

ICT 269978

Integrated Project of the 7
th

 Framework Programme

COOPERATION, THEME 3

Information & Communication Technologies

ICT-2009.5.3, Virtual Physiological Human

Work Package: WP2

Data and Compute Cloud Platform

Deliverable 2.4

Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 2 of 79

DOCUMENT INFORMATION

IST Project Num FP7 – ICT - 269978 Acronym VPH-Share

Full title Virtual Physiological Human: Sharing for Healthcare – A Research Environment

Project URL http://www.vphshare.org

EU Project officer Robert Begier

Work package Number 2 Title Data and Compute Cloud Platform

Deliverable Number Deliverabl
e 2.4

Title Second Prototype of the Cloud Platform

Date of delivery Contractual 29-Feb-12 Actual 19-Mar-12

Status Version 1v0 Final 

Nature Prototype  Report  Dissemination  Other 

Dissemination
Level

Public (PU)  Restricted to other Programme Participants (PP) 

Consortium (CO)  Restricted to specified group (RE) 

Authors (Partner) CYFRONET, UCL, UvA, AOSAE

Responsible
Author

Piotr Nowakowski Email p.nowakowski@cyfronet.pl

Partner CYFRONET Phone +48600280105

Abstract (for
dissemination) This document details the features and technologies used in the implementation of the

second prototype of the VPH-Share cloud management platform. It lists the status of each

component produced by WP2, ongoing work in each technical task and the specifics of

integration with external Work Packages.

Keywords cloud computing, data storage federation, high performance computing, hybrid
clouds

The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any

particular purpose. The user thereof uses the information at its sole risk and liability. Its owner is not liable for damages

resulting from the use of erroneous or incomplete confidential information.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 3 of 79

Version Log

Issue Date Version Author Change

05.12.2012 0.1 Piotr Nowakowski Initial draft

05.02.2013 0.5 Piotr Nowakowski (CYF; WP2), Marian Bubak
(CYF; WP2), Tomasz Bartyński (CYF; T2.1),
Tomasz Gubała (CYF; T2.1), Daniel Harężlak
(CYF; T2.1), Jan Meizner (CYF; T2.2), Marek
Kasztelnik (CYF; T2.7); David Chang (UCL;
T2.3), Stefan Zasada (UCL; T2.3), Spiros
Koulouzis (UvA; T2.4), Dmitry Vasunin (UvA;
T2.4), Krzysztof Styrc (CYF; T2.5); Dario Ruiz
Lopez (AOSAE; T2.6); Rodrigo Diaz
Rodrigues (AOSAE; T2.6)

Review-ready version

25.02.2013 1.0 Piotr Nowakowski; Marian Bubak; Susheel
Varma, Debora Testi

Final version

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 4 of 79

Contents

Executive Summary ... 9

1 Features of the VPH-Share Cloud Platform Prototype .. 12

2 End User Access to the Cloud Platform .. 14

2.1 Developer Access – Creating a new Atomic Service .. 15

2.2 End-user access – invoking Atomic Services with the Generic Invoker 21

3 Programmatic Access to the Cloud Platform (for WPs 3, 4 and 6) 23

3.1 Management of Application Workflow Service Instances 23

3.2 Atomic Service Management .. 26

3.3 Security Policy Management .. 30

3.4 Security Key Management .. 30

4 VPH-Share Cloud Platform Modules: Status Update .. 31

4.1 Cloud Resource Allocation Management ... 32

4.1.1 Implementation status .. 33

4.1.2 Allocation Management Service metadata schema ... 34

4.1.3 Deviations from proposed design .. 35

4.1.4 Future work .. 35

4.2 Atmosphere Internal Registry ... 35

4.2.1 Description of the 2
nd

 AIR version .. 36

4.2.2 Architecture and Domain Model Division ... 36

4.2.3 Interfaces .. 37

4.2.4 Relocation of Metadata Related to Cloud Data Source 41

4.3 Cloud Execution Environment .. 42

4.3.1 Structure of the existing Cloud platform ... 42

4.3.2 Cloud middleware stack ... 44

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 5 of 79

4.3.3 Infrastructure provisioning status .. 45

4.3.4 Future work .. 46

4.4 High-Performance Execution Environment .. 47

4.4.1 Current Status of the Prototype .. 47

4.4.2 Deviations from Proposed Design ... 51

4.4.3 Future work .. 52

4.5 Data Access for Large Binary Objects .. 52

4.5.1 Status of the Prototype ... 54

4.5.2 Future work .. 58

4.6 Data Reliability and Integrity .. 61

4.6.1 Status of the Prototype ... 61

4.6.2 Future work .. 63

4.7 Security Framework .. 64

4.7.1 Security requirements .. 64

4.7.2 Security for Atomic Service invocations: the Security Proxy 67

4.7.3 Interoperability with p-Medicine on Security .. 70

4.7.4 Status of the prototype and future work ... 71

5 Software Engineering Aspects ... 71

6 Features to be Implemented in the Third Year of the Project .. 72

7 Summary .. 73

8 References .. 73

List of Key Words/Abbreviations .. 78

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 6 of 79

LIST OF FIGURES

Figure 1: VPH-Share Work Package 2 architecture as of Project Month 24 (conceptual view).

.. 13

Figure 2: The VPH-Share master interface. ... 15

Figure 3: The Cloud Manager feature of the Master Interface – sample view 16

Figure 4: Development Mode – initial view .. 16

Figure 5: Atmosphere Key Manager GUI ... 17

Figure 6: Selection of Atomic Services for instantiation in development mode. 17

Figure 7: Selection of public key to be injected into the requested instance. 18

Figure 8: Booting the selected Atomic Service Instance in development mode. 18

Figure 9: Atomic service instance up and running in development mode. 19

Figure 10: IP and port used to communicate with the Atomic Service Instance using the SSH

protocol. ... 19

Figure 11: Saving a new Atomic Service – metadata input dialog. ... 20

Figure 12: Services available for instantiation in the Generic Invoker mode. 21

Figure 13: Atomic Service Instance ready for operation in the Generic Invoker mode. 22

Figure 14: Invocation templates for (1) a RESTful service with VNC access (top); (2) a

service which provides a web application endpoint (bottom). .. 22

Figure 15: Sample structure returned by GET /as/services_set ... 29

Figure 16: Architecture diagram of Allocation Management Service in the scope of WP2

tools. The light green box indicates internal AMS components while yellow boxes indicate

other WP2 subsystems that AMS depends on (i.e. the Atmosphere Internal registry and the

Cloud Execution Environment) as well as the Cloud Facade which exposes AMS

functionality through REST and Web Service interfaces. ... 33

Figure 17: UML class diagram of the internal representation of the Cloud infrastructure,

Atomic Services and Atomic Service Instances used by the Allocation Management Service.

Classes coloured light green are persisted in the Atmosphere Internal Registry. 35

Figure 18: Architecture, APIs and domain models of the second version of Atmosphere

Internal Registry. The most notable changes with respect to the first prototype include the

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 7 of 79

addition of several domain submodels, removal of the Logic Dataset model and further API

extensions. .. 36

Figure 19: The main menu of the AIR Web user interface. The subsections of the interface

correspond to the domain division of the models. Detailed API help is available for each

section. Please note the Data Sources and Data Sets are left for compatibility reasons and will

be removed as soon as all client tools switch to the LOBCDER metadata solution. 40

Figure 20: An excerpt from the user workflow management area. The administrator is able to

see the workflows executed in the VPH-Share infrastructure at any given moment. In case of

problems, the administrator can also view the owner of the workflow in order to contact that

person. Stopped (past, archived) workflows are also stored here, as are public user keys...... 40

Figure 21: An example of an administrator dialog for management of registered Atomic

Services, their properties, optimization characteristics etc. Some runtime information such as

interface endpoints or IP port mappings required by the service is also stored here. The

administrator uses this section of AIR to publish new security policies and virtual machine

configuration files. ... 41

Figure 22: Metadata concerning a single host which belongs to the VPH-Share infrastructure.

For a given machine and the virtual machines running there Atmosphere requires a

considerable amount of information in order to support optimized, effective cloud

provisioning. .. 41

Figure 23: Architecture of the Cloud Execution Environment, including OpenStack nodes

(CC, VM, Swift), additional management VM (for the Nginx-based reverse proxy) as well as

external components. ... 42

Figure 24 AHE 3.0 web service oriented architecture ... 48

Figure 25: Conceptual design of LOBCDER. ... 54

Figure 26: LOBCDER class diagram. ... 56

Figure 27: HTTP basic authentication. .. 58

Figure 28: LOBCDER based encryption - data owner needs to trust LOBCDER however the

encryption process itself is transparently handled by the VPH platform................................. 60

Figure 29: End-to-end encryption – nobody except the data owner (even WP2 administrators)

can decode information stored by the platform. The data owner needs to encrypt/decrypt the

data. .. 60

Figure 30: DRI Runtime architecture. ... 62

Figure 31: DRI data model. ... 63

Figure 32: Overview of WP2 security mechanisms. ... 67

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 8 of 79

Figure 33: Inter-service communication with Nginx. .. 68

Figure 34: Updating policy rules of the Security Proxy. ... 69

Figure 35: User authentication and authorisation in the context of invoking Atomic Services

deployed in a private network. ... 70

LIST OF TABLES

Table 1: Complete list of all API calls available in the second version of AIR (February

2012). A detailed manual on the supported API operations is available online as part of the

AIR user interface. The deprecated DataSource API is omitted in this table, however for the

sake of backward compatibility it is still supported by the registry. 37

Table 2: Virtual Machines provisioned to VPH-Share developers as of Project Month 24. ... 45

Table 3: AHE service API. .. 49

Table 4: ACD RESTFUL API. .. 50

Table 5: List of technologies applicable to each component of the WP2 architecture. 72

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 9 of 79

EXECUTIVE SUMMARY

This document presents the current state of development of Work Package 2 tools and

services in the context of the VPH-Share project. The goal of this document is to summarize

the existing features of the Cloud application development, enactment and data storage

platform, explain how the prototype can be used to deploy existing workflow services and

present possible use cases which are already supported by the prototype. In addition, the

document outlines future development plans in Work Package 2.

During the second year of the Project, Work Package 2 was able to successfully integrate and

deploy an extended version of the cloud platform prototype, as well as utilize it to support a

number of VPH-Share application workflows in production mode. The provisioning of this

prototype should be viewed as the main achievement of WP2 in the presented period. The

presented system provides clear added value both for service developers, supporting them at

every step of the service implementation and deployment process, and for end users, by

abstracting away all operations which deal with instantiation and management of service

instances on cloud-based hardware resources.

More specifically, the following features are now available to end users:

 In Task 2.1 the second year of development focused on implementing user features to

fully support the lifecycle of Atomic Services, including management of development

versions, storage and management of security keys, adding redirections and publishing

application services. T2.1 now provides a full-fledged Atomic Service development

environment where new application services can be deployed in the cloud;

 Task 2.2 devoted its attention to extending and upgrading the cloud computing platform

supporting VPH-Share services. New computational and storage resources were added,

and the infrastructure was migrated to the current release of the OpenStack framework.

T2.2 now oversees the functioning of a production-ready infrastructure composed of

hardware resources running the OpenStack cloud computing and storage middleware,

upon which Atomic Services can be instantiated and used;

 In year 2 Task 2.3 focused on providing a more robust set of programmer’s interfaces and

integration with project-wide security mechanisms. T2.3 provides a service extension for

a set of grid-based high performance computing resources accessible via the Application

Hosting Environment;

 In Task 2.4 the metadata storage and management system was reimplemented and

extended to support extended descriptions of LOBCDER items. T2.4 now operates a

hybrid data storage infrastructure where individual users of the VPH-Share project, as

well as applications acting on their behalf, can store and share sensitive data in a secure

manner;

 Task 2.5 focused on work on deploying a production-ready monitoring service, integrated

with the newest version of LOBCDER. T2.5 now operates a data accessibility and

integrity validation service integrated with the platform;

 In year 2 Task 2.6 ensured integration with the OpenID security mechanisms available

through the VPH-Share Master Interface and initiated work on management of per-

service security policies, including dynamic injection of policies into existing services. As

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 10 of 79

a result, T2.6 has successfully implemented and provisioned a project-wide authentication

and authorization model for VPH-Share services.

Based on the results outlined further on in this document we are confident that WP2 has

successfully accomplished all the achievements which make up milestone MS7, as specified

in the Project’s Description of Work: Verification (Beta release available through

PhysiomeSpace; formal report published; project demonstration of Beta release at the 2
nd

Annual Review).

The scientific results of WP2 have been showcased at the VPH Conference in London (1),

eScience’12 in Chicago (2), and at CGW12 in Kraków (3).

This deliverable is meant as a follow-up to Deliverable 2.3, published at the end of Project

Month 12 and recapitulates the work that has occurred in the context of WP2 since the end of

the design phase. Any deviations from the initial design, whether due to evolving user

requirements or discovery of additional technical possibilities, are listed and explained, as is

their impact on the overall Project architecture.

The following topics are addressed in this document:

 Features provided by the cloud platform for its users;

 Implemented components of the platform, including cloud computing infrastructure and

management tools, data storage federation, HPC frontend and data validation

components;

 Technologies applied in the implementation of each component and tool;

 Software engineering methods used.

As the VPH-Share cloud platform is still considered to be a prototype, the user guide section

of this deliverable focuses on Consortium members; particularly those representing Work

Packages 3, 4 and 5. Nevertheless, the relevant sections of this document are meant as a user-

friendly introduction to the functionality of the cloud platform and we do not expect readers

to be intimately familiar with the specific features of cloud middleware systems.

This document is divided as follows:

 Section 1 introduces the WP2 prototype by briefly explaining the goals of WP2 and

referencing its design document (Deliverable 2.2). An updated architecture diagram is

presented and discussed. In addition, this section contains short, introductory descriptions

of the work performed in each of technical tasks of WP2.

 Section 2 is meant as a guide for end users (i.e. application workflow teams and Atomic

Service maintainers), explaining the use of graphical user interfaces exposed by the VPH-

Share Cloud Platform via the Master Interface.

 Section 3 contains an in-depth manual for developers of platform services (particularly

representatives of Work Packages 3, 4 and 6), explaining programmatic access to the

VPH-Share Cloud Platform with the use of APIs.

 Section 4 contains descriptions of the implementation progress achieved in each technical

task of WP2 as well as the features supported by the second prototype (released in Project

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 11 of 79

Month 24). A subsection has been prepared for each clearly identifiable technical

component of WP2, explaining its features, status of prototype releases and ongoing

work. In addition, any deviations from the original design (if present) are highlighted and

explained.

 Section 5 focuses on software engineering aspects relevant to the development of the

Cloud Platform, including remarks on testing and development methodologies applied in

the course of the project.

 Section 6 outlines the plans for the third year of development in each technical task of

Work Package 2. It serves as a quick primer to WP2 year 3 roadmap; more elaborate

descriptions of ongoing and future work can be found in Section 4.

 Section 7 contains closing remarks.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 12 of 79

1 FEATURES OF THE VPH-SHARE CLOUD PLATFORM PROTOTYPE

As explained in the Project’s Technical Annex (4) and discussed in detail in deliverable D2.2

(5), the goal of Work Package 2 is to provide a backbone for the VPH-Share computational

and data storage services, enabling the application workflow representatives from Work

Package 5, as well as the data storage and management teams from Work Package 4 to

deploy their respective applications and data sources within a Cloud-based distributed

computing infrastructure. Specifically, Work Package 2 fulfils the following goals:

 Integrate and oversee the Cloud-based computing and data storage resources made

available to the Project;

 Expose a unified, heterogeneous, secure Cloud computing platform where application

services and binary data repositories can be deployed and made available to authorised

users without the need to install high-performance computing hardware at said users’

local sites;

 Facilitate the development and deployment of the VPH-Share Atomic Services (please

refer to deliverable D2.1 (6) for an explanation of what constitutes an Atomic Service and

what features it offers to end users) on the Cloud resources managed by WP2;

 Provide extensions for traditional (Grid-based) high performance computing resources

wherever required by application services;

 Facilitate access to potentially sensitive data sets by managing them with the use of the

available Cloud data storage and monitoring their integrity, consistency and availability

with automated, configurable tools;

 Collaborate with application and data storage providers as well as with partner projects

(specifically, p-medicine) on providing an open, extensible infrastructure into which

additional application services can be imported with minimum effort.

Whereas deliverable D2.2 provides an in-depth description of each technical component of

the Work Package, the goal of this section is to explain which features (presented in D2.2)

have been implemented and are integrated in the second prototype. In order to focus this

discussion, we would like to refer the reader to an updated version of the Work Package 2

architecture diagram, which is presented in Figure 1.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 13 of 79

Figure 1: VPH-Share Work Package 2 architecture as of Project Month 24 (conceptual view).

The central part of the diagram lists the WP2 application components and explains how these

components map to technical tasks in WP2, according to the Project’s Description of Work

(4).

Following the initial design period, concluded in Month 6, the technical tasks have

commenced implementation of their assigned components, as shown in Figure 1. A general

outline is presented below:

 The Cloud Resource Allocation Management framework, known as Atmosphere, is

capable of supporting the full development cycle of Atomic Services, starting with

selection of OS templates, all the way to sharing and reusing full-fledged AS’.

 The Cloud Execution Environment in place at CYFRONET has been expanded to include

32 four-CPU nodes to which VPH-Share Atomic Service Instances can be deployed. A

major upgrade effort has resulted in successful installation of the newest releases of the

OpenStack platform (specifically, the Folsom release which became available in

September 2012). This cloud site is now fully capable of serving production runs of VPH-

Share applications. An upgraded mass storage directory is provided and can be interfaced

with the use of the OpenStack Swift protocol.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 14 of 79

 As described in deliverable D2.2, VPH-Share application workflows may now delegate

HPC computational jobs to legacy grid infrastructures with the use of the AHE service

backend.

 The data access framework, known as LOBCDER, is now capable of exposing attached

storage resources (including Swift-managed mass storage) as a emulated WebDAV

(Web-based Distributed Authoring and Versioning) directory, which can in turn be

mounted and accessed as local file systems on the virtual machines used to host Atomic

Service Instances. Successful tests have concluded regarding the use of LOBCDER to

host and expose application-specific data.

 The Data Reliability and Integrity tool can register and periodically monitor managed

datasets in the WP2 framework, ensuring their consistency and availability. In addition,

notification mechanisms have been put in place to warn administrators of any data access

problems encountered by the validation tools. Finally, a dedicated GUI component of

DRI has been implemented.

 The WP2 security framework is now capable of consistently supporting basic usage

scenarios, starting with authentication in the Master Interface, through to the delegation of

security credentials when invoking Atomic Service and all the way to server-side

interception of incoming calls and authorizing (or disallowing) access on the basis of

current security policies.

The features implemented during the second year of the Project have enabled us to prepare a

number of demonstration scenarios which have been presented to the Consortium and beyond

(including external members of the VPH network of excellence). These include the

following:

 A general presentation of the Atomic Service development, registration and enactment

features with the use of dedicated UI components;

 A presentation of the features of the Data Browser interface to LOBCDER resources;

 A security primer, explaining the scope and definition of VPH-Share security policies

applicable to individual Atomic Services;

 A selection of simple demonstrations covering interaction with various types of VPH-

Share application components.

2 END USER ACCESS TO THE CLOUD PLATFORM

The aim of this section is to present the WP2 graphical user interfaces enabling access to the

cloud platform in administrator, developer and end-user mode. While these interfaces are

being developed in the scope of WP6 (and are not, technically, part of the presented

deliverable), we believe that – for completeness’ sake – the prototype description should

include an overview of cloud platform GUIs as without them access to the WP2 tools would

be restricted to developers of application components and other VPH-Share-specific services.

The description will be divided into two parallel streams, one for service developers and one

for users interested in invoking a particular Atomic Service. We will begin with the process

of creating and registering a new Atomic Service.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 15 of 79

2.1 Developer Access – Creating a new Atomic Service

In order to begin work on a new Atomic Service, the developer should first become part of

the VPH community (i.e. obtain an account on the BiomedTown portal – which is outside the

scope of this deliverable). We will assume that the developer is already a registered user of

BiomedTown and has received his/her set of security credentials (login and password). These

credentials can be used to obtain authentication with the VPH-Share Master Interface at

masterinterface.vph-share.eu, a sample screenshot of which is presented in Figure 2.

Figure 2: The VPH-Share master interface.

Having logged in the user is presented with a variety of options, each represented by an item

in the side bar. In order to manage and develop new Atomic Services, the user needs to select

the option labelled Cloud Manager. This will bring up the Cloud Manager page in the main

frame of the MI (see Figure 3).

VPH-Share authentication policies: The VPH-Share Master Interface uses the OpenID

authentication standard, which enables users to log in using the credentials, obtained from

a OpenID Identity Provider. OpenID is used by a number of well-known organizations,

such as Google and Facebook, however in the specific case of the VPH-Share project, the

Identity Provider is the BiomedTown portal. By accessing the Master Interface (MI) login

feature, the user actually logs into BiomedTown, which is, in all circumstances, the entity

responsible for managing VPH-Share user accounts. This is why the MI login request is

followed by a query where BiomedTown asks the user to confirm that the requesting

application (i.e. the Master Interface) is authorized to access the user’s personal

information.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 16 of 79

Figure 3: The Cloud Manager feature of the Master Interface – sample view

The default view of the Cloud Manager is the Generic Invoker page (which will be discussed

in Section 2.2); however VPH-Share application developers will also be able to access a

special development mode, which enables registered users to manage and modify existing

Atomic Services. Clicking this tab will bring up the list of Atomic Service Instances running

in development mode (which should initially be empty).

Figure 4: Development Mode – initial view

In order to be able to interact with services in development mode, the developer must first

create a pair of security keys (for instance, by using the Linux ssh-keygen command) and

upload the public key to Atmosphere with the use of the Key manager interface, as shown in

Figure 5.

Development mode vs. Invocation mode: Atomic Services (AS) instantiated in

development mode follow a special set of policies not applicable to any other mode of AS

instantiation. In development mode Atmosphere automatically injects user security keys

into running instances to facilitate secure root login for the purposes of modifying the

content of Atomic Services. Moreover, Atomic Services not tagged as “published” in the

Atmosphere Internal Registry will still be visible in development mode. Finally,

development mode provides developers with information regarding the proxy redirection

of any external interfaces the Atomic Service may provide (enabling direct access to these

interfaces).

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 17 of 79

Figure 5: Atmosphere Key Manager GUI

At least one public key must be stored for each developer to enable secure login to Atomic

Service Instances. Once the appropriate public key has been uploaded, the developer may

select an Atomic Service for instantiation by clicking the Start new development instance

button in the development mode view. This will bring up a list of existing Atomic Services

and Atomic Service Templates, which can be instantiated (Figure 6).

Figure 6: Selection of Atomic Services for instantiation in development mode.

Atomic Services and Atomic Service Templates: From the point of view of service

developers there is no technical difference between services and service templates; the

distinction is purely one of convenience: service templates are “raw” OS images which

can be used to develop new Atomic Services, while Atomic Services are assumed to

include some sort of application payload which can be further extended or modified

according to developers’ wishes.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 18 of 79

Clicking Start next to the name of the selected Atomic Service will display a dialog where

the developer is asked to pick one security key to be injected into the new instance,

facilitating root login into the instance. Simply pick the preferred key and click the Start

button again.

Figure 7: Selection of public key to be injected into the requested instance.

Once this is done, Atmosphere will begin the process of starting the requested instance. This

will be reflected by an appropriate status message in the development mode view (Figure 8).

Figure 8: Booting the selected Atomic Service Instance in development mode.

Once the instance is up and running, the status message will be automatically updated, as

shown in Figure 9.

Booting delay: Depending on their complexity, Atomic Service Instances may take up to

several minutes to boot up and become accessible. This is due to the fact that instances

are not normally kept in a “running” state (as ready-to-use Virtual Machines) – instead,

they reside in a special cloud image repository as binary files. Instantiating an Atomic

Service involves copying the selected image file to one of the available cloud hosts,

uncompressing it and then booting the operating system within. Once the operating

system is up, additional time may be needed to activate any application services residing

on the selected VM.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 19 of 79

Figure 9: Atomic service instance up and running in development mode.

Naturally, several different services can be instantiated simultaneously – if you wish to

instantiate additional services, simply use the Start new development instance again.

Interaction with the running instances may be achieved by communicating with their

interfaces. By default, each instance provides SSH access to service developers; however in

order to log into the selected instance, we must first learn its address. In a private cloud site

this will typically consist of the IP address of the host on which the Reverse Proxy resides

and the port used to forward requests to the instance in question. This information can be

displayed by clicking the Show access info button.

Figure 10: IP and port used to communicate with the Atomic Service Instance using the SSH protocol.

At this point the developer may use any SSH client to communicate with the instance. The

only requirement is that the developer must supply the private key corresponding to the

selected public key, which was injected into the instance upon bootup. Root access enables

the developer to perform arbitrary changes and modifications to the instance, presumably

connected with the installation of the Atomic Service payload.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 20 of 79

Having concluded implementation work, the developer is free to save the resulting instance

as a new Atomic Service. Click the Save Atomic Service button to bring up a save dialog

(Figure 11).

Figure 11: Saving a new Atomic Service – metadata input dialog.

You are required to specify the name of the new AS, as well as (optionally) a description of

what it is your service does.

Clicking Save Atomic Service will cause your new service to be stored (note: this may take

several minutes as the instance must be saved to a file in the cloud repository). While the

service is being saved, please avoid from further development work on your instance.

Under construction: The Endpoint name and Endpoint location fields are used to

distinguish services, which provide RESTful (HTTP-based) APIs. If your service is of

this type, specify the endpoint path (e.g. /myservice/hello) and provide a name for your

endpoint (e.g. hello). If your AS does not provide RESTful access, you may enter any

values in these fields (however, they cannot be left blank in the present prototype). The

save dialog will be redesigned and extended with additional options as part of future

development of Atmosphere.

How persistent are Atomic Service Instances? Editing Atomic Services can be

compared to performing work on a text document using word processor software: a file is

opened (which corresponds to instantiating an Atomic Service), modified and then saved,

either by overwriting the original file or by creating a new file (or, in our case, a new

Atomic Service). The metaphor is not entirely accurate since working copies of text files

only exist while the word processor is open whereas in our case the Atomic Service

Instance persists even if the user closes the “processor” (i.e. the Master Interface). Atomic

Service Instances continue to operate and will be accessible the next time you log in. In

spite of this fact, it is advisable to perform regular check pointing of your instances (by

saving them as Atomic Services) – this will ensure that your work is not lost in case of a

cloud site crash or other unforeseen infrastructure problem.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 21 of 79

Once the service has been saved, it may be instantiated again for a new round of development

work. End users may also access the service through the Generic Invoker tab of the Cloud

Manager page, which is the subject of the following section.

2.2 End-user access – invoking Atomic Services with the Generic Invoker

The Generic Invoker is a feature provided by Atmosphere to directly communicate with

selected Atomic Services. While under most circumstances Atomic Services would be

invoked by workflow management tools acting on behalf of end users, there are some

application scenarios – such as the ViroLab Drug Ranking System usage – in which it makes

more sense to call services directly (for example due to the fact that the entire application is

contained within a single service and requires no workflow management). In order to call an

Atomic Service, open the Generic Invoker tab and click the Start Atomic Service button,

which will display a list of accessible Atomic Services (see Figure 12).

Figure 12: Services available for instantiation in the Generic Invoker mode.

Instantiating an Atomic Service through the Generic Invoker is no different than doing so in

Development Mode, although in this case the user is not prompted to provide an access key

(since the Generic Invoker does not enable users to obtain shell access to the Virtual

Machines upon which service instances reside). Once the selected instance has been

instantiated the Cloud Manager will display an appropriate status manage along with a set of

options (see Figure 13).

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 22 of 79

Figure 13: Atomic Service Instance ready for operation in the Generic Invoker mode.

Clicking the Invoke button will display information on how to call the specific Atomic

Service Instance, depending on the external interfaces it provides. Sample invocation

templates for RESTful services and web applications are presented in Figure 14.

Figure 14: Invocation templates for (1) a RESTful service with VNC access (top); (2) a service which provides a web

application endpoint (bottom).

If the service provides a RESTful interface, the Generic Invoker may be used to call its

methods directly. Simply select the required method, enter the input data in the field provided

and click Invoke Atomic Service. For web applications, such as the Drug Ranking Service,

Atmosphere provides a URL link to the application root – click this link to access the

application. For other types of interfaces, Atmosphere will provide a redirection port and IP

which needs to be contacted using an external client, appropriate for the protocol in question

(such as a VNC desktop streaming client), to communicate with the given service instance.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 23 of 79

Atomic Service Instances that are no longer needed, may be shut down by clicking the Shut

down option next to their names. It is also possible to close all running instances via the Stop

all AS instances option.

3 PROGRAMMATIC ACCESS TO THE CLOUD PLATFORM (FOR WPS 3, 4 AND 6)

For developers of VPH-Share infrastructure components and external clients that wish to

interact directly with the Atmosphere framework WP2 offers programmatic access with a

dedicated service-based API. This API is known as the cloud facade and is exposed by the

Atmosphere core host at 149.156.10.133.

A detailed specification of the Atmosphere API follows.

3.1 Management of Application Workflow Service Instances

Atmosphere provides an API for management of application workflow service instances. This

API enables users to manage Atomic Service Instances bound to specific application

workflows.

Remember to clean up after yourself: Running instances consume resources and

occupy space on cloud hosts. It is therefore unadvisable to leave instances running when

they are no longer needed. If you use workflow management tools to access Atomic

Services, cleanup operations are handled automatically, but in Development and Generic

Invoker modes you are responsible for cleaning up your own workspace.

Security and authorization: Remember that Atomic Service Instances are secured by the

Security Proxy and therefore in order to communicate with them the user must present a

valid security token. If you click the URL provided by the Generic Invoker to access a

web application service (or use the REST invocation interface), Atmosphere will

automatically attach your security token to the request header; if however you decide to

use an external client (for instance, if you copy and paste the instance URL to a different

browser) then you will be prompted for a set of login credentials. In these circumstances

you will want to leave the username field blank and use your current token as password.

In order to extract your security token from the Master Interface click the Profile option

next to your username – the Master Interface will display your token, enabling you to

copy it to the clipboard for later use.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 24 of 79

The following API commands are used to manage Atmosphere workflows:

GET /workflow/list – gets the JSON structure of all user workflows. The structure of

the returned JSON includes the following flags:

 username

 workflows (list of user workflows):

o (required) id – workflow ID

o (required) name – workflow name

o (required) type – workflow type (possible values: workflow, development,

portal)

GET /workflow/{workflowId} – gets the JSON structure of the workflow identified

by workflowId

 (required) workflowId – workflow identifier (acquired when starting the workflow)

The structure of the returned JSON includes:

 name - workflow name

 type - workflow type (possible values: workflow, development, portal)

 atomicServiceInstances - list of Atomic Service instances created in the scope of this

workflow:

o id – Atomic Service instance id

o name – Atomic Service instance name

o status – Atomic Service instance status (running, paused, booting, stopping

or stopped)

o message – optional diagnostic message

o atomicServiceId - id of the Atomic Service used to create this instance

o credential - credentials enabling login to Atomic Service instance (empty in

development mode workflow)

o redirections - list of redirections created for this Atomic Service instance:

 name - redirection name

 http - if true, HTTP traffic is redirected

 host - public entry point host for the redirection. Full redirection is

host:fromPort

Atomic Service Instances in the context of application workflows: Each Atomic

Service Instance is executed in the context of a specific workflow. Workflows are the

principal mechanism by which Atomic Service Instances are grouped and a user may run

any number of workflows. A typical example of a workflow is the @neurIST use case

scenario where several service instances need to be run as a coherent package. (Note: in

the context of Atmosphere a workflow is understood as a set of Atomic Services rather

than a graph) The Development Mode and Generic Invoker pages make use of special

(hidden) workflows to which all services running in these modes are automatically

attached.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 25 of 79

 fromPort - public entry point port for the redirection. Full redirection

is host:fromPort

 toPort - port to which traffic from the public entry point will be

forwarded in the Atomic Service instance

POST /workflow/start – starts a new workflow for a given user

The structure of the JSON body posted must include:

 (required) name - workflow name

 (optional) description - workflow description

 (optional) priority - workflow priority

 (optional) type - workflow type (possible values: workflow, development, portal)

 (optional) asConfigIds - list of required workflow Atomic Service configurations

If successful, the operation returns status code 200 and the identifier of the new workflow

instance. In case of failure, code 400 is returned, along with an explanation of the problem.

DELETE /workflow/{workflowId} - stops a workflow

 (required) workflowId - workflow identifier (acquired when starting the workflow)

If successful, the operation returns status code 200. In case of failure, code 400 is returned,

along with an explanation of the problem.

PUT /workflow/{workflowId}/as/{asConfigId}/{name} – adds an Atomic

Service to a workflow, which also instantiates the Atomic Service.

 (required) workflowId – workflow id

Initial configurations: Atomic Service initial configurations are sets of data that is

injected upon each Atomic Service Instance upon startup. If the ASI needs to perform

some initialization actions (e.g. subscribe to monitoring), the initial configuration can be

used to pass the necessary monitoring host endpoint and port number. In most cases,

however, initial configurations are not necessary. Atmosphere requires each atomic

service to possess an initial configuration but does not restrict its contents. An empty

initial configuration is automatically created when a new Atomic Service is saved.

Redirections: Redirections are added to Atomic Service Instances to enable external

communication with services deployed in a private IP address space. When a redirection

is registered for an Atomic Service, Atmosphere will automatically reconfigure the

reverse proxy host, which accompanies the cloud site to forward requests to the instance

of this service. Thus, instead of communicating directly with the ASI host (which may be

impossible), external clients should talk to the proxy host (149.156.10.132 in the

CYFRONET cloud site) on a specific port (which is defined in the redirection

configuration).

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 26 of 79

 (required) asConfigId – Atomic Service configuration id

 (required) name – Atomic Service Instance name

 (optional) key – identifier of the public key which should be injected when starting

the ASI. Only valid in development mode workflow.

If successful, the operation returns status code 200. In case of failure, code 400 is returned,

along with an explanation of the problem.

DELETE /workflow/{workflowId}/as/{asConfigId} - remove Atomic Service

from workflow. This may also shut down the relevant Atomic Service Instance, although the

decision on whether to shut down the instance or preserve it for other clients depends on the

internal logic of the Atmosphere Management Service.

 (required) workflowId – workflow identifier

 (required) asConfigId – Atomic Service configuration identifier

If successful, the operation returns status code 200. In case of failure, code 400 is returned,

along with an explanation of the problem.

3.2 Atomic Service Management

This portion of the Cloud Facade interface is dedicated to management of individual Atomic

Services (as opposed to Atomic Service Instances, which are managed via the workflow API

described in the previous section).

The following methods are provided:

GET /as/list - gets the JSON representation of all registered Atomic Services

Atomic Services and Atomic Service Instances: Atomic Services are images of Virtual

Machines with preinstalled “payload” (i.e. user applications). They exist as files in a

dedicated cloud image store (such as the Glance repository in OpenStack-based cloud

sites) and need to be instantiated on the available computing resources before they can be

accessed. Each Atomic Service may therefore have an arbitrary number of associated

Atomic Service Instances.

Developer keys: Security keys enable Atomic Service creators to obtain shell access to

the virtual machines on which their Atomic Service Instances reside. This feature is only

of concern to developers.

In order to login to your ASI as a root user, you need to create a pair of public/private

RSA security keys (for instance using the Linux ssh-keygen command) and then upload

your public key to Atmosphere using the Master Interface or a dedicated API (see Section

3.4 for more information). When instantiating a new AS in development mode you have

the option to inject this key into the new instance, enabling you to log into the ASI as root

with the use of your private key).

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 27 of 79

The structure of the returned JSON includes an array of:

 atomicServiceId - Atomic Service identifier

 name - Atomic Service name

 description - Atomic Service description

 vnc - true if the Atomic Service provides a VNC connection

 http - true if the Atomic Service provides a HTTP service

 shared - true if the Atomic Service can be shared among workflows

 scalable - true if the Atomic Service can be replicated

 published - true if the Atomic Service is published (and thus visible to end users)

 endpoints – endpoints registered for this Atomic Service:

o description - endpoint description

o descriptor - endpoint descriptor (e.g. WSDL)

o invocationPath - endpoint invocation path

o port - endpoint port

o serviceName - service name

o type - endpoint type (WS, REST, WebApp)

POST as/create_from/{atomicServiceInstanceId} - create a new Atomic

Service from an existing instance

 atomicServiceInstanceId – Source instance for the new Atomic Service

The structure of the JSON request includes:

 (required, unique) name - atomic service name

 description - Atomic Service description

 vnc - true if the Atomic Service provides a VNC connection

 http - true if the Atomic Service provides a HTTP service

 shared - true if the Atomic Service can be shared among workflows

 scalable - true if the Atomic Service can be replicated

 published - true if the Atomic Service is published (and thus visible to end users)

 inProxy - true if atomic service endpoints are to be automatically registered in the

reverse proxy

 endpoints – endpoints registered for this Atomic Service:

o (required) invocationPath - endpoint invocation path

o (required) port - endpoint port

o (required) serviceName - service name

o type - endpoint type (WS, REST, WebApp)

o description - endpoint description

o descriptor - endpoint descriptor (e.g. WSDL)

If successful, the operation returns status code 200. In case of failure, code 400 is returned,

along with an explanation of the problem.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 28 of 79

GET /as/{atomicServiceId}/configurations - gets the available initial

configurations for an Atomic Service

The structure of the returned JSON includes:

 id - configuration id

 name - configuration name

POST /as/{atomicServiceId}/configurations - Add a new initial

configuration to an Atomic Service

 atomicServiceId – target Atomic Service

The structure of the JSON request includes:

 (required, unique) name - configuration name

 (required) payload - configuration payload

If successful, the operation returns status code 200. In case of failure, code 400 is returned,

along with an explanation of the problem.

GET /as/services_set - Get the available Atomic Services in a Taverna-compliant

format. This method is implemented for the purposes of WP6 workflow management

integration. Only WS endpoints are currently returned, using the XML template illustrated in

Figure 15.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 29 of 79

Figure 15: Sample structure returned by GET /as/services_set

GET

/as/{atomicServiceId}/endpoint/{servicePort}/{invocationPath} –

Get descriptor of a specific Atomic Service endpoint

 (required) atomicServiceId - atomic service id

 (required) servicePort - endpoint port

 (required) invocationPath - encoded invocation path (/ should be changed to %2f)

If successful, the operation returns status code 200 and the descriptor value. In case of failure,

code 400 is returned, along with an explanation of the problem.

GET /{descriptorPath}/get_as_id - Get Atomic Service identifier for a given

descriptor

 (required) descriptorPath - descriptor endpoint (see above for details)

If successful, the operation returns status code 200 and the Atomic Service id. In case of

failure, code 400 is returned, along with an explanation of the problem.

<serviceDescriptions

xmlns="http://taverna.sf.net/2009/xml/servicedescription">

 <providers>

 <provider>

 <providerId

xmlns="http://taverna.sf.net/2008/xml/t2flow">http://taverna.sf.net/2010/

service-provider/wsdl</providerId>

 <configBean xmlns="http://taverna.sf.net/2008/xml/t2flow"

encoding="xstream">

<net.sf.taverna.t2.activities.wsdl.servicedescriptions.WSDLServiceProvide

rConfig xmlns="">

 <uri serialization="custom">

 <java.net.URI>

 <default>

 <string>http://path/to/wsdl</string>

 </default>

 </java.net.URI>

 </uri>

</net.sf.taverna.t2.activities.wsdl.servicedescriptions.WSDLServiceProvid

erConfig>

 </configBean>

 </provider>

 ...

 </providers>

</serviceDescriptions>

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 30 of 79

3.3 Security Policy Management

This section of the Cloud Facade API is dedicated to management of Atomic Service Security

Policies.

The following methods are provided:

GET /securitypolicy - lists the names of all stored security policies

If successful, the operation returns status code 200 and the names of the available security

policies.

GET /securitypolicy/{policyName} – retrieve a security policy

 (required) policyName - security policy name

If successful, the operation returns status code 200 and the content of the requested policy. If

the policy is not found, code 404 is returned.

POST /securitypolicy/{policyName} - upload or update a security policy

 (required) policyName - security policy name

 (required) overwrite - if true, the existing policy will be updated, otherwise code 409

code will be returned if the policy already exists

 (required) body - security policy content

If successful, the operation returns status code 200. Code 409 is returned if the user attempts

to update an existing security policy without setting the overwrite query parameter to true.

DELETE /securitypolicy/{policyName} - removes a security policy and purges

its content.

 (required) policyName - security policy name

If successful, the operation returns status code 200. If the policy is not found, code 404 is

returned.

3.4 Security Key Management

The Cloud Facade also supports a dedicated API for management of user security keys. As

explained in Section 2.1 these keys can be generated and uploaded by registered developers

Security policies: Security policies are documents which define authorization patterns for

each Atomic Service. Atomic Services contain inbuilt security proxies which intercept

attempts to contact the services’ HTTP endpoints and make decisions on whether to

permit or disallow access on the basis of the requestor’s identity and roles. These

decisions are made in accordance with the contents of security policy documents.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 31 of 79

to enable them to log into Atomic Service Instances as root users, in order to perform

development or maintenance work.

The following methods are provided:

GET /key/list - lists the public keys belonging to the current user

If successful, the operation returns status code 200 and an array of basic data about user keys.

The structure of the returned JSON includes the following items:

 keyName - key name

 fingerprint - key fingerprint

 id - key id

POST /key – register a new public key for the current user

The structure of the request form includes:

 (required, unique) keyName - key name

 (required) publicKey - key payload

If successful, the operation returns status code 200 and an identifier of the newly registered.

If a key with the given name is already registered, code 409 (conflict) is returned. Malformed

keys trigger error code 400 (bad request).

GET /key/{keyId} - get content of public key

 (required) keyId - key identifier

If successful, the operation returns status code 200 and the payload of the specified public

key. If the key is not found, code 404 is returned.

DELETE /key/{keyId} - delete public key

 (required) keyId – id of key to be deleted

If successful, the operation returns status code 200. If the key is not found, code 404 is

returned.

4 VPH-SHARE CLOUD PLATFORM MODULES: STATUS UPDATE

The goal of this section is to detail the features of each of the technical components, which

comprise the WP2 platform, present their integration with external components and outline

on-going development activities in each technical task as of Project Month 24.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 32 of 79

4.1 Cloud Resource Allocation Management

At the core of the Cloud resource management infrastructure lies the Atmosphere

Management Service (AMS). AMS is responsible for optimising utilisation of computational

resources and will be used by:

 Application providers, who need to select an appropriate virtual machine template, install

and configure their software and save the Virtual Machine as an Atomic Service.

 Scientists, who will specify their requirements in terms of the required functionality (as a

list of Atomic Services and their configurations) and will be provided with a pool of

resources that is monitored and managed automatically by AMS. This includes interaction

with single Atomic Service Instances as well as running workflows, which access a set of

Atomic Service Instances.

For a more detailed description of AMS features please refer to Section 4.1.1 of deliverable

D2.2 (5).

The internal architecture of AMS and its interactions with other WP2 subsystems are

illustrated in Figure 1. The main component of AMS is the Manager, which supervises the

process of preparing an optimal deployment plan and provisioning resources. It exposes the

AMS functionality to the Cloud Facade and accepts requests from clients. The Manager is

also responsible for maintaining a representation of the infrastructure, available Atomic

Services and AS Instances in a dedicated registry called the Atmosphere Internal Registry

(AIR), described in Section 4.2. When a new request arrives, the Manager queries AIR for

available resources and invokes the Optimizer to prepare a deployment plan that will ensure

optimal resource allocation. The Manager then enacts the deployment plan by using the

Cloud Client to manage resources in the Cloud Execution Environment (CEE), and the Proxy

Controller Client to register Atomic Service Instances in the HTTP reverse proxy. A detailed

description of this process can be found in Section 4.1.7 of deliverable D2.2 (5).

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 33 of 79

Figure 16: Architecture diagram of Allocation Management Service in the scope of WP2 tools. The light green box

indicates internal AMS components while yellow boxes indicate other WP2 subsystems that AMS depends on (i.e. the

Atmosphere Internal registry and the Cloud Execution Environment) as well as the Cloud Facade which exposes

AMS functionality through REST and Web Service interfaces.

4.1.1 Implementation status

The initial prototype of the framework includes all Allocation Management Service

components depicted in Figure 16. The candidate technologies mentioned in Section 4.1.8 of

deliverable D2.2 (5) are being used to implement the actual prototype. All AMS components

are implemented in Java as OSGI (7) bundles and deployed in a Karaf (8) container.

Additionally, AIR and Proxy Controller Clients employ the Camel integration framework (9)

that facilitates communication with external services. The Cloud Client is based on the

JClouds (10) library. The Optimizer component implements a simple load balancing

algorithm in Java that relies on the number of clients using a specific Atomic Service

Instance.

The Allocation Management Service prototype provides all the features required by users to

start interacting with the WP2 Data and Compute Platform. It implements end-user services

(see Section 4.1.1 of deliverable D2.2 (5) for a full list of AMS features), such as:

 Browsing the available templates in AIR

 Instantiating Virtual Machines from selected templates

 Saving Virtual Machines as Atomic Services

 Requesting instances of specified Atomic Services

The prototype supports all the identified use cases, albeit in a restrictedmanner. This can be

explained by considering the fourth item in the above list. The AMS prototype is able to start

Atomic Service Instances only in a private Cloud infrastructure, and register them in an

HTTP proxy to make them publicly accessible. It does not yet collect monitoring data from

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 34 of 79

Atomic Service Instances and does not take into account required data replication and

security constraints – thus, the deployment plans prepared by the Optimiser are far from

being optimal and Atomic Service Instances are not subject to automatic scaling.

4.1.2 Allocation Management Service metadata schema

In order to fulfil its responsibilities, AMS maintains a representation of the Cloud

infrastructure, Atomic Services and Atomic Service Instances. A simplified view of this

internal representation is depicted in Figure 17. At the topmost level lies the

ExecutionEnvironment, composed of DataSources and ComputeSites. The former

represent data storage services such as Amazon S3 or OpenStack Swift, while the latter

model commercial data centres, private cloud deployments, and HPC infrastructures. Each

DataSource and ComputeSite may be associated with a CostModel, which defines the

expenses for storing and transferring data or running virtual machines of a specific size.

ComputeSites are composed of Hosts, which, in the case of private cloud providers,

represent physical machines and their capacity. A Host should be treated as a physical

computational resource, which is capable of hosting VPH-Share Atomic Services. Since

information about physical machines is not available for public Cloud infrastructures each

ComputeSite of this type will have only one Host that represents the resources available for

single cloud client (i.e. Atmosphere). Hosts run virtual machines with VPH-Share

applications (Atomic Service Instances) represented by Appliances. Virtual Machines are

characterised by Load (CPU, memory and disk usage statistics) and Performance (duration

of a single request or number of requests per second). Each Appliance is assigned a certain

amount of resources (CPU, memory and disk storage, expressed as Cloud instance size)

represented by ResourceAllocation. Appliances may be instantiated from and saved as

ApplianceTemplates. AvailableAppliance is a base class for Appliance and

ApplianceTemplate classes. It encapsulates attributes and methods common for both of

these classes. Examples of such common attributes include ApplianceState, which represents

the condition of a resource (whether it is running, stopped etc.) and ApplianceType,

determined on the basis of what type of Application (i.e. arbitrary VPH-Share process) is

installed. An Appliance requires an InitialConfiguration which contains the initialisation

context for a given Virtual Machine (for instance a root public SSH key), data required to

properly configure and start the hosted Application as well as a list of DataSources that will

be used by the application (required for deployment plan optimisation). Applications

consume and produce data represented by LogicalData items that are grouped in DataSets

retrieved from/stored in DataSources. Applications and LogicalData may have

SecurityConstraints associated with them that will – for instance – restrict the list of

CloudSites at which sensitive data may be processed. DependentWorkflow models any

application that requires the availability of specific Atomic Service Instances.

In Figure 17, Classes that are coloured light green are persisted in the Atmosphere Internal

Registry.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 35 of 79

Figure 17: UML class diagram of the internal representation of the Cloud infrastructure, Atomic Services and

Atomic Service Instances used by the Allocation Management Service. Classes coloured light green are persisted in

the Atmosphere Internal Registry.

4.1.3 Deviations from proposed design

In the original design (see Section 4.1.2 in deliverable D2.2 (5)) it was stated that AIR is a

component of the Allocation Management System; however we have since discovered that

AIR functionality is also useful for other WP2 tools, such as DRI. Therefore, AIR has been

extracted from AMS as a standalone subsystem and will be separately described in the next

section of this deliverable. It was also assumed that AMS would expose its interface as a

REST or Web Service endpoint. During development it turned out that it is more convenient

to provide a single entry point for all WP2 remote endpoints and publish it through the Cloud

Facade. Hence, AMS will only provide a local OSGI (7) service for the Cloud Facade.

4.1.4 Future work

During the coming months work on AMS will focus on collecting online monitoring data

about the availability and load of Virtual Machines, and storing such data in AIR. A

dedicated AMS component, called the Monitoring Controller Client will be developed. It will

be responsible for registering and unregistering Atomic Service Instances in the Zabbix

monitoring framework deployed in CEE. We will also focus on enhanced optimisation

algorithms, taking into account the load of Atomic Service Instances, rather than just their

availability.

4.2 Atmosphere Internal Registry

The Atmosphere Internal Registry (AIR) is responsible for delivering the persistence layer

and inter-component exchange mechanism for metadata regarding the Project’s computing

and data cloud. This information is stored, shared and consumed by components of the VPH-

Share software; particularly by elements of the Atmosphere cloud computing and data

provisioning platform (see Section 4.1.2 for details). Conceptually, AIR should be treated as

part of Task 2.1; however due to the fact that it is implemented as a standalone component

and its functionality is not limited to supporting the AMS service, we have decided to

describe it in a separate top-level subsection of this deliverable.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 36 of 79

The main duties involve establishing a common domain model for VPH-Share metadata

exchange, providing a suitable persistence mechanism to securely store and manage that

metadata and exposing a set of appropriate API (Application Programming Interface)

operations for the other entities in VPH-Share to use that functionality for their purpose.

The following sections provide an up to date description of AIR functionality at the end of

Year 2 of the Project. They present both the internal structure of the registry and the external

programmable interfaces for other software to interact with the data. The tool is available at

(11).

4.2.1 Description of the 2nd AIR version

The initial AIR prototype was deployed in late 2011 and the registry has been periodically

updated since. Such incremental development enables the developers to fix existing

shortcomings quicker and introduce new features more smoothly. They also support

incremental updates of any AIR-dependent tools’ interfaces.

As of Project Month 24 AIR has gone through a dozen such iterations. Below we present the

current architecture of the registry.

4.2.2 Architecture and Domain Model Division

The internal architecture of AIR was considerably extended when compared to the first

prototype (see Section 2.2.2 of deliverable D2.3 (12)).

Figure 18: Architecture, APIs and domain models of the second version of Atmosphere Internal Registry. The most

notable changes with respect to the first prototype include the addition of several domain submodels, removal of the

Logic Dataset model and further API extensions.

Atmosphere Internal Registry

Persistence Layer
based on Ruby

Mongo Driver and
SemInt library

Domain Model

MongoDB
NoSQL

database

<<artifact>>

REST API Service

HTML Service

Web Interface

User Workflows and Keys model
<<artifact>>

Security Policies model
<<artifact>>

Atomic Services and Configurations model
<<artifact>>

Compute Sites, Hosts and VMs model
<<artifact>>

Cloud/Hosts/VMs API

Workflow/Keys API

For AIR administration,

testing and curation of

current metadata.

Atomic Services API

Computing Sites API

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 37 of 79

As presented in Figure 18, the current version of AIR is capable of storing and publishing the

following metadata elements:

1. Public security keys registered by users and the workflows executed in the VPH-

Share Portal. This model is user-scoped – it stores information for specific users of

Atmosphere.

2. Security policies fetched from AIR and uploaded to Atomic Service Instance in order

to establish proper local authorisation mechanisms. This model has a global scope – it

stores registered policies for the entire VPH-Share infrastructure.

3. Definitions of the available Atomic Service types and configurations, which may be

used when deploying new instances of these services to the cloud. These definitions

and initial configuration files are also global in scope.

4. Infrastructure information concerning the available Compute Sites, the hardware

resources available for deployment of new Atomic Service Instances and any running

Virtual Machines. This model, apart from the topmost sites layer, is subdivided into

cloud sites.

Regarding the technologies used inside AIR, the situation is similar to the first prototype. The

persistence layer is provided with use of the MongoDB schemaless database, while the

domain models, defined using a Semantic Integration (13) methodology to provide semantic

abstractions (concepts) over the data inside that database. Web interfaces utilize the Sinatra

web toolkit deployed on top of an Apache2 server(14).

4.2.3 Interfaces

AIR provides two types of interfaces – an HTTP API through which other applications and

clients can use AIR programmatically, and a basic, internal Web UI for human users

(especially system administrators).

The current set of API calls supported by the second AIR version is listed in Table 1. Please

note this is simply an overview of what is possible with the current version of AIR. A

detailed list of parameters, JSON structures and return codes is available online (11).

Table 1: Complete list of all API calls available in the second version of AIR (February 2012). A detailed manual on

the supported API operations is available online as part of the AIR user interface. The deprecated DataSource API is

omitted in this table, however for the sake of backward compatibility it is still supported by the registry.

AIR model API operation call header Meaning

DataSource

management

--- Deprecated. See following sections of this

document for the reason of removing DataSource

model from AIR and further information on where

the DataSources metadata is available now.

User

Workflows

GET: /running_workflows Gets the JSON structure of all running workflows,

grouped by user names of their owners. Among

others, the returned metadata contains workflow

context id, its execution state, the type and priority

of the workflow and the list of all Atomic Service

Instances (VMs) it uses.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 38 of 79

AIR model API operation call header Meaning

 POST: /workflow/start Creates a new workflow entry on behalf of a

specific VPH-Share user.

 POST: /workflow/stop Deletes a workflow entry.

 GET: /workflow/(context_id) Gets the JSON structure of a running workflow

identified with the context_id. The returned

information set is similar to the

running_workflows operation result.

 GET: /workflow/

get_user_workflows/

(vph_username)

Gets the list (as a JSON structure) of all workflows

owned by a user identified with a

vph_username.

 PUT: /workflow/associate_vms/

(context_id)/(vms_id)

Associates a virtual machine with a workflow

instance. From now on the infrastructure assumes

the workflows depends on the vms_id VM.

 DELETE: /workflow/

remove_vms_association/

(context_id)/(vms_id)

Removes the VM-workflow association previously

added with the PUT associate_vms operation.

 GET: /user_key/get_user_keys/

(vph_username)

Gets the list (as a JSON structure) of all public

keys stored for a given vph_username user.

Key

management

GET: /user_key/get_public_key/

(vph_username)/(id)

Gets the public key payload.

 DELETE: /user_key/1

(vph_username)/(id)

Removes the public key from AIR.

 POST: /user_key/add Registers a new public key on behalf of a specific

VPH-Share user.

Compute Site

management

GET: /get_compute_sites/ Returns a JSON structure with full metadata

regarding the available Compute Sites. Please note

that new Compute Sites are automatically

registered when incoming add_host or

add_vms API calls use a new site_id

identifier. There is no need to explicitly register

new Compute Sites.

 GET: /get_hosts_for_compute_site/

(site_id)

Returns a JSON structure with full metadata

regarding Hosts which belong to the Compute Site

specified by site_id.

Host and VM

management

POST: /add_host 'Upserts' another host to the topology – adds it if

no such host is found in the data or updates altered

fields if the host has been registered before.

 POST: /add_vms 'Upserts' another virtual machine instance (or

template of such) to the topology – adds it if no

such VM is found in the data or updates altered

fields if the VM has been registered before.

 GET: /get_running_vm_specs Generates a JSON file with detailed list of hosts

and running virtual machines, along with the

specification and used/free resources.

 DELETE: /remove_vms /(vms_id) Removes metadata for the virtual machine

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 39 of 79

AIR model API operation call header Meaning

identified by vms_id.

 DELETE: /remove_host /(host_id) Removes the host metadata from the registry,

where the host is identified by host_id.

Atomic

Service

management

GET: /get_appliance_types/ Returns a JSON structure with full metadata

regarding the registered Atomic Service Types and

uploaded Atomic Service Configurations inside

AIR.

 POST: /add_appliance_type Creates a new Atomic Service Type according to

the input arguments.

 DELETE: /appliance_type/

(apl_type_id)

Deletes an Atomic Service. To be removable the

Atomic Service cannot be associated with any

active instances (VMs) and should not have any

configurations uploaded.

 GET: /get_vms_by_appliance_type/

(conf_id)

Gets the JSON metadata of the virtual machines

which are currently set to represent a certain

Atomic Service.

 GET: /get_appliance_config/

(conf_id)

Downloads the payload of the configuration file

with configuration ID equal to conf_id.

 POST: /upload_appliance_config Uploads a configuration string as a new Atomic

Service configuration.

 DELETE:

/appliance_config/(conf_id)
Removes the configuration of the conf_id

identifier from AIR.

 GET:

/get_appliance_type_for_config/

(conf_id)

Gets a JSON description of a specific Atomic

Service. The Atomic Service is chosen according

to the passed Initial Configuration ID.

 GET: /get_appliance_type_for_vm/

(vms_id)

Gets a JSON description of a specific Atomic

Service. The Atomic Service is chosen according

to the identified instance (VM).

Security

Policy

management

GET: /list_security_policies Lists metadata about all current security policies

(in JSON format).

 GET: /security_policy Downloads the payload of the security policy with

a given name.

 POST: /upload_security_policy Uploads a new Atomic Service security policy.

 DELETE: /security_policy Removes the security policy identified by

policy_name.

Although the list in Table 1 is already quite long, it is still expected to grow and change

during the future implementation cycles of AIR, according to the evolution of VPH-Share

user requirements and software. All the listed operations are secured with the basic

authentication (HTTP) protocol.

The second type of interface is an administrator Web UI delivered as a set of HTML views

over HTTP. Internally the controller tier of AIR uses the same metadata to produce HTML

views for the human user. The following figures (Figure 19, Figure 20, Figure 21, Figure 22)

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 40 of 79

show a glimpse of the interface (it is not feasible to include screenshots of all AIR views

here).

Figure 19: The main menu of the AIR Web user interface. The subsections of the interface correspond to the domain

division of the models. Detailed API help is available for each section. Please note the Data Sources and Data Sets are

left for compatibility reasons and will be removed as soon as all client tools switch to the LOBCDER metadata

solution.

Figure 20: An excerpt from the user workflow management area. The administrator is able to see the workflows

executed in the VPH-Share infrastructure at any given moment. In case of problems, the administrator can also view

the owner of the workflow in order to contact that person. Stopped (past, archived) workflows are also stored here, as

are public user keys.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 41 of 79

Figure 21: An example of an administrator dialog for management of registered Atomic Services, their properties,

optimization characteristics etc. Some runtime information such as interface endpoints or IP port mappings required

by the service is also stored here. The administrator uses this section of AIR to publish new security policies and

virtual machine configuration files.

Figure 22: Metadata concerning a single host which belongs to the VPH-Share infrastructure. For a given machine

and the virtual machines running there Atmosphere requires a considerable amount of information in order to

support optimized, effective cloud provisioning.

The AIR web UI is not intended for the actual end users in the VPH-Share community, i.e.,

the scientists. Rather, the aim is to provide system administrators with the ability to register

new entities inside AIR, check if the stored metadata is valid and set up important parameters

of the Atmosphere cloud provisioning mechanisms. Administrators may also monitor the

current state of running user workflows and the registered infrastructure elements: Compute

Sites, Hosts and Virtual Machines.

4.2.4 Relocation of Metadata Related to Cloud Data Source

One important change with respect to the first prototype of AIR (see Section 2.2 of

deliverable (12)) is the removal of the metadata related to Data Sources. This was performed

in cooperation with the Project Implementation Group, the LOBCDER developers and the

persons responsible for semantic metadata management in WP4.

All the tools and users who require access to metadata regarding VPH-Share Data Sources,

will be able to retrieve such metadata from either the LOBCDER metadata service

(information related to the runtime properties of the files: checksums, sizes, full paths etc.) or

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 42 of 79

WP4 Semantic Services (metadata regarding semantics, or “meaning” of the stored files).

This change has occurred for two reasons: performance requirements related to accessing file

data and the need for better separation of responsibility between WP2 and WP4. Please

consult Section 4.5 for a more thorough description of how LOBCDER handles metadata.

4.3 Cloud Execution Environment

4.3.1 Structure of the existing Cloud platform

The Cloud Execution Environment (CEE) constitutes a specialized platform, which is

interfaced by:

 The Atmosphere component described in Section 4.1, to enable low-level operations on

Virtual Machines, such as managing the VM lifecycle or preparing snapshots that can be

used as templates.

 The WP3 tools, as a Private Cloud storage backend used by such tools to store and

manipulate data.

CEE is composed of several components, shown in Figure 23, some of which are off-the-

shelf while others are custom-developed.

Figure 23: Architecture of the Cloud Execution Environment, including OpenStack nodes (CC, VM, Swift),

additional management VM (for the Nginx-based reverse proxy) as well as external components.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 43 of 79

The main components are elements of the OpenStack (15) middleware suite (described in

more detail later on in this document) responsible for providing computational and storage

features for the private cloud installation.

During the last year we have doubled the number of nodes used by the computational part of

the cloud (from 7 to 14 nodes). All deployed nodes are homogenous with regard to hardware

(HP ProLiant BL2x220c G5, 2 x Intel Xeon L5420, 16GB RAM, 120 GB internal HDD).

One of them acts as the Cloud Controller (CC) and the rest are used to run VMs. All nodes

have access to approximately 3 TB of external shared storage space (NFS on iSCSI volume)

backed by a disk array with fast (15000 RPM) SAS hard drives. This shared space is used to

store VM templates and images of running Atomic Service Instances. We have also deployed

infrastructure-monitoring tools, which allow us to judge that at the current stage of the project

the presented resources are more than sufficient. However we are ready to extend our

resource pool if demand increases. All mentioned nodes are connected to an Ethernet switch

with support for 802.1Q VLANs using 1 Gbps ports (switch uplink port is 10 Gbps). As such,

the physical network layout is consistent with the description and diagram presented in

Section 4.2.3 of deliverable D2.2 (5). According to the description contained in that

document this layout enables us to choose any network mode available for OpenStack. As a

result we have decided to use a VLAN-based network setup, which provides 2 VLANs – one

for physical nodes and one for VPH VMs, which provides L2 level separation. However, if

required (e.g. for security reasons), this deployment allows us to provide additional VLANs

for multiple VM groups that should be separated. Finally, in addition to internal LANs (using

private IP addresses) the CC Node is connected to the Internet (WAN) and has a public IP

address. Thus, the CC node can act as a NAT-enabled router for the remaining physical nodes

and VMs, including both SNAT (for all IP outbound traffic) and DNAT (for some inbound

traffic on predefined TCP/UDP ports) between cloud VMs in a private LAN and the Internet.

The DNAT (Destination Network Address Translation) mechanism is remotely configurable

via the NAT Controller – a lightweight service written in Ruby, exposing a RESTful API,

and is used by AMS to provide TCP/UDP port redirection for any network service (other

than Atomic Service Instance HTTP(s) endpoints) such as SSH or VNC. ASI, on the other

hand, required a more intelligent solution enabling redirection of traffic based on deeper

packet inspection (in the application layer) for which we have proposed a solution based on

the Nginx (16) server acting as a reverse proxy. It is configured using the Proxy Controller,

a lightweight service written in Ruby that exposes a RESTful API (with the help of the

Sinatra library). The Proxy Controller is used by the Proxy Controller Client (part of AMS)

to register and unregister ASIs. All components of the proxy are deployed on a dedicated VM

(marked as “management VM”), directly connected to both the Internet (public IP) and all

LANs (private IPs). Both mechanisms (NAT and the proxy) facilitate conservation of the

public IP address space. Such mechanisms may also prove critical for (pre-IPv6) future

development of scientific clouds especially given the exhaustion of IANA’s IPv4 pool and

near-exhaustion of RIRs pools, such as RIPE NCC responsible for allocations in Europe (17),

which, as of 14 Sep 2012, began allocation of IPv4 space from the last /8 block

(https://www.ripe.net/internet-coordination/news/announcements/ripe-ncc-begins-to-allocate-

ipv4-address-space-from-the-last-8). In turn, RIPE is now distributing IPv4 addresses in

accordance with the section 5.6 of “IPv4 Address Allocation and Assignment Policies for the

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 44 of 79

RIPE NCC Service Region”, which prevents any non-LIR provider from getting new

independent public IPv4 resources, as well as imposes a hard limit even on LIRs by allowing

only a single allocation of /22 subnet (1024 addresses) provided the LIR meets special

conditions. Unfortunately, direct use of an IPv6-only network for our cloud installation is not

possible as IPv6 support in the public Internet is still lagging; however OpenStack already

supports this protocol and it remains a possible option for the future. Note that the use of

dual-stack (private IPv4 network and public IPv6 addresses) solutions would preclude direct

access from IPv4 clients (NAT/Proxy mechanisms still would be required).

The storage component of our private cloud is currently deployed on 5 physical nodes. Its

frontend is deployed on the CC node, while storage nodes are provided as 4 dedicated

physical nodes – typical 1RU form-factor servers with single Intel Xeon CPU (dual core,

2.80GHz) and 2x2TB 7200 RPM SATA HDD per node. As suggested by OpenStack

developers, the XFS file system is used on those volumes. As data is stored by our

installation of OpenStack in a triple-redundant manner, ca. 5.3 TB of space is available;

however, just like the computational part of our cloud, the storage space can be flexibly

increased if required.

4.3.2 Cloud middleware stack

As foreseen during the design phase, we have deployed the OpenStack middleware suite in

our private Cloud infrastructure. The currently installed release is Folsom, which at the time

of preparation of this document, is the most current stable version of OpenStack.

More specifically, we have deployed four of the “core” services of this release:

 Identity (Keystone) – responsible for centralized management user credentials for other

services that are used for authentication and authorization, as well as acting as a service

catalogue (storing other service endpoints). It provides a REST-based API (current

version 2.0) however this API is only used internally by the stack and not exposed to the

rest of the platform.

 Computing (Nova) – directly responsible for managing the lifecycle of VMs and ASIs. It

provides an external REST-based OpenStack Compute API (a.k.a. Nova API, currently in

version 2) which is used by the Cloud Client component of Atmosphere (by way of the

JClouds (10) library).

 Image Service (Glance) – this enables storage of VM templates used to instantiate Atomic

Service Instances. It also provides a REST-based API (called the OpenStack Image

Service API; a.k.a. Glance API, currently in version 1.0/1.1) however this API is only

used internally by the Task 2.1 middleware stack and not exposed to the rest of the

platform as it is not required by external clients.

 Object Storage (Swift) – for the storage part of the Private Cloud used by WP3 tools and

WP5 services. Like other parts it also provides a REST-based “OpenStack Object

Storage” API (a.k.a. Swift API, currently in version 1.0), which is exposed for external

clients and can be interfaced by the LOBCDER storage federation described in Section

4.5.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 45 of 79

We have performed standard manual software installation using official package repositories

as described in the project documentation. In accordance with this description we have used

Ubuntu (12.04 LTS) on all nodes.

4.3.3 Infrastructure provisioning status

While migrating the CYFRONET cloud site to the Folsom release we have also taken the

opportunity to purge old and unneeded AS images, while preserving the actual application

services belonging to VPH-Share workflows. Table 2 summarises the application services

currently provided on the CYFRONET site.

Table 2: Virtual Machines provisioned to VPH-Share developers as of Project Month 24.

VM no. Allocated

resources

Recipient Purpose

1 1 VCPU, 2 GB

RAM, 5 GB

HDD

 [UVA] VM for development and testing of

the ViroLab workflow

2 1 VCPU, 2 GB

RAM, 5 GB

HDD

Martin

Steghöfer [UPF]

VM for the Taverna Server

3 1 VCPU, 2 GB

RAM, 5 GB

HDD

Xavier Planes

[UPF]

Non-interactive part of the @neurIST

workflow

4 1 VCPU, 2 GB

RAM, 5 GB

HDD

Xavier Planes

[UPF]

Interactive part of the @neurIST

workflow

5 1 VCPU, 2 GB

RAM, 10 GB

HDD

Eric Kerfoot VM for Atomic Services used as part

of the euHeart workflow

6 1 VCPU, 2 GB

RAM, 25 GB

HDD

Xavier Planes

[UPF]

VM for the ANSYS simulation

package

7 1 VCPU, 2 GB

RAM, 10 GB

HDD

[ATOS] euHeart workflow VM clone to

enable development and testing of the

security framework

8 1 VCPU, 2 GB

RAM, 6 GB

HDD

[P-Medicine] The OncoSimulator application

9 1 VCPU, 2 GB [UvA] DataFluo application components

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 46 of 79

VM no. Allocated

resources

Recipient Purpose

RAM, 6 GB

HDD

(Master Node)

10 1 VCPU, 2 GB

RAM, 6 GB

HDD

[UvA] DataFluo application components

(Worker Node)

In addition to these resources we have also allocated space on storage part of the cloud for:

 Testing the WP3 tools during their development process.

 Storage of data required to test the @neurIST workflow.

4.3.4 Future work

The process of migration from Diablo to Folsom was smooth; however, similarly to initial

installation, we had to overcome several minor glitches and some outstanding issues may still

require further work.

The issues already addressed are as follows:

 There is still no built-in mechanism for redirecting TCP/UDP ports. As a result, we are

using the previously described NAT Controller, which has performed its function well

and would most likely be a permanent solution in the VPH-Share platform.

 Contextualization mechanisms do not automatically remove old keys. We’re verifying

that the key is removed before creating a template however the process needs to be

automated so that no previously injected credentials slip into the template.

 Template saving progress is not reported – this is not a real issue as templates are

properly created and information about their readiness is communicated to the client –

however the lack of a progress indicator mars the user interface.

The problem with creating templates using JClouds (reported in D2.3) has been solved and

this feature is now fully supported.

We have also deployed a dedicated Zabbix-based monitoring infrastructure for the VMs and

ASIs. We had initially planned to deploy a solution based on Nagios, however we have since

changed those plans mainly due to the fact that the current version of Zabbix offers a JSON-

RPC based API that allows smooth integration with the AMS (including the ability to

register/unregister ASIs and extract monitoring data). Additionally, our research indicates

that Zabbix is also a reliable platform, hence its deployment in place of Nagios would not

degrade our infrastructure.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 47 of 79

4.4 High-Performance Execution Environment

The Application Hosting Environment (AHE) 3.0 is a lightweight middleware suite which

virtualises grid applications and exposes their features as RESTful web services. Grid

middleware tools are complicated applications with a steep learning curve. This is often a

troublesome issue for scientific end users. AHE attempts to hide the complexity of the

underlying HPC resources by providing a lightweight layer between the grid middleware and

the user. An expert user is required to setup AHE with information on how and where to

execute an application. Once this is completed, the scientific end user can execute the

application through a set of simple RESTful web service commands.

The Audited Credential Delegation application (ACD) provides a secure solution that audits,

authenticates and authorises user commands. It also provides virtual organisation

management as well as credential delegation features. ACD is implemented as a RESTful

web service and, in conjunction with AHE, provides a simple way to handle grid credentials,

and manage data and computational jobs.

AHE and ACD can be accessed using RESTful web service. AHE accesses the underlying

grid middleware using a number of Java middleware client libraries, including UCC

(unicore), JGlobus (Globus) and QcG to launch applications that have already been installed

in the relevant grid infrastructure. AHE also supports file transfers using WebDAV and GSI-

FTP protocols. AHE can use ACD to authenticate and authorise the user and generate proxy

certificates on the user’s behalf. AHE itself is able to check and auto-generate MyProxy

certificates if required.

4.4.1 Current Status of the Prototype

During the second year of the project (following the issuance of Deliverable 2.3) a newly

designed version of AHE 3.0 has been implemented in Java. AHE 3.0 can be deployed in two

different versions: as a standalone Java application using an embedded Jetty Server, or as a

servlet that can be deployed on a servlet-compliant server such as Apache Tomcat. AHE 3.0

can be categorized into two major components: the AHE core server which consists of a

public RESTful API, internal data registries to store descriptions of users, applications,

application instances, workflow management engines, and AHE module servers. The other

major component is a set of AHE module servers. These modules generally provide a set of

features such as job submission for specific middleware, or data transfer. Each module server

is exposed using an internal RESTful API. In summary, AHE 3.0 consists of the AHE core

server with a public API and many AHE module servers, which communicate with the AHE

core servers to perform specific functions. This architect allows AHE to be more scalable and

resilient to module failures. It also overcomes the JAR dependency conflicts seen in the

previous version of AHE.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 48 of 79

Figure 24 AHE 3.0 web service oriented architecture

The AHE core server consists of the core data structures and libraries that implement AHE

functionality – these include user, security, application, resource, and workflow management.

AHE is currently able to create and edit user information and security credentials. This allows

AHE to authenticate or map the user to ACD for authentication and authorisation. It is also

able to set up a set of credentials to connect to the underlying grid middleware. An

application and resource registry has been implemented in AHE using the Hibernate ORM

(Object-Relational Mapping) framework, which allows AHE to set up virtual applications on

corresponding resources. These applications translate into VPH-Share Atomic Services and

can be managed by Atmosphere. The main features enabling AHE to create and initiate

virtual applications have also been implemented. This allows the user to find the application

they wish to launch and submit it, along with the required input data, to the resource they

desire. When the user initiates a virtual application or workflow, the persistent workflow

engine starts a new workflow and proceeds through successive workflow stages. The AHE

workflow engine enables simple job submission with pre- and post-processing stages to be

implemented, it also allows more complicated workflows for virtual applications (such as

error recovery) to be created.

As of Project Month 24, additional features has been added to AHE 3.0 include support for

VPH-Share authentication as well as implementation of an AHE Web client using the Google

Web Toolkit. A number of new features have also been added to AHE 3.0, including session

token management, WebDAV support and file upload.

AHE currently includes a number of middleware connectors: QcG (using the QcG Java

SDK), Unicore (using the UCC Java library) and Globus (using the JGlobus library). AHE is

able to generate a submission object compliant with those connectors from the application

execution details and configurations provided by the user. AHE is also able to handle

GSIFTP and WebDAV file transfer protocols. The WebDAV transfer protocol is

implemented to integrate AHE with the VPH-Share LOBCDER storage mechanism. Each of

these middleware and data transfer handlers are implemented in a dedicated AHE module

server.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 49 of 79

The RESTful web API for AHE has been updated and streamlined since Project Month 12.

The interface of this service is presented in Table 3.

Table 3: AHE service API.

HTTP

Method

URI Resource Comment

Post /profile Add User

Post /profile/{profile_id} Edit user

Get /profile List all user

Delete /profile Remove User

Post /cred Add credential

Post /cred/{cred_id} Edit credential

Get /cred List credentials

Delete /cred/{cred_id} Remove credential

Post /profile/{profile_id}/cred/{cred_id} Add credential to user

Delete /profile/{profile_id}/cred/{cred_id} Remove credential from user

Get /appinst Get status of application instance

Post /appinst/{appinst_id}/transfer Set data staging for both stage in

and out

Get /appinst/{appinst_id}/transfer Get data staging information

Post /appinst Prepare virtual application

Post /appinst/{appinst_id}/runtime Start application / workflow

Delete /appinst/{appinst_id} Terminate

Get /appinst List all jobs

Post /appinst/{appinst_id}/property Set application instance property

Get /appinst/{appinst_id}/property Get application instance property

Get /appinst/{appinst_id}/property List all application instance

properties

Post /resource Create a resource in the resource

registry

Post /resource/{resource_id} Edit a resource in the registry

Delete /resource/{resource_id} Delete a resource in the registry

Get /resource List all resources in the registry

Post /app Create an application in the

application registry

Post /app/{app_id} Edit an application in the

application registry

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 50 of 79

HTTP

Method

URI Resource Comment

Get /app List all applications in the

registry

Delete /app/{app_id} Delete an application in the

application registry

Post /session Generate temporary session

token

The Audited Credential Delegation (ACD) application has also been implemented as a

RESTful web service. Currently, ACD can be deployed as a standalone application using an

embedded Jetty server or as a servlet container deployable on servlet compliant servers such

as Apache Tomcat.

ACD is currently able to audit commands issued by the user. It is also able to set up virtual

organisations (VO) including member management and group certificate setup, allowing

ACD to generate proxy certificates for each member of the VO. Finally, ACD is able to

authenticate and authorise users based on their roles (administrator or researcher). It supports

Shibboleth authentication as well as local username/password database authentication.

A summary of ACD RESTful web service commands can be found in Table 4.

Table 4: ACD RESTFUL API.

Command HTTP

Method

Resource Comment

createlocalACDAccount Post User Create new

ACD account

createNewVO Post CMD Create new

Virtual

Organisation

generateProxies Post CMD Generate proxy

registerUser Post CMD Register user in

VO

getACDAudit Get CMD Get ACD audit

getCertificateDetail Get VO Get certificate

details

getRoleAssignment Get ACD

Credential

Get role

assignment

getuserACDAccounts Get User Get user ACD

account

getUserVOs Get ACD

Credential

Get user VO

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 51 of 79

Command HTTP

Method

Resource Comment

viewAllRoles Get CMD View all roles

viewCurrentVOs Get CMD View current

VO

assignP12CertToVO Post VO Assign P12

certificate to VO

assignUserToRole Post ACD

Credential

Assign user to

role

assignUserToVO Post VO Assign user to

VO

changelocalACDPassword Post Login Change user

local ACD

password

updateP12VOCert Post VO Update P12

certificate of

VO

updateRegisteredUserDetails Post User Update user

details

resetACDPassword Post Login Rest user ACD

password

RevokeUserRole Delete ACD

Credential

Revoke user

role

deactivateACDUser Delete Login Deactivate ACD

user

Deactiveteall Delete User Deactivate all

removeUserVOs Post VO Remove user

from VO

4.4.2 Deviations from Proposed Design

Several changes in AHE have occurred since the publication of Deliverable 2.2. First,

JavaGAT will not be used in the Connector module, as AHE does not currently require the

features provided by JavaGAT or general-purpose grid SDK libraries. Instead, it is simpler to

use UCC for Unicore, JGlobus for Globus and additional middleware Java client libraries, as

required.

Since Project Month 24, AHE 3.0 had to be rewritten using a web service-oriented

architecture to improve performance and reliability as well as overcome the Java JAR file

conflict issue. Several components have been added as extensions to the presented design,

particularly in the context of user credential management. This is due to the fact that AHE

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 52 of 79

may have to be deployed without ACD. Proxy Delegation support has also been added to

AHE, enabling AHE to automatically obtain proxy certificates on behalf of the user.

In ACD, one major change is that ACD will no longer intercept commands from AHE and

authorise them. Instead, all commands will be authorised by AHE, while ACD is used to

authenticate the user and – if necessary – generate proxy certificates.

4.4.3 Future work

Since Project Month 24 AHE has been re-implemented with the introduction of a streamlined

RESTful API and numerous bug fixes and additional features. On-going work involves

testing the AHE 3.0 VPH-Share authentication system with the VPH-Share Security Proxy.

The introduction of a new AHE web client also calls for integration of the AHE client with

the VPH-Share master user interface.

Other development plans for AHE involve implementation of several use cases to ensure that

AHE is able to run real-world scenarios. As ascertained in the course of discussions with

WP5 representatives, this includes using GROMAC for HIV studies in ViroLab, and euHeart

simulations. AHE will also implement more complex workflow support, enabling error

recovery, batch job submissions and application scheduling. Error recovery will allow users

to reconfigure a virtual application when AHE has discovered an error during job submission:

once an error is detected AHE waits for the user to correct the error or terminate the

application. Batch job workflows will allow users to run simulations which exploit the same

application but with a different range of variables per submission. The job scheduler will

allow users to run applications concurrently, creating a coupled simulation. We will also

investigate more intuitive complex workflow management methods and integration with the

workflow engine.

Additionally, AHE will be integrated with external grid libraries, including Steering,

SPRUCE emergency submission and advance reservation functions.

Currently, there are no major issues with ACD. However, we are investigating the

implementation of OpenID in ACD for authentication as well as implementing database

access using Hibernate ORM. This will allow ACD to be more easily deployed.

4.5 Data Access for Large Binary Objects

The Large OBject Cloud Data storagE fedeRation (LOBCDER) is a storage federation

service that aims to ensure reliable, managed access to distributed scientific data stored in

various storage frameworks and providers. LOBCDER needs to expose and share large

amount of data within the VPH-Share community without having to modify existing

applications and services.. Not only because the complexity of managing and maintaining the

existing software stack is already high, but also because some storage that holds datasets is

outside our administrative domain. Therefore, LOBCDER loosely couples with a variety of

storage resource that may use different technologies such as S3, Swift, and GridFTP. As a

result, LOBCDER transparently integrates multiple autonomous storage resources and

exposes all available storage as a single namespace to provide benefits such as:

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 53 of 79

 distribution of data to ensure accessibility and reduce latency

 dynamic addition and removal of storage resources

 provisioning virtually limitless storage capacity

 improved collaboration through data sharing

 simplifying the process of developing scientific applications

The LOBCDER service is divided into three main layers. Figure 25 shows the conceptual

design of LOBCDER, which includes the Frontend, the Resources and the Backend. In the

top layer LOBCDER presents a logical file system as a Web-based Distributed Authoring and

Versioning repository (WebDAV). This logical file system is stored and queried in the

persistence layer, which is a database holding only the metadata of the files stored in the

physical storage resources. Moreover, every logical file can be physically stored in more than

one storage resource.

More specifically, the purpose of the Frontend is to provide access and control through

standardized interfaces. This removes the need for developing and maintaining specialized

clients. LOBCDER’s Frontend is a WebDAV servlet, which presents the entire available

storage space via HTTP. Although HTTP is not specifically designed as a file transfer

protocol, it has proven suitable for file transfers. Content Delivery Networks, such as

YouTube, are able to upload and download large files
1
 with the use of HTTP. Additionally,

the LOBCDER frontend provides a RESTful service that allows clients to get and set

extended attributes and metadata.

The purpose of the Resource layer is to create a logical representation of the physical storage

space. The first part of the Resource layer contains an implementation of the WebDAV

resources and the resource catalogue. The WebDAV resources implement the WebDAV

specification while the catalogue is responsible for querying the persistence layer for logical

resources. The second part of the Resource layer contains the logical resources’ metadata and

their storage resources. Finally, the Backend layer provides the necessary abstraction to

uniformly access physical storage resources. The main component is a virtual resource

system client, which is able to access any physical resource system thus providing a uniform

API to the components above it.

1
 According to Youtube users can upload files up to 20 GB each

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 54 of 79

Figure 25: Conceptual design of LOBCDER.

4.5.1 Status of the Prototype

As described in deliverable D2.2 (5), the Frontend enables the following operations on the

WebDAV resources:

 Copy creates a duplicate of a source dataset (identified by its Logical Data Resource

Identifier or LDRI, which is an URI (Universal Resource Identifier) pointing to the

dataset in LOBCDER), at a destination data resource

 Delete removes a data resource

 Lock/Unlock locks and unlocks access to a data resource while its owner is modifying it

 Make Collection creates a new collection (or bucket) at the location of the specified

LDRI

 Move moves a data resource to the location specified by an LDRI

 Get Properties retrieves properties for a data resource such as mime type, and length

 Upload/Download enables basic (non-DAV-specific) interaction with storage resources.

Currently LOBCDER is able to provide all of these operations, except for the lock/unlock

operation. More specifically, the current state of the LOBCDER prototype is depicted in the

class diagram shown in Figure 26. In addition to the WebDAV frontend LOBCDER also

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 55 of 79

provides a RESTful service that enables clients to get and set extended attributes and

metadata. An extension to the file attributes handled by LOBCDER is the supervised

property and lastValidationDate. The supervised property means that a file is supervised by

the DRI (see Section 4.6), while lastValidationDate is the date when the file was validated

DRI. More specifically the service has the following features:

 A client can get the list of metadata related to a set of files by a GET query in the form of

http://host/lobcder/rest/Items?path=/path/to/parent/dir in JSON or XML format. The

result is the metadata for all files, which are located under this parent directory and its

subdirectories.

 To set the “supervised” property for all files located under a specified directory, the client

can send a PUT query in the following form:

http://host/lobcder/rest/Items/TRUE?path=/path/to/parent/dir

 To reset the “supervised” property for all files located under a specified directory, the

client can send a PUT query in the following form:

http://host/lobcde/rest/Items/isSupervised/FALSE?path=/path/to/parent/dir

 To get the metadata of a file specified by its UID (in JSON or XML format) the client can

send a GET query: http://host/lobcder/rest/Item/{uid} (where uid is the unique file

identifier).

 To set the “supervised” flag for a specific file the client can send a PUT query:

http://host/lobcder/rest/Item/{uid}/supervised/{flag} (where uid is the unique file

identifier and flag is either TRUE or FALSE).

 To set the checksum value for a file the client can send a PUT request:

http://host/lobcder/rest/Item/{uid}/checksum/{checksum} (checksum is an integer)

 To set the last validation date value for a file the client can send a PUT request:

http://host/lobcder/rest/Item/{uid}/lastValidationDate/{lastValidationDate

(lastValidationDate is the number of seconds elapsed since the beginning of the current

Unix epoch)

In addition to introducing the RESTful API, LOBCDER has updated the following:

 The catalogue is built up from scratch based on JDBC and extensively uses indexes and

SQL for efficient query operations.

 Operations that do not involve physical data are performed on the catalogue level only.

Here, SQL is extensively used to perform most operations on the database side in order to

minimize remote procedure call (RPC) impact.

 For the COPY WebDAV operation a COPY-ON-WRITE strategy is used: this operation

only updates the catalogue. A new entry is created with references to the same physical

data. If the file is subsequently modified, a new physical record is created for it and the

references are updated.

 For the DELETE WebDAV operation, the catalogue uses delayed delete. This means that

only catalogue entries are deleted. Here SQL is used as much as possible to minimize

RPC impact. Physical entries are asynchronously deleted in the background.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 56 of 79

At this point we will provide a description of the classes listed in Figure 26.

Figure 26: LOBCDER class diagram.

WebDataResourceFactoryFactory: As the name suggests, this class is responsible for

creating WebDataResourceFactory instances. The WebDataResourceFactoryFactory class

is instantiated when a new request comes from client through the WebDavServlet. Moreover,

this class is meant for configuring and instantiating the WebDataResourceFactory class.

WebDataResourceFactory: This class’s role is to create WebDataResource resources, and

return them to the WebDavServlet. Thus, the main method of this class is getResource. This

method locates an instance of a WebDataResource for a given URL (Universal Resource

Location).

JDBCatalogue: The instance of this class is created on service startup. Then it is available

through JNDI. The role of this class is to query the persistence layer for LogicalData and

PDRI entries. Most frequently used methods of this class are

registerOrUpdateResourceEntry and getResourceEntryByLDRI.

registerOrUpdateResourceEntry registers new instance of a LogicalData in the persistence

layer or updates it. getResourceEntryByLDRI is quite straightforward: given a Logical Data

Resource Identifier (LDRI), the method should return a single one LogicalData entry.

WebDataResource: This is a superclass for all the WebDAV resources (file and folder). The

methods not currently implemented in this class are authenticate, authorise and

checkRedirect. WebDAV provides the ability to authenticate and authorise each resource

separately, providing better granularity for user permissions. These two methods are

implemented in subclasses in order to reflect the permissions each member of the VPH-Share

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 57 of 79

community has with respect to data resources. Additionally, the checkRedirect method will

be implemented at a later stage, when LOBCDER is deployed on multiple hosts. Under this

setup LOBCDER will be able to redirect incoming calls to the nearest LOBCDER instance.

WebDataDirResource/WebDataFileResource: These two classes are subclasses of

WebDataResource, and provide a representation of the logical and physical data to a

WebDAV client.

LogicalData: This class encapsulates the logical entries held on the persistence layer together

with the physical data stored on the cloud services. Hence, this class holds a LDRI, which

uniquely identifies the logical resource, and a set of PDRIs that hold replicas of the physical

data. When a new LogicalData object is created, it is not necessary to have any physical data

associated with it either because the client may create an empty file, or because this instance

represents a folder or a collection. Moreover, this class holds a metadata that provide creation

modification dates, mime types, etc.

PDRI: This class is a representation of the storage resource that holds the actual data. Since

there are many different storage resources this class needs to have a Credential member that

will provide access to storage resources. This class can hold credentials such as passwords,

certificates, etc.

VFSClient: In order to be able to interact with the physical storage resources, each PDRI

uses a VFSClient. This class provides numerous methods for manipulating and managing

data on the remote storage resource.

To obtain a better understanding of how LOBCDER works, the specific sequence of

operations involved in processing user requests is presented below.

1. A WebDAV client sends a request to the WebDavServlet.

2. The WebDavServlet calls the WebDataResourceFactoryFactory to create a

WebDataResourceFactory instance.

3. A WebDataResourceFactory instance is returned to the

WebDataResourceFactoryFactory.

4. The WebDataResourceFactory class creates an IDLCatalogue in order to be able to

query the requested resource.

5. The WebDavServlet will now call the getResource method from the

WebDataResourceFactory class.

6. The WebDataResourceFactory will use its IDLCatalogue to query the requested

resource from the persistence layer.

7. The returned entry is an instance of LogicalData class which contains a DataSource

that indicate the physical location of the requested resource.

8. At this moment the WebDataResourceFactory will get the DataSource from the

IDLCatalogue the requested user has access to.

9. The WebDataResourceFactory will instance the WebDataResource, and set its

DataSource.

10. Finally, the WebDataResourceFactory will return the requested WebDataResource

back to the WebDavServlet, where it will respond to the WebDAV client.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 58 of 79

4.5.2 Future work

4.5.2.1 Performance

Since the design goal for LOBCDER is to federate data located in the cloud, the aim is to

optimize the implementation to handle extensive datasets prior to developing distributed

solutions in order to address scale issues. Moreover, tests indicate that LOBCDER

performance is heavily dependent on the performance of its backend and VFSDriver. This is

especially true for uploading files to the cloud. To circumvent this bottleneck we will use a

local cache so that when a client uploads a file the data is first uploaded to a local cache and

from there transferred to the appropriate storage using a batch job.

4.5.2.2 Authentication

In parallel with this effort we are developing a security mechanism that protects LOBCDER

resource handles against unauthorised access. This implies that for each request, we need to

know who is accessing a given resource (credentials) and make a decision on whether the

requestor has sufficient rights (permissions). For a typical set of credentials consisting of a

username and a password, the HTTPS authorisation a scenario is depicted in Figure 27.

Figure 27: HTTP basic authentication.

According to the VPH-Share security convention, each request includes a security token

passed along with the request parameters. The security subsystem (which is also built into

LOBCDER) validates user credentials and makes authentication decisions.

The security token is extracted from the HTTP request and passed to the validation service

running on the front node. The token is checked by the service and the result contains the

VPH user name of the client and the list of the roles associated with this client. The result is

cached locally to minimize the number of RPC calls.

4.5.2.3 Authorisation

When an authenticated user tries to access a LOBCDER resource, the system has to decide if

this user is authorised. Any logical path in LOBCDER (and therefore associated LogicalData

resource) has an Access Control List (ACL). ACL consists of the list of the roles that are

allowed to access the resource and permissions set by the resource owner for these roles. The

request is considered authorized if the user belongs to a specified role and this role is allowed

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 59 of 79

to perform the requested operation (read or write), or if the user is an owner (creator) of the

requested resource. Here “user role” is a synonym of the user’s group.

This ACL is kept in an internal metadata table. A resource may have as many roles in its ACL

as needed. To manipulate the content of ACL, LOBCDER may require an additional

extension, going beyond its data access (WebDAV) interface. The technology candidate for

implementing this extension is a RESTful service.

For bulky WebDAV operations such as MOVE, COPY and DELETE performed on the

collections (logical folders) the permission checks are performed on the database side using

stored procedures. These operations involve catalogue updates only and do not involve

synchronous operations on the physical layer (DELETE does it in the background). In this

way LOBCDER avoids performing an RPC operation on each entry in a bulk request, which

results in a dramatic performance improvement.

4.5.2.4 Data encryption

We propose to use LOBCDER for permanent or temporary data storage. It would be

mounted (using davfs2) on each instance including those in the public cloud. This would

allow processing chunks of data in memory without the need to write them, even temporarily,

to any form of “local instance storage” provided by the cloud service provider (and over

which we have no control). Combining this strategy with the immediate sanitization of used

parts of RAM and security monitoring to detect intruders/malware would make it very

difficult to steal sensitive data. We would also ensure that only small parts of the data would

be exposed (unencrypted data currently being processed in memory). Finally, as we wouldn’t

need to store data on the instance’s local hard drive, it would not become necessary to ensure

removal of said data.

Of course LOBCDER itself would need to store the data. As backend it may use either

private storage clouds (e.g. Swift-based) in which case data is stored in a trusted

environment, as well as public ones (Amazon S3, Rackspace CloudFiles etc.) in which case

additional actions are needed to ensure security. We propose two encryption-based solutions

to satisfy this goal.

LOBCDER encryption

The LOBCDER encryption scenario is shown in Figure 28.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 60 of 79

Figure 28: LOBCDER based encryption - data owner needs to trust LOBCDER however the encryption process itself

is transparently handled by the VPH platform.

In this scenario LOBCDER itself is responsible for encrypting the data. The symmetric key

used for encryption/decryption will be entered during startup and stored in memory. This,

combined with placing LOBCDER in the trusted zone, should provide an additional layer of

security for most of the processed data. In this scenario the platform would offer full

functionality, such as seamless access to the data using DAV client/davfs2 as well as the

Master Interface. LOBCDER will also control access to the data so the only authorized

entities could obtain decrypted data. Of course in this solution the data provider needs to trust

LOBCDER.

End to end encryption

This scenario is depicted in Figure 29.

Figure 29: End-to-end encryption – nobody except the data owner (even WP2 administrators) can decode

information stored by the platform. The data owner needs to encrypt/decrypt the data.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 61 of 79

If mandated by the data provider, e.g. due to stricter confidentiality requirements, an alternate

solution could be applied. The data could be encrypted and decrypted by the Atomic Services

operating in the cloud. The project could assist developers in this respect by suggesting some

standard tools (such as OpenSSL) that would be helpful in executing this scenario.

LOBCDER encryption could then be deactivated (so that data encrypted in the “end to end”

fashion wouldn’t be needlessly re-encrypted by LOBCDER). In this use case only the data

provider knows the key and can therefore decrypt the data. An obvious drawback of this

solution is that standard VPH tools (such as the Master Interface) wouldn’t be able to assist

the user in a decryption process, however they may still allow retrieval of encrypted data, to

be decrypted later by the owners themselves.

Selection of one of the above mentioned scenarios will be made on the basis of consultations

with application providers and will form part of the work in T2.4 during the third year of the

Project.

4.6 Data Reliability and Integrity

As presented in Deliverable 2.2 (5), the goal of the Data reliability and integrity (DRI) tool is

to ensure reliable use of the biomedical datasets manipulated with the use of VPH-Share

applications and tools. Simulations results and inferred medical outcomes must be based on

reliable data. Due to the large size and long-term persistence of medical data files, special

reliability and integrity mechanisms should be enforced on top of Cloud storage. Thus, the

infrastructure developed in Task 2.5 needs to be able to perform the following tasks:

 periodic integrity checks on data objects with the use of hash algorithms,

 facilitating storage of multiple copies of data on various Cloud platforms,

 tracking the history and origin of binary datasets.

4.6.1 Status of the Prototype

The DRI Runtime is responsible for enforcing Task 2.5 data management policies. It keeps

track of managed components and periodically verifies the accessibility and integrity of the

managed data. As designed, the Runtime assumes the form of a generic (i.e. non-application-

specific) Atomic Service in the WP2 infrastructure. Thus, it can be managed and deployed by

Atmosphere tools, just like any other type of Atomic Service. For scalability purposes,

multiple instances of DRI Runtime may coexist in the system, integrated into a coherent

platform by sharing a common registry (the WP2 persistence layer), although at present only

a single instance of the prototype service has been deployed on the computing resources

contributed by CYFRONET (see Section 4.3 for details).

In line with the Atomic Service specification, the DRI service has been deployed into a

virtual machine and further registered with Atmosphere mechanisms for automatic

management. It is currently able to monitor and validate the data sets registered with the

Atmosphere Internal Registry and present in the Swift data storage that is part of the VPH-

Share cloud federation. Figure 30 presents the architecture of DRI Runtime.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 62 of 79

Figure 30: DRI Runtime architecture.

At the core of the prototype lies the DatasetValidator class, which performs periodic

validation of data items represented in the Atmosphere Internal Registry. This class is

configurable by a dedicated set of parameters stored in the Registry. As part of our ongoing

development work, we are implementing an end-user interface that will enable administrators

to manage the runtime parameters of the DRI service. Furthermore, the DRI prototype

provides a service frontend that can be used to register, unregister and query the status of

managed datasets.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 63 of 79

Figure 31 presents the persistence schema upon which DRI Runtime bases its operation. This

schema is managed by the Atmosphere Internal Registry which thus provides a uniform

persistence layer for DRI (as well as for other core components of WP2).

Figure 31: DRI data model.

DataItem is a virtual concept shared between DRI and LOBCDER. It can describe either a

single file or a collection of files. A DataItem is optionally associated with a

ManagedDataset object, which implies that it needs to be validated by DRI, in accordance

with the parameters stored within that instance of ManagedDataset. ManagementPolicy

specifies the general operating characteristics of DRI and can be configured by system

administrators.

The DRI Runtime prototype is developed in Java. The service is deployed to a an application

server residing on a virtual machine currently provided by CYFRONET and exposes a

RESTful Web Service API (Jersey implementation) backed by the DRI component internally.

Quartz Scheduler (18) is utilised for scheduling validation routines periodically.

4.6.2 Future work

Having deployed the first prototype of DRI our focus will now shift from low-level

conceptual and implementation-oriented details to providing a more robust set of interfaces

and measuring the performance of various data validation algorithms. The DRI component

has been integrated with the Data Browser extension to the Master Interface and can be

managed via this extension. We intend to deploy a notification service (in collaboration with

WP6) where any emerging problems could be communicated to system administrator and

resource owners, either synchronously (e.g. via e-mail) or through notifications stored in AIR

and displayed in the Master Interface whenever an authorised user has logged in.

The service is also in the process of being secured with authenticity tokens provided by task

T2.6. When deployed in production mode, it will contact the common Policy Decision Point

to guard against unauthorised access.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 64 of 79

4.7 Security Framework

The security framework is responsible to ensure that all Atomic Services in the system are

properly secured. To do so, any communications with these services are properly encrypted

and have their authorisation checked before actually invoking any of the services.

4.7.1 Security requirements

4.7.1.1 Scope

In order to explain the scope of the requirements of the security framework, it is important to

remember that VPH-Share is a platform that integrates a dynamic set of heterogeneous

applications, each of them with its own security requirements. As such, the security

framework does not aim to address all the security requirements that are specific to each

integrated application, especially when new applications with new requirements can be added

dynamically.

Hence the VPH-Share Security Framework will deal with the security issues resulting from

the integration of these applications into a common and publicly accessible framework, but

the intrinsic security requirements that are specific to each application will remain as the

responsibility of the associated application developer.

VPH-Share will provide a generic mechanism to enable application developers to define the

security constraints of each application based on information relative to the user, which in

turn will be stored and retrieved from a common authentication platform.

4.7.1.2 Authentication

One of the goals of VPH-Share is to help augment the VPH initiative by providing a reliable

and consolidated infostructure. To help foster and cement trust relationships with existing

VPH users, the system will try to reuse the same authentication platform used for the

BiomedTown portal. This will provide a single sign-on mechanism for the users of both

BiomedTown and VPH-Share applications.

4.7.1.3 Security perimeter

As explained in Section 4.7.1.1, the security framework will deal with the security issues

resulting from the integration of applications. This, in practice, means that the security

framework will protect the integrated platforms from unauthorised access from outside the

VPH-Share platform.

4.7.1.4 Atomic services

VPH-Share applications, also referred to as Atomic Services in this document, will be

supported with:

 Privacy assurance by encrypting all incoming and outgoing communication to/from the

VPH-Share platform.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 65 of 79

 Master interface authentication – LOBCDER will reuse the security proxy to carry

away the authorization process. Specifically, it will use:

 a permissions mechanism based on a role attribute stored in the attributes of the user

logged through the master interface

 An expiration limit for the security token coming from the master interface

 A verification of the signature of the security token from the master interface

The security framework aims to transparently incorporate these features as a wrapper around

the Atomic Services. Note, however, that both the security roles and the access rules are

specific to each Atomic Service and hence it is the responsibility of the application

developers to define such rules and the user attributes needed to validate these rules..

4.7.1.5 LOBCDER / WebDAV

The LOBCDER service provides a standardised WebDAV interface to unified distributed file

system and with respect to security, it will at least provide:

 Privacy assurance by encrypting all incoming and outgoing communication to/from the

platform;

 Basic user/password authentication – LOBCDER cannot reuse any of the complex

authorisation features provided by the Atomic Services because the WebDAV standard

does not support them. Thus, LOBCDER will alternatively use basic user/password

mechanisms to ensure compatibility with the WebDAV standard and third-party

WebDAV clients.

Although LOBCDER authentication requirements differ slightly from the approach suggested

for Atomic Services, a common model can be applied by taking these inconsistencies into

account.

4.7.1.6 Workflow Management / Taverna

The Taverna workflow system will have the same security requirements as the Atomic

Services, with the only addition that applications may be launched from a command line

instead of a web client. It is acceptable for the authentication process to be performed from

the command line, by having the Taverna workflow system supply authentication parameters

to the identity platform through a secure API.

4.7.1.7 Performance

The security layer should not introduce significant overhead within the system or, at least, it

should not be larger than its other working components within ASI. The initial goal for the

security proxy execution time is set on 1 second, subject to server workload and the impact of

other system components.

4.7.1.8 External services

VPH-Share includes a search engine to look for additional external services to be used

conjunctly with VPH-Share Application Services. However, VPH-Share has no way to

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 66 of 79

guarantee the security of these external services at all. Therefore, VPH-Share will follow a

classic trust/deny mechanism, meaning that external services will be initially labelled as

untrusted, and access to them banned from the firewall configuration of the system. However,

the system will also maintain a list of trusted external services. Hence, the correct procedure

for accessing these services will be to ask the system administrator for access to a given

service. An administrator will be responsible for granting such access (or denying it) and

configuring the firewall appropriately. Of course, open (unsecured) external services

deployed under a known IP can always be accessed by VPH-Share Atomic Service Instances

and the applications deployed therein.

4.7.1.9 Security policies

As explained above, the system provides the ability to define access criteria for services

based on the attributes assigned to the user. These policies can be as simple as a role-based

mechanism or as complex as a combination of policy rules depending on more complex

attributes.

An example of a simple role-based policy could be: “If the user has the role paediatrics

assigned, then they should be granted access to the Paediatrics database service”.

An example of a complex policy rule could be: “If the user has at least a bachelor’s degree

in medicine and has signed a confidence agreement then grant access to all medical stores”.

Security policies can be a very powerful mechanism for developers to express accessibility

constraints via rules for services. However, there is no way that the VPH-Share platform can

know them beforehand, as they are specific to each service. As a result, it will be the

responsibility of application developers to infer these criteria from the application

requirements and user attributes provided by the Master Interface.

The administration of the security system will have to be integrated with the Atmosphere

Internal Registry via the Master Interface, allowing application developers to update the

policy rules associated with their services (even already instantiated ones). It will therefore be

possible to maintain and update the access criteria for services without the need to define a

new service template in each case.

To express policy rules the project has chosen XACML (eXtensible Access Control Markup

Language) (19) for the following reasons:

 It is an already established industry standard

 It is specifically designed for defining access control rules and policies, which is exactly

what our policy engine is meant to evaluate

 It is feature-rich; in fact it provides a number of features not yet supported by our system,

which enables future improvements if needed

 There exist several open source implementations of XACML

 The design of the security proxy is a match for the conceptual architecture proposed in

the XACML specification

 It is not proprietary

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 67 of 79

The current implementation of the system already includes an XACML compliant engine,

which supports complete XACML policies. However, for the moment only role-based

policies are included in the system. More complex policies are foreseen to be included in the

future.

4.7.2 Security for Atomic Service invocations: the Security Proxy

The Security Proxy, which is preinstalled on any Virtual Machine which hosts an Atomic

Service works jointly with the Reverse Proxy, which is in charge of forwarding all incoming

requests from a public IP address to private addresses and balancing the workload of the

system. Note, that, as mentioned in Section 4.3.1, the actual Atomic Service Instances sit

behind an IP forwarding Reverse Proxy so that the ASIs do not expose their private IP

addresses.

Figure 32: Overview of WP2 security mechanisms.

Figure 32 presents a schematic view of how the Security Proxy integrates with the Reverse

Proxy, external clients, Atomic Services and WP6.

As the first step, the user authenticates via the Master Interface, which performs the necessary

actions, including forwarding the authentication request to the BiomedTown identity provider

and retrieving all user attributes. Subsequently, this authentication information (user +

attributes) is signed by the Master Interface and included in the password field of the header

of the HTTP request, which will travel through the whole invocation.

To further secure data transmission, all communication between the different servers is

encrypted at the HTTP level by using the SSL (Secure Socket Layer) protocol over HTTP

(HTTPS). This implies that the Reverse Proxy decrypts the message, performs any

calculations required for message forwarding, and encrypts it again prior to contacting the

WP6
Authentication

External
Client

VPH-Share
application

Security Proxy

Policy
Enforcer

Encrypting
Layer

Atomic Service Instance

Nginx

Reverse Proxy

Nginx
SSL

Support

HTTPS VPN

BiomedTown
identity
provider

HTTPS

HTTP

User token + Attributes

Cloud Facade

Security Agent Policy
cache

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 68 of 79

service recipient. Dealing with SSL can be easily performed on the Nginx server by

configuring the Nginx HTTP SSL module (see the Nginx HTTPS Module (20) for details).

On the Atomic Service Instance side, all HTTP requests are intercepted by the Security

Proxy, which listens to incoming requests on configurable ports and performs two tasks:

decrypting messages and checking for authorisation for a given service based on the

attributes of the user provided along with the request into the VPH-Share platform. It is

capable of extracting user attributes from the HTTP header and confirming their integrity by

checking the signature of the field containing it. These user attributes are then used jointly

with the XACML security policies applicable to that service that are retrieved from the cloud

facade to decide whether to grant or deny access to the service.

If the request is granted, the invocation is forwarded to the service on a local host address.

Therefore, all services (including the Apache server) are required to communicate through

the local host. An advantage of this design is that it also allows different services to invoke

each other on different networks, by passing through the Nginx server responsible for

properly forwarding the request. Figure 33 shows how such communication can be

accomplished.

Figure 33: Inter-service communication with Nginx.

The sequence of steps a request takes within the VPH-Share platform is shown in Figure 33.

The initial request to invoke any Atomic Service will first be authenticated in Work

package 6, which will properly include the user token and attributes. This user token and

attributes then need to travel along with the request to the Security Proxy in the HTTP

header, and will reach the corresponding VPH-Share application service. When the

VPH-Share application wishes to invoke another Atomic Service, it will invoke its

corresponding public IP address and follow the same path again without the WP6

authentication, with the original user token travelling through all the invocations.

WP6
Authentication

VPH-
Share
app.

Security
Proxy

Atomic Service Instance

Nginx

Reverse Proxy

Ngynx
SSL

Support

HTTPS

HTTP

VPH-
Share
app.

Security
Proxy

Atomic Service Instance

HTTP
HTTPS

MI /
Client
app

Initial Invocation: https://service
User Token
+ attributes

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 69 of 79

The presented architecture allows any HTTP-based services, including REST and SOAP

services to be secured in a transparent manner. Regarding the Reverse Proxy, the design

facilitates the required encryption by simply adapting the configuration files of the Nginx

server.

Regarding security policies, they will be retrieved from a central service in the cloud but

cached locally in a temporary folder of the Atomic Service Template. Atomic Service

policies can be modified either when defining the template or once it has been instantiated

through the Atmosphere Internal Registry management console. To do so, each Atomic

Service Instance will have a security agent installed, which will download configuration files

periodically and whenever they are changed in the cloud facade. This will enable the

application developer to update policy rules and define access criteria for the security proxy

on a given machine. Figure 34 presents this process.

Figure 34: Updating policy rules of the Security Proxy.

Security Proxy

Policy
Enforcer

Atomic Service Instance

Policy
Store

Encrypting
Layer

Security Agent

Cloud Façade

Policies file

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 70 of 79

Figure 35: User authentication and authorisation in the context of invoking Atomic Services deployed in a private

network.

Figure 35 shows the sequence diagram involved in communication with an Atomic Service,

for an arbitrary process launched in any external client application (or within the context of

the Master Interface).

The process starts with the external client (or the service which launches a given application

in a terminal session on the service host). The client logs into VPH-Share and subsequently

issues a service invocation request to a public IP address, which is properly encrypted with

SSL. The Nginx proxy decrypts the request, selects the appropriate private IP of the Atomic

Service Instance and forwards the request, having again encrypted it with SSL.

Once the request arrives at the local (instance-bound) Security Proxy, it is decrypted, and its

security attributes used to decide whether the user is authorised to perform the given

operation. If so, the HTTP request is redirected to a local host address of the Atomic Service.

Once the service produces a result, it is properly encrypted and sent back to the reverse

proxy, which can finally deliver it to the client application.

4.7.3 Interoperability with p-Medicine on Security

The project held a meeting with p-Medicine project with a specific topic of security, whose

main conclusion was both p-Medicine and VPH-Share will build a bridge to enable mutual

access. The main objective of this bridge will be to translate the security token that each

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 71 of 79

system uses into the format appropriate for the other project so that a service belonging to one

system may invoke services on the opposite side. However, because the very nature of p-

Medicine requires that each user accessing p-Medicine services is certified by the p-Medicine

certification authority, it will remain necessary for each VPH-Share user needing to access p-

Medicine services to apply for a p-Medicine account.

4.7.4 Status of the prototype and future work

The initial prototype of the security framework includes the Security Proxy has been

deployed on the first Atomic Services produced by WP5. Thus, service communication

proceeds in a secure manner and the Security Proxy can be replicated to additional Atomic

Services (by inclusion in the host VM).

Current version of the prototype fully supports XACML policy files to be provided by the

service developers. Additionally, the system also includes a tool to automatically generate

XACML policy files that support RBAC policies and assign them to the correct user.

During the next 12 months, work will focus on:

 Defining XACML policy files for the main features which might require more advanced

support from XACML

 Studying the feasibility of Cross Site Scripting protection in the security proxy

 Studying the feasibility of adding auditing capabilities to the security proxy

 Developing a VPH-Share – p-Medicine bridge to ensure interoperability between both

systems

5 SOFTWARE ENGINEERING ASPECTS

As far as software engineering methods are concerned, we follow the rapid prototyping

approach, with short development cycles and frequent validation of results against the

expectations of their intended users (whether the WP5 workflow teams or other technical

tasks of VPH-Share). Progress reports are collected from WP2 developers on a monthly

basis, and corrective actions introduced whenever requested by WP2 management. In

addition, CYFRONET operates a WP-wide code repository at https://gforge.cyfronet.pl

where the source code of individual components can be collected and managed. We intend to

carry on with this scheme in the second year of the Project, focusing in particular on the

specifics of end-user interfaces (which are developed as part of WP6, but which involve WP2

to a significant degree).

Table 5 presents a generalised list of technologies exploited by WP2 components. A more

detailed technical description of each component can be found in deliverable D2.2 (5), while

any discrepancies or deviations from the WP2 design documentation will be explained in

Section 4 of this deliverable.

https://gforge.cyfronet.pl/

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 72 of 79

Table 5: List of technologies applicable to each component of the WP2 architecture.

Component Applicable technologies

Cloud Resource Allocation

Management (Atmosphere

core services)

Java SE6 components deployed as OSGi bundles to an Apache Karaf

container. Nagios framework for instance monitoring. Integration layer

based on Apache Camel.

Atmosphere Internal Registry Semantic registry layer implemented in Ruby on top of MongoDB storage.

REST-based service endpoint and custom jQuery-based GUI.

Cloud Execution Environment OpenStack (Diablo release) private cloud stack deployed at CYFRONET

(HP ProLiant BL2x220c G5, 2 x Intel Xeon L5420, 16GB RAM, 120 GB

internal HDD); 3 TB attached storage (NFS).

High Performance Execution

Environment

Middleware connections for QcG (using the QcG Java SDK), Unicore (using

the UCC java library) and Globus (using the JGlobus library). SOAP-based

service endpoint.

Data Storage Federation Support for OpenStack Swift storage resources; data exposed by a

WebDAV-like API (mimicking a true WebDAV server). Service-based

control endpoint for management actions.

Data Reliability and Integrity Standalone Java-based service, integrated with OpenStack storage. Managed

dataset metadata stored in AIR. Service-based control endpoint for

management actions.

WP2 security components Java-based Security Proxy implemented as plugin for the Apache server

framework, deployable on any Atomic Service template.

6 FEATURES TO BE IMPLEMENTED IN THE THIRD YEAR OF THE PROJECT

Since the software components presented in this deliverable are still considered to form a

prototype deployment, the third year of the Project will be primarily devoted to ensuring their

robustness and enhancing performance. During this time fewer new backend features will be

implemented – instead, more attention will be paid to the end user interfaces, making sure

that the platform can be exploited by the end users without support from developers.

In Task 2.1 a redesign of the UI frontend is planned. In the development mode, users will be

provided with control over some aspects of the Atmosphere services which have hitherto

relied on default values, such as selection of appropriate service flags (tagging services as

shared and selection of appropriate port redirection options for private cloud sites). In

addition, more sophisticated resource monitoring and performance optimization algorithms

will be integrated with the Atmosphere Management Service.

In Task 2.2 care will be taken to ensure integration of additional private cloud sites and

resources procured from public cloud providers. Existing cloud sites, such as the one at

CYFRONET, will be extended and hardware performance adjustments will be made to

increase the end-users’ Quality of Experience when interacting with the cloud platform.

Task 2.3 will provide a more robust set of interfaces for the AHE service, ensuring that the

HPC infrastructure overlaid by this service can be easily accessed by VPH-Share application

components.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 73 of 79

In Task 2.4 further performance optimization and extension of the storage infrastructure is

planned. In addition, LOBCDER intends to ensure runtime data encryption and more fine-

grained control over the security constraints applicable to binary files.

In Task 2.5 the DRI tool will be supplied with a new set of user interfaces targeted

specifically at resource administrators and owners of datasets who need to be appraised of the

status of their hardware and data. The service will also be subjected to performance

improvements and further integrated with the LOBCDER metadata schema.

Task 2.6 will continue work on tools and services which will enable AS developers to prepare

and fine-tune security policies. The Security Proxy component will be extended to handle

XACML security constraints and a set of user interfaces will be contributed to the VPH-

Share Master Interface.

Detailed descriptions of the plans for the third year of the Project in each WP2 tasks can be

found in Section 4.

7 SUMMARY

The advanced prototype of the cloud platform is fully capable of running the VPH-Share pilot

application services with the use of private cloud resources contributed to the Project by

partner institutions. In addition, a number of p-Medicine application services are also being

deployed in the infrastructure on a trial basis. During the third year of the project our focus

will be to extend the cloud infrastructure to include public (bought-in) cloud resources and

enable computations to be performed on hardware procured from commercial cloud vendors.

We will also continue our work on further refinement of WP2 interfaces – for end users as

well as for developers of external services and application clients.

8 REFERENCES

1. VPH Consortium. VPH2012 workshop, September 2012, London. [Online].; 2012.

Available from: http://www.vph-noe.eu/vph-events/details/199-vph-share-workshop-in-

vph2012.

2. Bubak M, Nowakowski P, Bartyński T, Gubała T, Harężlak D, Kasztelnik M, et al. Cloud

Platform for Medical Applications. In Proceedings of eScience 2012; 2012; Chicago.

3. Nowakowski P, Bartyński T, Gubała T, Harężlak D, Kasztelnik M, Meizner J, et al.

Managing Cloud Resources for Medical Applications. In Proceedings of the Cracow Grid

Workshop 2012; 2012; Krakow.

4. VPH-Share Project Consortium. Grant Agreement for Collaborative Project "VPH-

http://www.vph-noe.eu/vph-events/details/199-vph-share-workshop-in-vph2012
http://www.vph-noe.eu/vph-events/details/199-vph-share-workshop-in-vph2012

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 74 of 79

Share", Annex I: Description of Work, 2nd revision. 2011..

5. VPH-Share Work Package 2. Deliverable D2.2: Design of the Cloud Platform. Internal

Project Deliverable. ACC CYFRONET AGH; 2011.

6. VPH-Share Project Consortium. Deliverable D2.1: Analysis of the State of the Art and

Work Package Definition. Internal Project Deliverable. ACC CYFRONET AGH; 2011.

7. OSGI Alliance. OSGi Alliance Homepage. [Online].; 2011. Available from:

http://www.osgi.org/Main/HomePage.

8. Apache Karaf OSGi Container. [Online].; 2011. Available from: http://karaf.apache.org/.

9. Apache Camel Integration Framework. [Online].; 2011. Available from:

http://camel.apache.org/.

10. JClouds. [Online].; 2011. Available from: http://code.google.com/p/jclouds/.

11. VPH-Share Project Consortium. Atmosphere Internal Registry. [Online].; 2013. Available

from: http://vph.cyfronet.pl/air.

12. VPH-Share Project Consortium. Deliverable D2.3: First Prototype of the Cloud Platform..

13. Sloot PMA, Gubała T, Bubak M. Semantic Integration of Collaborative Research

Environments. Handbook of Research on Computational Grid Technologies for Life

Sciences, Biomedicine and Healthcare. 2009: p. 514-530.

14. The Apache Software Foundation. The Apache Server Project. [Online].; 2013. Available

from: http://httpd.apache.org/.

15. OpenStack Project Home. [Online]. Available from: http://openstack.org/.

16. Nginx Project Home. [Online]. Available from: http://wiki.nginx.org/Main.

17. IPv4 Exhaustion. [Online]. Available from: http://www.ripe.net/internet-

coordination/ipv4-exhaustion.

18. Quartz Scheduler homepage. [Online].; 2012 [cited 2012 2 29. Available from:

http://www.osgi.org/Main/HomePage
http://karaf.apache.org/
http://camel.apache.org/
http://code.google.com/p/jclouds/
http://vph.cyfronet.pl/air
http://httpd.apache.org/
http://openstack.org/
http://wiki.nginx.org/Main
http://www.ripe.net/internet-coordination/ipv4-exhaustion
http://www.ripe.net/internet-coordination/ipv4-exhaustion

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 75 of 79

http://quartz-scheduler.org/.

19. OASIS. eXtensible Access Control Markup Language. [Online].; 2013. Available from:

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

20. Nginx HTTPS Module. [Online]. Available from: http://wiki.nginx.org/HttpSslModule.

21. Davidoff F, Godlee F, Hoey J, Glass R, Overbeke J, Utiger R, et al. Uniform

requirements for manuscripts submitted to biomedical journals. JAOA: Journal of the

American Osteopathic Association. 2003; 103(3).

22. Jetspeed 2 Web Portal. [Online].; 2012. Available from:

http://portals.apache.org/jetspeed-2.

23. Alliance O. OSGI Web Portal. [Online]. Available from:

http://www.osgi.org/Main/HomePage.

1. VPH Consortium. VPH2012 workshop, September 2012, London. [Online].; 2012.

Available from: http://www.vph-noe.eu/vph-events/details/199-vph-share-workshop-in-

vph2012.

2. Bubak M, Nowakowski P, Bartyński T, Gubała T, Harężlak D, Kasztelnik M, et al. Cloud

Platform for Medical Applications. In Proceedings of eScience 2012; 2012; Chicago.

3. Nowakowski P, Bartyński T, Gubała T, Harężlak D, Kasztelnik M, Meizner J, et al.

Managing Cloud Resources for Medical Applications. In Proceedings of the Cracow Grid

Workshop 2012; 2012; Krakow.

4. VPH-Share Project Consortium. Grant Agreement for Collaborative Project "VPH-

Share", Annex I: Description of Work, 2nd revision. 2011..

5. VPH-Share Work Package 2. Deliverable D2.2: Design of the Cloud Platform. Internal

Project Deliverable. ACC CYFRONET AGH; 2011.

6. VPH-Share Project Consortium. Deliverable D2.1: Analysis of the State of the Art and

Work Package Definition. Internal Project Deliverable. ACC CYFRONET AGH; 2011.

http://quartz-scheduler.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://wiki.nginx.org/HttpSslModule
http://portals.apache.org/jetspeed-2
http://www.osgi.org/Main/HomePage
http://www.vph-noe.eu/vph-events/details/199-vph-share-workshop-in-vph2012
http://www.vph-noe.eu/vph-events/details/199-vph-share-workshop-in-vph2012

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 76 of 79

7. OSGI Alliance. OSGi Alliance Homepage. [Online].; 2011. Available from:

http://www.osgi.org/Main/HomePage.

8. Apache Karaf OSGi Container. [Online].; 2011. Available from: http://karaf.apache.org/.

9. Apache Camel Integration Framework. [Online].; 2011. Available from:

http://camel.apache.org/.

10. JClouds. [Online].; 2011. Available from: http://code.google.com/p/jclouds/.

11. VPH-Share Project Consortium. Atmosphere Internal Registry. [Online].; 2013. Available

from: http://vph.cyfronet.pl/air.

12. VPH-Share Project Consortium. Deliverable D2.3: First Prototype of the Cloud Platform..

13. Sloot PMA, Gubała T, Bubak M. Semantic Integration of Collaborative Research

Environments. Handbook of Research on Computational Grid Technologies for Life

Sciences, Biomedicine and Healthcare. 2009: p. 514-530.

14. The Apache Software Foundation. The Apache Server Project. [Online].; 2013. Available

from: http://httpd.apache.org/.

15. OpenStack Project Home. [Online]. Available from: http://openstack.org/.

16. Nginx Project Home. [Online]. Available from: http://wiki.nginx.org/Main.

17. IPv4 Exhaustion. [Online]. Available from: http://www.ripe.net/internet-

coordination/ipv4-exhaustion.

18. Quartz Scheduler homepage. [Online].; 2012 [cited 2012 2 29. Available from:

http://quartz-scheduler.org/.

19. OASIS. eXtensible Access Control Markup Language. [Online].; 2013. Available from:

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

20. Nginx HTTPS Module. [Online]. Available from: http://wiki.nginx.org/HttpSslModule.

http://www.osgi.org/Main/HomePage
http://karaf.apache.org/
http://camel.apache.org/
http://code.google.com/p/jclouds/
http://vph.cyfronet.pl/air
http://httpd.apache.org/
http://openstack.org/
http://wiki.nginx.org/Main
http://www.ripe.net/internet-coordination/ipv4-exhaustion
http://www.ripe.net/internet-coordination/ipv4-exhaustion
http://quartz-scheduler.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://wiki.nginx.org/HttpSslModule

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 77 of 79

21. Davidoff F, Godlee F, Hoey J, Glass R, Overbeke J, Utiger R, et al. Uniform

requirements for manuscripts submitted to biomedical journals. JAOA: Journal of the

American Osteopathic Association. 2003; 103(3).

22. Jetspeed 2 Web Portal. [Online].; 2012. Available from:

http://portals.apache.org/jetspeed-2.

23. Alliance O. OSGI Web Portal. [Online]. Available from:

http://www.osgi.org/Main/HomePage.

http://portals.apache.org/jetspeed-2
http://www.osgi.org/Main/HomePage

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 78 of 79

LIST OF KEY WORDS/ABBREVIATIONS

ACD Audited Credential Delegation

ACL Access Control List

AHE Application Hosting Environment

AIR Atmosphere Internal Registry

AMS Atmosphere Management Service

AS Atomic Service

AS Authentication Service

ASI Atomic Service Instance

API Application Programming Interface

CC Cloud Controller

CEE Cloud Execution Environment

DNAT Destination Network Address Translation

DRI Data Reliability and Integrity

EC2 Amazon Elastic Computing Cloud v2

HPC High Performance Computing

HTTP HyperText Transfer Protocol

LDRI Logical Data Resource Identifier

LOBCDER Large OBject Cloud Data storagE fedeRation

MI Master Interface

NAT Network Address Translation

ORM Object-Relational Mapping

OSGI Open Service Gateway Initiative

REST REpresentational State Transfer

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

Deliverable 2.4: Second Prototype of the Cloud Platform

Version: 1v0

Date: 28-Feb-13

 Page 79 of 79

SaaS Software as a Service

SDK Software Development Kit

SOAP Simple Object Access Protocol

SSH Secure SHell

SSL Secure Socket Layer

SSO Single Sign-On

TLS Transport-Layer Security

URI Universal Resource Identifier

URL Universal Resource Location

VM Virtual Machine

VCN Virtual Network Computing

WebDAV Web-based Distributed Authoring and Versioning

WP Work Package

