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Streszczenie

Wraz z pojawieniem siÍ dziedziny kwantowego uczenia maszynowego wytworzy≥a siÍ
potrzeba stworzenia specjalistycznego oprogramowania, które umoøliwi≥oby prze≥oøenie
teoretycznych rozwaøaÒ dotyczπcych tej dziedziny na praktyczne rozwiπzania. Obecne
badania nad kwantowym uczeniem maszynowym sπ zdominowane przez rozwiπzania
skupiajπce siÍ na hybrydowych kwantowo-klasycznych modelach wykorzystujπcych za-
równo kwantowe, jak i klasyczne dane i algorytmy. Chociaø istniejπce biblioteki s≥uøπce
do uczenia maszynowego, takie jak TensorFlow, doskonale sprawdzajπ siÍ w zastosowa-
niach bazujπcych na komponentach klasycznych, same nie mogπ wchodziÊ w interakcje z
komponentami kwantowymi. Aby jednak umoøliwiÊ takπ integracjÍ powsta≥a biblioteka
TensorFlow Quantum ≥πczπca klasyczne i kwantowe ekosystemy.

Technologia hybrydowych obliczeÒ kwantowo-klasycznych nie jest w tej chwili roz-
wiπzaniem w pe≥ni rozwiniÍtym. Z tego powodu celem niniejszej pracy jest ocena przy-
datnoúci wykorzystania TensorFlow Quantum do typowych, reprezentatywnych proble-
mów naukowych oraz ocena moøliwoúci trenowania hybrydowych sieci neuronowych.
W niniejszej pracy zosta≥y zaproponowane dwa eksperymenty oparte na zastosowaniu
algorytmu przybliøonej optymalizacji kwantowej (ang. Quantum Approximate Opti-
mization Algorithm, QAOA) do rozwiπzania problemu komiwojaøera przy uøyciu spa-
rametryzowanych obwodów kwantowych. Uzyskane wyniki pokazujπ, øe TensorFlow
Quantum jest narzÍdziem, które z powodzeniem moøna wykorzystaÊ do rozwiπzywania
problemów optymalizacji kombinatorycznej, takich jak problem komiwojaøera z uøy-
ciem algorytmu QAOA. Ponadto na podstawie przeglπdu istniejπcych zastosowaÒ tej
biblioteki moøna stwierdziÊ, øe wykazuje ona potencja≥, aby dziÍki jej uøyciu dokonaÊ
ekscytujπcych odkryÊ w dziedzinie kwantowo-klasycznego uczenia maszynowego.

S≥owa kluczowe– TensorFlow Quantum, hybrydowe kwantowo-klasyczne sieci neuro-
nowe, algorytm przybliøonej optymalizacji kwantowej (QAOA), optymalizacja kombinato-
ryczna, problem komiwojaøera



Abstract

With the advent of quantum machine learning, the need for specialized software that
can transfer theoretical considerations into practical solutions arose. Current research
on quantum machine learning is dominated by solutions focusing on hybrid quantum-
classical models utilizing quantum and classical data and algorithms. Although the
existing machine learning libraries, such as TensorFlow, excel at applications that re-
quire classical components, they alone cannot interact with quantum components. As
a result, the TensorFlow Quantum library that integrates the classical and quantum
ecosystems was created.

The technology of hybrid quantum-classical computations at the moment is not a
fully developed solution. For this reason, this thesis aims to assess the usefulness of
using TensorFlow Quantum for typical, representative scientific problems and evaluate
the trainability of hybrid neural networks. We propose two experiments based on apply-
ing the Quantum Approximate Optimization Algorithm (QAOA) to solve the Traveling
Salesman Problem using parameterized quantum circuits. The obtained results show
that TensorFlow Quantum can be successfully used for solving combinatorial optimiza-
tions problems such as the Traveling Salesman Problem with the QAOA. Additionally,
based on an overview of existing applications of this library, it can be concluded that
TensorFlow Quantum used as a research tool has the potential to pave the way for
exciting discoveries in the field of quantum-classical machine learning.

Keywords— TensorFlow Quantum, hybrid quantum-classical neural networks, Quan-
tum Approximate Optimization Algorithm, combinatorial optimization, Traveling Salesman
Problem
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Chapter 1

Introduction

This chapter provides a brief introduction to recent developments in the area of quantum
computing and defines the goals for this thesis.

1.1 Motivation
Quantum computing is an up-and-coming field that can significantly impact the way of
processing information. Scientists believe that for some problems quantum computer
algorithms can achieve a speedup impossible to obtain even on the best classical super-
computers. The power of quantum computing arises from utilizing quantum mechanics
principles and phenomena. One of the features that make quantum computing different
from classical computing is the use of quantum bits (qubits) instead of classical bits.
While a classical bit can be represented as 0 or 1, a qubit is a superposition of both 0
and 1 states. As a result, only n qubits are needed to describe a state of 2n complex
numbers [1].

Prospective applications of quantum computing are very impressive and range from
improving cybersecurity to discovering materials or drugs. What researchers both
from academia and industry are seeking to prove is ”quantum supremacy.” Quantum
supremacy will be achieved when a problem unsolvable in any reasonable time on a
classical computer will be solved on a quantum computer. At the end of 2019, Google
researchers claimed to obtain this milestone [2]. They presented a computational task
that took around 200 seconds on their 53–qubit quantum processor that would other-
wise take about 10 000 years on then the best supercomputer — Summit. However,
further research [3] proved that the same task could be performed on Summit within
two and a half days. Nevertheless, performing this task on a quantum computer seems
to be considerably faster than using high-performance computing.

There are a few quantum algorithms that have the potential to change computer
science. One of them, invented more than twenty years ago, is Shor’s algorithm [4].
Although this integer factorization algorithm can break the RSA encryption, existing
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quantum computers are not powerful enough to achieve this breakthrough. Currently
developed quantum integrated circuits are considered Noisy Intermediate-Scale Quan-
tum (NISQ) technology [5]. They have only up to a few hundred imperfectly controlled
physical qubits with a high error rate. On the one hand, NISQ devices cannot perform
very challenging tasks, but they are well suited for performing hybrid quantum-classical
algorithms.

Hybrid quantum-classical algorithms do not need to use many qubits but are very
potent because they combine the power of quantum and classical computing. Hybrid
computation is comprised of tasks that can be split into parts solved on a quantum
device and parts solved classically. In the family of hybrid algorithms, researchers dis-
tinguish Variational Quantum Algorithms [6] such as Variational Quantum Eigensolver
[7] and Quantum Approximate Optimization Algorithm [8]. The former is mainly used
for quantum simulation, while the latter is used for solving combinatorial optimiza-
tion problems. With such a broad range of potential use, the hybrid algorithms are
introducing the first valuable applications for current quantum devices.

Furthermore, hybrid quantum-classical models are a foundation of one of the bran-
ches of quantum machine learning. Merging ideas from two such important fields as
machine learning and quantum computing can speed up the process of inventing ap-
proaches to solving significant problems. Although classical machine learning tech-
niques have proven their ability to generalize patterns in classical data, they alone
cannot process quantum data. For this task, specialized software libraries have been
proposed; one of them is TensorFlow Quantum [9].

1.2 Goals
Although the area of quantum machine learning is gaining more and more attention,
its potential remains undiscovered. Experts both from academia and industry wonder
if the development of this branch of science can lead to important discoveries. To
accelerate the research suitable software is needed. At present, there exist a few new
software solutions, however one of the most compelling questions is whether they are
eligible to solve a relevant problem with quantum machine learning. Therefore, the
goal of this thesis is to evaluate the capabilities of one of the quantum machine learning
libraries — TensorFlow Quantum. This task involves in particular:

• providing an outline of TensorFlow Quantum;
• investigating the types of quantum algorithms that can be implemented using

TensorFlow Quantum;
• assessing the actual capabilities of the TensorFlow Quantum environment for

a representative scientific problem. For this purpose, one of the most popular
quantum optimization algorithms was chosen, namely the Quantum Approximate
Optimization Algorithm. We have chosen the Traveling Salesman Problem as a
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typical use case for that algorithm.

1.3 Thesis structure
Chapter 2 presents the quantum computing basics and introduces two important hybrid
quantum-classical algorithms: the Variational Quantum Algorithm and the Quantum
Approximate Optimization Algorithm. Chapter 3 outlines quantum machine learning,
especially state-of-the-art quantum neural networks. Moreover, an overview of software
for quantum machine learning is provided. Chapter 4 overviews the TensorFlow Quan-
tum library by discussing its design and significant features. With the aim of assessing
the usability of this framework, a study of using a quantum neural network aimed at
solving the Traveling Salesman Problem with the use of the Quantum Approximate
Optimization Algorithm is presented in Chapters 5 (problem formulation) and Chap-
ter 6 (experiments). Finally, in Chapter 7, a summary of the examined TensorFlow
Quantum properties and achieved results is provided.
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Chapter 2

Quantum Algorithms

The first part of this chapter presents basic terms related to quantum computing. Then
descriptions of the most promising hybrid quantum-classical algorithms for the near-
term quantum devices are provided.

2.1 Preliminaries
The quantum computing model of computation is fundamentally different from classical
computing. To introduce the field of quantum computing, selected quantum computing
basics and necessary terminology are described below.

2.1.1 Quantum states
A state in quantum mechanics is represented as a vector from a Hilbert space taken over
the complex numbers. The standard notation for quantum states is the Dirac notation
(also known as the bra-ket notation) that distinguishes by using ’|·〉’ and ’〈·|’ symbols.
Table 2.1 presents a summary of this notation.
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Table 2.1: The Dirac notation for concepts from linear algebra [10].

Notation Description

z∗ = a− bi Complex conjugate of the number
z = a+ bi, z ∈ C.

|ψ〉 =



α0

α1
...

αn−1


,where αi ∈ C and ∑

i |αi|2 = 1 |ψ〉 — a vector, also known as a
ket. In the complex vector space it
is identified with a column vector.

〈ψ| =
[
α∗0 α∗1 . . . α∗n−1

]
〈ψ| — Hermitian conjugate of |ψ〉,
also known as a bra. In the com-
plex vector space identified with a
row vector.

〈ψ|φ〉 =
[
α∗0 α∗1 . . . α∗n−1

]


β0

β1
...

βn−1


Inner product between the vectors
|ψ〉 and |φ〉.

|ψ〉 〈φ| =



α0

α1
...

αn−1


[
β∗0 β∗1 . . . β∗n−1

]
Outer product between the vectors
|ψ〉 and |φ〉.

|ψ〉 ⊗ |φ〉 =


α0
...

αn−1

⊗

β0
...

βn−1

 =



α0β0
...

α0βn−1
...

αn−1β0
...

αn−1βn−1



Tensor product of |ψ〉 and |φ〉 (ab-
breviated forms: |ψ〉 |φ〉, |ψφ〉).
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In quantum computing, the simplest unit of information is a two-state system, called
a quantum bit — qubit. Usually, the qubit’s state |ψ〉 is mathematically described as

|ψ〉 = α0 |0〉+ α1 |1〉 =
[
α0
α1

]
,

where α0, α1 ∈ C and |α0|2 + |α1|2 = 1
(2.1.1)

which is a superposition (linear combination) of the computational basis states

|0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
. (2.1.2)

The coefficients α0 and α1 are called amplitudes. Based on the fact that the amplitudes
are complex numbers and the sum of their squares equals 1, there exist angles γ, θ, φ ∈ R
that satisfy

|ψ〉 = eiγ(cosθ2 |0〉+ eiφsin
θ

2 |1〉). (2.1.3)

The global phase eiγ is irrelevant, so Equation 2.1.3 can be rewritten as

|ψ〉 = cos
θ

2 |0〉+ eiφsin
θ

2 |1〉 . (2.1.4)

As a result, the state of a single qubit can be represented graphically as a point on the
Bloch sphere (cf. Figure 2.1), using the spherical coordinates

(sinθcosφ, sinθsinφ, cosθ) ∈ R3. (2.1.5)

Figure 2.1: The Bloch sphere.
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When we have n classical bits, there are 2n possible states

00..0, 00..1, . . . , 1..11 (equiv. 0, 1, . . . , 2n − 1). (2.1.6)

Correspondingly, a n–qubit quantum system consists of 2n computational basis states

|00..0〉 , |00..1〉 , . . . , |1..11〉 (equiv. |0〉 , |1〉 , . . . , |2n − 1〉). (2.1.7)

A multi-qubit state is created as a tensor product of qubits. E.g., for qubits |ψ〉 and
|φ〉

|ψ〉 = α0 |0〉+ α1 |1〉 , |φ〉 = β0 |0〉+ β1 |1〉
,

(2.1.8)

the 2–qubit state is

|ψ〉 ⊗ |φ〉 =


α0β0
α0β1
α1β0
α1β1

 = α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉

= α0β0 |0〉+ α0β1 |1〉+ α1β0 |2〉+ α1β1 |3〉

where
1∑

i,j=0
|αiβj|2 = 1.

(2.1.9)

An important term in the quantum mechanics terminology is an operator. The
operator A is a function that transforms one state vector into another. Suppose

A |ψ〉 = a|ψ〉, (2.1.10)

where a ∈ R, then A has the eigenstate |ψ〉 and the eigenvalue a.
Given k independent eigenvectors v0, v1, . . . , vk−1 and corresponding to them eigen-

values λ0, λ1, . . . , λk−1, the k × k operator A can be found with the following formula

A = V ΛV −1, (2.1.11)
where V is a diagonal matrix containing eigenvalues, and Λ is a matrix of concatenated
eigenvectors

Λ =


λ0 0 . . . 0
0 λ1 . . . 0
... ... . . . ...
0 0 . . . λk−1

 , V =
[
v0v1 . . . vk−1

]
.

Quantum states are not directly observable. A qubit or multi-qubit system has to
be measured to provide information. Usually, this process refers to the measurement
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in the computational basis. For example, suppose a qubit is in the state described by
Equation 2.1.1. After the measurement in the computational basis, the result is labeled
as the classical bit 0 with probability |α0|2 and 1 with probability |α1|2, and due to wave
function collapse, the new quantum state is |0〉 or |1〉 depending on the measurement
outcome. Additionally, a quantum state cannot be copied, so it is impossible to execute
multiple independent measurements. Figure 2.2 illustrates the process of measuring a
qubit.

Figure 2.2: Measuring a qubit. The probability of obtaining the output state |0〉 is
0.5, and the output state |1〉 is 0.5.

2.1.2 Quantum circuit model
There are several equivalent models of quantum computation. One of them is the
quantum circuit model based on using quantum logic gates. The quantum gates enable
manipulating the state of a quantum system.

Quantum circuits consist of quantum wires represented by horizontal lines and quan-
tum gates depicted by boxes with symbols. In Table 2.2, selected quantum gates with
their symbolical and matrix representations are introduced. Among the listed quantum
operators, only the Controlled-NOT gate is a 2-qubit gate, and the rest are single-qubit
gates. Also, what is worth noting is that the rotation gates are parameterized.
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Table 2.2: Quantum gates.

Name Symbol Unitary Matrix

Identity I I =

1 0

0 1



Hadamard H H = 1√
2

1 1

1 −1



Pauli-X X X =

0 1

1 0



Pauli-Y Y Y =

0 −i

i 0



Pauli-Z Z Z =

1 0

0 −1



Rotation-X Rx(θ) Rxθ =

 cos θ2 −isin θ2
−isin θ2 cos θ2



Rotation-Y Ry(θ) Ry(θ) =

cos θ2 −sin θ2
sin θ2 cos θ2



Rotation-Z Rz(θ) Rz(θ) =

e−i θ2 0

0 ei
θ
2



Controlled-NOT
•

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
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To describe the behavior of the quantum circuit computations, we will examine the
examples of using the Pauli-X gate and creating combinations of quantum gates. The
classical logic NOT gate implements logical negation, the quantum operator of NOT –
the Pauli-X gate mimics this behavior, which can be written as

X |0〉 = |1〉 , X |1〉 = |0〉 . (2.1.12)

Apart from the symbolical representation, the Pauli-X gate can also be represented as
a unitary matrix

X =
[
0 1
1 0

]
(2.1.13)

or as a quantum circuit
X .

The mathematical representation below

X |ψ〉 = X(α |0〉+ β |1〉) = X(α
[
1
0

]
+ β

[
0
1

]
)

=
[
0 1
1 0

] [
α
β

]
=
[
β
α

]
= β

[
1
0

]
+ α

[
0
1

]
= β |0〉+ α |1〉

(2.1.14)

is equivalent to the following quantum circuit

α |0〉+ β |1〉 X β |0〉+ α |1〉 .

Combinations of quantum gates — e.g., U1, U2 – some single qubit quantum gates —
create serially wired circuits

|ψ〉 U1 U2 U2U1 |ψ〉 ←→ |ψ〉 U2 · U1 U2U1 |ψ〉 ,

and parallel circuits e.g.,

|ψ〉 U1 U1|ψ〉
←→

|ψ〉
U1 ⊗ U2

(U1 ⊗ U2)(|ψ〉 ⊗ |φ〉).
|φ〉 U2 U2|φ〉 |φ〉

Quantum circuits that perform operations on input qubits and end with measurement
are called quantum algorithms.
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2.2 Variational Quantum Algorithms
Near-term quantum computing devices offer only a limited number of qubits and are
exposed to noise (thus not fault-tolerant). Considering these drawbacks, current quan-
tum algorithms cannot be efficient enough to outperform classical algorithms. How-
ever, a paradigm of hybrid quantum-classical algorithms that utilize both quantum and
classical computational resources has emerged as a method to provide the quantum
advantage. Usually, in the hybrid approach, a quantum computer aims to prepare
and evaluate the quantum state, while a classical computer offers pre-processing and
post-processing and an optimization algorithm, cf. Figure 2.3. An example of a hybrid
quantum-classical algorithm is the class of Variational Quantum Algorithms (VQAs).

Figure 2.3: Hybrid system consisting of classical and quantum computers.
Reprinted from Ref. [11].

The VQA aims at approximating the minimum of a cost function that encodes a
selected problem [6]. For this task, it employs a hybrid loop that consists of

• a parameterized quantum circuit (PQC), also known as a variational circuit, con-
taining both parameterized and fixed quantum gates that enable the manipulation
of quantum information;

• a classical optimizer that adjusts the parameters of the PQC to minimize the
value of the cost function.

A simplified diagram of the VQA is presented in Figure 2.4 and described below.
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Figure 2.4: Variational Quantum Algorithm scheme.

• Input
– Cost function C(θ) — a function of continuous or discrete parameters θ that

encodes the solution to the problem.
– Circuit ansatz — a circuit template that is expressible enough to cover the

solution space adequately. For this reason, the circuit ansatz consists of gates
with parameters (e.g., rotation gates).

Figure 2.5 presents the expressibility of simple 1-qubit ansatze. The
circuit in Figure 2.5a is not parameterized and has very low expressibility.
The circuit in Figure 2.5b has only one parameterized gate (Rz), so the cost
function will be parameterized with one parameter θ0. Figure 2.5c depicts a
circuit with two parameterized gates (Rz and Rx) so the cost function will
be parameterized with two parameters θ0, and θ1. The ansatz determines
the number and meaning of the cost function parameters θ.

Usually, the ansatz design is dictated either by the problem whose solution
it should encode or the hardware on which the circuit will be executed. In
the ideal case, the ansatz circuit should cover the whole solution space, be
shallow (the more gates, the more noise), and not have too many parameters
to optimize [12]. However, finding the appropriate ansatz for specific use-
cases might be challenging.

– Initial parameters θ — the variational parameters that are applied to pa-
rameterized gates. Since there are not many rules on choosing them, they
can be set to zeros [13] or random numbers [14]. Another practice is utilizing
the layerwise learning [15] technique which is based on optimizing only the
subset of the variational parameters at first and then gradually increasing
the number of the trained parameters.

• Hybrid loop — aims at solving the optimization task [6]

θ∗ = arg min
θ

C(θ). (2.2.1)
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|0〉 H

(a) The input state |0〉 after the
Hadamard gate always becomes the
state 1√

2
(|0〉+ |1〉) (represented as

a single dot).

|0〉 H Rz(θ0)

(b) The outputs of the circuit
consisting of the Hadamard gate

and the parameterized Rotation-Z
gate are located on the equator of

the Bloch sphere.

|0〉 H Rz(θ0) Rx(θ1)

(c) The outputs of this circuit are
distributed all over the Bloch

sphere but the distribution is not
uniform.

Figure 2.5: Expressibility of 1-qubit circuit ansatze after sampling them with 1000
different pairs of parameters. The results are superimposed on the Bloch sphere.

Based on Ref. [12].

– Quantum part
∗ Quantum circuit execution — the parameter values are applied to the

parameterized circuit, then the circuit is executed.
∗ Measurements — the circuit execution enables to evaluate the cost func-

tion C(θ) or its gradient.
– Classical part — optimization

The classical device is responsible for optimizing the parameters θ. Usually,
it is a gradient–based optimization. The choice of the optimizer type has a
significant impact on the obtained results.

• Output — when the termination condition is met (e.g., the cost function value
is small enough or the number of loop repetitions is reached), an approximate
solution to the problem is returned. The solution can have the form of, among
other things, a string of bits or probability distribution.

All things considered, the hybrid quantum-classical structure of the Variational
Quantum Algorithms can be seen as a groundwork for developing other algorithms.
An example algorithm based on the VQA is the Quantum Approximate Optimization
Algorithm (QAOA).

2.3 Quantum Approximate Optimization Algorithm
The Quantum Approximate Optimization Algorithm (QAOA) [8] was proposed for ap-
proximating the solutions of the combinatorial optimization problems. These problems
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can be expressed in the form of the cost function

C(z) =
m∑
a=1

Ca(z), (2.3.1)

where z is an n-bit binary string z = {0, 1}n, m is the number of clauses/constraints
that should be satisfied, and Ca(z) – a Boolean function (f : {0, 1}n → {0, 1}) such
that

Ca(z) =
1, if z satisfies the constraint a,

0, otherwise.
(2.3.2)

The goal is to find a bit string z that maximizes the number of satisfied constraints

Cmax = max
z∈{0,1}n

C(z). (2.3.3)

However, the Quantum Approximate Optimization Algorithm is designed for minimiza-
tion tasks, hence

Cmax = min
z∈{0,1}n

−C(z). (2.3.4)

To solve a combinatorial optimization problem with the QAOA, it is necessary to
translate the problem’s cost function acting on bit strings into a Hamiltonian acting on
qubits.

There are 2n possible different inputs z. In the quantum setting they can be ex-
pressed as an n-qubit quantum system consisting of 2n computational basis states (cf.
eq. 2.1.6 – 2.1.7).

The Hamiltonian is a quantum operator that describes the energy of a physical
system. As a result, knowing the Hamiltonian enables exploring, i.a. the behavior and
states of physical systems. It is sometimes beneficial to think of the Hamiltonian as a
matrix because Hamiltonian operators have associated with them Hamiltonian matrices
(energy matrices).

The Hamiltonian HC represents the function C acting on an n-bit string z if for
each input z ∈ {0, 1}n with the corresponding computational basis state |z〉 it satisfies

HC |z〉 = C(z) |z〉 . (2.3.5)

The operator HC has eigenvectors |z〉 and eigenvalues C(z). Suppose we find all the
eigenvalues and order them from the lowest to the highest. In that case, the lowest
eigenvalue is the optimal value of the cost function Cmax, and the eigenvector associated
with this eigenvalue corresponds to the solution.

To provide an example of creating a Hamiltonian for a function, we will examine
the Boolean identity function

f(x) = x, x ∈ {0, 1}. (2.3.6)
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Based on Eq. 2.3.5 we obtain

Hf |0〉 = f(0) |0〉 = 0 |0〉
Hf |1〉 = f(1) |1〉 = 1 |1〉 .

(2.3.7)

Operator Hf has the following eigenvalues and eigenvectors

λ0 = 0, v0 = |0〉 =
[
1
0

]
and λ1 = 1, v1 = |1〉 =

[
0
1

]
. (2.3.8)

Using Eq. 2.1.11, we obtain the matrix representation of the Hamiltonian Hf

Hf =
[
1 0
0 1

] [
0 0
0 1

] [
1 0
0 1

]
=
[
0 0
0 1

]
. (2.3.9)

In general, every Hamiltonian operator for a Boolean or pseudo-Boolean function (f :
{0, 1}n → R) can be expressed as a linear combination of the gates I, Z, and Z ⊗ Z
acting on proper qubits. As a result, the matrix representation of Hf is equivalent to
the Hamiltonian operator 1

2(I − Z) since

1
2(I − Z) = 1

2
([1 0

0 1

]
−
[
1 0
0 −1

])
=
[
0 0
0 1

]
. (2.3.10)

Based on the above observations, the Hamiltonian Hf represents the Boolean clause
f(x) = x and

x←→ 1
2(I − Z). (2.3.11)

Nevertheless, the Boolean functions themselves are not expressible enough for defin-
ing complex combinatorial optimization problems. For this purpose, pseudo-Boolean
functions are used. The Quadratic Unconstrained Binary Optimization (QUBO) [16]
problems represent a significant class of the pseudo-Boolean functions. In the QUBO,
the aim is to find a minimum or maximum of the function [17]

f(x) = a+
n∑
j=1

cjxj +
∑
j≤k

djkxjxk, (2.3.12)

where a, cj, djk ∈ R, xj ∈ {0, 1}. If we substitute all the variables x from Equation
2.3.12 using Property 2.3.11, we obtain the Hamiltonian [17]

Hf = (a+ c+ d)I − 1
2

n∑
j=1

(cj + dj)Zj + 1
4
∑
j<k

djkZjZk, (2.3.13)

where c = 1
2
∑n
j=1 cj, d = 1

4
∑
j≤k djk, and dj = ∑

k:k 6=j djk with djk = dkj. Based on the
Variational Quantum Algorithm scheme defined in Section 2.2, below are described the
steps of the QAOA.
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• Input
– Cost function

The first step is express the cost function as the cost Hamiltonian HC (some-
times denoted as the phase Hamiltonian). Usually, it is helpful to start with
defining the QUBO formulation of the problem and then map it to a Hamil-
tonian form (cf. Eq. 2.3.12 and 2.3.5).

Apart from the cost Hamiltonian, a mixer Hamiltonian HM is needed.
The simplest mixer Hamiltonian has the following form

HM =
n∑
j=1

Xi, (2.3.14)

where Xi is the Pauli-X gate acting on the i-th qubit. HM improves the
number of states that can be potentially reached.

– Circuit ansatz
The QAOA uses the Alternating Operator Ansatz which contains p alternat-
ing layers that consist of UC and UM

UC(γ) = e−iγHC , (2.3.15)
UM(β) = e−iβHM . (2.3.16)

UC and UM can be translated into quantum gates. The hyperparameter p
defines the depth of the circuit. The layered architecture of the QAOA is
presented in Figure 2.6.

Figure 2.6: Hybrid optimization loop containing the p-layer quantum
ansatz.

– Initial state and parameters
The initial quantum state is the uniform superposition on all qubits, defined
as

|s〉 = 1√
2n
∑
z

|z〉, (2.3.17)
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where |s〉 can be obtained through applying the Hadamard gate in parallel
on each qubit.

Based on the QAOA’s hyperparameter p there are 2p initial parameters
(angles) that need to be optimized γ1, . . . , γp,≡ γ and β1, . . . , βp ≡ β. Gen-
erally, there are not any predefined initialization values, so this could be
zeros [13] or random numbers [14] if there are no better propositions.

• Hybrid loop
The goal is to find 2p angles γ and β that minimize the expectation value

E(γ, β) = 〈γ, β|HC |γ, β〉 (2.3.18)

– (Quantum computer) Construct the quantum state with the p-level QAOA

|γ, β〉 = UM(βp)UC(γp) · · · UM(β1)UC(γ1) |s〉 . (2.3.19)

– (Quantum computer) Estimate the expectation value E(γ, β).
– (Classical computer) Use an optimizer to vary the angles γ and β in order

to obtain angles γ∗ and β∗ that

(γ∗, β∗) = arg min
γ,β

E(γ, β). (2.3.20)

• Output — |γ, β〉 measured in the computational basis to obtain the bit string
that is the solution to the problem.

To sum up, the QAOA is an algorithm that searches for an optimal bit string that
satisfies a specified combinatorial optimization problem. What is characteristic is that
the ansatz is based on two Hamiltonians applied in alteration. The QAOA is a very
suitable algorithm for near-term quantum devices because it enables easy control of the
depth of the quantum circuit.

2.4 Summary
This chapter introduced the building blocks of quantum algorithms for the quantum cir-
cuit model. One of the most interesting aspects of the Variational Quantum Algorithms
is their hybrid quantum-classical design. The next chapter will explore the connection
between the Variational Quantum Algorithms and quantum machine learning.
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Chapter 3

Quantum Machine Learning

This chapter introduces recent developments in the area of quantum machine learning.
The first part presents selected state-of-the-art quantum neural network algorithms,
and the second focuses on available software solutions.

3.1 Quantum neural networks
A quantum neural network (QNN) can be perceived as a type of an artificial neural
network that incorporates quantum computations. Some of the classical neural net-
works have inspired their quantum analogs. Below is an overview of the most popular
artificial neural networks and inspired by them quantum neural networks.

3.1.1 Quantum feedforward neural networks
An artificial neuron (Fig. 3.1) converts several input values into a single output value.
To compute the output, first, the neuron’s inputs x are multiplied by real numbers
called weights w that represent the importance of each input value, and the weighted
sum ∑

iwixi is calculated. Then, to the weighted sum is added a bias term b. Next, an
activation function g that transforms the data before passing it to the following layer is
applied g(b + ∑

iwixi). The activation function (usually nonlinear) defines the node’s
output, and the bias term allows for shifting this function’s curve.

Figure 3.1: Artificial neuron.
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Neural networks training consists of constant adjustments of network’s parameters
(weights and biases) to fit the data. It is usually achieved through the backpropaga-
tion algorithm [18]. Backpropagation uses the gradient methods to optimize the loss
function (measure of the network’s performance) by changing the weights and biases.
Feedforward neural networks are types of neural networks in which the neurons of one
layer are only connected with the neurons from the next layer; consequently, there are
no cycles. The information is ’fed forward’ through the input layer, then the hidden
layers (if present), and lastly through the output layer, cf. Figure 3.2.

Figure 3.2: Feedforward neural network design. Based on Ref. [19].
Quantum feedforward neural networks [20] have a very similar design to the clas-

sical feedforward neural networks, cf. Figure 3.3. They consist of consecutive layers
containing quantum nodes that are implemented using quantum hardware.

Figure 3.3: The results of measurements performed on quantum neurons are passed to
the successive layer. Based on Ref. [20].

21



The creation of fully quantum neurons is very challenging since the power of neural
networks lies in the nonlinear activation functions while quantum computers perform
only linear operations. However, it is possible to implement quantum circuits that
approximate nonlinear functions using quantum oracles and measurements [21].

3.1.2 Quantum convolutional neural networks
Convolutional neural networks (CNNs) were proposed as object recognition systems
[22]. One of their first applications was handwritten digits recognition. Additionally,
deep CNNs also proved to be tremendously successful in the image classification task
[23], winning the ImageNet contest in 2012, and as a result bringing much attention
to the deep learning field. In general, CNNs are highly recommended when working
with grid-structured data topology, especially two-dimensional images [24]. Usually, a
CNN consists of alternating convolution layers and pooling layers followed by a fully
connected layer at the end of the model.

A convolution layer uses filters (kernels) to detect features in pictures. Essentially,
the image is divided into regular-shaped (possibly overlapping) regions covering the
entire image. Then, these regions are convolved (multiplied) by the elements of the
kernel. This process detects objects but associates them with their location, i. e. the
object will not be recognized when we add a small translation to the input. The purpose
of the pooling layer is to provide invariance to input translations and reduce data size
for easier processing in the next layers.

CNNs directly inspired two quantum neural network models: quantum convolutional
neural networks [25] and quanvolutional neural networks [26].
Quantum convolutional neural networks (QCNNs) translate the CNNs structure
to the quantum architecture.
The components of a QCNN [25, 27]:

1. Input: a quantum state |ψ〉in.
2. Convolution circuit: applying unitary operators (Ui).
3. Pooling circuit: applying unitary operators (Vi). This step reduces the size of the

quantum system.
4. Repeating steps 2.–3. until the system size is reduced enough.
5. Fully connected layer: applying a multi-qubit unitary operator (F ) to the remain-

ing qubits.
6. Measuring output qubits.

This process is illustrated in Figure 3.4.
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Figure 3.4: Simplified architecture comparison of CNNs and QCNNs. Quantum error
correction (QEC) might be applied in pooling layers. Based on Ref. [27] and [20].

During the training phase the parameters of the unitary gates are learned, the number
of convolutions and pooling layers are treated as predetermined model hyperparameters.
Quanvolutional neural networks (QNNs). While QCNNs use only the quantum
environment, the quanvolutional neural networks are a hybrid quantum-classical algo-
rithm. The classical CNN structure remains almost the same except that instead of a
classical convolution, a quantum convolution (quanvolution) is used.

The building blocks of a quanvolution layer [26, 27]:
1. Circuit input: encoding a small section of input image data into a quantum circuit.
2. Performing quantum computations on a learnable quantum circuit to find the

hidden state.
3. Measuring the quantum system to obtain classical (decoded) data.
4. Repeating steps 1.–3. on remaining image sections to obtain a new feature map.

This procedure is illustrated in Figure 3.5.
The main advantage is that the quantum convolution potentially can produce very

complex, classically unachievable kernels. What is more, the quanvolutions are error-
resilient, and their architecture is suitable for quantum computers that have only a
handful of qubits. Current research results [26, 27] proven that QCNNs can have al-
most the same learning performance as CNNs on the MNIST [28] handwritten digits
classification dataset. However, the potential of obtaining a significant quantum ad-
vantage is still being investigated.
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Figure 3.5: Quanvolutions encoding and decoding. Based on Ref. [27].

3.1.3 Quantum generative adversarial networks
Generative adversarial networks [29] (GANs) refer to models that can generate new
data instances that look like original training data. Some of its most successful applica-
tions include creating visually-realistic images [30] or videos [31], and increasing image
resolution [32]. GANs are composed of a generator and a discriminator. The genera-
tor’s role is to generate synthetic data resembling the actual one, while the purpose of
the discriminator is to distinguish between the fake and real data.

At first, the generator model — provided with a usually random, drawn from data
distribution input — generates an artificial sample. Then, the discriminator model is fed
with an example taken either from the genuine input or from the generator. After that,
the discriminator classifies its input as either real or fake. Based on the discriminator’s
feedback, the generator gradually improves and produces more realistic samples. The
training process usually consists of alternating phases of updating the discriminator
and updating the generator. This procedure is repeated until the discriminator cannot
differentiate between true and false inputs. As a result, the generator is successfully
trained to imitate the original data [24].

Quantum Generative Adversarial Networks [33, 34] are a counterpart of their clas-
sical predecessor. The authors of [33] reviewed the main approaches to designing a
Quantum GAN (QGAN) :

• Data: quantum, generator: quantum, discriminator: quantum.
A fully quantum setting is as effective at learning to generate quantum data as a
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classical GAN is at learning to generate classical data.
• Data: quantum, generator: classical, discriminator: quantum/classical.

The classical generator might not be able to reproduce quantum data when a
quantum supremacy system produces the data.

• Data: classical, generator: quantum, discriminator: quantum.
In this setting, there is a possibility of observing a quantum advantage. A quan-
tum processor requires only log(N) qubits to represent a N -dimensional input
vector, and O(poly(log(N)) time to perform operations. Consequently, QuGANs
might be an alternative to GANs when the data is high-dimensional.

A closer inspection to implementing a fully quantum QGAN where both the gen-
erator and discriminator are trainable quantum circuits, and the data is quantum was
presented in [34]. The authors introduced a method to obtain a quantum version of
conditional GANs. As opposed to plain GANs, conditional GANs produce samples
conditional on a class label λ (conditional distribution). It allows controlling the types
of generated data. In the conditional QGAN, the generator is a parameterized quantum
circuit that takes as input two quantum states: a label and noise. The purpose of noise
is to provide entropy and control how the fluctuation of this parameter will affect the
output. The generator is also a parameterized quantum circuit and it aims is to output
a quantum state distinguishing whether the data is real or fake. Figure 3.6 depicts that
a conditional QGAN is like a GAN except for the fact that it operates on quantum
data (represented by Dirac notation |·〉).

Figure 3.6: Design similarities between GANs and QGANs. Based on Ref. [34].

3.2 Software
Although the software enabling to develop quantum algorithms was introduced a few
years ago, until recently, implementing quantum machine learning models was not an
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easy task. The challenge was to find a missing link between the design of quantum
circuits and neural networks. Classical neural networks are usually trained using the
backpropagation algorithm that is a particular case of automatic differentiation. Au-
tomatic differentiation refers to a set of techniques related to calculating derivatives
of numeric expressions in programs [35]. The most popular classical machine learning
libraries such as TensorFlow [36], PyTorch [37], and Theano [38] also use automatic dif-
ferentiation as their backbone. Consequently, the desired internal design of a quantum
machine learning library should also facilitate automatic differentiation that will enable
the training of hybrid quantum-classical neural networks. Below are described the most
current software tools for quantum machine learning except TensorFlow Quantum that
is described in Chapter 4.

PennyLane [39] is a Python quantum machine learning library developed by Xanadu.
It can perform optimization and machine learning tasks on quantum and hybrid quantum-
classical hardware. This library aims at being a quantum counterpart of classical ma-
chine learning libraries such as TensorFlow or PyTorch.

A PennyLane program is composed of classical and quantum submodules called
nodes. Each node can have tunable parameters — variables that are trained during
learning or optimization. Intending to solve deep learning problems, PennyLane uti-
lizes a differentiable programming paradigm to calculate gradients of quantum circuits
through automatic differentiation.

What distinguishes this library is that apart from its own environment and simulator
devices, it offers seamless integration with external quantum software and hardware
via plugins. There are twelve officially supported plugins to software development
kits/libraries incl. Google Cirq1, IBM Q2, Rigetti Forest3, Amazon Braket4, and IonQ5.
By design, it should be compatible with any gate-based quantum computing backend.
Additionally, PennyLane facilitates the co-design of quantum and classical nodes with
the top machine learning libraries — TensorFlow, PyTorch, and JAX [40].

Qiskit [41] is a quantum software development kit written in Python. It consists
of several components incl. Terra — the core of quantum programs, Ignis — tools
for experiments, Aer — quantum computing simulators, and Aqua (depreciated) —
application modules. Recently, Qiskit Aqua (Algorithms for QUantum computing Ap-
plications) has morphed into the following elements: chemistry, finance, optimization,
and machine learning. Although Qiskit’s machine learning module is in its early de-
velopment, it provides a basic QML circuits library and some sample datasets. It also
contains a predefined, universal interface that simplifies the creation of neural networks.

1https://quantumai.google/cirq/
2https://quantum-computing.ibm.com/
3https://www.rigetti.com/
4https://aws.amazon.com/braket/
5https://ionq.com/
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For the purpose of performing QML tasks, Qiskit Gradients Framework is used to cal-
culate derivatives with automatic differentiation. Additionally, Qiskit integrates with
PyTorch to facilitate creating hybrid quantum-classical models.

QuantumFlow [42] is a Python framework that offers a co-design of neural networks
and quantum circuits. Its power comes from providing a lot of out of the box compo-
nents. First of all, this framework has a few predefined layers that simplify composing
the neural computational model. Additionally, it supports the automated creation of
quantum circuits for defined quantum neural networks models. What is more, it pro-
vides a training environment that enables forward and backward propagation. It is
possible to integrate PyTorch for the network’s training.

Although this framework is not widespread, the proof of concept demonstrated a
network designed to classify the MNIST dataset that has very high accuracy (94.09%)
and reduces the cost 10.85 times compared to classical computer performance.

Yao [43] is a framework for developing quantum algorithms written in Julia. Its func-
tionality is based on a quantum block intermediate representation (QBIR). The QBIR
defines a quantum program using a domain-specific abstract-syntax tree, and as a re-
sult, provides a hardware-agnostic generalization of quantum circuits. By design, it
supports differentiable programming through a built-in engine. This framework effi-
ciently implements reverse and forward modes of automatic differentiation. It is also
possible to integrate it with an external automatic differentiation engine (e.g., Zygote
[44]), but its internal mechanisms are proven to be more efficient for very deep circuits.
Additionally, Yao uses batched quantum registers to store quantum states processed by
quantum circuits (possible parallelization on CUDA devices). This feature combined
with the QBIR enables efficient training of quantum machine learning models.

What differentiates this framework is the programming language it uses. The au-
thors chose Julia for many reasons:

• it is easy to write generic programs due to the dynamic type system and multiple
dispatch mechanism;

• it supports metaprogramming;
• it offers good integration with other programming languages;
• it enables high performance programming.
To summarize, a comparison of all the above-mentioned software solutions for QML

is presented in Table 3.1.
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Table 3.1: Quantum Machine Learning libraries.

SDK/Library PennyLane Qiskit QuantumFlow Yao

Institution Xanadu IBM University of
Notre Dame

QuantumBFS

Language Python Python Python Julia

Integrated
external ML
tools

TensorFlow TensorFlow,
PyTorch

PyTorch Zygote

Possible quan-
tum hardvare
integration?

Yes Yes Yes Yes

Open Source? Yes Yes Yes Yes

Implements
Automatic
Differentia-
tion?

Yes Yes Yes Yes

3.3 Summary
Quantum machine learning has the potential of becoming one of the first near–term
applications that can provide a quantum advantage. For NISQ era devices, the most
promising approach is building hybrid quantum-classical machine learning models since
they allow combining the power of both quantum and classical approaches and bene-
fiting from the extended hardware resources.

Although this chapter has focused on a few QML libraries, an overview of the
framework being the main subject of this thesis is presented in the next chapter.
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Chapter 4

Overview and Assessment of
TensorFlow Quantum

This chapter introduces TensorFlow Quantum — an open-source quantum machine
learning framework developed by Google. The first part of this chapter focuses on the
design of this framework, while the second contains its assessment.

4.1 Design
To enable hybrid quantum-classical machine learning, TensorFlow Quantum [9] (TFQ)
bridges the capabilities of two other Google products: Tensorflow [36] (TF) — one
of the top machine learning libraries for classical data and Cirq [45] — a quantum
programming framework. As a result, TFQ enables the rapid creation of machine
learning models for both classical and quantum data.

Architecture. The TFQ architecture by design enables interleaving interactions be-
tween components of TensorFlow Quantum with components of TensorFlow and Cirq,
cf. Figure 4.1. At the top of the software stack is data. TensorFlow is responsible for
handling classical data, and TensorFlow Quantum adds the functionality of process-
ing quantum data. The following two layers represent the ability to compose neural
network models (Keras models) consisting of classical and quantum layers. TF Keras
can manage automatic differentiation, but it also needs the TFQ module to perform
automatic differentiation on quantum data. The next layer incorporates TF and TFQ
Operations that enable conducting computations on Tensors (multidimensional arrays).
Tensors are the core computational elements of TF, so it was crucial for TFQ to provide
the functionality of expressing quantum circuits and Hamiltonian operators as tensors.
The components of the next layer denote that the execution of quantum parts of the
model can be simulated either using the Cirq’s simulator or simulator provided by TFQ
– qsim. Additionally, the bottom layer representing hardware indicates the possibility
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of circuit execution on an actual quantum processing unit (QPU).

Figure 4.1: TensorFlow Quantum’s software and hardware stack. The green boxes
depict elements from TensorFlow, the yellow boxes represent TFQ elements, and the
blue boxes symbolize hardware. Framework Cirq (the gray box) is mainly responsible

for preparing quantum circuits. Based on Ref. [9].

Hybrid quantum-classical neural network model. Quantum neural networks can
take as input classical or quantum data. When it comes to the classical data, it can be,
e.g., imported from some external source. However, with the current state of quantum
technology, quantum data should be directly generated with the use of quantum circuits.

Figure 4.2 presents an example connection between two layers of a hybrid neural
network. The values of neurons in the Layer i are obtained after the measurement of
the quantum circuit parameterized with some values Φ. In classical neural networks,
the trainable parameters are weights and biases (θ). However, in quantum-classical
neural networks, trainable elements also include parameter values of the parameterized
quantum circuit.

One of the crucial steps in training the hybrid quantum-classical neural network is
evaluating the cost function (Lθ,Φ). Having calculated the cost function its gradients for
both classical and quantum parameters can be determined (assuming that a gradient
optimization method is used to update the parameters). Then, the parameters can be
adequately updated.

In classical neural networks, the loss function measures the model performance;
the lower the cost function, the more accurate the model’s outcomes. When using a
gradient-based optimization method, the cost function gradients enable determining
the direction of tuning the network’s parameters.
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Figure 4.2: Quantum data generated by the PQC is extracted through measurement
and then post-processed by the neural network layers. Based on Ref. [9].

In the quantum case, an expectation value of the parameterized quantum circuit can
be interpreted as the loss function since it directly depends on the circuit parameters
values (cf. Eq. 2.3.18). The expectation value of an observable is an average value of all
the results obtained from many repetitions of measuring this observable (on duplicates
of the initially prepared quantum system). TFQ defines a few differentiation methods,
one of the most frequently used is the parameter shift rule. Under certain assumptions,
the parameter shift rule states that the derivative of the expectation value E(Φ) with
regard to the gate parameter Φ can be expressed as [46]

d

dΦE(Φ) = r[E(Φ + π

4r )− E(Φ− π

4r )], (4.1.1)

where r is the shift coefficient. One of the most significant advantages of this method
is that the same form of the quantum circuit can be used to calculate the expectation
function value and its gradient.

4.2 Evaluation
TensorFlow Quantum is a multi-purpose quantum machine learning library. There are
many potential areas of applications, including, but not limited to, scientific research,
benchmarking, exploration of new concepts, and development of personal projects. Be-
low are discussed the most important aspects and features of this library.
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Integration with TensorFlow. TFQ flawlessly integrates with TF — both high-level
Keras Application Programming Interface (API) and TFQ API (cf. Table 4.1) can be
utilized. As a result, creating complex hybrid neural network models with alternating
quantum and classical layers is very fast.

One of the most important features is that TFQ has methods that convert quantum
data into TF tensors representation. Another remarkable aspect is that the outputs of
quantum measurements can be directly supplied to a classical network. Moreover, the
automatic differentiation of hybrid quantum-classical computations is supported and
the same classical optimizers can be used to optimize quantum and classical parameters.

Table 4.1: TensorFlow Quantum modules.

Module name Description

Tfq General-purpose methods.

Datasets Location for quantum circuits that can be used as
datasets.

Differentiators Implementations of hybrid quantum-classical automatic
differentiation schemes.

Layers Definitions of quantum layers.

Math Supplementary mathematical operations.

Noise Methods for the purpose of noisy simulation.

Optimizers Structure optimizations of quantum circuits.

Util Module for helper functions.
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Access to quantum devices and simulators. TFQ offers a very efficient quantum
simulator – qsim. Qsim is much faster than Cirq’s quantum simulator, but either of
them can be used as a backend to simulate quantum circuits on classical computers.

The TFQ’s design (cf. Fig. 4.1) enables the possibility of using quantum hardware
as the backend. Fantastic though the option of using QPU might seem, currently Google
restricts access to its quantum hardware and hardware from two other companies (AQT
and Pasqal) only to selected partners. However, since June 2021, it is possible to access
an 11-qubit quantum computer created by the company IonQ via a paid subscription
on Google Cloud.

Nevertheless, taking into account that quantum simulations on classical computers
have exponential overhead, only algorithms with a limited number of qubits can be
tested. From this perspective, using IBM’s Qiskit or PennyLane with Qiskit plugin
might be a better idea since IBM Quantum Services offer a few free, publicly available
quantum systems.

Ease of use is a significant factor that has a notable influence on the library’s success.
The features that affect the programming experience in TFQ are presented in Table
4.2.

Table 4.2: Aspects of TFQ that affect the software development experience.

Aspect Overview

Installation TFQ can be installed using Python’s package manager pip
or built from the source. Additionally, this library can be
used interactively in a browser via Google Colab or Jupyter
Notebooks.

Language TFQ is a Python library, so it eliminates the necessity of
learning a domain-specific programming language.

Documentation TFQ has comprehensive documentation full of helpful code
snippets. This library is open-source, so it is easy to explore
the codebase.

Community and support There is no community dedicated strictly to TFQ. There
exist a very active TF forum, and the questions related to
TFQ can be asked there. Also, issues such as bugs or new
ideas can be reported on GitHub, where the code is stored.
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Applications. TFQ provides minimal working implementations for many cutting-
edge hybrid quantum-classical algorithms. Selected examples of algorithms that were
implemented with TFQ are overviewed in Table 4.3.

Table 4.3: Algorithms implemented in TFQ.

Algorithm Description Inspired
by

MaxCut QAOA Example of optimizing variational param-
eters of the QAOA for the maximum cut
problem.

[8]

Quantum Convolutional
Neural Network

Implementation of a quantum version of
the convolutional neural network.

[25]

Meta-Learning for QAOA Use of recurrent neural networks
to find initialization parameters for the
QAOA.

[47]

Binary classification of
quantum states

Classifying elements derived from two
different quantum data sources.

[48]

MNIST classification Using a hybrid quantum-classical neural
network to classify classical data.

[49]

Parameterized Quantum
Circuits for Reinforcement
Learning

Implementation of quantum reinforce-
ment learning algorithm for the cart-pole
balancing problem [50].

[51], [52]

Entangling Quantum Gen-
erative Adversarial Net-
works

Implementation of a new architecture for
generative adversarial networks.

[53]

Barren plateaus Examining the problem of barren plateaus
which refers to the situation when the
gradient of quantum neural network be-
comes extremely small during the training
of quantum neural network.

[54]

Layerwise learning for
quantum neural networks

Investigating the results of the layerwise
learning technique for improving the re-
sults of training quantum neural networks
and avoiding barren plateaus.

[15]
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Considering the collection of available implementations of research papers, as of
June 2021, TFQ has a much larger amount of tutorials than Qiskit ML1, and similar
number of tutorials to PennyLane2.

4.3 Detailed assessment plan
Based on the above analysis of the TFQ features, we propose a plan for evaluating this
library. In order to assess the actual possibilities of TensorFlow Quantum, the aim of
investigating the implementation of the Quantum Approximate Algorithm was chosen.
First of all, the QAOA is considered one of the most prospective quantum algorithms
for near-term quantum devices [55]. It is believed that the advancements provided
with this algorithm can lead to achieving quantum supremacy [56], so it is beneficial
to evaluate whether TFQ is suitable for implementing this algorithm. Secondly, there
are out-of-the-box methods that help with the construction of the QAOA developed in
other frameworks, e.g., Qiskit3 (albeit they do not utilize quantum machine learning
features) and PennyLane4, but there are not any in Google Cirq or TFQ.

What is worth noting is that Cirq provides a tutorial on implementing the QAOA5.
Nevertheless, this implementation lacks the use of a more advanced classical optimizer
(optimizers are not natively included in Cirq) — it just performs a grid search over spec-
ified parameter values. Similarly, the existing implementation of the QAOA in TFQ6

introduces only a basic quantum neural network that cannot solve complex problems.
For this reason, Chapter 5 describes how to express the combinatorial optimization
problem of the Traveling Salesman to solve it with the QAOA, and Chapter 6 provides
an investigation of the feasibility of performing the QAOA in TFQ. The Traveling
Salesman Problem was chosen because this problem is often used as a benchmark for
optimization methods [57].

4.4 Summary
TensorFlow Quantum is a hybrid quantum-classical machine learning library that en-
ables the creation of models composed of both quantum and classical components. This
chapter provided a discussion of this library in terms of its design and core features.
Additionally, a detailed plan of assessing TFQ was described, and the following chapters
are dedicated to its realization.

1https://qiskit.org/documentation/machine-learning/
2https://pennylane.ai/qml/demos_research.html
3https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.QAOA.html
4https://pennylane.readthedocs.io/en/stable/code/qml_qaoa.html
5https://quantumai.google/cirq/tutorials/qaoa
6https://github.com/tensorflow/quantum/tree/research/qaoa
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Chapter 5

Traveling Salesman Problem

This first part of this chapter presents the definition of the Traveling Salesman Problem
— one of the NP-hard combinatorial optimization problems. The second part of this
chapter describes how to create a parameterized quantum circuit that will be utilized
as one of the layers in the hybrid quantum-classical neural network model used for
experiments in Chapter 6.

5.1 Problem formulation
For the purpose of presenting a solution based on the QAOA, an NP-hard combinatorial
optimization traveling salesman problem (TSP) was chosen. The TSP is defined as
follows ”find a path through a weighted graph that starts and ends at the same vertex,
includes every other vertex exactly once, and minimizes the total cost of edges” [58].
To solve this problem with the QAOA, it is necessary to encode it into a Hamiltonian.
However, before the problem can be presented in the form of the Hamiltonian, the
intermediate, auxiliary step is to express it in the form of QUBO (cf. Sec. 2.3 and Eq.
2.3.12 – 2.3.13).

Assume that (cf. Eq. 2.3.1 – 2.3.4)
• N — cities amount;
• X = [xi,t]NxN , — Boolean matrix, where

xi,t =
1, if the salesman visits the city i at the timestamp t,

0, otherwise;

• D = [di,j]NxN — symmetric matrix of distances between cities, if i = j then
di,j = 0.
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1. The cost function B expresses the sum of costs for each taken path. The number
of cities is equal to the number of timestamps.

B =
N−1∑
i,j=0
i 6=j

di,j
N−1∑
t=0

xi,txj,t+1. (5.1.1)

2. Constraints A1 and A2 ensure the solution’s correctness. If the solution is incorrect
a suitable penalty is added.
(a) Each city i should be visited exactly once.

A1 =
N−1∑
i=0

(1−
N−1∑
t=0

xi,t)2 (5.1.2)

(b) At each timestamp t the salesman should be in exactly one city.

A2 =
N−1∑
t=0

(1−
N−1∑
i=0

xi,t)2 (5.1.3)

The task is to minimize the weighted sum [59]

QUBOC = a · A1 + a · A2 + b ·B (5.1.4)

= a
N−1∑
i=0

(1−
N−1∑
t=0

xi,t)2 + a
N−1∑
t=0

(1−
N−1∑
i=0

xi,t)2 + b
N−1∑
i,j=0
i 6=j

di,j
N−1∑
t=0

xi,txj,t+1,

where 0 < b · maxi 6=j(di,j) < a.
The weights a, b enable balancing the importance of particular components. Also, to
simplify operations on indices, it is assumed that if t = N − 1 then t+ 1 −→ 0.

To translate the QUBOC into the Hamiltonian it is necessary to express the city
indices by a single number instead of a pair of numbers, and substitute all xi,j values
according to Property 2.3.11

xi,t ←→
I − Zk

2 , (5.1.5)

where k = i+ t ·N is the qubit index.
Additionally,

1←→ I. (5.1.6)
Therefore, the Hamiltonian requires N2 qubits and has the following form

HC = a
N−1∑
i=0

(
I −

N−1∑
t=0

I − Zk
2

)2

+ a
N−1∑
t=0

(
I −

N−1∑
i=0

I − Zk
2

)2

+

+ b
N−1∑
i,j=0
i 6=j

di,j
N−1∑
t=0

I − Zk
2 · I − Zk

′

2 .
(5.1.7)
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5.2 Parameterized quantum circuit
With the aim of understanding how a parameterized quantum circuit is generated,
below is presented an example of translating the TSP Hamiltonian into a circuit. To
make it concise, a trivial instance of the problem is taken — the case of only two cities.
Nevertheless, the method for translating cases of larger problems remains analogous.

Based on Equations 2.3.15, 2.3.16 that define the layers of the QAOA circuit ansatz,
it is essential to evaluate the expressions UC(γ) and UM(γ) for the proper Hamiltonians.
At first, we will focus on obtaining UC(γ). The cost Hamiltonian expression for the case
of two cities (considering the computational basis {|00〉 , |01〉 , |10〉 , |11〉}) is derived in
Appendix A (Sec. A.1), and its final form is

HC = (2a+ b · d0,1)I+

+ a
(
Z0Z2

2 + Z1Z3

2 + Z0Z1

2 + Z2Z3

2

)
+

+ b · d0,1

(
−Z0

2 −
Z1

2 −
Z2

2 −
Z3

2 + Z0Z3

2 + Z1Z2

2

)
.

(5.2.1)

The parameters a, b correspond to the weights from Equation 5.1.4 and d0,1 = d1,0 is
the distance between the cities.

Based on the Hamiltonian HC , UC(γ) can be expressed as an expression of com-
mutable terms

UC(γ) = e−iγHC

= exp
(
−iγ

(
(2a+ b · d0,1)I + a

Z0Z2

2 + · · ·+ b · d0,1
−Z0

2 + · · ·+ b · d0,1
Z1Z2

2

))
= exp(−iγ(2a+ b · d0,1)I) · exp

(
−iγaZ0Z2

2

)
· ... · exp

(
−iγbd0,1

−Z0

2

)
·

· exp
(
−iγbd0,1

Z1Z2

2

)
.

(5.2.2)
Dropping the coefficients and qubit indices, it can be observed that UC(γ) consists of
three types of components. Each of them can be translated into a set o basic quantum
gates acting on proper qubits.

The first component e−iγI can be decomposed as follows

e−iγI = exp

[
−iγ

[
1 0
0 1

]]
= e−iγI

(5.2.3)

and omitting the global phase its circuit equivalent is

e−iγI ≡ I = .
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However, the automatic decomposition available in TensorFlow Quantum results in:

e−iγI ≡ X Rz(−γ/π) X Rz(−γ/π)

always acting on the first qubit. This decomposition seems to not be necessary since is
equal to performing the Identity gate

Rz

(−γ
π

)
XRz

(−γ
π

)
X =

[
e−i

γ
2π 0

0 ei
γ

2π

] [
0 1
1 0

] [
e−i

γ
2π 0

0 ei
γ

2π

] [
0 1
1 0

]

=
[
1 0
0 1

]
= I.

(5.2.4)

The second component e−iγ−Z2 can be expressed as

e−iγ
−Z

2 = exp

[
i
γ

2

[
1 0
0 −1

]]

=
[
ei
γ
2 0

0 e−i
γ
2

]
= Rz(−γ)

(5.2.5)

and its circuit representation is

e−iγ
−Z

2 ≡ Rz(−γ) .

The third component e−iγ ZZ2 can be represented as

e−iγ
ZZ

2 = exp

[
−iγ2

[
1 0
0 −1

]
⊗
[
1 0
0 −1

]]

= exp

−iγ2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




=


e−i

γ
2 0 0 0

0 ei
γ
2 0 0

0 0 ei
γ
2 0

0 0 0 e−i
γ
2


= CNOT · (I ⊗Rz(γ)) · CNOT

(5.2.6)

and its circuit equivalent is (cf. Sec. A.2.1)

e−iγ
ZiZj

2 ≡ |xi〉 • •
|xj〉 Rz(γ)
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Additionally, the standard mixing Hamiltonian UM(γ) is Rotation-X gate

UM(γ) = e−iγX = Rx(2γ) (5.2.7)

with the circuit representation

e−iγX ≡ Rx(2γ) .

In TensorFlow Quantum the mixing Hamiltonian is decomposed into an equivalent set
of gates (cf. A.2.3)

e−iγX ≡ H Rz(2γ) H .

Based on all of the above derivations of UC(γ) and UM(β), Figure 5.1 presents the
QAOA circuit ansatz for the Traveling Salesman Problem.

5.3 Summary
This chapter presented how to translate the QUBO definition of the Traveling Salesman
Problem into the Hamiltonian form and then into the parameterized quantum circuit
that can be used as the Quantum Approximate Optimization Algorithm ansatz. In
Chapter 6, the prepared parameterized quantum circuit will be used for creating the
core layer for the hybrid quantum-classical neural network model.
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Chapter 6

Experiments

In this chapter, two experiments based on a hybrid quantum-classical neural network
are presented. The first experiment examined the possibility of minimizing the expec-
tation value for a single Traveling Salesman Problem instance. The second experiment
investigated the generalization abilities of a hybrid neural network. The experiments
were executed on the supercomputer Prometheus1 (via access provided by the Academic
Computer Centre Cyfronet AGH).

6.1 Optimization task
This experiment was aimed at obtaining correct solutions for a single instance of the
Traveling Salesman Problem using the Quantum Approximate Optimization Algorithm.
The main task of the QAOA is finding optimal values of the variational parameters
(angles γ1, . . . , γp and β1, . . . , βp) that minimize the expectation value of the problem’s
Hamiltonian, cf. Equation 5.1.7. The minimal working example of the QAOA imple-
mentation provided by the Google team (cf. Tab. 4.3) was proposed for an easier
problem — maximum cut and was not powerful enough to solve the TSP (unless nearly
optimal values of variational parameters are provided as initial values, but it was al-
most unfeasible to guess them). The suggested neural network model consisted of a
single Parameterized Quantum Circuit Layer and, as a result, had only 2p trainable
parameters (p — the number of layers in the QAOA ansatz), which turned out not
enough for optimizing more complex problems.

To solve the TSP with the QAOA, we proposed a hybrid quantum-classical neural
network model that minimized the expectation value of the problem’s Hamiltonian by
optimizing the parameters of the TSP’s parameterized quantum circuit, cf. Eq. 2.3.19
– 2.3.20. Below are presented steps needed to achieve this task.

1https://www.cyfronet.pl/en/computers/15226,artykul,prometheus.html
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6.1.1 Data preparation and encoding
The first step was to create a single instance of the TSP problem. Since the algorithm
was executed on a quantum simulator, its complexity was exponential (O(2N2)). For
this reason, a feasible example to solve consisted of four cities (N = 4). The matrix
of distances between cities was determined as the Euclidean distance between the city
coordinates. The distance value was used as a coefficient in the Hamiltonian thus had
a significant impact on the expectation value. From the perspective of optimizing the
expectation value, it was beneficial to limit the range of distances between cities. The
normalization prevented having very small values of distances (a case of close cities).
What could have been normalized were either the city coordinates or distances between
the cities. The option of normalizing the city coordinates was selected. Assuming that
xmax — maximum value of the x coordinate from all the selected city coordinates (x, y)
ymax — maximum value of the y coordinate from all the selected city coordinates (x, y),
the normalized coordinates were

(x′, y′) = (x/xmax, y/ymax). (6.1.1)

Table 6.1 contains four pairs of randomly chosen city coordinates (x, y), 0 ≤ x, y ≤
10000 and its normalized coordinates.

Table 6.1: Coordinates of the four cities randomly selected for the TSP.

City identifier City coordinates (x, y) Normalized city coordinates
(x′, y′)

0 (8105, 6018) (1.0000 , 0.6053)
1 (2151, 3824) (0.2654, 0.3846)
2 (359, 5493) (0.0443, 0.5525)
3 (1935, 9942) (0.2387, 1.0000)

This normalization enabled to have the matrix of distances with different values in
range (0,

√
2).

After performing the city coordinates normalization, the distance matrix was cre-
ated. The elements of Table 6.2 were used for calculating the cost Hamiltonian.

Table 6.2: Distances between normalized city coordinates, where i, j are city
identifiers.

i
j 0 1 2 3

0 0.0 0.7670 0.9572 0.8575
1 0.7670 0.0 0.2776 0.6159
2 0.9572 0.2776 0.0 0.4879
3 0.8575 0.6159 0.4879 0.0
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To convert the integer representation of the solution to binary representation, one-
hot encoding of the selected city in each timestamp was used. For example, one-hot
encoding for the cycle 2→ 3→ 0→ 1→ 2 was as follows

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
timestamp 0 timestamp 1 timestamp 2 timestamp 3

Table 6.3 presents mapping of timestamp, city identifiers to qubit indices in accordance
with Property 5.1.5.

Table 6.3: Translation of timestamp-city index to qubit index.

timestamp 0 1 2 3
city 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

qubit index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6.1.2 Quantum neural network
To create the parameterized quantum circuit that was used in the hybrid quantum-
classical neural network model, it was necessary to construct the cost and mixer Hamil-
tonians (cf. Sec. 5.2). One of the challenges was determining the cost Hamilto-
nian’s coefficients a and b (Eq. 5.1.7). The condition for Eq. 5.1.4 states that
0 < b · maxi 6=j(di,j) < a (cf. Table 6.2). Assuming that b = 1.0 was fixed, then
b ·maxi 6=j(di,j) ≈ 0.9571⇒ 0.9571 < a. Considering only the correct solutions, the up-
per bound of the cost function value B (Eq. 5.1.1) was 2 + 2

√
2 ≈ 4.82 (the maximum

value of the cycle length between four cities selected from the square of length 1) . As
a result, we assumed that 0.9571 < a ≤ 4.82. To make a reasonable choice of the pa-
rameter a, an external tool [60] for calculating the eigenvalues of the cost Hamiltonian
was used. The aim of using this tool was to calculate the energies of all the possible
solution states for the specified matrix of city distances. Using the grid search method
it was determined that a = 4 provides a significant gap between energies of correct
and incorrect solution states. When it comes to the mixing Hamiltonian, the simplest
version that consists of a single Pauli-X gate applied on each qubit was used (cf. Eq.
2.3.14).

Having determined the cost Hamiltonian HC and the mixing Hamiltonian HM , the
operators UC(γ) and UM(β) (cf. Eq. 2.3.15, 2.3.16) were automatically translated into
the parameterized quantum circuit by TFQ. The obtained circuit had to be prepended
with the layer of the Hadamard gates to initialize the superpositions of all computational
basis states. After all these operations, this circuit was used as the QAOA ansatz, cf.
Figure 2.6.

When it comes to the neural network model, we proposed a feedforward quantum
neural network (cf. Sec. 3.1.3) that consisted of an input layer with 2p neurons, a hidden
layer with 2p neurons, and an expectation layer, cf. Figure 6.1. The design of this net-

44



work was based on the fact that the input (initial values of the angles γ1, β1, . . . , γp, βp)
had 2p parameters and the expectation layer also needed to receive 2p parameters.
The intermediate hidden layer extended the number of trainable parameters thus the
capacity of this network was increased.

Figure 6.1: Feedforward neural network for optimizing the QAOA’s input parameters.
The expectation layer is a TFQ layer that outputs classical information based on the

measurement of a quantum state. This layer as input receives a parameterized quantum
circuit, the problem’s Hamiltonian, and trainable values of the circuit’s parameters.
Supplied with this data, it then prepares a quantum state and outputs its expectation
value. Figure 6.2 visualizes the components of an expectation layer.

Figure 6.2: Expectation layer with a parameterized quantum circuit.
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The power of the QNN optimization feature lies in the choice of the optimization
routine. We chose a very efficient, gradient-based optimization algorithm — Adam [61]
with the learning rate value 0.01. The role of the optimizer is to minimize the loss value
(output of the neural network), which in the case of our quantum neural network was
the expectation value.

The initial values (γ, β) should be chosen from the following ranges γ ∈ [0, 2π]p, β ∈
[0, π]p. Using the trial-and-error method, it was determined that a good guess of initial
values is zeros.

6.1.3 Results
What we wanted to observe was the impact of changing the value of p on the expectation
value and the number of correct solutions for a single instance of the TSP problem. It
is presumed that with the increase of the value of p, the expectation value gets closer
to the optimal value [56]. For this purpose, we conducted experiments with the value
of p ∈ {1, . . . , 10}.

Based on the observation of the training process, it was determined that it is suf-
ficient to execute the optimization algorithm 250 times (the optimization process con-
sisted of 250 epochs). Figure 6.3 presents the changes of loss/expectation value for the
case of the QAOA circuit ansatz for p = 10 (10 layers). The attempt to minimize the
expectation value was successful since its value dropped from above 70 to around 3.6.
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(a) Training loss for the entire training consisting of
250 epochs.
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(b) Zoom on the training loss for the last 100
training epochs.

Figure 6.3: Training loss for the optimizing quantum neural network for p = 10.

After the optimization process, the obtained values of the angles γ1, . . . , γp and
β1, . . . , βp were supplied to the parameterized quantum circuit and then the circuit was
sampled for the solution binary strings 216 times. The results are presented in Table
6.4.
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Table 6.4: Results of sampling binary strings from the circuit with p = 10. In total,
there were returned 1741 solutions out of the space of 216 possible solutions. A

significant gap between the number of occurrences of correct and incorrect solutions
could be observed.

No. Sampled binary
string

Order of visiting
cities

Number
of occur-
rences

Correct
solu-
tion?

Optimal
solu-
tion?

1 0010 0100 1000 0001 2 → 1→ 0→ 3→ 2 2754 Yes Yes
2 0100 1000 0001 0010 1 → 0→ 3→ 2→ 1 2717 Yes Yes
3 1000 0001 0010 0100 0 → 3→ 2→ 1→ 0 2709 Yes Yes
4 0100 0010 0001 1000 1 → 2→ 3→ 0→ 1 2664 Yes Yes
5 1000 0100 0010 0001 0 → 1→ 2→ 3→ 0 2660 Yes Yes
6 0001 1000 0100 0010 3 → 0→ 1→ 2→ 3 2623 Yes Yes
7 0010 0001 1000 0100 2 → 3→ 0→ 1→ 2 2584 Yes Yes
8 0010 1000 0001 0100 2 → 0→ 3→ 1→ 2 2574 Yes No
9 0001 0010 0100 1000 3 → 2→ 1→ 0→ 3 2570 Yes Yes
10 0100 0001 1000 0010 1 → 3→ 0→ 2→ 1 2569 Yes No
11 1000 0010 0001 0100 0 → 2→ 3→ 1→ 0 2537 Yes No
12 0001 0100 1000 0010 3 → 1→ 0→ 2→ 3 2531 Yes No
13 0100 0001 0010 1000 1 → 3→ 2→ 0→ 1 2531 Yes No
14 1000 0010 0100 0001 0 → 2→ 1→ 3→ 0 2492 Yes No
15 0001 0100 0010 1000 3 → 1→ 2→ 0→ 3 2474 Yes No
16 0100 1000 0010 0001 1 → 0→ 2→ 3→ 1 2467 Yes No
17 0001 0010 1000 0100 3 → 2→ 0→ 1→ 3 2461 Yes No
18 0001 1000 0010 0100 3 → 0→ 2→ 1→ 3 2441 Yes No
19 1000 0001 0100 0010 0 → 3→ 1→ 2→ 0 2418 Yes No
20 0100 0010 1000 0001 1 → 2→ 0→ 3→ 1 2400 Yes No
21 1000 0100 0001 0010 0 → 1→ 3→ 2→ 0 2389 Yes No
22 0010 0001 0100 1000 2 → 3→ 1→ 0→ 2 2369 Yes No
23 0010 0100 0001 1000 2 → 1→ 3→ 0→ 2 2368 Yes No
24 0010 1000 0100 0001 2 → 0→ 1→ 3→ 2 2346 Yes No
25 0000 1000 0100 0001 constraints violated 41 No No
26 0000 0100 1000 0010 constraints violated 36 No No
... ... ... ... ... ...
1740 0000 0101 1000 0011 constraints violated 1 No No
1741 0111 1000 0001 0001 constraints violated 1 No No
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Table 6.5 presents results for different number of variational layers p. With the
increasing value of p, the number of correct solutions came closer to 100%, and the
loss/expectation value that was minimized approached the optimal value of 2.39 (the
shortest cycle length). The closer the loss value to the optimal value, the higher the
number of correct solutions.

Table 6.5: Result of optimizing the cost of the QAOA with different numbers of
variational layers for the optimization experiment.

Number of variational
layers p

Loss value Correct solutions [%]

1 17.0728 2.42
2 14.0526 5.63
3 10.4777 16.6
4 9.3789 24.47
5 8.6068 31.58
6 7.1554 55.14
7 5.9443 70.41
8 4.5044 86.01
9 3.7726 91.67
10 3.6044 92.54

6.2 Generalization task
One of the major assets of a successfully trained neural network is its ability to generalize
well to unseen data. In this experiment, we checked whether it is possible to obtain a
hybrid quantum-classical neural network that, after training on many instances of the
Traveling Salesman Problem, will yield proper angles (γ, β) for an unseen instance of
the TSP.

To create training data, 1000 different sets of four pairs of city coordinates were
created. As in the optimization experiment (cf. Sec. 6.1), these coordinates sets were
normalized, and then 1000 matrices of distances between normalized city coordinates
were obtained. Next, this collection of distance matrices was split into training data
(800 samples), validation data (100 samples), and test data (100 samples). The training
data was used for training the network, the validation data for diagnosing the learning
performance during training, and the test data for evaluating the model after training.
To enable comparing the performance of the approaches from optimization and gener-
alization experiments, these experiment results were obtained separately for different
depths (p ∈ {1, . . . , 10}) of the QAOA ansatz.
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The first steps of preparing this experiment — data preparation and encoding,
and the quantum neural network creation — were very similar to the ones in the
optimization experiment (cf. Sec. 6.1.1 – 6.1.2). The only difference was that here, for
each value of p ∈ {1, . . . , 10} the training set consisted of 1000 input samples instead
of one input sample. E.g., for p = 1, there were 1000 cost Hamiltonians and associated
with them 1000 parameterized quantum circuits of depth 1 (one variational layer), for
p = 2, different 1000 cost Hamiltonians and associated with them 1000 parameterized
quantum circuits of depth 2 (two variational layers), etc.

When it comes to the hybrid quantum-classical neural network model, it consisted
of five layers: an input layer with 2p neurons, two hidden layers with 32 neurons each,
a hidden layer with 2p neurons, and an expectation layer, cf. Figure 6.4. Based on an
educated guess, it was determined that adding two hidden layers with 32 neurons to the
model presented in Sec. 6.1.2 would create a new model suitable to learn to identify
the patterns hidden in the data. To prevent the problem of overfitting (performing
very well on training data and poorly on testing data), the regularization technique
called dropout [62] (ignoring randomly picked neurons in the training phase) was used.
The dropout rate was 0.2, and it was applied after the first and second hidden layers.
Additionally, in the hidden layers number 1 and 2 the Rectified Linear Unit (ReLU)
[63] activation function (which specifies the way of transforming neuron inputs into a
neuron output) was applied.

Figure 6.4: Feedforward neural network used in the generalization experiment.
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The training algorithm consisted of 60 epochs (every training data instance is pro-
cessed once in an epoch). Moreover, to enable using mini-batch updates (updating
the network’s parameters after seeing a small subset of the data set) the training data
was divided into 25 mini-batches of size 32. As in the previous experiment, the Adam
optimization method was used with the learning rate 0.01. Initially, all input angles
were set to zeros.

Figure 6.5 presents the learning curves for the case of p = 10. The training/ex-
pectation loss has decreased from around the value of 22.5 to 3 and reached a stage of
stability. The validation loss reflects the network’s performance during training. Based
on these curves, it was determined that 60 epochs of training were sufficient (the vali-
dation loss also reached a stage of stability, and the gap between the training loss and
validation loss was minimal).

Table 6.6 presents the results of training the network. The training loss estimates
the QAOA’s expectation value on the training data, and the test loss estimates the
expectation value on testing data. Both of the losses are of similar value, so it means
that the network performed well on new data. The last column represents the percent
of correct solutions for a selected new test case with the same city coordinates as in the
first experiment (it was ensured that this test case was not in the training data).

Table 6.6: Result of optimizing the cost of the QAOA with different numbers of
variational layers for the generalization experiment.

Number of
variational
layers p

Training loss
value

Test loss value Correct solutions
for the selected
test-case [%]

1 17.0211 17.0446 2.31
2 13.9815 14.0100 5.98
3 10.4129 10.4418 16.57
4 9.0603 9.0859 27.04
5 7.5826 7.6183 48.99
6 5.4289 5.4602 75.44
7 4.3094 4.3414 87.09
8 3.9094 4.3414 90.57
9 3.4846 3.5141 92.56
10 3.0803 3.1221 96.22
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Figure 6.5: Learning curves for the QAOA circuit with p = 10.

6.3 Summary
All in all, the conducted experiments demonstrated that TensorFlow Quantum could be
successfully used for minimizing the cost function of a parameterized quantum circuit for
a combinatorial-optimization problem. Furthermore, the results of both experiments,
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when tested on the same problem instance, yield similar results, cf. Figure 6.6. However,
the advantage of the network from the generalization experiment is that after it is
trained, it immediately returns a result for new data (while in the model from the
optimization experiment, the training process needs to be executed anew for each new
data instance).
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(a) Training losses with respect to the QAOA circuit’s
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Figure 6.6: Comparison of the optimization and generalization experiments results.
The network from the generalization experiment yields considerably better outcomes

for the p ∈ {5, 6, 7}, but for the other values of p no significant difference can be
observed.

As expected, the results indicate that the greater the value of p, the lower the training
loss and the higher the number of correct solutions.
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Chapter 7

Conclusion

In this chapter, we summarize the thesis. At first the overview of the achieved goals is
provided. The last section outlines the possible future research directions.

7.1 Summary
It is thought that TensorFlow has accelerated the research in the field of classical
machine learning. For this reason, the authors of TensorFlow Quantum believe that
the developed by them library will bring more attention to the field of hybrid quantum-
classical machine learning. Therefore, the main purpose of this work was to provide
an assessment of the capabilities of the TensorFlow Quantum library, especially in the
context of the objectives defined in Section 1.2.

TensorFlow Quantum outline. Before introducing TensorFlow Quantum, Google
has been offering the TensorFlow library for machine learning and Cirq for quantum
computing. However, it was impossible to create hybrid quantum-classical machine
learning models using only these libraries. A software solution that bridges the capa-
bilities of TensorFlow and Cirq was needed. As a consequence, TensorFlow Quantum
emerged as the missing link.

First of all, TensorFlow Quantum seamlessly integrates with TensorFlow and Cirq,
which significantly accelerates the creation of both classical and quantum parts of the
machine learning model. TFQ offers access to quantum devices and simulators. How-
ever, the publicly available paid quantum device has only 11 qubits, so to solve the
problems that require a larger number of qubits, it might be necessary to use high-
performance computing systems for running simulations. When it comes to the pro-
gramming experience, TFQ can be perceived as relatively easy to use since it provides
a high-level API, has comprehensible documentation, and is open-source.

Investigation of quantum algorithms feasible to implement. Since TFQ allows
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automatic differentiation for hybrid quantum-classical models, many quantum neural
network types inspired by classical neural networks can be implemented. TFQ offers
a repository of tutorials that contains a variety of minimal working implementations
for many cutting-edge algorithms, incl. quantum classifiers, quantum convolutional
neural networks, quantum generative adversarial networks, and quantum reinforcement
learning. Based on the analysis of existing implementations, TFQ features, and the most
prospective NISQ era algorithms, it was determined that the Quantum Approximate
Optimization Algorithm is a good choice for investigating the actual capabilities of
TFQ.

Assessment of the TFQ capabilities. To evaluate the TFQ, we performed two ex-
periments based on solving the Traveling Salesman Problem with the use of the Quan-
tum Approximate Optimization Algorithm and feedforward quantum neural networks
(Sec. 6). The first experiment was focused on finding solutions for a single instance of
the TSP using the optimization feature of the neural networks. The second experiment
was aimed at training the hybrid neural network on many examples of the TSP to find
correct solutions for unseen instances of the TSP. The computational steps that were
required to conduct these experiments and correlated with them features of the tested
library are presented in Table 7.1.

Table 7.1: Computational steps and features provided by the TFQ needed to execute
hybrid quantum-classical machine learning models.

Experiment step Utilized framework features

Dataset preparation Converting Hamiltonian operators and quantum cir-
cuits into TF tensors.

Quantum model evaluation Extracting classical information from the quantum el-
ements of the neural network model through the mea-
surement (calculating the expectation value).

Classical model evaluation Evaluation of the model that has only classical data
(since quantum information is always extracted before
this step via measurement).

Training process Estimating quantum gradients and performing auto-
matic differentiation. Using gradient-based optimizers
provided by TF.

Parameters update Using batched circuit execution that enables updating
the model’s parameters after processing a mini-batch
of data.
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7.2 Future work
The future research directions might include:

• verifying the simulation results on real hardware when the appropriate number of
qubits will be available;

• modifying the quantum circuit:
– using another type of the mixer Hamiltonian in the parameterized quantum

circuit ansatz [64];
– reducing the number of needed qubits by changing the problem’s encoding

[65];
• trying to solve a different combinatorial optimization problem, e.g., the workflow

scheduling problem [66], using the proposed neural network models;
• exploring new architectures of hybrid quantum-classical neural networks.

Further exploration of quantum machine learning, accelerated by software such as Ten-
sorFlow Quantum, can lead to exceptional discoveries in this field and integration of
quantum computing with the mainstream computing paradigms.
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Appendix A

Appendix to Chapter 5

A.1 Hamiltonian derivation for the Traveling Sales-
man Problem

First of all, we will expand the sum of Equation 5.1.2 for N = 2.

A1 =
1∑
i=0

(1−
1∑
t=0

xi,t)2

=
1∑
i=0

(1− xi,0 − xi,1)2

= (1− x0,0 − x0,1)2 + (1− x1,0 − x1,1)2

= 1 + x2
0,0 + x2

0,1 − 2x0,0 − 2x0,1 + 2x0,0x0,1 + 1 + x2
1,0 + x2

1,1 − 2x1,0 − 2x1,1 + 2x1,0x1,1

(A.1.1)

Using the Property 5.1.5

xi,t ←→
I − Zk

2

and based on the fact that the square of the Identity gate and the square of Pauli-Z
gate are the Identity gate

I2 = Z2 = I (A.1.2)
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the Hamiltonian expression HA1 can be simplified as follows

HA1 = I +
(
I − Z0

2

)2
+
(
I − Z2

2

)2
− 2

(
I − Z0

2

)
− 2

(
I − Z2

2

)
+ 2

(
I − Z0

2 · I − Z2

2

)
+

+ I +
(
I − Z1

2

)2
+
(
I − Z3

2

)2
− 2

(
I − Z1

2

)
− 2

(
I − Z3

2

)
+ 2

(
I − Z1

2 · I − Z3

2

)
= I + I2 + Z2

0 − 2Z0

4 + I2 + Z2
2 − 2Z2

4 − I + Z0 − I + Z2 + 2I
2 − Z0 − Z2 + Z0Z2

4 +

+ I + I2 + Z2
1 − 2Z1

4 + I2 + Z2
3 − 2Z3

4 − I + Z1 − I + Z3 + 2I
2 − Z1 − Z3 + Z1Z3

4
= I + I

2 −
Z0

2 + I

2 −
Z2

2 − 2I + Z0 + Z2 + I

2 −
Z0

2 −
Z2

2 + Z0Z2

2 +

+ I + I

2 −
Z1

2 + I

2 −
Z3

2 − 2I + Z1 + Z3 + I

2 −
Z1

2 −
Z3

2 + Z1Z3

2
= I + Z0Z2

2 + Z1Z3

2 .

(A.1.3)

Analogically, the Equation 5.1.3 for N = 2

A2 =
1∑
t=0

(1−
1∑
i=0

xi,t)2

corresponds to

HA2 = I + Z0Z1

2 + Z2Z3

2 . (A.1.4)

The cost function Equation 5.1.1 expanded for N = 2 is

B =
1∑
i=0

1∑
j=0

di,j
1∑
t=0

xi,txj,t+1 (A.1.5)

=
1∑
i=0

1∑
j=0

di,j(xi,0xj,1 + xi,1xj,0)

= d0,1(x0,0x1,1 + x0,1x1,0) + d1,0(x1,0x0,1 + x1,1x0,0)
= (d0,1 + d1,0)(x0,0x1,1 + x0,1x1,0).
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Based on the problem definition (di,j = dj,i), the Hamiltonian corresponding to B is

HB = 2d0,1

(
I − Z0

2 · I − Z3

2 + I − Z1

2 · I − Z2

2

)
(A.1.6)

= d0,1

(
I2 − Z0 − Z3 + Z0Z3

2 + I2 − Z1 − Z2 + Z1Z2

2

)

= d0,1

(
I − Z0

2 −
Z1

2 −
Z2

2 −
Z3

2 + Z0Z3

2 + Z1Z2

2

)
.

A.2 Quantum gates as matrices
Evaluation of CNOT ·Rz(γ) · CNOT .

CNOT · (I ⊗Rz(γ)) · CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



e−i

γ
2 0 0 0

0 ei
γ
2 0 0

0 0 e−i
γ
2 0

0 0 0 ei
γ
2




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(A.2.1)

=


e−i

γ
2 0 0 0

0 ei
γ
2 0 0

0 0 ei
γ
2 0

0 0 0 e−i
γ
2



Evaluation of Rx(γ).
Using

sin(γ2 ) = ie−i
γ
2 − iei γ2

2 , cos(γ2 ) = e−i
γ
2 + ei

γ
2

2 (A.2.2)

Rx(γ) can be expressed as

Rx(γ) =
[
cosγ2 −isinγ2
−isinγ2 cosγ2

]
(A.2.3)

=
[
e−i

γ
2 + ei

γ
2 e−i

γ
2 − ei γ2

e−i
γ
2 − ei γ2 e−i

γ
2 + ei

γ
2

]

= 1
2

[
1 1
1 −1

] [
e−i

γ
2 1

1 ei
γ
2

] [
1 1
1 −1

]
= HRZ(γ)H.
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