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Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia

4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90,

poz. 631 z późn. zm.): „Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do au-

torstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie,

karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega,

kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji ory-

ginalnej albo w postaci opracowania, artystycznego wykonania albo publicznie zniekształca

taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.”, a także uprzedzony

o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r.

Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): „Za narusze-

nie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta stu-

dent ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem

koleżeńskim samorządu studenckiego, zwanym dalej «sądem koleżeńskim».”, oświadczam,

że niniejszą pracę dyplomową wykonałem(-am) osobiście, samodzielnie i że nie korzystałem(-

am) ze źródeł innych niż wymienione w pracy.
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Abstract

Nowadays, quantum computing is coming out of research laboratories and starts to become

a technology available almost to everyone. Researchers are studying the interesting potential of

quantum computers and it seems that practical usage of them is just around the corner. There

are many companies that build their own quantum computers, e.g. Google, D-Wave Systems,

Rigetti Computing. IBM has contributed significantly to this by opening access to their IBM-Q.

Their goal is to build available universal quantum computing systems for business and science.

Quantum computing is a quite new field of study, it is impossible to transfer the style of

programming from classical computers to their quantum counterparts. A big challenge is to

implement quantum algorithms on a specific quantum computer and fit them to its architecture.

The study begins with short introduction to basics of quantum computing (Chapter 3). Then

present physical background of quantum computing (Chapter 4). Next, we put together informa-

tion about architectures available in the IBM-Q and analyze software environment of the IBM-Q

(Chapter 5). After that, we have analyzed capabilities of a tool for creating quantum programs,

QISKit. Then, we proposed an extension to software environment of the IBM-Q using some of

the features of QuIDE simulator by creating a bridge between those two pieces of software. It

was validated with different quantum algorithms already implemented on the IBM-Q (Chapter

6). Finally we have implemented a quantum random walk algorithm to see how accurate is the

IBM’s computer and we have compared results from real backend with results from the IBM’s

simulator as well as with from the QuIDE simulator (Chapter 7). On the basis of these study we

have assessed the usability of the IBM-Q software environment (Chapter 8).

The thesis showed that there is lack of tools that would help developers to create quantum

algorithms. It also showed the importance of quantum simulators, validated the IBM-Q quantum

computer and reviewed some available quantum algorithms. It also pointed that decoherence

analysis is a big problem and it is the most desirable direction of future work.

In this thesis we applied empirical research strategies and methods: surveys for obtaining

background information and for assessment of quantum computers and simulators, case studies

for analysis of quantum algorithms execution, computer experiments for validation and evalua-

tion of usability.
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1. Introduction

1.1. Motivation

Quantum computing is no longer only a theory, nowadays it is becoming a technology available

almost to everyone. Researchers and scientists are studying the potential of quantum comput-

ers and it seems that practical usage of them is just around the corner. In academia, the field

of quantum computation has been growing explosively since its inception in the 1980s and

the importance of quantum computers is widely recognized by industry and governments [1].

Developing quantum software is an essential issue as it is crucial in research areas such as:

• quantum simulation which includes research on applications of medium-sized quantum

computers,

• algorithms and complexity which explores capabilities of larger-scale quantum computers

(e.g. machine learning, search and optimization problems),

• cryptography because larger-scale quantum computers will break our current cryptosys-

tems, but also it is a chance to built new cryptosystems,

• quantum software framework which ease the use of quantum computers,

• quantum information science which is to provide the mathematical theory behind quan-

tum information processing and it is important for the development of such issues as error

correction schemes and a deeper understanding the physical theory behind the hardware.

There are many companies that build their own quantum computers, e.g. Google, D-Wave

Systems, Rigetti Computing. IBM also has its contribution to development of the industry. IBM-

Q is an initiative taken by IBM and their goal is to build commercially available universal

quantum computing systems for business and science. For now they have created the prototype

commercial quantum processor that anyone can use. The platform that enables connection to

the processor via the IBM Cloud was launched in May 2016 and it is successively developed.

At this moment users can choose from three different architectures: two 5-qubit architectures

and a 16-qubit architecture.

It is worth to emphasize that it is impossible to transfer the style of programming from

classical computers to their quantum counterparts. On classical computers there are debuggers
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and other tools that ease program optimization. We can check what exactly is happening at each

stage of the execution of a program. Quantum computers cannot give users this possibility as

each observation interfere with a state of a quantum system and this is the main reason why the

role of quantum computers simulators rises.

When it comes to quantum algorithms, there are many of them created. A collection of about

1000 quantum algorithms is presented in [2]. Now comes a question: how to implement these

algorithms on a specific quantum computer and fit them to its architecture?

The questions presented above are the motivation of the investigations presented in this

thesis. This work will describe current state of this technology, analyze its current and future

applications, as well as results of implementations of selected algorithms on the IBM-Q and

propose possible improvements of the accompanying simulators and other software tools.

1.2. Problem outline

The thesis will provide short overview of basic concepts and applications of quantum comput-

ing. Next, the state of technology of the IBM quantum computers will be provided as well as the

future plans and challenges. The work will include an overview and evaluation of the simula-

tion software and QISKit API capabilities. A set of quantum algorithms of practical importance

will be programmed to run on the IBM-Q quantum computer. The work will provide basic

knowledge about quantum computing allowing to start deeper scientific work on this subject.

The research question is: what is required to make the existing IBM quantum computer

an efficient tool for solving practical problems? As an answer to this question, we pose the

following research hypothesis: quantum computers require appropriate software environments,

simulators of quantum computing, programming and compiling tools to be efficiently used for

solving practical problems.

1.3. Objectives

The study will start with short introduction to mathematical basics in quantum computing [3]

[4]. Then we will go on to understand physical background of quantum computing, e.g. what

type of physical phenomena occurs in different machines [5, 6].

Next, we will gather information about architectures available in the IBM-Q [7] and analyze

software environment of the IBM-Q. After that, we will analyze capabilities of a tool for creat-

ing quantum programs, QISKIT, a Python API Client to use the IBM-Q [8]. We want to propose



3

an extension to software environment of the IBM-Q using some of the features of the QuIDE

simulator [9] by creating a bridge between those two pieces of software. We will validate our

solution with different quantum algorithms already implemented on the IBM-Q.

At the end we plan to implement a quantum random walk algorithm to see how accurate is

the IBM’s computer [10]. We will compare results from the real backend with results from the

IBM’s simulator as well as with from the QuIDE simulator.

1.4. Methodology

Empirical research strategies and methods will be applied, namely: surveys for obtaining back-

ground information and for assessment of quantum computers and simulators, case studies for

analysis of quantum algorithms execution, computer experiments for validation and evaluation

of usability.

1.5. Content of this work

In Chapter 2 we present related work to the topic of this thesis, we depict papers that pose a

basis to the thesis. In Chapter 3 we introduce the key concepts of quantum information and com-

putation theory. We explain basic notions of quantum computing which the subsequent chapters

refer to. Chapter 4 describes a construction of quantum computers. It shows different ways of

how to build such a machine as well as a detailed physical description of how the IBM-Q is

created. There is also a review of existing the IBM-Q hardware backends. Chapter 5 contains

a depiction of software environment created around the IBM-Q. There is a brief description of

the graphical interface and frameworks that can be used to create quantum programs. In Chap-

ter 6 we compare the IBM-Q simulator with QuIDE simulator. We also propose extension to

the IBM’Q simulator. In Chapter 7 we implement two variants of a quantum walk algorithm

and try to execute them on simulators as well as on different backends of the IBM-Q. Chap-

ter 8 contains assessment of usability of the IBM-Q based on experience with implementing

and executing quantum algorithms. In Chapter 9 we summarize the thesis, we discuss the goals

achieved, present conclusions and propose ideas for potential further work on this topic.
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2. Related work

One of the objectives of this thesis is, to present in a concise way, how quantum computers are

built nowadays. IBM-Q is based on superconducting qubits. There are papers that deal with this

subject. Paper [5] shows properties of superconducting circuits, such as quantized energy levels,

superposition of states, and entanglement, which are more commonly associated with atoms and

therefore those circuits are ideal as primitive building blocks of quantum computers. Different

types of superconducting qubits are described in paper [6]. Researchers from IBM wrote a paper

[11] that depicts the important route towards a logical memory with superconducting qubits.

They describe the current status of technology with regards to interconnected superconducting-

qubit networks and identifies near-term areas of focus to improve devices.

Many companies are constantly trying to create more powerful quantum computer than their

competitors. One of them is D-Wave Systems and their D-Wave 2000QTM quantum computer.

It uses a process called quantum annealing to search for solutions to a problem. As presented in

[12], computation is performed by initializing the quantum processing unit (QPU) into a ground

state of a known problem and annealing the system toward the problem to be solved such that it

remains in a low energy state throughout the process. At the end of the computation, each qubit

ends up as either a 0 or 1. This final state is the optimal or near-optimal solution to the problem

to be solved. The creators of this quantum computer says that D-Wave 2000QTM system has

"up to 2048 qubits".

Another significant quantum computing company is Rigetti Computing. They created their

own 19-qubit quantum system out of superconducting quantum processors and connected their

software platform, Forest [13], to it. Rigetti’s quantum computer is also available online. People

can get access to it and use it on Forest, that enables developers to write and execute quantum

software using a quantum-optimized compiler, a software stack for writing hybrid quantum-

classical algorithms (PyQuil), and software packages for quantum algorithms (Grove) [14].

The next crucial subject is software for creating quantum programs. User Guide of the IBM-

Q [7] presents, next to the basics of quantum computing, how to use the graphical interface of

the IBM-Q [15]. There are also many other ways to write an algorithm and then execute it on

the IBM-Q. These tools are: The Quantum Composer [15], QASM [16], QISKIT [8]. In [17]

the authors present a concept of a software architecture for compiling quantum programs from

a high-level language program to hardware-specific instructions. The architecture depicted in
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this paper is just a proposal.

In 2017 a group of European scientists created a document called Quantum Software Man-

ifesto [18]. The goal of the Manifesto is to show the importance of the quantum software,

emphasize the necessity of the quantum software and hardware developers to work together as

well as the need of industry involvement in the development of new algorithms. The Manifesto

claims that new quantum algorithms are important and also it shows fields where a reliable

quantum software is essential. A good-quality software is also needed when it comes to error

correction and fault-tolerant computing as well as verification and testing. In the Manifesto,

the authors also describe the importance of quantum computer architectures, optimized simula-

tion of quantum systems, quantum machine learning, quantum network software and quantum

cryptography.

Later on, we compare two simulators of a quantum computer - the IBM’s simulator [7]

and the QuIDE created by AGH University of Science and Technology students [9]. There

is no work that show differences between those two pieces of software, their advantages and

disadvantages and tell when it is best to use each of them. What is more, IBM’s simulator does

not allow users to check the state of the system during the computation, while the QuIDE has

this option. This is a very important feature, because it can be used to test algorithms. Thereupon

we would like to create a bridge between the IBM-Q and QuIDE that will convert QASM code

into C# code that can be executed on QuIDE.

Quantum computers are designed to outperform standard computers by running quantum

algorithms. Areas in which quantum algorithms can be applied include cryptography, search and

optimization, simulation of quantum systems and solving large systems of linear equations. In

the thesis we also examine some quantum algorithms. There are many of them created already.

In [2] one may find a comprehensive catalog of quantum algorithms. They are divided into

three sections: Algebraic and Number Theoretic, Oracular, Approximation and Simulation. The

author of [19] survey some known quantum algorithms with an emphasis on a broad overview

of their applications.

In our analysis we especially put emphasis on quantum walks. A good introduction and

overview is in [10] and [20]. The first one focuses mainly on discrete quantum walks and quan-

tum image processing. It begins with a critical and comprehensive assessment of those elements

of classical random walks and discrete quantum walks on undirected graphs relevant to algo-

rithm development. The second one provides an introductory survey on quantum random walks.
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In [21] the authors discuss an efficient physical realization of topological quantum walks on a

one-dimensional finite lattice with periodic boundary conditions. They also describes results of

the execution of the quantum algorithm on the IBM-Q five-qubit quantum computer.

Analyzing papers presented above we can notice that there is a need to extend the IBM-Q

environment. The results of our research will be used to realize objectives of this thesis. We will

describe the IBM-Q, assess the software environment and propose its enhancement.
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3. Basic notions of quantum computing

This chapter gives a quick overview of basic notions of quantum computing which are necessary

to understand the contents of this thesis.

3.1. What is a qubit?

Classical computers store information on bits, the smallest unit of data, which have ’logical’

value, either 0 or 1. Bit is located in a scalar space. Quantum computers store data on bits’

counterparts - qubits, units of quantum information. Qubit is a two-state quantum-mechanical

system. Quantum mechanics allows the qubit to be in a superposition of both states at the same

time. It is a property that is fundamental to quantum computing. The state |ψ〉 of a two-state

quantum system can be described by members of two-dimensional complex Hilbert space. This

means every state vector is represented by two complex coordinates:

|ψ〉 = α |0〉+ β |1〉 ,where α, β ∈ C. (1)

The coefficients of the linear combinations must follow the rule:

|α|2 + |β|2 = 1. (2)

The states |0〉 and |1〉 can be treated as orthogonal unit vectors and can be expressed as:

|0〉 =

1

0

 , |1〉 =

0

1

 . (3)

Qubits can be combined in a system of qubits. Suppose we have n qubits and the states of

them are |φ1〉 , |φ2〉 , ..., |φn〉. The state |Φ〉 of the whole system can be expressed as a tensor

product of the states of the qubits:

|Φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ ...⊗ |φn〉 . (4)
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3.2. Quantum gates

State of a qubit can be manipulated by using quantum gates which are typically represented as

matrices. The result of applying quantum gates can be found by multiplying the matrix repre-

senting the gate with the vector representing the quantum state:

For U =

a b

c d

 and |φ〉 =

α
β

 , |φ′〉 = U |φ〉 =

a b

c d

 ·
α
β

 =

aα + bβ

cα + dβ

 . (5)

As we can see, 2 × 2 unitary matrix represents a 1-qubit quantum gate. We can act on one

qubit with it.

To manipulate an n-qubit system we need an n-qubit quantum gate represented by a unitary

matrix 2n × 2n. One of the most important multiple qubit gates is a C-NOT gate (controlled

NOT). Its matrix representation looks as follows:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (6)

C-NOT manipulates a 2-qubit system. One of the qubits is called control bit and when it

is in state |1〉, C-NOT acts as a negation on the second bit, called target bit. If control bit is in

state |0〉, the gate has no effect.

An extension of a C-NOT gate is a Toffoli gate. It is a 3-qubit gate with two control bits and

one target bit. If both control bits are in state |1〉, the gate acts as a negation on the target bit.

These are only examples from a large set of quantum gates.

3.3. Measurement

To extract information stored in qubits they need to be measured. It is an irreversible operation:

once qubits are measured we can’t restore their original state.

If we would measure a state of a qubit which state is |ψ〉 = α |0〉+β |1〉, we would get either

|0〉 or |1〉. The result is random and we can only calculate the probabilities. The probability of

getting |0〉 is |α|2 and the probability of getting |1〉 is |β|2 and we see that states |ψ〉 and eiθ |ψ〉

are equivalent.
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Analogously we may measure the state of n-qubit system |Φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ ... ⊗ |φn〉.

After the measurement the system changes its state to one of the state |φi〉, where i ∈ 1, 2, ..., n

with the probability |αi|2.

To visualize quantum computations it is convenient to use quantum circuits. They clearly

show qubits’ initialization at the beginning, quantum gates that are used and measurement at

the end.

3.4. Entanglement

Entanglement is a phenomenon that occurs when pairs or groups of particles interact in ways

such that the quantum state of each particle cannot be described independently of the others.

For example, it is possible to prepare two particles in a single quantum state such that when

one is observed to be spin-up, the other one will always be observed to be spin-down and vice

versa, even though according to quantum mechanics it is impossible to predict which set of

measurements will be observed. As a result, measurements performed on one particle seem to

be instantaneously influencing other particles entangled with it. Albert Einstein, among others,

was studying this phenomena and referred to it as "spooky action at a distance" whereas now,

for quantum computing, entanglement is a resource.

Entangled state is a multi-qubit state that cannot be expressed as the tensor product of

1-qubit states of each its qubits. An example of entangled states are the Bell states:

∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉), (7)∣∣Φ−〉 =
1√
2

(|00〉 − |11〉), (8)∣∣Ψ+
〉

=
1√
2

(|01〉+ |10〉), (9)∣∣Ψ−〉 =
1√
2

(|01〉 − |10〉). (10)

3.5. Summary

In this chapter we have briefly introduced basic notions of quantum computing. We explained

what is a qubit, a quantum gate, measurement and entanglement. This is a basic introduction to

issues raised in the next chapters.
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4. How do quantum computers work?

Quantum computers are concern of many scientists nowadays. They pose a future of computa-

tion, however, there are a number of technical challenges in building them. The most important

seems to be achieving a balance between long coherence time, connectivity between qubits and

fast control of them.

4.1. General concept of quantum computers

4.1.1. What is quantum computer?

Quantum computers are potentially incredibly powerful machines that take a new approach to

processing information. They make use of quantum-mechanical phenomena (e.g. superposition

and entanglement) to operate on data.

How did it all begin? In 1981 Richard Feynman, an American theoretical physicist, in his

talk at the First Conference on the Physics of Computation, held at MIT, observed that it ap-

peared to be impossible in general to simulate an evolution of a quantum system on a classical

computer in an efficient way. He proposed a basic model for a quantum computer that would be

capable of such simulations. It was the beginning of quantum computing [22].

Quantum computing uses the possibilities that the laws of quantum mechanics give us to

solve computational problems. Classical computers only use a small subset of these possibil-

ities. They compute in the same way that people compute by hand. In this case "efficiently",

refers to the idea that the evaluation time doesn’t grow too quickly with the size of the input.

In quantum computing calculations are performed by unitary transformations on the state of

the qubits. Combined with the principle of superposition, this creates possibilities that are not

available for classical computing. The quantum algorithms are faster than classical ones thanks

to:

• quantum parallelism: by using superposition of quantum states, the computer is execut-

ing the algorithm on all possible inputs at once;

• dimension of quantum Hilbert space: the "size" of the state space for quantum system

is exponentially larger than corresponding classical system;
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• entanglement capability: different qubits in a quantum computer become entangled,

exhibiting nonclassical correlations.

Quantum computers differ in physical implementation. That means there are many ways to

build physical systems that realize the qubits. In this chapter we will describe what physical

laws and phenomena are used and what conditions are required to build a quantum computer.

4.1.2. Physical phenomena used to build quantum computers

There are several approaches proposed when it comes to building a quantum computer. One of

them is an ion trap. Ions (particles having non-zero electrical charge, such as an atom whose

total number of electrons is not equal to its total number of protons) are confined and suspended

using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quan-

tum information can be transferred through the collective quantized motion of the ions in a

shared trap [23].

NMR (nuclear magnetic resonance) is another approach to building quantum computers. It

uses the spin states of nuclei within molecules as qubits. NMR differs from other implemen-

tations of quantum computers in that it uses an ensemble of systems, in this case molecules,

rather than a single pure state.

The last approach presented here will be the superconducting quantum computing. This

is an implementation of a quantum computer in superconductors (materials in which a phe-

nomenon of exactly zero electrical resistance and expulsion of magnetic flux fields occur) [5,

6]. IBM conducts intense research in superconducting quantum computing. Their quantum ma-

chine is build using this approach.

4.2. Quantum computer based on superconducting qubits

4.2.1. Necessary conditions to build a quantum computer

Quantum phenomena are hard to observe in everyday life. That’s why the physical implemen-

tation of qubits and quantum gates is difficult. A number of conditions need to occur to actually

implement the qubit.

One of them is extremely low operation temperature. Each material has different tempera-

ture in which it becomes a superconductor. For aluminium (IBM’s quantum computer is made
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of aluminium) it is 1.2 K. Yet, to build a quantum computer, aluminium has to be cooled to even

lower temperature, about 15-20 mK.

Electrons inside a quantum system occupy certain allowed orbitals with a specific energy. It

means that the energy of an electron is not continuous, but quantized. Energies corresponding

to each of the allowed orbitals are called energy levels. The energy separation between various

levels can be equally split, yet to build a quantum computer the differences between those levels

have to be distinct. Let’s suppose that three of energy levels are |0〉, |1〉 and |2〉 states. Energy

difference between |0〉 and |1〉 state is different than between |1〉 and |2〉.

All particles pulse. Physicists call this pulsation thermal fluctuations. Thermal fluctuations

are random deviations of a system from its average state. If the temperature is higher, they are

bigger. Even in absolute zero electrons are not still. Their energy is called energy of thermal

fluctuations and is of the order of:

ET = kBT, (11)

where kB is Boltzmann constant and T is temperature.

Let’s find out what is the frequency of fluctuations of electrons in the temperature of 15 mK.

To know that we need one more formula:

E = hν, (12)

where h is Planck constant and ν is frequency.

ν =
E

h
=
kBT

h
. (13)

We calculated that in 15 mK the frequency of fluctuations of electrons is 0.3 GHz. Analo-

gously, for 1 K frequency value is a lot bigger - 20 GHz.

Electrons can "jump" between energy levels if the frequency of thermal fluctuations is bigger

than frequency needed to put an electron on a different energy level. This phenomenon can also

be controlled by laser with a proper frequency, that can excite an atom e.g. from state |0〉 to |1〉.

Important information is that thanks to distinct energy separation between levels, the laser with

the same frequency can never put the atom in, e.g. state |2〉.

In IBM’s quantum computer frequency of fluctuations amounts to 5 GHz. It means that the
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energy separation between energy levels in the IBM-Q must be big enough to make sure that

thermal fluctuations would not change the energy level of the electron, or a rather Cooper pair.

Temperature in a quantum computer needs to be small enough, so that energy of thermal

fluctuations is much smaller than energy between energy levels of states |0〉 and |1〉 not to cause

random excitations. If metal is cooled to critical temperature, it goes from a state where it has

electrical resistance, to the superconducting state, where there is no resistance to the flow of

direct electrical current. What happens there is that the electrons in the metal become bound

into so-called Cooper pairs. Above the critical temperature, the net interaction between two

electrons is repulsive. Below the critical temperature, though, the overall interaction between

two electrons becomes very slightly attractive [5].

Important metrics for the qubits are two time values: T1 and T2. The relaxation time T1

is the time required for a qubit to relax from the first excited state to the ground state (this

process involves energy loss). The dephasing time T2 is the time over which the phase difference

between two eigenstates becomes randomized [5].
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4.2.2. Superconducting qubits

Superconducting quantum computing approach assumes using standard circuit elements (such

as wires, inductors and capacitors) to create a circuit that has energy levels’ structure described

above necessary for implementing a qubit [24].

A distinguishing feature of superconducting quantum circuits is the usage of a Josephson

junction. Classical circuits (LC) have equally distributed energy levels and because of that they

are not good for representing qubits. Josephson junction needs to be introduced to change it:

differences between each of the energy levels have to be different.

Figure 1: Superconducting quantum computing approach assumes using standard circuit ele-
ments (such as wires, inductors and capacitors) to create a circuit that behaves like an atom. A
distinguishing feature of superconducting quantum circuits is the usage of a Josephson junction.
The figure shows circuit representing a qubit (on the right) with Josephson junction that makes
gaps between energy levels different from each other and voltage source to control the energy
levels (we can use AC or DC voltage source).

Josephson junction is made by sandwiching a thin layer of a nonsuperconducting material

between two layers of superconducting material. Until a critical current is reached, a supercur-

rent can flow across the barrier (isolator). Electron pairs can tunnel across the barrier without

any resistance.

Josephson junction accumulates potential energy EJ (called Josephson energy) when a su-

percurrent flows through it. It describes the frequency of pairs of electrons’ tunneling through

Josephson junction. The larger theEJ , the faster the electrons go back and forth through the iso-

lator [24].EC is the Coulomb charging energy for the capacitor [6]. In other words: electrostatic
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cost (electrostatic energy) that it takes to take a charge from infinity and put it on capacitor.

EC =
e2

2C
,where C is the capacity of capacitor. (14)

Important parameter in quantum computing is
EJ
EC

ratio. It can be adjusted by engineering

the Josephson junction and capacitor in certain way. In various qubit realizations the value of

this parameter is different. If
EJ
EC

is large (about 50-100) then we call it a transmon qubit and

this type of qubit is used in IBM’s computer.

4.2.3. How qubits are controlled

Operations on qubits rely on Rabi oscillations. Those oscillations appear when qubits are sub-

jected to action of periodic varying electrical or magnetic fields with scrupulously picked influ-

ence time. If in time t = 0 a qubit is in state |0〉, the probability p01(t) of transition to state |1〉

in time t is described by formula:

p01(t) =
(ω1

Ω

)2
sin2 Ωt

2
, Ω =

√
(ω − ω0)2 + ω2

1, (15)

the frequency ω1 is called Rabi frequency.

Oscillation amplitude between state |0〉 and |1〉 is maximum for ω = ω0, that is for reso-

nance:

p01(t) = sin2 Ωt

2
, ω = ω0. (16)

To achieve transition from state |0〉 to state |1〉 it is sufficient to use rotating field for t equals:

ω1t

2
=
π

2
, t =

π

ω1

. (17)

4.2.4. How measurement is done

Measurements of the states of qubits are made with a superconducting quantum interference

device (SQUID) [6]. This device, which consists of two Josephson junctions in parallel, is the

most sensitive magnetic-flux detector known. For example, one can make a voltmeter that can

measure picovolts. That’s about 1,000 times more sensitive than other available voltmeters.
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4.2.5. Fault-tolerant architecture

Quantum error correction (QEC) helps to perform fault-tolerant quantum computing and it was

created by researchers from IBM and was described in [11]. The idea of QEC is to encode

information in subsystems of a larger physical space that are immune to noise. A fault-tolerant

quantum computing system is shown in figure 2.

Figure 2: Quantum error correction (QEC) helps to perform fault-tolerant quantum computing.
The idea in QEC is to encode information in subsystems of a larger physical space that are
immune to noise. In figure there is a full fault-tolerant quantum computing system envisioned
within a layered structure. The system consist of two layers: physical qubit layer and logical
qubit layer. The lower layer contains physical qubits controlled via a QEC processor. The upper
layer functions through control of the physical layer.

The system consist of two layers: the physical qubit layer and the logical qubit layer. The

lower layer contains physical qubits controlled via a QEC processor (a classical processor that

uses measurement outcomes of the physical qubits to realize a QEC code). The processor keeps

track of the physical errors that arise, and implements the appropriate feedback on the controls

of the physical qubits. The upper layer functions through control of the physical layer. Here,

logical qubits are encoded within the fully error-corrected system of physical qubits, and logi-

cal controls and readouts are governed through a processor that determines how to implement

difficult quantum algorithms.
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4.3. Quantum volume concept

As quantum computers started to become more and more powerful, scientists were thinking

about criteria by which their "power" could be measured and compared. Unlike for the clas-

sical computing, measuring the speed of computing itself is not enough to define a quantum

computer.

IBM researchers created a parameter that describes power of quantum computer called

"quantum volume" [25]. The quantum volume measures the useful amount of quantum com-

puting done by a device in space and time. It is not dependent only on number of qubits, but

also on error rate. Three factors that influence the error rate are: the accuracy of each operation,

number of operation it takes to solve a particular problem and how processor performs these

operations. Quantum volume accounts for all of these.

Increasing qubit number does not improve a quantum computer if error rate is high, but

improving the error rate will result in a more powerful quantum computer. Quantum volume

abstracts the hardware-provided gate set, the qubit connectivity graph, varying fidelities of dif-

ferent operations, possibilities for circuit-rewriting and optimization, available parallelization

of operations, etc. It is done by specifying a model algorithm.

How to calculate quantum volume?

First its necessary to know what is the circuit depth. This is a concept created by IBM

researchers, that starts with the idea that, because quantum gates can always introduce an error,

there is a maximum number of operations that can be performed before it is unreasonable to

expect the qubit state to be correct. Circuit depth is that number, multiplied by the number of

qubits.

We need to define εeff as the equivalent per-gate error rate that would lead to the same overall

error rate, n as number of qubits required to run the algorithm, d ' 1/(nεeff) as achievable

circuit depth needed to execute the algorithm with reasonable fidelity to the correct answer and

n′ (a subset of n) as a number of active qubits, on which to execute the model algorithm. The

quantum volume, VQ, is calculated as:

VQ = max
n′6n

min
[
n′,

1

n′εeff(n′)

]2
. (18)

This metric quanties the space-time volume occupied by a model circuit with random two- qubit

gates that can be reliably executed on a given device.
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4.4. Overview of IBM quantum computers in the IBM-Q

4.4.1. History of the IBM-Q

The IBM Quantum Experience (QX) platform was made available in May 2016. It is the first

quantum computing platform delivered via the IBM Cloud and accessible by desktop and mo-

bile devices. It enables users to run experiments on the IBM’s quantum processor. At the begin-

ning it was only a five qubit quantum processor (ibmqx1 backend) and a simulator. User could

only interact with them through a quantum composer. In July the same year IBM launched

the community forum, a place where QX users can exchange their knowledge and help each

other. On 24th January 2017 IBM launched ibmqx2 backend (5 qubits). Also simulator was

expanded to custom topologies up to twenty qubits and quantum language OpenQASM version

2.0 was introduced. User could interact with the processor either through the composer or using

OpenQASM. In September 2017 new backends went online: a 5-qubit ibmqx4 and a 16-qubit

ibmqx5. In November 2017 IBM Research team announced that they successfully built and

tested two more machines [26]:

• one with 20 qubits, which was going to be available to clients of IBM at the end of 2017,

• a prototype with 50 qubits.

Researchers from IBM writes on their blog that the 20-qubit machine has double the coher-

ence time, at an average of 90 µs, compared to previous generations of quantum processors with

an average of 50 µs. The machine is also designed to scale. The 50-qubit prototype has similar

performance.

IBM Quantum Experience platform is constantly developed.

4.4.2. IBM-Q quantum computer’s architecture

IBM-Q uses superconducting quantum computing approach. IBM has revolutionized an ap-

proach to quantum computers and nowadays everyone can use them. IBM-Q platform contains

three types of backend architecture. Two of them are composed of 5 qubits and one is composed

of 16 qubits. Descriptions below depict all currently available backends.
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The IBMQX2 backend is the first that appeared on the IBM-Q [27]. It went online January

24th 2017. The connectivity map for the CNOTs in this device is:

coupling_map = 0 : [1, 2], 1 : [2], 3 : [2, 4], 4 : [2],

where a : [b] means a CNOT with qubit a as control and b as target can be implemented.

The connection topology is shown in figure 3.

Figure 3: Schema of connection topology of IBMQX2 architecture, one of the IBM-Q’s back-
ends. Arrows show which qubit in a pair is a control qubit and which is a target gubit (from
CNOT gate).

The second 5-qubit backend, IBMQX4, went online 25th September 2017 [28]. It has a

different coupling map than the previous one. Connections between qubits are shown in figure

4.

coupling_map = 1 : [0], 2 : [0, 1], 3 : [2, 4], 4 : [2].

Figure 4: Schema of connection topology of IBMQX4 architecture, one of the IBM-Q’s back-
ends. Arrows show which qubit in a pair is a control qubit and which is a target gubit (from
CNOT gate).
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IBM also created a 16-qubit backend, IBMQX5. It went online 28th September 2017 [29].

Connection topology is shown in figure 5.

coupling_map = {1 : [2], 2 : [3], 3 : [4, 14], 5 : [4], 6 : [7], 6 : [11], 7 : [10],

8 : [7], 9 : [8, 10], 11 : [10], 12 : [5, 11, 13], 13 : [4, 14], 15 : [0, 2, 14]}

Figure 5: Schema of connection topology of IBMQX5 architecture, one of the IBM-Q’s back-
ends. Arrows show which qubit in a pair is a control qubit and which is a target gubit (from
CNOT gate).
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4.4.3. Parameters of the IBM-Q

Table 1 presents the most important parameters of quantum computers with their general values

(most common values for typical quantum computers these days) and values for the IBM-Q.

Parameter General value IBM-Q’s value

Coherence time Tcoh 100 µs 90 µs

Gate length TG 10-100 ns 10 ns

Number of quantum

operations

Tcoh
TG about 104

E1 − E0 4-6 GHz 5 GHz

E2 − E1

about 5% different than E1 − E0

Table 1: Most important parameters of quantum computers. It shows a general value for each
parameter and a value for the IBM-Q. The general value is a most common value in quantum
computers these days.

Coherence time is a time of survival of a quantum state. In other words, time in which

quantum state is unimpaired. Gate length is a time in which we can change a qubit state (by

performing an operation). The key is to have a quantum state live longer than it takes to change

state of a qubit. Number of quantum operation is a maximum state changes that can be per-

formed. It is calculated by dividing coherence time by gate length. The last two parameters

in the table are differences in energy levels. In the table ?? there are parameters of physical

realization of the IBM-Q.
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Parameter IBM-Q’s value

Temperature of operation T 15-20 mK

Material (superconductor) aluminium

Critical temperature of aluminium TC 1,2 K

Energy of Cooper pair for aluminium ∆ 5 GHz

Dimensions of the device simulating one qubit about 500 µm

Table 2: The table shows parameters of physical realization of the IBM-Q - properties of mate-
rials used to build the IBM-Q

Temperature of operation is the temperature in which the quantum computer works. It shall

be cooled to freely operate between quantum energy levels. The IBM-Q’s superconducting cir-

cuits are build of aluminium. Dimensions depicts the size of the actual device (that simulates

one qubit).
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5. Software environment of the IBM-Q

IBM has revolutionized an approach to quantum computers by providing by providing an open

access to their quantum computer. Nowadays they are no longer machines for scientists from

IBM and collaborators, but can be used by everyone. In this chapter we will describe and assess

the IBM-Q software environment [15].

5.1. Methods of creating quantum algorithms on the IBM-Q

There are several ways to create a quantum program that can be executed on IBM’s quantum

computer (see Fig. 6). The easiest way is to use graphical user interface where circuits can be

created from gates with drag-and-drop method.

Figure 6: Tools to program the IBM-Q. There are several ways to create a quantum program
that can be executed on the IBM’s quantum computer. The easiest way is to use graphical
user interface. There is also a software development kit called Quantum Information Software
Kit (QISKit for short). Both circuit made with GUI and QISKit code can be translated into
Qasm code. QASM is a type of assembly language created especially for the IBM-Q. It can be
executed on a simulator or a real quantum processor and give some results. Algorithms can also
be written directly in QASM.
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There is also a software development kit called Quantum Information Software Kit (QISKit

for short) [8]. QISKit uses IBM’s Python API client to connect to the IBM-Q. Circuits made

with GUI and QISKit code can be translated into QASM code. QASM is a type of assembly

language created especially for the IBM-Q. It can be executed on a simulator or on a real

quantum processor and give some results. Algorithms can also be written directly in QASM.

All of these tools are described below. To present them we will use Grover’s algorithm as

an example.

5.1.1. IBM-Q’s graphical user interface

In Fig. 7 there is a screenshot of the IBM-Q Composer. At the top, there is a list of available

backends. It is important to mention, that with GUI users can use only the 5-qubit backends.

All of the backends (also the 16-qubit one) are available on QISKit. Inscription "maintenance"

indicates that this particular backend is currently being calibrated and is unavailable. Calcula-

tions on this architecture will be done when it becomes active. In figure 7 there is an exemplary

circuit created from gates listed on the right.

Figure 7: Interface of the IBM-Q Composer [15]. At the top there is a list of available backends.
Inscription "maintenance" indicates that this particular backend is currently being calibrated
and is unavailable. Calculations on this architecture will be done when it becomes active.

There is a possibility to switch views between composer and QASM editor (shown in Fig.

8). Every instruction in the QASM is the application of a quantum gate. It is possible to begin
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building a quantum circuit in the scripting mode. More information about user interface in the

IBM-Q can be found in Full User Guide [7] - the documentation of the IBM-Q.

Figure 8: Interface of the IBM-Q QASM editor [16]. Every instruction in the QASM is the ap-
plication of a quantum gate. It is possible to begin building a quantum circuit from the scripting
mode.

After creating a quantum score (circuit), a user can run it on a real quantum processor or

simulate it. If we choose the first option, the algorithm is scheduled in a queue and when the

execution is finished an email with a proper information is sent to the user. On the other hand,

simulation can be done at any time and it permits all-to-all connectivity of qubits.

The system also informs the user if other users have run the same circuit and proposes to

present existing results instead of actual run the circuit on quantum processor. That allows users

to save Experiment Units. Experiment Units are a kind of credits to execute quantum algorithms

on the IBM’s processors. Each executions takes some of the Units and they regenerate after 24

hours.

It is also worth to mention that there is a community and a forum where IBM-Q users help

each other to solve problems and answer questions they have [30].
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5.1.2. QISKit - SDK for working with OpenQASM and the IBM Q

The Quantum Information Software Kit (QISKit) is a software development kit (SDK) for work-

ing with OpenQASM and the IBM-Q. To make calculations on online backends, QISKit uses

python API client to connect to the IBM-Q [31].

Using the QISKit users can create quantum computing programs, compile them, and ex-

ecute them on one of several backends (online Real quantum processors, online simulators,

and local simulators) [32]. It facilitates a set of functions. All of the functions are described in

documentation [33].

As an example of usage of the QISKit, in code listing 1 we present the Grover algorithm

implemented in Python with QISKit.

Registers in QISKit are just qubits on which some quantum gates can be executed. Whereas

gates are represented by functions (e.g. function h() is a representation of Hadamard gate).

Python native instructions and data structures also can help to create a quantum algorithm

in QISKit. One of them is for loop that can be used to iterate the qubits and perform some

operation on each of them. Python’s arrays are often used to show connections between qubits.

The example also shows a data structure (named QPS_SPECS) that provided information about

the quantum processor’s specifications to the QuantumProgram() function.
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Code 1: Grover algorithm written in Python with QISKit SDK

1 from qiskit import QuantumProgram
2 import Qconfig
3

4 backend = "ibmqx2"
5 coupling_map = {0: [1, 2],
6 1: [2],
7 2: [],
8 3: [2, 4],
9 4: [2]}

10

11 QPS_SPECS = {
12 "circuits": [{
13 "name": "grover",
14 "quantum_registers": [{
15 "name": "q",
16 "size": 5
17 }],
18 "classical_registers": [
19 {"name": "c",
20 "size": 5}
21 ]}]
22 }
23 # set up registers and program
24 qp = QuantumProgram(specs=QPS_SPECS)
25 qc = qp.get_circuit("grover")
26 q = qp.get_quantum_register("q")
27 c = qp.get_classical_register("c")
28

29 # set the APIToken and API url
30 qp.set_api(Qconfig.APItoken, Qconfig.config["url"])
31

32 qc.h(q[1])
33 qc.h(q[2])
34 qc.s(q[1])
35 qc.s(q[2])
36

37 qc.h(q[2])
38 qc.cx(q[1], q[2])
39 qc.h(q[2])
40

41 qc.s(q[1])
42 qc.s(q[2])
43 qc.h(q[1])
44 qc.h(q[2])
45

46 qc.x(q[1])
47 qc.x(q[2])
48

49 qc.h(q[2])
50 qc.cx(q[1], q[2])
51 qc.h(q[2])
52

53 qc.x(q[1])
54 qc.x(q[2])
55

56 qc.h(q[1])
57 qc.h(q[2])
58

59 for i in range(2):
60 qc.measure(q[i], c[i])
61

62 print("map to %s, backend" % backend)
63 result = qp.execute(["grover"], backend=backend,
64 coupling_map=coupling_map, shots=1024, timeout=120)
65 print(result)
66 print(result.get_counts("grover"))
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5.1.3. Assembly language - OpenQASM

The same algorithm can be implemented directly in OpenQASM. User can toggle between

Composer (GUI) and the QASM editor on the IBM-Q platform.

Grover algorithms’s code implemented in Open QASM is shown in code listing 2.

Code 2: OpenQASM

1 include "qelib1.inc";
2 qreg q[5];
3 creg c[5];
4

5 h q[1];
6 h q[2];
7 s q[1];
8 s q[2];
9 h q[2];

10 cx q[1],q[2];
11 h q[2];
12 s q[1];
13 s q[2];
14 h q[1];
15 h q[2];
16 x q[1];
17 x q[2];
18 h q[2];
19 cx q[1],q[2];
20 h q[2];
21 x q[1];
22 x q[2];
23 h q[1];
24 h q[2];
25 measure q[1] -> c[1];
26 measure q[2] -> c[2];

5.1.4. Representation of quantum operators in QISKit and the IBM-Q Composer

In table 3 we have put together quantum operators, their counterparts in QISKit’s set of func-

tions and the IBM-Q Composer’s gates representations.



29

Operator

(matrix representation)
QISKit function IBM-Q gates

I =

1 0

0 1

 iden()

X =

0 1

1 0

 x()

Y =

0 −i

i 0

 y()

Z =

1 0

0 −1

 z()

H =


1√
2

1√
2

1√
2

−1√
2

 h()

S =

1 0

0 i

 s()

S† =

1 0

0 −i

 sdg()

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 cx()

T =

1 0

0
1 + i√

2

 t()

T † =

1 0

0
1− i√

2

 tdg()

U1 =

1 0

0 eiλ

 u1()

U2 =


1√
2
− e

iλ

√
2

eiφ√
2

eiλ+iφ√
2

 u2()
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Operator

(matrix representation)
QISKit function IBM-Q gates

U3 =

 cos
θ

2
−eiλ sin

θ

2

eiφ sin
θ

2
eiλ+iφ cos

θ

2

 u3()

barrier barrier()

measurement measure()

if

qubit reset reset(quantum_reg)

Table 3: Table shows quantum operators, their counterparts in QISKit’s set of functions and the
IBM-Q Composer’s gates representations.

The barrier operator prevents optimizations that normally occur in software when rear-

ranging gates is possible, e.g., in a circuit with no barriers two Hadamard gates placed one after

the other will be combined into an identity and no gate will be applied, whereas, if those two

Hadamard gates are separated by a barrier, both of them will be physically implemented.

5.2. IBM-Q’s simulator

IBM provides a simulator of quantum computer that can be used after choosing "Custom Topol-

ogy" option during creating new experiment. User must give number of qubits to be simulated

(maximum is 20). Custom processor permits all-to-all connectivity, whereas in real processors

connectivity is limited by physical connections. The physical topology and qubit connections

were describes in subsection 4.4.2. In simulation the execution of quantum circuits happens im-

mediately, in contrary to running circuits on a real processor which is queued and asynchronous.

5.3. Results from the simulator and from the real quantum processor

After finishing execution of the algorithm we can see the results. It is easy to notice that results

from the real processor and from the simulator differ from each other, even though they are both

results of the same algorithm.
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Figure 9: Results of the Grover algorithm execution on the real quantum processor.

Figure 10: Results of the Grover algorithm execution on the IBM simulator.

Fig. 9 shows output of Grover algorithm executed on the real processor, whereas in the Fig.

10 there are results of the same algorithm run on the simulator. The results from both runs are

different. That is because simulator imitates an "ideal" machine and the real processor can be

subjected to decoherence.

5.4. Matching algorithm with architecture

A true challenge during creating quantum algorithms is matching the algorithm with particu-

lar architecture. It is crucial to remember that each of the backends has different connections

between qubits and it is impossible to run the same circuit on all of the backends.
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6. Interoperability of the IBM-Q and QuIDE simulators

6.1. The need for simulators of quantum computers

Simulators compute the quantum state we expect a circuit to produce at each stage of processing.

They are important when we want to test if the output we got from the real hardware is correct.

A simulator can be ideal or realistic. The ideal simulator treats each gate as a unitary matrix

and composes them to find the output state. This simulator shows what to expect when all of the

operations are perfect. The realistic simulator, on the other hand, numerically solves a system of

differential equations, known as a master equation which includes dissipation and phase noise,

as well as time-dependent terms for gates and interactions between adjacent qubits. The various

interaction strengths are computed from realistic parameters and an effective Hamiltonian. The

results are qualitatively similar to what is observed in a typical experiment [34].

As it was explained at the beginning of this thesis, a simulator is even better if it gives a

possibility to improve quantum programs and debug them. It can be done by implementing in

simulators an option to check inner states of qubits in every step of an algorithm. Unfortunately,

the IBM-Q simulators don’t have this feature.

6.2. Comparison of the IBM-Q and QuIDE software environments

Before we compare simulators of the IBM-Q and the QuIDE we will review their software

environments. In the table 4 there are differences and similarities between environment of the

IBM-Q and the QuIDE.
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QuIDE IBM-Q

Non-elementary quantum gates
Only elementary quantum gates (GUI and QASM)

or non-elementary quantum gates (QISKit)

C# (.NET Framework)
Graphical interface and QASM

or Python (QISKit)

Ability to create quantum programs

with code (C# - QuIDE library)

as well as with Circuit Designer

Ability to create quantum programs with code

(QASM or Python QISKit framework)

as well as with Composer

Shows values of registers,

probability and amplitude after

each step of circuit execution

Shows results after execution

of the whole circuit

One library Multiple frameworks

Transformation from code to circuit and vice versa

Ability to create reusable subroutines

Table 4: Differences and similarities between software environment of the IBM-Q and the
QuIDE. The set of gates is different in the QuIDE and the IBM-Q. In the QuIDE there is much
more gates. Therefore, it would be difficult to map every gate from the QuIDE to a gate from
the IBM-Q, however it can be a lot easier in the opposite way.

The set of gates is different in the QuIDE and the IBM-Q. In the QuIDE there is much more

gates, therefore, it would be difficult to map every gate from the QuIDE to a gate from the

IBM-Q, however, it can be a lot easier in the opposite way.

IBM-Q’s GUI and QASM provide ability to create reusable subroutines (nested elementary

gates) which technically are multiple-qubit gates. They can be used only with custom topology

(not on real devices). The QuIDE also allows to create function that are reusable subroutines.

6.3. Comparison of the IBM-Q and QuIDE simulators

As there are no publications that say how the IBM-Q’s simulator is implemented, the only

comparison we can make is that comparison of what is visible outside. IBM-Q do not try to

provide best in class simulator as it is meant to be only aid to write quantum algorithms and run

them on real computers.
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QuIDE IBM-Q

Implemented with hash table technique

(dictionary variant)
n.a.

Implemented in C# n.a.

Optimization: only non-zero amplitudes

are kept in memory
n.a.

Standalone application, can run only on Windows

(as written in .NET Framework)

Web application,

can run on every web browser

Up to 23 in the QuIDE

and 26 in QuIDE.dll qubits simulated
Up to 20 qubits simulated

Table 5: Differences between the QuIDE and IBM-Q simulator.

As it was mentioned in subsection 6.1, there are two types of quantum simulators: realistic

and ideal. IBM-Q is definitely a realistic simulator, because two executions of the same algo-

rithm can give slightly different results. On the other hand, the QuIDE simulator gives always

identical results. Its implementation makes it an ideal simulator that does not take account of

decoherence.

Table 5 shows differences between the QuIDE and the IBM-Q simulator. Some information

is missing, so we cannot really compare every aspect of both simulators.

6.4. Converter from QASM to C#

Inspired by the fact that IBM’s simulator resembles a real hardware and it is impossible to

check states of qubits at the individual steps of an algorithm, we have created a converter which

converts QASM code (transcript of a quantum circuit) to C# code that can be run on the QuIDE

simulator. QuIDE gives a user a possibility to preview the internal state of a quantum system at

each stage of the computation. This is impossible on real quantum systems (as well as on IBM’s

simulator) because each observation interfere with its state.

In the QuIDE users can create quantum circuits with Circuit Designer (similar to the

Composer in the IBM-Q) as well as by writing code in C# with the QuIDE libraries. The output

c# code that our converter generates can be also transformed into graphical quantum circuit in

the QuIDE.
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Figure 11: The converter converts QASM code (transcript of a quantum circuit) to C# code that
can be run on the QuIDE simulator. QuIDE gives the user a possibility to preview the internal
state of a quantum system at each stage of the computation. This is impossible on real quantum
systems (as well as on the IBM’s simulator). Before execution we have to make sure that we
have a proper qasm file with algorithm we want to convert to C#.

Before execution we have to ensure that we have a proper qasm file with algorithm we want

to convert to C#. The converter works as showed in algorithm 1.

Algorithm 1 Description of how the converter works
1: Program reads a qasm file of which name is given as an input argument at the program

execution.

2: Output file (the C# QuIDE file) is being created (it is empty at this stage).

3: Program writes necessary imports of libraries into output file as well as it creates Quantum-

Computer instance inside Main() function.

4: The qasm file is parsed line after line.

5: repeat

6: Name of the gate is extracted from the line of qasm code.

7: Name of a quantum register is extracted from the line of qasm code. On this register

gates will be executed.

8: Parameters of gates are extracted.

9: A corresponding QuIDE function is being found. The function needs to act in the same

way as the gate in the parsed line.

10: All extracted arguments are mapped to fit in the QuIDE function.

11: A string with the code of the function with proper parameters is being written into

output file.

12: until end of file

13: Program closes the output file.
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The output file can be opened and run in the QuIDE simulator. In step 3 of the Algorithm 1

it was mentioned that necessary imports of libraries are being written into the output file. Those

are the libraries that include definitions of functions representing quantum gates as well as the

libraries with mathematic functions and matrix representations. In step 8 the parameters that

are extracted from the line of QASM code depend on the type of the gate located in that line. In

every gate there is a parameter that represents a number of the qubit to perform the execution

of the gate on, but other parameters differ depending on gate.

QISKit function QASM function QuIDE function

iden(q[i]) id q[i] -

x(q[i]) x q[i] q.SigmaX(i)

y(q[i]) y q[i] q.SigmaY(i)

z(q[i]) z q[i] q.SigmaZ(i)

h(q[i]) h q[i] q.Hadamard(i)

s(q[i]) s q[i] q.PhaseKick(Math.PI/2, i)

sdg(q[i]) sdg q[i] q.PhaseKick(-Math.PI/2, i)

cx(q[i], q[j]) cx q[i], q[j] q.CNot(target:j,control:i)

t(q[i]) t q[i] q.PhaseKick(Math.PI/4, i)

tdg(q[i]) tdg q[i] q.PhaseKick(-Math.PI/4, i)

u1(lam,q[i]) u1(lam) q[i] q.PhaseKick(lam, i)

u2(phi,lam,q[i]) u2(phi,lam) q[i] q.Gate1(U2, i)

u2(theta,phi,lam,q[i]) u3(theta,phi,lam) q[i] q.Gate1(U2, i)

barrier(*tuples) barrier q[i], ..., q[j] -

measure(q[i], c[i]) measure q[i] -> c[i] q.Measure(i)

Table 6: The table shows quantum gates as QISKIt functions, their counterparts in QASM and
finally the mapping to functions in the QuIDE.

6.5. Validation of the converter

To validate the converter we took three popular quantum algorithms that are already imple-

mented in the IBM-Q and can be found in the User Guide [7]: the Grover algorithm, the

Deutsch-Jozsa algorithm and the Shor algorithm. The existing circuits were transformed in the
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IBM-Q into QASM code which was then converted into C# code with the converter. From the

C# code a circuit in the QuIDE was generated. We compared the circuit from the IBM-Q and

the circuit from the QuIDE. If they were identical, it was a proof that the conversion is correct.

The next step was to check internal states in the key stages of the examined algorithm. Finally,

we compared results from both simulators as well as from the real processor of the IBM-Q.

6.5.1. The Grover algorithm

To test the converter we started from transforming a quite simple algorithm - the Grover’s search

algorithm.

Algorithm 2 Description of Grover algorithm [7]

1: State |s〉 =
1√
N

N−1∑
x=0

|x〉 is being prepared, where N - number of items in given list to

search, x - item in the list. At t = 0 the initial state |ψ0〉 = |s〉.

2: repeat

3: Oracle matrix Uf |x〉 = (−1)f(x) |x〉 is defined, where f is an oracle function that re-

turns f(x) = 0 for all unmarked items and f(w) = 1 for the element w that is being

searched.

4: Oracle reflection is applied to the state Uf |ψt〉 = |ψt′〉

5: Additional reflection Us = 2 |s〉 〈s| − 1 about the state |s〉 is applied. It maps the state

|s〉 to Us |ψt′〉 and completes the transformation |ψt+1〉 = UsUf |ψt〉.

6: until

The Algorithm 2 describes how the Grover algorithm works and code 2 from subsection

5.1.3 shows an implementation of this algorithm is QASM. It is a very simple case that can be

implemented on two qubits, with four possible oracles. Step 1 in the algorithm maps to lines 5,

6 in the code, steps 3 and 4 in the algorithm is realized in lines 7-13 in the code and step 5 is in

lines 14-24.

The QASM code of the algorithm presented in code listing 2 is submitted for transformation

with the converter. The output C# code is presented in code listing 3.
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Code 3: Grover algorithm - code in QuIDE

1 using Quantum;
2 using Quantum.Operations;
3 using System;
4 using System.Numerics;
5 using System.Collections.Generic;
6

7 namespace QuantumConsole
8 {
9 public class QuantumTest

10 {
11 public static void Main()
12 {
13 QuantumComputer comp = QuantumComputer.GetInstance();
14 Register q = comp.NewRegister(0,5);
15

16 q.Hadamard(1);
17 q.Hadamard(2);
18 q.PhaseKick(Math.PI/2, 1);
19 q.PhaseKick(Math.PI/2, 2);
20 q.Hadamard(2);
21 q.CNot(target: 2, control: 1);
22 q.Hadamard(2);
23 q.PhaseKick(Math.PI/2, 1);
24 q.PhaseKick(Math.PI/2, 2);
25 q.Hadamard(1);
26 q.Hadamard(2);
27 q.SigmaX(1);
28 q.SigmaX(2);
29 q.Hadamard(2);
30 q.CNot(target: 2, control: 1);
31 q.Hadamard(2);
32 q.SigmaX(1);
33 q.SigmaX(2);
34 q.Hadamard(1);
35 q.Hadamard(2);
36 q.Measure(1);
37 q.Measure(2);
38

39 }
40 }
41 }

Figure 12: Quantum circuit in the IBM-Q Composer corresponding to the code of Grover algo-
rithm. The algorithm needs only two qubits, so three qubits are not used in this case.
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Quantum circuit in the IBM-Q Composer corresponding to the code of Grover algorithm is

presented in figure 12. The algorithm needs only two qubits, so three qubits are not used in this

case. The QuIDE circuit is presented in figure 13.

Figure 13: The quantum circuit corresponding to the code of the Grover algorithm in the
QuIDE’s circuit designer tool generated from the C# code that was converted from QASM
code of the Grover algorithm.

We can compare the circuit generated with the QuIDE to the circuit from IBM’s Composer.

They look almost the same, however there are some differences:

• In the QuIDE some gates have different names (S gate from the IBM-Q is R gate in the

QuIDE)

• The QuIDE qubits and the IBM-Q qubits have reversed numbering.

After executing this quantum algorithm on the IBM’s simulator, we can see that the proba-

bility of getting value |0〉 is equals to 1. The final results of the execution in the QuIDE look the

same as in IBM’s simulator, but it also shows the amplitude value - 1.00− 0.00i.

As it was mentioned before, the reason why the converter was created is the fact that the

QuIDE has a feature that the IBM-Q lacks and this is the possibility to preview of the internal

quantum state of the system. In figure 14 there is the same circuit as in figure 13, generated in

the QuIDE circuit designer, but "stopped" after step 4 of the algorithm 2.

Figure 14: The quantum circuit in the QuIDE’s circuit designer generated from the C# code
that was converted from QASM code of the Grover algorithm, the same circuit as in figure 13,
"stopped" after step 4 of the algorithm 2.

Figure 15 shows the state of the system exactly in the moment lineated in figure 14. The

QuIDE can give users information about value of the registers, states of qubits, probability and
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amplitude. It also displays amplitude as a vector in a complex plane. Figure 15 is divided into

two parts that present results from one place in algorithm, however the left part shows amplitude

on a complex plane of the first state (highlighted in blue) and the right part - of the second state.

Directions of arrows are inverted.

Figure 15: The state of the system exactly in the moment lineated in figure 14. QuIDE can give
users information about value of the registers, states of qubits, probability and amplitude. It also
displays amplitude as a vector in a complex plane. The left part of the figure shows amplitude
on a complex plane of the first state (highlighted in blue) and the right part - of the second state.
Directions of arrows are inverted.

6.5.2. The Deutsch-Jozsa algorithm

In this subsection we will convert implementation of Deutsch-Jozsa algorithm to code in C#

with the converter. It is described in Algorithm 3 and the code listing 4 shows its implementation

in QASM.

The Deutsch-Jozsa problem is defined as follows. There is a function f(x) that takes as an

input n-bit strings x and returns 0 or 1. The function f(x) is either a constant function that

takes the same value c ∈ 0, 1 on all inputs x, or a balanced function that takes each value 0

and 1 on exactly half of the inputs. The goal is to decide whether f is constant or balanced

by making as few function evaluations as possible. Classically, it requires 2n−1 + 1 function

evaluations in the worst case. Using the Deutsch-Jozsa algorithm, the question can be answered

with just one function evaluation. The function f is specified by an oracle circuit Uf , such that

Uf |x〉 = (−1)f(x) |x〉 (like in the previous section about the Grover algorithm) [7].
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Let us suppose we have n = 3 and balanced function f(x) = x0 ⊕ x1x2.

Algorithm 3 Description of Deutsch-Jozsa algorithm [7]

1: Initialize n qubits in the all-zeros state |0, 0, ..., 0〉. . n is number of bits in a string.

2: Apply the Hadamard gate H to each qubit.

3: Apply the oracle circuit Uf .

4: Repeat Step 2.

5: Measure each qubit. Let y = (y1, . . . , yn) be the list of measurement outcomes.

The IBM-Q and the QuIDE initializes their qubits with value 0, so the first point of the

algorithm 3 is already fulfilled. Step 2 of the algorithm is realized in lines 7-9 in the code listing

4. Step 3 in algorithm maps to lines 10-13 in the code, step 4 is realized in lines 14-16 in the

code and the last step, the measurement is shows in lines 17-19 in the code.

Code 4: Deutsch-Jozsa algorithm - code in QASM

1 OPENQASM 2.0;
2 include "qelib1.inc";
3

4 qreg q[5];
5 creg c[5];
6

7 h q[0];
8 h q[1];
9 h q[2];

10 h q[2];
11 z q[0];
12 cx q[1],q[2];
13 h q[2];
14 h q[0];
15 h q[1];
16 h q[2];
17 measure q[0] -> c[0];
18 measure q[1] -> c[1];
19 measure q[2] -> c[2];

Figure 16: Circuit of the Deutsch-Jozsa algorithm corresponding to the code from listing 4. Two
qubits are not used in this case.
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The QASM code of the Deutsch-Jozsa algorithm presented in code listing 4 is transformed

with the converter into C# code presented in code listing 5.

Code 5: Deutsch-Jozsa algorithm - code in the QuIDE

1 using Quantum;
2 using Quantum.Operations;
3 using System;
4 using System.Numerics;
5 using System.Collections.Generic;
6

7 namespace QuantumConsole
8 {
9 public class QuantumTest

10 {
11 public static void Main()
12 {
13 QuantumComputer comp = QuantumComputer.GetInstance();
14 Register q = comp.NewRegister(0,5);
15

16 q.Hadamard(0);
17 q.Hadamard(1);
18 q.Hadamard(2);
19 q.Hadamard(2);
20 q.SigmaZ(0);
21 q.CNot(target: 2, control: 1);
22 q.Hadamard(2);
23 q.Hadamard(0);
24 q.Hadamard(1);
25 q.Hadamard(2);
26 q.Measure(0);
27 q.Measure(1);
28 q.Measure(2);
29

30 }
31 }
32 }

Figure 16 shows circuit of the Deutsch-Jozsa algorithm corresponding to the code from

listing 4. Again, two qubits are not used in this case. Circuit generated in the QuIDE is shown

in figure 17.

Figure 17: Quantum circuit (corresponding to the code of the Deutsch-Jozsa algorithm) in the
QuIDE’s circuit designer tool generated from the C# code that was converted from QASM code
of the Deutsch-Jozsa algorithm.
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Figure 18: Results of executing the Deutsch-Jozsa algorithm implementation in IBM’s simula-
tor.

Figure 19: Results of executing the Deutsch-Jozsa algorithm implementation in the QuIDE
simulator.

Figure 20: Results of executing the Deutsch-Jozsa algorithm implementation in the QuIDE
simulator after performing the measurement.

In figure 19 and figure 18 there are results from IBM’s simulator and the QuIDE, respec-

tively. The results from both simulators look alike. What is interesting, the outcome from the

QuIDE in figure 19 shows the state before the measurement. Results after measurement are

depicted in figure 20.

This shows that the simulator of the IBM-Q gives results prior to destroying the quantum

state. After performing the measurement we will get one of presented values (in this case 00111,

00001, 00101 or 00011, as shows in figure 18) with given probabilities (0.240, 0.250, 0.270 or

0.240, respectively).

Figure 21 shows the quantum circuit of the Deutsch-Jozsa algorithm generated in the QuIDE

circuit designer, "stopped" after step 2 of the algorithm 3.
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Figure 21: Quantum circuit in the QuIDE’s circuit designer generated from the C# code that
was converted from QASM code of the Deutsch-Jozsa algorithm, the same circuit as in figure
17, "stopped" after step 2 of the algorithm 3.

Figure 22 shows the state of the system in the moment marked with a blue line in figure 21.

As in case of the Grover algorithm results, we have information about value of the registers,

states of qubits, probability, amplitude and its representation as a vector in the complex plane.

Figure 22: State of the system exactly in the moment lineated in figure 21. QuIDE can give
users information about value of the registers, states of qubits, probability and amplitude. It
also displays amplitude as a vector in the complex plane.

Now we will examine another example. Figure 23 shows the quantum circuit of the Deutsch-

Jozsa algorithm generated in the QuIDE circuit designer, "stopped" after step 3 of the algorithm

3.
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Figure 23: Quantum circuit in the QuIDE’s circuit designer generated from the C# code that
was converted from QASM code of the Deutsch-Jozsa algorithm, the same circuit as in figure
17, "stopped" after step 3 of the algorithm 3.

Again, in figure 24 we can see the internal state of the system in the moment marked with

a blue line in figure 23. There is information about value of the registers, states of qubits,

probability, amplitude and its representation as a vector in a complex plane. Figure 24 shows

representation of different amplitudes on a complex plane. The left part shows amplitude of the

first state (highlighted in blue) and the right part - of the second state. Directions of arrows are

inverted.

Figure 24: State of the system in the moment lineated in figure 23. QuIDE can give users
information about value of the registers, states of qubits, probability and amplitude. It also
displays amplitude as a vector in a complex plane. The left part of the figure shows amplitude
on a complex plane of the first state (highlighted in blue) and the right part - of the second state.
Directions of arrows are inverted.
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6.5.3. The Shor algorithm

Algorithm 4 Description of Shor algorithm [7][35]
1: Choose a random positive integer m. Use the polynomial time Euclidean algorithm to com-

pute the greatest common divisor gdc(m,N). . N is the number we want to factor.

2: if gdc(m,N) 6= 1 then

3: Exit. . We have found a non-trivial factor of N .

4: end if

5: Use a QUANTUM COMPUTER to determine the unknown period r of the function

N fN−→ N

a −→ ma mod N

6: if r is an odd integer then

7: go to 5

8: else if r is an even integer then

9: go to 11

10: end if

11: Since r is even,(
m

r

2 − 1
)(
m

r

2 + 1
)

= mr − 1 = 0 mod N .

12: if m
r

2 + 1 = 0 mod N then

13: go to 1

14: else if m
r

2 + 1 6= 0 mod N then

15: go to 17

16: end if

17: Use the Euclidean algorithm to compute d = gdc
(
m

r

2 , N
)

. Since m
r

2 + 1 6= 0 mod N , it

can be easily shown that d is a non-trivial factor of N .

18: Exit with the answer d.

The last algorithm we want to test is the Shor algorithm. It is a quantum algorithm for integer

factorization. As written in [7], Shor’s algorithm is arguably the most dramatic example of

how the paradigm of quantum computing changed our perception of which problems should be

considered tractable.
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Code 6: Shor algorithm - code in QASM

1 OPENQASM 2.0;
2 include "qelib1.inc";
3

4 qreg q[5];
5 creg c[5];
6

7 x q[4];
8 x q[1];
9 x q[2];

10 x q[3];
11 x q[4];
12 cx q[3],q[2];
13 cx q[2],q[3];
14 cx q[3],q[2];
15 cx q[2],q[1];
16 cx q[1],q[2];
17 cx q[2],q[1];
18 cx q[4],q[1];
19 cx q[1],q[4];
20 cx q[4],q[1];
21 measure q[1] -> c[1];
22 measure q[2] -> c[2];
23 measure q[3] -> c[3];
24 measure q[4] -> c[4];

Code 7: Shor algorithm: looking for a period r of the function - code in QASM.

1 using Quantum;
2 using Quantum.Operations;
3 using System;
4 using System.Numerics;
5 using System.Collections.Generic;
6

7 namespace QuantumConsole
8 {
9 public class QuantumTest

10 {
11 public static void Main()
12 {
13 QuantumComputer comp = QuantumComputer.GetInstance();
14 Register q = comp.NewRegister(0,5);
15

16 q.SigmaX(4);
17 q.SigmaX(1);
18 q.SigmaX(2);
19 q.SigmaX(3);
20 q.SigmaX(4);
21 q.CNot(target: 2, control: 3);
22 q.CNot(target: 3, control: 2);
23 q.CNot(target: 2, control: 3);
24 q.CNot(target: 1, control: 2);
25 q.CNot(target: 2, control: 1);
26 q.CNot(target: 1, control: 2);
27 q.CNot(target: 1, control: 4);
28 q.CNot(target: 4, control: 1);
29 q.CNot(target: 1, control: 4);
30 q.Measure(1);
31 q.Measure(2);
32 q.Measure(3);
33 q.Measure(4);
34 }
35 }
36 }



48

The steps of the factorization are shown in algorithm 4, but only step 5 requires usage of

quantum computer. All other steps can be executed on a classical computer.

The QASM code of the Shor algorithm presented in code listing 6 is transformed with the

converter into C# code presented in code listing 7.

Figure 25 shows circuit of the Shor algorithm corresponding to the code from listing 6. In

this case one qubit is not used. Circuit generated in the QuIDE is shown in figure 26.

Figure 25: Circuit of the Shor algorithm corresponding to the code from listing 6. One qubit is
not used.

Figure 26: Quantum circuit (corresponding to the code of the Shor algorithm) in the QuIDE’s
circuit designer generated from the C# code that was converted from QASM code of the Shor
algorithm.

After executing this quantum algorithm on the IBM’s simulator we can see that the proba-

bility of getting value |4〉 is equals to 1. The final results of the execution on the QuIDE look

the same as in IBM’s simulator, but it also shows the amplitude value - 1.00 + 0.00i.

We will take a closer look on the internal state of the quantum system. There are two places

that we chose in the quantum circuit from figure 26. They are shown in figures 27 and 28.

Figure 27: Quantum circuit in the QuIDE’s circuit designer generated from the C# code that was
converted from QASM code of the Shor algorithm, the same circuit as in figure 26, "stopped"
before performing one of NOT gates.
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Figure 28: Quantum circuit in the QuIDE’s circuit designer generated from the C# code that was
converted from QASM code of the Shor algorithm, the same circuit as in figure 26, "stopped"
after performing one of NOT gates.

Those two places are quantum states before and after performing NOT gate on the fourth

qubit. In figures 29 and 30 there is information about those states, respectively. In the ’Qubits’

column we can see that the value of the first qubit (which is actually the last, fourth qubit)

changes.

Figure 29: State of the system in the moment marked in figure 27. QuIDE can give users infor-
mation about value of the registers, states of qubits, probability and amplitude.

Figure 30: State of the system in the moment marked in figure 28. QuIDE can give users infor-
mation about value of the registers, states of qubits, probability and amplitude.

6.6. Summary

The validation showed that the circuits from the IBM-Q and after the convertion, from the

QuIDE are identical which means that the converter works correctly. Results from both simula-

tors and the real processor coincide with each other and are consistent with algorithms descrip-

tion.
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7. Implementing and running a quantum walk on the IBM-Q

7.1. Introduction - classical random walk

A classical random walk is a stochastic process that describes a path derived from a series of

random steps on a mathematical space. In this section, we will depict a random walk on a space

of integers (discrete random walk).

The most basic type of a random walk is a random walk in one dimension - random walk on

a line of integers. We start at 0 and move one step to the left or to the right at a time, according

to some probability distribution. This process can be illustrated as follows. A walker is placed

at 0 on a line of integers and a coin is flipped. Depending on which side it lands, the walker

moves one unit to the right or one unit to the left. After five flips of the coin, the walker could

be on 1,−1, 3,−3, 5 or −5. We can interpret one-dimensional random walk also as a Markov

chain with state space given by integers si = 0,+−1,+−2, ..., transition matrix P if each time the

walker is in state si there is some fixed probability pij that it will be in state sj and pij does not

depend upon which states the chain was in before the current state [10].

Transition matrix P for i = 6 looks as follows:

P =



1 0 0 0 0 0

1/2 0 1/2 0 0 0

0 1/2 0 1/2 0 0

0 0 1/2 0 1/2 0

0 0 0 1/2 0 1/2

0 0 0 0 0 1


. (19)

There are also different types of random walks, e.g. a random walk on a graph. In this case

the walker now has more move possibilities than left and right. The random walk on a graph is

presented in Algorithm 5.

Algorithm 5 Random walk on a graph
1: s = u . starting point
2: repeat
3: choose a neighbor v of u according to a certain probability distribution P
4: u = v
5: until stop condition
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Classical random walks can be used to create randomized algorithm to solve e.g. 2-

satisfiability (2-SAT) in polynomial or a very efficient algorithm (though still exponential) to

solve 3-SAT [10]. Classical random walks are also used in different field of studies, e.g. in

physics as simplified models of physical Brownian motion or as method of Fermi estimation.

7.2. Discrete quantum walk

Quantum walks are quantum counterparts of classical random walks. There are two models of

them: discrete quantum walks and continuous quantum walks. In the first model an evolution

operator is applied to a walker and a coin only in discrete time steps. In the second model it can

be applied at any time. We will concentrate only on the discrete quantum walks.

Analogously to the classical random walk, where the walker’s current state is described by

a probability distribution over positions, the walker in a quantum walk is in a superposition of

positions. Evolution operator is applied to the initial quantum state several times without per-

forming intermediate measures. Quantum walks can be performed on graphs. In this subsection

we will discuss a special type of them - quantum walk on an unrestricted line, which is per-

formed on a graph G(V,E) of degree |V | = 2. They can be used to test to which extent given

quantum computer is a real quantum computer.

Components of the quantum walk are:

• a walker - quantum system living in a Hilbert space of infinite but countable dimension,

its initial position is usually at ’origin’ of the line:

|position〉initial = |0〉p , (20)

• a coin - quantum system living in a 2-dimensional Hilbert space, it can take the canonical

basis states |0〉 or |1〉 as well as any superposition of these states. Hadamard operator

(shown in eq. 21) is usually used as a coin operator:

Ĥ =
1√
2

(|0〉cc 〈0|+ |0〉cc 〈1|+ |1〉cc 〈0| − |1〉cc 〈1|), (21)

• a conditional shift operator - applied to the whole quantum system, allows walker to go

one step forward if the accompanying coin state is one of the two basis states (e.g. |0〉),
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or one step backwards if the accompanying coin state is the other basis state (e.r. |1〉):

Ŝ = |0〉cc 〈0| ⊗
∑
i

|i+ 1〉pp 〈i|+ |1〉cc 〈1| ⊗
∑
i

|i− 1〉pp 〈i| , (22)

• a set of observables - defined according to the basis states that have been used to define

coin and walker, they allow to extract information from the quantum system. Observables

can be used to perform a measurement, e.g. we may first perform a measurement on the

coin using observable:

M̂c = α0 |0〉cc 〈0|+ α1 |1〉cc 〈1| (23)

and then perform a measurement on the position states of the walker by using the operator:

M̂p =
∑
i

ai |i〉pp 〈i| . (24)

As an illustrative example we shortly present quantum walk on an infinite line. Following

[10] quantum walk on an infinite line can be written as:

|ψ〉 =
∑
k

[ak |0〉c + bk |1〉c] |k〉p , (25)

where |0〉c, |1〉c are the coin state components and |k〉p are the walker state components.

We will now introduce an example analysis of first three steps of a quantum walk for an

initial state |ψ〉0 = |0〉c ⊗ |1〉p.

First step:

|ψ〉1 =
1√
2
|0〉c |1〉p +

1√
2
|1〉c |−1〉p . (26)

Second step:

|ψ〉2 =

(
1

2
|0〉c + 0 |1〉c

)
|2〉p +

(
1

2
|0〉c +

1

2
|1〉c

)
|0〉p +

(
0 |0〉c −

1

2
|1〉c

)
|−2〉p . (27)
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Third step:

|ψ〉3 =

(
1

2
√

2
|0〉c + 0 |1〉c

)
|3〉p +

(
1√
2
|0〉c +

1

2
√

2
|1〉c

)
|1〉p +(

−1

2
√

2
|0〉c + 0 |1〉c

)
|−1〉p +

(
0 |0〉c +

1

2
√

2
|1〉c

)
|−3〉p .

(28)

These were the first three steps. Algorithm 6 shows quantum walk on an infinite line with

infinite possible steps.

Algorithm 6 Quantum walk
1: repeat
2: choose a starting point, e.g. |0〉p
3: repeat
4: toss a quantum coin

H |0〉c =
1√
2
|0〉c +

1√
2
|1〉c

or H |1〉c =
1√
2
|0〉c −

1√
2
|1〉c

5: move one qubit left and right according to qubit state
6: until stop condition
7: until stop condition

This algorithm can also use to implement a quantum walk on a circle. The implementation

of a walker will be different in that case. We will present the implementation this algorithm in

the next subsection.

7.3. Quantum circuit implementation of quantum walk on a circle

As a part of assessment of the IBM-Q software environment we will implement the quantum

walk algorithm in both the IBM-Q and the QuIDE. After that, we will compare results from the

IBM-Q real processor, the IBM-Q simulator and the QuIDE simulator.

To implement a quantum walk we followed the article [36]. Authors of this article proposed

implementations of a quantum walk on various topologies, including a circle. Figures 31 and 32

show realizations of step forward and backward, respectively, on a cyclic permutations of the

node states.



54

Figure 31: Increment gate on n qubits, producing cyclic permutations in the 2n bit-string states.

Figure 32: Decrement gate on n qubits, producing cyclic permutations in the 2n bit-string states.

To implement a walk along a cycle of size 2n we require n+1 qubits: n qubits to encode the

nodes and an additional qubit for the coin. The coin operator can be implemented by a single

Hadamard gate. Figure 33 presents an example of the circuit for a cycle of size 16.

Figure 33: Quantum circuit implementing one stap of a quantum walk along a 16-length cycle.
The walker is implemented on four qubits, so number of possible states of the walker is equals
to 24 = 16.

7.4. Decomposition of multiple-controlled gates

As it was shown in the previous subsection, the particular implementation of the quantum walk

we want to realize requires multiple-controlled quantum gates. Multiple-controlled NOT gates

can be easily implemented in the QuIDE, but QISKit allows to create only the Toffoli gate.

However, to implement the quantum walk on three qubits we need triple-controlled NOT gate.
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Paper [37] shows how to decompose n-bit quantum gates to elementary gates. Figures 34

and 35 presents simulations of any double- and triple-controlled unitary gate U with single-

controlled gates. In the first example V 2 = U , whereas in the second one V 4 = U .

Figure 34: Simulation of any double-controlled unitary gate U using CNOT gates, V gates and
a V † gate, where V 2 = U .

Figure 35: Simulation of any triple-controlled unitary gate U using CNOT gates, V gates and a
V † gate, where V 4 = U .

As both the QISKit and the QuIDE have functions realizing the Toffoli gate with two control

qubits, we needed to decompose cccNOT gate for the QISKit implementation of the quantum

walk. Simulation of this gate is shown in figure 36.

Figure 36: Simulation of triple-controlled NOT gate using CNOT gates, 4
√
X gates and 4

√
X†

gates.

The 4
√
X gate, as well as the 4

√
X† gate are not implemented in the IBM-Q. We had to realize

them with general unitary gates U . In the QISKit tutorial [38] there is a matrix that represents

the U gate:

U =

 cos (θ/2) −eiλ sin (θ/2)

eiφ sin (θ/2) eiλ+iφ cos (θ/2)

 . (29)
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This is the most general form of a single qubit unitary gate. QISKit provides the U gate

through the u3 gate:

u3(θ, φ, λ) = U(θ, φ, λ). (30)

The u2(φ, λ) = u3(π/2, φ, λ) is also useful gate as it allows us to create superpositions:

u2(φ, λ) =
1√
2

 1 −eiλ

eiφ ei(φ+λ)

 . (31)

The u1(λ) = u3(0, 0, λ) is a useful as it allows us to apply a quantum phase:

u1(λ) =

1 0

0 eiλ

 . (32)

Matrix of the gate realizing rotation around X in the Bloch sphere axis has the form:

4
√
X =

 cos (θ/2) −i sin (θ/2)

−i sin (θ/2) cos(θ/2)

 . (33)

The 4
√
X gate rotates qubit by π/4 around the X axis, so its matrix has the form:

4
√
X =

 cos (π/8) −i sin (π/8)

−i sin (π/8) cos(π/8)

 . (34)

This explanation was needed to understand how we translated 4
√
X and 4

√
X† gates into u3

gates. After creating and solving a simple system of equations we found values of the required

parameters. In 4
√
X they are as follows: θ = π/4, φ = −π/2, λ = π/2. Whereas in 4

√
X†:

θ = −π/4, φ = −π/2, λ = π/2, so

4
√
X → u3(π/4,−π/2, π/2), (35)

4
√
X† → u3(−π/4,−π/2, π/2). (36)
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7.5. Implementation of the quantum walk algorithm with a two-qubit

walker

At first, we implemented a very simple quantum walk with two-qubit walker. The walker can

move forward and backward on four nodes (number of nodes equals 2n, where n = 2) located

on a circle.

We implemented the algorithm on both the IBM-Q simulator and the QuIDE simulator as

well as on the IBM-Q real backend. We used simulators to check how ideal results should look

like and then compare them with results from the IBM-Q processor. That way we were able to

assess usability of the IBM-Q. In this subsection we will present results from both simulators

and from the real processor.

In figure 37 there is a quantum circuit created in the QuIDE representing the step gate from

figure 38. The lowest qubit is the coin qubit and the two upper qubits are the walker qubit.

Figure 37: Quantum circuit representing the step gate from figure 38. The lowest qubit is the
coin qubit and the two upper qubits are the walker qubit.

Figure 38 presents quantum circuit of the algorithm implemented in the QuIDE. QuIDE

allows users to create their own gates (a C# function in code is interpreted as a gate). In our

implementation one step of the walker is a quantum gate.

Figure 38: Quantum circuit of the quantum walk algorithm implemented in the QuIDE. QuIDE
allows users to create their own gates. In our implementation one step of the walker is a quantum
gate.

Results from execution of this circuit are shown in figure 39. It is important to notice that

the QuIDE counts the coin qubit as a part of the quantum state of the system, however, we

only need values of the walker qubits. Therefore, the last qubit value in the ’Qubits’ column is

unnecessary in this instance and we have two possible states of walker: |00〉 and |10〉.
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Figure 39: Results from execution of the circuit from figure 38. QuIDE counts the coin qubit as
a part of the quantum state of the system, however, we only need values of the walker qubits.
Therefore, we have two possible states of walker: |00〉 and |10〉.

The next step was to implement the same quantum walk with two-qubit walker on the IBM-

Q and execute it on both the simulator and the real processor. However, this time it was essential

to remember about mapping the algorithm to the topology of the architecture of the ibmqx4

processor (we chose this particular processor to execute the quantum walk on). The topology

was presented in figure 4.

This algorithm is quite simple and it was easy to do the mapping just by analyzing the

topology and the circuit generated in the QuIDE. In the QISKit implementation of the quantum

walk qubit q3 is now the coin qubit and qubits q2 and q4 are the walker qubits. The circuit is

presented in figure 40.

Figure 40: The circuit of the quantum walk mapped to the ibmqx4 architecture and implemented
in QISKit. The two measured qubits are the walker qubits.

Results from the IBM-Q simulator after executing only the first step of the walker are shown

in figure 41. The histogram depicts that there is about 50% probability that the walker from the

initial position |00〉 moved either to |10〉 or |11〉 state.
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Figure 41: Results from execution of the first step of the quantum walk algorithm with 2-qubit
walker on the IBM-Q simulator.

We also executed the first step of the quantum walk on ibmqx4 architecture. Results from

this execution are in figure 42. It is clearly visible that the results differ significantly. The reason

for that is decoherence, which is definitely a big weakness of quantum computers nowadays.

Figure 42: Results from execution of the first step of the quantum walk algorithm with 2-qubit
walker on ibmqx4 backend.

Figure 43 shows results from execution of all two steps of the algorithm on the IBM-Q

simulator. It is plain to see that they are very similar to the results from the QuIDE.
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Figure 43: Results from execution of both two steps of the quantum walk algorithm with 2-qubit
walker on the IBM-Q simulator.

In figure 44 there are results from execution of the two steps of the algorithm on the ibmqx4

processor. Comparing them with those from figure 43 one can see decoherence is significant.

Figure 44: Results from execution of both two steps of the quantum walk algorithm with 2-qubit
walker on the ibmqx4 backend.

To make sure that those differences in results from the simulator and the real processor are

due to decoherence indeed, we decided to test it. The IBM-Q User Guide [7] provides quantum

programs that check T1 and T2 times. We described those parameters in subsection 4.2.1.

The test functions as follows: we apply X gate on one qubit and after that we put many

identity gates separated by barriers. The number of identity gates is roughly the same as number

of elementary gates in the quantum walk algorithm, namely around 25 for one step. We should

expect the state of the qubit to be |1〉, because identity gates should do nothing. However, the

results are quite surprising. They are presented in figure 45.
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Figure 45: Results from decoherence test performed on ibmqx4 architecture.

Decoherence is explicitly visible here. The qubit has no possibility to be in |0〉 state,

nonetheless the histogram shows 0.147461 probability of that situation. That means that results

of the quantum walk could be distorted.

Authors of the paper [21] also had problems with decoherence in their quantum walk. They

wrote that performing more than a single step requires time which is longer than coherence

time, and the algorithm fails on the IBM-Q after the first step.

7.6. Implementation of the quantum walk algorithm with a three-qubit

walker

In this subsection we will discuss implementation and results of the quantum walk algorithm

with three-qubit walker.

Like in the previous subsection, we started from implementing the algorithm in the QuIDE.

Implementation of the step gate is shown in figure 46. The coin qubit is the one in the bottom.

The walker is realized on the three upper qubits.

Figure 46: Quantum circuit representing the step gate from figure 47. The lowest qubit is the
coin qubit and the two upper qubits are the walker qubit.

Figure 47 shows the quantum circuit with four step gates.
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Figure 47: Quantum circuit of the quantum walk implementation in the QuIDE with four step
gates. QuIDE allows users to create their own gates. In our implementation one step of the
walker is a quantum gate.

Results from the algorithm execution in the QuIDE are presented in figure 48. As in the

previous two-qubit variant of the quantum walk, this time it is also crucial to remember that

the last qubit value in the ’Qubits’ column is value of the coin. This, the possible states of the

walker are: |000〉 , |010〉 , |100〉 , |110〉.

Figure 48: Results from the algorithm execution of the circuit from figure 47 in the QuIDE.
QuIDE counts the coin qubit as a part of the quantum state of the system, however, we only
need values of the walker qubits. Therefore, we have four possible states of walker: |000〉,
|010〉, |100〉 and |110〉.

Implementing this algorithm in QISKit was not trivial, because the cccNOT gate had to be

decomposed to elementary gates that QISKit would be able to read. Operations described in

subsection 7.4 had been done and circuit shown in figure 49 was created.

The values of the parameters in U3 gates are the parameters depicted in subsection 7.4

converted to double. The QISKit does this conversion by default.
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Figure 49: The quantum circuit of the quantum walk implementation in QISKit. In the figure
the particular steps are labeled. The values of the parameters in U3 gates are the parameters
depicted in subsection 7.4 converted to double. QISKit does this conversion by default.
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Figure 50: Results from execution of the circuit from figure 49 with 3-qubit walker on the
IBM-Q simulator.

Results from execution on the simulator of the circuit from figure 49 are shown in figure 50.

These are the idealistic results. We wanted to weigh them against results from the real 16-qubit

processor just as in the previous subsection. There occurred the architecture-matching problem.

After analysis of both 5-qubit architectures we verified that the algorithm cannot be mapped to

neither of them in an easy way.

There is a tool described in article [39] that maps an algorithm written in QASM to the 16-

qubit architecture of the IBM-Q. Unfortunately, this tool could not identify the U gates, which

are essential in our quantum walk algorithm. We could not use the mapper, so we do not have

results from a real processor for this variant of the algorithm.

7.7. Conclusions

We developed quantum circuits that realize the quantum walk algorithm on a circle with four

nodes and with eight nodes. Results from simulators, both the QuIDE and IBM-Q, show that our

implementations are correct. Two biggest problems that we encountered were that architecture

mapping issue and decoherence.

When it comes to the first on those, with easy algorithms the mapping can be done with-

out any tool. However, with more complicated algorithms it would be very difficult and could

generated a lot of bugs. Unfortunately, there is lack of mapping tools.

Decoherence is noticeable in the IBM-Q backends. When algorithm consists of several

dozen of gates it is sometimes difficult to distinguish correct results from those which deco-

herated. It handicaps reading results from longer and more complicated circuits.
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8. Assessment of usability of IBM-Q

IBM-Q is definitely a revolutionary tool for creating and running quantum algorithms. It allows

students, researchers, scientists and literally everyone to write and execute their own quantum

program. The only requirement is the Internet access.

The graphical interface is quite limited. It provides access to only two out of three available

architectures (the 16-qubit one is not available through the graphical interface). It also has nar-

rower set of gates than, e.g. QISKit. Arguably, the clarity issue was critical in this case. The

graphical interface can be used at the learning stage as well as to implement less complicated

quantum algorithms. It is very easy to use.

Algorithms like quantum walk that we implemented could not be created in the graphical

interface. The Toffoli gate is not available there and after decomposing it to elementary gates

the quantum circuit was to long to display it in the Composer. The Composer managed to create

only a few first gates and the latter ones were removed by the software.

QISKit provides more gates [33], nevertheless for our quantum walk with three-qubit walker

we needed cccNOT gate, which is not available in QISKit. However, it was possible to imple-

ment this gate after decomposition to elementary gates. In QISKit we can also use standard

Python instructions such as loops, which significantly speeds up the process of implementation.

For educational and debugging purposes, it is useful to visualize the quantum state. QISKIT

provides tools for creating histograms. The measurement results from many executions of the

quantum circuit can be represented as a probability distribution over the possible outcomes. For

a quantum circuit which has previously run on a backend, a histogram visualizing the probability

distribution can be obtained. The height of each bar represents the fraction of instances the

corresponding outcome is obtained within the total number of shots on the backend. QISKit

also allows to draw a circuit, providing it has a code implementation.

A serious disadvantage is the fact that during implementation of any quantum algorithm

programmers need to remember about topologies of particular architectures of the IBM-Q back-

ends. It can be very difficult to match the algorithm to the specific architecture and there are few

tools that can help with this problem.

Another obstacle is the decoherence issue. After a number of gates decoherence significantly

interrupts executing of algorithms. Quantum computers are still imperfect and they cannot keep

the quantum state very long.
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9. Summary, conclusions and future work

Quantum computing is no longer only a theory, nowadays it is becoming a technology available

almost to everyone. Researchers and scientists are studying the potential of quantum computers

and it seems that practical usage of them is just around the corner.

The thesis began with a brief introduction to quantum computing. We described basic no-

tions, such as a qubit, a quantum gate and an entanglement. Then we presented physical phe-

nomena used to build quantum computers, realization of qubits in superconducting quantum

computing as well as how to measure the power of quantum computers. Next architectures of

the IBM-Q and its parameters were delineated. After that we described software environment

of the IBM-Q, its features and their applications. There is also a chapter about interoperability

of the IBM-Q and the QuIDE simulators. We presented our idea for an extension of the IBM’s

simulator so that programmers would have a possibility to preview the internal state of a quan-

tum system at each stage of the computation. We created a converter that takes QASM code

and outputs C# code that can be executed in the QuIDE simulator. QuIDE has the mentioned

feature. It can act as a debugger in classical computing. Afterwards we took a closer look at

quantum walk algorithms. We also implemented and executed one on both the IBM-Q and the

QuIDE simulators as well as on the real quantum processor of IBM. The histograms were com-

pared and verified a big impact of decoherence on the results from the real backend, which is

definitely a disadvantage. However, decoherence in the IBM-Q requires further research.

The thesis showed the importance of quantum simulators, validated the IBM-Q quantum

computer and reviewed some available quantum algorithms.

The whole software environment of the IBM-Q is very easy to use, nevertheless it needs

some improvement. Flexibility of architectures’ topology could be bigger. Decoherence looms

large in the process of computation and it needs to be decreased. This issue has to be exhaus-

tively analyzed.

Decoherence analysis is the most desirable direction of future work. Especially its impact on

the state of the system during usage of multiqubit gates. We only tested one-qubit identity gates.

Another interesting idea for further research is the issue of matching algorithms to a particular

architecture of quantum computing. We implemented two variants of quantum walk: with 2-

qubits walker and with 3-qubit walker. While the first one was quite simple and the process of

mapping to the ibmqx4 architecture could be one after analyzing the topology of the backend,
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the second one was very complicated and required a tool that would help. Unfortunately, the

tool that actually exists is able to read only very simple type of gates and could not be used in

our case.

Paper [17] presents a concept of a software architecture for transformation quantum pro-

grams from a high-level language program to hardware-specific instructions. This may also be

considers as a program for further investigations. Figure 51 depicts how this software could

work.

Figure 51: A concept of a software architecture for transformation quantum programs from a
high-level language program to hardware-specific instructions.

In Related Work section we mention a very important document, Quantum Software Mani-

festo [18]. Primarily, it stressed the importance of quantum software. A good quality software

is needed when it comes to error correction and fault-tolerant computing as well as verification

and testing. Our thesis showed that there is lack of tools that would help developers to create

quantum algorithms. This is the point researchers and scientists need to focus on to make such

initiative like QISKit ACQUA [40] successful.
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