
Akademia Górniczo – Hutnicza

im. StanisÃlawa Staszica

w Krakowie
WydziaÃl Elektrotechniki, Automatyki, Informatyki i Elektroniki

Katedra Informatyki

PaweÃl Charkowski

Środowisko do zarzadzania
eksperymentami na gridzie

Praca magisterska

Kierunek: Informatyka
Specjalność: Systemy rozproszone i sieci komputerowe

Nr albumu: 120519

Promotor:

dr inż. Marian Bubak

Konsultacja:

dr inż. Maciej Malawski

Kraków 2009

Oświadczenie autora

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że
niniejsza̧ pracȩ dyplomowa̧ wykonaÃlem osobíscie i samodzielnie i że nie korzystaÃlem
ze źródeÃl innych niż wymienione w pracy.

PaweÃl Charkowski

AGH University of Science and Technology

in Kraków

Faculty of Electrical Engineering, Automatics, Computer Science
and Electronics

Institute of Computer Science

PaweÃl Charkowski

Environment for Management of
Experiments on the Grid

Thesis

Major: Computer Science
Specialization: Distributed Systems and Computer Networks

Album id: 120519

Supervisor:

dr Marian Bubak

Consultancy:

dr Maciej Malawski

Kraków 2009

Oświadczenie autora

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że
niniejsza̧ pracȩ dyplomowa̧ wykonaÃlem osobíscie i samodzielnie i że nie korzystaÃlem
ze źródeÃl innych niż wymienione w pracy.

PaweÃl Charkowski

Abstract

The subject of this thesis is the development of an environment for management
of experiments on the grid. Nowadays scientific experiments executed on the Grid
get more and more complicated. This means that scientists must spend more and
more time to manually schedule tasks to the Grid, collect results, etc. The purpose
of the management environment is to automate those processes, allowing scientists
to concentrate on their research rather than managing experiments execution.

This thesis presents EMGE - the Environment for Management of Grid
Experiments, a Java implemented environment designed for requirements of the
ViroLab virtual laboratory. It shows complete development process of the
Environment for Management of Grid Experiments: design and implementation of
the database for storing experiment related information, project integration with the
GSEngine, implementation of a user web interface allowing experiment monitoring
and submission of new experiments to execution. It also contains tests of developed
environment including unit and integration tests.

This thesis contents is organized as follows: Chapter 1 introduces subject of
this work, presenting motivation and objectives to be achieved. Chapter 2 contains
detailed problem analysis. It also gives a short description of existing experiment
management environments available for the Grid and cluster computing, such as
DIANE, Nimrod/G, ZENTURIO and Askalon environment. Detailed requirements
for the EMGE system are presented in Chapter 3. Third chapter also contains core
concepts of the designed environment. Chapter 4 presents EMGE’s architecture
details, designed database model and identified use cases. Chapter 5 presents
EMGE’s implementation details: UML models and sequence diagrams of most
important actions performed by EMGE’s components. Chapter 6 contains
description of unit and integration test cases, together with conclusions gathered
during test experiment of protein folding execution. Last chapter contains conclusion
of this thesis, with a list of expanse proposals for future project development.

Key words
grid, experiment, management environment, ViroLab, virtual laboratory, user
interface, job scheduling

5

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, dr Marian
Bubak, for guidance, patience and invaluable advices. I would like to sincerely thank
dr Maciej Malawski for his support in design of the system and implementation
counsels.

7

Contents

Abstract . 5

Acknowledgements . 7

List of Figures . 11

Chapter 1. Introduction . 13
1.1. Motivation for the Environment for Management of Grid Experiments 13
1.2. Objectives . 14
1.3. Document organization . 14

Chapter 2. Background for the Environment for Management of
Grid Experiments . 15
2.1. ViroLab . 15

2.1.1. Rationale for the ViroLab virtual laboratory 15
2.1.2. ViroLab users groups . 16
2.1.3. ViroLab architecture . 18
2.1.4. Experiment scheduling, execution and management in the ViroLab

virtual laboratory . 18
2.1.5. User authentication in the ViroLab virtual laboratory 20

2.2. GRID Computing . 21
2.3. Overview of Related Works . 22

2.3.1. DIANE: Distributed Analysis Environment 22
2.3.2. Askalon - Grid Application Development and Computing Environment . 23
2.3.3. ZENTURIO - Experiment Management System for Cluster and Grid

Computing . 24
2.3.4. The Nimrod Toolkit . 25

2.4. Conclusions . 26

Chapter 3. Concept of the Environment for Management of Grid
Experiments . 27
3.1. Problem analysis . 27
3.2. System requirements . 28

3.2.1. Functional requirements . 28
3.2.2. Non-Functional requirements . 28

8

Contents

3.3. System concepts . 29
3.4. Summary . 29

Chapter 4. Design of the Environment for Management of Grid
Experiments . 30
4.1. EMGE’s architecture overview . 30

4.1.1. Component description . 30
4.1.2. External ViroLab components used by EMGE 32

4.2. Use cases identified for experiment management environment 32
4.2.1. User Portal use cases . 33
4.2.2. Scheduling Manager use cases . 34
4.2.3. User Data Management Tool use cases 35

4.3. Database Model used by the Environment for Management of Grid
Experiments . 36

4.3.1. Rationale for the database model . 36
4.3.2. Table model details . 36

4.4. Scheduling Manager state during experiment execution 40
4.5. Summary . 42

Chapter 5. Implementation of the Environment for Management of
Grid Experiments . 43
5.1. Implementation details of the Scheduling Manager 43

5.1.1. Implementation details of the Security Handle Manager 43
5.1.2. Implementation details of the Task Scheduler 45
5.1.3. Implementation details of the Task Completion Listener 49

5.2. Implementation details of the User Portal . 51
5.2.1. User Portal server . 51

5.3. Implementation details of the Database Access Component 52
5.3.1. Implementation details . 52
5.3.2. Adding user information to the database 53

5.4. Implementation details of the User Data Management Tool 55
5.5. Used technologies and tools . 56

5.5.1. Design . 56
5.5.2. Development . 56

5.6. Summary . 57

Chapter 6. Validation of Environment for Management of Grid
Experiments . 58
6.1. Provided Functionality . 58
6.2. Non-Functional properties of EMGE . 59
6.3. EMGE Unit Tests . 59
6.4. EMGE’s integration and deployment . 59
6.5. Summary . 59

Chapter 7. Conclusions and Future Work 61
7.1. Conclusions . 61
7.2. Future Work . 62

Bibliography . 63

9

Contents

Appendix A. Administrator’s Manual . 66
A.1.Installation of the Environment for Management of Grid Experiments 66

A.1.1. System requirements . 66
A.1.2. Installing and running the Scheduling Manager 67
A.1.3.User Portal installation and deployment 67

A.2.Environment for Management of Grid Experiments configuration 69
A.2.1.Configuring Hibernate database connection 69
A.2.2.Configuration of the User Portal . 69
A.2.3.Configuration of the Scheduling Manager 70

Appendix B. User Portal user’s guide . 72
B.1.Using the Experiment Monitor . 72
B.2.Using the Experiment Creator . 73

B.2.1. Dependency line format . 75

Appendix C. Step-by-step sample experiment execution tutorial . . . 76

List of Figures

2.1. The ViroLab virtual laboratory architecture. 17
2.2. ViroLab virtual laboratory conceptual layers 19

4.1. Environment for Management of Grid Experiments architecture diagram. . . . 31
4.2. ViroLab components dependencies of the Environment for Management of

Grid Experiments diagram. 32
4.3. User Portal use case diagram . 33
4.4. Scheduling Manager use case diagram . 34
4.5. User Data Management Tool use case diagram 35
4.6. Environment for Management of Grid Experiments database tables model. . . 37
4.7. State diagram for the Scheduling Manager. 41

5.1. UML class diagram of the Security Handle Manger component. 44
5.2. Sequence diagram illustrating Security Handle Manger flow of control during

response to handle request. 45
5.3. UML class diagram of Task Scheduler component. 46
5.4. Sequence diagram illustrating control flow in Task Scheduler during

submission of task execution to grid . 48
5.5. Sequence diagram illustrating control flow in the Task Scheduler while

aborting submitted task execution on application exit. 49
5.6. UML class diagram of the Task Completion Listener. 50
5.7. Sequence diagram illustrating control flow in Task Completion Listener when

it is informed that task execution finished. 50
5.8. UML class diagram of the Data Access Component with the UserData Data

Access Object. 52
5.9. Hibernate mapping file for the EXECUTION INFO database table. 53
5.10. Sequence diagram illustrating process of adding user information to the

database. 54
5.11. Sequence diagram illustrating simultaneously scheduled tasks limits update

performed by the User Data Management Tool. 56

11

List of Figures

6.1. Screen-shot of Experiment Monitor web page showing successful execution
of protein folding experiment by the Environment for Management of Grid
Experiments. 60

A.1. Example of hibernate.cfg.xml configuration file. 70
A.2. Example of an emgeWeb.properties configuration file 70
A.3. Example of an emge.properties configuration file. 71

B.1. Screen-shot of the Experiment Monitor web page with added explanation of
shown information. 73

B.2. Screen-shot of the Experiment Creator web page with added explanation of
user input fields. 74

C.1. Screen-shot of the Experiment Creator portlet. 77
C.2. Screen-shot of the Experiment Creator portlet filled with experiment definition. 78

12

Chapter 1

Introduction

The subject of this thesis is the Environment for Management of Grid
Experiments (EMGE) - a tool that will help to automate experiment running,
scheduling, collecting experiment results and post-processing them. First section
presents a short motivation for the management application which is the subject
of thesis. In second section objectives of this work are presented. Finally, the
organization of this document is presented.

1.1. Motivation for the Environment for Management of
Grid Experiments

Fully functional, user friendly experiment management environment is a relevant
part of each modern virtual laboratory, allowing users with no (or very basic level
of) programmatic skills to fully explore the virtual laboratory potential in their
scientific work: schedule experiments, monitor their status, etc. - in general one can
say: manage experiments.

Currently existing job scheduling mechanisms in the ViroLab virtual
laboratory [30] (both the command line GSEngine client or the web portal EMI
- Experiment Management Interface) allow only to schedule a single job in one
operation. In the case of parameter study experiments or batch experiments
composed of several tasks that must be executed in specified sequence, the
experimentator has to launch the experiment as one task that will have long
execution time (looping through all combination of parameters in the case of
parameter study experiment) or manually manage task execution - pass results
between tasks, monitor their status. In order to better support such types of

13

1

experiments, a dedicated experiment management environment for the ViroLab
needs to be created

1.2. Objectives

Main goals of this thesis are to provide analysis, design and implementation of
a management application responsible for execution of long-running experiments
in the ViroLab virtual laboratory, that will allow experimentators to monitor such
experiment state and automate tasks scheduling, results collecting. and passing
these results between tasks.
To achieve this, goals presented bellow need to be accomplished.
• perform research of already existing execution environments; Point out weak and

strong points of these solutions in respect of the ViroLab virtual laboratory,

• analysis of requirements that need to be filled by the management application;
The analysis should consider all aspects of the target environment - the ViroLab
virtual laboratory,

• design and implementation of task execution and scheduling manager for the
ViroLab virtual laboratory environment,

• proving usefulness of created manager for the ViroLab virtual laboratory and
analyzing its performance.

1.3. Document organization

This thesis is organized as follows: Chapter 2 contains detailed problem
analysis. It also gives a short description of existing experiment management
environments available for the Grid and cluster computing, such as DIANE,
Nimrod/G, ZENTURIO and Askalon environment. Detailed requirements for the
EMGE system are presented in Chapter 3. Third chapter also contains core concepts
of the designed environment. Chapter 4 presents EMGE’s architecture details,
designed database model and identified use cases. Chapter 5 presents EMGE’s
implementation details: UML models and sequence diagrams of most important
actions performed by EMGE’s components. Chapter 6 contains description of unit
and integration test cases, together with conclusions gathered during test experiment
of protein folding execution. Last chapter contains conclusion of this thesis with a
list of expanse proposals for future project development.

14

Chapter 2

Background for the Environment for
Management of Grid Experiments

This chapter presents background for this thesis. First section provides
introduction to grid computing and the ViroLab virtual laboratory environment. In
second section a brief description of existing experiment management systems is
presented, pointing out weak and strong points of these solutions.

2.1. ViroLab1

The ViroLab is EU-funded Research Project of the EU 6th Framework
Programme for Research and Technological Development in the area of integrated
biomedical information for better health. The main purpose of the ViroLab project
is to create a virtual laboratory that will support researchers and medical doctors
in the area of viral disease treatment.

2.1.1. Rationale for the ViroLab virtual laboratory

A virtual laboratory is a set of integrated components, that used together form
a distributed and collaborative space for science. Multiple, geographically-dispersed
laboratories and institutes use the virtual laboratory to plan, and perform
experiments as well as share their results. The term experiment in this context
means a so-called in-silico experiment - that is, a process that combines data and
computations in order to obtain new knowledge on the subject of an experiment.

“Experiment is a process that combines together data with a set of activities that
act on that data in order to yield experiment results.” In context of the ViroLab

1The ViroLab section with all its subsections is based on [16], [30] and [31]

15

2

virtual laboratory each experiment has to be represented by a script that defines
that experiment’s plan, written in Ruby scripting language, in order to be executed
using appropriate interpreter. Such script often invokes various operations on grid
objects. As experiment plan files are written using standard scripting language they
often contain loops, conditional statements and other flow control constructs that
are built-in into the scripting language.

2.1.2. ViroLab users groups

Among all the ViroLab virtual laboratory users following classes of users are
defined: [9]

• Experiment developer
This is a person with programming skills, that possesses a certain level of
scientific knowledge (eg. virology - in case of the ViroLab) able to design
and implement a script, that will allow researchers to obtain useful scientific
information and analyze produced by this script results. Experiment developer
does not have to fully comprehend results and experiment process provided that
there is expert assistance available to evaluate his work.

• Experiment user
Person who runs a previously prepared script in order to obtain valuable results.
Experiment user can be the script author himself or only partially involved in
experiments design process. Of course it is not necessary for the experiment
user to take any part in scripts creation, thus he/she can just be experiments
executor that wants to obtain valuable results that answer his/her questions.
In the ViroLab virtual laboratory following experiment user subtypes can be
distinguished:

A Scientists
The scientists typically use specifically-tailored experiments, devoted to
important areas of their science. Answers obtained from an experiment
run usually denote modifications and upgrades to improve the experimental
process. Repeatable process of experiment adjustment requires a significant
amount of researcher time and is an important phase of their research.

B Clinical virologists
They are people who require very specific experiment to be available for them
each day. Eg. this can be a person who works at a hospital and needs the
experiment to get information regarding their patients infection case.

16

2.1. ViroLab

F
ig

ur
e

2.
1.

T
he

di
ag

ra
m

2
pr

es
en

ts
ar

ch
it

ec
tu

re
ov

er
vi

ew
of

th
e

V
ir

oL
ab

vi
rt

ua
l
la

bo
ra

to
ry

.
It

sh
ow

s
co

m
po

ne
nt

s,
th

at
ar

e
pa

rt
s

of
th

e
V

ir
oL

ab
,
to

ge
th

er
w

it
h

de
pe

nd
en

ci
es

an
d

re
la

ti
on

sh
ip

be
tw

ee
n

th
es

e
co

m
po

ne
nt

s.

2
F
ig

ur
e

2.
1

co
m

es
fr

om
th

e
V

ir
oL

ab
vi

rt
ua

l
la

bo
ra

to
ry

pr
oj

ec
t

si
te

[3
0]

17

2

2.1.3. ViroLab architecture

Figure 2.1 presents an overview of the ViroLab virtual laboratory structure.
It shows associations between Vlvl subparts together with main communication
channels. The ViroLab architecture can be split into following layers (as shown in
figure 2.2):

1. Users
This layer represents users of virtual laboratory. More detailed user classes
description has already been presented in section 2.1.2 of this thesis.

2. Interfaces
Interfaces are tools used by the ViroLab virtual laboratory users to perform their
tasks. It includes the Experiment Planning Environment (EPE) for experiment
developers, and the Experiment Management Interface (EMI) for scientists and
clinicians.1

3. Runtime Components
Runtime tier serves as a bridge to both computational services and data sources
available within the ViroLab virtual laboratory.

4. Services
Services provide access to autonomous computation resources. Those can be
Web Services, components, grid object, etc.. They also provide access to various
types of data sources: relational databases and file systems in a unified way.

5. Infrastructure
This tier represents physical resources on which experiment computation is
performed. It ranges form personal computers, through computer networks up
to advanced grid systems like EGEE or DEISA (projects sites respectively [22]
and [19])

2.1.4. Experiment scheduling, execution and management in the
ViroLab virtual laboratory

The first part of an experiment pipeline in the ViroLab virtual laboratory focuses
on the design of an experiment process and is called experiment planning. During
that phase decisions how the required data are provided and how the experiment is
executed are made. During the next phase, provided by user with required input
data, the experiment is executed. Finally, in the last phase of experiment pipeline,
results obtained during the experiment execution are processed and stored to allow
users their further analysis.
Since this thesis does not focus on experiment planing, more detailed description of
this phase (experiment planning) will be omitted in the subsequent sections of this
thesis.

1for more detailed description of EPE and EMI please refer to the ViroLab virtual laboratory
site [30]

18

2.1. ViroLab

Figure 2.2. Conceptual layers of the ViroLab virtual laboratory.
The “Users” tier represents all types of users of the ViroLab. “Interfaces” layer corresponds
to the tools used by ViroLab users to perform their tasks. “Runtime components” serve
as a bridge to computational resources and data stores distributed al over the ViroLab
virtual laboratory. ViroLab “Services” provide access to autonomous computational
resources accessible using the Internet network. “Infrastructure” tier corresponds to

physical resources used in ViroLab for experiments computation.

The entity responsible for running experiments in the ViroLab virtual laboratory
is called the GridSpace Engine (GSEngine). As mentioned earlier in this thesis,
experiments in the ViroLab are represented by experiment plan scripts written in
the Ruby language. In order to be able to execute experiment plans the GridSpace
Engine has a built-in JRuby language interpreter, allowing it to interpret these
scripts. Another important part of the GSEngine is a runtime library that provides
all of the virtual laboratory specific functionalities that the interpreter standard
library does not include. In order to execute ViroLab experiments user needs to
provide a Ruby script containing experiment plan, either by specifying shared script
location in the experiment repository or, in case of non-shared experiments, by
providing script’s file path on the local file system, and input data which will be
used to perform the experiment.

The ViroLab virtual laboratory provides experiment users with following tools for

19

2

scheduling experiment execution: the GridSpace Engine client and the Experiment
Management Interface.

GridSpace Engine client

The GridSpace Engine client (GSEngine [3]) is a command line utility that
enables execution of experiment scripts in the ViroLab virtual laboratory. During
each run of the GSEngine client the experiment script is interpreted only one
time. Aside from providing information about location of the GSEngine server
and arguments passed to the script, the user needs to provide previously generated
security handle required for authentication process. The experiment script scheduled
for execution may either be stored locally on users computer or accessed remotely
form experiment repository.

Experiment Management Interface

The Experiment Management Interface (EMI) is a user web interface that
supports experiments result browsing and experiment executing. It allows users to
schedule execution of experiments, script code of which is available in the experiment
repository. Unlike in the GSEngine client, the experimentator only needs to provide
arguments for the script as GSEngine server connection parameters are provided
by EMI. Although each user can have many experiments executed simultaneously,
he/she needs to schedule execution of each of them separately.
Experiment Management Interface also grants user with a list of results, generated
by all of his/hers experiments, stored using ResMan - Resource Management library.
Each ResMan entry is shown as a separate result(even if an experiment generates
more than one entry, they are shown as independent results) along with creation
date and creation note. ResMan entries o not contain any information regarding
the scripts that generated them, thus experiment user has to know it.

2.1.5. User authentication in the ViroLab virtual laboratory

Obviously, the access to the ViroLab and computing resources it provides is
limited. Any person who wants to use those resources and gain access to the ViroLab
virtual laboratory must successfully pass authentication procedure. In order to
execute an experiment script using GSEngine client, the user needs to provide valid
security credentials at the time execution is started. One of the ways to obtain such
handle is to use the ShibIdpClient.

Shibboleth Identity Provider Client

Shibboleth Identity Provider Client (ShibIdpClient) is a tool that allows
obtaining of Shibboleth security credentials using provided user login and password.
The user may use command line version of ShibIdpClient distribution, called
ShibIdpCliClient, that is a standalone console application that allows obtaining a
valid security handle. ShibIdpClient is also available as Java archive to be used via
API (Application Programming Interface).

20

2.2. GRID Computing

2.2. GRID Computing

History of grid computing dates back to early 1990s. Increasing availability
of the Internet combined with high-performance computing led to an idea of
a virtual supercomputer for advanced science and engineering . Opposed to
conventional mainframes, this concept assumed usage of geographically distributed
hardware resources connected over public Internet network instead of vast number
of processors connected by a local high-speed computer bus. It is important to
remember that the ’grid’ term denotes not only hardware infrastructure, but above
all business logic together with scientific results that it delivers [6].

The first significant definition of the Grid was published in 1998 by I. Foster and
C. Kesselman published [5] and it defined the Grid as “a hardware and software
infrastructure that provides dependable, consistent, pervasive and inexpensive access
to high-end computational capabilities.”.

Since the Grid became highly popular not only in academic and scientific
communities a great number of questions have been raised about when a system
becomes a Grid. Answer to all those questions had been given by Ian Foster in
2002. In his article [4] Ian Foster presented main conditions that must be fulfilled
in order to name system a Grid.

Primarily as Grid systems grant access and integrate geographically distributed
computational resources that lie within different administration domains, those
resources should be visible to end-user as unified resource. Managing issues
like communication between resources, security, policy management, payment,
membership lies within the Grid responsibility and is clearly specified by the sharing
rules defined by resource providers and consumers.

Furthermore Grid environments should use open standards for communication,
authentication and authorization. Open standards should also be applied for
resource discovery, their access and coordination. Using open standards assure that
the system is not application–specific , allowing easy integration and use of multiple
resources.

Another basic requirement for Grid system is to provide so called Quality of
Service (QoS) - a set of boundaries that will be fulfilled by its resources to meet
end-user requirements. Quality of Service can specify for example response time,
throughput, resource availability, security, failure recovery, etc., thus allowing very
precise experiment planning.

Grid applications characteristics

Grid applications usually have a long execution time and are composed of a vast
number of co-dependent or independent jobs. Such experiments often need some
kind of checkpointing, not to mention persistent storing of their sub jobs results,
that in case of a system failure the results of finished jobs will be accessible allowing
their usage in job rescheduling without the need to reschedule already finished tasks.

Typical example of grid applications are parameter-study experiments -
experiments where same computation is executed large number of times using

21

2

different application parameters in each execution, usually for each element of the
cartesian product of parameter ranges. Because jobs, that compose parameter-study
experiments are independent from each other they can be parallelly executed on
different grid nodes, decreasing the overall experiment execution time in comparison
to the time needed for their sequential execution.

Another important group of grid applications are the ones composed of
vast, complex workflows. Apart from independent jobs that may be executed
simultaneously the core of workflow applications are dependencies between tasks,
where some of them need to be executed in a specified order as they depend on
other jobs output.

2.3. Overview of Related Works

As mentioned earlier in this thesis Grid computing has became very popular
last years. Experiments are becoming more and more complex, and the number of
tasks that need to be calculated for a single experiment is growing fast. Due to
this, “manual” management of such experiments is not much of pleasure for their
designers.

Many Grid organizations have developed systems that allow experiment
execution to become more automated. The following sections present a brief
description and analysis of existing systems pointing out their advantages and
disadvantages.

2.3.1. DIANE: Distributed Analysis Environment

DIANE: Distributed Analysis Environment (project site [20]) is a tool which
helps application communities and smaller Virtual Organizations use the distributed
computing infrastructures more efficiently. The DIANE framework provides
automatic failure recovery, load balancing and job scheduling. It can be used for
”mainframe” computing, as well as in heterogenous computing environments such
as the Grid or interactive clusters. The DIANE project is the result of R&D in
CERN IT Division focused on interfacing semiinteractive parallel applications with
distributed Grid technology [8] [7], and is developed using Python programming
language.

DIANE’s architecture is based on a Master-Worker model. After the Master
Process has been started it dynamically schedules jobs to available worker nodes
called Worker Agents. Worker Agents are launched independently to the Master
process. The Master Process keeps track of scheduled tasks. It allows him to react
to job execution failures, spawn new tasks and provide synchronization. After a job
is finished the Worker Agent sends results back to the Master process. A soon as
all jobs are finished the Master Agent is terminated.

Communication between Master and Worker Agents is fully transparent to the
user and is implemented with omniORB Object Resource Broker. Due to this,
Diane users do not need to focus on providing communication between master and

22

2.3. Overview of Related Works

workers, thus allowing them to fully focus on specifying jobs to be executed.

The DIANE framework provides users only with an ability to run large number
of small independent tasks (like described earlier in this chapter parametric study
experiments). To schedule execution of tasks the user needs to specify a so called
‘run file‘, which is a file containing script written in Python, that will generate
information about tasks that are to be executed.

2.3.2. Askalon - Grid Application Development and Computing
Environment

Askalon (official project site [18]) is the most advanced of all presented in
this thesis existing systems designed to improve on-grid experiment execution.
ASKALON is a Grid environment for composition and execution of scientific
workflow applications [11].

Askalon allows users to build a workflow using available components without
need of any knowledge about the Grid complicity nor any implementation details of
Grid services. Askalon provides Abstract Grid Workflow Language (AGWL) [15],
an XML-based language which allows to specify task execution graph (it provides
possibility to specify conditional constructs, conditional loops, parallel loops
etc.). Abstract Grid Workflow Language also provides access mechanism to data
repositories. The user can programmatically describe the experiment workflow using
AGWL, or use a graphical editor for UML-based modeling to compose a workflow
that will automatically be resolved into an AGWL file.

The scheduler embedded in Askalon has a two stage experiment scheduling
mechanism. At first, the Workflow Converter module transforms given workflow
described in AGWL into a direct acyclic graph. For conditions or parameters that
are unknown at the moment of performing transformation, due to for example an
if statement, the Workflow Converter assumes the most probable execution path in
the workflow. After this transformation is complete, the Scheduling Engine comes
into play, being responsible for proper scheduling of the newly evaluated workflow
now presented as an acyclic graph. The workflow is executed until it is successfully
finished or any interruption occurs during its execution. If wrongly made by the
Workflow Converter assumptions are the cause of execution interruption, then
workflow rescheduling is forced on the Workflow Converter (what may include
making new execution predictions) and experiment is continued using newly created
workflow [10].

UML-based workflow modeling approach to experiment scheduling and
management introduced in the Askalon environment is not as much flexible as an
approach based on invoking scripts execution. Users working with the Askalon
environment need to possess at least basic programming knowledge. Moreover,
using this system requires from them either learning the Abstract Grid Workflow
Language, if they choose to write workflow description AGWL files by hand, or,
if they decide to use workflow composition tool for Askalon, know how to model

23

2

applications using UML modelling language and possess programming skills since
computations or operations invoking such computations (e.g web services) need to
be programmed by the workflow creator.

2.3.3. ZENTURIO - Experiment Management System for Cluster and
Grid Computing

Zenturio is an automatic experiment management system for cluster and Grid
computing. It is purposely designed to specify and execute complex programs in
the context of performance analysis and tuning, parameter studies, and software
testing. [14]. Zenturio project’s official site is [32].

Zenturio is designed as a distributed application, composed of several Grid
services [13]:
• Registry service

It contains a Registry Service (RS) which registers existing services and provides
clients with information needed for locating those services. Each service
registered in RS is granted a lease for a certain timeout period. If a service lease
is not renewed before expiration RS deletes that service location information.

• Experiment Generator Service
This module is responsible for generating a set of application instances, based on
ZEN information provided in the application script, by computing the cartesian
product of sets described in ZEN directives. ZEN [12] is a directive-based
language that allows to specify parameter sets that shall be used to launch job
instances and to specify arbitrarily complex program executions. ZEN directives
are comment lines starting with a special ZEN prefix. They are ignored by
systems that are unaware of their semantics, making ZEN non-dependent to a
specific programming language.

• Experiment Executor Service
Responsible for executing and managing experiments on the machine it operates
on.
Client-side of Zenturio, that “provides the user with a GUI-based interface for

submitting, monitoring, controlling, and analyzing experiments” [13] is composed
of portlets: the Experiment Monitoring portlet that allows monitoring experiment
status, and the Experiment Preparation portlet that allows preparing sets of
experiments based on information provided by user.

Since all of the ZEN language directives are hidden in comments of executed
application code any change in the workflow or parameters values require
modification of executed experiment file. Due to requirement for Zenturio user
to posses knowledge of ZEN programming, the user needs to learn completely
new programming language in order to efficiently use functionality provided by the
Zenturio environment.

24

2.3. Overview of Related Works

2.3.4. The Nimrod Toolkit

Nimrod (official site [28]) is a project designed and developed on Monash
University in Australia. It was designed as a tool for parametrized simulations.
The most interesting from this thesis point of view is Nimrod/G - GRID aware
version of Nimrod [1] [2].

Nimrod was designed for simulation experiments. Because this type of
experiments is based on performing same operations on different sets of parameters,
the main concept of Nimrod was to automate this process. All jobs in an experiment
are described by a simple script file called a ’plan file’. This file contains ranges and
steps of parameter values in the first section, followed by operations that need to be
calculated on each set of parameters from the cross product of their values. The user
does not have to write the plan file manually, he/she can use the Nimrod Portal, a
web based portal, to generate the plan file and schedule its execution. Although the
file is generated automatically the user still needs to provide all information needed
to generate this file: parameter ranges, executed operations etc., you can say that
instead of writing the plan file the user has to ’click it out’.

All information needed to complete the experiment by calculating all jobs are
stored in a persistent database. The database contains information about scheduled
tasks, results, task execution state, experiment information etc. Nimrod makes sure
that the database content is up to date. Due to storing actual state of experiment in
a persistent database, it is possible to “continue” the experiment after a system crash
(or any other failure) basing on the information stored in the Nimrod’s database.

Since Nimrod/G is a version of Nimrod written to perform experiments on the
Grid, it distinguishes different resource types by the module it uses to interact
with grid middleware software. Currently Nimrod/G uses features supported in the
Globus toolkit.

Nimrod jobs are user commands that invoke some executable and are passed
to shell for execution as console commands. While specifying the experiment plan
file, either by manually writing the plan file or by using the Nimrod web portal,
the user needs to provide the shell command to be executed. Taking into account
that the ViroLab experiments are executed using the GridSpace Engine, GSEngine
client would have to be installed on each node that may be used by Nimrod for
job execution, or the user would need to include copying of GSEngine executables
within each experiment. Since security credentials are passed to the GSEngine
client as execution arguments the user would have to provide it during experiment
scheduling. Because of that problems with Shibboleth security credentials, used in
the ViroLab virtual laboratory, validation timeout may occur for long executing
experiments.

25

2

2.4. Conclusions

Each of previously described management environments have certain limitations
that discard them from being used in the ViroLab virtual laboratory. For example,
DIANE does not support execution of complex workflows and manages only
scheduling of parameter study experiments. Since the ViroLab virtual laboratory
users are mainly clinicians and virologists (in general non-informaticians) they
do not possess any programing knowledge. Using one of presented experiment
management solutions in the ViroLab would require them to posses such knowledge:
the DIANE uses Python run files, using Zenturio requires user to know the ZEN
language, and the Askalon users either need to learn the AGWL language or know
how to model using UML. Not to mention implementation skills required for usage
of those systems. The Nimrod Toolkit on the other hand requires GSEngine client
to be installed on each of the nodes it schedules jobs to, as it executes jobs as
console commands. Using Nimrod in the ViroLab would also result in problems
with validation of security credentials required for scheduling tasks using GSEngine.

Zenturio’s distributed architecture concept is an interesting approach to
experiment management environment. Combining it with workflow composition
model (similar to the one implemented in Askalon) would provide an efficient
environment, capable of executing complex workflows. Instead of modeling
workflows in UML, as it is in Askalon, the mechanism implemented in EMGE would
allow workflow composition from scripts in user-friendly way, where each node of
the specified workflow is defined by script and input data the script operates on.

In conclusion presented solutions are not suitable for usage in the ViroLab virtual
laboratory. Nevertheless they have some interesting concepts, which may be used
during the design of the Environment for Management of Grid Experiments for the
ViroLab.

26

Chapter 3

Concept of the Environment for
Management of Grid Experiments

This chapter introduces a concept of the Environment for Management of Grid
Experiments. At first, analysis of the problem is presented. Second section introduces
requirements for the developed grid experiments management environment, that is
the subject of this thesis. Finally assumptions made for the developed environment
are presented.

3.1. Problem analysis

As mentioned earlier in this thesis, experiments in the ViroLab virtual laboratory
are represented by Ruby scripts. One of the consequences of script approach to
experiments is that the experiment state during its execution is equivalent to the
current state of the interpreter - it is not persistent. Shall any interpreter error occur
during script interpretation, whole experiment computation needs to be manually
rescheduled by user. As this is not a big problem for scheduling single experiments
with short computation time it becomes a huge matter for complex experiments
process - all time and resources spent for failed execution are lost. Dividing such
experiments into a group of smaller tasks scheduled in a specified order would of
course decrease resource waste as only failed tasks would need rescheduling, however
currently the ViroLab virtual laboratory does not provide its users with tolls that
would allow user friendly execution and management of such multitask experiments.
Moreover manual scheduling and management of such experiments would be a huge
challenge for the experimentator.

Therefore, an environment that will allow automatical task scheduling, for
non-trivial experiments, and experiment management for the ViroLab users should

27

3

be developed in order to eliminate unnecessary resource usage and improve user
comfort in using the ViroLab virtual laboratory.

3.2. System requirements

This section lists and describes both functional (section 3.2.1) and non-functional
(section 3.2.2) requirements that designed experiment manager needs to fulfill.

3.2.1. Functional requirements

This section focuses on presenting functional requirement that the system needs
to comply with. Designed system has to meet following functional requirements:

• Management of executing large number of experiments in virtual laboratory,
taking care of all aspects connected with scheduling like for example managing
security credential and task dependencies.

• Enable end-users to specify experiment execution workflow, allowing task-to-task
dependencies and passing group of tasks output as input data for another.

• Provide user interface for management and monitoring of experiments and their
current status.

3.2.2. Non-Functional requirements

This section focuses on presenting non-functional requirement that the system
needs to comply with. System’s non-functional requirements are as follows:

• User interface provided by the system needs to be intuitive and easy to use,
especially for users with basic or without proper computer science educational
background. Moreover information concerning experiments tasks current state
should be presented in a user-friendly way.

• Both database space and grid resources used by the designed system should be
minimized without impacting designed applications performance.

• Experiments current state should be stored persistently so that in case of any
system failure minimal amount of tasks would need to be re-executed.

• System should use GSEngine to execute tasks.

• Number of simultaneously executed tasks for each user should be limited.
Different users limits should be independent from each other. System should
allow administrator to change these limits at any time without stopping the
system.

• System should be easily configurable.

28

3.3. System concepts

3.3. System concepts

This section presents assumptions made upon the designed Environment for
Management of Grid Experiments.

• Web-based user interface
Web-based user interface is the most convenient type of interface from users point
of view. Only a web browser, which nowadays is available on every computer,
is required to use such interface, and it does not require users to install any
applications to be able to use EMGE’s Web Portal, since all components of
EMGE are available on the web server EMGE stands on. Moreover any upgrades
made to the application are easy to perform, and are immediately available for
all users without any upgrading needed on client side.

• Database oriented architecture
Database used by the designed EMGE environment will be its central point
and main module, storing all information regarding the users allowed to use
the system together with all information concerning experiments management:
experiment structure, job submission information, executed tasks statuses, input
data for tasks, task execution logs and naturally results obtained during job
execution, allowing fast access to stored information. Information stored in the
database should be as accurate as possible and always up to date. In addition
storing experiment information in the database will provide the highest error
immunity in case of scheduler failure, minimizing resource usage as only tasks
requiring rescheduling will be executed again.

• Independent modules
Designed system should be composed of the following modules: user portal,
responsible for providing user interface that allows user interaction with
the system (schedule new experiments, monitor experiments status, etc.),
and experiment manager responsible for experiments execution and storing
experiment information into database. Both user portal module and scheduling
manager module should be fully independent from each other and exist without
any ”knowledge” about each other.

3.4. Summary

High level abstraction of environment for the Environment for Management
of Grid Experiments have been introduced in this chapter, including the
ViroLab experiment management problem analysis followed by solution proposal
for identified problems. Functional requirements, identified during problem
analysis, for designed system have been listed with their brief description along
with non-functional environment requirements. Finally, main concepts for the
Environment for Management of Grid Experiments have been presented: usage
of Web user interface, independent environment modules concept and database
centered architecture.

29

Chapter 4

Design of the Environment for
Management of Grid Experiments

This chapter presents an overview of the Environment for Management of Grid
Experiments architecture. First section presents Environment for Management of
Grid Experiments architecture with brief description of its components, together
with dependencies on external ViroLab components used by EMGE. Second section
provides use case diagrams of identified scenarios, with these scenarios brief
description. Database model is introduced, together with its motivation, in the last
section of this chapter.

4.1. EMGE’s architecture overview

Diagram in Figure 4.1 summarizes the Environment for Management of
Grid Experiments system architecture, showing correlations between EMGE’s
components and also their dependencies on external components. EMGE
components description is presented in section 4.1.1. Detailed description of the
database structure is presented in section 4.3.

4.1.1. Component description

• User Portal - provides a web-based interface allowing interaction between users
and the EMGE system. It is composed of following components:
— Experiment Monitor - displays experiments current status, providing

detailed information about tasks execution: current task status, task input,
execution log, results, etc.

— Experiment Creator - allows creation and scheduling of new experiments.

30

4.1. EMGE’s architecture overview

Figure 4.1. The Environment for Management of Grid Experiments architecture
diagram.

This diagram shows main components of the EMGE system: the User Portal, the
Scheduling Manger, the User Data Management Tools and the central point of the EMGE
system: database storing all information required by the system to work. This diagram

also presents relations between the components of EMGE environment.

• Scheduling Manager - entity responsible for managing experiments on-grid
execution.
— Task Scheduler - main component of the designed system, responsible for

scheduling tasks execution to Grid using the GridSpace Engine. It is also
responsible for controlling the amount of concurrently executed tasks.

— Security Handle Provider - this component is responsible for providing
valid Shibboleth security handle’s with minimizing number of new handle
requests send to the Shibboleth Identity Provider.

— Task Completion Listener - after receiving notification about completed
task execution it is responsible for notifying the Task Scheduler about freed
execution slot. To its responsibilities belongs also performing following
actions on detection of super task completion1: generating super task results
summary and preparing input for super tasks depending on the completed
one.

1For information regarding experiment structure representation in EMGE system please refer
to section 4.3

31

4

• User Data Management Tool - a tool for updating EMGE’s users information
in the database and the current tasks limit used by running instance of the
Scheduling Manager component.

4.1.2. External ViroLab components used by EMGE

Figure 4.2 shows EMGE’s modules usage of external libraries from the ViroLab
virtual laboratory environment.

Figure 4.2. ViroLab components dependencies of the Environment for
Management of Grid Experiments diagram.

This diagram presents dependency of EMGE components on external components provided
by the ViroLab environment: the ShibIdpClient, the GSEngine and the ResMan library.

Both the GridSpace Engine client and the Shibboleth Identity Provider Client
have been introduced in previous sections of this thesis. Please refer to section 2.1.4
for information about the GSEngine client, and to section 2.1.5 for introduction of
the Shibboleth Identity Provider Client.

Result Management library

The Result Management library (ResMan) provides means of interaction with
external stores responsible for keeping result-related information. The ResMan
library is the only entity allowed to access result data stores, thus keeping it
coherent and consistent. Each result entry is composed of two separately stored
and accessed entries: the result payload and the result metadata identified by same
result identifier.

4.2. Use cases identified for experiment management
environment

Presented further in this section use case diagrams feature following actors:

32

4.2. Use cases identified for experiment management environment

• Experiment User
Person who runs an experiment in order to obtain valuable results that answer
important questions .

• Scheduling Manager
Entity responsible for launching experiments’ tasks, taking into account number
of concurrent tasks that are allowed for each experiment user to be executed
simultaneously.

• Administrator
User responsible for deployment and configuration of the EMGE system.
Administrator also decides about simultaneously launched tasks limit assigned
for each experiment user.

4.2.1. User Portal use cases

Figure 4.3 presents User Portal’s use case.

Figure 4.3. Use case diagram of the User Portal component.
Diagram presents use cases identified for the User Portal of the EMGE system. The actor
performing operations on the User Portal is a user of the ViroLab virtual laboratory. He
can schedule new experiments execution to the EMGE environment. The actor can also
monitor current state of the experiments he had scheduled and cancel their execution.

33

4

Following use cases have been identified for the User Portal:
• Create experiment

In this scenario the actor submits new experiment to EMGE, providing all
information needed to define the experiment.

• Monitor experiment state
In this scenario the actor is provided with information about his experiments:
scripts used by experiments, current tasks status and data used as tasks input,
execution start date (and if the task has finished its execution time), execution
log, etc.

• Delete experiment
In this scenario the user decides to cancel experiment execution and remove all
information corresponding to it from the EMGE system.

4.2.2. Scheduling Manager use cases

Figure 4.4 presents Scheduling Manager’s specific use case.

Figure 4.4. Use cases identified for the Scheduling Manager
Diagram presents use cases identified for the Scheduling Manager component of the
EMGE system. The Scheduling Manager schedules tasks execution to the ViroLab virtual
laboratory. Task scheduling process may require to obtain a new security handle for the
user owning the task. Moreover the Scheduling Manager may abort tasks execution if
the experiment has been aborted by its owner, or on Scheduling Manager exit to prevent

unnecessary resource usage.

34

4.2. Use cases identified for experiment management environment

Following use cases have been identified for the Scheduling Manager:

• Execute tasks
In this scenario the actor periodically schedules new tasks to the Grid using
GSEngine. Task definitions are read from the database.

• Abort tasks
In this scenario the actor aborts scheduled tasks execution on the EMGE
environment shutdown. This operation is performed because of the callback
nature of the GSEngine to release resources used by scheduled tasks and to
prevent their unnecessary usage. This scenario also takes place if the experiment
owner requests to abort execution of an experiment.

• Get security handle
During this scenario actor requests generation of a new Shibboleth security
credentials for the experiment owner.

4.2.3. User Data Management Tool use cases

Figure 4.5 presents use case diagram for User Data Management Tool

Figure 4.5. Use cases identified for the User Data Management Tool
Diagram presents use cases identified for the User Data Management Tool. EMGE system
administrator may use the User Data Management Tool to update maximum number of
tasks that may be during execution on the same time for each user. The update modifies
these values in the database, and if an instance of the Scheduling Manager is launched it

is notified about performed tasks limits changes.

35

4

Following use cases have been identified for the User Data Management Tool:

• Update user data
In this scenario using the User Data Management Tool the administrator changes
user password used by EMGE and/or concurrent task limit, which are both
stored in the systems database. Update can be performed for several different
users.

• Update tasks limits in the Scheduling Manager
Concurrent tasks limits stored in memory by the Scheduling Manager instance
are updated.

4.3. Database Model used by the Environment for
Management of Grid Experiments

4.3.1. Rationale for the database model

The database designed for the Environment for Management of Grid
Experiments needs to reflect the ViroLab virtual laboratory experiments in a way
that will allow efficacious experiment management, and allow to provide users with
sufficient information about current state of their experiments. Each ViroLab
experiment is composed of tasks that are executed as Ruby scripts. In order to
improve clearness and provide hierarchical experiment structure, a so called Super
Task has been defined, and is nothing more than a group of independent from each
other tasks, defined by identical script, being part of the same experiment. The
table storing information on scripts locations is introduced to remove information
redundancy and to decrease database size. User-defined execution dependencies,
including dependancy relation type (e.g 1:n etc.), that occur in the experiment are
defined between super tasks. Since all of the tasks require data to operate on, a
table storing input data for tasks is required.

4.3.2. Table model details

Figure 4.6 presents database tables model used by the Environment for
Management of Grid Experiments.

Detailed description of the tables and roles of each table in the database are as
follows:

• USER DATA table
This table stores information regarding users that are allowed to use the EMGE
system. It contains following fields
— user name (PK) - text entry representing user login required for obtaining

Shibboleth security handles. It also represents user identifier used by the
EMGE environment.

36

4.3. Database Model used by the Environment for Management of Grid Experiments

Figure 4.6. Environment for Management of Grid Experiments database tables
model.

— password - text entry representing password required for obtaining
Shibboleth security handles. Due to security reasons password is encrypted
prior to persisting it into the database.

— concurrent tasks limit - integer determining the total number of user tasks
that may be simultaneously executed on the Grid.

37

4

• EXPERIMENTS table
This table stores information representing and identifying each experiment in
the EMGE environment.
— experiment id (PK) - unique identifier of the experiment

— experiment name - text entry storing short name given to the experiment
during experiment submission to the EMGE system by experiment owner.
Non-unique, human friendly experiment identifier.

— experiment description - stores brief description of the experiment
purpose.

— user name (FK) - reference to the entry in USER DATA table, representing
the user owning experiment defined by this table entry.

• SUPER TASKS table
Each entry in this table represents a logical group of tasks being part of the same
experiment and using the same executable. Its purpose in the system is purely
organizational to allow easy task grouping for purposes of presenting experiment
state using user interface.
— superTask id (PK) - unique identifier for group of tasks

— superTask name - text name which identifies group of tasks. Non-unique,
human friendly supertask identifier.

— script id (FK) - reference to the script executed by tasks being part of the
defined super task.

— experiment id (FK) - reference to the experiment entry of which defined
super task is part of.

— data pack id (FK) - reference to the input data pack used for generation
of tasks belonging to defined super task.

• TASKS table
Each entry in this table represents a single task that will be scheduled for
execution in the ViroLab virtual laboratory.
— task id (PK) - unique task identifier

— acid - application correlation identifier - unique identifier of the application
run assigned by the GridSpace Engine server.

— status id (FK) - reference to the status entry in STATUSES table, that
represents task current execution status.

— superTask id (FK) - reference to the entry in SUPER TASKS table, to
which defined tasks belongs to.

— input data id (FK) - reference to the input data entry in INPUT DATAS
table that was used as execution arguments on the task execution start.

• SCRIPTS table

38

4.3. Database Model used by the Environment for Management of Grid Experiments

This table stores information regarding the location of scripts that will be used
for the task execution by the EMGE Task Scheduler
— script id (PK) - unique script identifier in the EMGE environment.

— script path - text entry representing location and identification of the script
file.

— uri scheme - contains information for the GridSpace Engine interpreter
about URI type described by SCRIPTS table entry. Possible values are
“local” for user provided files or ”apprepo:svn” for experiment scripts stored
in the script repository

• STATUSES table
This table stores information mapping the task status represented as integer into
a text representation of given status.
— status id (PK) - unique status identifier

— description - string containing text representation of the defined task status

• SUPERTASK DEPENDENCIES table
This table stores information regarding execution dependencies between super
tasks. Both “depending id” field and “depends on id” field together form the
composite primary key of each SUPERTASK DEPENDENCIES table entry.
— depending id - reference to an entry in the SUPER TASKS table,

representing super task that depends from another super task.

— depends on id - reference to an entry in the SUPER TASKS table,
representing super task that must be successfully finished in order to execute
the depending super task.

— relationship - integer representing the number of tasks that will be created
for the depending super task. For example, shall the super task one depends
on consist of a 100 tasks, and we want our depending task to perform
operation on groups of 20 results, the relationship value would be set to
5.

• DATA PACKS table
This table stores information regarding groups of input data that are assigned
to the specified super task.
— data pack id (PK) - unique data pack identifier

— description - short textual description of the group of input data that form
this data pack.

• INPUTS table
This table stores information regarding input data that will be passed to the
task script during its execution start.
— input id (PK) - unique identifier of the input data entry.

39

4

— input data - text representation of the input data that will be used during
task execution start and passed as command line arguments for task script.

— data pack id (FK) - reference to the a data pack entry in the the
DATA PACKS table, of which the input data described in this table row
is part of.

• EXECUTION INFO table
This table stores metadata regarding task execution. Each entry in this table
corresponds to a single entry in TASKS table and is linked by having same
identifier value as the task entry it corresponds to.
— execution info id (PK) - unique identifier of the task execution

information entry.

— execution time - overall time of task execution represented in milliseconds.
It defines the time difference between the time of task schedulation to the
Grid, and the time of task execution completion.

— start date - this field holds a timestamp of the task execution start date.

• EXECUTION LOG table
This table stores information regarding logs of the task, to which the execution
metadata, this log entry is part of, is linked to.
— execution info id (FK) - reference to an entry in the EXECUTION INFO

table, of which this execution log entry is part of.

— entry text - textual representation of this entry payload

— entry type - determines how the value stored in this entry should be
interpreted: as a result, an information log or an error message.

4.4. Scheduling Manager state during experiment execution

The Scheduling Manager, responsible for management of task execution in the
ViroLab virtual laboratory, performs actions in a strict order. This section presents
possible states and transitions between valid states of the Scheduling Manager
during its execution. Figure 4.7 shows state diagram of the Scheduling Manager.

States allowed for the Scheduling Manager during its run are as follows:
• Created - state of the Task Scheduler after invocation of its constructor. The

Task Scheduler is not yet initialized therefore not ready for usage.

• Ready - in this state the Task Scheduler is prepared and ready to perform
actions.

• Scheduling Tasks - during this state the Task Scheduler performs scheduling of
tasks execution to the Grid, using experiment information stored in the database.

• Aborting Tasks - in this state the Task Scheduler aborts execution of jobs
scheduled to the Grid.

40

4.4. Scheduling Manager state during experiment execution

Figure 4.7. State diagram for the Scheduling Manager.
This diagram presents valid states for the Scheduling Manager together with transitions
between states that may occur during Scheduling Manager execution. In “Created” state
the manager has been created, but it is ready to use in the “Ready” state, after passing
“preparation” phase. The manager then schedules new tasks execution periodically or after
receiving a notification and goes back to “Ready” when scheduling operation is finished.
Another possibility for the Scheduling Manager in ”Ready” state is to receive stop signal.
After receiving such signal, the manager cancels execution of scheduled tasks and finishes

execution.

Following transitions between Scheduling Manager states are allowed:
• Null Õ Created - transition triggered on the EMGE Scheduler application

launch, during this transition the Scheduling Manager is created.

• Created Õ Ready - initialization of the Task Scheduler and update of task
information in the database. In case of the Task Scheduler failure, information
about scheduled tasks must be reset in the database and those tasks state set to
”awaiting execution”.

• Ready Õ Scheduling Tasks - transition triggered by a timer or a notification
about task execution end.

• Scheduling Tasks Õ Ready - after scheduling execution of tasks, the Task
Scheduler returns to the ready state and awaits further actions.

• Ready Õ Aborting Tasks - transition triggered by a request to stop the
Scheduling Manager execution.

• Aborting Tasks Õ Null - execution stop and destruction of the Scheduling
Manager instance.

41

4

4.5. Summary

The analysis phase of the EMGE environment has been presented in this chapter.
It includes discussion considering identified use cases, system architecture and the
database model overview. In general EMGE system is divided into following main
components: the Scheduling Manager module - daemon process responsible for
management od experiments execution, the User Portal - a web interface allowing
users to schedule experiments to the EMGE system and monitor their status.
The database, which is the central part of EMGE, holds information required
for management, scheduling and monitoring of experiments. Since the Scheduling
Manager is a stateful entity and its behavior is strictly defined this chapter also
contains information considering allowed Scheduling Manager states, together with
description of valid transitions between defined application states.

42

Chapter 5

Implementation of the Environment for
Management of Grid Experiments

This chapter presents implementation details and detailed design description of
the EMGE system. Each section is devoted to a specific component, and presents
its class structure together with control flow diagrams for important actions. List of
the technologies used for implementation of the EMGE system, together with their
brief description is provided in the last section.

5.1. Implementation details of the Scheduling Manager

5.1.1. Implementation details of the Security Handle Manager

Security Handle Manager is used by the Task Scheduler to obtain security
handles needed during task scheduling process. The Security Handle Manager
component is responsible for:

• managing and storing valid security handles of experiment owners,

• retrieving new security credential for experiment owners if needed.

43

5

Implementation details

Package named emge.core.Shibboleth encapsulates Security Handle Manger
implementation.
Diagram in figure 5.1 presents detailed architecture of the Security Handle Manger.

emge.core.shibboleth

ShibbolethClientConfig

+setLogin(in login:String): void

+setPassword(in passwd:char[]): void

<<interface>>

ShibbolethClientConfigConstants

+SSO_URL: String = ssoUrl

ShibolethHandleProvider

-handleContainer: Map<String, String>

-clientConfig: ShibbolethClientConfig

+<<constructor>> ShibbolethHandleProvider()

+getHandle(): String

-generateNewHandle(userName:String): void

ShibIdpClient

<<interface>>

HandleRequesterConfig

+getLogin(): String

+getPassword(): char[]

+getIdProviderEntry(): cyfronet.shibidpclient.IdProviderEntry

+getTrustStoreFilename(): String

+getTrustStorePassword(): char[]

1

1

Figure 5.1. UML class diagram of the Security Handle Manger component.
This diagram shows structure of the Security Handle Manger. It is composed
of the ShibbolethClientConfig class implementing HandleRequesterConfig interface.
It encapsulates al information needed to obtain a new handle for the user.
ShibbolethHandleProvider acts as a handle manager, storing valid handles in memory

and updating them if needed.

Obtaining Shibboleth handle for user

Sequence diagram in figure 5.2 shows Security Handle Manger control flow when
it is requested for a security handle of the specified user.

The interpretation of calls presented on the diagram 5.2 is given below. Note
that actions 2–8 are performed only if a security handle for the specified user is not
present in the handle bank or if the requesting entity forced handle refreshment.

1: Task Scheduler requests for a security handle for the specified user. Task
Scheduler also provides information shall a new handle be generated, or can
the one stored by Security Handle Manager be returned.

44

5.1. Implementation details of the Scheduling Manager

Figure 5.2. Sequence diagram illustrating Security Handle Manger flow of
control during response to handle request.

This diagram illustrates step-by-step actions taken by the Security Handles Manager after
receiving a request to provide valid handle for given user.

2: User information (which contains also user’s password) is requested, using
dedicated DAO, from the database.

3: User information is returned

4: The Shibboleth Handle Provider sets in the clientConfig object the name of the
user on behalf of whom it will request for a new handle generation.

5: The Shibboleth Handle Provider sets in the clientConfig object the password that
will be used in the request for a new handle generation.

6: Request for a new security credentials is send using the ShibIdpClient.

7: Newly generated handle is returned

8: Shibboleth Handle Provider stores the generated handle in its local handle bank

9: Security handle is returned to the requester

5.1.2. Implementation details of the Task Scheduler

Task Scheduler is the entity responsible for management of scheduling task
execution to the ViroLab virtual laboratory.

45

5

Implementation Details

Implementation of the Task Scheduler module is encapsulated in a package
named emge.core.

Figure 5.3 presents detailed architecture of the Task Scheduler component.

emge.core

TaskSchedulingManager

+main()

+setHandleProvider(handleManager)

+setInterpreter(interpreter)

-killOrphanTasks()

-scheduleNewTasks()

-executeTask()

AbstractManager

+parseArguments()

+displaySyntaxError()

EMGEEvaluationCallback

SlotLimit

-availableSLots

-maxSlots

+releaseSlot(userName:String)

+occupySlot(userName:String): boolean

+updateMaxSlots(newMaxSlots:int)

+hasFreeSlot(userName:String): boolean

UserTaskLimitter

-slotLimits: SlotLimit[]

+getInstance()

+updateLimits(limits:UserInfo[])

+increaseAvailableTasksCount(userName:String)

+decreaseAvailableTasksCount(userName:String)

cyfronet.gridspace.engine

<<interface>>

EvaluationCallback

+onEvaluationComplete(result:String)

+resultNotification(notification:ResultNotification)

+raise(ex:Exception)

+writeToErrorStream(text:String)

+writeToOutputStream(text:String)

+storeFile(fileName:String,payload:byte[])

+getFile(fileName:String)

+getScript(scriptName:String)

Figure 5.3. UML class diagram of Task Scheduler component.
This diagram presents structure of the Task Scheduler module. It is composed of the
entity responsible for scheduling tasks execution, evaluation callback implementation and

UserTaskLimitter, an entity responsible for managing users tasks slots.

Scheduling new task

Sequence diagram in figure 5.4 shows behavior of the Task Scheduler when
scheduling execution of a single task.

The interpretation of calls presented on the diagram 5.4 is given below. Note
that actions 3-16 are performed only if a user free execution slot was available.

1: Request for occupation of a task execution slot of the user, who owns the
experiment of which the scheduled task is part of.

46

5.1. Implementation details of the Scheduling Manager

2: Response for the slot occupation request, returns false if there was no free slot
available, and true otherwise.

3-4: EvaluationRequest instance is created and its reference is returned.

5-6: Request for user Shibboleth security handle is made. A valid handle is
returned.

7: In this operation parameters of evaluation request, such as: security handle,
task input data, script location and other required parameters, are set using
appropriate setter methods. Task Scheduler reads required parameters values
form the database.

8: Evaluation callback is created.

9: Reference to the newly created callback object is returned to the Task Scheduler.

10: Task is scheduled to the GSEngine interpreter for execution using previously
created evaluation request and evaluation callback.

11: Application Corelation IDentifier, a unique identifier of scheduled task assigned
by interpreter, is returned.

12-13: Execution notification corresponding to the scheduled task is loaded from
the database

14: The date of the task execution start is set.

15: Execution notification corresponding to the scheduled task is updated in the
database

16-17: Application Corelation IDentifier assigned to the task during its scheduling,
is written into the task object.

17: New status is set in the task object.

18: Task information in the database is updated.

47

5

F
ig

ur
e

5.
4.

S
eq

u
en

ce
d
ia

gr
am

il
lu

st
ra

ti
n
g

co
n
tr

ol
fl
ow

in
T
as

k
S
ch

ed
u
le

r
d
u
ri

n
g

su
b
m

is
si

on
of

ta
sk

ex
ec

u
ti

on
to

gr
id

T
hi

s
di

ag
ra

m
ill

us
tr

at
es

st
ep

-b
y-

st
ep

ac
ti

on
s

ta
ke

n
by

th
e

T
as

k
Sc

he
du

le
r

to
sc

he
du

le
ex

ec
ut

io
n

of
ta

sk
s

to
th

e
V

ir
oL

ab
vi

rt
ua

l
L
ab

or
at

or
y

us
in

g
th

e
G

SE
ng

in
e

in
te

rp
re

te
r.

48

5.1. Implementation details of the Scheduling Manager

Canceling tasks execution on manager exit

Sequence diagram in figure 5.5 shows behavior of the Task Scheduler on
application exit, when it cancels execution of scheduled tasks.

Figure 5.5. Sequence diagram illustrating control flow in the Task Scheduler
while aborting submitted task execution on application exit.

This diagram illustrates step-by-step actions taken by the Task Scheduler to stop execution
of scheduled tasks, after receiving application stop signal.

The interpretation of calls presented on the diagram 5.5 is as follows.

1: Request for a list of tasks scheduled by the Task Manager that are currently
executing on the Grid.

2: List of tasks is returned.

3: Scheduled task execution is aborted.

5.1.3. Implementation details of the Task Completion Listener

Task Completion Listener is responsible for generating input data for dependant
super tasks on execution finish of super task those tasks depend on.

Implementation Details

Implementation of the Task Completion Listener can be found inside the
package named emge.core.

49

5

Figure 5.6 presents detailed architecture of the Task Completion Listener.

emge.core

TaskCompletionListener

-superTasksInProgress: Map<superTaskID,unfinishedTasksCount>

+getInstance(): TaskCompletionListener

+executionFinished(taskID:long)

-checkSuperTaskCompletion(superTaskID:int): boolean

-onSuperTaskComplete(superTaskID:int)

Figure 5.6. UML class diagram of the Task Completion Listener.

Behavior of the Task Completion Listener on task execution finish event

Figure 5.7 presents behavior of the Task Completion Listener when a task
execution finishes.

Figure 5.7. Sequence diagram illustrating control flow in Task Completion
Listener when it is informed that task execution finished.

This diagram illustrates step-by-step actions taken by the Task Completion Listener after
receiving a notification about a finished task.

50

5.2. Implementation details of the User Portal

The interpretation of calls presented in the diagram 5.7 is as follows(note that
steps 5–7 are executed only if the finished super task had dependencies):

1: Task Completion Listener is notified about execution finish of a task.

2: Check is performed if the super task, to which the finished task belonged, has
more tasks awaiting for scheduling or during execution.

3: Task Completion Listener checks if there are any super tasks dependant from the
finished superTask.

4: Information about queried dependencies is returned.

5: New input data is added to the database.

6: Tasks, belonging to the dependant super task, information in the database is
updated.

7: Information about no longer existing dependency is removed form the database.

5.2. Implementation details of the User Portal

User Portal has been written using the Google Web Toolkit, an open source tool
for writing web applications. Please refer to section 5.5 for information on GWT.
User Portal provides a web interface for EMGE users, allowing them to schedule and
monitor experiments in the ViroLab virtual laboratory. User Portal source code is
stored in package emge.web.

5.2.1. User Portal server

Server side of EMGE’s User Portal acts as a bridge between the client side
and the EMGE database, and uses the Database Access Component of the EMGE
system to provide the client with required experiment information and submit new
experiments data into the database. Implemented server side provides following
functionalities for the client:

• getExperimetns - which retrieves list of user’s experiments from the database.

• getExperimentStructure - which retrieves a list of super tasks that compose
specified experiment.

• getSuperTaskInformation - which provides information about experiments
tasks, their current status and execution log to client.

• uploadExperiment - during which the server, using information provided by
the client, generates database entries representing newly defined experiment
structure and uploads necessary files from the user host.

51

5

5.3. Implementation details of the Database Access
Component

Database Access Component manages database connection together with all
database operations, and is the only entity allowed to directly access the database.
All other modules of the EMGE system use it to gain access to the database.
Database Access Component uses Hibernate for object-relational mapping (ORM)
(see section 5.5 for details about Hibernate).

Each database table (see section 4.3 for database tables details) has a class
representing an entity stored in that table. That class is a simple Java Bean,
with properties corresponding to the columns defined in the database table and is
accessed using a specialized data access object (DAO).

Following description presents design details of accessing user information in
the database. Because access to other tables is analogously implemented its detailed
design will be omitted and only design details of access to USER DATAS table will
be presented in this thesis.

5.3.1. Implementation details

Database Access Component implementation is encapsulated in the emge.db
package. Diagram in figure 5.8 presents implementation details of the Data Access
Component with the UserData DAO.

emge.db

UserInfo

-userName: String

-password: char[]

-concurrentTaskLimit: int

+setUserName(name:String)

+getUserName(): String

+setPassword(passwd:char[])

+getPassword(): char[]

+setTaskLimit(limit:int)

+getTaskLimit(): int

UserInfoDAO

+addUserInfo(userName:String,password:char[],taskLimit:int): UserInfo

+updateUserInfo(info:UserInfo): UserInfo

+getUserInfo(userName:String): UserInfo

+deleteUserInfo(userName:String)

<<singleton>>

HibernateUtil

-<<constructor>> HibernateUtil()

+getSesionFactory(): SessionFactory

Figure 5.8. UML class diagram of the Data Access Component.
This diagram shows structure of the Data Access Component. It is composed of the
HibernateUtil - responsible for configuring database connection and creating a session
factory, JavaBeans corresponding to tables defined in the database - one bean for each

table, and the Data Access Objects - one DAO to access each of the database tables.

52

5.3. Implementation details of the Database Access Component

In order to provide Hibernate with information concerning database connection
hibernate configuration file hibernate.cfg.xml is required. This file stores information
required for connecting with database and a list of mapping files reflecting
JavaBeans to the database tables. An example of a mapping file is presented in
figure 5.9, and presents the mapping file used for object-relational mapping for the
EXECUTION NOTIFICATION table.

Figure 5.9. Hibernate mapping file for the EXECUTION INFO database table.
This diagram shows an example of mapping file required by Hibernate. Presented file is
used for object relational mapping of the EXECUTION INFO table. It contains name of
the mapped table, name of Java Bean class the table is mapped to and description of links

between table columns and JavaBean attributes columns are mapped to.

5.3.2. Adding user information to the database

Figure 5.10 shows control flow of storing a UserInfo object into the database
using the UserInfoDAO. As other operations implemented in UserInfoDAO have
analogical control flow to adding user information (they differ on the operation
performed on a session object) presented sequence diagram will be the only one
presented in this thesis for the Data Access Component.

53

5

Figure 5.10. Sequence diagram illustrating process of adding user information
to the database.

This diagram illustrates step-by-step actions taken by the UserData Access Object of the
Database Access Component to store a single user data entry into the database.

Interpretation of the calls presented on diagram 5.10 is as follows:
1: UserInfoDAO requests for a session factory from HibernateUtil is made.

2: Reference to the session factory is returned.

3: Hibernate session factory is requested opening of a new database session.

4: Newly created hibernate session instance is returned.

5: UserInfoDAO requests the start of a transaction in the session.

6: UserInfo object that will be stored in the database is created.

7: Request of storing the UserInfo object into database is made.

8: Transaction is committed, and newly stored UserInfo object is persistent from
now on.

9: As session is no longer needed it is closed.

54

5.4. Implementation details of the User Data Management Tool

5.4. Implementation details of the User Data Management
Tool

User Data Management Tool is a command line tool that allows the administrator
to update upper limit of simultaneously scheduled tasks by EMGE Task Scheduler
for each user. Update user information is written into the database. Moreover if
an instance of the Task Scheduler is running the User Data Management Tool also
notifies launched Task Scheduler about new limits update.

Implementation details

User Data Management Tool implementation composes of only one class
UserDataManager placed in package emge.core.tools. This class contains main
method. In order to perform scheduler task limits update user must provide only
one command-line argument to UserDataManager - path to file containing user data
to be updated. This file can only include lines that match following pattern:

<user name>:<user password>:<simultaneous task limit>

Both the user name field and the colons are mandatory, however at most one of
the other two values: the user password or the task limit can be an empty string,
thus indicating that the value will not change.

Updating users simultaneously scheduled tasks limits

Diagram in figure 5.11 show control flow during updating task limits.

Interpretation of the calls presented on diagram 5.11 is interpreted as follows:
1: User Data Management Tool reads update data from a file provided by the

administrator. It also performs validation of provided data format

2: New database transaction is opened in order to perform updates.

3: For each provided user information an update is performed in the database.

4: Database transaction is committed, all performed updates become persistent.

5: User Data Management Tool performs lookup for a Task Scheduler instance using
RMI Registry.

6: Reference to the Task Scheduler is returned.

7: Task Scheduler is notified about performed simultaneously running tasks limit
update.

Following alternative scenarios may take place:

1a: The file containing update data is missing or file format is incorrect. In this case
User Data Management Tool execution stops and appropriate error information
is printed out. No database update is executed.

3a: If an error occurs during any of user information updates in the database,
the whole transaction is rolled-back. User Data Management Tool execution

55

5

Figure 5.11. Sequence diagram illustrating simultaneously scheduled tasks limits
update performed by the User Data Management Tool.

This diagram illustrates step-by-step actions taken by the User Data Management Tool
to update number of simultaneously scheduled tasks limits.

stops and appropriate error information is printed out. No database update is
executed.

7a: If lookup for the Task Scheduler in the RMI Registry did not return a reference
to the Task Scheduler (the Task Scheduler is not running or for any reason it
is not registered in the registry, although it may be started), step 7: is not
performed. Database entries will contain updated task limits.

5.5. Used technologies and tools

Following tolls were used during the processes of design and development of the
Environment for Management of Grid Experiments:

5.5.1. Design

Microsoft Visio 2003 was used for creation of diagrams and figures presented
in this thesis in chapters 4th and 5th. It was also used for creation of Figure 2.2
presenting the ViroLab virtual laboratory conceptual layers.

5.5.2. Development

• Eclipse IDE [21]
Eclipse SDK is a software development environment designed for development of

56

5.6. Summary

Java applications. Version 3.4 of Eclipse was used for implementing Environment
for Management of Grid Experiments using Java programming language.

• JUnit [27]
JUnit is a unit testing framework for the Java programming language. It is used
in EMGE project for performing unit tests of EMGE components. It is also used
for some integration tests.

• Google Web Toolkit (GWT) [24]
Google Web Toolkit is an open-source tool for support of the development
and the debugging process of AJAX applications in the Java language. GWT
cross-compiler performs transformation of Java written application to standalone
JavaScript files.

• Apache Tomcat Web Server [17]
Tomcat is an open source web server developed by the Apache Foundation.
Tomcat implements the Java Servlet and the Java Servlet Pages technologies.
EMGE’s User Portal is deployed on Tomcat web server.

• Hibernate 3.0 [25]
Hibernate is an object-relational mapping (ORM) library for the Java language.
It provides a framework for mapping an object-oriented domain model to a
traditional relational database.

• Spring Framework [29]
The Spring Framework is an open source application framework for the Java
platform. Core features of the Spring Framework can be used by any Java
application, but there are extensions for building web applications on top of
the Java Enterprise platform. Spring’s Inversion of Control container is used in
EMGE’s Scheduling Manger to initialize classes manager is composed of, and
inject their dependencies.

5.6. Summary

In this chapter implementation details of EMGE have been presented. EMGE
has been implemented using Java SE platform 6. The Environment for Management
of Grid Experiments has modular architecture that allows customization and flexible
future updates mechanism. The Database Access Component, implemented as a
standalone Java library, is used by other parts of the EMGE system to communicate
with the database. User Portal client side has been implemented using Google
Web Toolkit and provides the experiment user with an interface for monitoring
and submission of experiments. Spring IoC container is used for initialization and
reference settings in the Scheduling Manager on its startup. Scheduling Manager
bases on information stored in the EMGE database for managing execution of
experiment tasks. Finally a brief description of technologies and tools that were
used during the design and implementation process of the EMGE system is provided
in the last section of presented chapter.

57

Chapter 6

Validation of Environment for
Management of Grid Experiments

In this chapter validation of the Environment for Management of Grid
Experiments is presented. Next, we depict provided functionality and system
properties with regard to requirement defined during the analysis phase. Finally
description of performed tests is introduced.

6.1. Provided Functionality

Use cases identified during analysis phase of EMGE development (see section 4.2
for details) have resulted in fulfilling of following functionalities:

• Enable monitoring of executing experiments, providing actual and precise
information on current status, scripts and data used by executed tasks.

• Allow submission of new experiments to EMGE system.

• Allow cancelation of experiment execution.

• Schedule job execution to Grid using GridSpace Engine.

• Manage security credentials required for task execution.

• Manage limits of tasks simultaneously scheduled for execution.

Providing presented functionalities is equivalent to fulfilling functional
requirements defined for EMGE in section 3.2.1. Usage of existing solutions for
scheduling single tasks execution (like GSEngine) provides optimal and efficient
way of job executing.

58

6.2. Non-Functional properties of EMGE

6.2. Non-Functional properties of EMGE

Environment for Management of Grid Experiments satisfies all of non-functional
requirements introduced in section 3.2.2. Web-interface provided by EMGE is easy
to use, thus its users, like clinicians and virologists, will not have any problems to
learn and use User Portal.

Presented solution is a lightweight, easy to install and configure (see Appendix A
for installation and configuration instructions), standalone, flexible system. EMGE
can be installed on any modern host. Operation performed both by EMGE’s Task
Scheduler and User Portal do not use much amount of processor time neither have
high memory consumption. Designed application is platform independent and can
be deployed on any machine supporting Java language.

6.3. EMGE Unit Tests

During or before development of EMGE components unit test were implemented
for each class of Data Access Component, Scheduling Manager, User Data
Management Tool and server side of User Portal. Their intention was to test
behavior correctness of each class in situations expected during EMGE execution,
including proper behavior in error situations. All of the unit tests had to be passed
in order to release EMGE project. The most detailed tests were performed for
the Database Access Component (section 5.3) since all other component base on
information stored in database and any misbehavior of Database Access Component
would be fatal for EMGE.

6.4. EMGE’s integration and deployment

Environment for Management of Grid Experiments was successfully integrated
with GridSpace Engine client, Shibboleth Identity Provider Client and Result
Management library. All of the connection with external components were tested
during prototype releases of EMGE. They are fully functional and work correctly.
Communication between internal EMGE components works without errors. User
Portal prototype has been deployed on Apache Tomcat Server and successfully
provides expected functionality.

Example protein folding experiment has been scheduled using User Portal and
executed correctly by Scheduling Manager giving expected results. Figure 6.1 shows
results obtained during described experiment test run.

6.5. Summary

Goal of this chapter was to present validation of Environment for Management
of Grid Experiments. EMGe’s unit tests description together with integration and
deployment results have been presented in this chapter. EMGE supports all use cases
described in section 4.2 and satisfies all functional and non-functional requirements
presented in sections 3.2.1 and 3.2.2.

59

6

Figure 6.1. Screen-shot of the Experiment Monitor web page showing successful
execution of protein folding experiment by the Environment for Management

of Grid Experiments.

60

Chapter 7

Conclusions and Future Work

This Chapter summarizes goals achieved in this thesis and introduces directions
of the Environment for Management of Grid Experiments enhancements that would
increase its functionality and performance.

7.1. Conclusions

The main goal of this thesis, providing an environment for management of
experiments on the grid has been successfully achieved. A throughout research
of existing experiment management environments: ZENTURIO, Askalon, DIANE
and Nimrod toolkit was performed, pointing out weak ans strong points of those
solutions in Chapter 2. High level abstraction of environment for the Environment
for Management of Grid Experiments have been introduced in Chapter 3, including
the ViroLab experiment management problem analysis followed by solution proposal
for identified problems. Functional requirements, identified during problem analysis,
for designed system have been listed with their brief description along with
non-functional environment requirements. Main concepts for the Environment for
Management of Grid Experiments have also been introduced in Chapter 3, including
such concepts as: database oriented architecture, independent EMGE modules
and Web-based user interface. The analysis phase of the EMGE environment
has been presented in Chapter 4. It includes discussion considering identified
use cases, system architecture and the database model overview. The designed
EMGE system is divided into following main components: the Scheduling Manager
module - daemon process responsible for management od experiments execution,
the User Portal - a web interface allowing users to schedule experiments to the
EMGE system and monitor their status. The database, which is the central part

61

7

of EMGE, holds information required for management, scheduling and monitoring
of experiments. Chapter 5 presents details of EMGE implementation. The
Environment for Management of Grid Experiments has modular architecture that
allows customization and flexible future updates mechanism. The Database Access
Component, implemented as a standalone Java library, is used by other parts of
the EMGE system to communicate with the database. User Portal client side has
been implemented using Google Web Toolkit and provides the experiment user with
an interface for monitoring and submission of experiments. Spring IoC container
is used for initialization and reference settings in the Scheduling Manager on its
startup. Scheduling Manager bases on information stored in the EMGE database for
managing execution of experiment tasks. Finally a brief description of technologies
and tools that were used during the design and implementation process of the EMGE
system is provided in the last section of the 5th Chapter. All off the performed tests
(unit tests and integration tests) showed the completeness and correctness of the
developed system. Moreover, a test experiment composed of more than 1000 tasks
has been successfully executed by EMGE.

7.2. Future Work

Although the work has been successfully completed the following upgrades could
be done in the future to EMGE in order to improve its functionality and increase
user comfort of using EMGE:

Adaptation of EMGE to use experiment scripts requiring user input
during their execution

Many experiment scripts available in the ViroLab virtual laboratory require
user input during their execution, and EMGE was not designed to support such
experiments. Currently such experiments cannot be used by EMGE users, although
those scripts provide valuable, well tested functionality.

Drag&Drop experiment defining mechanism

To make EMGE more user-friendly environment, a drag&drop mechanism for
defining and submitting experiments for execution could be created. Currently
available scheduling mechanism in user portal is fully functional and allows
scheduling of very complex workflow experiments. Unfortunately wrongly composed
workflows may be written to EMGE system not because of any implementation
errors but due to human mistakes. Using currently available textual workflow
specification mechanism for large experiments, composed of more than 20 super
tasks, can be very problematic to use, without generating wrong workflows, for
humans beings.

62

Bibliography

[1] D. Abramson, J. Giddy, L. Kotler. High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid? In International Parallel and
Distributed Processing Symposium (IPDPS), pages 520–528, May 2000. Cancun,
Mexico.

[2] D. Abramson, R. Buyya, J. Giddy. Nimrod/G: An Architecture of a Resource
Management and Scheduling System in a Global Computational Grid. In HPC Asia
2000, pages 283–289, May 2000. Beijing, China.

[3] E. Ciepiela, J. Kocot, T. Gubala, M. Malawski, M. Kasztelnik, M. Bubak. Virtual
Laboratory Engine – GridSpace Engine. In Cracow Grid Workshop 2007 Workshop
Proceedings, pages 53–58. ACC CYFRONET AGH, 2008.

[4] I. Foster. What is the Grid? - a three point checklist. GRIDtoday, 1(6), 2002.
[5] I. Foster, C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.

Morgan-Kaufman, November 1998.
[6] I. Foster, C. Kesselman, S.Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International Journal Supercomputer Applications, pages
200–220, 2001.

[7] J.T. Moscicki. Distributed Analysis Environment for HEP and Interdisciplinary
Applications. Nuclear Instruments and Methods in Physics Research, 502(ISSN
0168-9002), 2003.

[8] J.T. Moscicki. DIANE - Distributed Analysis Environment for GRID-enabled
Simulation and Analysis of Physics Data. In Nuclear Science Symposium Conference
Record, 2003 IEEE, volume 3, pages 1617–1620 Vol.3. NSS IEEE 2004, October 2003.

[9] M. Bubak. Virtual Laboratory for Collaborative Applications. In Handbook of
Research on Computational Grid Technologies for Life Sciences, Biomedicine and
Healthcare, pages 35–40, 2009.

[10] M. Wieczorek, R. Prodan, T. Fahringer. Scheduling of Scientific Workflows in the
ASKALON Grid Environment. ACM SIGMOD Record, 34(3):56–62, 2005.

[11] R. Prodan, R. Duan, T. Fahringer, J. Qin, A. Villazon, M. Wieczorek. Real World
Workflow Applications in the Askalon Grid Environment. In Advances in Grid
Computing – European Grid Conference 2005, volume 3470 of Lecture Notes in
Computer Science, pages 454–463, February 2005.

[12] R. Prodan, T. Fahringer. ZEN: A Directive-based Language for Automatic
Experiment Management of Parallel and Distributed Programs. In 31st International

63

Bibliography

Conference on Parallel Processing, pages 93–100. IEEE Computer Society, August
2002.

[13] R. Prodan, T. Fahringer. ZENTURIO: An Experiment Management System for
Cluster and Grid Computing. In In Proceedings of the 4th International Conference
on Cluster Computing (CLUSTER 2002). IEEE Computer Society Press, 2002.

[14] R. Prodan, T. Fahringer. ZENTURIO: A Grid Service-based Tool for Optimizing
Parallel and Grid Applications. Journal of Grid Computing, 2(1):15–29, February
2005.

[15] T. Fahringer, J. Qin, S. Hainzer. Specification of Grid Workflow Applications with
AGWL: An Abstract Grid Workflow Language. In Proceedings of IEEE International
Symposium on Cluster Computing and the Grid 2005 (CCGrid 2005), Cardiff, UK,
May 9-12, 2005. IEEE Computer Society Press.

[16] T. Gubala, B. Balis, M. Malawski, M. Kasztelnik, P. Nowakowski, M. Assel, D.
Harezlak, T. Bartynski, J. Kocot, E. Ciepiela, D. Krol, J. Wach, M. Pelczar, W.
Funika, M. Bubak. ViroLab Virtual Laboratory. In Cracow Grid Workshop 2007
Workshop Proceedings, pages 35–40. ACC CYFRONET AGH, 2008.

[17] Apache Tomcat Web Server.
http://tomcat.apache.org/.

[18] Askalon project official site.
http://www.askalon.org.

[19] Distributed European Infrastructure for Supercomputing Applications official site.
http://www.deisa.eu/.

[20] DIANE: Distributed Analysis Environment project site.
http://it-proj-diane.web.cern.ch/it-proj-diane/.

[21] Eclipse SDK.
http://www.eclipse.org/.

[22] EGEE project official site. http://public.eu-egee.org/.
[23] GridSpace Engine.

http://virolab.cyfronet.pl/trac/vlruntime.
[24] Google Web Toolkit.

http://code.google.com/webtoolkit/.
[25] Hibernate.

https://www.hibernate.org/.
[26] Java Platform 6 SE.

http://java.sun.com/javase/6/.
[27] JUnit testing framework.

http://www.junit.org/.
[28] Nimrod Toolkit project site.

http://messagelab.monash.edu.au/Nimrod.
[29] Spring Framework.

http://www.springsource.org/.
[30] ViroLab Virtual Laboratory site by ACC Cyfronet AGH.

http://virolab.cyfronet.pl.
[31] ViroLab official site.

http://virolab.org.

Bibliography

[32] ZENTURIO Experiment Management System for Cluster and Grid Computing.
http://www.dps.uibk.ac.at/projects/zenturio/zenturio.html.

65

Appendix A

Administrator’s Manual

This chapter presents information about installation procedures and information
required to successfully deploy the Environment for Management of Grid
Experiments. The installation instructions are followed by a brief description of
configuration of the Environment for Management of Grid Experiments.

A.1. Installation of the Environment for Management of
Grid Experiments

This section provides complete step-by-step installation instructions the for
Environment for Management of Grid Experiments.

A.1.1. System requirements

The Environment for Management of Grid Experiments can be set up on
any modern computer with any operating system. Successful installation and
deployment of EMGE requires the following components on target machine:
• Java 6 SE [26] - required for every EMGE component,

• Apache Tomcat 6.0 [17] or any other Java Servlet version 2.5 compliant
container is required for the User Portal deployment,

• MySQL Database is required for every EMGE component (all of EMGE
components must use the same database!). EMGE distribution includes a
MySQL database connector. EMGE can be used with any other database type
that is supported by Hibernate [25] but in such case you must provide it with a
valid database connector library.

66

A.1. Installation of the Environment for Management of Grid Experiments

A.1.2. Installing and running the Scheduling Manager

The following steps need to be taken in order to install and launch the
Environment for Management of Grid Experiments Scheduling Manager.

1. Download EMGE Scheduling Manager distribution
Binary distribution of the EMGE Scheduling Manager is available to download
from site: https://gforge.cyfronet.pl/frs/?group id=80. Each release archive
contains following folders:
• bin - contains executables used to launch the Scheduling Manager,

• lib - contains binaries required to launch the Scheduling Manager,

• config - contains configuration files required for the Scheduling Manger to
work correctly.

Use your favorite web browser to download the EMGE Scheduling Manager
distribution from listed previously web site.

2. Unpack the archive
Unpack downloaded archive into a folder where you want EMGE Scheduling
Manager to be installed.

3. Configure
For configuration information please refer to the section A.2 of this document.

4. Launch application
Using command line console enter the “bin” directory of downloaded and
unpacked distribution. When in the bin folder on Linux systems type:

./emge.sh --help

and on Microsoft Windows operating system type:

emge.bat --help

for detailed information how to launch Scheduling Manager.

A.1.3. User Portal installation and deployment

The following steps need to be taken in order to deploy the Environment for
Management of Grid Experiments User Portal.

1. Download the User Portal distribution
Binary distribution of the EMGE User Portal is available to download from the
site: https://gforge.cyfronet.pl/frs/?group id=80.
Use your favorite web browser to download EMGE Scheduling Manager
distribution from listed previously web site.

2. Unpack the archive
Unpack downloaded archive. After unpacking the archive you will see aemgeWeb
folder that contains the distribution of User Portal.

67

A

3. Configure
For configuration information please refer to the section A.2 of this document.

4. Deploying the User Portal on a Apache Tomcat web server In order
to deploy the EMGE User Portal to an Apache Tomcat web server you need to
perform the following steps:
• Stop Apache Tomcat web server

In order to stop Tomcat, on Linux operating system execute following
commands in system console:

cd $CATALINA_HOME

bin/shutdown.sh

On Microsoft Windows operating system execute:

cd %CATALINA_HOME%

bin\shutdown.bat

If environment variable CATALINA HOME is not present, enter Apache
Tomcat web server installation directory manually.

• Copy emgeWeb to Tomcat
To copy extracted emgeWeb directory to the webapps folder in Apache
Tomcat home directory, navigate in console to directory containing extracted
User Portal distribution. On Linux operating system execute following
commands in system console:

cp -r ./emgeWeb $CATALINA_HOME/webapps/emgeWeb

On Microsoft Windows operating system execute:

copy emgeWeb %CATALINA_HOME%\webapps\emgeWeb

• Grant the User Portal allowance to upload files into the file system.
Due to security reasons, the Apache Tomcat web server by default restricts
deployed on it applications to access local file systems. As the User Portal
uploads scripts provided by users to execute during experiments we need to
store them on the machine the User Portal is deployed on. To do that we
need to add following lines to CATALINA HOME/conf/catalina.policy file:

grant codeBase "file:${catalina.home}/webapps/emgeWeb/-" {

permission java.io.FilePermission "folder_path/*", "read,write,delete";

permission java.net.SocketPermission "<db_host>:<port>", "connect,resolve";

};

• Start back the Apache Tomcat web server
T start Tomcat, on Linux operating system execute following commands in

68

A.2. Environment for Management of Grid Experiments configuration

system console:

cd $CATALINA_HOME

bin/startup.sh

On Microsoft Windows operating system execute:

cd %CATALINA_HOME%

bin\startup.bat

If environment variable CATALINA HOME is not present enter Apache
Tomcat web server installation directory manually.

A.2. Environment for Management of Grid Experiments
configuration

This section provides information about configuration of all EMGE components.

A.2.1. Configuring Hibernate database connection

Both the User Portal and the Scheduling Manager use Hibernate to maintain and
manage the database connection. All settings required for the Hibernate are set in
the hibernate configuration file hiberante.cfg.xml which is distributed in the releases
of the User Portal and the Scheduling Manager. You need to specify information
regarding database connection in those files. The administrator needs to specify the
database location together with the database access password in provided files. You
need to specify values of following properties:
• connection.url - url storing the database server hostname, connection port

number and name of the database used by EMGE

• connection.username - database login

• connection.password - database access password

Figure A.1 presents an example of configuration of database connection in
hibernate.cfg.xml.

For advanced information about Hibernate configuration please refer to [25].

A.2.2. Configuration of the User Portal

User Portal configuration requires only to specify the name of the folder the User
Portal will use for storing uploaded script files. It is a simple property file named
emgeWeb.properties stored in config folder of the User Portal distribution. It holds
the following properties:
• upload root - Directory root used to store uploaded scripts for scheduled

experiments. Specifying this property is mandatory.

69

A

Figure A.1. Example of hibernate.cfg.xml configuration file.

• tmp root - Directory root used for temporary storing of files during scheduling
process of experiments.

Figure A.2. Example of an emgeWeb.properties configuration file.

A.2.3. Configuration of the Scheduling Manager

Scheduling Manager configuration requires the following files to be present:

70

A.2. Environment for Management of Grid Experiments configuration

emge.properties

This file stores information about the GSEngine server to be used for scheduling
experiments and password needed to decrypt user passwords stored in the EMGE
database. It holds the following properties:

• crypting.password - password used to encrypt/decrypt user passwords stored
in the database,

• remoteInterpreter.host - name of host on which the GSEngine server, that
will be used by EMGE, resides,

• remoteInterpreter.port - number of port on which the GSEngine server listens
for incoming connections,

• interpreter.timeout - GSEngine server connection timeout.

Figure A.3 presents an example emge.properties file.

Figure A.3. Example of an emge.properties configuration file.

truststore.gse

This file stores trusted certificate required to connect to the GridSpace Engine
server. Ask your GridSpace Engine server administrator for certificate required to
connect to it. After obtaining certificate file it needs to be trusted by executing
dotrust tool from bin directory of Scheduling Manger distribution. Navigate to bin
folder of installed Scheduling Manager and on Linux systems type:

./dotrust --help

and on Microsoft Windows operating system type:

dotrust.bat --help

to get detailed information how to make a GSEngine server certificate trusted please
refer to the [23].

71

Appendix B

User Portal user’s guide

This manual provides information on the User Portal usage. Extensive
description of information presented in the Experiment Monitor together with
detailed introduction to fields in the Experiment Creator will provide knowledge how
to use the User Portal.

B.1. Using the Experiment Monitor

Figure B.1 presents a screen-shot of the Experiment Monitor web page.
Interpretation of the fields marked on the presented figure is as follows:

1. Experiment name - Experiment names provided by the user during experiment
submission. Clicking button on the left side of the experiment name either
expands or hides the information about tasks that form an experiment.

2. Task name - Name of the executed group of tasks. Clicking button on the left
side of the task name either expands or hides details about task sub-jobs.

3. Script name - Name of the script used for execution of sub-jobs belonging to a
specified task.

4. Task identifier - Unique job identifier.

5. Job status - Presents current job status as a text information. Depending on
the current status, following colors are used for job information presentation:
• GREEN - used when a job has successfully finished its execution,

• RED - used if an error occurred during job execution, error details can be
found in the Execution Log (see further in this section),

• BLUE - marks jobs that are currently during execution on the Grid,

72

B.2. Using the Experiment Creator

Figure B.1. Screen-shot of the Experiment Monitor web page with added
explanation of shown information.

• BLACK - marks jobs awaiting for scheduling to execution.

6. Start date - Shows date and time when the job was scheduled for execution to
the Grid. If a job is waiting for scheduling this filed is not present.

7. Execution time - Shows the total time between task scheduling to the Grid
and task execution completion. Showed only for completed tasks.

8. Input data - Input data passed as command line arguments to the specified
job.

9. Execution log - Provides information about the results stored by executing
tasks, error information and all output written by the executed job.

B.2. Using the Experiment Creator

Figure B.2 presents a screen-shot of the Experiment Creator web page.
Interpretation of fields marked on presented figure is as follows:

1. Experiment name Field - Text field for providing a short experiment name.

2. Experiment description Field - Text field for providing description of the
created experiment.

73

B

Figure B.2. Screen-shot of the Experiment Creator web page with added
explanation of user input fields.

3. Task number column - This column presents numbers assigned to task defined
in each of the table rows. Assigned numbers are used for defining dependencies
between tasks.

4. Task Name column - This column hold filed for text names of submitted tasks.

5. Repository Selection column - Check boxes stored in this column denote if
the value stored in “Script file” column point to a locally stored file - when the
checkbox is unchecked, or to a remote repository - when the checkbox is checked.

6. Script file column - Fields in this column point the location of the script file
that will be used for this task execution. It can contain either location of the
script file in local file system or script location in a remote repository.

7. Input data column - Fields in this column point the location of file containing
input data for executed script. Script will be executed number of times
corresponding to number of lines in input data file, and information stored in
each single line will be passed as command line arguments to executing script.
Shall this field be empty, no input data is passed to the script.

8. Dependencies column - Fields in this column are used for providing
information on dependencies and dependency relations of the defined task.
For more detailed information on the dependency line format please refer to
section B.2.1.

9. Delete column - This column stores buttons used to delete a task definition
row from the table. Clicking delete button will remove the task row to which
the clicked button belongs.

10. Add Task Row Button - After clicking this button new task definition row
will appear at the end of task definition table.

11. Submit Button - Clicking this button submits new experiment for execution.

74

B.2. Using the Experiment Creator

If any of required fields value is missing or it has a wrong format experiment is
not submitted and proper information about encountered error is displayed.

12. Cancel option - Clicking this link cancels submitting of a new experiment to
the EMGE system and returns the view to the Experiment Monitor site.

B.2.1. Dependency line format

The Environment for Management of Grid Experiments allows users not only
to schedule experiment execution, but also with possibility to specify dependencies
between tasks composing an experiment. To define such dependencies the user
needs to provide for the task, a list of tasks on which it depends, together with
dependency relationship type. Text line used for dependency specification must
match the following regular expression or be an empty line (if no dependency is
specified):

[< task number > (relation)?,]∗ < task number > (relation)? (B.1)

In other words, the line specifying dependencies is composed of single task
dependency information separated by comas. Single task dependency information
is composed of a task number of task, that the defined task depends on, followed
by surrounded in brackets number representing the relationship type - number of
sub-jobs that will be generated for defined task basing on output provided by task
one is dependent to. Relation type can be omitted and it lets EMGE know that one
sub-job should be generated for the defined task.

75

Appendix C

Step-by-step sample experiment
execution tutorial

This chapter presents step by step instructions how to use the EMGE User
Portal to schedule simple experiment containing task dependencies.

Introduction

Let us assume that we want to calculate the sum of squares of integers from 1
to 200, what can be represented as the following math formula:

200∑

i=1

n2.

We have got a script that calculates and returns square of the given number:
square.rb1, and a script sum rid.rb1 that calculates the sum of numbers stored
using the ReMan library and given to the script as the ResMan ID passed as console
argument to our script. Since we have access to the ViroLab virtual laboratory we
can use EMGE to execute our experiment. Input data for our experiment (integers
from 1 to 200) are stored in the sample data.txt1 file.

Experiment submission to the EMGE system using User Portal’s
Experiment Creator portlet

In order to submit our square summing experiment we need to perform the
following actions:

1. Download required script from the EMGE web site

1Both the square.rb script code and the sum rid.rb script code can be downloaded from the
EMGE web site, together with sample data.txt file.

76

Step-by-step sample experiment execution tutorial

2. Navigate to EMGE’s Experiment Creator web page

Figure C.1. Screen-shot of the Experiment Creator portlet.

3. Define the workflow of our experiment

3.1 Now we have to define the workflow of our experiment. We set the name
and the description of our experiment in appropriate fields.

3.2 Because our experiment will be composed of two super tasks we have to
click the button “Add Task Row” in order to add second task definition row
to our experiment.

3.3 We define first super task of our experiment that will be responsible for
calculating squares of given integers. We set the task’s name, that will be
displayed in the Experiment Monitor, set the script file path to square.rb
script and input data file to sample data.txt .

3.4 Next we have to define second super task of our experiment, that will sum
up calculated squares. We set the task’s name and the script file path
to the sum rid.rb file. As we want the defined super tasks to perform
operations on output generated by the first super task we also need to define
the dependency. In the “Dependencies” text box we put the following text:
1(1). It informs EMGE that our task cannot be executed until the first super
task finishes, and that the data generated by the first task should be used to
spawn only one job in the second super task.

3.5 After performing steps 3.1 to 3.4 we should obtain experiment definition
presented on Figure C.2.

3.6 We click on the “Submit” button to submit the defined experiment to EMGE
system.

4. Check experiment status using the Experiment Monitor, and wait
until EMGE executes all of tasks of our experiment :)

77

Step-by-step sample experiment execution tutorial

Figure C.2. Screen-shot of the Experiment Creator portlet filled with
experiment definition.

78

