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Abstract

This thesis presents the problem of optimizing the execution of workflow problems

in order to reduce the costs of research and scientific calculations. For this purpose,

the family of D-Wave solutions built around quantum annealing devices was used.

The presented solutions uses well known workflow execution format provided by

WfCommons framework. In order to perform the experiments, a hybrid (quantum-

classical) CQM optimizer was used to optimize functions in the form of constrained

binary models. The results from the CQM were compared with the results returned

from the classical optimizer Gurobi optimizer. The conducted experiments confirm

that it is possible to optimize the actual workflow type problems using solutions

based on quantum annealing, while at this point the optimization process using the

above-mentioned annealer is much slower than when using the Gurobi optimizer.
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Streszczenie

W poniższej pracy przedstawiony jest problem optymalizacji wykonania problemów

typu “workflow” (naukowy przepływ pracy) w celu zmniejszenia kosztów przeprowadza-

nia badań i obliczeń naukowych. W tym celu została wykorzystana rodzina rozwiązań

firmy D-Wave zbudowana wokół wyżarzaczy kwantowych. W pracy problemy zostały

przedstawione w formacie WfFormat pochodzącym z projektu WfCommons mającego

na celu integracje rozwiązań dla systemów typu workflow. W pracy w celu wykona-

nia eksperymentów został użyty hybrydowy (kwantowo-klasyczny) optymalizator

CQM pozwalający minimalizować funkcje w postaci ograniczonych modeli binarnych.

Rezultaty pochodzące z CQM zostały porównane z rezultatami zwróconymi przez

klasyczny optymalizator Gurobi. Przeprowadzone eksperymenty potwierdzają że jest

możliwe zoptymalizowanie faktycznych problemów typu “Workflow” przy użyciu

rozwiązań opartych na wyżarzaczu kwantowym, natomiast w tym momencie proces

optymalizacji przy użyciu ww. wyżarzacza jest znacznie wolniejszy niż przy użyciu

optymalizatora Gurobi.
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1 Introduction

Quantum computing, a new and rapidly developing branch of computer science, could

potentially lead to faster algorithms allowing us to solve many problems science cur-

rently does not have enough conventional computing power [3]. Although this field is

still in its infancy, as the hardware required for quantum computation is still highly

experimental (but viable commercial products are brought to market), We can find

many well-researched algorithms that are being run on quantum machines [24].

1.1 Background

1.1.1 Quantum computing directions

Currently, there are two main directions in which researchers and engineers are taking

the quantum computers: sing universal quantum gates and quantum annealing. The

quantum gates are similar to classical gates known from Boolean logic when you

can create an algorithm by chaining basic types of gates into a more complex circuit.

Quantum annealing on the other hand tries to minimize the energy of a function

provided as an input for the computer. Quantum annealers are only capable of solving

a subset of problems that gate computers can. On the other hand, quantum annealers

produced by the D-Wave company
1

have a much larger number of qubits (5760 qubits

released in 2020 [4]) compared to IBM Eagle (127 qubits released November 2021
2
).

1.1.2 Quantum annealers

Usage of quantum computers for running quantum algorithms allows us to solve many

problems in much less time. Most known examples of quantum algorithms include

Grover’s Algorithm [13], which allows us to search an unsorted database of sizeN for a

1https://www.dwavesys.com/
2https://research.ibm.com/blog/eagle-quantum-processor-performance

1

https://www.dwavesys.com/
https://research.ibm.com/blog/eagle-quantum-processor-performance


1 Introduction

specific key in timeO
(√

N
)

and also Shor’s Algorithm [29] that allows us very quickly

to find prime factors of a number which in turn can be used to break many modern

encryption schemes. However, those algorithms were designed to run on the gate-

based quantum computers and as such are not well suited to run on quantum annealers.

Quantum annealers are a type of computational device using a quantum effect that

is capable of solving a very specific family of problems and are not general quantum

computers. They are only capable of solving problems reducible to Quadratic Un-

constrained Binary Optimization (QUBO) [22]. Quantum Annealers are a subtype

of a much more powerful family of quantum devices namely the adiabatic quantum

computers which are equivalent in capabilities to full-blown gate computer [1]. How-

ever quantum annealers seem to provide wide enough problem space to seem useful,

as many problems can be transformed into QUBO form [12]. We observe that more

and more problems are being solved using D-Wave infrastructure e.g. Stock Portfolio

Optimisation [23].

1.1.3 Workflow management systems

Scientific workflows are currently used as a way to describe research processes. Work-

flow usually consists of tasks or jobs that need to be done, nodes or machines that are

capable of performing jobs, and connections between them. Workflows are connected

in the Directed Acyclic Graph (DAG) where each task can have some dependent jobs

and be a dependency of another one [26]. Recently, there has been a push to standardize

workflow formats to enable easy interoperability of workflow management systems

(WMS). The result of such efforts is WfCommons standard [6]. WfCommons is an

open-source format data format that is represented as a JSON file. Its simple structure

allows for ease of generation and validation of workflows. WfCommons contains a

database of real and synthetic workflows
3

on their GitHub repository.

1.1.4 Job scheduling on quantum annealer

Optimization problems that can be transformed to a form that can be inputted to

quantum annealer could massively benefit from the additional power of quantum

3https://github.com/wfcommons/pegasus-instances

2
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1.2 Motivation

processing. One of such problems is scientific workflow scheduling with a deadline,

which is the subject of work and analysis in this thesis.

Recently there has been some progress regarding job scheduling on quantum anneal-

ers. The two master’s theses by Dawid Tomasiewicz [32] and Michał Rudnik [27] are

focused on the research technologies provided by D-Wave company. Dawid focused on

the solution using pure quantum annealing directly on the D-Wave 2000Q Quantum

computer. On the other hand, Michał researched the Leap hybrid solver, which besides

quantum annealing uses different heuristics and classical algorithms to find the optimal

solution for a given function. With hybrid solvers, it was possible to solve some very

simple and basic job scheduling problems.

1.2 Motivation

As the scientific calculations can be costly and take a long time it would be beneficial to

provide a way to take existing workflow and given the time limit, and return the least

costly configuration of hardware resources, that still meet the deadline. We would like

to check the viability of quantum optimization for such problems using the realistic

scientific workflows on the D-Wave quantum infrastructure. The realistic scientific

workflows will be defined in WfCommons own WfFormat which are supported by

many workflow management systems, making this optimizer more universal.

1.3 Goals

The main goal is to assess the viability of existing quantum annealers for solving

real-world problems and to create a complete solution for optimizing workflows using

a D-Wave Quantum Annealer.

1.4 Methodology

The work started with an analysis of both the quantum annealer and the selected

workflow format (WfCommons), then in the next steps, the work proceeded with the

following steps.

• Transforming the problem as the quantum unconstrained binary optimization

(QUBO) problem,

• Creating s translation layer from the workflow data into a form acceptable by

D-Wave API,

3



1 Introduction

• Analyzing the results coming from the quantum annealer,

• Exploring the hybrid solver provided by D-Wave,

• Comparing the created solution and run times with a reference solution (Gurobi

solver).

1.5 Structure of work

This thesis consists of six chapters.

• 1-st chapter is an introduction to the thesis and contains short overview of the

current state of workflow optimization on quantum computers,

• 2-nd chapter is an introduction to the D-Wave quantum annealers and mathe-

matical programming,

• 3-rd chapter describes the scientific workflows in general and WfCommons

project,

• 4-th chapter describes the transformation of the input workflow into an optimiza-

tion problem understood by the D-Wave optimizer and presents the algorithm

used by the software created for this thesis "Workflow optimizer",

• 5-th chapter contains experiment performed on the "Workflow optimizer" with

the results,

• 6-th chapter is the summary of the results and it contains ideas for possible

future improvements.

4



2 Theoretical introduction to D-Wave
annealer

In this chapter, we provide the basic theoretical background required for understanding

the process quantum annealers use for computation [16]. Then, we describe the

functionality provided by D-Wave for solving optimization problems.

2.1 Simulated annealing

Annealing is a metallurgical process of heating the metal and then slowly cooling the

material to achieve the internal balance of forces and minimize the potential energy

of the system. This process usually is used to make the metal more malleable and

to reduce its hardness. Mmetallurgical annealing is a basis for simulated annealing

[15] a probabilistic numerical method for finding the global minimum/maximum of

a given function. This is achieved by defining the examined function as energy of

the simulation. In the process of finding the global minimum, we start by randomly

selecting solution s from the function domain. During the whole process, the algorithm

maintains the parameter T called temperature which is slowly decreased in each step

of the simulation. Temperature is used in each step to determine the radius of the

domain search space for the next guess s′. The new guess is accepted according to the

probability function that usually is defined as follows

p = e

current state︷︸︸︷
E(s) −

next guess︷ ︸︸ ︷
E(s′)

T (2.1)

which is analogous to the Boltzmann distribution when dealing with metallurgical

annealing and real temperatures. This process at first have high variability of the

solution to move out of the local minimums/maximums and then the guess is getting

more and more refined. The most important parameter for the process of simulated

annealing is the amount that the temperature is reduced in each iteration. Too large

5



2 Theoretical introduction to D-Wave annealer

value would cause the likelihood of the algorithm missing the global minimum much

higher while too small would make the execution take much longer time.

2.2 Quantum computing

In classical computing, the most fundamental unit of information is a single bit that

can have one of two states 0 or 1

b = 0 ∨ b = 1. (2.2)

In the quantum world, the single value can be at the same time either of the states with

different probabilities. This quantum version of a bit is called a qubit [21]. Usually, the

qubit is denoted as

|q⟩ = α |0⟩+ β |1⟩ (2.3)

Wwere

α2 + β2 = 1

α, β ∈ C,
(2.4)

The values of states can be represented as two-element vectors

|0⟩ =

[
1

0

]

|1⟩ =

[
0

1

]
.

(2.5)

Representing qubit states in such a manner allows us to easily create multi-qubit states

by using tensor product

|ψ⟩ ⊗ |θ⟩ =

[
a

b

]
⊗

[
c

d

]
=


a ∗ c
a ∗ d
b ∗ c
b ∗ d

 (2.6)

6



2.2 Quantum computing

|0⟩ ⊗ |1⟩ =


1 ∗ 0
1 ∗ 1
0 ∗ 0
0 ∗ 1

 =


0

1

0

0

 = |01⟩ (2.7)

This representation has a particular advantage. For each pure state the index on which

1 is located in the vector is the binary value of the state [21].

2.2.1 Operators

In boolean logic defines sets of operations that when chained together in specific ways

can create all the possible operations on bits. One of such sets of operation include

And, Or, Not. You can achive this by using just a single operation Nor or Nand. The

equivalent transformation in the quantum world is called Pauli’s matrices [21] which

are unitary matrices meaning that the length of the vector after applying the matrix is

not changed. Together with the 2x2 identity matrix Pauli’s matrices create a spanning

basis of the linear space of all quantum states.

I = σ0 =

[
1 0

0 1

]
(2.8)

X = σ1 =

[
0 1

1 0

]
(2.9)

Y = σ2 =

[
0 −i
i 0

]
(2.10)

Z = σ3 =

[
1 0

0 −1

]
(2.11)

Just like with values the Matrices can be extended to use multiple qubits by using

tensor product

I ⊗X =


1 ∗

[
0 1

1 0

]
0 ∗

[
0 1

1 0

]

0 ∗

[
0 1

1 0

]
1 ∗

[
0 1

1 0

]
 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 (2.12)

7



2 Theoretical introduction to D-Wave annealer

2.2.2 Measurment

The quantum state by itself is not that useful. In order to get the information we must

measure it to get one classical bit out of each qubit. Unfortunately, the measurement

operation destroys the quantum superposition collapsing the state

|ψ⟩ = α ∗ |0⟩+ β ∗ |1⟩ (2.13)

into either |0⟩ or |1⟩ with the probabilities |α|2 and |β|2 respectively.

2.3 Quantum annealing

The basic building block of the D-Wave quantum computer is a superconducting

loop that represents a single qubit. This qubit can represent a value of |1⟩ or |0⟩
corresponding to the opposite direction of the current flow in the superconducting

loop [9]. However qubit also has the ability to represent a state that is the superposition

of both |1⟩ and |0⟩. Each qubit in its default state is in equal superposition meaning it

has the same probability of being in either state when measured. However this can be

changed by carefully applying bias the qubit by using a magnetic field that encourages

current flow in one direction and inhibits it in the other. The qubits in D-Wave QPUs

|0> |1>

Initial Superposition

|0>
|1>

Barrier added Magnetic field bias applied

Energy

External magnetic field

Figure 2.1: Schematic of energy levels for states of single qubit.

are arranged in lattices where some qubits can be connected using couplers, which are

devices designed to force qubits to end up in the same final state or the opposite force

them to have a different state. This device uses quantum entanglement as a mechanism

to provide this functionality [9].

8



2.3 Quantum annealing

2.3.1 Hamiltonian of D-Wave annealer

Hamilton Operator or Hamiltonian H in quantum mechanics is a measure of a system’s

total energy including both kinetic and potential energies. This is a value that D-Wave

quantum annealers try to minimize [9], and is given by the expression:

H(s) = −A(s)
2

(∑
i

σ
(i)
1

)
︸ ︷︷ ︸

Initial Hamiltonian

+
B(s)

2

∑
i

hiσ
(i)
3 +

∑
i>j

Ji,jσ
(i)
3 σ

(j)
3


︸ ︷︷ ︸

Final Hamiltonian

, (2.14)

where

A(s)− Tunneling energy and at s

B(s)− Hamiltonian energy of problem at s

hi − Bias strength for quibt i

Ji,j − Coupling strength for qubits i,j.

The s parameter is usually defined as s = t
tmax

where t is current time and tmax is

total time for annealing. At the end of the annealing the A(s) >> B(s)

2.3.2 Execution on D-Wave computer

At the start of the process, the initial state of the system is the eigenstate (a state with

a defined energy value) that has the lowest Hamiltonian energy provided and has all

of the energy in the system. Then, as it slowly transitions its wave function mostly

stays at the lowest energy region and in the end it is the most probable to be found at

the global minimum [16]. The process of annealing goes as follows:

1. The quantum computer I/O system translates the problem data into magnetic

field strength and qubits pairs to entangle,

2. The qubits are initialized to their base eigenstate with the lowest energy,

3. The qubits are coupled with their partners,

4. The energetic barrier separating future states |0⟩ and |1⟩ is slowly raised,

5. The biases are slowly applied to the qubit lattice as the system transitions from

the initial Hamiltonian A to problem the Hamiltonian B,

9



2 Theoretical introduction to D-Wave annealer

6. The qubits are measured to provide with some probability low energy solution

to the given function.

2.3.3 Noise problem

The measurement of a quantum variable to read its value is an inherently noisy process

and can often provide the measurement apparatus with a theoretically unexpected

value. To overcome this issue, the quantum computation can be performed in multiple

instances or be repeated. This can be used to enhance the signal and reduce noise.

The D-Wave computers run the same calculation on multiple physical qubits that are

presented to the end-user as a single logical qubit [8]. This reduces the random noise

for each logical qubit but lowers the number of qubits that are available for usage.

2.3.4 Quadratic unconstrained binary optimization

Problems submitted to D-Wave quantum computers usually are translated into a form

called Quadratic Unconstrained Binary Optimization (QUBO) problem [17], which is a

common form used for many combinatorial problems. This form is quite easy to map

to quantum annealer’s physical layout and therefore quite suitable for an input format

for the D-Wave quantum annealer.

2.3.5 Penalty model for QUBO

The problem in the form of QUBO as the name suggest is only useful for minimizing the

energy of the problem, and any additional constraints must be encoded into QUBO itself.

This can be achieved with the penalty model that adds additional data to QUBO in order

to force the solutions that violate the constraints on the problem to have higher energy

than the ones that correctly satisfy the constraints [32][27]. This approach however

greatly increases the amount of variables needed when constraints are inequalities

[27] or the value of the constraint is large compared to the number of variables in base

function. The big issue with penalty model is fine tuning the penalty coefficient for

each problem as too small value can lead to many of the returned solutions violating

the constraints, while too large value could lead the annealer to focus on satisfying

the constraints and failing on optimizing the base function.

2.3.6 Constrained Quadratic Model

Recently D-Wave has introduced a new hybrid (using a mix of either classical and

quantum algorithms and heuristics) solver that in addition to accepting problems in

10



2.4 Classical alternative - Gurobi optimizer

the QUBO form also accepts the problems in the Constrained Quadratic Model (CQM)

form [20]. The CQM hybrid solver that takes care of translating the problem from

the constrained form into the one that can be run on the quantum computer. hybrid

solvers is also responsible for splitting the problem into smaller parts that can be easily

run on the quantum annealer. This new solver is much more capable of solving the

problems with constraints than the unconstrained solver with constraints manually

translated into penalties [30].

2.4 Classical alternative - Gurobi optimizer

In this thesis, the Gurobi optimizer [14] has been used as a classical alternative and

a reference method for the D-Wave CQM hybrid solver. The Gurobi optimizer is a

software capable of mathematical optimization (also called mathematical programming)

that can be used for solving a wide range of different mathematical models, including

the Quadratically Constrained Programming (QCP) models that are analogous to the

D-Wave CQM solver input model.

2.5 Conclusion

The processes of simulated and quantum annealing described in this chapter can be used

to potentially solve various optimization problems. The hybrid solvers provided by the

D-Wave systems are used for the Workflow Optimizer. The reference implementation

is using the Gurobi optimizer.

11





3 Scientific workflow management
systems and WfCommons

In this chapter the first section provides the basic presentation of workflow manage-

ment systems is provided. The second section describes the WfCommons format that

is used for this thesis as a way to read and store optimized workflows.

3.1 Scientific workflow management systems

Workflow management systems (WMS) have been used in various areas of science as

a way to easily share and reproduce scientific research and processes. Workflows have

become a standard way of describing a lot of applications and data-flows. Workflows are

usually represented as a Directed Acyclic Graph (DAG) of task and data dependencies

between various programs, machines, and scripts. Example data-flow in form of DAG

is presented in Fig. 3.1.

There exists a lot of systems utilizing workflow management software to produce

valuable results and insights like:

• "California Earthquake Center Community Modeling Environment" uses work-

flows to process data to minimize the effects of the devastating earthquakes in

California [18],

• "The Event Horizon Telescope" data processing uses workflow pipelines to

process data from different radio-telescopes to produce the images of distant

black hole [31],

• "The International Genome Sample Resource" uses workflows to process and

collect genetic data into the database of human DNA as part of 1000 Genome

project [11].

Over the years many Diffrent WMS have been designed like general perpouse

Apache Airavata [19] more recent MakeFlow [2] or Pegasus [10]. There are also some

13



3 Scientific workflow management systems and WfCommons

A B

CDSink

Source

Figure 3.1: Example of directed acyclic graph with 6 nodes and 8 edges. The source

and the sink of the graph have been marked.

more specialized systems like GenePattern [25] used to access hundreds of genomic

analysis programs.

3.2 WfCommons

The WfCommons project is an initiative enabling scientific workflow research and

development providing many tools for generating workflow recipes or totally synthetic

but realistically looking instances of workflow problems [7]. The tools provided by the

initiative can be used for researching new algorithms and approaches for finding new

and efficient ways of running and improving upon existing workflows. WfCommons

project targets the need for more and more complex workflows in a modern distributed

cloud environment. The cloud presents new challenges for running scientific compu-

tations but also provides new opportunities for optimally using resources of various

scales and prices. At the time of writing this thesis, the basic workflow development

life cycle is presented in Fig. 3.2.

The different elements of the WfCommons project [7] as seen in Fig. 3.2 are described

below:

• WfInstances - a collection of open access production workflow executions from

14



3.2 WfCommons

Workflows

Production WMS Workflow Execution
Logs Logs Parser

Simulation Output

WfGen

WfInstances 
<<WfFormat>>

WfChef 
<<WfFormat>>

Workflow 
Recipes

WfSim 
<<WfFormat>>

Realisitc Synthetic Workflows 
<<WfFormat>>

Research  
Outcomes

Figure 3.2: Workflow research life cycle process integrating the components of the

WfCommons project [6]

programs from various scientific disciplines,

• WfChef - a framework that automates the construction of synthetic workflow

generators. It can create a workflow generator based on a set of input workflow

instances from any scientific discipline [5],

• WfGen - a workflow generator that uses recipes of workflows and creates

different synthetic workflows based on the distribution of workflow parameters

like input/output files runtime, and file sizes. The generated workflow is created

in WfFormat,

• WfSim - a workflow execution simulator that can be used to test different behav-

iors of the workflows as a part of the scientific workflow research process. It was

designed to replace the need for running the real-world scientific experiments

using the still in the development workflows.
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3 Scientific workflow management systems and WfCommons

3.2.1 WfFormat

WfFormat is a common format used by the WfCommons tools and some external

WMSs. A workflow in this format is a JSON file that follows the schema that can be

found on GitHub repository
1

together with the schema validator script. The current

version of this schema is 1.3. The main components of this format are the "machines"

field which contains the definition of machines that the workflow was run on and the

jobs for and the "tasks" field which contains all the jobs that are part of this workflow.

Each task contains information on which machine it was being run and the runtime

of the job and how much memory is used. Each machine contains information about

machine CPU speed and available memory. That information has been used as a basis

for the Workflow Optimizer described later (in Chapter 4 of this thesis).

3.3 Workflow cost and optimization

Each scientific workflow is, in fact, a set of instructions on how to correctly execute

some collection of tasks to arrive at the expected result. When a new workflow is

created during the process of some research it usually will be created and run on

machines available to the researcher. The approach to assigning the task to machines

may be random or done in a not optimal way. Currently, the approach of running the

computations in cloud environments or on-demand highly scalable computer clusters

is gaining more attraction. The cost of running a task on the cloud is proportional to

what has been ordered and provisioned [28]. This fact suggests that optimizing the

assignment of jobs to machines can potentially reduce the monetary cost of running

scientific workflow.

3.3.1 Structure of the workflow

The goal of the workflow problem is to find the optimal allocation of computing
machines to each of the tasks in the problem’s DAG (example in Fig. 3.1) in terms of

the cost, considering their causal relationship. The problem also contains the deadline
value before each task must finish processing, described in more detail in Subsection

3.3.3. The value of processing time and cost for each job and machine are being

calculated based on the data from workflow where speed and price of each machine is

considered. This calculation is better described in Subsection 3.3.2 and Section 4.3.

1https://github.com/wfcommons/wfformat
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3.4 Conclusion

3.3.2 Data sources for optimization

The optimization problem we wanted to solve is based on the problem that can be

found in theses of Dawid Tomasiewicz [32] and Michał Rudnik [27]. In both works,

the optimization problem that was being run on the D-Wave solvers has their values

of cost and runtime of each task artificially defined. Those values are required for

the optimization problem. In this work, we wanted to calculate those values from

the data included in WfCommons workflow files. To calculate the cost of using each

machine additional information about the machine price must be provided. The

optimization problem requires the value of the deadline which is described in more

detail in Subsection 3.3.3. This problem is only one of many in the similar category

and the solver can be easily modified for slight variations of the problem.

3.3.3 Workflow runtime and Deadline

While using only the cheapest option on the cloud is a possibility, the amount of time

needed to execute a workflow will be quite larger than the amount if we used faster

machines. Running all of the workflow task on the least expensive hardware can be a

blocking factor for this strategy. This is a reason why for this optimization problem we

introduce a deadline D which is workflow execution time limit that we are willing to

accept for a given workflow. This means that we require that all tasks in the workflow

finish before the deadline. This can potentially invalidate some of the cheapest machine

assignments when slower machines cannot execute the workflow before the deadline.

3.4 Conclusion

In this chapter, the brief overview of the scientific workflow management systems

had been provided. Additionally introduction to the WfCommons project has been

presented. The chapter also contained the exact workflow optimization problem we

wanted to solve had been presented.
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4 Workflow optimizer - system
architecture

This chapter presents a Workflow Optimizer system with support for optimiza-

tion of user-provided workflow definition in WfCommons format. The result of this

optimization can be then used to potentially reduce hardware costs for the system.

4.1 Architecture Overview

This section describes the data-flow and functionalities of the Workflow Optimizer
application. The user of the Workflow Optimizer is required to provide the workflow

WfCommons Workflow Optimizer

DWave CQM Solver Gurobi Optimizer

One of the solvers 

Workflow Simulator

Workflow
runner/manager

Running

Optimized
Workflow

Base
Workflow

CQM

Solution

CQM

Machine Definition

Machine
definition 

1

2

4
3.1 3.2

5

Figure 4.1: Dataflow using the Workflow Optimizer

to be processed (Step 1 in Fig. 4.1). User can optionally provide custom machine

definition that will override the machines defined in the source workflow (Step 2).

This data is then transformed into a Constrained Quadratic Model for Job scheduling

with deadline problems. Depending on the user’s choice it is then fed into either the
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4 Workflow optimizer - system architecture

D-Wave hybrid CQM solver (Step 3.1) or the Gurobi optimizer instance (Step 3.2). The

response from the solver is a list of potentially binary variable values that could be an

optimal solution for the given CQM (Step 4). The Application then checks for each

solution if the constraints from CQM are satisfied and then returns the optimal one

from the set of correct solutions (Step 5). The energy returned by the D-Wave hybrid

solver is the energy of the minimized function i.e. it does not include any potential

penalties that constraints could have generated.

4.2 Input data

The following input data are needed for the system to optimize the workflow

• Deadline - provided by the user (is used to generate constraints)

• List of jobs - It is taken from WfCommons description of a workflow, the most

important value is the job runtime and reference to the machine on which the

job was run. The secondary data from this source is memory used by the job

(provides fj cj and t0,j used in Equation 4.1 and memj used in Equation 4.3 ),

• List of machines - It can be taken from the workflow, as well as provided sepa-

rately. It contains information about processor frequency and core count as well

as available memory on the machine (provides fm and cm used in Equation 4.2),

• List of machine prices - It is taken from workflow with the WfFormat extension

(see Section 4.5), or provided separately together with machine list. The machine

prices need to be defined in the same source as machines. It contains prices for 1

unit of processing time on each machine (provides dm and δm used in Equation

4.3).

The details about the input data can be found in the WfCommons schema in GitHub

repository
1
.

4.3 Transforming the problem into CQM

Given the input workflow the application proceeds with normalizing the data by

estimating the work that is needed to complete each job. The process of calculating

cost and runtime values described in this section is written in psudocode in Listing 1.

1https://github.com/wfcommons/wfformat/blob/master/wfcommons-schema.json
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4.3 Transforming the problem into CQM

1 INPUT -> jobs_list, machine_list
2 OUTPUT <- runtimes_matrix, cost_matrix
3

4 work_amount_list = []
5 for job in jobs_list:
6 # calculate_work as in equation 4.1
7 work_amount_list += [calculate_work(job)]
8

9 work_amount_list = normalize_work(work_list)
10

11 runtimes_matrix = []
12 cost_matrix = []
13 for machine in machine_list:
14 for work_amount in work_amount_list:
15 # calculate_runtime as in equation 4.2
16 runtime = calculate_runtime(machine, work_amount)
17 runtimes_matrix += [runtime]
18 # calculate_cost as in equation 4.3
19 cost_matrix += [calculate_cost(runtime, machine)]

Listing 1: Psudocode for calculating runtime and cost values for workflow.

Wj ≈ t0,j ∗ fj ∗ cj , (4.1)

where

Wj − Estimated amount of work required for the job j to finish

t0,j − Time measured for the job j to finish on machine m

fj − CPU Frequency of machine m used by the job j

cj − Number of CPU cores on the machine m used by the job j.

The estimated amount of work for each job are then normalized (the easiest job has

work value of 1). Then for each (machine, job) pair we calculate the expected run time

values

t(j,m) =
Wj

fm ∗ cm
, (4.2)
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where

Wj − Estimated amount of work required for the job j to finish

t(j,m)− Time estimated for the job j to finish on machine m

fm − CPU Frequency of machine m

cm − Number of CPU cores on the machine m.

With the estimated time for each job on each machine we calculate cost of running job

j on machine m, the following cost function has been used in application.

f(j,m) = t(j,m) ∗ pm ∗ (1 + δm)max(0,⌈memj⌉−1), (4.3)

where

t(j,m)− Time estimated for the job j to finish on machine m

pm − relative price of machine m per unit of time

δm − value of "memory_cost_multiplayer" field for machine m

memj − Memory required by job j in GiB .

With those values it is possible to define the optimisation objective for the CQM given

that for each (machine, job) pair we create a variable binary xj,m which decides if the

job j will be run on the machine m

F =
∑
j

∑
m

f(j,m) ∗ xj,m (4.4)

As we require that each job must be run on exactly one machine we add a following

constraint to the model

∀j

[(∑
m

xj,m

)
= 1

]
(4.5)

Another requirement of the problem is that all the jobs finish before a deadline D.

As jobs can have parent jobs that must finish before the next starts we can represent

the jobs as a DAG. By adding dummy jobs as the source and sink to this graph (by

adding source as a parent to all the parentless jobs and adding all childless jobs as

parent to the sink job) we can find set P of all the paths from source to sink. Then we
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4.4 Transforming the solution back to WfCommons

can formulate a constraint

∀p∈P

∑
j∈p

∑
m

t(j,m) ∗ xj,m

 <= D

 (4.6)

With those constraints defined the model is ready to be sent to either the Leap

hybrid CQM solver or the Gurobi optimizer.

4.4 Transforming the solution back to WfCommons

After a solution has been returned by solver, it is being checked if all constraints are

satisfied. Then the best solution is used to generate new assignment of jobs to machines

and whole workflow can be printed to a json file.

4.5 WfCommons schema extension

In the effort to include the information regarding the cost of usage of particular machine

into the calculation it has been decided that WfCommons schema used by the optimizer

application has been extended with the following two fields for machine presented in

Listing 2. If the fields are missing the default value is used (provided in Listing 2). The

1 {
2 "workflow": {
3 "machines": [{
4 "price": 1,
5 "memory_cost_multiplayer": 0,
6 }],
7 }}

Listing 2: Additional fields in schema recognized by the optimizer.

application can also be provided with custom machine definition, and the custom data

must be part of the WfFormat that is related to machines definition.
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4 Workflow optimizer - system architecture

4.6 Implementation

The Workflow Optimizer has been created using Python 3.8.10, and is available on

GitHub repository
2

under the MIT license.

4.7 Conclusion

In this chapter the architecture of the Workflow Optimizer and transformation

process from input data to constrained quadratic model. The additional information

required to optimize the workflow was described. The process described in this chapter

is a basis for the experiments described in Chapter 5.

2https://github.com/matix522/workflows-dwave
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5 Experiments and results

In this chapter we present the optimization experiments run with the system described

in Chapter 4. In first section the assumptions used for all experiments are provided.

Each subsequent section focuses on three different aspect of the researched problem:

• Correctness of the solution,

• Scalability of the model,

• Different deadline restrictions.

5.1 Assumptions and preconditions

Two different solvers have been used in the experiments. Local installation of the

Gurobi optimizer
1

with Academic Licence and D-Wave’s hybrid CQM solver in the

Leap cloud
2
. The local machine running the Gurobi optimizer has been Dell Inspiron

15 7590 with Intel i7-9750H processor and 16 GB of RAM.

5.2 Experiment 1 - comparing D-Wave and Gurobi solvers

The main goal of the first experiment was to find if the solution returned by both the

Gurobi optimizer and D-Wave CQM solver are equivalent solutions to a given problem.

It is assumed that data shared between jobs can be accessed from all machine types with

similar speed and therefore it is not included in cost calculations. The developer license

used for running problems on the D-Wave CQM solver is limited. This fact, unfortu-

nately, reduced the number of experiments that could be performed as there also is a

minimal processing time required for each problem (5 seconds). If not stated otherwise

the minimal amount of processing time (5 seconds) on the D-Wave solver has been used.

The secondary goal of the experiment was measuring the time required to get the

solution using both approaches.

1https://www.gurobi.com/downloads/gurobi-optimizer-eula/
2https://cloud.dwavesys.com/leap/
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5 Experiments and results

5.2.1 Workflow to optimize

The workflow chosen for this experiment is ”SRA search” workflow coming from the

WfCommons repository
3
. This workflow contains 22 separate tasks that were run on

a single machine. The run time for various jobs ranges from 0.115 to 900 seconds. The

task in this workflow are grouped into 3 layers, as shown in Fig. 5.1.

Start

End

Figure 5.1: The graph representing dependencies between task in workflow from Ex-

periment 1, with additional 2 nodes for sink (red) and source (green) of the

graph added.

This figure include two artificial nodes representing start and finish of the workflow.

This structure generate 20 different paths one can reach the sink from source.

5.2.2 Machine setup

The machines used for this experiment have properties defined in Table 5.1.

This setup is giving us ability to choose either the fast machine in cases where we

3https://raw.githubusercontent.com/wfcommons/pegasus-instances/master/
srasearch/chameleon-cloud/srasearch-chameleon-10a-001.json
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5.2 Experiment 1 - comparing D-Wave and Gurobi solvers

Table 5.1: Machines defined for first experiment

Name CPU Count CPU Speed Price

OneCPU 1 1.0 1

FourCPU 4 1.0 5

SixteenCPU 16 1.0 25

would go over the deadline, but this advantage is going to increase the price and energy

of the CQM solution. In this case we assume each machine has the same memory

available for processing the tasks.

5.2.3 Deadline

The deadline for this experiment was chosen as a value that forces the optimizer to

assign a mix of cheap and expensive machines. The value for this problem has been

chosen as 4000.

5.2.4 Size of the model

Given the workflow with 22 tasks and 3 possible machines it generates 66 binary

variables. Each task is required to have one machine assigned creating 22 constraints.

The 20 possible paths generate 20 additional constraints to the objective.

5.2.5 Results

Both the Gurobi optimizer and the CQM solver returned the same best solution for

this problem. The execution time was presented in Table 5.2.

Table 5.2: Time used for calculation in Experiment 1

Gurobi optimizer D-Wave CQM solver

0.00742 [s] 14.6235 [s]

Unfortunately the quantum solution is slower by three orders of magnitude. This is

partially caused by the D-Wave API which requires minimal time for processing the

problem (in this case 5 seconds). D-Wave also provides multiple potential solutions

to the problem. The discrepancy between the minimal processing time and actually

measured value can be explained with iteration over the results from the solver, as the

first solution is available after 5 seconds but each solution needed to be fetched from

D-Wave cloud API and this took some time.
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5.3 Experiment 2 - scalability

In this experiment the goal is to test system scalabilty with regard to size of the

workflow. We used the D-Wave CQM solver for this experiment. It focuses on the

distribution of the solutions energy for each test scenario.

5.3.1 Workflow to optimize

This experiment uses four workflow files. The details of the workflow in this experiment

are included in Table 5.3.

Table 5.3: Job size and unique path count in each workflow.

Name Task Count Path Count

Genome_54 54 308

Genome_156 156 924

Genome_492 492 4368

Genome_902 902 8008
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5.3 Experiment 2 - scalability

Start

End

Figure 5.2: The graph representing dependencies between task in workflow

"Genome_54" from Experiment 2, with additional 2 nodes for sink (red) and

source (green) of the graph added.

Each workflow groups jobs into three layers of tasks of similar structure only scaled

horizontally. The graph for Workflow "Genome_54" is presented in Fig. 5.2. Workflows

"Genome_54", "Genome_156", "Genome_492", "Genome_902" are workflows related to

1000 Genome project a catalog for human genetic diversity. The WfCommons format

workflow files can be found in the GitHub repository
4
.

5.3.2 Machine setup

For this experiment two different machines groups have been prepared. The basic

group assumes the machines have infinite memory and the details are presented in

Table 5.4.

The second group is based on the machines available in Academic Computer Center

4https://github.com/wfcommons/pegasus-instances/tree/master/1000genome/
chameleon-cloud
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5 Experiments and results

Table 5.4: Machines defined as a part of the basic test group

Name CPU Count CPU Speed Price

OneCPU 1 1.0 1

FourCPU 4 1.0 5

SixteenCPU 16 1.0 25

’"Cyfronet"’ on AGH Univesity of Science and Technology. The details for the machines

are presented in Table 5.5.

Table 5.5: Machines defined as a part of the Cyfronet group.

Name Processor Count Processor Speed Price Memory

AresCpu 1 1.6 0.08 8 [GiB]

AresGpu 100 1.6 5.0 8 [GiB]

PrometheusCpu 1 1.0 0.08 4 [GiB]

PrometheusGpu 100 1.0 5.0 4 [GiB]

ZeusCpu 1 0.25 0.08 2 [GiB]
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5.3.3 Deadline

The deadline for this experiment was chosen as the value that forces the optimizer to

assign mix of cheap and expensive machines. The values for this problem has presented

in Table 5.6.

Table 5.6: Deadline chosen for each machine in Experiment 2.

x basic_test Cyfronet

Deadline 150 600

5.3.4 Size of the model

The constrained quadratic model for this experiment is significantly larger than for

the Experiment 1. The number of binary variables for this model have been presented

in Table 5.8

Table 5.7: Number of binary variables for each machines/workflow pair in Experiment

2.

x basic_test Cyfronet

Genome_54 162 270

Genome_156 468 780

Genome_492 1476 2460

Genome_902 2706 4510

Number of constraints required to be satisfied by the solution is given in Table 5.7.

Table 5.8: Number of constraints for each workflow in Experiment 2.

x Meet deadline Use one machine Total

Genome_54 308 54 362

Genome_156 924 156 1080

Genome_492 4368 492 4860

Genome_902 8008 902 8910
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5.3.5 Results

In this subsection the result of the experiment are covered. The analysis is split in

two subsections considering results for each of the machine groups. The solution has

been categorized by the its compliance with model constraint. The solutions on the

histograms has been grouped int 3 categories:

• The red color represent the situation when the solution is violating the con-

straints for machine assignment, meaning that there is more than one machine

assigned to a task or there is no machine assigned at all,

• The orange color represents the situation when solution is violating the con-

straints for meeting deadline on at least one path,

• The blue solutions are the one where all constraints are met.

The energy of the solution only takes into account the model objective, meaning

constraints satisfaction does not change energy unlike the penalty model described in

Subsection 2.3.5. Note that the charts in this section have variable scale on both axis.

Results for the basic_test machine group

Each workflow that has been optimized for "basic_test" had the solutions returned by

the D-Wave solver presented in the form of a histogram.

In Fig. 5.3 representing the workflow "Genome_54", it can be seen that most of the

solution returned by the solver have been put into a single bucket, this shows that the

solver has high confidence for this problem solution. As most of the returned solutions

are correct it can be assumed with relatively high confidence the best solution from

this run is quite close to the optimal arrangement of machines.

In Fig. 5.4 representing the workflow "Genome_156", it can be seen that the cor-

rect solutions are a little more spread out but this can be explained by lower range of

the maximal and minimal range of solutions which caused each bucket to contain a

smaller range of solutions. We can also assume the same as in the previous case that

the solver solutions have high confidence of being close to optimal.

In Fig. 5.5 representing the workflow "Genome_492", it can be seen that the resulta

are much more spread out possibly indicating either different solver algorithm used
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Figure 5.3: Histogram of energies of solutions returned by the D-Wave CQM solver for

"Genome_54 Workflow" and "basic_test" machines, with information about

compliance with model constraints. (Gurobi energy value 9718.)

by D-Wave CQM or not enough time was given for processing the model of this size.

The solver returns much more incorrect results, mostly using incorrect number of

machines per task. We can observe the dividing line on the bucket starting at 27000

that splits the mainly correct results on the right to the incorrect results on the left,

unfortunately the solver returned only 2 solutions in the best bucket, showing the

solver did not find this solution with high confidence.

In Fig. 5.6 representing the workflow "Genome_902", it can be seen that the result are

in line with the previous data in Fig. 5.5 but with even more incorrect solutions we

can assume that the larger size of the workflow indeed has an impact quality of the

CQM solution. The dividing line can be found around 67000 mark.
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Figure 5.4: Histogram of energies of solutions returned by the D-Wave CQM solver

for "Genome_156 Workflow" and "basic_test" machines, with information

about compliance with model constraints. (Gurobi energy value 14252.)

Results for the Cyfronet machine group

Each workflow that has been optimized for "Cyfronet" had the solutions returned by

the D-Wave solver presented in the form of a histogram. The energy values between

this group and the previous cannot be directly comparable.

In Fig. 5.7 representing the workflow "Genome_54", it can be seen that most of the

solution returned by the solver have been put into a single bucket, similarly like for

"basic_test" group test. The solver returned solutions also show high confidence int

the solution at 310 energy line.

In Fig. 5.8 representing the workflow "Genome_156", it can be seen that unlike in the

previous machine group there are not any confident results for this run, but most of

the solutions returned are correct and there is no dividing line between the correct

and incorrect results. This may suggest that there is some room for the solver to find a

better solution.
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Figure 5.5: Histogram of energies of solutions returned by the D-Wave CQM solver

for "Genome_492 Workflow" and "basic_test" machines, with information

about compliance with model constraints. (Gurobi energy value 24917.)

In Fig. 5.9 the top chart is representing the workflow "Genome_492" and in Fig. 5.10

the top bottom chart is representing the workflow "Genome_902". On both charts the

distribution is much more spread out and more over almost all returned solutions are

considered correct with regards to constraints. It is quite possible that those solutions

are quite far from the optimal solution.

5.3.6 Conclusion

Given the results in the previous subsection we can conclude that in fact the size of the

workflow with set computation time limit is affecting the solution quality. The exact

relationship is quite difficult to pin down as the different workflows slightly differ in

structure not only in task number.
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Figure 5.6: Histogram of energies of solutions returned by the D-Wave CQM solver

for "Genome_902 Workflow" and "basic_test" machines, with information

about compliance with model constraints. (Gurobi energy value 60536.)
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Figure 5.7: Histogram of energies of solutions returned by the D-Wave CQM solver for

"Genome_54 Workflow" and "Cyfronet" machines, with information about

compliance with model constraints. (Gurobi energy value 311.)
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Figure 5.8: Histogram of energies of solutions returned by the D-Wave CQM solver for

"Genome_156 Workflow" and "Cyfronet" machines, with information about

compliance with model constraints. (Gurobi energy value 169.)
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Figure 5.9: Histogram of energies of solutions returned by the D-Wave CQM solver for

"Genome_492 Workflow" and "Cyfronet" machines, with information about

compliance with model constraints. (Gurobi energy value 728.)
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Figure 5.10: Histogram of energies of solutions returned by the D-Wave CQM solver

for "Genome_902 Workflow" and "Cyfronet" machines, with information

about compliance with model constraints. (Gurobi energy value 1868.)
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5.4 Experiment 3 - deadline restriction

In this experiment the goal is to test how solution returned by the system changes

with different values of the deadline given for the model. We used both the D-Wave

CQM solver and Gurobi optimizer for this experiment. It focuses on the distribution of

the solutions energy for test scenarios and response times from the solvers.

5.4.1 Workflow to optimize

For this experiment the workflow used in the previous Experiment "Genome_492" has

been chosen. The details has been presented in Table 5.9.

Table 5.9: Job size and unique paths count in the "Genome_492" workflow in Experi-

ment 3.

Name Task Count Path Count

Genome_492 492 4368

5.4.2 Machine setup

The machine group for this experiment has been previously used "basic_test". The

parameters of the machines in the group has been presented in Table 5.4.

5.4.3 Deadline

Given the machine and workflow for this experiment the following values of the

deadline have been generated to cover the whole range of the possible best solutions

from fastest to slowest machines. The exact values are presented in Table 5.10

Table 5.10: Deadline values for experiment 3.

Deadline 18.3 20 60 100 140 180 220 260 300 340

5.4.4 Time limit

Time limit is only applicable for the D-Wave CQM solver and represents the actual

time of computation performed on Leap Cloud solution using CQM solver. Two values

have been used 5 and 10 second time limits. The 5 seconds is the minimal time the

D-Wave Cloud API allows.
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5.4.5 Size of the model

The number of binary variables and constraints for this model have been presented in

Table 5.11

Table 5.11: Number of binary variables for each Experiment 3

x Variables Constraints

Genome_492 1476 4860

5.4.6 Results

The solution provided by the Gurobi solver in each test case is the solution with lowest

energy as shown in Fig. 5.11. The Gurobi solver provides us with a unique solution, but

the D-Wave CQM provides multiple solutions, therefore the one with the best energy

is used in case of the D-Wave solver.
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Figure 5.11: Energy of the best solution for optimization model for given time limit

and solver vs the values of deadline used for each run of Experiment 3.
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The differences on the chart in many places are relatively small compared to total

value of energy, therefore in Fig. 5.12 and in Fig. 5.13 it is shown the relative difference

between results from the D-Wave CQM solver and baseline from the Gurobi solver.
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Figure 5.12: Difference in energy of the best solution for optimization model and Gurobi

solver solution vs the values of deadline used for each run of Experiment

3.

As we can see providing more time to the CQM solver helped with finding better

solutions in some cases, but in each case it still has isn’t better than Gurobi solver. We

can see in Fig. 5.14 that when 5 seconds time limit were given to the solver for the

middle value of deadline constraint, energy values are more scattered than the ones on

the provided by the solver with 10 second time limit located in Fig. 5.15. On both charts

the most restrictive deadlines are quite visibly shifted towards greater energies showing

that in fact the more restrictive the deadline, the smaller the potential solutions space is.

The Gurobi solver has been much faster in providing the result than the CQM regard-

less of the time limit which is shown in Fig. 5.16. The difference is quite substantial, the

Gurobi solver is 3 to 4 orders of magnitude faster than the full response time from the
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Figure 5.13: Ratio of energy of the best solution for optimization model and Gurobi

solver solution vs the values of deadline used for each run of Experiment

3.

D-Wave solver. The behaviour of the D-Wave solver mandated further investigation.

The experiment measured the time from requesting calculation on the Leap cloud to

receiving first solution from D-Wave solver and also time from request to final solution

arriving. The results have been presented in Fig. 5.17 and in Fig. 5.18 for 5 and 10

seconds limits respectively. As the inner workings of the CQM solver are being run on

the D-Wave cloud the additional time usage can be attributed to:

• Network delay for communication with the solver,

• Awaiting in the queue for processing on the cloud,

• Each solution returned by solver being a separate http call.

5.4.7 Conclusion

The CQM solver is both much slower and returns worse results for bigger and more

complex problems, this makes its usage impractical, however it is able to provide
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solutions that are close to the optimal (or at least close to the one that is purely

classical).
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Figure 5.14: Histogram of energy values for correct solutions from the D-Wave CQM

solver given 5 second time limit, grouped by the value of deadline parame-

ter for the model.
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Figure 5.15: Histogram of energy values for correct solutions from the D-Wave CQM

solver given 10 second time limit, grouped by the value of deadline param-

eter for the model.
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Figure 5.16: Response time from solvers.
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Figure 5.17: Timings of the CQM solver with 5 seconds time limit.
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Figure 5.18: Timings of the CQM solver with 10 seconds time limit.
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6 Summary and future works

In this chapter, the summary of the thesis is provided as well as suggestions for future

improvements. The advantages and disadvantages of using the D-Wave CQM solver

for Workflow Scheduling problems are discussed.

6.1 Translation of Workflow Scheduling problem to CQM
model

In Chapter 4 of this thesis, it has been demonstrated that it is possible to easily transform

the Workflow Scheduling problem into a Constrained Quadratic Model which then

can be solved by a specialized solver. This has been confirmed by the experiments

in Chapter 5 that the solution for the Workflow scheduling problem can be obtained

using both the Gurobi optimizer as well as the D-Wave CQM.

6.2 Practicality of using D-Wave CQM solver

In the experiments in Chapter 5, it has been shown that the D-Wave CQM dolver

can provide a solution in a much larger amount of time than the Gurobi optimizer.

The D-Wave solver provides its user with multiple solutions for each call. Some of

the returned solutions are not satisfying the constraints of the problem definition.

The minimal time of 5 seconds for processing time is comparatively very large when

taking into account that the same problem can be solved by the Gurobi optimizer in

milliseconds. Taking all this into account the D-Wave CQM solver at this point is too

slow for practical usage.

6.3 Potential Future Works and improvements

There still exists the possibility of future research and improvements on the solution

and discoveries described in this thesis, mainly:

51



6 Summary and future works

• Investigation into the inner workings of the D-Wave’s CQM hybrid solver to

redefine the problem in a way that better suite the internal algorithm,

• Define a custom hybrid solver using the D-Wave hybrid solver API to better

control the heuristic environment in which the problem is solved,

• Try different translations of workflow scheduling problem into CQM. The new

translations could take more input data into account like file access time, network

configuration of machines etc.

This potential future research subjects could make the D-Wave hybrid annealer more

practical to use.
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