

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 36 of 80

 a variety of cloud platforms, both public and private, need to be supported, given the

diversity of market solutions and potential security constraints related to processing

sensitive data.

This is why we have to discard wrapping and instrumentation solutions which are invasive (in

terms of having to modify application source code), while preserving the generic nature of

the deployment platform. A service wrapper seems to be preferable to compiling in WS

interfaces for most of the tools and workflows contributed to VPH-Share.

We will therefore attempt to simplify the process of migrating existing application into the

Cloud environment by using a generic framework which exposes command-line tools as web

services so that they can be managed as Atomic Services and accessed by external tools. The

SOAPLab framework seems to be the most promising technology given the dual

requirements of genericity and robustness. Should command-line tool execution require

additional logic (e.g. downloading input files from Cloud storage), a custom data access

component would need to be preinstalled on the Virtual Machine on which a given

application resides (this is further discussed in Section 4.4).

As far as deployment of applications on physical resources (supplied by cloud providers) is

concerned, we need to provide an IaaS solution which would have the properties of a cloud

federation. As described in Section 4.1.5 there are currently no “out of the box” cloud

federation solutions; however by agreeing upon a selection of public and private cloud

infrastructures we can engineer a tool which will be able to deploy Atomic Services on

selected resources whenever requested by the workflow management/user interface

components from Work Package 6. Since compatibility with EC2 has emerged as a de-facto

standard in public cloud infrastructures, we will aim to retain it when acquiring resources

from commercial cloud operators. The choice of middleware to support private cloud

installations will be decided upon by Month 6 of the project, following recommendations

from Task 2.2.

The resource demand estimation solutions presented are quite interesting; however none of

them can be applied out-of-the-box. A black-box approach seems to be better suited for

monitoring the load of servers hosting Atomic Services. However, the complex interaction

model of Atomic Services prevents us from using log-based request-load correlation.

Although instrumentation would provide more in-depth data on application performance,

service instrumentation would need to occur for each Atomic Service, which is unfeasible –

developers may wish to use arbitrary programming languages excluding the possibility of

code reuse. Therefore, application-level instrumentation is not acceptable. VPH-Share should

develop a mechanism which will reuse the best concepts from the presented solutions while

fulfilling project-specific requirements. It is expected that Task 2.7 will provide information

useful for understanding VPH-Share Atomic Service characteristics. For instance, the black-

box approach could be applied to monitor only the load of virtual machines while

instrumentation could be combined with the idea of wrapping legacy scientific applications,

possibly implemented using various programming languages, with architecturally-aware

interfaces [109], which, in the case of VPH-Share, would be HTTP-based. Woollard et al.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 37 of 80

claim that the wrapping overhead is negligible. Such wrappers could be instrumented and

reused for every Atomic Service, thus reducing developer effort.

Concerning, the final, but probably most innovative issue, i.e. deployment optimization

heuristics, a survey of trends and solutions has been conducted. Among the presented

approaches, the most promising ones seem to be Pareto-optimization combined with

Constraint Satisfaction. Such a juxtaposition of optimization techniques would provide the

means to optimize deployment using multiple criteria while preserving VPH-Share security

constraints.

4.3 Access to high-performance computing environments

Several multi-scale computational workflows in the VPH-Share demand a large amount of

raw processing power as well as a memory. In certain scenarios, the cloud computing

platform is unable to provide this resource. Therefore a method is required to allow access to

high performance peta-scale facilities such as Distributed European Infrastructure for Super

Computing Applications (DEISA) [110] and Partnership for Advanced Computing in Europe

(PRACE) [111] grid to provide these computational demands.

Traditionally, running an application on a single HPC often requires the user to ensure that

the application is compiled and installed on the HPC, generate a job launching script for the

queuing system and ensure that the data are correctly staged. This is often a straightforward,

if not troublesome task. However, on a heterogeneous grid of super computers, the

complexity grows significantly.

Grid computing [112] aims to simplify the access and usage of HPC resources which may

span across multiple administrative domains and may be composed of many different types

of resources. The software used to tie the grid together is often referred as the middleware.

Currently, there are three popular heavyweight middleware which are Globus [113], Unicore

[114] and g-lite [115].

A drawback of these heavyweight middleware is that they do not provide the simplicity and

ease of use as envisioned [116]. Each grid may have its own security as well as deployment

constraints and procedures. The high barrier of the technological expertise to install and

deploy applications across grids has discouraged many scientists from adopting this

technology is described by Chin et al. [117].

A method of providing simplified access to HPC resource is required. Furthermore, the

solution also requires the integration with the VPH-Share cloud framework including the

components developed in Task 2.1 and Task 2.2, access to data storage developed in Task

2.4, the security framework developed in Task 2.6 and VPH-Share application developed in

Tasks 5.4 to 5.7. The master interface design as well as workflow execution in Task 6.4 and

6.5 respectively will also have to be considered in Task 2.3.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 38 of 80

4.3.1 State of the art assessment

The complexities of deploying software on grids have led to the development of a lightweight

middleware solutions such as the Application Hosting Environment (AHE) [118], GROWL

[119], JavaGAT [120] and Styx [121]. The aims of these frameworks and APIs are to

simplify and hide the complexity of the traditional heavy grid middleware.

AHE is based around the idea of grid application virtualization where scientific applications

can be easily exposed as web services, compliant with the WSRF specification [122]. This

allows applications to be deployed on a number of different types of resources from high

performance grid machines to simple desktops. AHE is a lightweight middleware that exists

on top of existing grid frameworks such as Globus and Unicore. It abstracts the complexity of

the underlying infrastructure and provides services which allow researchers to manage their

workflow including the running of their simulation, file staging and retrieval as well as

security management. In the area of application deployment, AHE promotes the community

model where “expert” scientist would configure the AHE to deploy their scientific

applications and use the AHE to share their application with their community. Once

community member receives the AHE client, they can simply install the light weight client

and launch and monitor the application across the grid.

Figure 7: The AHE Architect is composed of many components. Including client/API, HARC, RealityGrid Steering

System, resource manager and job submission and web services

AHE is designed based on the Service Oriented Architecture. The overall architect can be

seen in Figure 7. It is built upon WSRF::Lite [123], a Perl implementation of the OASIS web

service resource framework built upon the Perl SOAP::Lite web service toolkit [124].

GridSAM [125] is used as the web service interface which is used to accept job submission as

well as monitor the jobs. GridSAM also allows applications to be launched from a number of

different distributed resource managers such as Globus or Sun Grid Engine [126]. AHE

provides features such as computational steering where simulations can be monitored and

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 39 of 80

modified in real time. This is implemented using the RealityGrid steering system [127],

which is a WSRF-compliant middleware library that allows parameters in simulations code to

be marked steerable. This can be particularly helpful allowing researchers to view and adjust

parameters and prevent valuable computational time to be wasted. Another feature of the

AHE is the advanced co-reservation of resource which allows a uniform access to reserve

time across different resources; this is achieved through the Highly Available Robust Co-

scheduler (HARC) [128]. HARC works by deploying resource manager components on to the

computational resources allowing the user to query and issue commands to that resource.

HARC utilizes the Paxos Commit protocol [129], the main advantage of this is to remove the

problem of transaction manager failure experienced by two phased commit protocol. This

allows the system to function as long as the majority of transaction managers are functioning.

The main advantage of HARC is to provide interactivity to the user as well as a schedule

“first class” grid resource [130].

AHE provides a standard compliant submission system using the Open Grid Services

Architecture (OGSA). This includes the Basic Execution Service (BES) which employs the

Job Submission description Language [131] allowing it to work with Unicore version6 and

GridSAM. AHE was also developed to submit jobs to Globus 4 GRAM. This flexibility

allows AHE to access a number of different types of computing grids through a single user

interface.

The current AHE security framework is built around the Audited Credential Delegation

(ACD) [132]. ACD was developed in mind to secure VPH related projects by providing

authentication, authorization and auditing in distributed VPH project environment that would

remove digital certificates from the security mechanism from the end-user point of view. The

lengthy process of obtaining digital certificate still has to be completed but by an expert user

only once, this considerably simplifies the usability of the AHE [133]. Many current security

implementations use Public Key Infrastructure (PKI) and X.509 digital certificates [134] to

provide authentication and authorization. An existing problem of current security

mechanisms is the complexity and time consuming task for both the administrator and the

end users [135] [136]. An example of such a problem includes the lengthy process of

acquiring a X.509 certificate and the generation of proxy certificate to access remote

resource. This task often led to users sharing private keys which weaken the security of the

environment.

ACD is designed around the concept of “wrappers”, these wrappers delegates the transactions

between the virtual organization (VO) and the outside world. Any actions or requests are

intercepted by the security wrapper where the identity of the user is established, the

authorization of the action or request checked, the result of these security checks logged and

finally returned the results to the user. ACD is designed round web services using standards

such as Web Service Description Language (WSDL), SAP, WS-Policy and WS-Security

[137]. ACD has four main components: a local authentication service (LAS) which removes

the need of digital certificate from the end-users’ experience using username-password

combination. An authorization component that controls all action performed within the

virtual organization. This is achieved by using the Parameterized Role Based Access Control

(PRBAC) model in which permissions are assigned to roles [138]. The authorization

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 40 of 80

component only manages the permissions given by the resource provider which has the final

say on what action is allowed within their infrastructure. The third component of the ACD is

the credential repository, this stores the certificates required to communicate with the grid.

An expert user of the VO is required to obtain the certificate and set it up only once. To allow

members of the VO to access the grid, ACD issues digital certificate which authenticates

requests by the VO to the resource provider. This component also maintains a list of proxy

certificates, the corresponding private keys and the association between user and proxies.

This mechanism allows ACD to record the user action. The last component is the auditing

component which records all action within the VO by the users. A typical security handling

of a user action can be seen in Figure 8.

Figure 8: Typical steps involved in handling user actions by the ACD security mechanism in AHE

The AHE-ACD framework offers the following administrative actions including: Create VO,

Assign Certificate to VO, Add user to VO, reset user password, create role, assign tasks to

role, assign users to role and functional actions including: prepare job, submit job, monitor

job, download and terminate job.

Grid Resources on Workstation Library (GROWL) is a lightweight and extensible toolkit

which provides an interface to existing grid surface for applications developed in R, C and

FORTRAN. GROWL employs the gSOAP web service which is further wrapped by

GROWL API. To deploy the GROWL framework, a user selects the component that he needs

and builds the GROWL library. Once compiled, any calls to the GROWL library will be

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 41 of 80

automatically redirected to the GROWL server which then redirects the job to the appropriate

resource. GROWL provides an authentication service by using proxy with their GSI

certificate deployed into a MyProxy [139] server. The GROWL server can then request a

delegate certificate allowing the server to act on-behalf of the server.

GROWL’s main focus is to provide a lightweight and extensible framework. It however,

lacks many features such as steerability, resource management as well as robust job

scheduling methods.

The Styx Grid Service [121] is a lightweight middleware for scientific workflow by wrapping

command line programs and deployed as web service. This allows them to run across the

internet as if they were local programs. The core of the Styx Grid Service is the Styx protocol

for distributed system. This protocol is a file-sharing protocol which treats all resources as

files. These files are organized into a hierarchy known as namespaces. This allows all

resources using Styx to be represented as URL allowing data to be directly shared between

different web services. For security, Styx uses TLS as well as public certificate

authentication. The Styx Grid Service can be exposed as a “WS-Resource” allowing it to

maintain states across different web-service invocation.

The Styx Grid Service has been tested with the Taverna workbench workflow system [140]

as well as the Triana workflow system [141] with some modifications. It does, however, lack

features to control and interact with common grid middleware.

The Java Grid Application Toolkit (JavaGAT) is a high-level and middleware independent

API for the grid. As the name suggests, JavaGAT is a Java implementation of the GAT [142]

specification. JavaGAT is a feature-rich API with the aim of simplifying access to multiple

domains of grids for developers. It supports resource management, security, grid I/O and

application steering and monitoring of different grids through JavaGAT adaptors as well as

novel features such as nested exceptions and intelligent dispatching of method invocations to

handle errors and selecting suitable grids for requested operations.

JavaGAT is designed with portability in mind, by using Java for development and

deployment of the grid application. It is capable of selecting the best grid for deployment – a

feature known as “intelligent dispatching”. JavaGAT deals with fault tolerance through

nested exception which detects unavailability and failures of an implementation, although it

does not report failures that are not detected by the middleware itself. A nested exception is

thrown when all JavaGAT adaptors fail, informing the user of the error details.

Some notable features of JavaGAT API include grid I/O support for many different types of

grid middleware, although complete support for I/O for different middleware platforms

remains incomplete. The JavaGAT API provides resource management so as to control how

resources and binaries are pre-staged and post-staged. Different grid middleware suites

handle this differently and in certain situations results may be lost or overwritten when

multiple jobs are submitted to the same middleware. To overcome this, JavaGAT introduces

a sandbox mechanism on the remote machine where all application files and directories are

copied before the job is started, and where the results can be stored prior to retrieval.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 42 of 80

JavaGAT provides several security mechanisms including caching passwords and credentials

as well as supporting MyProxy credential management service.

Other similar grid APIs include Java CoG [143], Simple API for Grid Application (SAGA)

[144], DRMAA [145] and the GridRPC specification [146]. These APIs provides low-level

simplified access to different grid middleware platforms for developers. However, due to the

requirement of WP2, these APIs are not well suited for workflow tools and will not be

discussed in detail.

4.3.2 Recommendations for VPH-Share

A number of technologies have been presented, including AHE, Styx and GROWL which

target the deployment of applications across a grid, as well as JavaGAT, a Grid API which

simplifies the development of applications for the grid.

In the context of the VPH-Share project, a lightweight middleware solution is required for

computational workflows to access HPC resources which cannot be run on the cloud

computing platform. This calls for a solution which can be easily adopted or with minor

modification to existing simulation tools as well as extensibility to support seamless

integration with the resource manager in the cloud platform as well as the security platform

which will be deployed in WP2.

The Application Hosting Environment has been previously used in other projects such as

Virolab [147] and other simulation codes such as NAMD [148], CHARMM [149], LAMMPS

[150], VASP [151], DL_PLOY [152], LB3D [153] and HemeLB [154]. The AHE application

virtualization paradigm allows complex, multi-component grid based application to be

represented as a web services. It also contains a number of features such as steering and

advance co-reservation, along with a user-friendly security framework. Some of these

features are not present in GROWL or Styx Service Grid.

Another potential candidate is the JavaGAT API. This API contains many features such as

error message logging, intelligent dispatching and support for different grid middleware

suites. However, this API is targeted at developers and requires existing applications to be re-

implemented using the respective APIs. This would require significant development work

which is unsuitable for the scope of this task.

There are several areas of development associated with AHE in this task. One area is

integrating AHE with the cloud platform’s resource manager as well as providing seamless

interaction for modelling tools between the cloud and HPC platforms as part of the

components developed in Task 2.1 and Task 2.2. AHE can also be deployed as a standalone

platform providing flexibility of workflow-user interaction, designed as part of Tasks 6.4 and

6.5. To facilitate this development, the AHE API may have to be refactored to be compatible

with the VPH-Share cloud-based Atomic Services and the underlying resources. Furthermore,

to integrate AHE into the VPH-Share cloud platform it will have to report load information

for HPC resources to the resource managers developed in Tasks 2.1 and 2.2. AHE features

will also need to be extended to cover data staging/access from facilities developed in Task

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 43 of 80

2.4 for data storage. The ACD security framework in AHE will have to be integrated into the

overall cloud security framework developed in Task 2.7.

Another area of development is to ensure compatibility between VPH-Share applications and

AHE. To achieve optimal efficiency, these tools may also have to be optimized for specific

grid middleware. Requirement gathering and analysis will have to be performed on modelling

and simulation tools which will require HPC, identified in Tasks 5.4-5.7.

There are also a number of areas in which AHE can be improved, including usability and

error tracking and handling. Requirement gathering from workflow tools as well as

coordination with modellers, UI designers and cloud architect is required to ensure that AHE

delivers the required functionality.

4.4 Access to large binary data in the cloud

Just like cloud computing, cloud storage has also been increasing in popularity for many of

the same reasons as cloud computing. Cloud storage delivers virtualized storage on demand,

over a network based on a request for a given quality of service (QoS). There is no need to

purchase storage or in some cases even provision it before storing data. However, in the

scope of VPH-Share it cannot be assumed that data will be located in a single cloud storage

infrastructure. Moreover, for security reasons, institutes and hospitals may opt for private

cloud storage, or prefer to use their existing storage infrastructure. In the case of data-

intensive applications and HPC, although computational and storage resources may be

abundant, access to large data sets often proves a significant drawback. Thus, to transport,

access and process large data in the cloud, efficient protocols and mechanisms must be put in

place.

4.4.1 Cloud storage concept and services

Almost all cloud storage services, use the following concepts: container, folder, data object

and virtual path to present and allow users to manage their data. Figure 9 shows the relation

between these concepts.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 44 of 80

Figure 9: Relations between container, folder and data object

A container is a namespace for folders, data objects and virtual paths. Depending on the

cloud storage service, the scope of the namespace can be global, account, or sub-account. For

example, Amazon S3 containers are called buckets, and they must be uniquely named so that

the namespace is global. In other cloud storage services, the naming convention of the

container is less strict. All cloud storage services allow users to list containers and contents

within them. These contents can be either data objects, and depending on the storage service,

folders, or virtual paths.

A data object consists of unstructured data residing in a container. Some cloud storage

services call them objects, blobs or files. Users can look up data objects in a container with

the use of keys, which often relate directly to the URLs used to manipulate such objects. A

data object can be of zero or greater length. Some services restrict the size of a data object to

5GB. Finally, data objects can have metadata in the form of key-value pairs that can be stored

alongside the data. When a data object is inside a folder, its name is relative to that folder.

A folder is a sub-container. It can contain data objects or other folders, depending on the

service. The names of items in a folder are base-names. Data object names incorporate

folders with the use of separators (“/”) – in the same way as in a regular file system. Virtual

paths, on the other hand, are purely used to create the appearance of a hierarchical structure in

flat cloud storage.

Everything in a cloud storage service is stored in a container. As mentioned earlier, a

container is a namespace. Thus, if a container’s name is container1, it will be accessed via a

URL. For example, if a cloud storage service is called cloud_storage_service.com, a

container in that service would appear as: https://cloud_storage_service.com/container1. If

the name of a data object is stored with the key data-object2, the URL pointing to that data

object would be: https://cloud_storage_service.com/container1/data-object2. Although

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 45 of 80

naming conventions may change from one service to the next, the general approach is the

same.

By default, every item in a container is private. If the user wishes to grant access to others, he

has to explicitly configure it. Currently, the means to expose containers to the public are

provider-specific. Finally, cloud storage services, provide versioning for data objects.

The Amazon Simple Storage Service (Amazon S3) is Amazon’s cloud storage service. It is

built with a minimal set of features so that the focus is on simplicity and robustness. Amazon

S3 stores data as objects within buckets. A maximum of 100 buckets per account can be

created and stored. An object is comprised of a file together with its metadata. The maximum

size of an S3 object is 5GB. To store an object in Amazon S3, the user uploads the file he/she

wants to store to a bucket. When the file is uploaded, the user can set permissions on the

object as well as any metadata. Additionally, Amazon S3 provides access control over

buckets, and enables users to view access logs for buckets and their objects. Moreover, the

users can choose the geographical region where Amazon S3 will store the bucket and its

contents. In Amazon S3, by default the bucket owner pays for downloads from the bucket.

Alternatively, the owner can configure bucket parameters, so that third persons requesting to

download contents from that bucket are charged. Since in Amazon S3 downloads are charged

for, Amazon provides the ability to obtain objects via BitTorrent and save bandwidth on large

files. Moreover, for large files (larger than 100 MB) Amazon S3 provides multipart upload

capabilities, allowing users to upload a single object as a set of parts. Each part is a

contiguous portion of the object’s data.

Another popular cloud storage service is RackSpace Cloud Files. The way RackSpace Cloud

Files organize storage is no different from Amazon S3. In this cloud storage service, the

topmost concept is the container, which is used to hold objects. However, containers in

RackSpace cannot be nested. Similarly to Amazon, RackSpace imposes a limit on the size of

a single uploaded object, which is 5 GB. Moreover, RackSpace has no permissions or access

control for containers or objects. Each user owns a private storage account and has full access

to that account. The only way a user can access the content from another account is if he

shares credentials or a session token. For downloading and uploading data, RackSpace uses

HTTP.

4.4.2 Federated cloud storage

Federated cloud storage refers to the aggregation of multiple cloud storage resources. Figure

10 shows an aggregation of cloud storage resources. In this case, the aggregation will be

realized from the client’s point of view. This means that a common management layer will

govern loosely coupled storage resources. Through this common management layer, a

multitude of private and public clouds can be aggregated exposing all storage as a single

name space. This unified view will provide benefits, such as:

 shared storage between cloud storage offerings;

 distributing data across the cloud to ensure accessibility and reduce latency;

 dynamic addition and removal of storage providers;

 providing virtually limitless storage capacity;

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 46 of 80

 improving collaborations through data sharing.

Federating storage however, comes with some challenges. To implement a common

management layer for a variety of storage systems requires a high-level programmable

interface. This interface will hide the complexity and specifics of accessing different storage

systems. Many cloud providers have licensed their proprietary APIs freely, allowing anyone

to implement applications that make use of their infrastructure. As already mentioned in the

previous sections, despite the accessibility of such APIs, their use is problematic. The

complexity of developing against many different APIs is a key problem. Additionally, the

usage of proprietary APIs will bound development cycles to the standards imposed by

vendors. Finally, the flexibility of adding and using new storage resources and technologies

will be limited.

Figure 10: Data cloud storage

4.4.3 Transport protocols

Many cloud storage services have emerged in recent years. However, moving large amounts

of data to these facilities remains a bottleneck. The concern about public clouds is transfer

costs. For private and public clouds, network capacity and the choice of transport protocols is

the limiting factor. Uploading 100TB+ data to an online storage is still less than practical in

most cases. Therefore, while storage capacity in the cloud is expandable, limits in the

capacity of network connections to the cloud can create challenges for scientific application

with multiple petabytes of data to be moved back and forth. In most cases data transfers

between clients from cloud storage, are facilitated through HTTP(s). Although HTTP(s) is a

well-established and reliable protocol, other solutions may be more suitable for bulk data

transfers. Moreover, direct client to cloud data transfers, may be suboptimal due to the

network latencies on the client side.

4.4.4 State of the art assessment

To this date, most of the proposed solutions for cloud federation, concern the supply side of

public clouds. Numerous architectures have being proposed on how providers can merge

their infrastructure to meet spike demands. Moreover, these solutions are concerned with

scalability problems from the provider’s point of view [155] [156] [157]. Additionally, these

proposals mostly concern computational clouds. Far fewer proposals try to reduce the client-

side cost of using federated clouds [158] or offer clients a unified view of their cloud storage

[159]. However, some proposals have being made in order to improve cloud storage on a

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 47 of 80

more interoperable client-centric way [160] [161] in order to improve fault tolerance on the

cloud.

Not many publications address the issue of data transport protocols for the cloud. However,

major cloud players like Amazon have looked into the performance problems of transporting

data. An explanation of the data transport problems involved in cloud storage can be found by

Graham-Rowe [162]. TCP seems to be the bottleneck for bulk data transports. While ideal for

moving small amounts of data through the Internet, TCP is less suitable for larger datasets,

with large round-trip time (RTT). Amazon addresses this problem by using a new protocol

called the Fast and Secure Protocol (FASP). FASP was developed to accelerate bulk data

movement in the face of large RTT and severe packet loss with the use of UDP. FASP,

however, remains a proprietary protocol. UDT [163] is another protocol interesting from the

point of view of rapid data transfers to and from the cloud. UDT has been developed by

Sector storage cloud [164] to provide fast data transfers. Besides high-performing protocols,

optimized data management and placement can increase data transport performance. Authors

of [165] propose a service-oriented resource broker (SRB) to ensure QoS and optimized bulk

data transfers.

4.4.5 Recommendations for VPH-Share

The main problem in using different cloud storage systems is the lack of standards. What is

needed is a vendor-neutral, standard API for cloud computing that all vendors can implement.

This will allow developers to easily integrate storage from different cloud vendors. This

approach will avoid lock-in and reduce storage costs. There are several efforts already

underway to do just that, as described on the Cloud Standards website [166]. The Open Cloud

Computing Interface (OCCI) [58] seems more suitable for cloud data storage as several API

implementations already exist. OCCI specifications are delivered through the Open Grid

Forum (OGF) [167]. OCCI is a set of specifications for cloud-based interactions with

resources in a way that is vendor-independent and platform-neutral. OCCI provides a flexible

API with strong focus on integration, portability, interoperability and innovation while still

offering a high degree of extensibility. Jclouds [168] is an OCCI implementation supporting

many clouds including Amazon, GoGrid, Azure, vCloud, and RackSpace. The most

interesting part of this API is the BlobStore API, providing the means for managing key-

value storage providers such as Microsoft Azure Blob Service and Amazon S3. It offers both

asynchronous and synchronous APIs, as well as map-based access to data. Occi4java [169] is

another implementation of the OCCI specification – an open-source, Java-based

implementation of OCCI on top of the libvirt Hypervisor Abstraction API. This API offers a

Maven-based loose coupling of all three specification documents and supports all possible

actions on computing resources and several actions on network and storage resources.

Moreover, if multiple cloud storage resources are to be made available, a file-system view

would be very useful. To enable this, a virtual file system implementation will transparently

integrate multiple autonomous storage resources providing virtually limitless capacity. As a

result, a file system as a service can be provided, optimizing data placement, storage

utilization and accessibility.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 48 of 80

In the scope of transport protocols, the key obstacle to rapid data transfers in the cloud seems

to be TCP. As stated in Section 4.4.3, effort is underway to provide fast data transfer through

high-performance protocols. Together with these transport protocols, service-oriented

resource brokers can optimize data transfer rates. To avoid centralization bottlenecks,

connection services can be deployed next to or near the data.

4.5 Data reliability and integrity

Data reliability and integrity is needed to ensure sound use of the biomedical datasets

manipulated with the use of VPH-Share applications and tools. Simulations results and

inferred medical outcomes must be based on reliable data. Today’s cloud delivery models do

not offer means for the cloud user to perform such auditing tasks in a certified and

trustworthy manner. An interesting discussion of the current state of the art with respect to

cloud data management can be found by Jeffery and Neidecker-Lutz [2]. As noted there,

there are extant concerns over availability and business continuity in the context of cloud

usage – with some recent examples of failures (see for instance the failure of Swissdisk

[170]); moreover, there are few studies regarding the actual usage patterns for file and data

access in cloud systems [171].

As the biomedical files may be very large and need to persist for long periods, special

reliability and integrity mechanisms should be enforced on top of cloud storage. The WP2

infrastructure needs to be able to perform the following tasks:

 periodic integrity checks on data objects with the use of hash algorithms;

 facilitating storage of multiple copies of data on various cloud platforms;

 tracking the history and origin of binary datasets.

In order to meet the above goals, the storage cloud object model and interfaces must be

extended, supporting multiple objects copies over multiple clouds and execution of periodic

processes over the storage cloud infrastructure. We intend to approach this issue by

introducing the concept of a managed dataset, which represents a specific data item which is

known to the VPH-Share services and for which specific information can be located in the

VPH-Share metadata registry. Managed datasets can be registered with VPH-Share upon

being uploaded to the cloud infrastructure – subsequently the infrastructure should be able to

monitor and track their availability in an automatic manner. Thus, the functionality provided

by Task 2.5 is intimately tied to the data access layer provided by Task 2.4.

In order to assess the state of the art in the area of ensuring the integrity and availability of

binary data stored in a cloud framework, we need to refer to the storage mechanisms

supported and exposed by major cloud computing platforms. A number of solutions have

been developed to deal with the problems of data integrity, availability and retrievability in

cloud computing environments; however prior to discussing specific solutions to such

problems, it is necessary to define each term in more detail. Thus:

 Data integrity is the measure of whether the data stored in the cloud remains in an

unaltered state and is visible as such to whoever retrieves it. Data integrity is not directly

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 49 of 80

tied to availability concerns; rather, it deals with potential data corruption (intentional or

otherwise) that may affect objects stored in the cloud.

 Data availability is the measure of whether a user who has a legitimate claim on a given

dataset can actually access the data in question. Technical failures may contribute to

reduced availability of data objects in distributed infrastructures such as the cloud. Data

availability is typically achieved through redundant resource utilization which enables the

infrastructure (as a whole) to mask technical failures without affecting the end user.

 Data retrievability deals with the practicality of retrieving data sets for use in

computations. Certainly, a large data set – even if completely intact and readily available

– is useless if it cannot be efficiently fed into a computation (or, conversely, if the

computation cannot be migrated to the host on which the input data resides). This issue is

of particular importance in distributed environments where data and computations need

not be geographically proximate. Data retrievability is intimately tied to the issue of load

balancing, addressed in Task 2.2 of the VPH-Share project.

4.5.1 Data storage reliability and availability in commercial clouds

While commercial cloud providers usually boast high availability and reliability of data

storage resources, they typically provide little end-user control over the low-level

mechanisms used to enforce such properties. Internally, providers apply a range of

mechanisms (mostly based on replication and resource redundancy) to ensure smooth and

timely access to data; however due to the lack of industry standards regarding cloud data

access, particularly with respect to binary data, there is currently no system which would

enable cross-cloud binary data management.

The Amazon S3 storage system comes with availability guarantees which profess 99.99%

availability and carry a service level agreement providing service credits if a customer’s

availability falls below 99.9% [172]. Data is distributed across storage resources assigned to a

specific geographical region. Of note is the fact that data integrity guarantees vary from

region to region (for instance, read-after-write consistency in the EU region and eventual

consistency in the US standard region). There are no specific mechanisms for assessing the

retrievability of binary data, although the vendor promises inbuilt protection against transfer

spikes.

Internally, the Amazon data storage services (including S3) are based upon a proprietary key-

value storage system called Dynamo [173]. Dynamo uses a synthesis of techniques to achieve

scalability and availability: data is partitioned and replicated using consistent hashing, and

consistency is facilitated by object versioning. The consistency among replicas during

updates is maintained by a quorum-like technique and a decentralized replica synchronization

protocol. Dynamo employs a gossip-based distributed failure detection and membership

protocol. Storage nodes can be added and removed without requiring any manual partitioning

or redistribution; however all this functionality is concealed from the end user and cannot be

directly influenced by applications making use of the Amazon data storage services.

RackSpace, another popular IaaS, provides a solution called Dedicated Network Attached

Storage [174] with inbuilt disaster recovery and data replication mechanisms. The provider is

capable of restoring missing data on request (this mechanism is called Unmetered Managed

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 50 of 80

Backup); however, no automatic recovery mechanisms were in place at the time this

deliverable was published. Data retrievability is not covered by the RackSpace SLA.

GoGrid provides a Cloud Storage solution [175] which enables automated management of

binary data. Data sources can be mounted via a secure private network on Linux and

Windows machines and use common transfer protocols to move data to and from the Cloud

Storage device. The infrastructure provides usage reports but does not make promises

regarding the consistency and availability of data stored in the CS framework. Backup is file-

based and depends on decisions made by the end user.

The Microsoft Azure [47] platform facilitates storage of large binary objects (BLOBs) and

replicates them internally on three separate fault domains, thus ensuring data availability.

Operations on binary data are executed via a RESTful interface; however the application

cannot directly influence the placement and retrievability of binary objects.

4.5.2 Improving cloud data availability and integrity – on-going research
initiatives

As the leading commercial cloud platforms typically do not provide explicit mechanisms for

managing the availability and retrievability of binary data, a number of add-on solutions and

concepts have recently been developed. One of the interesting approaches to solving such

issues comes from the cryptographic community, where the concepts known from public key

infrastructures (PKI) can be reused to provide practical and theoretically verifiable methods

of proving the required properties of data storage, together with appropriate protocols for

message exchange between storage providers and its clients.

Juels and Kaliski [176] propose the concept of proofs of retrievability (PORs) for large files.

A POR scheme enables a storage provider (prover) to deliver a proof that a user (verifier) can

retrieve a file and recover it in its entirety. The POR scheme is specifically designed to

handle large files, such as backups, which do not necessarily have to be frequently read;

however, their integrity and availability has to be assured. The proposed POR scheme

requires the administrator to insert into the file, and subsequently distribute some additional,

randomly-generated data, called sentinels, prior to storing the file in the archive. Information

about sentinels is securely stored and periodic checks can be performed, which, with high

probability, reveal whether a storage provider has deleted or modified a portion of the file.

Bowers et al. [177] describe a solution called HAIL (high-availability and integrity layer) for

cloud storage, which is based on the POR concept. The HAIL concept is similar to the RAID

solutions known from storage servers. The authors extend it with a protocol using such

techniques as message authentication codes (MAC) and error correction codes (ECC) for

providing reliable replication of data with PORs. File data and parity code is distributed

across multiple servers for redundancy, which protects the file against mobile adversaries

who can corrupt all servers, but only b out of n servers at a given time.

A different approach is pursued by the VENUS system (VErificatioN for Untrusted Storage)

[178]. In VENUS, cloud storage is treated as a single trust domain while clients who

collaboratively access data storage provide integrity and consistency.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 51 of 80

4.5.3 Recommendations for VPH-Share

Owing to the large variety of data storage protocol and access methods, ensuring integrity,

availability and retrievability of medical data requires a dedicated mechanism provided by the

Project itself. From the state of the art it seems that we can make no assumptions regarding

the level of protection and redundancy of binary data deployed to the cloud and that the only

mechanisms which are universally available to end user involve actual storage and retrieval

of data items. As VPH-Share aims to provide a cross-cloud computing environment where

computations can be delegated to a variety of computing infrastructures, both public and

private, it is important to deploy a solution which would provide consistent data availability

guarantees regardless of the underlying storage system. Hence, Task 2.5 defines the concept

of a managed dataset (as presented above) and will implement mechanisms to ensure

continued access to such datasets, once they are registered with the metadata registry

provided by Work Package 4. We foresee an automated component, itself part of the WP2

platform, which would periodically check for the availability of registered datasets as well as

for the integrity of the actual data (through a checksum-like mechanism). Through the use of

data manipulation tools developed in Task 2.4, the component would make autonomous

decisions regarding migration and replication of data, for instance if access time proves

insufficient or if the user tags a given dataset as particularly crucial. Moreover, the WP2

platform – by interposing itself between the actual application and the requested binary data –

will be able to keep track of the frequency with which individual data elements are accessed,

as well as the credentials of users requesting (and potentially obtaining) access to such data.

This information would enable tracking the history and the origin of the data and who had

custody of it over time for auditing purposes, supporting multiple objects copies over

multiple clouds and execution of periodic processes over the storage cloud infrastructure, as

defined in the Project’s Description of Work [1].

4.6 Security for cloud applications

In this section we describe state of the art solutions for securing distributed computing

systems and the secure management of virtualized resources.

4.6.1 Definitions of security terms in a virtualized environment

Before starting with technologies, designs and challenges of Security for Virtualized

Environments, we should first establish how we define the main security terms in this

context.

According to European Commission’s “Trust and Security” Unit final report on Cloud

Security, Security includes the confidentiality, availability and integrity of data or

information, as well as authentication and non-repudiation. Privacy concerns compliance with

various regulations regarding the right to private life (in our context, European data

protection regulations). The globally accepted privacy principles we should take into account

include: consent of use, purpose restriction, legitimacy, transparency, data security and data

subject participation. Trust is the “assurance” that people, data, entities, information or

processes will function or behave in expected ways. Trust might be regarded as a

consequence of progress towards security or privacy objectives.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 52 of 80

In a virtualized environment, while these definitions are completely valid, addressing the

risks might be a difficult task because of some challenges, specifically in policy management

and enforcement. While specific security policies for applications or services might be

verified successfully in a “traditional” environment, the policy combination in a cloud

environment might degrade their strength. Control of the consent of use and privacy (control

of personal data) in an implementation of cloud computing is certainly more complex, as the

users’ and even the cloud providers’ control of personal data must be establish across an

infrastructure that opaquely and autonomously distributes it.

Currently, encryption of the data is the best way of maintaining confidentiality, but still that

doesn’t provide the user with means of preventing its distribution and use under policies

which are different than the ones the user “expected” its data to be accessed.

This brings us to compliance verification with regulations. Cloud users may have to take on

trust their providers’ compliance with the required regulations and standards, with none (or

almost none) of the compliance verification tools and mechanisms that are available in more

traditional environments.

Given the complexity associated with cloud computing and its distinct challenges, security

monitoring for distributed computation environments is key to secure data, provide privacy

and prove the compliance of the implementation with regulations to the users.

4.6.2 Network and OS security

Although this subject is not unique to clouds, it is an essential part of ensuring security on

this level for cloud applications running on IaaS clouds. Those types of clouds are the most

important for the VPH project due to its requirements. Additionally, some aspects related to

network security in public clouds differ from those in which we have full control over our

infrastructure and, as such, should be enumerated here.

4.6.2.1 Network security

By default, (unless special services are offered, as shown later) in the IaaS model cloud

providers are responsible only for mitigating (if possible) basic threats against their network.

This especially includes attacks on network availability such as (Distributed) Denial of

Service (D)DoS. However, they do not ensure confidentiality or integrity of the transmitted

data, as such features are normally not provided by lower layers of the OSI model. Typically,

those are covered by upper-layer protocols such as SSH or TLS. However, occasionally,

applications which cannot be replaced may use insecure (or insufficiently secure) protocols.

To allow usage of those applications while maintaining an adequate level of security, it is

necessary to provide appropriate mechanisms on lower layers.

There are numerous solutions fulfilling such requirements. An examples of the most

straightforward solution is IPSec [179]. It has been created for the IPv6 protocol and

subsequently backported as an extension for IPv4. As such, it uses raw IP packets with

additional headers – Authentication Header (AH) [180] and Encapsulating Security Payload

(ESP) [181]. This enables IPsec to provide integrity, authentication and confidentiality of the

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 53 of 80

payload (and some header fields), as well as prevent replaying packages (resending captured

packages). For proper operation, the protocol requires secure exchange of a shared secret.

This can be done manually, but in most cases would be impractical. Hence, the specification

references automatic key exchange mechanisms. By default, Internet Key Exchange Protocol

Version 2 (IKEv2) [182] is used. IPsec, much like IP, may encapsulate multiple protocols

such as transport protocols (like TCP or UDP) and other IP protocols. This allows IPsec to

operate in two modes – so-called transport mode, in which IPsec directly secures upper-layer

protocols in the network, and the tunnelling mode, which allows creation of tunnels (VPNs)

e.g. between border routers of two LANs through the Internet, by encapsulating IP in IPsec.

IPsec has many merits – it provides a good level of security using native IP packages without

re-encapsulating significant portions of the TCP/IP stack, which lowers overhead.

Additionally, it is based on the IP protocol and thus may be used across the Internet without

significant problems (in most cases). However, there are also drawbacks, the most important

of which relates to the fact that some network firewalls may be configured to filter out (for

security reasons) all non-standard IP traffic (e.g. traffic encapsulating protocols other than

TCP, UDP and ICMP). Such configurations would then block IPsec as AH/ESP packages

would be dropped as well. There are two solutions to mitigate this problem:

 IPsec packages cloud be encapsulated into different ones, such as Layer 2 Tunneling

Protocol (L2TP) [183] running on top of UDP;

 Cloud providers may offer a dedicated IPsec solution, which, of course, would require

them to appropriately configure their network (so it could accept IPsec packages). A

notable example of such a service is Amazon Virtual Private Cloud (VPC) [55], which,

apart from other features, enables creation of pure IPsec tunnels between the client’s

network and Amazon;

Other solutions exist, such as:

 OpenVPN [184] allowing encapsulation of IP packages or Ethernet frames in TCP or

UDP packages. It provides secure transfer of the data by means of authentication and

encryption of encapsulated payload. OpenVPN may use pre-shared secret or PKI

infrastructure;

 Encapsulation of Point-to-Point Protocol (PPP) into SSH (application layer) protocol –

payload is protected by the security mechanisms of SSH;

 IP over HTTPS (IP-HTTPS) Tunneling Protocol [185] – protocol proposed by Microsoft;

enables tunnelling IPv6 (but not IPv4) packages over HTTS – its goals are to allow IP

communications in extreme network conditions where all other protocols that may be

used for tunnelling are not available. Security of communication is ensured by TLS.

All of the mentioned protocols operate on high enough OSI layers that there should be no

problem with communication with cloud instances on the cloud provider side. If the client’s

network permits, OpenVPN would be the best choice for VPH-Share as it offers the lowest

overhead.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 54 of 80

4.6.2.2 OS security

In IaaS, the cloud user is fully responsible for maintaining the OS running in the cloud. This

process generally isn’t much different from non-cloud models and includes:

 Ensuring that the installed software is up to date;

 Use log analysis scripts such as Fail2ban [186] or full (host-based) Intrusion Prevention

and Detection Systems (IDS/IPS) such as Snort [187];

 Checking for software vulnerabilities, possibly with help from vulnerability scanners such

as Nessus [188] or its Open Source variant – OpenVAS [189].

In clouds, the scale of operation is usually much higher, but at the same time atomic service

instances are typically based on more or less homogeneous templates, and do not run for

long. Hence, it is typically enough to update software in templates rather than on operating

nodes.

4.6.3 Related cloud technologies and architectures

In this section we discussthe security provided by the four cloud stacks presented in Section

4.1.2: Eucalyptus, OpenNebula, OpenStack and Nimbus, any of which could be used for

private cloud application deployment in VPH-Share. Additionally we’ve analysed security

features of selected public cloud providers.

We also provide an overview of the architecture proposed by the OpenTC consortium, as

especially relevant for the VPH-Share Work Package 2. The sHype framework referenced

here proposes policy management that goes beyond “mere” access control. Such a policy

management would effectively provide us the means to secure deployed VMs and distribute

requirements and constraints throughout the system. Finally, Trusted Virtual Domains gives

us a model to secure the interactions between these VMs and isolate sets of VMs according to

their purpose and domain membership.

The rationale for including these three references is that, being complementary, they provide

a model for our VPH-Share contribution to secure the operations of the other Work Package

2 contributions, and, specifically, for cloud application secure deployment and execution.

In the context of cloud security, practical solutions and innovative models are being proposed

at a fast pace. Among them, there is one with potentially far-reaching implications – once it

becomes mature enough. Homomorphic encryption [205] is a scheme that allows computing

arbitrary functions over encrypted data without a decryption key. With homomorphic

encryption, sensitive data would always be encrypted, and could be handed over safely to

cloud providers, who would then be able to process it without any need to “see” its contents.

Successful solutions have been proposed [206], and optimization is ongoing to provide

practical and mature results.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 55 of 80

4.6.3.1 Security features of Eucalyptus

As Eucalyptus aims for full compatibility with Amazon Web Services (which, of course,

involves using the same APIs, such as EC2 and S3), its security mechanisms are also similar.

Depending on the applied tools, the following types of credentials may be used:

 ACCESS/SECRET key pair – two strings used to access Query (REST-based) interface

e.g. using euca2ools;

 X.509 certificate and key – used by SOAP interface; e.g. in official ec2-* tools.

Both types of credentials can be obtained as a ZIP file from the Eucalyptus portal. The

archive also contains the eucarc file to simplify credential usage. It seems that customization

of credential backend is not straightforward in Eucalyptus.

In addition to authentication and authorization of all operations, Eucalyptus allows

controlling access to predefined protocols/ports through euca-authorize as well as a

mechanism allowing generation (with euca-add-keypair) and injection of RSA (or DSA)

public keys into the instance, to allow passwordless authentication via the SSH protocol.

4.6.3.2 Security features of OpenNebula

The OpenNebula [32] cloud stack comes with an internal Authentication/Authorization

module and the ability to use an external driver that takes care of these duties in its place. The

internal module is based on OAuth, allows private/public key authentication and supports

user quota, checking for user resource consumption before allowing a VM to be created in the

system. OpenNebula is a very extensible and highly customizable system, and as such many

add-ons can be found that extend its base security. An LDAP Authentication add-on

centralizes authentication by allowing users to add their credentials to an external LDAP

server. OpenNebula can be extended to encrypt the data it stores in its databases.

OpenNebula’s unique feature of migrating VMs is protected with SSH, so as to establish a

secure channel between physical machines.

When interconnecting VMs, OpenNebula is able to orchestrate several security technologies

in order to combine both data centre resources and remote cloud resources, according to

allocation policies.

4.6.3.3 Security features of OpenStack

As already mentioned, OpenStack is composed of two functionally distinct parts – computing

part (Nova) and storage part (Swift).

Nova offers an Amazon-like API (much like Eucalyptus) and therefore operates on highly

similar credentials (pairs of strings and X.509 certificate + private key). However, location,

CA configuration and backend (driver) used for storing credentials can be easily customized

[190] through nova.conf. At present, two drivers are supported –

nova.auth.dbdriver.DbDriver (the default one – based on the main Nova database) and

nova.auth.ldapdriver.FakeLdapDriver – which is just a “placeholder” that could be

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 56 of 80

replaced (reimplemented) to provide a custom backend. Credentials can be downloaded as a

ZIP archive using Nova CLI tools (nova-manage). This tool also facilitates other

administration operations such as creating projects, assigning networks to projects etc.

OpenStack also supports euca-authorize and euca-add-keypair in the same way as

Eucalyptus. In addition, it offers an interesting security feature called Cloudpipe [191] that

allows creation of Virtual Private Networks (based on OpenVPN software) between any node

external to the cloud and OpenStack project’s private VLAN. Access is possible by using a

certificate which is included in the ZIP archive and can be downloaded using CLI.

In Swift, authentication is handled through the so-called Auth service. It provides a RESTful

API which has to be called with appropriate headers (X-Storage-User and X-Storage-Pass) to

receive a special token (later used for authentication) and Storage URL. User credentials

consist of two strings – account and username, separated by a colon (:). The password is a

plain string. Creation of the initial (administrator) account requires the so-called

super_admin key stored in auth-server.conf.

4.6.3.4 Security features of Nimbus

Nimbus’ native (WSRF) API requires is strongly related to the Globus Toolkit and, as such,

requires certificate and public key credentials. The same type of credentials may be used to

access EC2 SOAP API. Additionally, Nimbus provides an EC2 Query API and its imaging

service (Cumulus) S3 API – both APIs also use Amazon-like credentials, called access id and

access secret. Users and their credentials are managed through a set of CLI tools (nimbus-*-

user).

4.6.3.5 Security aspects of public Cloud Services

In this section we’d like to present the most important security-related features offered by

public cloud providers:

 Amazon – the credentials used by this provider have already been mentioned in the

document, as AWS APIs (EC2 and S3) are becoming a de-facto standard in the world of

cloud stacks. Each access to AWS is either authenticated or anonymous. The AWS

account entitles the user to possess an Access Key ID and a Secret Access Key, used by

the REST Query API as well as a certificate and private key used by the SOAP API for

authentication. Those credentials can be generated/accessed/deactivated/etc. through the

AWS portal. Access to the portal is protected with e-mail (acting as a username) and

password. Additionally, it is possible to enable the so-called AWS Multi-Factor

Authentication [199]. In such cases, the user additionally has to provide a time-based

One-Time Password generated by a special device to obtain access to the portal or the

AWS Management Console. At present, MFA is also used for one specific API call –

changing or deleting versioning state in the S3 bucket [192]. In addition to its

authentication features, AWS offers a very powerful security mechanism called Amazon

Virtual Private Cloud – which supports:

 Creation of virtual private and public networks between instances;

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 57 of 80

 Configuring access policies to the instances and S3 (restricting access to VPC defined

IPs);

 Running dedicated instances, i.e. instances run on hardware dedicated to a single

client;

 Creating IPsec-based VPNs with the ability to exchange routing information using the

Border Gateway Protocol (BGP). Amazon offer generic instructions on configuration

of these protocols, as well as specific ones for Cisco and Juniper routers [193]. There

are also reports [194] that standard Linux server with IPsec tools (including tools for

managing standard Linux 2.6.x IPsec stack and racoon daemon for IKE) and Quagga

(for BGP) are sufficient to establish a VPN in Amazon.

 Rackspace – this provider’s security features are definitely much less robust than in

Amazon; Basic authentication mechanism is provided (both for CloudServers and

CloudFiles) similar to OpenStack – the user needs to POST X-Auth-User and X-Auth-

Key headers in the request to Auth server, and receives an X-Auth-Token along with

additional information (such as URLs) needed for subsequent access to the service;

 GoGrid – provides similar authentication mechanisms to the ones used by AWS REST

interfaces – the user must create an account (or accounts) choosing an arbitrary “shared

secret” and “role” (e.g. super-user/read-only). In addition to these, the GoGrid portal

generates an API key. All requests must be authorized with this API Key as well as an

MD5 signature generated from the API Key, shared secret and timestamp. GoGrid also

offers Dedicated Hardware Firewalls (Fortinet or Cisco) which can mitigate some

network attacks as well as establish VPNs (including IPsec) to a private VLAN. GoGrid

also offers the ability to use private VLANs to connect dedicated servers and cloud

instances – yielding a hybrid solution. In this case, VPN may be used to access both types

of services;

 Windows Azure – contrary to the already-mentioned providers, Azure is generally a

PaaS, not an IaaS solution – with some exceptions. As, such it’s natural that it offers more

security-related features (being a higher-level platform). Azure uses various

authentication mechanisms for accessing the management portal (which, in addition to

typical management features, allows deployment of applications prepared as .cspkg

packages). A LiveID account is used for direct deployment from Visual Studio – this

exploits a pregenerated certificate. For storage access, user/password pairs are used. In

addition to authentication features, Azure offers two security-related services:

 Access Control [195] – allows identity and access control based both on MS Active

Directory as well as various web solutions such as Live ID, and accounts provided by

Google, Yahoo! or Facebook;

 Connect [196] (currently still in technology preview stage) – allows creations of

IPsec-based tunnels using IPv6 running on HTTPS [197]. According to Microsoft,

this setup would provide secure communications between the client and the cloud,

mitigating firewall-related issues through the use of HTTPS to encapsulate traffic.

4.6.3.6 OpenTC consortium

The OpenTC consortium (http://www.opentc.net/) focuses on developing an open trusted

computing framework based on security mechanisms provided by low-level operating system

layers with isolation properties and interfaces for trusted computing hardware. The OpenTC

http://www.opentc.net/

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 58 of 80

architecture enables security policy enforcement in the virtualisation layer [198] by defining

and enforcing various kinds of security policies (ranging from access and flow policies to

resource sharing policies).

Figure 11: Layers of the OpenTC Architecture [198]

The Security Layer of this architecture offers a high flexibility due to the configurable

policies, and also due to its Compartment Security Manager component. This component

manages the life-cycle of the security policies associated to each “compartment” (i.e. VM).

The Compartment Security Manager can be used to prove selected security properties to

peers.

4.6.3.7 sHype

The sHype security architecture [199] was designed to provide policy-based access control

for the shared virtual resources and the information flows between operating systems hosted

on common hardware platforms and running on the same hypervisor.

sHype implements its security monitor in the hypervisor itself, to enforce resource sharing

and information flow constraints between VMs. Access control is based on security policies,

interpreted and enforced inside the hypervisor core, describing the access rights between

VMs and virtual resources. Security labels are attached to VMs (subjects) and virtual

resources (objects) to specify access requirements and authorisations. The sHype architecture

supports various kinds of mandatory access control (MAC) policies, including Biba, Bell-

LaPadula, Chinese Wall, Type Enforcement, and Caernarvon.

sHype follows the FLASK access control architecture [200], keeping the access control

policy separate from access control enforcement. The sHype access control enforcement

handles references of VMs at the hypervisor level and guards access to virtual resources

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 59 of 80

according to the security policy. To make an access control decision, the Access Control

Module applies access rules based on security information stored in security labels attached

to VMs and virtual resources and the type of operation. The Access Control Module manages

the definition of the security policies as well as the structure and interpretation of security

labels for partitions and logical resources.

Figure 12: sHype architecture ACSAC05]

Hypervisors isolate the virtual resources, but do not control its sharing among VMs. The

sHype architecture provides a policy-based system for controlling this information flow

between VMs.

4.6.3.8 Trusted Virtual Domains

Trusted Virtual Domains [201] are sets of distributed Virtual Processing Elements (VPEs) in

addition of the needed storage for these and the data exchange medium between them. A VPE

is a set of VMs collaborating for a specific purpose, and isolated from other VPEs. The

design of a TVD is based on the concept of Security Domains (separate computing

environment that uniformly enforces a secure operational policy across all its members). This

demands the application of isolation policies for aspects like storage, networking, and TVD

membership.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 60 of 80

Figure 13: Distributed services being performed in each TVD [201]

Within a TVD, high-level security and operational policy statements are mapped into the

configuration of the individual hardware and software components that together perform a

service. The policies go beyond the access control, and maintain the integrity of the TVD, as

each member must prove the adherence to the security policy when joining.

Cabuk et al. [202] describe a framework based on TVD. It provides mechanisms to check the

integrity of the Hypervisor executions, VMs operations and security policies enforcement in

each virtual domain. This framework supports interactions between virtual domains (based on

policies), including an integrity mechanism to allow trusted interactions between virtual

domains by Trust Computing technology (e.g. secured IP-tunnels).

4.6.3.9 Related ongoing research projects

OPTIMIS (Optimized Infrastructure Services) [203] is a three-year research and development

project selected under the “Software and Service Architectures & Infrastructures” track of the

EU's FP7 framework program. OPTIMIS is aimed at enabling organizations to automatically

externalize services and applications to trustworthy and auditable cloud providers in the cloud

hybrid model. OPTIMIS aims to demonstrate cloud brokerage and federation across multiple

cloud providers, as well as mechanisms by which organizations can scale out their

infrastructure, using resources from third-party providers based upon a range of factors such

as trust, risk assessment, eco-efficiency and cost. The OPTIMIS toolkit provides a set of

components, covering functionalities needed by Infrastructure and Service Providers to build

next generation cloud architectures. The OPTIMIS security framework is an integrated part

of the OPTIMIS toolkit, and provides security functionalities within this scope.

The OPTIMIS security framework aims at applying Access Control, Identity Management

and Security Policies administration to an Inter-Cloud scenario (Cloud Federation). A

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 61 of 80

Gateway acts as central point for all the security related services, with a Security Monitoring

tool enabling the “secure multiple clouds” of the scenario by creating VPNs across different

actors and resources.

The PASSIVE (Policy-Assessed system-level Security of Sensitive Information processing in

Virtualised Environments) [204] EC-funded Project proposes an improved model of security

for virtualised systems to ensure that:

 adequate separation of concerns (e.g. policing, judiciary) can be achieved even in large

scale deployments;

 threats from co-hosted operating systems are detected and dealt with,

 public trust in application providers is maintained even in a hosting environment where

the underlying infrastructure is highly dynamic.

The PASSIVE consortium proposes a Policy management system that enables fine-grained

policies to be dynamically evaluated and enforced. It proposes two systems, one that handles

the policies and another that implements it, thus keeping a separation between policy

definition and policy enforcement.

To achieve these goals, the monitoring and access control will be built on a light weighted

virtual machine manager. The project will focus as well on dynamically authenticating the

applications and their support in a virtualized environment.

4.6.4 Restful Web service security for VPH-Share atomic services

Security for REST services is an open question. Instead of the standardization of SOAP web

services (WS-* stack), REST services have only some best practices and models. There are

no additional features on top of the HTTP application layer, and that means that the

developers may only use standard HTTP mechanisms (such as HTTP authentication – basic

or digest), HTTPS features (such as TLS mutual authentication) or create their own based on

e.g. custom HTTP headers when composing the security for their services.

Nevertheless, and within the scope of cloud computing and VPH-Share requirements, there

are some interesting models and solutions that we should review.

Amazon Web Services (AWS) provide an infrastructure web services platform in the cloud.

They allow the management of computation and storage as the application demands them. In

order to provide end-to-end security and end-to-end privacy, AWS builds services in

accordance with security best practices and provides appropriate security features in those

services. The way security is achieved in AWS presents a good model for any REST service

in a cloud environment.

When requesting a service, you attach a signature to it. The Amazon service authenticates the

request, and if successful, allows the invocation. Amazon charges for some actions (per-per-

use pricing model), so having all your requests signed is necessary for the accountability of

the services. The way Amazon authenticates the request is as follows: when signing the

request, what actually happens is that it calculates the hash of the Secret Access Key provided

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 62 of 80

when the account was created. This hash is attached to the request. Upon reception of the

request, the Amazon platform is informed of which Secret Access Key the user ‘claims’ to

have. It fetches it and repeats the composition of the signature (hash). If the two signatures

(the one attached to the request and the one Amazon recreates to verify) match, then the

Amazon platform considers the request to be authenticated and let’s it go through. If they

don’t match, the request is rejected (and an error message sent to the “user”). The Amazon

REST API validates also that the timestamp the request carries must be within 15 minutes of

the Amazon system time, in order to prevent a malicious user to re-send a captured request

again.

OAuth (Open Authorization) [200] is an open standard for authorization which allows the use

of tokens for granting access to secured resources. It is widely used as a federated identity

enabler, as it allows users to share protected resources stored in the Cloud with another user

without having to hand out credentials. OAuth implementations don’t provide token

encrypting, so all communications should be via SSL.

Tokens are exchanged between requester and service (OAuth token negotiation protocol).

Once approved, these OAuth tokens are stored in the client, thus serving as ‘session

identifiers’, and are sent along with the REST request in the HTTP authorization header.

4.6.5 Recommendations for VPH-Share

As shown above various cloud stacks and providers use different types of credentials. As

such we would need to provide integration mechanism between them.

It seems clear that some critical data needs to be processed in private cloud installations, or,

at least, be pseudonymized prior to deployment to public clouds, to minimize potential harm

if such data is compromised. During the design phase it might turn out that the project

requires certain application-layer protocols that are not secured, but cannot be replaced (e.g.

in legacy applications). In such cases, to ensure secure data transmission, it might be

necessary to use one of the presented solutions which support creation of Virtual Private

Networks between private and public clouds, clients and public clouds, or even specific cloud

instances.

In VPH-Share, security requirements for atomic services make it necessary to secure

RESTful services. As we have already stated, there is not a practical solution for REST

services that can match the standardized security of SOAP services. We should consider two

options to secure these REST services. Either we implement an authentication/authorization

module for the services (which implies making the services dependent on this customized

security for their operations), or, alternatively, we maintain secure messaging between these

services and the WP2 tools using the SOAP WS-* stack of standard definitions (proxying

their operations without any need to modify the services). This second option poses the

challenge of transforming requests and responses from SOAP to REST and back.

Concerning authentication, we have seen in the State of the Art that most tools rely on

available extensions which favour OAuth-based solutions. We recommend following this,

and basing our authentication mechanisms on public/private keys.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 63 of 80

5 CONCLUSIONS

The presented document should be treated as a stepping stone towards the development of a

detailed WP2 architecture as well as selection of interfaces for other technical Work

Packages of VPH-Share. The in-depth analysis of the state of the art, reported upon in this

deliverable, enables us to make informed decisions regarding the tools, components and

platforms which will be used when deciding upon the implementation and deployment

specifics for each WP2 task.

The next three-month period of the project (Months 4-6) will be devoted to finalizing

technical aspects of the WP2 architecture, based upon recommendations and requirements

submitted by the workflow and user interface contributors via Task 2.7. At the end of Month

6 we expect to come up with a deliverable which will detail the features and internal

workings of each component to be prepared by WP2 throughout the lifecycle of the Project.

Having concluded this phase we will move on to preparing preliminary versions of WP2 tools

and developing an integrated prototype cloud platform, which is expected to be produced by

Month 12. We will also continue to liaise with workflow developers and affiliated projects to

ensure that our tools match end-user expectations and can be used to productively expose

VPH-Share application workflows in a distributed cloud environment.

6 REFERENCES

[1] VPH-Share Grant Agreement for Collaborative Projec; Annex I – Description of

Work (internal Consortium document).

[2] Jeffery K, Neidecker-Lutz B, The Future of Cloud Computing, Expert Group Report

published by the European Commission Information Society and Media Directorate General

– available at http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf (accessed May 9,

2011)

[3] The Apache HTTP Server Project; http://httpd.apache.org/

[4] HP Integrated Lights-Out (iLO) Advanced,

http://h18013.www1.hp.com/products/servers/management/remotemgmt.html, HP, 2011

[5] DRAC: Dell Remote Access Card for Remote Server Management,

http://www.dell.com/content/topics/global.aspx/power/en/ps2q02_bell?c=us&l=en, Dell,

2011

[6] Overview – Remote Supervisor Adapter II, http://www-

947.ibm.com/support/entry/portal/docdisplay?lndocid=MIGR-50116, IBM, 2011

[7] Sun Integrated Lights Out Manager,

http://www.sun.com/systemmanagement/ilom.jsp, Oracle, 2011

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 64 of 80

[8] Intel Remote Management Module (Intel RMM) – Overview,

http://www.intel.com/Products/Server/Software/rmm/rmm-overview.htm, Intel, 2011

[9] Supermicro Intelligent Management,

http://www.supermicro.com/products/nfo/IPMI.cfm, Supermicro, 2011

[10] Intelligent Platform Management Interface,

http://www.intel.com/design/servers/ipmi/, Intel, 2011

[11] Preboot Execution Environment (PXE) Specification – Version 2.1, Intel, 1999;

available at: http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf

[12] PXE Wiki, http://pxe.dev.aboveaverageurl.com/index.php/Main_Page, 2011

[13] Oracle Solaris Containers, http://www.oracle.com/technetwork/server-

storage/solaris/containers-169727.html, Oracle, 2011

[14] Xen Hypervisor, http://www.xen.org/, Citrix Systems, 2011

[15] Kernel Based Virtual Machine, http://www.linux-kvm.org/page/Main_Page, 2011

[16] LXC Linux Containers, http://lxc.sourceforge.net/, 2011

[17] OpenVZ Wiki, http://wiki.openvz.org/Main_Page, 2011

[18] Virtualization, http://www.intel.com/technology/virtualization/, Intel, 2011

[19] AMD Virtualization (AMD-V) Technology, http://sites.amd.com/us/business/it-

solutions/virtualization/Pages/amd-v.aspx, Advanced Micro Devices, 2011

[20] VMWare Workstations: http://www.vmware.com/products/workstation/

[21] RHEL6 Documentation – KVM limitations, http://docs.redhat.com/docs/en-

US/Red_Hat_Enterprise_Linux/6/html/Virtualization/sect-Virtualization-

Virtualization_limitations-KVM_limitations.html, RedHat, 2011

[22] VMware ESXi and ESX Info Center, http://www.vmware.com/products/vsphere/esxi-

and-esx/index.html, VMWare, 2011

[23] Hyper-V Server 2008 R2, http://www.microsoft.com/hyper-v-

server/en/us/default.aspx, Microsoft, 2011

[24] Virtualization with Hyper-V: Supported Guest Operating Systems,

http://www.microsoft.com/windowsserver2008/en/us/hyperv-supported-guest-os.aspx,

Microsoft, 2011

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 65 of 80

[25] Microsoft Contributes Linux Drivers to Linux Community,

http://www.microsoft.com/presspass/features/2009/Jul09/07-20LinuxQA.mspx, Microsoft,

2009

[26] OpenStack, http://www.openstack.org/, Rackspace, 2011

[27] Linux VServer Wiki, http://linux-vserver.org/Welcome_to_Linux-VServer.org, 2011

[28] OpenStack Announces Cactus Release,

http://www.openstack.org/blog/2011/04/openstack-announces-cactus-release/, Rackspace,

2011

[29] FreeBSD Wiki – Jails, http://wiki.freebsd.org/Jails, 2011

[30] Debian GNU/kFreeBSD inside native FreeBSD jail,

http://phaq.phunsites.net/2007/01/06/debian-gnukfreebsd-inside-native-freebsd-jail/, 2007

[31] Eucalyptus, http://open.eucalyptus.com/, Eucalyptus Systems, 2011

[32] OpenNebula, http://opennebula.org/, OpenNebula Project Leads, 2011

[33] Nimbus, http://www.nimbusproject.org/, University of Chicago, 2011

[34] Full OpenVZ support for Nova, https://blueprints.launchpad.net/nova/+spec/openvz-

driver, 2011

[35] Heterogeneous Architecture Scheduler,

http://wiki.openstack.org/HeterogeneousArchitectureScheduler, 2011

[36] PC_scheduler, http://wiki.openstack.org/PC_scheduler, 2011

[37] RackSpace CloudFiles;

http://www.rackspace.com/cloud/cloud_hosting_products/files/

[38] OpenStack Swift Documentation – Sample Installation Architecture,

http://docs.openstack.org/cactus/openstack-object-storage/admin/content/example-

installation-architecture-swift.html, 2011

[39] OpenStack Swift Documentation – System Requirements,

http://docs.openstack.org/cactus/openstack-object-storage/admin/content/object-storage-

system-requirements.html, 2011

[40] Swift3, http://swift.openstack.org/misc.html#module-

swift.common.middleware.swift3, 2011

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 66 of 80

[41] The Top 150 Players in Cloud Computing, http://cloudcomputing.sys-

con.com/node/770174, Cloud Computing Journal, 2009

[42] Li A, Yang X, Kandula S, and Zhang M, CloudCmp: Comparing Public Cloud

Providers, Association for Computing Machinery, Inc., 2010; available at:

http://research.microsoft.com/apps/pubs/?id=136448

[43] AWS in Education, http://aws.amazon.com/education/, Amazon, 2011

[44] Amazon Web Services, http://aws.amazon.com/, Amazon, 2011

[45] RackSpace Cloud, http://www.rackspace.com/cloud/, Rackspace, 2011

[46] Google App Engine, http://code.google.com/intl/en/appengine/, Google, 2011

[47] Microsoft Azure storage services; http://www.microsoft.com/windowsazure/storage/

(accessed May 9, 2011)

[48] Salesforce.com, http://www.salesforce.com/eu/?ir=1, Salesforce.com, 2011

[49] Heroku, http://www.heroku.com/, 2011

[50] PiCloud, http://www.picloud.com/, PiCloud, 2011

[51] GoGrid, http://www.gogrid.com/, GoGrid, 2011

[52] Science Clouds, http://scienceclouds.org/, University of Chicago, 2011

[53] FutureGrid, https://portal.futuregrid.org/, 2011

[54] Shubert L at al., The Future Of Cloud Computing – Opportunities For European

Cloud Computing Beyond 2010, European Commission; 2011

[55] Amazon Virtual Private Cloud (Amazon VPC), http://aws.amazon.com/vpc/,

Amazon, 2011

[56] Rubin E, 2010 is the Year of the Federated Cloud, CloudSwitch, 2010; available at:

http://www.cloudswitch.com/page/2010-is-the-year-of-the-federated-cloud

[57] Federated Clouds? Possible? http://www.virtualizationpractice.com/blog/?p=10481,

2011

[58] Open Cloud Computing Interface, http://occi-wg.org/, Open Grid Forum, 2011

[59] Deltacloud, http://incubator.apache.org/deltacloud/, 2011

[60] Right_aws, http://rightaws.rubyforge.org/, RightScale, 2011

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 67 of 80

[61] Buyya R, Yeo CS, Venugopal S. Market-Oriented Cloud Computing: Vision, Hype,

and Reality for Delivering IT Services as Computing Utilities, Aug. 2008. [Online].

Available: http://arxiv.org/abs/0808.3558

[62] Vaquero LM, Merino LR, Caceres J, Lindner M, A Break in the Clouds: Towards a

Cloud Definition, SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50-55, Dec. 2008.

[Online]. Available: http://dx.doi.org/10.1145/1496091.1496100

[63] Armbrust M, Fox A, Grifth R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D,

Rabkin A, Stoica I, Zaharia M. Above the Clouds: A Berkeley View of Cloud Computing.

Technical Report, University of California at Berkeley, February 2009.

[64] Campbell S, Security – The Dark Side of the Cloud, January 25, 2010;

http://www.hpcwire.com/hpcwire/2010-01-25/security_--_the_dark_side_of_the_cloud.html

[65] Pearson S, Taking Account of Privacy when Designing Cloud Computing, HP

Laboratories, March 6, 2009

[66] CloudHarmony Blog: An unofficial EC2 Outage Postmortem – The Sky is not

Falling; http://blog.cloudharmony.com/2011/04/unofficial-ec2-outage-postmortem-sky-

is.html, April 25, 2011

[67] Web service architecture. http://www.w3.org/TR/ws-arch/

[68] RESTful Web Services: The Basics.

https://www.ibm.com/developerworks/webservices/library/ws-restful/

[69] The SOAPLab project and libraries. http://soaplab.sourceforge.net/soaplab2/

[70] Kandaswamy G, Gannon D. A mechanism for Just-In-Time Creation of Web Services

for Scientific Workflows. Workshop on Web Services-based Grid Applications, August 2006

[71] Apache Commons Exec library. http://commons.apache.org/exec/

[72] Ruby programming language. http://www.ruby-lang.org/

[73] Python programming language. http://www.python.org/

[74] Apache CXF: An Open-Source Services Framework. http://cxf.apache.org/

[75] Python web service library. http://pywebsvcs.sourceforge.net/

[76] Porter G, Katz RH, Effective Web Service Load Balancing through Statistical

Monitoring, in Communications of the ACM 49 (3), 48-54, March 2006

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 68 of 80

[77] Hollingsworth J, Tierney B. Monitoring and Instrumentation, In: I. Foster and C.

Kesselman, eds., The Grid 2: Blueprint for a New Computing Infrastructure, pages 319–351.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[78] Baliś B, Monitoring of Grid Scientific Workflows, Ph.D. Thesis, AGH University of

Science and Technology, November 2008.

[79] de Rose LA, Reed DA. SvPablo: A Multi-Language Architecture-Independent

Performance Analysis System. In ICPP ’99: Proceedings of the 1999 International

Conference on Parallel Processing, page 311, Washington, DC, USA, 1999. IEEE Computer

Society.

[80] Cargille J, Miller BP. Binary Wrapping: a Technique for Instrumenting Object Code.

SIGPLAN Not., 27(6):17–18, 1992.

[81] Larus JR, Schnarr E, EEL: Machine-Independent Executable Editing. ACM

SIGPLAN Not., 30(6):291–300, 1995.

[82] Buck B, Hollingsworth JK, An API for Runtime Code Patching, Int. J. High Perform.

Comput. Appl., 14(4):317–329, 2000.

[83] Yigitbasi N, Iosup A, Epema D, Ostermann S, C-Meter: A Framework for

Performance Analysis of Computing Clouds. Volume 0, Los Alamitos, CA, USA, pp. 472-

477. IEEE Computer Society 2009

[84] Juve G, Deelman E, Vahi K, Mehta G, Scientific Workflow Applications on Amazon

EC2, Workshop on Cloud-based Services and Applications in conjunction with 5th IEEE

International Conference on e-Science (e-Science 2009), Oxford, UK: 2009.

[85] Walker E, Benchmarking Amazon EC2 for High-Performance Scientific Computing,

LOGIN 33 (5), October 2008, 18-23.

[86] http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html

[87] The CloudExchange portal; http://cloudexchange.org.

[88] Singh G, Kesselman C, Deelman E, A Provisioning Model and its Comparison with

Best-Effort for Performance-Cost Optimization in Grids, in Proceedings of the 16th

international symposium on High performance distributed computing, ser. HPDC '07. New

York, NY, USA: ACM, 2007, pp. 117-126. [Online]. Available:

http://dx.doi.org/10.1145/1272366.1272382

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 69 of 80

[89] Fonseca CM, Fleming PJ, Genetic Algorithms for Multiobjective Optimization:

Formulation, Discussion, and Generalization, in: Proceedings of the Fifth International

Conference on Genetic Algorithms. 1993.

[90] Pandey S, Barker A, Gupta KK, Buyya R, Minimizing Execution Costs when using

Globally Distributed Cloud Services, 2010 24th IEEE International Conference on Advanced

Information Networking and Applications

[91] Fourer R, Gay DM, Kernighan BW. AMPL: A Modeling Language for Mathematical

Programming. Duxbury Press, November 2002.

[92] Spellucci P. A SQP Method for General Nonlinear Programs using Only Equality

Constrained Subproblems. Mathematical Programming, 82:413–448, 1993.

[93] Chandra A, Gong W, Shenoy P, Dynamic Resource Allocation for Shared Data

Centers using Online Measurements, In: SIGMETRICS ’03: Proceedings of the 2003 ACM

SIGMETRICS international Conference on Measurement and Modeling of Computer

systems. ACM Press, New York, NY, USA, pp. 300–301.

[94] Parekh AK, Gallager RG, A Generalized Processor Sharing Approach to Flow

Control in Integrated Services Networks: the Multiple Node Case, in Networking,

IEEE/ACM Transactions on 2 (2), 137–150, 1994

[95] Van HN, Tran FD, and Menaud J-M, SLA-Aware Virtual Resource Management for

Cloud Infrastructures, in: CIT ’09: Proceedings of the 2009 Ninth IEEE International

Conference on Computer and Information Technology Washington, DC, USA: IEEE

Computer Society, 2009, pp. 357–362. [Online]. Available:

http://dx.doi.org/http://dx.doi.org/10.1109/CIT.2009.109

[96] Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero R,

Wolfsthal Y, Elmroth E, Cáceres J, Ben-Yehuda M, Emmerich W, Galán F, The

RESERVOIR model and Architecture for Open Federated Cloud Computing, IBM J. Res.

Dev. 53, 4 (July 2009), 535-545.

[97] Sotomayor B et al., Capacity Leasing in Cloud Systems using the OpenNebula

Engine. Cloud Computing and Applications 2008 (CCA08).

[98] Marshall P, Keahey K, Freeman T, Improving Utilization of Infrastructure Clouds,

Available online: http://www.mcs.anl.gov/uploads/cels/papers/P1845.pdf

[99] Kephart JO, Chess D, The Vision of Autonomic Computing, Computer, vol. 36, no. 1,

2003, pp. 41-50.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 70 of 80

[100] Menasce DA, Kephart JO. Guest Editors' Introduction: Autonomic Computing. IEEE

Internet Computing. 2007;11(1):18-21. Available from:

http://dx.doi.org/10.1109/MIC.2007.11.

[101] Bennani M, Menasce DA, Resource Allocation for Autonomic Data Centers Using

Analytic Performance Models, Proceedings of 2nd International Conference on Autonomic

Computing, ICAC 05, IEEE CS Press, 2005, pp. 229-240.

[102] Walsh WE et al., Utility Function in Autonomic Computing, Proceedings of 1st

International Conference on Autonomic Computing, ICAC 04, IEEE CS Press, 2004, pp. 70-

77.

[103] Menasce DA, Dodge R, Barbara D, Preserving QoS of E-Commerce Sites through

Self-Tuning: A Performance Model Approach, Proceedings of 2001 ACM Conference on E-

Commerce, ACM Press, 2001.

[104] Diao Y et al., Using MIMO Feedback Control to Enforce Policies for Interrelated

Metrics with Application to the Apache Server, in Proceedings of IEEE/IFIP Network

Operations and Management Symposium, IEEE CS Presss, 2002, pp. 219-234.

[105] Kephart JO, Research Challenges of Autonomic Computing, Proceedings of

International Conference on Software Engineering, ACM Press, 2005, pp. 15-22.

[106] Buyya R, Murshed M (2002). GridSim: a Toolkit for the Modeling and Simulation of

Distributed Resource Management and Scheduling for Grid Computing. Concurrency and

Computation: Practice and Experience, 14 (13-15), 1175-1220.

[107] Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011). CloudSim: a

Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of

Resource Provisioning Algorithms. Softw. Pract. Exper. 41 (1), 23-50.

[108] Ostermann S, Plankensteiner K, Prodan R, Fahringer T (August 2010). GroudSim: An

Event-Based Simulation Framework for Computational Grids and Clouds. In:

CoreGRID/ERCIM Workshop on Grids, Clouds and P2P Computing. Springer.

[109] Woollard D, Mattmann C, Medvidovic N, Injecting Software Architectural

Constraints into Legacy Scientific Applications, In Proceedings of the 2009 ICSE Workshop

on Software Engineering for Computational Science and Engineering IEEE Computer

Society Washington, DC, USA 2009

[110] Distributed European Infrastructure for Supercomputing Applications (DEISA):

http://www.deisa.org (accessed May 9, 2011)

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 71 of 80

[111] The Partnership for Advanced Computing in Europe (PRACE): http://www.prace-

project.eu/ (accessed April 25, 2011)

[112] Coveney PJ, Scientific Grid computing. Phil. Trans. R. Soc. A, 2005. 363: p. 1701-

2095.

[113] Foster I, Globus Toolkit Version 4: Software for Service-Oriented Systems. Journal of

Computer Science and Technology, 2006. 21(513).

[114] The UNICORE Project: www.unicore.eu (accessed May 9, 2011)

[115] gLite Middleware: http://glite.web.cern.ch/glite/ (accessed May 9, 2011)

[116] Boghosian B et al., NEKTAR, SPICE and Vortonics: Using Federated Grids for

Large Scale Scientific Applications. Cluster Computing, 2007.

[117] Chin J, Coveney PJ, Towards tractable toolkits for the grid: A plea for lightweight,

useable middleware, Technical report, 2004.

[118] Zasada SJ, Coveney PJ, Virtualizing Access to Scientific Applications with the

Application Hosting Environment, Computer Physics Communications, 2009, 180: p. 2513-

2525.

[119] Hayes M et al., GROWL: A Lightweight Grid Services Toolkit and Applications. UK

e-Science All Hands Meeting, 2007.

[120] van Nieuwpoort RV, Kielmann T, Bal HE, User-Friendly and Reliable Grid

Computing Based on Imperfect Middleware. in ACM/IEEE conference on Supercomputing.

2007.

[121] Blower JD, Harrison AB, Haines K. Styx Grid Services: Lightweight, easy-to-use

middleware for scientific workflows. in Proceedings of the 4th UK e-Science All Hands

Meeting; 2005.

[122] Graham S et al., Web services resource framework, 2006.

[123] WSRF::Lite: http://www.sve.man.ac.uk/research/AtoZ/ILCT (accessed May 9, 2011)

[124] SOAP::Lite Web Services Toolkit: http://www.soaplite.com (accessed May 9, 2011)

[125] Grid Job Submission and Monitoring Web Service: http://gridsam.sorceforge.net

(accessed May 9, 2011)

[126] Sun Grid Engine: http://gridengine.sunsource.net (accessed May 9, 2011)

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 72 of 80

[127] Pickles SM et al., A Practical Toolkit for Computational Steering. Phil. Trans. R. Soc.

A, 2005. 363: p. 1843-1853.

[128] MacLaren J, Keown M, Pickles SM, Co-allocation, Fault Tolerance and Grid

Computing; in: Proceedings of the UK e-Science All Hands Meeting, 2006.

[129] Lamport L, Paxos made Simple. SIGACTN: SIGACT News (ACM special Interest

Group on Automata and Computability Theory), 2001. 32: p. 18-25.

[130] Coveney PJ et al., Large scale computational science on federated international grids:

The role of switched optical networks. Future Generation Computer System, 2007.

[131] Job Submission Description Language Specification 21.

[132] Haidar AN et al., Audited Credential Delegation: A Usable Security Solution for the

Virtual Physiological Human Toolkit. Interface Focus, 2011.

[133] Zasada SJ, Haidar AN, Coveney PJ, On the Usability of Grid Middleware and

Security Mechanisms. Philosophical Transactions of the Royal Society A, 2010a.

[134] V., W. X. 509 Proxy Certificates for Dynamic Delegation. in 3rd Annual PKI R&D

Workshop, 2004.

[135] Martin A, Spencer D, Trust and Security in Virtual Communities, Report on First

Workshop: the Application-Led Security Agenda for e-Science, 2008.

[136] Beckles B, Welch V, Basney J, Mechanisms for increasing the usability of grid

security. Int. J. Human-Computer Studies, 2005. 63: p. 74-101.

[137] Kuno H et al., Web Services: Concepts, Architectures and Applications 2004:

Springer.

[138] Abdallah, AE, Khayat EJ. Formal Z Specifications of Several Flat Role-Based Access

Control Models. in In 30th Annual IEEE/NASA Software Engineering Workshop. 2006.

[139] The MyProxy credential management service: http://grid.ncsa.uiuc.edu/myproxy

(accessed May 9, 2011)

[140] Hull D et al., Taverna: a tool for building and running workflows of services. Nucleic

Acids Research, 2006. 34: p. 729-732.

[141] Deelman E et al., Workflows and e-Science: An overview of workflow system

features and capabilities. Future Generation Computer Systems, 2008.

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 73 of 80

[142] Allen G et al. The Grid Application Toolkit: Towards Generic and Easy Application

Programming Interfaces for the Grid; in Proceedings of the IEEE.

[143] Amin K et al., An abstraction model for a grid execution framework. Journal of

Systems Architecture. The EUROMICRO Journal, 2006. 52.

[144] Goodale T et al., SAGA: A Simple API for Grid Applications. High-level application

programming on the Grid. Computational Methods in Science and Technology, 2006. 12: p.

7-20.

[145] Distributed Resource Management Application API Specification 1.0 (DRMAA):

http://www.drmaa.org (accessed May 9, 2011)

[146] Nakada H et al., The GridRPC API standardization at the 2005. GGF proposed

recommendation, in: Grid Remote Procedure Call Working Group of the Global Grid Forum.

2005.

[147] The Virolab Project: http://www.virolab.org/ (accessed May April 25, 2011)

[148] Kalé L et al., NAMD2: Greater Scalability for Parallel Molecular Dynamics. Journal

of Computational Physics, 1999. 151(1): p. 283-312

[149] Brooks B et al., CHARMM: A program for macromolecular energy, minimization,

and dynamics calculations. Journal of Computational Chemistry, 1983. 4(2): p. 187-217.

[150] Plimpton SJ, Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp

Phys, 1995. 117: p. 1-19.

[151] Sun G et al., Performance of the Vienna ab initio Simulation Package (VASP) in

Chemical Applications, Journal of Molecular Structure: THEOCHEM, 2003. 624(1): p. 37-

45.

[152] Smith W, Forester TR, DL_POLY_2.0: A General-Purpose Parallel Molecular

Dynamics Simulation Package. Journal of Molecular Graphics, 1999. 14(3).

[153] Saksena RS, Coveney PJ, Self-Assembly of Ternary Cubic, Hexagonal, and Lamellar

Mesophases using the Lattice-Boltzmann Kinetic Method, J. Phys. Chem. B., 2008. 112: p.

2950-2957.

[154] Mazzeo MD, Coveney PJ, HemeLB: A High-Performance Parallel Lattice-Boltzmann

Code for Large Scale Fluid Flow in Complex Geometries. Computer Physics

Communications, 2008. 178: p. 894-914.

[155] Buyya R, Ranjan R, Calheiros R, Intercloud: Utility-oriented Federation of Cloud

Computing Environments for Scaling of Application Services. In: Ching-Hsien H, Yang L,

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 74 of 80

Park P, Sang-Soo Y, eds., Algorithms and Architectures for Parallel Processing, volume 6081

of Lecture Notes in Computer Science, pages 13–31. Springer Berlin/Heidelberg, 2010.

[156] Elmroth E, Marquez FG, Henriksson D, Ferrera DP. Accounting and Billing for

Federated Cloud Infrastructures, International Conference on Grid and Cloud Computing,

0:268–275, 2009.

[157] Celesti A, Tusa F, Villari M, Puliafito A, How to Enhance Cloud Architectures to

enable Cross-Federation, IEEE International Conference on Cloud Computing, 0:337–345,

2010.

[158] Celesti A, Tusa F, Villari M, Puliafito A, Improving Virtual Machine Migration in

Federated Cloud Environments. International Conference on the Evolving Internet, 0:61–67,

2010.

[159] The Cloud Storage Broker; http://www.oxygencloud.com/cloud-storage-broker

[160] Vukolić M, The Byzantine Empire in the Intercloud, SIGACT News, 41:105–111,

September 2010.

[161] Cachin C, Haas R, Vukolić M, Dependable Storage in the Intercloud, Aug 2010.

[162] Graham-Rowe D, A Faster Way to the Cloud.

http://www.technologyreview.com/computing/23451/

[163] Gu Y, Grossman RL, UDT: UDP-Based Data Transfer for High-Speed Wide Area

Networks, Comput. Netw., 51:1777–1799, May 2007.

[164] Gu Y, Grossman RL, Sector and Sphere: The Design and Implementation of a High

Performance Data Cloud.

[165] Yang Y, Zhou Y, Liang L, He D, Sun Z, A Service-Oriented Broker for Bulk Data

Transfer in Cloud Computing, in: GCC’10, pp. 264–269.

[166] The CloudStandards website; http://cloud-standards.org

[167] Open Grid Forum. http://www.gridforum.org/

[168] Jclouds: http://www.jclouds.org/

[169] OCCI4Java: https://github.com/occi4java/occi4java/

[170] Mellor C, Swissdisk Suffers Spectacular Cloud Snafu, The Register 2009; published

at http://www.theregister.co.uk/2009/10/19/swissdisk_failure/ (accessed May 5, 2011)

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 75 of 80

[171] Leung AW, Pasupathy S; Goodson G, Miller EL, Measurement and analysis of large-

scale network file system workloads, ATC'08: USENIX 2008 Annual Technical Conference

on Annual Technical Conference, USENIX Association, p. 213-226

[172] Amazon Simple Storage Service FAQ;

http://aws.amazon.com/s3/faqs/#How_reliable_is_Amazon_S3 (accessed May 9, 2011)

[173] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,

Sivasubramanian S, Vosshall P, Vogels W, Dynamo: Amazon’s Highly Available Key-Value

Store, SOSP2007 – available at: http://www.allthingsdistributed.com/files/amazon-dynamo-

sosp2007.pdf (accessed May 9, 2011)

[174] RackSpace Dedicated Network Attached Storage;

http://www.rackspace.com/managed_hosting/services/storage/dnas.php (accessed May 9,

2011)

[175] GoGrid Cloud Storage, http://www.gogrid.com/cloud-hosting/cloud-storage.php

(accessed May 9, 2011)

[176] Juels A, Kaliski BS, Pors: proofs of retrievability for large files. In Proceedings of the

14th ACM conference on Computer and communications security, CCS '07, New York, NY,

USA, pp. 584-597. ACM. http://www.citeulike.org/user/malawski/article/9245722;

http://dx.doi.org/10.1145/1315245.1315317 (accessed May 2, 2011)

[177] Bowers KD, Juels A, Oprea A, HAIL: a high-availability and integrity layer for cloud

storage. In Proceedings of the 16th ACM conference on Computer and communications

security, CCS ‘09, New York, NY, USA, pp. 187-198. ACM.

http://www.citeulike.org/user/malawski/article/6938035;

http://dx.doi.org/10.1145/1653662.1653686 (accessed May 2, 2011)

[178] Shraer A, Cachin C, Cidon A, Keidar I, Michalevsky Y, Shaket D (2010); Venus:

Verification for Untrusted Cloud Storage. In: Proceedings of the 2010 ACM workshop on

Cloud computing security workshop, CCSW '10, New York, NY, USA, pp. 19-30. ACM.

http://www.citeulike.org/user/malawski/article/9245722;

http://dx.doi.org/10.1145/1315245.1315317 (accessed May 2, 2011)

[179] Kent S, Seo K, Request for Comments: 4301 – Security Architecture for the Internet

Protocol, 2005

[180] Kent S, Request for Comments: 4302 – IP Authentication Header, 2005

[181] Kent S, Request for Comments: 4303 – IP Encapsulating Security Payload (ESP),

2005

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 76 of 80

[182] Kaufman C et al., Request for Comments: 5996 – Internet Key Exchange Protocol

Version 2 (IKEv2), 2010

[183] Lau J, Townsley M, Goyret I, Request for Comments: 3931 – Layer Two Tunneling

Protocol - Version 3 (L2TPv3), 2005

[184] OpenVPN Community Wiki and Tracker, https://community.openvpn.net/openvpn

(accessed May 27, 2011)

[185] Microsoft, [MS-IPHTTPS]: IP over HTTPS (IP-HTTPS) Tunneling Protocol

Specification - http://msdn.microsoft.com/en-us/library/dd358571%28v=PROT.10%29.aspx

(accessed May 27, 2011)

[186] Fail2Ban, http://www.fail2ban.org/wiki/index.php/Main_Page (accessed May 27,

2011)

[187] Snort, http://www.snort.org/ (accessed May 27, 2011)

[188] Nessus, http://www.tenable.com/products/nessus (accessed May 27, 2011)

[189] OpenVAS, http://www.openvas.org/ (accessed May 27, 2011)

[190] OpenStack – Configuring Authentication and Authorization,

http://docs.openstack.org/cactus/openstack-compute/admin/content/configuring-

authentication-authorization.html (accessed May 27, 2011)

[191] OpenStack – Cloudpipe, http://docs.openstack.org/cactus/openstack-

compute/admin/content/cloudpipe-per-project-vpns.html (accessed May 27, 2011)

[192] Amazon AWS – Configuring a Bucket with MFA Delete,

http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?ConfiguringaBucketwi

thMFADelete.html (accessed May 27, 2011)

[193] Amazon Virtual Private Cloud – Network Administrator Guide -

http://docs.amazonwebservices.com/AmazonVPC/2009-07-15/NetworkAdminGuide/

(accessed May 27, 2011)

[194] Amazon VPC with Linux – http://openfoo.org/blog/amazon_vpc_with_linux.html

(accessed May 27, 2011)

[195] Microsoft Azure – Access Control

http://www.microsoft.com/windowsazure/appfabric/accesscontrol/ (accessed May 27, 2011)

[196] Overview of Windows Azure Connect – http://msdn.microsoft.com/en-

us/library/gg432997.aspx (accessed May 27, 2011)

[197] Overview of Firewall Settings Related to Windows Azure Connect,

http://msdn.microsoft.com/en-us/library/gg433061.aspx (accessed May 27, 2011)

https://community.openvpn.net/openvpn
http://msdn.microsoft.com/en-us/library/dd358571%28v=PROT.10%29.aspx
http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.snort.org/
http://www.tenable.com/products/nessus
http://www.openvas.org/
http://docs.openstack.org/cactus/openstack-compute/admin/content/configuring-authentication-authorization.html
http://docs.openstack.org/cactus/openstack-compute/admin/content/configuring-authentication-authorization.html
http://docs.openstack.org/cactus/openstack-compute/admin/content/cloudpipe-per-project-vpns.html
http://docs.openstack.org/cactus/openstack-compute/admin/content/cloudpipe-per-project-vpns.html
http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?ConfiguringaBucketwithMFADelete.html
http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?ConfiguringaBucketwithMFADelete.html
http://docs.amazonwebservices.com/AmazonVPC/2009-07-15/NetworkAdminGuide/
http://openfoo.org/blog/amazon_vpc_with_linux.html
http://www.microsoft.com/windowsazure/appfabric/accesscontrol/
http://msdn.microsoft.com/en-us/library/gg432997.aspx
http://msdn.microsoft.com/en-us/library/gg432997.aspx
http://msdn.microsoft.com/en-us/library/gg433061.aspx

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 77 of 80

[198] Kuhlmann D, Landfermann R, Ramasamy HV, Schunter M, Ramunno G, Vernizzi D,

An Open Trusted Computing Architecture – Secure Virtual Machines Enabling User-Defined

Policy Enforcement, OpenTC report, 2006

[199] Sailer R, Valdez E, Jaeger T, Perez R, van Doorn L, Griffin JL, Berger S, sHype:

Secure Hypervisor Approach to Trusted Virtualized Systems, IBM Research Report

(RC23511), 2005

[200] Spencer R, Smalley S, Loscocco P, Hibler M, Andersen D, Lepreau J, The Flask

Security Architecture: System Support for Diverse Security Policies, Proceedings of the 8th

conference on USENIX Security Symposium – Volume 8, 1999

[201] Bussani A, Griffin JL, Jansen B, Julisch K, Karjoth G, Maruyama H, Nakamura M,

Perez R, Schunter M, Tanner A, van Doorn L, Herreweghen EV, Waidner M, Yoshihama S,

Trusted Virtual Domains: Secure Foundation for Business and IT Services, Research Report

RC 23792, IBM Research, November 2005.

[202] Cabuk S, Dalton CI, Eriksson K, Kuhlmann D, Ramasamy HV, Ramunno G, Sadeghi

AR, Schunter M, Stüble C, Towards Automated Security Policy Enforcement in Multi-tenant

Virtual Data Centers, Journal of Computer Security, Volume 18, Number 1, 2010

[203] Optimized Infrastructure Services, http://www.optimis-project.eu, 2011

[204] Policy-Assessed System-level Security of Sensitive Information processing in

Virtualised Environments, http://ict-passive.eu, 2011

[205] Micciancio D, A First Glimpse of Cryptography's Holy Grail. Association for

Computing Machinery. p. 96.

[206] Gentry C, A fully Homomorphic Encryption Scheme, Dissertation submitted to the

Department of Computer Sciences and the Committee on Graduate Studies of Stanford

University, http://crypto.stanford.edu/craig/craig-thesis.pdf, 2009

[207] AWS Multi-Factor Authentication, http://aws.amazon.com/mfa/, 2011

[208] The Internet Engineering Task Force (IETF), The OAuth 2.0 Protocol, 2010

http://www.optimis-project.eu/
http://ict-passive.eu/
http://aws.amazon.com/mfa/

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 78 of 80

LIST OF KEY WORDS/ABBREVIATIONS

API Application Programmer’s Interface

AWS Amazon Web Services

BLOB Binary Large Object

CCU Cloud Compute Unit

CLI Command-Line Interface

DHCP Dynamic Host Configuration Protocol

DNAS Dynamic Network Authentication System

DRAC Dell Remote Access Card

EBS Elastic Block Storage

EC2 Elastic Compute Cloud

FASP Fast And Secure Protocol

FC Fibre Channel

FLASK Flux Advanced Security Kernel

GFS2 Global File System 2

GSI Globus Security Infrastructure

HAIL High Availability and Integrity Layer

HPC High-Performance Computing

IaaS Infrastructure as a Service

iLO Integrated Lights-Out

ILOM Sun Integrated Lights Out Manager

IP Internet Protocol

IPMI Intelligent Platform Management Interface

iSCSI Internet Small Computer Systems Interface

KVM Kernel-based Virtual Machine

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 79 of 80

LAN Local Area Network

LXC Linux Containers

MAC Media Access Control

NAS Network Attached Storage

NFS Network File System

OASIS Organization for the Advancement of Structured Information Standards

OCCI Open Cloud Computing Interface

OGF Open Grid Forum

PaaS Platform as a Service

PDU Power Distribution Unit

POR Proof Of Retrievability

PXE Preboot Execution Enviroment

QoS Quality of Service

RAID Redundant Array of Independent Disks

RDBMS Relational Database Management System

REST Representational State Transfer

RHEL Red Hat Enterprise Linux

RMM Remote Management Module

RSA Remote Supervisor Adapter

RTT Real Time Transfer

S3 Simple Storage Service

SaaS Software as a Service

SAN Storage Area Network

SDK Software Development Kit

SLA Service Level Agreement

 FP7 – ICT – 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.1: Analysis of the State of the Art; Work Package Definition

 Version: 1.3

 Date: 27/05/2011

 Page 80 of 80

SOAP Simple Object Access Protocol

SQL Structured Query Language

SRB Storage Resource Broker

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP Universal Datagram Protocol

UDT UDP-Based Data Transfer

VHD Virtual Hard Disk

VM Virtual Machine

VMM Virtual Machine Monitor (Hypervisor)

WAN Wide Area Network

VENUS Verification for Untrusted Storage

WSRF Web Services Resource Framework

