
Invocation of Grid Operations in the ViroLab
Virtual Laboratory

Tomasz Bartyński2, Maciej Malawski1, Marian Bubak1,2

1 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Kraków, Poland
2 Academic Computer Center CYFRONET, ul. Nawojki 11, 30-950 Kraków, Poland

Abstract

This paper presents invocation of grid operations within the ViroLab
Virtual Laboratory. Virtual laboratory enables users to develop and
execute experiments that access computational resources on the Grid
exposed via various middleware technologies. An abstraction over the
Grid environment is introduced which is based on the concept of grid
objects accessible from the experiment script based on Ruby. We de-
scribe the Grid Operation Invoker library which is the core of virtual
laboratory engine and provides access to heterogeneous computational
resources in a uniform manner using pluggable adapters. Sample ap-
plications include a script, which implements a data mining scenario
using the Weka library and combines Web services with MOCCA tech-
nologies.
Keywords: virtual laboratory, ViroLab, grid middleware, grid re-
source virtualization

1 Introduction

The diversity of middleware technologies which allow access to computational
resources in Web and Grid infrastructures [1] results in the fact that utilizing
them in a coordinated way becomes a challenge. This problem is also faced by the
virtual laboratory [4] developed for the scientists involved in HIV drug resistance
research in the scope of ViroLab [2] project. Experiment scenarios are written in
a scripting language (Ruby) on a relatively high level of abstraction. Therefore
there is a need to provide means to uniformly interface existing middleware
technologies with a high-level object-oriented API.

There are four major types of technologies which can be used as the means to
provide access to computation. The first one is the Web Service technology based
on SOAP and WSDL which provides stateless remote invocation and messaging
semantics. Then there is WSRF, which is based on extensions of Web Service
providing standardized access to stateful entities (resources). The third one is
the component technology implemented in such technologies as MOCCA [5] and
ProActive [11]. The last type is a batch processing model that allows submitting
jobs on Grid infrastructures like EGEE and DEISA.



2 Related work

GEODISE [8] introduces the concept of accessing the Grid computational
resources within a Jython or Matlab script. There are toolboxes for these lan-
guages that enable to interface Condor, Globus as well as to manage certificates
and submit jobs. This solution can not be reused because it relies on commercial
software, for instance Matlab, Microsoft .Net or IBM WebSphere.

The Grid Application Toolkit [10] provides a simple, language neutral and
invariant API for basic Grid use cases. It allows file manipulations, monitoring
events and job management. The support for multiple middleware technologies
is based on a concept of providing a dedicated adapter for every middleware
technology. This project has recently evolved into Simple API for Grid Applica-
tions (SAGA). The approach presented by the GAT system is valuable, albeit it
does not provide the high-level programming language required in the ViroLab
virtual laboratory.

Knowledge based Workflow System for Grid Applications (K-Wf Grid) [9] fa-
cilitates construction of workflows with ontology-based semantic reasoning and
executing them in the Grid environment. User presents his request in a formal
way. Next, an abstract workflow is constructed. Optimal are selected and re-
sources allocated from a wide range of candidates. Workflow composition as a
way of developing applications is not suitable for developing experiments due
to limitations in expressing experiment logic, although the concept of multiple
levels of description of the application is very valuable.

3 Abstraction over the Grid environment

As a solution to the problem of interfacing diverse technologies, we intro-
duce grid object abstraction level hierarchy (Fig. 1). Each grid object class is
an abstract entity which defines a set of grid operations. These operations are
invoked from the script, while the actual computation is performed on a re-
mote machine. Each grid object class may have multiple implementations with
different middleware technologies representing the same functionality. Each of
the implementations may have multiple instances, possibly running on different
resources, thus with different levels of performance. Grid object instances of a
specific class may use a variety of middleware suites and therefore they must
be interfaced in their specific protocols. Moreover, grid objects may have dif-
ferent properties, such as stateless or stateful interaction mode, synchronous or
asynchronous operation invocation or being private or shared between experi-
ments runs and users. Developers are not concerned about finding the optimal
instance and interfacing it, however must be aware of grid object’s properties.
For instance, they must know whether a grid object they are using preserve state
between invocations of operations.



Fig. 1: Three levels of the abstraction over the Grid environment.

4 Grid Operation Invoker

In order to enable developers to use the abstraction described in Section 3,
the virtual laboratory engine [12] includes as its core a Grid Operation Invoker
(GOI) [3] module which is a lightweight client side library. Its goal is to in-
stantiate grid object representatives (proxies) and to handle remote operation
invocations using appropriate technologies. GOI handles different technologies
by pluggable adapters implemented in JRuby, facilitating integration with Java
client-side libraries. For job-based middleware, it is possible to create grid ob-
jects which expose the functionality through application-specific method invo-
cation in object-oriented style. Every grid object instance is described with
technology information that enables to use a dedicated adapter and interface it
correctly during script execution (see Fig. 2). The Grid Operation Invoker coop-
erate with the following components of the virtual laboratory: Grid Application
Optimizer and Grid Resource Registry. The former is used to find the best grid
object instance for a given grid object class, while the latter provides technol-
ogy information about instances. It is possible to configure the Grid Operation
Invoker to use other optimizers and registries.



Fig. 2: Architecture of the Grid Operation Invoker.

5 Uniform interface to computational resources

Experiment developers use a simple uniform API for creating grid object
representatives that hides the complexity of underlying middleware technologies,
but provides full control if needed. They can use representatives within a script
like any ordinary Ruby object. Representatives are created in three ways by:

• providing a name of a grid object class,
• providing unique grid object instance identifier,
• using low-level API.

In the first case, the process of selecting the computational resource to be
used is hidden from the user. The GOI system queries the optimizer for an
optimal instance and an identifier of an instance is returned. Next, the registry
is queried for technology information for the selected instance. Subsequently,
a class of an adapter for an instance is determined and loaded. Finally, a grid
object representative is created and can be used within the script. In the second
scenario developer chooses the instance and provides its identifier, therefore the
optimizer is omitted. The rest of the process in identical to the former case. If
developers decide to use a low-level API, they need to choose an appropriate
adapter and provide technical information about the instance directly in the
script.

6 Implementation status

The Grid Operation Invoker has been implemented and integrated with the
virtual laboratory engine [4]. It uses a remote registry providing technology
descriptions and an optimizer which assists in choosing the best instances of
grid objects. Currently available adapters are for Web Service, MOCCA [5]
components and LCG jobs. These technologies can be used within the script in
a uniform manner.



1 require ’cyfronet/gridspace/goi/core/g_obj’
2 retriever = GObj.create(’virolab.weka.WekaGem’)
3 classifier = GObj.create(virolab.weka.OneRule’)
4 data = retriever.loadDataFromDB(DB, QUERY, USER, PASSWORD)
5 classification = classifier.train(data)

Fig. 3: Using GOI API to interface Grid computational resources.

The GOI system enables to concisely develop applications accessing multiple
middleware technologies. Fig. 3 presents a snippet of an experiment that uses
two grid objects: a data retriever and a remote Weka [7] classifier employing
One Rule algorithm. The retriever is used to load data from remote database
in a specific format. Then the classifier is invoked for the data obtained. This
application consists only of five lines of source code

1. GObj factory is required in the script,
2. GObj is used to produce a retriever (representative for a grid object of the

virolab.weka.WekaGem grid object class),
3. GObj is used to produce a classifier (representative for a grid object of the

virolab.weka.OneRule grid object class),
4. Grid object representative for the retriever (retriever variable) is used

load data from the data base,
5. Grid object representatives for the classifier (classifier variable) is trained

with obtained data.
Both, the retriever and the classifier are used like ordinary local Ruby
objects.

The Grid Operation Invoker was applied to virology problems. ViroLab ex-
periments, such as analysis of HIV genomic structure and prediction of resistance
of virus to various types of drugs [6], were implemented using GOI API and can
be executed in the virtual laboratory.

7 Summary and future work

In this paper we show how the Ruby scripting language combined with the
GOI library are suitable for creating high-level experiments. This easy-to-use but
powerful approach allows rapid development of collaborative grid applications
using multiple middleware technologies. Initial experiments in the ViroLab vir-
tual laboratory have successfully demonstrated the applicability of the proposed
approach for virological applications.

Current work includes the development of adapters for WSRF, AHE and Uni-
core middleware suites. Future work will focus on support for asynchronous and
parallel computations, as well as on integration with security, provenance [13]
and monitoring subsystems of virtual laboratory. There are also prospects for in-
teresting research in the area of supporting more application composition models,
including direct connections between components, notifications ad streaming.



Acknowledgements. Acknowledgments: This work was supported by EU project
ViroLab IST-027446 with the related Polish grant SPUB-M and by the Founda-
tion for Polish Science.

References

1. Wolfgang Gentzsch: Major grid projects around the world, Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International Confer-
ence p. 1, 25-29 April 2006

2. ViroLab – EU IST STREP Project 027446; www.virolab.org
3. Tomasz Bartyński, Marian Bubak, Tomasz GubaÃla, Maciej Malawski: Universal

Grid Client: Grid Operation Invoker, Proceedings of International Conference of
Parallel Processing and Applied Mathematics (PPAM’07), Gdansk, September
2007, LNCS (to appear)

4. ViroLab Virtual Laboratory, http://virolab.cyfronet.pl
5. Maciej Malawski, Marian Bubak, MichaÃl Placek, Dawid Kurzyniec, and Vaidy

Sunderam: Experiments with distributed component computing across grid
boundaries. In Proceedings of the HPC-GECO/CompFrame workshop in con-
junction with HPDC 2006, Paris, France, 2006.

6. Peter M.A. Sloot, Ilkay Altintas, Marian Bubak, Charles A. Boucher: From
Molecule to Man: Decision Support in Individualized E-Health; IEEE Computer
Society, vol 39, no.11, pp. 40-46, Nov., 2006

7. Ian H. Witten, Eibe Frank: Data Mining: Practical machine learning tools and
techniques, Morgan Kaufmann, San Francisco, 2005

8. GEODISE Grid Enabled Optimisation and Design Search for Engeneering
http://www.geodise.org/

9. Tomasz GubaÃla, Daniel Harȩżlak, Marian Bubak, Maciej Malawski: Semantic
Composition of Scientific Workflows Based on the Petri Nets Formalism, E-
SCIENCE ’06: Proceedings of the Second IEEE International Conference on
e-Science and Grid Computing, IEEE Computer Society, 2006

10. Grid Application Toolkit, http://www.gridlab.org/WorkPackages/wp-1/
11. ProActive - Parallel, Distributed, Multi-threaded solutions,

http://proactive.inria.fr/
12. Eryk Ciepiela, Joanna Kocot, Tomasz GubaÃla, Maciej Malawski, Marek Kasztel-

nik, Marian Bubak: Virtual Laboratory Engine - GridSpace Engine. In Proceed-
ings of Cracow Grid Workshop 2007, This volume.

13. Bartosz Balís, Marian Bubak, MichaÃl Pelczar, Jakub Wach: Provenance Track-
ing and Querying in ViroLab. In Proceedings of Cracow Grid Workshop 2007,
This volume.


