
Optimization of Application Execution in the
ViroLab Virtual Laboratory

Maciej Malawski1, Joanna Kocot2, Eryk Ciepiela2, Marian Bubak1,2

1 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Kraków, Poland
2 Academic Computer Center CYFRONET, ul. Nawojki 11, 30-950 Kraków, Poland

Abstract

The objective of the presented work is to describe an optimization en-
gine for the ViroLab Virtual Laboratory runtime.
The Laboratory specific model – invocation of operations on special ob-
jects which reside on Grid resources – imposes a new approach to opti-
mization of Grid application execution. Such an approach is presented
in the shape of the GridSpace Application Optimizer (GrAppO) – a
module responsible for optimization of exectution of the applications
developed in the ViroLab Virtual Laboratory – supported by moni-
toring and provenance systems. We describe the architecture of the
optimizer, and report on the results of tests which demonstrate the
need for the monitoring system.
Keywords: virtual laboratory, ViroLab, Grid Computing, execution
optimization

1 Introduction

An opitimizer designed to work in a Grid environment such as the ViroLab
Virtual Laboratory [1] has to face the challenges imposed by Grid environment
itself – e.g. dynamic nature, requiring distributed sources of information – as
well as those specific only to ViroLab [2] and related to its specific programming
model. The ViroLab model introduces several levels of abstraction represented
by Grid Object [3] entities.

The core functionality of ViroLab runtime system (called GridSpace [4] En-
gine) offers a possibility of executing a ViroLab Experiment. However, the source
code of the experiment provides only the information on Grid Object Classes [3]
(the highest abstraction over a Grid service) whose instances have to be used
to invoke certain operations on them. A non-trivial choice of instance, consid-
ering the structure of relations between the experiment’s entities is left to the
optimizer.

2 State-of-the-art

The problem of optimization of application execution and resource utilization
is the subject of wide research on Grid scheduling and load-balancing [6]. In
traditional Grid environments a dedicated component – scheduler of jobs or
resource broker – is responsible for the choice of an appropriate resource for

a given job. However, the functionality of such a component is much wider
and usually includes many issues that were already assigned to other modules
in ViroLab (e.g. submission and execution of jobs). At the same time, these
components do not cover some of the problems that still need to be solved in the
Virtual Laboratory (e.g. they do not have a notion of the structures introduced
in the ViroLab experiment).

Despite these differences, the problem of optimization in the ViroLab Virtual
Laboratory may be described by generic definition of optimization on the Grid
formulated in [7]: The process of discovering of the best combination of a job and
resources in such a way that the user and application requirements are fulfilled,
in terms of overall execution time (throughput) and cost of the resources utilized.
Therefore some algorithms that attempt to realize this combination could be ap-
plicable to the ViroLab environment. One of the branches of algorithms that can
be used in the Virtual Laboratory is simple heuristics optimizing execution of in-
dependent jobs based on the job’s Minimum Completion Time (MCT) [8]: Min-
min (enables good load balancing), Max-min (minimizes the impact from tasks
with longer execution times [9]), Suffrage [9], XSuffrage [10]. Algorithms for de-
pendent jobs optimization require the precedence order of jobs in advance. Such
algorithms are: List heuristics – e.g. Heterogeneous Earliest Finish Time [11]
and Dynamical Critical Path (DCP) [12], Clustering-based heuristics [13, 9] – e.g.
Dominant Sequence Clustering and CASS-II [9], Duplication-based algorithms –
e.g. Task Duplication-based Scheduling algorithm (TDS) and Task duplication-
based scheduling Algorithm for Network of Heterogeneous systems (TANH)) [9].

3 Structure of the GridSpace Application Optimizer

According to the abstractions introduced in GridSpace [3] (see section 1),
GrAppO is designed to select a Grid Object Instance optimal for invocation of
an operation of a specified Grid Object Class. There may be many instances cor-
responding to one grid object class, with the same functionality, but of different
performance. The decision produced by GrAppO is based on the information
retrieved from the registry (Grid Resource Registry – GRR), monitoring and
provenance (Provenance Tracking System – PROToS [5]) components of vir-
tual laboratory and depends on implemented optimization policy. Optimization
modes offered in the Gridspace Application Optimizer include so called short-,
medium- and far-sighted optimization. The first one assumes an optimum so-
lution is chosen only for one Grid Object Class at a time. In the second mode
solutions are assigned for a group of Grid Object Classes without reordering
tasks or using queues, still considering the previous choices. The far-sighted
mode requires the whole application to be analyzed and Grid Object Classes to
be reordered taking into account dependencies between them.

Figure 1 shows the architecture of GridSpace Application Optimizer together
with its connections to other components of the ViroLab Runtime and Middle-
ware. During short- or medium-sighted optimization, GrAppO Manger receives
calls from the Grid Operations Invoker [3] (that contain the name of Grid Object

Class found in the experiment script), collects the data concerning Grid Object
Implementations of that class and their instances from the Grid Resource Reg-
istry. This data are then passed to the Optimization Engine, which executes
dedicated optimization algorithms based on estimations of each solution’s per-
formance prepared by the Performance Predictor. The Performance Predictor
itself makes predictions on the basis of data obtained from PROToS (previous
performance of the GOb Class’s instances) – through Historical Data Analyzer,
and from the monitoring system (the condition of the available Grid resources)
– through Resource Condition Data Analyzer. Application Structure Analyzer
is used only during far-sighted optimization for analysis and reorganization of
application structure.

Fig. 1: Architecture of GridSpace Application Optimizer.

4 Monitoring System

As the experiments with GrAppO demonstrated (see also Section 5), the
important source of information is the monitoring system. It is intended to
provide up-to-date information on the resources for the GrAppO optimizer as
well as to monitor the state of the application being executed. Therefore, the
monitoring system should be interoperable with a variety of grid object tech-
nologies supported, such as Web Services, LCG jobs, MOCCA components as
well WSRF and AHE in the near future. Such a system has to preserve high
level of abstraction of grid object notion, at the same time providing low-level
and technology-specific information about the monitored entities when needed.

In addition to GrAppO, the monitoring information is used by the Prove-
nance Tracking System – PROToS (also used by GrAppO) to collect data con-
cerning the course of applications. Another important element of functionality
of the monitoring system is to provide application users with tools enabling
multilevel insight into the application execution.

Fig. 2: Architecture of leMonAdE.

In order to achieve these goals, the proper means of instrumentation, mon-
itoring data exposure, and monitoring data accessing are provided by the ded-
icated agiLE MONitoring ADherence Environment (leMonAdE), which applies
the Aspect-Oriented Programming (AOP) approach. The leMonAdE architec-
ture (presented on 2) can be divided into two main parts, according to their func-
tionality: Infrastructure monitoring – instrumentation of containers of multiple
technologies involved within the ViroLab Virtual Laboratory and Application
monitoring – Aspect-Oriented Programming techniques applied by leMonAdE
monitoring system.

5 Results of tests

The usability of the presented solution was inspected by various quality and
integration tests. The quality tests performed on GrAppO were based on measur-
ing makespan defined as: maxjεJ (CTjr), where CTjr is the expected completion
time of the job j on the resource r – the moment of time when the resource
r completes the job j [14]. The Max-min heuristics (see section 2) was used
as a GrAppO optimization algorithm. It proved to give similar results to the

Min-min heuristics (see section 2), still the first gives (approximately 5.6%) bet-
ter solutions when, among the Grid Object Classes to optimize appears one or
relatively small group with significantly longer execution time than the others.

The tests showed a vulnerability of GrAppO’s optimization results to the
lack of data that should be provided by monitoring system (see table 1). That
is understandable, as when a significant amount of information is missing, an
accurate prediction of performance becomes impossible.

Percentage of removed data Deterioration of makespan
10% 9.81%
20% 20.90%
30% 42.93%
40% 88.12%
50% 124.26%
.

100% over 200%!

Tab. 1: Influence of the availability of information on the makespan.

The prototype of GrAppO was implemented and integrated with the ViroLab
Virtual Laboratory. In this way, the ViroLab experiments appeared to be good
integration tests.

6 Conclusions and future work

The GridSpace Application Optimizer, presented in this paper is restricted
by multiple limitations imposed by the Grid environment characteristics and by
the structure and attributes of the ViroLab Virtual Laboratory (see section 1.
Nevertheless, as the test showed (section 5), in cooperation with the monitoring
system it should be able to significantly decrease the time needed for executing
an application in the GridSpace Engine (the ViroLab runtime system) and in-
crease its quality. To fully take advantages of this optimization mechanism, the
following actions are going to be taken in the nearest future:

• Realization of connections to the monitoring system and other ViroLab
components (most of them are now unavailable) – a critical issue, as data
from the external components significantly influence the optimizer’s per-
formance (compare section 1);

• Reaserch on far-sighted mode of optimization – the most interesting issue
in the GrAppO optimization idea;

• Extending the monitoring system to support a broader range of technolo-
gies available in ViroLab;

• Creating a graphical interface for easier configuration, which can also be
used to control the results of GrAppO operations.

Acknowledgements. This work was supported by the EU Virolab project IST-
027446 with related Polish grant SPUB-M and by the Foundation for Polish
Science.

References

1. ViroLab Virtual Laboratory, http://virolab.cyfronet.pl
2. ViroLab - EU IST STREP Project 027446, http://www.virolab.org
3. Maciej Malawski, Tomasz Bartyński, Marian Bubak: Invocation of Grid Opera-

tions in the ViroLab Virtual Laboratory. In Proceedings of Cracow Grid Workshop
2007, This volume.

4. Tomasz Gubala and Marian Bubak: GridSpace - Semantic Programming Envi-
ronment for the Grid; Proceedings International Conference of Parallel Processing
and Applied Mathematics (PPAM’05), Poznan, Poland, Springer, Sept., 2005

5. Bartosz Balís, Marian Bubak, MichaÃl Pelczar, Jakub Wach: Provenance Tracking
and Querying in ViroLab. In Proceedings of Cracow Grid Workshop 2007, This
volume.

6. Jarek Nabrzyski, Jenniffer Schopf, Jan Weglarz. (eds): Grid Resource Manage-
ment. State of the Art and Future Trends, Kluwer Academic Publishers, 2003

7. M. Li and M. Baker: The Grid: Core Technologies; John Wiley & Sons, 2005
8. M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R. Freund: Dynamic map-

ping of a class of independent tasks onto heterogeneous computing systems; IEEE
Heterogeneous Computing Workshop 1999, 30-44

9. D. Fangpeng, G. Selim: Scheduling Algorithms for Grid Computing: State of the
Art and Open Problems; School of Computing, Queen’s University, Kingston,
Ontario; January 2006

10. Henri Casanova, A. Legrand, D. Zagorodnov, and F. Berman: Heuristics for
Scheduling Parameter Sweep Applications in Grid Environments; Proc. of the
9th Heterogeneous Computing Workshop 2000, 349-363

11. J. Kim, J. Rho, J. Lee, M. Ko: Effective Static Task Scheduling for Realistic Het-
erogeneous Environment; 7th International Workshop on Distributed Computing,
IWDC 2004, Khargpur, India, December 2005

12. Y.-K. Kwok, I. Ahmad: Dynamic critical-path scheduling: An effective technique
for allocating task graphs to multiprocessors; IEEE Trans. Parallel Distrib. Syst.,
7(5):506-521, 1996

13. Z. Shi: Scheduling Tasks with Precedence Constraints on Heterogeneous Dis-
tributed Computing Systems; The University of Tennesse, Knoxville, December
2006

14. X. He, X. Sun, and G. Laszewski: A QoS guided scheduling algorithm for grid
computing. Workshop on Grid and Cooperative Computing 2002

