
WYDZIAŁ INFORMATYKI, ELEKTRONIKI I TELEKOMUNIKACJI

INSTYTUT INFORMATYKI

Praca dyplomowa

Hybrid algorithms for workflow scheduling problem in
quantum devices based on gate model

Zastosowanie hybrydowych rozwiązań dla problemu
szeregowania aplikacji typu workflow dla komputera

kwantowego o modelu bramkowym

Autor: Julia Plewa, Joanna Sieńko
Kierunek studiów: Informatyka
Opiekun pracy: dr inż. Katarzyna Rycerz

Kraków, 2021

Acknowledgements

First and foremost, we wish to express our deepest and most sincere gratitude to our su-
pervisor, Dr. Katarzyna Rycerz, whose continuous and invaluable support motivated us to
continue our research even in the toughest moments. Secondly, we would like to thank the
Qiskit team for the supportive community they provide, and specifically Dr. Hiroshi Horii
for his willingness to help us with some of the technical challenges. We would like to also
thank Mr. Adam Glos for his eagerness to share his work and discuss ideas. Lastly, we also
extend our gratitude to CYFRONET, as this research would not have been possible without
the PLGrid Infrastructure.

Streszczenie

Obliczenia kwantowe stale zyskują na popularności, pomimo iż era supremacji kwantowej
jest jeszcze daleko przed nami. Dzisiejsze komputery Noisy Intermediate-Scale Quantum
(NISQ) znane są ze swoich ograniczonych rozmiarów oraz szumu, jaki generują. Próbując
więc uruchomić większy problem na komputerze NISQ, należy zazwyczaj zmienić sposób
reprezentacji tego problemu. Prowadzi to do bardziej skomplikowanych obwodów, a w rezul-
tacie do większego zaszumienia wyników. W niniejszej pracy rozważany jest ten kompromis
w kontekście konkretnego problemu optymalizacyjnego – szeregowania aplikacji typu work-
flow. Porównano trzy kodowania o różnej gęstości: one-hot, binarne i domain wall oraz prze-
testowano ich wydajność w zastawieniu z dwoma popularnymi hybrydowymi algorytmami
kwantowo-klasycznymi: QAOA i VQE. W celu uzyskania jak najlepszych wyników wyko-
rzystane zostały różne wartości parametrów tychże algorytmów, a także sprawdzono inne
najnowocześniejsze ulepszenia, takie jak dedykowane danemu kodowaniu miksery QAOA.
Eksperymenty przeprowadzono na symulatorze kwantowym, a najbardziej udane z nich po-
wtórzono z dodanym modelem szumu, co poskutkowało zauważalnie gorszymi wynikami.
Ostatecznie udowodniono, że pomimo swojej popularności kodowanie one-hot nie zawsze
jest najlepsze. Użycie gęstszego kodowania, takiego jak binarne lub domain wall, może
pozwolić na zakodowanie większych problemów, a czasem nawet na uzyskanie lepszych
wyników.

Abstract

Although the age of quantum supremacy is still far ahead of us, quantum computing has been
steadily growing in popularity. The Noisy Intermediate-Scale Quantum (NISQ) computers
of today are known for their limited size and the noise they generate. Therefore, when trying
to run a larger problem on a NISQ computer, one typically has to alter the way this problem
is represented, which tends to result in a more complicated circuit and, in turn, more noisy
results. In this thesis, we consider this trade-off in the context of a specific optimization
problem – workflow scheduling. We compare three encoding schemes of varying density:
one-hot, binary, and domain wall, and test their performance against two well-known hybrid
quantum-classical algorithms: QAOA and VQE. In an attempt to obtain the best results possi-
ble, we try manipulating various parameters of the algorithms and test out other state-of-the-
art improvements, such as dedicated QAOA mixers. The experiments are run on a simulator
and the most successful experiments are later repeated with an added noise model, resulting
in noticeably worse results. Ultimately, we prove that, despite its popularity, one-hot encod-
ing is not always the best, and that using a denser encoding scheme, such as binary or domain
wall, can allow for encoding larger problems and sometimes even for better results.

Contents

1 Preface 6
1.1 Motivation . 6
1.2 State of the art . 7

1.2.1 Quantum and hybrid quantum-classical algorithms 7
1.2.2 Optimization problems . 7
1.2.3 Quantum algorithm optimizations 8
1.2.4 Workflow scheduling . 10

1.3 Goals of this work . 10
1.4 Author contributions . 11
1.5 Content of this work . 11

2 Quantum computing concepts 13
2.1 Qubits . 13
2.2 Dirac notation . 14
2.3 Tensor product . 14
2.4 Quantum gates . 15
2.5 Measurement . 17
2.6 Superposition . 19
2.7 Entanglement . 21
2.8 Quantum computers . 21

3 Optimization problems in quantum computing 24
3.1 Problem representation . 24

3.1.1 Hamiltonian . 24
3.1.2 Ising model . 25
3.1.3 QUBO . 26

3.2 Optimization algorithms . 27
3.2.1 VQE . 27
3.2.2 QAOA . 30
3.2.3 Comparison . 35

3.3 Encoding schemes . 35
3.3.1 One-hot encoding . 36
3.3.2 Binary encoding . 38
3.3.3 Domain wall encoding . 41
3.3.4 QAOA mixers . 45
3.3.5 Comparison . 47

4 Workflow scheduling 51
4.1 Basic intuition . 51

4.1.1 Objective function . 52
4.1.2 Constraints . 53
4.1.3 Optimized function . 55

4.2 Formal definition . 55

5 Solution implementation 58
5.1 Encoding-dependent solution representations 58

5.1.1 One-hot encoding . 59
5.1.2 Binary encoding . 60
5.1.3 Domain wall encoding . 61

5.2 Mixers . 63
5.2.1 One-hot encoding . 63
5.2.2 Domain wall encoding . 64

6 Experiment design 66
6.1 Optimization algorithms . 66

6.1.1 Classical optimizers . 67
6.1.2 Initial point selection . 68
6.1.3 Initial state . 69
6.1.4 QUBO parameter selection . 69
6.1.5 Experiment randomization . 72
6.1.6 Result evaluation metrics . 73

6.2 Considered workflows . 73
6.2.1 Small problem . 74
6.2.2 Large problems . 75

7 Evaluation of the results 78
7.1 Smaller problem . 79

7.1.1 One-hot encoding . 79
7.1.2 Binary encoding . 90
7.1.3 Domain wall encoding . 97
7.1.4 Objective function weight selection 105
7.1.5 Encoding comparison . 108
7.1.6 Noisy results . 112

7.2 Larger problem . 117

8 Conclusions and future works 123
8.1 Achieved goals and observations . 123

8.1.1 General findings . 123
8.1.2 Problem-specific findings . 124

8.2 Future work . 125

List of Figures 127

List of Tables 129

Bibliography 132

Chapter 1

Preface

1.1 Motivation

Quantum computing is a relatively young area of science, but since its inception, researchers
have believed it to be the future of computing [61]. For a long time, this remained mostly
theoretical, but in the last few years there’s been a noticeable spike of interest in the subject
from both researchers and the industry. This growing interest can be most easily demonstrated
by the steadily growing number of research papers that are published annually1 and the very
promising findings many of them have been reporting [1, 74]. But quantum computing is no
longer just a theoretical research subject – in 2018, Gartner placed it on its annual chart of
emerging technologies, estimating it would be adapted by the mainstream within five to ten
years [51]. As reported by McKinsey & Company, the number of quantum-related companies
has been growing rapidly ever since [52]. We’ve also seen many of the leading technological
companies either join this race or announce their plans to do so in the near future [5, 56, 14].

With the growing quality of quantum computers and algorithms, we are at an age when
real-life applications of quantum computing are finally becoming feasible. In this thesis, we
will focus on workflow scheduling, a problem derived from the equally fast-growing world
of cloud computing.

1For example, an ArXiv (https://arxiv.org) search for the term quantum computing returns 852 papers
published in 2010, 1369 papers published in 2015, and 3283 papers published in 2020.

6

https://arxiv.org

1.2 State of the art

Quantum optimization and workflow scheduling are both rapidly growing research areas, but
not much research has been done with regard to combining the two.

1.2.1 Quantum and hybrid quantum-classical algorithms

Although quantum physics dates back to the 19th century, the first theoretical groundwork
for quantum computing wasn’t laid until the 1980s [4]. Many early quantum algorithms were
created with only theoretical applications in mind. An example of this could be the Deutsch-
Jozsa algorithm from 1992 [15] or the more general Bernstein-Vazirani algorithm that was
published a year later [6]. Other algorithms, such as Grover’s database search algorithm
from 1996 [28] or Shor’s fast factorization algorithm from 1994 [62], do have potential prac-
tical applications, but their effectiveness is impaired by the limitations of today’s quantum
machines – both due to their size and the noise they generate.

To a certain extent, these problems can be bypassed by hybrid quantum-classical algo-
rithms [7]. Such algorithms combine the power of quantum computing with the abundant
resources provided by classical computing. Typically, they follow a similar pattern: a clas-
sical computer prepares and provides input to a quantum computer, the quantum computer
performs some computations using this input, and afterwards it feeds the output of those
computations back to the classical computer, which in turn processes this data further and
feeds it back to the quantum computer for another iteration. A very common application of
this approach can be found in solving optimization problems.

1.2.2 Optimization problems

The role of quantum computing in solving NP-hard problems can be understood quite in-
tuitively, even without considering any of the specifics. Certain characteristics of quantum
computing, such as superposition, allow us to consider multiple states from the configura-
tion space at the same time. This characteristic is very valuable when it comes to problems
that would normally require exponential time, as is the case for NP-hard optimization prob-
lems [11]. Recent research in the field of quantum optimization has been quite promising

7

with achievements in fields such as biology [41, 50], resource distribution [23], machine
learning [27], or finance [49].

A very well-known and versatile hybrid quantum-classical algorithm is the Quantum Ap-
proximate Optimization Algorithm (QAOA) introduced in 2014 [19]. This heuristic algo-
rithm can be used for various combinatorial optimization problems. Notably, for a period of
time, when applied to the MAX-E3LIN2 combinatorial problem of bounded occurrence, it
was proven to have an approximation ratio better than that of any classical algorithm [20].
An implementation of this algorithm can be found in frameworks such as IBM’s Qiskit2

or Xanadu’s PennyLane3.
Another fundamental algorithm used for optimization is the Variational Quantum Eigen-

solver (VQE) introduced by Peruzzo et al. in 2014 [55]. In some ways, this algorithm can be
seen as a generalization of QAOA. Just as QAOA, the VQE algorithm is a hybrid quantum-
classical algorithm, and it utilizes a quantum subroutine run inside a classical optimization
loop. Implementations of VQE can also be found in numerous libraries, such as Qiskit4

or Pennylane5.
An approach alternative to quantum optimization is utilized in quantum annealing. This

algorithm is based on classical simulated annealing, and in the current formulation was first
described in 1998 [34]. Quantum annealing is supported by the hardware created commer-
cially by D-Wave Systems [33]. Such machines present themselves as an alternative to clas-
sical general-use quantum machines, but their abilities are a bit more limited.

While the algorithms mentioned above represent the most popular and well-researched
approaches to quantum optimization, numerous other methods and advancements have been
proposed in recent years [37, 29, 25].

1.2.3 Quantum algorithm optimizations

While considerable advancements are being made in regard to creating new and more pow-
erful quantum software, it is important to note that the main limitations actually stem from

2https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.QAOA.html
3https://pennylane.readthedocs.io/en/stable/code/qml_qaoa.html
4https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.VQE.html
5https://pennylane.readthedocs.io/en/stable/_modules/pennylane/vqe/vqe.html

8

https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.QAOA.html
https://pennylane.readthedocs.io/en/stable/code/qml_qaoa.html
https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.VQE.html
https://pennylane.readthedocs.io/en/stable/_modules/pennylane/vqe/vqe.html

the quality of quantum hardware. We do not yet have access to quantum machines that are
sufficiently noise-free and have enough qubits for us to be able to reach the age of quantum

supremacy [61]. In order to make the best of the Noisy Intermediate-Scale Quantum (NISQ)
machines of today [8], many researchers focus on finding different ways to fit larger problems
on a limited number of qubits. This can be achieved either by finding more space-efficient
methods of representing problems or by finding ways to split up larger problems into smaller
portions.

One-hot encoding is the state-of-the-art encoding scheme in both machine learning and in
quantum computing. However, as it is not the most space-efficient, other methods have been
proposed and analyzed. Binary encoding is another commonly known encoding scheme –
it is much more space-efficient than one-hot encoding, however in the context of quantum
computing it is known to result in more complex circuits. This trade-off between space
efficiency and circuit depth has been researched extensively [26, 22, 13]. Other approaches
proposed in recent years include domain wall encoding [12, 13] and minimal encoding [66].

Another interesting development is the introduction of dedicated mixing operators (also
known as mixers) [30, 69]. These mixers can be used in combination with QAOA to limit the
configuration space to some feasible subspace in order to avoid configurations representing
incorrect states altogether. This approach can also be used in combination with different
encoding schemes [12]. Custom QAOA mixers have recently been introduced in Qiskit and
can also be found in other frameworks, such as Pennylane6.

Since the quantum resources available today are still quite limited, researchers have also
considered ways of splitting various optimization problems into smaller portions before sub-
mitting them to a quantum computer. Kurowski et al. created a time-window-based heuristic
for the Job Shop Scheduling problem [36, 44]. The D-Wave library has also recently been
expanded with a component called Hybrid that allows for problem decomposition7.

6https://pennylane.readthedocs.io/en/stable/code/api/pennylane.qaoa.mixers.xy_
mixer.html

7https://docs.ocean.dwavesys.com/projects/hybrid/en/latest/

9

https://pennylane.readthedocs.io/en/stable/code/api/pennylane.qaoa.mixers.xy_mixer.html
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.qaoa.mixers.xy_mixer.html
https://docs.ocean.dwavesys.com/projects/hybrid/en/latest/

1.2.4 Workflow scheduling

Workflow scheduling is a combinatorial optimization problem whose goal is to assign a series
of tasks to some available resources while meeting certain QoS requirements (such as a prede-
fined time limit) and minimizing the overall cost. With the growing prevalence of cloud com-
puting, resource allocation and synchronization problems have been researched extensively.
Recent solutions of the workflow scheduling problem include adaptive algorithms [32], coop-
erative evolutionary algorithms [70], various heuristics and meta-heuristics [10, 47], as well
as many other approaches [40, 53, 63].

Advancements are also being made with regard to solving optimization and schedul-
ing problems using quantum algorithms [71, 17]. For instance, the Job Shop Scheduling
problem has had promising results in combination with the aforementioned sliding-window
heuristic [36, 44]. In terms of workflow scheduling, some research has been done utilizing
VQE [64] and quantum annealing [67, 68] in combination with the one-hot encoding scheme.

1.3 Goals of this work

The main goal of this thesis was to investigate the capability of the previously mentioned
hybrid algorithms, QAOA and VQE, to optimize the workflow scheduling problem. In par-
ticular, this includes:

• to analyze the known implementations of workflow scheduling problem and introduce
improvements,

• to explore various encoding schemes and utilize their advantages in order to solve larger
problems,

• to test and compare the performance of QAOA and VQE,

• to compare the available classical optimizers used as classical subroutines of these
hybrid algorithms,

• to research other possible improvements such as QAOA mixers,

• to test out the performance of the proposed solution on a simulator using noise models.

10

1.4 Author contributions

The conducted experiments rely on various parameters, such as the encoding, the algorithm,
the optimizer, and the QAOA mixer. The authors chose to divide their work based on the
implemented encoding schemes in the following way:

• Julia Plewa: one-hot and binary encoding,

• Joanna Sieńko: domain wall encoding and result aggregation.

For each encoding, the authors tested the performance of QAOA and VQE, compared their
efficiency for different classical optimizers, and – when possible – compared the performance
of QAOA paired with either the default or an encoding-specific mixer. After running the
experiments on a quantum simulator, the samples with the best results were then run again
using real hardware noise models and compared to the previous results.

1.5 Content of this work

This thesis focuses on applying two hybrid quantum-classical algorithms – QAOA and VQE –
to an optimization problem known as workflow scheduling. In this chapter, we discussed the
current state of research in this area, as well as the goals of this thesis. Chapter 2 introduces
some important quantum computing concepts, both high- and low-level. In Chapter 3, we
discuss how an optimization problem can be represented on a quantum computer and how the
different representations influence the quality and the cost of the results. Chapter 4 defines
the workflow scheduling problem and introduces its formal definition. In Chapter 5, we delve
into the specifics of the proposed solution and describe how workflow scheduling in particular
can be represented on a quantum computer. Chapter 6 explains the reasoning behind certain
design decisions and introduces the specific instances of workflow scheduling that are used
in this thesis. Finally, Chapters 7 and 8 present and evaluate the obtained results, as well as
provide ideas for future work.

11

d

12

Chapter 2

Quantum computing concepts

In this section, we declare some basic quantum computing concepts that are instrumental in
understanding the ideas discussed in this thesis.

2.1 Qubits

A classical computer operates on bits, which are either 0’s or 1’s. In order to store a piece of
information, the computer creates a string of zeros and ones, such as 10011010. Similarly,
a quantum computer operates on qubits [46]. The state of a qubit resembles a kind of box,
called a ket and denoted as | 〉, into which a value representing the state is placed. Therefore,
there are two distinguishable states that a qubit can store: |0〉 and |1〉. Typically, we consider
a superposition of those states, which will be discussed in more detail in Section 2.6.

There are many ways of expressing the state of several qubits, all of which can be used
interchangeably. For example, two qubits can exist in any of the four possible states:

|0〉 |0〉 , |0〉 |1〉 , |1〉 |0〉 , |1〉 |1〉 . (2.1)

For states with multiple qubits, the following shortened form is usually easier to use:

|00〉 , |01〉 , |10〉 , |11〉 . (2.2)

13

If we consider the given collection of zeros and ones as a binary representation of an integer,
we arrive at an even shorter form:

|0〉 , |1〉 , |2〉 , |3〉 . (2.3)

2.2 Dirac notation

The ket notation was introduced by Paul Dirac, hence it is known as the Dirac notation. It was
introduced in the early days of quantum theory as a way to mathematically denote vectors,
and it is commonly used to represent the physical state of a qubit or a collection of qubits. It is
also possible to represent the state as a row vector, which is called a bra. Together, these two
operators create the so-called bra-ket, denoted as 〈ψ|ϕ〉, which yields a single number [31].

Using Dirac’s ket and bra notation, the two orthogonal states of a single qubit can be
represented as column or row vectors:

|0〉=

1
0

 , |1〉=

0
1

 , 〈0|=
(

1 0
)
, 〈1|=

(
0 1

)
. (2.4)

2.3 Tensor product

An alternative notation of the multi-qubit state is the tensor product, which is designed as
a form of vector multiplication. Using the tensor product, Eq. 2.2 can be rewritten as:

|0〉= |0〉⊗ |0〉 , |1〉= |0〉⊗ |1〉 , |2〉= |1〉⊗ |0〉 , |3〉= |1〉⊗ |1〉 . (2.5)

The tensor product is considered to be the most natural way to represent multi-qubit states,
as it leads to a generalization of the column-vector form presented in Eq. 2.4. Let us illustrate

14

this with an example of the following three-qubit state:

|6〉= |110〉=

0
1

⊗
0

1

⊗
1

0

=

0
0
0
0
0
0
1
0

. (2.6)

If we label each component of the resulting vector with an index i∈{0, ...,7}, then the column
representation of a qubit in state |i〉 contains a single 1 at index i, and is otherwise filled with
0’s, just like in Eq. 2.4. In the example shown in Eq. 2.6, we are looking at a specific case in
which i = 6.

2.4 Quantum gates

Quantum computers transform the initial state of qubits into some final form via reversible
actions. These actions, called gates, take the form of unitary matrices, which means they
fulfill the condition

A†A = AA† = I, (2.7)

where A† is a hermitian transpose of a matrix A and I is an identity matrix.
The four basic quantum gates are:

I =

1 0
0 1

 , X =

0 1
1 0

 , Y =

0 −i

i 0

 , Z =

1 0
0 −1

 . (2.8)

I is called the identity operator, as it does not change the quantum state. X is called the
NOT operator (or sometimes the flipping operator), as it interchanges the states of |0〉 and
|1〉. In order to reverse the NOT operator, one needs to apply the X gate once again, which

15

brings the state to its original form. Operators X , Y , and Z are often grouped into the vector
σ , consisting of matrices σx, σy, and σz. Together, they are known as the Pauli matrices and
have many useful purposes in quantum computing.

CNOT is another widely used quantum gate. Using the notation Ci j to represent this
gate, the ith qubit is called the controlled qubit and the jth qubit is called the target qubit.
The CNOT gate leaves the state of the target qubit unchanged if the control qubit is equal
to |0〉, and applies the NOT operator to the target qubit if the control qubit is equal to |1〉.
In both cases, the state of the control qubit remains unchanged. As CNOT is designed to be
a two-qubit gate, there are two possible CNOT gates: C01 and C10. The C01 gate interchanges
the states |10〉= |2〉 and |11〉= |3〉, and leaves |00〉= |0〉 and |10〉= |1〉 unchanged, whereas
the C10 gate interchanges the states |01〉 and |11〉, and leaves |00〉 and |10〉 unchanged. The
matrix representations of these gates are:

C01 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , C10 =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (2.9)

An extension of the CNOT gate to the three-qubit state is called the Toffoli gate (or the
controlled-controlled-not). Txyz flips the zth (target) qubit if the xth and the yth qubit are both
equal to |1〉. An example of the Toffoli gate might be T021, in which only the states |101〉= |5〉
and |111〉= |7〉 interchange (because they are the only two states with the control qubits both
equal to |1〉).

The Hadamard (or Walsh-Hadamard) operator is another crucial quantum gate. This gate
brings the initial quantum state into a superposition of all possible quantum states (described
in more detail in Section 2.6). The two-dimensional matrix takes the form

H =
1√
2
(X +Z) =

1√
2

1 1
1 −1

 , (2.10)

16

which, applied to the basis state |0〉, maps it to |+〉= |0〉+ |1〉√
2

, and, applied to the basis state

|1〉, maps it to |−〉= |0〉− |1〉√
2

.

As stated at the begging of this section, a quantum computer performs reversible actions.
However, there is a single irreversible action that a quantum computer can perform, called
a measurement, which is the only way to obtain useful information from qubits.

2.5 Measurement

As described in Section 2.4, there are three Pauli matrices – X , Y , and Z – which are espe-
cially important when considering measurements. They all share the same two eigenvalues,
+1 and −1, and the corresponding eigenvectors are:

X-eigenvectors: |+〉= 1√
2

1
1

 , |−〉= 1√
2

 1
−1

 ,

Y -eigenvectors: |+i〉= 1√
2

1
i

 , |−i〉= −1√
2

 1
−i

 ,

Z-eigenvectors: |0〉=

1
0

 , |1〉=

0
1

 .

(2.11)

In quantum mechanics, a measurement is the testing of a physical system in order to get
a numerical result. The measurement is strongly coupled with another fundamental concept
of quantum physics, the expectation value, the formal definition of which is

〈Aψ〉= 〈ψ|A |ψ〉 . (2.12)

After replacing A with the equivalent sum of its eigenvectors ψi, weighted by its eigenvalues

17

λi, Equation 2.12 can be rewritten as

〈Aψ〉= 〈ψ|A |ψ〉= 〈ψ|

(
∑

i
λi |ψi〉〈ψi|

)
|ψ〉= ∑

i
λi 〈ψ|ψi〉〈ψi|ψ〉= ∑

i
λi|〈ψiψ〉|2.

(2.13)
The expectation value can thus be defined as the average of the possible outcomes of

a measurement λi, weighted by the probabilities of those measurements |〈ψiψ〉|2 (since, as
described in Section 2.2, the bra-ket operation always yields a number).

Equation 2.13 leads to the most important concept of quantum mechanics: the only viable
real outcomes of an operator are its eigenvalues. Therefore, when measured, a state |ψ〉
collapses into one of the eigenstates of the measuring operator [31]. For example, based on
Equation 2.11, the expectation value formula for the Pauli Z operator takes the form:

〈Zψ〉= 1|〈0|ψ〉|2 +(−1)|〈1|ψ〉|2. (2.14)

The difference between a measurement and an expectation value is that the measurement
is a single numerical outcome of a quantum circuit, while the expectation value is an average
of the possible outcomes. As shown in Eq. 2.14, the expectation value of Z is related to the
measurement of its eigenvalues, 1 and −1, while the measured state |ψ〉 collapses into either
|0〉 or |1〉, which is the so-called measurement in the computational basis. We can just as well
measure the eigenvalues of the X operator in the similarly popular X-basis or the eigenvalues
of the Y operator in the not so widely used Y -basis.

An important fact about the expectation value is that it is not synonymous with the most
probable outcome, as the name might wrongly suggest. Let us demonstrate this with a simple
example. Assuming that an operator A has two eigenvalues, +1 and −1, and it assigns to
them an equal probability, then the expectation value of A is equal to 0,

〈A〉=−1 · 1
2
+1 · 1

2
= 0, (2.15)

which cannot be the most probable outcome, as it is not even one of the possible outcomes.

18

2.6 Superposition

Superposition and entanglement (the latter will be described in the following section) are the
source of a quantum computer’s real power [72]. While a classical bit can exist in either
one of two states at any given moment, a qubit can exist in the state of both |0〉 and |1〉
simultaneously. A quantum register made of N qubits can therefore exist in 2N states at
once. Due to this, a quantum computer processes multiple entries at the same time instead
of looking at a single specific entry. This results in a tremendous speedup. While a classical
computer needs n operations to retrieve an element from an array, a quantum computer needs
only

√
n operations using Grover’s algorithm [28]. As mentioned in the previous section, the

state measurement operation, performed as the last operation in a quantum circuit, means that
the superposition of states is collapsed into a single state – in other words, a qubit becomes
a classical bit.

The mathematical definition of superposition is as follows. As presented in Eq. 2.4, any
two-qubit state |ψ〉 can be represented as a two-dimensional vector,

|ψ〉= α0 |0〉+α1 |1〉=

α0

α1

 , (2.16)

where α0 and α1 are complex numbers denoting the amplitudes. A requirement put on these
numbers is the normalization condition:

‖α0‖2 +‖α1‖2 = 1. (2.17)

For example, a qubit in the state of |1〉 is equivalent to a superposition of |0〉 and |1〉
with amplitudes of 0 and 1 respectively. The state |ψ〉 from Eq. 2.16 is considered to be in
a superposition of |0〉 and |1〉, with corresponding amplitudes of α0 and α1.

This representation of a qubit might not always be enough, because qubits represented in
this way may not be distinguishable. For example, when states |+〉 and |−〉 are measured, the
probability of 0 and 1 will be equal, and it will be impossible to distinguish between them.
Thus, in order to have a more detailed description of a qubit’s state, an alternative form is

19

often used,
|ψ〉= α0 |0〉+ eiϕ

α1 |1〉 , (2.18)

where α0 and α0 are real numbers and ϕ is the phase between the basis states. Since the qubit
is normalized (as per Eq. 2.17), the trigonometric identity can be used, and the amplitudes
can be expressed in terms of a single variable θ :

α0 = cos
θ

2
, α1 = sin

θ

2
. (2.19)

Therefore, the state of any qubit can be represented in terms of two real numbers, ϕ and θ ,
as

|ψ〉= cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 . (2.20)

Using the representation from Eq. 2.20, we can visualize the state of |ψ〉 on the Bloch
sphere, as shown in Fig. 2.1. θ is the radius between the positive z-axis and the vector, and ϕ

is the radius between the positive x-axis and the vector. Even though measuring the previously
mentioned |+〉 and |−〉 states will return the same probabilities, using this representation they
are distinguishable.

(a) |+〉 state with θ = π

2 and ϕ = 0 (b) |−〉 state with θ = −π

2 and ϕ = 0

Figure 2.1: The visual representation of two states, generated with Qiskit

Having introduced the concept of the Bloch sphere, we shall now mention the rotation
gates. These gates allow us to rotate the qubit’s state along one of the three axes: x, y, or z.

20

Their matrix representations are as follows:

Rx(θ) = e−i θ

2 X =

 cos θ

2 −isin θ

2

−isin θ

2 cos θ

2

 , (2.21)

Ry(θ) = e−i θ

2 Y =

cos θ

2 sin θ

2

sin θ

2 cos θ

2

 , (2.22)

Rz(θ) = e−i θ

2 Z =

e−i θ

2 0

0 ei θ

2

 . (2.23)

2.7 Entanglement

Entanglement is considered to be the most mysterious aspect of quantum mechanics. It means
that some state vectors cannot be rewritten as a tensor product of other states (see Section
2.3). Such individual states are intimately related to each other, or entangled. The physical
interpretation is as follows: if two entangled particles were light years away, the outcome of a
measurement of the first particle would always determine the other measurement’s outcome.
The most popular example of entanglement is the following two-qubit state:

|ψ〉= 1√
2
(|00〉+ |11〉), (2.24)

which can be achieved by applying the Hadamard gate to one qubit and then using this qubit
as the control qubit of a CNOT gate. As mentioned before, it is impossible to rewrite the
above equation as a tensor product of two states, as they are entangled.

2.8 Quantum computers

Currently, quantum computers are built in two ways: based on quantum gates or based on
quantum annealing. The first group, often referred to as universal quantum computers, is
more popular and more extensively developed, as it can be used to solve a wide range of

21

problems. Algorithms that only can be run on this kind of machines have been developed by
researchers for years, such as Shor’s algorithm for factorizing large numbers [62] or Grover’s
algorithm for quickly searching through massive data sets [28]. The most popular gate-based
quantum computers are developed by IBM, which presently offers processors with as many
as 65 qubits1.

The second group of machines is quantum annealers. They are used exclusively for solv-
ing optimization problems and, instead of using quantum circuits, they use the classical Ising
model (which will be described in Section 3.1.2). Therefore, every problem to be solved
on a quantum annealer must be converted into the form of the Ising model. The D-Wave
system solves such problems by slowly evolving to the lowest energy of the input model.
Although the most popular company creating quantum annealers, D-Wave, has been on the
market for only a decade, it has been growing rapidly. Their systems currently have over
5000 qubits [45].

Quantum computers can outperform classical computers in terms of speed, but they have
their drawbacks. One of those drawbacks is decoherence, which is the "loss of purity of
the state of a quantum system as the result of entanglement with the environment" [72]. The
consequences of this effect can be mitigated via a technique called Quantum Error Correction

(QEC). Although real quantum devices do not work perfectly, there is a way to check whether
an implemented quantum algorithm really works. One can use a quantum simulator, in which
the modelled qubits do not decohere or produce any error and persist in their ideal state [9].

Real quantum computers and simulators with an open-source API are provided by IBM
Quantum Experience2, Riggeti3, Google4, and D-Wave5, among others.

Summary

In this chapter, we introduced some important notation used in quantum computing. We also
delved into some more complicated concepts, such as superposition or entanglement. We

1https://quantum-computing.ibm.com/services?services=systems
2https://quantum-computing.ibm.com/
3https://www.rigetti.com/
4https://quantumai.google/
5https://www.dwavesys.com/

22

https://quantum-computing.ibm.com/services?services=systems
https://quantum-computing.ibm.com/
https://www.rigetti.com/
https://quantumai.google/
https://www.dwavesys.com/

concluded by discussing the real-life quantum computers of today.

23

Chapter 3

Optimization problems in quantum
computing

In this chapter, we describe the representation of optimization problems in classical and quan-
tum computers. We then present two popular quantum algorithms commonly used in the
context of optimization problems. Finally, we introduce and compare different methods of
encoding such problems using classical and quantum hardware.

3.1 Problem representation

In this section, we describe several models used to represent optimization problems from the
perspective of both physics and computer science.

3.1.1 Hamiltonian

In quantum mechanics, a Hamiltonian is an operator describing the possible energies of a sys-
tem, including both the kinetic and the potential energy. Any Hamiltonian may be written
as

Ĥ = ∑
iα

hi
ασ

i
α + ∑

i jαβ

hi j
α σ

i
ασ

j
β
+ ..., (3.1)

24

where h is a real number, the Latin letters identify the subsystem on which the operator acts,
and the Greek letters identify the Pauli operator (σx, σy, and σz). A wide range of physical
systems is covered by this definition, including the quantum Ising model.

As mentioned in Section 2.5, a quantum system can exist in various states (eigenstates)
and each state has a corresponding energy (eigenvalue), which we can represent with an equa-
tion knows as the characteristic equation or the eigenequation of H,

Ĥ |ψλ 〉= λ |ψλ 〉 . (3.2)

In any system, the state with the lowest eigenvalue is called the ground energy state, to which
each physical system tends to head toward.

3.1.2 Ising model

The classical Ising model can be written as a quadratic function of n spins1, si =±1,

H(s1, ...,sn) = ∑
i< j

Ji jsis j +
n

∑
i

hisi. (3.3)

The quantum version of this is defined in the form of a Hamiltonian as

HIsing = ∑
i< j

Ji jZiZ j +
n

∑
i

hiZi, (3.4)

where Ji j and hi are real numbers and Zi is a Pauli Z matrix acting on the ith qubit. This can
be rewritten as the tensor product of matrices,

Zi = I⊗i−1
2 ⊗Z⊗ I⊗N−i

2 , (3.5)

where N is the total number of qubits, I2 is an identity matrix of size 2×2 and I⊗i−1
2 denotes

consecutively applying I2 gate for i−1 times. Since I and Z are both diagonal matrices, HIsing

1The notation ∑
N
i means a sum over the range [0,N). Unless specified otherwise, it can be assumed that all

sums in this thesis exclude the upper bound.

25

is also diagonal, resulting in the fact that for the N-qubit model, each state |0〉 , ..., |N−1〉 is
its eigenvector.

The Hamiltonian presented in Eq. 3.4 is a commuting operator, which is sought-after
in classical systems more so than in quantum systems. In order to make it non-commuting,
another type of interaction must be added to it – a Pauli X operator [16]. The resulting model,
called the transverse-field Ising model, is defined as

Htransverse =−A
n

∑
i

Xi +B ·HIsing, (3.6)

where A and B are positive constants and Xi = I⊗i−1
2 ⊗X⊗ I⊗N−i

2 , similarly to Eq. 3.5 [43].

3.1.3 QUBO

While the Ising model is traditionally used in statistical mechanics, the QUBO (Quadratic
Unconstrained Binary Optimization) model is used in computer science [39]. It is defined as
an upper-diagonal matrix Q of real weights and a vector of binary variables x. The objective
function is defined as

f (x) = ∑
i

Qiixi +∑
i< j

Qi jxix j. (3.7)

The problem to solve can then be expressed as

min
x∈{0,1}n

xT Qx. (3.8)

When working on a D-Wave quantum computer (described in Section 2.8), each opti-
mization problem must be passed in the QUBO form. Although many non-trivial optimiza-
tion problems can be converted to this form, for some it is impossible, in which case the
PUBO (Polynomial Unconstrained Binary Optimization) formulation must be used. PUBO
is a generalization of QUBO allowing for polynomials of orders greater than quadratic in the
objective function.

To solve a QUBO (or PUBO) problem on a quantum device, the domain of binary vari-
ables {0,1} needs to be converted into the Ising-model domain {1,−1} (the eigenvalues of

26

the Z operator). This can be achieved by replacing each xi in Eq. 3.7 with the operator

I−Zi

2
, (3.9)

whose eigenvalues are 0 and 1. This way, a classical binary model can be solved on a quantum
computer.

3.2 Optimization algorithms

In this section, we describe the hybrid quantum-classical algorithms VQE and QAOA, pro-
vide the theoretical ideas behind them, and review their basic flows. The section concludes
with a comparison of the two algorithms.

3.2.1 VQE

The Variatonal Quantum Eigensolver (VQE) algorithm, proposed in 2013 by Alberto Pe-
ruzzo et al. [55], is a hybrid quantum-classical algorithm used to find the smallest eigenvalue
of a given Hamiltonian and the corresponding eigenvector. Its main application is in solving
large chemical problems, such as the problem of finding the ground state energy of molecules.
VQE is an alternative to the QPE (Quantum Phase Estimation) algorithm [2], but with the ad-
vantage of smaller circuits depth, which is especially important for the current NISQ era of
quantum computing.

As stated in Section 3.1.1, every Hamiltonian H has eigenstates with their correspond-
ing eigenvalues, however the eigenstate 〈ψλ 〉 is typically not known a priori and must be
estimated by calculating the expectation value of H (see Eq. 2.13) at any given state |ψ〉:

〈Ĥ〉= 〈ψ|H |ψ〉= E(ψ). (3.10)

The above equation can be rewritten for the eigenstate instead of any state:

〈Ĥ〉= 〈ψλ |H |ψλ 〉= E(ψλ). (3.11)

27

For the eigenstate |ψ0〉 associated with the lowest eigenvalue, the energy would be equal to
the ground state energy E0. Since the ground state energy is the lowest possible energy, when
an arbitrary state |ψ〉 is chosen, its energy Eψ must be greater or equal to E0. This is known
as the variational principle or Rayleigh–Ritz method [73]:

〈Ĥ〉= 〈ψλ |H |ψλ 〉>= E0. (3.12)

The preparation of the state |ψ〉, to which the Hamiltonian will be applied, is the role of
the ansatz operator, which will be defined later in this section.

Based on the above, Eq. 3.1 can be rewritten as

〈Ĥ〉= ∑
iα

hi
α 〈σ i

α〉+ ∑
i jαβ

hi j
α 〈σ i

ασ
j

β
〉+ ... (3.13)

Thus, the evaluation of 〈Ĥ〉 reduces it to the sum of the expectation values of all its terms
for the quantum state |ψ〉, multiplied by some real constant. Each term is formally a tensor
product of n simple Pauli gates, e.g. the 4-qubit state σ1

x σ2
y (which is synonymous with the

notation X1Y2, defined in Eq. 3.5) is equal to |I〉⊗ |σx〉⊗ |σy〉⊗ |I〉, and its expectation value
can be efficiently estimated by local measurements on each qubit. Taking the Hamiltonian

Ĥ = 0.2 ·ZI +0.5 · IY +0.4 ·XZ, (3.14)

then for a given state |ψ〉, the expectation value of the Hamiltonian can be calculated by
adding the expectation values of its Pauli terms,

〈Ĥ〉= 〈ψ| Ĥ |ψ〉= 0.2 · 〈ψ|ZI |ψ〉+0.5 · 〈ψ| IY |ψ〉+0.4 · 〈ψ|XZ |ψ〉 . (3.15)

Thus, for an n-qubit state, the expectation value of the resultant 2n× 2n Hamiltonian would
need to be evaluated, which would result in a tremendous memory complexity on a classical
computer.

The VQE algorithm achieves this by creating a separate quantum circuit for each Pauli
term. Since the measurement of the circuit is done in the Z-basis, the X and Y operators need
to be aligned with the basis, therefore:

28

• each X operator is mapped to the Ry(−π

2) gate, as the eigenvectors |+〉 and |−〉 (see
Fig. 2.1) need to be rotated to σz’s eigenvectors |0〉 and |1〉,

• each Y operator is mapped to the Ry(
π

2) gate, as the eigenvectors |i〉 and |−i〉 need to
be rotated to σz’s |0〉 and |1〉,

• Z operators are not mapped to any gates in the circuit.

The algorithm calculates the expectation values of such circuits, sums them all, and ob-
tains the expectation value of Ĥ. The routine is then done over and over again for different
states |ψ〉, generated by the already mentioned ansatz. One could try to simply generate all
the possible values of |ψ〉, however that would be a very inefficient approach. Therefore,
an ansatz is created as a parametrized circuit – manipulating the parameters of the ansatz
results in different ansatz states. With a good ansatz and proper parameters, it is possible
to have access to the subspace of the system that contains |ψ0〉. With an improperly chosen
ansatz, the quantum circuit won’t be capable of generating the desired |ψ0〉, and therefore of
finding the optimal (ground energy) solution.

As mentioned above, VQE is a hybrid quantum-classical algorithm. A classical computer
controls the selection of the parameters of the ansatz. At each step of the algorithm, the
classical computer will change the parameters for the ansatz using some classical optimizer
(e.g. COBYLA or L-BFGS-B, which will be described in more detail in Section 6.1.1), so
that the state |ψ〉 will have a lower expectation value than its predecessor. If the new expec-
tation value is lower, the algorithm "knows" that it is going in the right direction, otherwise
the opposite is true. The goal is to have the algorithm arrive at a place where changing the
parameters of the ansatz does not decrease the expectation value anymore. The state |ψ〉 used
in the last step would then become the eigenstate |ψ0〉 corresponding to the lowest eigenvalue
(the lowest energy E0) [35]. This cooperation between the quantum and the classical com-
puter in achieving the goal of the algorithm – finding the lowest energy of the system – is
presented in Fig. 3.1.

29

Figure 3.1: An overview of VQE

To sum up, the main parts of the VQE algorithm are:

1. preparing the 〈ψ〉 state with the parametrized circuit (ansatz),

2. calculating the expectation value 〈Hi〉 of each Pauli term using separate quantum cir-
cuits (quantum modules) which consist of Rx and Ry rotations, allowing for measure-
ments in the Z-basis,

3. adding all the expectation values on a classical computer,

4. optimizing the parameters of the ansatz using a classical routine, based on the expecta-
tion value sum.

3.2.2 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) was proposed by Farhi et al.
in 2014 [19]. Its main application is to solve combinatorial optimization problems.

30

When describing QAOA, the MAX-CUT problem shall be used as a reference, as it is
the problem used in the original paper [19] and the most common application of QAOA in
literature. In the MAX-CUT problem, a graph with m edges and n vertices is considered. The
desired solution of the problem is such a partition z of the graph, which divides the vertices
into two sets, maximizing function

C(z) =
m

∑
α=1

Cα(z). (3.16)

In the above equation, C(z) is the counter of cut edges, while Cα(Z) is defined as

Cα(Z) =

1 if z places one vertex from the α th edge in A and the other in B,

0 otherwise.
(3.17)

An example of the MAX-CUT problem and its solution can be seen in Fig. 3.2. In this
case, the solution of the problem would be the bit string z = 0101, indicating that vertices 0
and 3 belong to set A and vertices 1 and 2 to set B, while the value of the maximized function
(the number of edges cut) is C = 4.

0 1

23

0

3

(a) A MAX-CUT toy problem

0 1

23

(b) A solution to the problem

Figure 3.2: A MAX-CUT toy problem and its solution

While the aforementioned problem is rather simple and theoretical, QAOA is designed to
solve problems with exponential growth or even combinatorial explosion. Typically, for big
instances of such problems, there are no efficient classical methods to solve them.

31

There are various concepts and ideas behind QAOA that contribute to the fact that this
algorithm actually works. The first of them is the Quantum Adiabatic Algorithm (QAA) [21].
Let us consider a quantum system described by the Hamiltonian B with a ground state |s〉 and
another Hamiltonian C whose ground state is sought after. To find the ground state of C,
QAA would start in |s〉 and then it would need to run for some long enough long time T . The
formal definition of it is

H(t) =
(

1− t
T

)
B+

(
t
T

)
C, (3.18)

where t is the current time and T is the total time. If t
T is changed slowly enough, the system

always stays in the ground state of H
(t

T

)
and then, at the end of the algorithm, it finds itself

in the ground state of C.
The second concept behind QAOA is the time evolution of quantum states (or the so-

called Schrödinger picture). It asserts that in quantum mechanics it is the states that evolve in
time, whereas the operators stay the same. It is derived from the Schrödinger equation, that
is

ih
∂

∂ t
|ψ(t)〉= H |ψ(t)〉 . (3.19)

The solution to the Schrödinger equation for the time-independent Hamiltonian H is

|ψ(t)〉= e−iĤt |ψ(0)〉 , (3.20)

where the operator
Û(t) = e−iĤt (3.21)

is called the time-evolution operator, which describes the quantum dynamics behind evolving
the state ψ(0) into the state ψ(t) at some future time t [42].

The third concept is called trotterization. QAOA is designed to work with combinatorial
problems whose Hamiltonians are complicated, e.g. they are time-dependent and cannot be
solved using Eq. 3.20. As the name should suggest, QAOA is about approximation, rather
than about directly calculating the ground state, and since a Hamiltonian is often a sum (see
Eq. 3.1 and 3.14) of large individual terms, e.g. H = ∑

M
j=1 h jPj, a useful approximation

32

method might be the Suzuki-Trotter expansion [65],

e−iH(t) ≈
M

∏
j=1

e−ih jPjt + error, (3.22)

which is used to approximate the evaluation of a time-dependent Hamiltonian with a piece-
wise Hamiltonian that is constant in small enough time intervals:

U(t, t0) =U(t, tn−1)U(tn−1, tn−2)...U(t2, t1)U(t1, t0). (3.23)

The classical equivalent of trotterization is the approximation of a curve function, which
can be done via a piecewise linear function. The more segments of linear functions there are,
the better the curve function is approximated.

Having described the concepts behind QAOA, let us derive the two key operators defined
for the algorithm, namely the cost Hamiltonian,

U(C,γ) = e−iγC =
m

∏
α=1

e−iγCα , (3.24)

and the mixing Hamiltonian,

U(B,β) = e−iβB =
n

∏
j=1

e−iβσ x
j , (3.25)

where γ and β are the angles, m is the number of constraints in the problem, and n is the
number of qubits (as in the MAX-CUT problem presented at the beginning of this section in
Fig. 3.2). The initial state |s〉 is the superposition over the computational basis states,

|s〉= 1√
2n ∑

z
|z〉. (3.26)

Based on the above equations, a quantum state dependent on angles γ and β is defined as

|γ,β 〉=U(B,βp)U(C,γp)...U(B,β1)U(C,γ1) |s〉 , (3.27)

33

where p is a parameter describing the number of repetitions of the U(B,γp)U(C,βp) se-
quence, and thus the number of angles to be optimized. The correlation with QAA is that
both algorithms perform an operator time evolution, but in QAOA this is done through an al-
ternation of U(B,γ) and U(C,β), where the sum of the angles is the total running time. For
a good approximation, angles γ and β should be small and the algorithm should have a long
running time, therefore a large p is expected. An overview of QAOA is shown in Fig. 3.3.

Figure 3.3: An overview of QAOA

To sum up, the main parts of the QAOA algorithm are:

1. preparing an initial state by applying the Hadamard gate on each qubit,

2. applying a sequence of U(C,γi)U(B,βi) gates p times,

3. measuring the circuit on a quantum computer in the computational Z-basis,

4. using a classical optimization subroutine to find the new angles (β1,γ1, ...,βp,γp),

5. stopping the algorithm once the optimization objective is met.

34

3.2.3 Comparison

Both VQE and QAOA are hybrid quantum-classical algorithms that find near-optimal solu-
tions to combinatorial optimization problems. Among many similar algorithms, it is these
two that are suitable for the NISQ era. While VQE (an alternative to QPE) was originally
proposed to approximate the ground state of chemical systems, it can just as well be used to
solve combinatorial problems, as can QAOA.

VQE and QAOA use a parameterized quantum circuit (ansatz) to generate the |ψ(θ)〉
states used to minimize the total energy of the model, i.e., the expectation value of Hamilto-
nian H, 〈ψ(θ)|H|ψ(θ)〉. Since the ansatz in these two algorithms is different, the number of
parameters to optimize differs as well. For VQE it depends on the particular ansatz form that
is used. In this thesis, it will be assumed to depend on the number of qubits n and the number
of ansatz repetitions provided via the reps parameter2, in the following way: n · (reps+ 1).
For QAOA, the number of parameters to optimize depends solely on the p parameter, as the
number of parameters to optimize is equal to 2 · p. This means that for a 10-qubit problem
and reps/p set to 2, VQE will be optimizing 30 numbers, while QAOA only 4. Based on the
above, QAOA is often described as an example of VQE, with a particular form of ansatz.

The difference in the type of problem that these algorithms can solve is that QAOA solves
only Ising problems (with Hamiltonians as diagonal matrices), while VQE can solve any kind
of Hamiltonian. Since the Ising model contains only σz terms, no change in the measurement
basis is required in QAOA [3].

3.3 Encoding schemes

Gate-model quantum machines are based on quantum bits (qubits), while many optimization
problems involve discrete variables rather than binary. Such variables include integers, but
can include other problem representations as well, e.g. continuous variables or multiple
mutually exclusive options. An example of a discrete variable in the workflow scheduling
problem might be the index of a machine on which a certain task should be performed, which
will be discussed in more detail in Chapter 4.

2https://qiskit.org/documentation/stubs/qiskit.circuit.library.RealAmplitudes.html

35

https://qiskit.org/documentation/stubs/qiskit.circuit.library.RealAmplitudes.html

In this chapter, we’ll consider a simple toy example of categorical data, which can be seen
in Table 3.1. Each row contains a description of a person, along with their age and favorite
color. Let’s assume the Favorite color column can have five possible values (red, blue, green,
yellow, and pink) and it’s those values that we will be trying to encode.

Name Age Favorite color
Eve 24 red
Bob 36 yellow
Alice 14 blue
Jane 41 green

Table 3.1: An example of categorical data

Three different methods of encoding these discrete variables into qubits will be presented
in this section. For each of those methods, we will have to establish two functions:

• a binary function that takes an encoded bit string and validates if this string represents
a specific category, e.g. "Does this bit string represent blue?", by returning a 1 if the
answer is positive and a 0 if it’s not,

• a function that ensures a bit string contains a valid encoding – it should reach its mini-
mum when faced with a valid encoding and return higher values otherwise.

Both of those functions are necessary for implementing the objective function and the con-
straints in most optimization problems. We will discuss the specific objective and constraints
needed for workflow scheduling in Chapter 4.

3.3.1 One-hot encoding

Looking at our example in Table 3.1, the first obvious issue is that the Favorite color column
contains strings, which cannot be easily encoded on a quantum computer. The easiest solution
would be to simply number the possible categories, however, as discussed at the beginning
of this section, we have to find a way of actually translating those values into qubit states, as
there is no out-of-the-box way of storing integers on a quantum computer.

36

One-hot encoding is commonly used in different areas of research, including statistics,
machine learning, or even digital circuits. In quantum computing it is used primarily due
to the fact that all values have to be manually mapped into binary strings, but in other areas
of computing the reason is more nuanced. In machine learning, it is often not preferable to
suggest to the algorithm a relationship between two categories – for instance, if we label red

as 0 and green as 2, an algorithm such as a decision tree might unnecessarily assume that
red < green.

One-hot encoding relies on the concept of dummy variables. A dummy variable can take
the value of 0 or 1, indicating the absence or presence of some categorical quality. The
example from Table 3.1 has been mapped to one-hot encoding in Table 3.2. Each row can
contain only a single 1 in the five one-hot columns: Prefers red, Prefers green, Prefers blue,
Prefers yellow, and Prefers pink. For consistency, let us collapse those columns back into
one, as shown in Table 3.3. The placement of this single 1 indicates the category, i.e. the
bit string 00001 can be translated to mean pink. Any string that does not follow this pattern,
such as 00000 or 01011, does not correspond to any valid state.

Name Age Prefers red Prefers green Prefers blue Prefers yellow Prefers pink
Eve 24 1 0 0 0 0
Bob 36 0 0 0 1 0
Alice 14 0 0 1 0 0
Jane 41 0 1 0 0 0

Table 3.2: An example of one-hot-encoded categorical data

Name Age Favorite color
Eve 24 10000
Bob 36 00010
Alice 14 00100
Jane 41 01000

Table 3.3: An example of one-hot-encoded categorical data, simplified

37

Bit string interpretation

As mentioned at the beginning of this section, for every encoding we need to have a way of
telling if a given state represents a specific category. The interpretation of one-hot-encoded
strings is very straightforward. In order to evaluate if string s represents the ith state, we
simply have to look at the ith bit in s, that is

fone-hoti(s) = si. (3.28)

For instance, looking at the example from Table 3.3, for the category pink we would
simply look at the fourth index in vector 00001, meaning the result of this function would be
positive. If we were to validate this vector against green, the result would be negative.

Bit string feasibility

The second function needed for each encoding is used for penalizing invalid vectors. The
function should reach its minimum, typically equal to 0, when applied to valid states, and
otherwise it should return higher values. For one-hot encoding, this function is defined as

gone-hot(s) =

(
1−

n

∑
i

si

)2

, (3.29)

where n is the number of states.

3.3.2 Binary encoding

The idea behind binary encoding is very simple: we map each categorical value into an inte-
ger and use those values to represent our data, like shown in Table 3.4. A mapping between
those values and the original categories has to be maintained separately.

38

Name Age Favorite color
Eve 24 010 = 0002
Bob 36 310 = 0112
Alice 14 210 = 0102
Jane 41 110 = 0012

Table 3.4: A simple example of binary-encoded categorical data

Bit string interpretation

Although binary encoding seems straightforward at first, its interpretation is much harder
than that of one-hot encoding. The function answering the question "Does this vector match
the ith color?" assumes a different form for each value of i. Its general form is defined as

fbinaryi(s) =
N

∏
j

(
1−
(

s j−bi,N
j

)2
)
, (3.30)

where N = dlog2 ne is the number of bits in s and bi,N is the N-bit binary-encoded equivalent
of i [26].

Considering our yellow example again, this function would assume the form

fbinary310=0112
(s) =

(
1− (s0−0)2

)(
1− (s1−1)2

)(
1− (s2−1)2

)
, (3.31)

which can be simplified to

fbinary310=0112
(s) =

(
1− s2

0

)(
1−
(

s2
1 +2−2s1

))(
1−
(

s2
2 +2−2s2

))
=

=
(

1− s2
0

)(
2s1− s2

1

)(
2s2− s2

2
)
.

(3.32)

Since s0, s1, and s2 can only assume the values of 0 and 1, we can safely apply the identity
si = s2

i and remove the squares, resulting in

fbinary310=0112
(s) = (1− s0)s1s2. (3.33)

It is easy to notice that each part of this product assumes the value of 0 if the specific bit in

39

vector s doesn’t match the expected value, and otherwise it assumes the value of 1. Therefore,
the result of this function is 1 if every bit matches the specific state and 0 if there is at least
one bit that differs.

The functions for the remaining colors from Table 3.4 are

fbinary010=0002
(s) = (1− s0)(1− s1)(1− s2),

fbinary110=0012
(s) = (1− s0)(1− s1)s2,

fbinary210=0102
(s) = (1− s0)s1(1− s2).

(3.34)

Bit string feasibility

A big advantage of binary encoding is that it is much denser than one-hot encoding. If the
number of feasible states n is equal to 2N , there are no states that are infeasible on the basis
of encoding. Otherwise, if the number of states is not a power of two, we’d need to include
a clause penalizing such invalid states.

In order to write this function, we need to compare the bit string in question to each of
the infeasible states. In our example from Table 3.2, we established the five possible values
for the Favorite color column. The number of bits needed for this encoding is N = dlog2 ne,
which in our specific example is equal to 3. Subsequently, we numbered the feasible states
from 0 to 4, meaning that the allowed configurations are: 0002, 0012, 0102, 0112, 1002. This
leaves out the other three combinations: 101, 110, and 111.

In order to penalize one of those states, we have to take all of the infeasible configurations
specific to our problem, apply the formula established in Eq. 3.30, and sum the results, which
formally is defined as

gbinary(s) = ∑
i∈P

fbinaryi(s), (3.35)

where P is a set containing the infeasible states. This function will return a 1 for an infeasible
state, and for any feasible state it will return a 0.

In our toy example, after applying the same simplifications as in Eq. 3.33, this function

40

would assume the form

gbinary(s) = fbinary5(s)+ fbinary6(s)+ fbinary7(s) =

= s0(1− s1)s2 + s0s1(1− s2)+ s0s1s2.
(3.36)

3.3.3 Domain wall encoding

Unlike the previous two encodings, which are derived from classical computer science, do-
main wall encoding originates from physics. It was proposed by Chancellor as an alternative
method of encoding discrete variables into qubits, and it is based on the physics of domain
walls in one-dimensional Ising spin chains [12]. This new encoding of discrete variables
will be possibly more useful in near-term applications, as it requires fewer qubits than the
traditional one-hot method.

In a one-dimensional Ising model (see Eq. 3.4), a domain wall exists between two qubits
i and i+1, if their bit values are not equal, that is if

〈ZiZi+1〉=−1, (3.37)

where 〈 〉 denotes the expectation value described in Eq. 2.13 and Zi follows the definition
from Eq. 3.5. Since the Z gate affects the basis states |0〉 and |1〉 in the following way:

Z |0〉= 1 |0〉 , Z |1〉=−1 |1〉 , (3.38)

it can be seen that for adjacent qubits in the same basis states, the operation in Eq. 3.37 will
return a 1, which indicates the lack of a domain wall,

〈00|Z0 Z1|00〉= 〈11|Z0 Z1|11〉= 1, (3.39)

while for adjacent qubits in different basis states it will return a −1, which denotes the exis-
tence of a domain wall,

〈01|Z0 Z1|01〉= 〈10|Z0 Z1|10〉=−1. (3.40)

41

For example, in the one-dimensional Ising model shown in Figure 3.4 (top), there are
infinitely strong penalties holding the qubit at index−1 in the basis state of 1 and the qubit at
index 4 in the basis state of 0. As the values of the first and the last qubit are fixed, they can
be ignored, leaving only the middle segment of qubits indexed with 0...n− 2, as presented
in Figure 3.4 (bottom), where n is the number of values to encode (e.g. in the favorite color

example mentioned in 3.3.1, n is equal to five). Then, based on Eq. 3.37, the Hamiltonian of
the model takes the simplified form

Hn =−λ (−Z0 +
n−3

∑
i

ZiZi+1 +Zn−2), (3.41)

where λ is a sufficiently large positive constant enforcing that the system should be found in
a logically correct subspace. The terms Z−1 and Zn−1 are not present in the formula, since, as
already mentioned, their bit values are fixed and can be replaced with -1 and 1, respectively.

-∞+∞

Z1Z0Z-1 Z2 Z3 Z4

+λ -λ

Figure 3.4: Top: The one-dimensional ferromagnetic Ising chain encoding. Bottom: An
equivalent model without the fixed qubits, which encodes Z5

According to Eq. 3.37 and Eq. 3.41, the energy of a one-dimensional ferromagnetic chain
of qubits is proportional to the number of domain walls. Therefore, the model has the lowest
possible energy when there is only one domain wall between any of the n pairs of consecutive
qubits, and it has a higher energy when there are more walls. Since there are N = n−1 qubits,
we can encode a discrete variable x ∈ Zn, where Zn = {0,1, ...,n−1}.

In the Ising model from Fig. 3.4, there are five discrete variables that can be encoded,
just as in the favorite color example shown in Table 3.1. A domain-wall-encoded mapping of
the color categories from that example is presented in Table 3.5. In order to find the encoded
value, it is necessary to find the position of the domain wall – that is, the place where the value

42

of a bit changes with respect to its predecessor. Any state that has more than one domain wall
is an invalid state, and it does not correspond to any discrete variable, e.g. the state 1001 has
three domain walls at positions with indices i ∈ {1,2,3}.

Name Age Favorite color
Eve 24 0000
Bob 36 1110
Alice 14 1100
Jane 41 1000

Table 3.5: An example of domain-wall-encoded categorical data

In order to assign a specific discrete variable to the domain wall position i, δi is defined
as

δi =
1
2
(Zi−Zi+1), (3.42)

which returns the energy of 1 at the domain wall location i and 0 otherwise (assuming there
is only one domain wall). If there are multiple domain walls (e.g. 1001), the function returns
the energies δi ∈ {−1,0,1}. The energy of the operator is, as described in Section 3.1.1, the
operator’s eigenvalue.

Bit flips

As stated in the previous section, the energy of a one-dimensional ferromagnetic chain of
qubits is proportional to the expectation value of the number of domain walls. Furthermore,
flipping a single qubit with index i can affect the domain wall configuration in three different
ways:

• if 〈Zi−1〉 = 〈Zi+1〉 = 〈Zi〉, the flip creates two domain walls, increasing the energy of
the model by 4λ ,

• if 〈Zi−1〉 = 〈Zi+1〉 6= 〈Zi〉, the flip destroys two domain walls, decreasing the model’s
energy by 4λ ,

• if 〈Zi−1〉 6= 〈Zi+1〉, the flip moves the existing domain wall and the energy of the model
does not change.

43

As a result of the above, if 〈Z−1〉 6= 〈Zn−1〉, there must be an odd number of domain walls
between the qubits at indices −1 and n− 1. In the four-qubit model from Fig. 3.4 it would
be possible to have one, three, or five domain walls.

Bit string interpretation

Even though domain wall encoding is based on qubits and quantum physics, it is possible
to translate the formulas from above sections into classical bits. Assuming there are five
categories (colors) to encode, as in Table 3.2, the domain wall vector would have the length
of four bits. The possible encodings are presented in Table 3.5. We can then define a function
for determining if a given state represents a specific category. For that, we need to calculate
the difference of subsequent bits as defined in

fdomain-walli(s) =

1− s0 if i = 0,

si− si+1 if 0 < i < N−2,

sN−1 if i = N−1,

(3.43)

where N = n−1 is the number of bits, as previously defined.
Looking at the example from Table 3.5, for the category red, we would look at the differ-

ence 1− s0, whereas for blue we would look at the difference between s1 and s2. When this
formula is used on a vector with only one domain wall, it returns either a 1, indicating that the
represented color does indeed match the color in question, or a 0 if it doesn’t. However, for
a vector with more than one domain wall, it might also return the value of −1, which needs
to be handled in the problem being modeled.

Bit string feasibility

The second function that’s important to define is used to minimize the energy of logically
valid solutions and maximize the energy of incorrect ones. For domain wall encoding, this
function assumes the form

gdomain-wall(s) = (1− s0)
2 +

N−2

∑
i
(si− si+1)

2 + sN−1
2. (3.44)

44

For each encoding in Table 3.5, the above function would yield the value of 1 because
there is only one domain wall, while for an infeasible solution, such as 1010, it would yield
a value greater than 1, which in this specific case equals 3 as there are three domain walls.

3.3.4 QAOA mixers

As described in Section 3.2.2, a QAOA circuit uses two operators: the cos operator defined
in Eq. 3.24, which depends on the optimization objective and the encoding, and the mixing
operator defined in Eq. 3.25. The idea behind the latter is to preserve the feasible subspace
and to provide transitions between configurations that belong to this subspace.

The default mixing operator used in QAOA is the X mixer defined as

HX =
N

∑
i

Xi, (3.45)

where Xi is the Pauli X operator acting on the ith qubit (similarly to Zi from Eq. 3.5). This
operator acts as a simple bit flip, allowing for transitions between any state and its neigh-
bors [30].

Using the default QAOA mixer has its drawbacks, as this mixing strategy may cause the
system to appear in an incorrect state. For example, in one-hot encoding we could have the
invalid state of 10100, and in domain wall encoding the state 0010. Certainly, the problem
could be solved via post-processing, yet it is still problematic. Hence, instead of using trans-
verse field mixers, it is often preferable to use a dedicated mixer that mixes only through the
constraint subspace of the problem, preferably through the valid states.

One-hot encoding

For one-hot encoding, the feasible subspace is quite limited. The only feasible states are the
ones that include exactly a single 1. Using the X mixer would result in all those infeasible
states being considered, which often forces one to include additional constraints penalizing
the invalid states. Instead of the default mixer, one-hot encoding can be used in combination

45

with the dedicated XY mixer, defined as

HXY =
N−1

∑
i
(XiXi+1 +YiYi+1), (3.46)

where Xi and Yi are Pauli operators acting on the ith qubit, as in Eq. 3.5 [30, 69]. This operator
works similarly to the SWAP gate – it turns the state |01〉 into |10〉 and vice versa, while the
states |00〉 and |11〉 remain unchanged.

Domain wall encoding

As stated in the Section 3.3.3, flipping a qubit adjacent to a single domain wall does not
change the overall number of domain walls in the model. Therefore, a domain wall mixer
should only cause a bit to flip if it is adjacent to a domain wall and. This property is satisfied
by the following Hamiltonian:

Hmix =
N−1

∑
i
(Zi−1 Xi−Xi Zi+1). (3.47)

This mixer flips the ith qubit only when it is in direct neighborhood of a domain wall,
i.e. if the values of the qubits at indices i− 1 and i+ 1 are different, otherwise it does not
introduce any change to the qubit. Take as an example the state 1100, representing the value
of 2 (or the blue color category from Table 3.5). If this mixer was applied to the qubits with
indices {0,3}, then Zi−1 = Zi+1 and the terms in the above equation would reduce. On the
other hand, if the mixer was applied to the qubits with indices {1,2}, then Zi−1 6= Zi+1, so
the terms in the above equation would sum up to −Xi−Xi =−2Xi, which flips the ith qubit.
The constant preceding the operator can be neglected.

This approach allows for transitions exclusively between consecutive states, instead of
transitions between any two states. Yet, it is still an open question whether in real life prob-
lems a custom mixer specific to a particular encoding will perform better than the default
X mixer.

46

3.3.5 Comparison

A comparison of the encoding methods presented in this section can be found in Table 3.6.

one-hot binary domain wall

N (no. of qubits) n dlog2(n)e n−1

no. of couplers for encoding n(n−1)
0 if n = 2N ,

complicated otherwise n−2

intra-variable connectivity complete N/A or complicated linear

maximum order
needed to evaluate single values 1 dlog2(n)e 1

maximum order
needed for two-variable interactions 2 2dlog2(n)e 2

custom mixer available yes no yes

density n
2n

n
2dlog2(n)e

n
2n−1

Table 3.6: A comparison of binary, one-hot, and domain wall encoding

Number of qubits

The number of qubits scales linearly in both domain wall encoding and one-hot encoding,
although the latter does save one qubit. In binary encoding, the number scales logarithmically.

Number of two-body couplers for encoding

In order to determine the number of couplers for a specific encoding, we have to look at
its bit string feasibility function. For our purposes, the number of two-body couplers could
be understood as the number of second-degree terms in the obtained polynomial, with the
exclusion of terms that only contain a single variable, e.g. in the polynomial x0x1 + x2

0 +2x1

the number of couplers would be equal to 1.

47

For one-hot encoding, the feasibility function was defined in Eq. 3.29. After expanding
this function, we end up with the polynomial

gone-hot(s) = (1−
n

∑
i

si)
2 =

= (1− (s0 + s1 + s2 + ...+ sn−1))
2 =

= 12−2(s0 + s1 + s2 + ...+ sn−1)+(s0 + s1 + s2 + ...+ sn−1)
2.

(3.48)

Following the rules described above, we can disregard the first two terms, which leaves us
with

ĝone-hot(s) = (s0 + s1 + s2 + ...+ sn−1)
2. (3.49)

After expanding this polynomial, the number of terms is equal to n2, however, we can ignore
all terms of the form s2

i , which leaves us with the final number of couplers being equal to
n(n−1).

The feasibility function for binary encoding was defined in Eq. 3.35. The number of two-
body couplers depends on the value of n. If n is a power of two, there are no infeasible states
and the number of couplers is equal to 0. Otherwise, the function assumes the form of a more
complicated polynomial, like the one seen in Eq. 3.36. This polynomial will typically require
N-body interactions, which means that the implementation is much more complicated.

The feasibility function for domain wall encoding was defined in Eq. 3.44. It can be seen
that in the formula there are n−2 two-body terms, since the basis states of qubits with indices
-1 and N are fixed.

Intra-variable connectivity

The intra-variable connectivity property is directly related to the number of couplers de-
scribed in the previous section. In one-hot encoding, each bit is coupled with every other bit,
so the connectivity is complete (see Fig. 3.5a). In binary encoding, the connectivity depends
on the value of n again – if it’s a power of two, there’s no connectivity required, and oth-
erwise the relationship is complicated. In domain wall encoding, the connectivity is linear,
since each qubit is coupled only with its neighbors (see Fig. 3.5b).

48

5

0

4

3

2

1

(a) One-hot connectivity

0 4321

(b) Domain wall connectivity

Figure 3.5: One-hot and domain wall qubit connectivity

Maximum order needed to evaluate single values

The maximum order needed to evaluate or penalize single values is directly related to the bit
string interpretation function we defined for each encoding discussed in this section. It can
be understood simply as the order of the f (s) polynomial.

The bit string interpretation function for one-hot encoding was defined in Eq. 3.28. The
function has the order of 1. For binary encoding, this function was introduced in Eq. 3.30.
Its order is equal to N = dlog2 ne. The version of this function used for domain wall encoding
was defined in Eq. 3.44 – it has the order of 1.

Maximum order needed for two-variable interactions

The order needed for describing two-body interactions is directly related to the order needed
for the evaluation of a single variable. The mechanism is the same, however this time two
variables have to be considered instead of one. Therefore, the order for each encoding is
doubled.

49

Custom mixer availability

The XY mixer suitable for one-hot encoding and the dedicated mixer for domain wall encod-
ing were both described in 3.3.4. Binary encoding does not have a dedicated mixer operator,
however due to the density of this encoding, there is often no need for a mixer other than the
default X mixer.

Encoding density

Binary encoding is the densest of the three. The ration of feasible states to all states is equal
to n

2dlog2(n)e
. If n = 2N , none of the states are infeasible. The number of qubits used for one-hot

and domain wall encoding scales linearly, so the density is much worse – n
2n for one-hot and

n
2n−1 for domain wall. Encoding density is important to consider, as it describes how much of
our solution is space is occupied by infeasible states.

Summary

In this section, we discussed how optimization problems can be represented and solved on
a quantum computer. We began by defining the different representations, such as the Hamil-
tonian. Afterwards, we introduced the two quantum algorithms that will be used throughout
this thesis, VQE and QAOA. Finally, we dove into two commonly used encoding schemes
– one-hot and binary encoding – and compared them with a newly introduced alternative
encoding called domain wall encoding.

50

Chapter 4

Workflow scheduling

This chapter explains the version of workflow scheduling that will be used throughout this
thesis and introduces the formal definition.

4.1 Basic intuition

A workflow scheduling problem consists of N tasks and M types of machines. The tasks
have to be completed in a specific order that is defined in the form of a directed acyclic graph
(DAG). The execution of all tasks has to be completed within a deadline d.

It is important to note that while there are M types of machines, the number of machines
of each specific type is unlimited, meaning two tasks can be simultaneously running on two
machines of the same type without any interference. For simplicity, instead of saying "ma-
chine of type 3", we will use the phrase "machine 3". This does not mean that all the tasks
are executed on a single machine simultaneously, but rather that all of them are executed on
different machines of this type.

Let’s consider the following toy problem: we have two machines (A and B) and three
tasks (1, 2, and 3). The cost of running each task on a specific machine is defined in Table 4.1.
The number of time units required to run each task on a specific machine can be seen in
Table 4.2. Figure 4.1 shows the DAG that represents the dependencies between the tasks.

51

Machine A Machine B
Task 1 1 4
Task 2 2 6
Task 3 5 4

Table 4.1: Toy problem: cost matrix

Machine A Machine B
Task 1 5 4
Task 2 2 3
Task 3 5 3

Table 4.2: Toy problem: time matrix

Figure 4.1: Toy problem: task order DAG

4.1.1 Objective function

Our objective is to minimize the cost of executing the series of tasks. Looking at our toy
problem, if we execute the first task on machine A and the remaining two tasks on machine
B, the cost will be equal to 1+6+4 = 11.

The basic definition of this function is

objective = A ·
N

∑
i

costith task (4.1)

where A is a constant.

52

4.1.2 Constraints

While our goal is to minimize the objective function, there are also certain constraints that
have to be met.

Time constraint

The time of execution does not have to minimized like the cost, but it does need to be kept
below a deadline d. Looking at our toy problem and assuming the deadline is equal to d = 12,
we could break this constraint by executing tasks 1 and 3 on machine A and task 2 on machine
B (5+ 3+ 5 = 13 > 12). A solution satisfying this constraint could, for instance, take the
form of having all the tasks be run on machine B (4+3+3 = 10≤ 12).

The basic formulation of this constraint is

N

∑
i

timeith task ≤ d. (4.2)

This inequality causes some complications, since we don’t want to penalize solutions
that require more units of time, as long as they stay within the time limit. In our example, we
shouldn’t favor using machine B for task 1 and machine A for tasks 2 and 3 (4+2+5 = 11≤
12) over using machine B for tasks 1 and 2 and machine A for task 3 (4+3+5 = 12≤ 12).
From the algorithm’s perspective, these solutions should be equivalent, and we should favor
the one with a lower cost.

The mechanism used to convert the inequality into an equality is based on slack variables.
The slacks are additional non-negative variables in the solution vector that declare an offset
added to the obtained value. The equality takes the following form:

N

∑
i

timeith task +∑slacks = d. (4.3)

Looking at our toy problem, if we take a solution that includes running all the tasks on
machine B (4+ 3+ 3 = 10 ≤ 12), we would need the sum of our slack variables to assume
the value of 2 to satisfy the equality 10+2 = 12.

To figure out the maximum value of the slack sum (and therefore the number of bits

53

required to encode it), we need to look at the shortest possible path. In our toy example, it’s
4+ 2+ 3 = 9 ≤ 12 (tasks 1 and 3 on machine B and task 2 on machine A). Therefore, to
encode our solutions in the form of an equality, we will need the slacks to assume a value
from the range [0,4].

The final issue with the time constraint is that we do not have a mechanism to enforce
equality conditions when using optimization algorithms such as the ones discussed in this
thesis. We can only minimize a single function, which means that we have to somehow add
this constraint to the already established objective function. The constraint converted to a
function that can be minimized assumes the following form:

constrainttime = B ·

d−

(
N

∑
i

timeith task +∑slacks

)2

. (4.4)

This function meets its minimum when ∑
N
i time for task i+∑slacks is equal to the dead-

line and grows quadratically as we get away from the minimum (regardless of whether we’re
going over or below the deadline). The factor B is included to ensure we have a proper weight
distribution between the three summands.

While our toy problem includes only a single path, it is important to note that when
solving problems with more complex DAGs (like the one in Figure 4.1), each path that goes
through the graph needs a separate inequality condition (since we want each path to fit in the
deadline) and therefore each path has its separate slacks. For a problem with a set of paths R,
we arrive at the following formula:

constrainttime = B ·∑
r∈R

d−

∑
i∈r

timeith task +∑
j∈r

slack j

2

. (4.5)

Feasibility constraint

As we noted, the number of machines of each type is unlimited, so it is possible to execute
all tasks on machines of the same type. Therefore, we do not need to concern ourselves with
spreading tasks across machines in any specific way. However, we have to ensure that each

54

task will be assigned to exactly one valid machine. This constraint is implemented via the
bit string feasibility function described in Chapter 3.3. In some cases, the constraint can be
skipped, for instance when using binary encoding to represent 2N states. Additional scenarios
for when the constraint can be skipped will be discussed in Chapter 5. Nevertheless, the basic
idea is that we want to minimize the function

constrainttasks =C ·number of tasks without a machine. (4.6)

This penalty typically grows linearly with the number of incorrectly assigned tasks.

4.1.3 Optimized function

The full function takes the form:

A ·∑costith task +B ·∑
r∈R

d−

(
∑
i∈r

timeith task +∑slacks

)2

+C ·no. of tasks with no machine.

(4.7)

For vectors that meet the deadline and correctly assign machines to all tasks, the mini-
mized function is equivalent to the objective (cost) function. For configurations that break
one or two of the required conditions, penalties are assigned according to the two functions
described above. The specifics of this function are encoding-dependent and will be discussed
in the following chapters. We will also discuss the intuition behind choosing good values for
A, B, and C.

4.2 Formal definition

In order to map the problem defined in the previous section to a QUBO problem, the following
constants have to be defined:

• N – the number of tasks,

55

• M – the number of machines,

• R – the number of paths,

• d – the maximum number of time units allocated to the completion of all the tasks.

We also have to consider the following matrices:

• C(i, j) – the cost of executing task i on machine j,

• T (i, j) – the number of time units required to execute task i on machine j,

• S(k) – the number of slack variables for path k,

• P(i,k) – a binary function of the following form:

P(i,k) =

1 if task i is lies on path k,

0 otherwise.
(4.8)

While the definitions described above are written in such a way that they are not depen-
dent on the chosen encoding, it is important to point out that V , the solution vector returned by
a quantum computer, does depend on the encoding. This vector contains a one-dimensional
representation of the solution, including both the task-machine pairings and the slack vari-
ables. The interpretation of this vector will depend on the encoding, as it will be based on the
bit string interpretation function defined for each encoding in Chapter 3.3. We will discuss
the specific implementations in Chapter 5.

In order to establish a generic definition of our objective function, let us define two addi-
tional matrices. Their role is to map the state described by V into an encoding-independent
representation of this state. The vector will be converted into two matrices:

• the solution matrix X , which has the form:

X(i, j) =

1 if task i is executed on machine j,

0 otherwise,
(4.9)

56

• the slack matrix Y , where Y (k, l) denotes the value of the lth slack on path k.

For simplicity, the elements of the above-mentioned matrices C(i, j), T (i, j), S(k), P(i, j),
X(i, j), and Y (k, l) will be denoted as ci, j, ti, j, sk, pi, j, xi, j, and yk,l , respectively.

Using the notation established in the paragraphs above, we arrive at the following generic
formulation of the objective function:

O(X ,Y) = A ·
N

∑
i

M

∑
j

ci, jxi, j +B ·
R

∑
k

d−

 N

∑
i

M

∑
j

pi,kti, jxi, j +
sk

∑
l

2lyk,l

2

+C ·
N

∑
i

1−
M

∑
j

xi, j

2

.

(4.10)

This definition includes the typical implementation of slack variables that is based on a
straightforward binary representation of the slack value.

Summary

This chapter derived the constraints and the objective function that will be used to solve the
workflow scheduling problem. Using a simple toy example, we demonstrated the importance
of the three components of the objective function. Finally, we arrived at a generic definition
of the problem, which can be adapted to different encodings in a simple way. The specific
encoding-dependent implementations will be discussed in Chapter 5.

57

Chapter 5

Solution implementation

In Chapter 4, we introduced a generic definition of workflow scheduling. This definition,
summarized by Eq. 4.10, relies on two matrices: the task-machine matrix X(i, j) and the
slack matrix Y (k, l). These matrices are formed from vector V , which is a one-dimensional
encoding-dependent representation of the system’s state. In this chapter, we discuss the spe-
cific implementations of X and Y for each of the discussed encoding schemes. After that, we
return to the subject of QAOA mixers, previously discussed in Chapter 3.3.4, and we define
the mixers to be used in this problem.

5.1 Encoding-dependent solution representations

In Chapter 3.3, we discussed three different encoding schemes: one-hot, binary, and domain
wall. For each encoding, we defined two functions: the bit string interpretation function and
the bit string feasibility function. The first function will be used to implement matrix X . The
second function, in some cases, will be used to simplify the feasibility constraint.

In order to implement matrix Y , the same formula will be used for every encoding:

Y (k, l) =V (NM̂+
k

∑
r

sr + l), (5.1)

where M̂ is the number of bits needed to encode M machines and sr is the number of slack

58

variables for path r.

5.1.1 One-hot encoding

The one-hot encoding scheme is quite straightforward. To encode each machine we need
M bits and the meaning of those bits can be resolved by applying the function defined in
Eq. 3.28. To encode M machines and N tasks, we need N ·M bits. We store those values in a
single flattened vector, where the first M bits encode the first task, the second M bits encode
the second task, and so on. The remaining bits in vector V correspond to the slack values. An
example of V for three tasks and three machines can be seen in Figure 5.1. In this case, the
first task will be executed on the second machine (machine with index 1), the second task will
be executed on the first machine (index 0), and the third task will be executed on the second
machine as well. The slacks will be resolved to 1 ·23 +0 ·22 +1 ·21 +1 ·20 = 11.

Figure 5.1: An example of a one-hot encoded workflow scheduling vector V

In order to translate the solution vector into the X matrix, we apply the formula

X(i, j) =V (i ·M+ j). (5.2)

The universal feasibility function for one-hot encoding was defined in Eq. 3.29. This func-
tion closely resembles the feasibility constraint for workflow scheduling, as it was defined in
Eq. 4.7. Therefore, there is no room for any additional optimization of this constraint.

For a three-bit task vector, like the one in Figure 5.1, we have three feasible states: 001,
010, and 100. The majority of the remaining configurations correspond to situations in which
a single task would have to be executed on multiple machines (for instance, 111 would mean
that the task is executed on all three machines). These configurations are penalized not only
by the feasibility constraint, but also by the sheer cost of having these additional elements in

59

the cost and time functions – executing a single task on multiple machines will always cost
more and take longer than executing it on a single machine. A notable exception is vector
000 – it denotes a situation in which a task is not executed on any machine. Unlike the
other infeasible states, this configuration would seem preferable to the optimizer over other
legitimate configurations, and it is the reason why the feasibility constraint is required when
one-hot encoding is used (unless it is used in conjunction with a QAOA mixer).

5.1.2 Binary encoding

Using binary encoding, to encode each of the M machines, we need M̂ = dlog2 Me bits.
Following the thought process from the previous section, in this case we will also flatten the
N machine encodings into a single vector V , in which the first M̂ bits will describe the first
task, the next M̂ bits the second task, and so on. The remaining bits in vector V will be
used for slack variables. This encoding is illustrated in Figure 5.2, which described the same
configuration as Figure 5.1.

Figure 5.2: An example of a binary encoded workflow scheduling vector V

In order to decode each machine from vector V , we will use the function defined in
Eq. 3.30. The full mapping to X takes the following form:

X(i, j) =
M̂

∏
m

(
1−
(

V (i · M̂+m)−b j,M̂
i

)2
)
, (5.3)

where b j,M̂
i is the ith bit of the binary-encoded number j, encoded over M̂ bits.

The formulation of the feasibility constraint, as defined in Eq. 4.10, can be simplified
for binary encoding. In one-hot encoding, we had to ensure that each task would be run on

60

exactly one machine (instead of zero machines or ten machines). In binary encoding, there
is no state corresponding to executing a task on multiple machines or no machines – a task
is simply run on the machine with the encoded index. When M = 2M̂, every combination of
bits corresponds to some valid machine, so no feasibility constraint is needed. Otherwise, we
have to ensure that the encoded machine index does not exceed M. To do that, we use the
same method as in the feasibility function for binary encoding, which was defined in Eq. 3.35.
After applying this function, we arrive at

Obinary(X ,Y,V̂) =A
N

∑
i

M

∑
j

ci, jxi, j +B ·
R

∑
k

d−

 N

∑
i

M

∑
j

pi,kti, jxi, j +
sk

∑
l

2sk−l−1yk,l

2

+C ·
N

∑
i

2M̂

∑
j=M

gbinary j(v̂i),

(5.4)

where V̂ (i) is the binary string representing the machine on which task i is executed. For each
machine, we check if its index happens to fall between M and 2M̂. In this formulation, the
feasibility constraint will be equal to the number of tasks executed on infeasible machines.

5.1.3 Domain wall encoding

In domain wall encoding, we need M̂ = M− 1 bits to encode M machines. Just like pre-
viously, we flatten the vector to describe the N tasks, using N · (M− 1) bits in total. The
remainder of vector V is used for slack variables. An example of a domain wall encoded
vector V , analogous to the one in Figures 5.1 and 5.2 can be seen in Figure 5.3.

Figure 5.3: An example of a domain wall encoded workflow scheduling vector V

61

In order to define a translation between V and X , let us first define a matrix W of size
N×M that takes the form

W (i, j) =

1−V (i · (M−1)) if j = 0,

V (i · (M−1)+ j)−V (i · (M−1)+ j+1) if 0 < j < M−1,

V ((i+1) · (M−1)−1) if j = M−1.

(5.5)

This matrix corresponds directly to the definition from Eq. 3.43, the only difference is that
it looks at the appropriate indices of V . This matrix can contain the values {−1,0,1} and its
meaning can be decoded in the following way:

W (i, j) =

1 if task i is executed on machine j,

0 if task i is not executed on machine j,

−1 if this is an infeasible configuration.

(5.6)

While this is not yet synonymous with one-hot encoding, it is relatively similar. Instead of
vectors 001, 010, and 100, we can denote the same states with vectors 11, 10, and 00. In such
a two-bit system, we only have one infeasible state: 01, which, after applying the formula
defined above, would be decoded into the vector [1,−1,1]. As described in Section 3.3.3,
the appearance of a −1 is a characteristic of invalid vectors. This issue can be bypassed
in different ways, but in our general implementation, we simply square the value of W (i, j).
After this operation, the vector [1,−1,1] would be converted to [1,1,1], which is similar to an
infeasible one-hot state. This way, we arrive at the final formula for the conversion between
V and X , which is defined as

X(i, j) =W (i ·M, j)2. (5.7)

As already stated, by squaring these values, we arrive at a pattern similar to one-hot
encoding, with one notable exception – there is no state synonymous with vector 000. All
the infeasible configs correspond to a situation in which multiple machines are selected for a
specific task. Since these vectors are already penalized by both the cost function and the time
function, it is sometimes possible to drop the feasibility constraint, as the optimizer should

62

never prioritize such a config over a feasible one.
As was the case for binary encoding in Eq. 5.4, when considering domain wall encoding,

we also have a way of simplifying the feasibility constraint by employing the feasibility
function defined in Eq. 3.44. A correct domain wall vector has exactly one wall, while
incorrect vectors have more walls. Therefore, we do not have to create a function enforcing
that the number of walls is equal to 1 and instead, we can just minimize the number of walls
in the following way:

Odomain-wall(X ,Y,V) =A
N

∑
i

M

∑
j

ci, jxi, j +B ·
R

∑
k

d−

 N

∑
i

M

∑
j

pi,kti, jxi, j +
sk

∑
l

2sk−l−1yk,l

2

+C ·
N

∑
i

(1− vi·M̂)2 +
M−2

∑
j
(vi·M̂+ j− vi·M̂+ j+1)

2 + v(i+1)·M̂−1
2

 .

(5.8)

5.2 Mixers

Two of the used encoding schemes can be used in combination with custom mixers. The
XY mixer for one-hot and the custom mixer for domain wall were both described in Sec-
tion 3.3.4.

It is important to note is that in our representation of workflow scheduling, these mixers
can be used only on the bits describing the specific tasks. The slack bits need to have the
default X mixer applied to them.

5.2.1 One-hot encoding

In order to apply the XY mixer defined in Chapter 3.25 to our one-hot-encoded workflow
scheduling problem, we have to apply this mixer to the encoding of each task separately. We

63

also have to apply the default X mixer to the slack variables. The full formula is defined as

HMone-hot =
N

∑
i

M−1

∑
j

I⊗i·M+ j⊗X⊗X⊗ I⊗M(N−i−1)+M−2− j⊗ I⊗Ŝ

+
N

∑
i

M−1

∑
j

I⊗i·M+ j⊗Y ⊗Y ⊗ I⊗M(N−i−1)+M−2− j⊗ I⊗Ŝ

+
Ŝ

∑
i

I⊗N·M+i⊗X⊗ I⊗Ŝ−i−1,

(5.9)

where Ŝ denotes the number of slack variables, and the I⊗n notation is used to describe a
tensor product of n identity matrices, as defined in Eq. 3.5.

When used in combination with this custom mixer, the objective function for one-hot
encoding from Eq. 4.10 can be simplified to:

Oone-hot(X ,Y) = A
N

∑
i

M

∑
j

ci, jxi, j +B
R

∑
k

d−

 N

∑
i

M

∑
j

pi,kti, jxi, j +
sk

∑
l

2lyk,l

2

. (5.10)

The main difference is the exclusion of the feasibility constraint, which is possible, be-
cause the mixer ensures that only feasible configurations are processed and therefore no extra
penalty should be needed.

5.2.2 Domain wall encoding

Similarly to the XY mixer, in order to apply the custom domain wall mixer defined in Sec-
tion 3.25 to our domain-wall-encoded problem, we have to apply this mixer to the encoding
of each task separately. We also have to apply the default X mixer to the slack variables. The

64

full formula is defined as

HMdomain-wall =
N

∑
i
[−I⊗i·M̂⊗X⊗ I⊗(N−i−1)·M̂+M−2+Ŝ

+
M−2

∑
j
[(−1)I⊗i·M̂+ j⊗X⊗Z⊗ I⊗(N−i−1)·M̂+M−2− j+Ŝ

+ I⊗i·M̂+ j⊗Z⊗X⊗ I⊗(N−i−1)·M̂+M−2− j+Ŝ]

−I⊗(i+1)·M̂−1⊗X⊗ I⊗(N−i−1)M̂+Ŝ]

+
Ŝ

∑
i

I⊗N·M̂+i⊗X⊗ I⊗Ŝ−i−1,

(5.11)

where Ŝ denotes the number of slack variables, and the I⊗n notation is used to describe a
tensor product of n identity matrices, as defined in Eq. 3.5.

When used in combination with a custom mixer, the formula for the domain-wall-encoded
objective function from Eq. 5.8 can be simplified to

Odomain-wall(X ,Y) = A
N

∑
i

M

∑
j

ci, jwi·M, j+B
R

∑
k

d−

 N

∑
i

M

∑
j

pi,kti, jwi·M, j +
sk

∑
l

2sk−l−1yk,l

2

.

(5.12)
The main difference is the exclusion of the feasibility constraint (since feasibility is guaran-
teed by the mixer). Additionally, the transformation from Eq. 5.7 can be skipped, since it’s
only necessary when dealing with invalid configurations (as per Eq. 5.7).

Summary

In this chapter, we derived the specific implementations of the workflow scheduling problem
from Chapter 4 for each of the encodings presented in Section 3.3. We also defined the
formulas of two QAOA mixers. The proposed implementation will be used in the experiments
described in the two following chapters.

65

Chapter 6

Experiment design

In this chapter, we discuss the design of our experiments. Firstly, we focus on various ex-
periment parameters, including the chosen algorithms and classical optimizers, the method
used for initial point selection, and the selected QUBO parameters. We conclude the chapter
by introducing the specific instances of workflow scheduling that will be used in our experi-
ments.

6.1 Optimization algorithms

In previous works focusing on quantum workflow scheduling, the main focus has been VQE [64].
We have chosen to also consider QAOA. The inclusion of QAOA opens up the door for in-
cluding a custom mixer in our computations. This lead us to arrive at the following combina-
tions:

• QAOA with different mixers:

– the default X mixer and encodings:

* one-hot,

* domain wall,

* binary,

– a custom encoding-dependent mixer and encodings:

66

* one-hot (XY mixer),

* domain wall (domain wall mixer),

• VQE with encodings:

– one-hot,

– domain wall,

– binary.

6.1.1 Classical optimizers

Although Qiskit offers numerous classical optimizers1, previous research on workflow schedul-
ing has focused on a single optimizer, specifically SPSA [64]. We have chosen to compare a
few different optimizers to see whether any of them are preferable. The following optimizers
were taken into account:

• COBYLA (Constrained Optimization By Linear Approximation optimizer), gradient-
free [60, 57, 59],

• POWELL, gradient-free [58],

• NELDER-MEAD, gradient-free [48],

• L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound), gradient-
based [75].

Our choice of optimizers was backed by findings from literature, as well as personal expe-
rience. COBYLA and L-BFGS-B have been found to be fast even in noisy environments [38].
Research also suggests that SPSA, POWELL, and L-BFGS-B are all effective even in noisy
environments, while COBYLA and NELDER-MEAD were found to handle noise worse [54].
SPSA was excluded from these tests due to its run time being very long.

1https://qiskit.org/documentation/apidoc/qiskit.aqua.components.optimizers.html

67

https://qiskit.org/documentation/apidoc/qiskit.aqua.components.optimizers.html

6.1.2 Initial point selection

The importance of an initial point is an issue overlooked in literature and in previous research.
We have conducted additional small experiments testing the influence of this point on the
results of a simple toy problem. The equation we tried to minimize was x0 + 5x1 + 10x2 –
its minimum occurs at vector 000. The results of this experiment can be seen in Figure 6.1.
While most initial points render results that assign a high probability to the correct answer,
there’s also many points that result in incorrect results.

Figure 6.1: A histogram of the number of correct results in 1024 samples over 100 random-
ized initial points

This issue is not something that’s often discussed in literature. We considered two ap-
proaches here: we could either look for a single point that renders the best result, or we could
repeat the experiment enough times to be able to disregard the influence of randomization
on our results. The first approach didn’t seem to be a good choice for two reasons. Firstly,
finding a good initial point is a tedious and partly manual process. Secondly, reporting on a
single best result isn’t particularly honest and realistic. This point can’t be reused for other

68

problems, and it doesn’t reflect on the quality of the solution, since it is the result of reverse
engineering.

Reusing initial points

While there is no indication that these initial points can be reused as the size of the problem
grows or that they’re universally efficient regardless of the chosen classical optimizer, there
is a way these values can be reused to improve one’s results. The basic idea for both QAOA
and VQE is that we can make more informed guesses for the initial point as the depth of the
circuit grows. This approach is most often discussed for QAOA and its parameter p [26],
however it has also been suggested that it could be an efficient way to improve the results of
VQE as the number of repetitions increases.

6.1.3 Initial state

Initial state is another parameter passed to QAOA. By default, the initial state is a superposi-
tion of all possible configurations, however often it is preferable to replace that with a custom
vector. Most notably, when QAOA mixers are used, it is necessary to pass the superposi-
tion of all feasible states. This way, the mixer can remain in the feasible subspace and only
consider valid vectors. In our case, this superposition contained all the correctly encoded
machine combinations with every possible slack variable value.

6.1.4 QUBO parameter selection

The definition of workflow scheduling from Eq. 4.7 includes three clauses. The first clause
is the objective function, and the other two include penalties. Each clause has its respective
weight, and by manipulating these weights we can alter the ordering of the energies of the
possible configurations. This ordering has to follow two main principles:

• the optimal solution has to have the lowest energy,

• the energy of each correct solution has to be lower than that of an incorrect solution.

69

While these two principles generate a valid ordering, there are additional tweaks that can
be implemented. Before we discuss them, let us define the following mutually exclusive types
of solutions to the workflow scheduling problem:

• the optimal solution,

• a correct solution – a solution that represents a correct mapping and fits within the
deadline (note: we do not include the optimal solution in the correct solution count),

• a semi-optimal solution – a solution identical to the optimal solution, but with an invalid
slack configuration,

• a semi-correct solution – a solution identical to some correct solution, but with an
invalid slack configuration,

• an incorrect solution – a solution that is not optimal, correct, semi-optimal, or semi-
correct, meaning it either corresponds to an invalid configuration or it exceeds the dead-
line.

These metrics were specifically designed to add up to the number of total solutions
(100%) returned from the experiment. The reason for highlighting these semi- solutions is
that they cannot really be considered to be correct, since their energies includes a penalty for
a seemingly exceeded deadline. The deadline is not actually exceeded, as it’s just the slacks
that give this impression, however the algorithm has no way of distinguishing between, for
instance, a solution exceeding the deadline by 1 and a correct solution with a single extra
slack. While the semi- solutions are not really desired, they are still preferable to incorrect
solutions – a semi- solution corresponds to an actual correct configuration, so from a practical
perspective it is quite sensible.

In a perfect setting, we would want the optimal and semi-optimal solutions to have the
lowest energies, followed by correct and semi-correct solutions. The energies of incorrect
solutions should be higher, preferably with feasible configurations having energies lower
than infeasible solutions. This ordering is presented in Figure 6.2.

70

Figure 6.2: A one-dimensional visualization of the ideal ordering of solution energies

However, this ideal ordering is not possible due to penalties affecting the semi- solutions,
which make it impossible to distinguish between solutions that exceed the deadline and so-
lutions that are semi-correct or semi-optimal. Therefore, we initially settled on an approach
that shall be referred to as the naive ordering, in which we do guarantee that the energies of
optimal and correct solutions are the lowest, however all other solutions remain mixed with
each other. This ordering is shown in Figure 6.3.

Figure 6.3: A one-dimensional visualization of the naive ordering of solution energies

71

Eventually, we tried manipulating the A, B, C weights further to increase the gap between
the correct solutions and the rest, but this was not particularly effective. Finally, we settled
on an ordering, which will be referred to as the feasibility-jump ordering. This ordering
guarantees the lowest energies for optimal and correct solutions and the highest energies for
incorrect and infeasible solutions. In the middle, we have a mix of semi- solutions as well as
incorrect feasible solutions. This ordering is illustrated in Figure 6.4.

Figure 6.4: A one-dimensional visualization of the feasibility jump ordering of solution
energies

This ordering was possible due to the feasibility constraint from Eq. 4.7 having a separate
weight, C. By sending those infeasible configurations away from the rest, we found some
improvement in the results. In Chapter 7 we will discuss the results for one-hot encoding and
binary encoding for two sets of weights ensuring the naive ordering and the feasibility-jump
constraint.

6.1.5 Experiment randomization

In previous research, experiments were conducted a single time and the presented results
focused on a single most successful run [64]. We have chosen a different approach – each
experiment was repeated a number of times and the results were averaged. This approach

72

seemed more reliable, since there is a lot of variation in the results depending on the selected
initial point.

6.1.6 Result evaluation metrics

Different metrics can be used for evaluating the obtained results. A good metric is necessary
not only for assessing the quality of a solution, but also when using the p-reusing trick de-
scribed in 6.1.2. In this method, one needs to select the best solution for a specific p and then
the optimal point of this solution is used as the initial point for p+1.

The following metrics were taken into consideration:

• the number of correct solutions,

• the number of optimal solutions,

• the number of feasible solutions,

• the average energy between all solutions,

• the energy of the most frequent solution,

• the highest energy from among the found solutions,

• the lowest energy from among the found solutions.

Finally, we settled on the "average energy between all solution" approach, however, we
admit that this metric is not perfect, as the standard deviation also appears to affect the results
tremendously.

For result evaluation in Chapter 7 we shall be using the average energy, as well as the
correct, optimal, incorrect, and feasible counts.

6.2 Considered workflows

Three different workflows were considered: a single small problem to be tested against each
encoding, and two large problems designed to test the capabilities of the two denser encod-
ings.

73

6.2.1 Small problem

The small problem was used for tests of all three encoding. It consists of three machines and
three tasks. The costs and times for each machine and task can be seen in Tables 6.1 and 6.2.
The DAG is shown in Figure 6.5. The number of required slack variables is 4. Therefore, the
total number of qubits for the least dense encoding (one-hot) is

N · M̂+ Ŝ = N ·M+ Ŝ = 3 ·3+4 = 13, (6.1)

where N is the number of tasks, M̂ is the number of qubits needed to encode M machines
(which for one-hot encoding are equal) and Ŝ is the number of slack variables, as described
in Section 5.1. Binary and domain wall encoding both required 10 qubits, since the total
number of qubits for binary encoding is

N · M̂+ Ŝ = N · dlog2 Me+ Ŝ = 3 ·2+4 = 10, (6.2)

and for the domain wall encoding

N · M̂+ Ŝ = N · (M−1)+ Ŝ = 3 ·2+4 = 10. (6.3)

Machine A Machine B Machine C
Task 1 6 8 8
Task 2 3 4 4
Task 3 12 16 16

Table 6.1: Small problem: cost matrix

Machine A Machine B Machine C
Task 1 6 2 8
Task 2 3 1 2
Task 3 12 4 8

Table 6.2: Small problem: time matrix

74

Figure 6.5: Small problem: task order DAG

6.2.2 Large problems

Two larger problems were used for tests of the more dense encoding – binary encoding and
domain wall encoding. Both problems consisted of 4 tasks and both used the same DAG
(shown in Figure 6.6), but each used a different number of machines and different cost and
time matrices.

Figure 6.6: Large problem: task order DAG

75

Binary encoding

The problem used to test binary encoding consisted of 4 tasks and 4 machines. The number of
slack variables was 7 in total, 3 and 4 for each of the paths, respectively. The overall number
of qubits is equal to 4 · dlog2 4e+ 3+ 4 = 4 · 2+ 7 = 15. The cost and time matrices can be
seen in Tables 6.3 and 6.4.

Machine A Machine B Machine C Machine D
Task 1 1 2 4 8
Task 2 2 4 8 16
Task 3 4 8 16 32
Task 4 8 16 32 64

Table 6.3: Large problem (binary encoding): cost matrix

Machine A Machine B Machine C Machine D
Task 1 4 2 2 1
Task 2 8 4 4 2
Task 3 16 8 8 4
Task 4 32 16 16 8

Table 6.4: Large problem (binary encoding): time matrix

Domain wall encoding

The problem used in domain encoding was slightly smaller due to the encoding being less
dense – it contained 3 instead of 4 machines. The number of slack variables was 3 on each
path, so the total number of qubits was equal to 4 · (3−1)+6 = 4 ·2+6 = 14. The cost and
time matrices can be seen in Tables 6.5 and 6.6.

76

Machine A Machine B Machine C
Task 1 2 1 3
Task 2 4 2 6
Task 3 6 3 9
Task 4 8 4 12

Table 6.5: Large problem (domain wall encoding): cost matrix

Machine A Machine B Machine C
Task 1 4 5 3
Task 2 8 10 6
Task 3 12 15 9
Task 4 16 20 12

Table 6.6: Large problem (domain wall encoding): time matrix

Summary

We began this chapter by explaining how the experiments were designed, including the choice
of classical optimizers, the selection and randomization of parameters, and the choice of met-
rics used to evaluate the results. The chapter concludes with a description of three workflow
scheduling instances, the results of which will be presented in the next chapter.

77

Chapter 7

Evaluation of the results

In this chapter, we describe the results obtained from the experiments described previosly
in Chapter 6. The experiments were conducted on the Prometheus supercomputer at the
AGH UST Academic Computer Centre CYFRONET with the usage of the PLGrid infrastruc-
ture.

As mentioned in Section 6.1, for each out of three encodings, the QAOA and VQE al-
gorithms were both tested. In addition, for the encodings with a dedicated mixer available,
QAOA was tested with the custom and the default mixer separately. In our case, as de-
scribed in Section 3.3.4, only binary encoding did not have a custom mixer, which means
that we tested eight combinations of encodings and algorithms. Then, for each such pair,
we tested four different optimizers (see Section 6.1.1), and for each encoding-algorithm-

optimizer triple, we repeated the experiment with the p/reps parameters ranging from 1 to 3
(as described in Sections 3.2.2 and 3.2.3).

Therefore, for the smaller problem instance we ran 8 ·4 ·3= 96 experiments, while for the
larger problem, since one-hot encoding was omitted (which will be described in Section 7.2),
we ran 5 ·4 ·3 = 60 experiments. Each experiment was repeated 1000 times to get the most
reliable averages. Additionally, it is worth mentioning that every repetition measures the
quantum circuit 1024 times, which is defined via the shots1 parameter.

The results shown in this section below are presented in the form of box plots2.

1https://qiskit.org/documentation/apidoc/execute.html
2https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html

78

https://qiskit.org/documentation/apidoc/execute.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html

7.1 Smaller problem

The first problem used in our experiments was the smaller problem defined in Section 6.2.1.
The problem was chosen so that all its three encodings would fit on 15 or fewer qubits. The
goal was to eventually run these experiments on the IBM Melbourne machine, the largest
publicly available IBM quantum computer.

7.1.1 One-hot encoding

Using one-hot encoding, we tested QAOA with both the default X mixer and the custom XY

mixer (described in Section 3.3.4), as well as VQE.

QAOA with a default mixer

The eigenvalues obtained in this experiment can be seen in Figure 7.1. The eigenvalue will
henceforth mean the average eigenvalue from the given sample (repetition), since, as already
mentioned, a single sample measures the quantum circuit 1024 times and thus returns 1024
eigenstates with their corresponding eigenvalues. This metric, along with others, is described
in Section 6.1.6.

Overall, this algorithm performed quite poorly, as for all optimizers the result medians
were in the 6000–14000 range, while the minimum eigenvalue, marked with a red line in
Fig. 7.1, was around −5000. The worst results were obtained by the L-BFGS-B optimizer,
and the best results were obtained using the POWELL optimizer with p set to 2. It can be
observed that increasing the p parameter to 2 improved the results, while increasing it to
3 had the opposite effect. The strategy used for choosing initial points when increasing the
p/reps parameter was presented in Section 6.1.2.

79

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

5000

0

5000

10000

15000

20000

25000

30000

35000

ei
ge

nv
al

ue

Figure 7.1: The eigenvalues for one-hot encoding and QAOA with a default mixer

An analysis of incorrect, correct, optimal, and feasible solution percentages, as obtained
by QAOA with a default mixer, is shown in Fig. 7.2. The performance of this encoding is
rather unsatisfactory, as all optimizers gave a median incorrect solution percentage higher
than 90%. The POWELL optimizer with p = 2 performed the best, as can be seen in all four
charts. This combination had the lowest percentage of incorrect solutions and the highest
median percentage of correct, optimal, and feasible solutions.

80

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

20

40

60

80

100
pe

rc
en

ta
ge

 o
f i

nc
or

re
ct

 so
lu

tio
ns

 [%
]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

2

4

6

8

10

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0.0

1.0

2.0

3.0

4.0

5.0

6.0

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

[%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

10

20

30

40

50

60

70

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(d) Feasible solutions

Figure 7.2: A result breakdown for one-hot encoding and QAOA with a default mixer

QAOA with a custom mixer

The eigenvalues obtained by QAOA with a custom mixer are presented in Fig. 7.3. Similarly
to its performance in conjunctions with the default mixer, this method also did not give satis-
factory results. Among the four optimizers, L-BFGS-B performed the worst, while POWELL

was slightly better than the rest. Increasing the p parameter improved the results only for the
NELDER-MEAD optimizer, while for the others it did not bring any improvement.

81

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

1400

1200

1000

800

600

400

200
ei

ge
nv

al
ue

Figure 7.3: The eigenvalues for one-hot encoding and QAOA with a custom mixer

An analysis of incorrect, correct, optimal, and feasible solution percentages, as obtained
by QAOA with a custom mixer, is shown in Fig. 7.4. From these plots, we can observe
that all the optimizers performed similarly, with L-BFGS-B performing slightly worse than
the others. The percentage medians of incorrect and correct solutions are in the range of
5%–10%, while the optimal solutions are in the range of 0%–0.3%, In each experiment, the
percentage of feasible solutions is equal to 100%, because the custom mixer restricts the
solution subspace to only the logically correct solutions.

82

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

-5

0

5

10

15

20

25

30
pe

rc
en

ta
ge

 o
f i

nc
or

re
ct

 so
lu

tio
ns

 [%
]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

-5

0

5

10

15

20

25

30

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

1

2

3

4

5

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

96

98

100

102

104
pe

rc
en

ta
ge

 o
f f

ea
sib

le
 so

lu
tio

ns
 [%

]

(d) Feasible solutions

Figure 7.4: A result breakdown for one-hot encoding and QAOA with a custom mixer

VQE

The eigenvalues obtained by VQE, used in conjunction with one-hot encoding, are presented
in Fig. 7.5. This algorithm gave us results better than the two versions of QAOA discussed
above, but there is a significant variation in results depending on the chosen optimizers.
L-BFGS-B and NELDER-MEAD performed the worst, while COBYLA and POWELL allowed

83

for much better results. The lowest eigenvalues were obtained by the POWELL algorithm with
reps = 2. Increasing the reps parameter improved the results only for L-BFGS-B optimizer.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

10000

20000

30000

40000

50000

60000

ei
ge

nv
al

ue

Figure 7.5: The eigenvalues for one-hot encoding with VQE

An analysis of incorrect, correct, optimal, and feasible solution percentages, as obtained
by VQE, is shown in Fig. 7.6. The L-BFGS-B optimizer turned out to be the weakest, which
can be noticed in the plot of incorrect solution percentages. The NELDER-MEAD optimizer
performed slightly better, and the COBYLA optimizer had an even more significant decrease
in the percentage of incorrect solutions.

Finally, the POWELL optimizer had the lowest percentage of incorrect solutions, as well
as the highest percentage of correct solutions (with a few samples greater than 90%), the
highest percentage of optimal solutions (with two outstanding samples greater than 80%), and
the highest percentage of feasible solution (the median for reps = 1 was close to 100%). By

84

analyzing the four metrics, one can conclude that increasing the value of the reps parameter
did not result in any improvement.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(d) Feasible solutions

Figure 7.6: A result breakdown for one-hot encoding with VQE

One-hot encoding comparison

A comparison of correct and incorrect solution percentages for different algorithms used
in conjunction with one-hot encoding is presented in Fig. 7.7.

QAOA with a custom mixer proved to be the best algorithm when considering the per-

85

centage of incorrect solutions (Fig. 7.7a), as for all four optimizers the percentage of incorrect
solutions was lower than 20%. QAOA with a default mixer was mostly in the 80%–100%
range and the VQE algorithm had a significantly higher variance, however the median for
POWELL was similar to the median of incorrect solutions for QAOA with a custom mixer.

Comparing the percentages of correct solutions (Fig. 7.7b), one can see that QAOA with
a default mixer had the worst performance, with typically less than 10% of correct solutions.
QAOA with a custom mixer performed better, with typically up to 30% of correct solutions.
The best results were obtained using VQE with COBYLA and POWELL – although the median
is low, there are many outliers reaching as high as 100%. It can be noted that VQE has
the largest variance of correct solutions. The performance of QAOA is rather similar
among the different optimizers.

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

Figure 7.7: A result breakdown for all experiments with one-hot encoding: incorrect and
correct percentages

A comparison of the percentages of optimal and feasible solutions for different algorithms
and one-hot encoding is shown in Fig. 7.8.

QAOA with a custom mixer had the highest median of optimal solutions (although still
below 1%). The results obtained for VQE with COBYLA and POWELL have some interesting

86

outliers, with the percentage of optimal solutions going up to almost 20%.

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

2

5

8

10

13

15

18

20

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(a) Optimal solutions

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(b) Feasible solutions

Figure 7.8: A result breakdown for all experiments with one-hot encoding: optimal and
feasible percentages. Note: two outliers for VQE with POWELL with more than 85% of
optimal solutions were removed from the plot to increase readability

As for the percentage of feasible solutions, since QAOA with a custom mixer is lim-
ited to a valid subspace, the percentage of feasible solutions is always equal to 100%.
For QAOA with a default mixer, the percentage of feasible solutions is quite similar for all
optimizers, and the median oscillates around 10%–15%. For VQE, the percentage of feasi-
ble solutions has a large variance, but the median of the two best optimizers, COBYLA and
POWELL, is quite high, greater than 80%.

Best sample results

In this section, we will look at the energy histograms of the most successful QAOA and VQE
experiments.

The experiments were selected manually – we first tried to find iterations with the highest
optimal result percentage, then, if the first metric proved to be unsatisfactory, the highest
correct result percentage, and as a last resort we considered the feasibility percentage. In the

87

end, both of the selected samples were from experiments based on the POWELL optimizer,
with the number of p/reps being equal to 2.

Out of 1000 repetitions, the most successful experiment using QAOA with custom mixer
produced 17 optimal and 279 correct results (out of 1024 shots, as stated at the beginning of
this chapter). A histogram of the eigenstates returned by the simulator is shown in Fig. 7.9.

0 2000 4000 6000 8000
eigenstates

0

50

100

150

200

250

300

co
un

t o
f e

ig
en

st
at

es

optimal solution energy

Figure 7.9: An eigenstate histogram for the best one-hot QAOA experiment

The most satisfactory experiment, based on VQE, produced 1009 optimal solutions. A
histogram of the eigenstates returned from this experiment is shown in Fig. 7.10. As can be
clearly seen when comparing it with the histogram of the best QAOA sample (Fig. 7.9), the
eigenvalues are much closely concentrated towards the minimum eigenvalue.

88

5000 4000 3000 2000 1000 0
eigenstates

0

200

400

600

800

1000
co

un
t o

f e
ig

en
st

at
es

optimal solution energy

Figure 7.10: An eigenstate histogram for the best one-hot VQE experiment

89

7.1.2 Binary encoding

For binary encoding, we only considered a single version of QAOA, as no custom mixers are
available for this encoding.

QAOA with a default mixer

The eigenvalues obtained by the QAOA algorithm used with binary encoding are presented
in Fig. 7.11. The L-BFGS-B optimizer performed the worst. Interestingly, the COBYLA

optimizer performed worse than NELDER-MEAD and the POWELL optimizer with the p pa-
rameter set to 2 performed the best. It can be seen that increasing the p parameter from 1 to
2 improved the results, especially for NELDER-MEAD and POWELL.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

2000

0

2000

4000

ei
ge

nv
al

ue

Figure 7.11: The eigenvalues for binary encoding with QAOA

90

An analysis of incorrect, correct, optimal, and feasible solution percentages, as obtained
by VQE, is shown in Fig. 7.12. The incorrect solution percentage median was in the range of
40%–65% (POWELL with p = 2 obtained the lowest value). The correct solution percentages
had a lower variance, as all medians were in the range of 2%–5%. The optimal solution
percentages were very low (< 0.2%), with the COBYLA optimizer having the best outlier
sample. The feasible solution percentage median was always higher than 40%.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

20

40

60

80

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

5

10

15

20

25

30

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

1

2

3

4

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(d) Feasible solutions

Figure 7.12: A result breakdown for binary encoding with QAOA

91

VQE

The eigenvalues obtained by the VQE algorithm are presented in Fig. 7.11. As was the case
with QAOA, the L-BFGS-B optimizer performed the worst. However, this time NELDER-
MEAD performed poorly and COBYLA performed very well, even comparably to POWELL.
Increasing the reps parameter did not improve the results, which can be clearly seen for the
NELDER-MEAD optimizer.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

4000

2000

0

2000

4000

6000

8000

10000

ei
ge

nv
al

ue

Figure 7.13: The eigenvalues for binary encoding with VQE

An analysis of incorrect, correct, optimal, and feasible solution percentages, as obtained
by VQE, is shown in Fig. 7.14. It can be seen that the percentages of incorrect and feasible
solutions are characterized by a large variance. As can be seen in Fig. 7.14 (a), L-BFGS-B
had the highest number of incorrect solutions. NELDER-MEAD performed reasonably well,

92

although increasing reps actually significantly worsened the results. COBYLA had an incor-
rect result median that was lower than 10%, while POWELL achieved the best results with
the median of incorrect solution percentages lower than 2%. An identical conclusion can
be drawn based on the percentages of feasible solutions. In terms of the number of correct
solutions, all of the optimizers obtained results with medians lower than 20%. POWELL with
reps set to 1 and 2 obtained samples with optimal solution percentages of about 75% and
85%, respectively.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(d) Feasible solutions

Figure 7.14: A result breakdown for binary encoding with VQE

93

Binary encoding comparison

A comparison of QAOA and VQE is presented in Fig. 7.15 and Fig. 7.16. What can be
clearly seen in 7.15 (a) and Fig. 7.16 (b) is that VQE is highly dependent on the chosen op-
timizer, while QAOA obtained more similar results among optimizers, e.g. for the COBYLA

optimizer, the incorrect solution percentage median decreased from around 55% for QAOA
to 5% for VQE. Similarly, a significant improvement occurred for the POWELL optimizer.
The improvement was not as significant for NELDER-MEAD and no improvement was seen
for L-BFGS-B.

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

Figure 7.15: A result breakdown for all experiments with binary encoding: incorrect and
correct percentages

The best combination of algorithm and optimizer is definitely VQE with POWELL, which
had the lowest number of incorrect solution and the highest number of correct, feasible, and
optimal solutions.

To sum up, for binary encoding, it was the VQE algorithm that gave the best results.

94

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer VQE

algorithm and optimizer

0

20

40

60

80
pe

rc
en

ta
ge

 o
f o

pt
im

al
 so

lu
tio

ns
 [%

]

(a) Optimal solutions

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(b) Feasible solutions

Figure 7.16: A result breakdown for all experiments with binary encoding: optimal and
feasible percentages

Best sample results

For both QAOA and VQE, both of the selected best samples were based on the POWELL

optimizer with p/reps parameters set to 2.
The best sample from QAOA had 1022 feasible solutions. A histogram of the eigenstates

returned by the simulator is shown in Fig. 7.17.

95

4000 3000 2000 1000 0 1000 2000
eigenstates

0

50

100

150

200

250

co
un

t o
f e

ig
en

st
at

es

optimal solution energy

Figure 7.17: An eigenstate histogram for the best binary QAOA experiment

The best sample from the VQE algorithm had 897 optimal solutions. A histogram of
the eigenstates returned from that sample is shown in Fig. 7.18. By analyzing Fig. 7.17 and
Fig. 7.18, we can clearly conclude that the best sample for VQE obtained better results than
the best one for QAOA.

3800 3600 3400 3200 3000 2800
eigenstates

0

200

400

600

800

co
un

t o
f e

ig
en

st
at

es

optimal solution energy

Figure 7.18: An eigenstate histogram for the best binary VQE experiment

96

7.1.3 Domain wall encoding

For domain wall encoding, three algorithms were tested: QAOA with a default mixer, QAOA
with a custom mixer, and VQE.

QAOA with a default mixer

The eigenvalues obtained by QAOA with a default mixer are presented in Fig. 7.19. Among
the optimizers used, it was POWELL that obtained energies closest to the minimum eigen-
value. NELDER-MEAD performed quite well also, while the COBYLA and L-BFGS-B rou-
tines performed similarly and obtained worse results. Increasing the p parameter to 2 de-
creased the median, however increasing it to 3 didn’t improve the results, but rather worsen
them.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

15000

10000

5000

0

5000

10000

15000

ei
ge

nv
al

ue

Figure 7.19: The eigenvalues for domain wall encoding and QAOA with a default mixer

97

An analysis of the specific metrics is shown in Fig. 7.20. As expected, the POWELL

optimizer obtained the lowest incorrect solution percentage median, at around 35%, for p= 2,
and the highest correct solution percentage median, at around 4%. NELDER-MEAD returned
a sample with the highest percentage of incorrect solutions – 16%. Yet, such results are not
satisfying. The optimal solution percentage is similar for all optimizers – around 0.1%. When
comparing the feasible solutions, it can again be seen that the POWELL optimizer found more
than 50% of them in most cases.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

2

4

6

8

10

12

14

16

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0.0

0.5

1.0

1.5

2.0

2.5

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(d) Feasible solutions

Figure 7.20: A result breakdown for domain wall encoding and QAOA with a default mixer

98

QAOA with a custom mixer

The eigenvalues obtained by QAOA with a custom mixer are presented in Fig. 7.21. Com-
pared to the default mixer, it can be seen that in this case the COBYLA optimizer obtained
better results, similarly to the NELDER-MEAD routine. Yet it is still the POWELL algorithm
that obtained energies closest to the minimum eigenvalue. In contrast to running QAOA with
a default mixer, increasing the p parameter to 2 or 3 did not change the output remarkably.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

300

200

100

0

100

200

300

ei
ge

nv
al

ue

Figure 7.21: The eigenvalues for domain wall encoding and QAOA with a custom mixer

An analysis of incorrect, correct, optimal, and feasible solution percentages, as obtained
by QAOA with a custom mixer, is shown in Fig. 7.22. In contrast to the previous algorithm,
the percentages of incorrect, correct, and optimal solutions are not as dispersed. All subrou-
tines performed rather well, with the incorrect solution percentage median being lower than
10%. The correct solution median increased from around 3% to 6%. It can be observed that

99

adding a dedicated mixer resulted in a decrease in incorrect solutions, but it did not help with
finding optimal solutions. Since a custom mixer was used, the feasible solution percentage
was equal to 100%.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

5

10

15

20

25

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

5

10

15

20

25

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

0

1

2

3

4

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and p

96

98

100

102

104

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(d) Feasible solutions

Figure 7.22: A result breakdown for domain wall encoding and QAOA with a custom mixer

100

VQE

The eigenvalues obtained by VQE are presented in Fig. 7.23. The VQE algorithm obtained
the best and yet the most dispersed results simultaneously, as the COBYLA and POWELL op-
timizers performed much butter in comparison to their usage in QAOA, however L-BFGS-B
has worse results. Based on the plot, it can be deducted, that the COBYLA and POWELL

subroutines fit perfectly as VQE’s classical subroutine.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

10000

0

10000

20000

30000

40000

ei
ge

nv
al

ue

Figure 7.23: The eigenvalues for domain wall encoding with VQE

An analysis of incorrect, correct, optimal, and feasible solution percentages, as obtained
by VQE, is shown in Fig. 7.24. COBYLA and POWELL had the lowest incorrect solution
percentages (at around 0% for POWELL) and the highest feasible solution percentages among
all optimizers. For the correct and the optimal solutions, there are no large differences to be
seen between the optimizers, however the POWELL optimizer obtained an outlier sample with

101

90% of correct solutions and a sample with around 33% of optimal solutions, which are the
best outputs for all of the domain wall experiments.

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

5

10

15

20

25

30

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

1 2 3 1 2 3 1 2 3 1 2 3
COBYLA L-BFGS-B NELDER-MEAD POWELL

optimizer and reps

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ea

sib
le

 so
lu

tio
ns

 [%
]

(d) Feasible solutions

Figure 7.24: A result breakdown for domain wall encoding with VQE

Domain wall encoding comparison

A comparison of all three algorithms used with domain wall encoding is presented in Fig. 7.25.
Based on the incorrect solution percentages, it can be concluded that applying a custom

102

mixer to the QAOA algorithm improved the results and that (similarly to the previous
encodings) the VQE algorithm was highly dependent on the optimizer used. It is again
the POWELL optimizer that obtained the best results, with some samples having around 35%
optimal solutions,

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

(a) Incorrect solutions

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

(b) Correct solutions

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

5

10

15

20

25

30

pe
rc

en
ta

ge
 o

f o
pt

im
al

 so
lu

tio
ns

 [%
]

(c) Optimal solutions

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

COBYLA

L-B
FG

S-B

NELD
ER

-M
EA

D

PO
WELL

QAOA with default mixer QAOA with custom mixer VQE

algorithm and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
er

as
ib

le
 so

lu
tio

ns
 [%

]

(d) Feasible solutions

Figure 7.25: A result breakdown for all experiments with domain wall encoding

103

Best sample results

The best sample from the QAOA algorithm had 43 optimal solutions and 83 correct (but not
optimal) solutions, and was achieved using a custom mixer, the NELDER-MEAD optimizer,
with the p parameter set to 2. A histogram of the eigenstates returned by the simulator is
shown in Fig. 7.26.

0 500 1000 1500 2000
eigenstates

0

50

100

150

200

250

300

co
un

t o
f e

ig
en

st
at

es

optimal solution energy

Figure 7.26: An eigenstate histogram for the best domain wall QAOA experiment

The best sample from the VQE algorithm had 340 optimal solutions and 86 correct (but
not optimal) solutions. It was obtained using the POWELL optimizer and the reps parameter
set to 2. A histogram of the eigenstates returned from that sample is shown in Fig. 7.27.

104

15000 14500 14000 13500 13000
eigenstates

0

100

200

300

400

co
un

t o
f e

ig
en

st
at

es
optimal solution energy

Figure 7.27: An eigenstate histogram for the best domain wall VQE experiment

7.1.4 Objective function weight selection

As mentioned in Section 6.1.4, we considered two variants of energy ordering: the naive or-

dering and the feasibility jump ordering. In the previous sections of this chapter, we presented
the results for the latter, as we found that this ordering typically produced better results. This
difference was most prominent when considering VQE.

A comparison of the incorrect solution percentages between the two orderings can be seen
in Figures 7.28 and 7.29, for one-hot and binary encoding, respectively. It can be observed
that the feasibility jump ordering resulted in a significant decrease of incorrect results,
especially when considering COBYLA and POWELL.

105

COBYLA L-BFGS-B NELDER-MEAD POWELL COBYLA L-BFGS-B NELDER-MEAD POWELL
naive feasibility jump

ordering and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

Figure 7.28: The difference in incorrect solution percentages for different orderings with
one-hot encoding and VQE algorithm

106

COBYLA L-BFGS-B NELDER-MEAD POWELL COBYLA L-BFGS-B NELDER-MEAD POWELL
naive feasibility jump

ordering and optimizer

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

Figure 7.29: The difference in incorrect solution percentages for different orderings with
binary encoding and VQE algorithm

107

7.1.5 Encoding comparison

In order to make the encoding comparison plots easier to read, the QAOA algorithm is com-
pared in separate plots (Fig. 7.30 and 7.31), regardless of the mixer used, and the VQE
algorithm is compared in separate plots (Fig. 7.32 and Fig. 7.33). The results obtained using
the same optimizer are labelled with one color. For each optimizer used with a given en-
coding, there is only a single box plot drawn, as results for all p/reps parameters are merged
together (no distinction is made between the results for different p/reps parameter values).
Sample outliers were also removed to make the plots more readable.

The performance of the QAOA algorithm from various encodings is shown in two figures.
Fig. 7.30 presents the incorrect solution percentages and Fig. 7.31 shows the correct solutions
percentages. The optimal and feasible percentages were not used here.

When comparing both the incorrect and correct solution percentages for QAOA with
the default mixer, it can be concluded that one-hot encoding – which is the most popular
encoding used in literature for solving optimization problems – performed the worst out
of the three possible encodings. The newly proposed domain wall encoding and the well-
known, but less popular, binary encoding performed significantly better, e.g. for the COBYLA

optimizer, the percentage of correct solutions increased around 10 times when compared
to one-hot encoding. The difference between the performance of domain wall and binary
encoding is not that crucial.

Applying a custom mixer to the QAOA algorithm resulted in significantly decreasing
the percentage of incorrect solutions and increasing the percentage of correct solutions.
In this variant, the performance of one-hot encoding and domain wall encoding is compara-
ble, so it can be concluded that one-hot encoding should be always used with a custom mixer,
as it uses the largest number of qubits out of the three compared encodings, and therefore it
has many infeasible states. What is worth noting, is that, when used with custom mixers,
both one-hot and domain wall encoding outperformed binary encoding.

The incorrect solution percentages and correct solution percentages, as obtained by the
VQE algorithm, using different encodings are presented in Fig. 7.32 and Fig. 7.33, re-
spectively. When considering the performance of VQE, it can be again seen that one-hot
encoding performed the worst, while domain wall and binary encoding both performed bet-

108

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

mixer and encoding

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]
COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.30: An incorrect solution percentage comparison between three encodings with
QAOA

ter. The biggest difference between the two can be seen for the NELDER-MEAD optimizer,
for which the median of incorrect solution percentages decreased from around 95% to around
50% for domain wall encoding and even around 30% for binary encoding.

An incorrect solution percentage analysis can lead to a conclusion that domain wall and
binary encoding performed similarly, however when comparing the correct solution percent-
ages it turns out that binary encoding performed better. For each of four optimizers, the

109

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

de
fa

ul
t

on
e-

ho
t

de
fa

ul
t

do
m

ai
n

wa
ll

de
fa

ul
t

bi
na

ry

cu
st

om
on

e-
ho

t

cu
st

om
do

m
ai

n
wa

ll

mixer and encoding

0

2

4

6

8

10

12

14

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.31: A correct solution comparison between the three encodings with QAOA

median correct solution percentage for binary encoding was higher than for domain wall
encoding. The biggest difference can be seen for the POWELL optimizer, for which the per-
centage of correct solutions raised from around 7% to 12%.

To sum up the results for the smaller problem instance, for QAOA it is domain wall
encoding with a custom mixer and the POWELL optimizer that performed the best – with a
median of incorrect solutions at around 5% and a median of correct solutions at around 7%.
Notably, one-hot encoding with a custom mixer performed only slightly worse. For VQE,

110

one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary

encoding

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]
COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.32: An incorrect solution comparison between three encodings with the VQE algo-
rithm

it was definitely binary encoding with the POWELL optimizer that performed the best – with
the median of incorrect solutions at around 0% and the median of correct solutions at around
12%. Thus, it can be observed that the VQE algorithm performed better than QAOA and
that applying a custom mixer for a specific encoding in QAOA yields better results.

111

one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary

encoding

0

10

20

30

40

50

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.33: A correct solution comparison between three encodings with the VQE algo-
rithm

7.1.6 Noisy results

Originally, one of the goals of this project was to run some of the most successful experi-
ments on a real quantum computer in order to observe the influence of decoherence on the
quality of the results. The problem described in this chapter was even designed with a spe-
cific machine in mind – the publically available 15-qubit IBMQ_16_MELBOURNE machine.
Unfortunately, this machine was retired by IBM on July 7th 20213. The largest remaining

3https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/retired-systems

112

https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/retired-systems

machine has 5 qubits4, which is not sufficient for our purposes. Eventually, we decided to run
these experiments with simulated noise5, using noise models created from three real quan-
tum machines: Melbourne6, Guadalupe7, and Mumbai8. A specification of the machines that
were used as mock noise sources is presented in Table 7.1.

machine number of qubits quantum volume processor type
Melbourne 15 8 Canary r1.1
Guadalupe 16 32 Falcon r4P
Mumbai 27 128 Falcon r5.1

Table 7.1: A comparison of real quantum machine specifications

One-hot encoding

The experiment chosen to be repeated for one-hot encoding and VQE originally returned
close to 99% optimal results (see Section 7.1.1). Regardless of the chosen model, the noisy
results are much worse – none of the experiments returned any optimal results and the prob-
ability of obtaining a correct result did not exceed 10%. A breakdown of those results can be
seen in Table 7.2.

noise model optimal semi-optimal correct semi-correct incorrect feasible
none 98.5% 1.3% 0.0% 0.1% 0.1% 99.9%
Melbourne 0.0% 0.0% 1.8% 27.7% 70.5% 29.5%
Guadalupe 0.0% 0.2% 6.8% 21.5% 71.5% 28.5%

Table 7.2: A result breakdown for one-hot-encoded VQE with different noise models

4https://quantum-computing.ibm.com/services?services=systems
5https://qiskit.org/documentation/tutorials/simulators/2_device_noise_simulation.

html
6https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/

melbourne/fake_melbourne.py
7https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/

guadalupe/fake_guadalupe.py
8https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/

mumbai/fake_mumbai.py

113

https://quantum-computing.ibm.com/services?services=systems
https://qiskit.org/documentation/tutorials/simulators/2_device_noise_simulation.html
https://qiskit.org/documentation/tutorials/simulators/2_device_noise_simulation.html
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/melbourne/fake_melbourne.py
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/melbourne/fake_melbourne.py
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/guadalupe/fake_guadalupe.py
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/guadalupe/fake_guadalupe.py
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/mumbai/fake_mumbai.py
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/test/mock/backends/mumbai/fake_mumbai.py

The experiment chosen to be repeated for one-hot encoding and QAOA originally re-
turned 27.2% optimal results (see Section 7.1.1). Due to the inclusion of a dedicated mixer,
all the returned samples were feasible. After including noise in the simulation, the results
worsened noticeably – over 90% of the samples are now incorrect and the feasibility percent-
age lowered down to around 9%. A breakdown of those results can be seen in Table 7.3.

noise model optimal semi-optimal correct semi-correct incorrect feasible
none 1.7% 1.7% 27.2% 63.9% 5.6% 100.0%
Melbourne 0.0% 0.4% 0.7% 7.4% 91.5% 9.9%
Guadalupe 0.2% 0.3% 0.3% 7.6% 91.6% 8.7%

Table 7.3: A result breakdown for one-hot-encoded QAOA with different noise models

Binary encoding

The experiment chosen to be repeated for binary encoding and VQE originally reached the
optimal solution with the probability of almost 88% (see Section 7.1.2). The noisy simulation
performed much worse, but not as badly as was the case for one-hot encoding. A summary
of the results can be found in Table 7.4. In this scenario, we can see a bit of a difference
between the three noise models. The Guadalupe model performed the best out of the three.
It generated only 11% of optimal results, but the feasible result probability remained very
high – it went from 100% to 83%, which is still acceptable.

noise model optimal semi-optimal correct semi-correct incorrect feasible
none 87.6% 7.4% 0.1% 3.4% 1.5% 100.0%
Melbourne 0.2% 0.9% 5.9% 67.0% 26.1% 78.7%
Guadalupe 11.0% 5.5% 4.6% 40.0% 38.9% 82.7%
Mumbai 2.9% 4.2% 3.9% 28.7% 60.3% 81.1%

Table 7.4: A result breakdown for binary-encoded VQE with different noise models

The original experiment chosen for QAOA and binary encoding was slightly less success-
ful. It didn’t generate a lot of optimal or correct solutions, but it generated very few incorrect
solutions, and almost all the returned samples were feasible. After rerunning this experiment
with noise, the results worsened and the probability of obtaining a feasible sample went down

114

to 56%. There is no noticeable difference between the three noise models. These results can
be seen in Table 7.5.

noise model optimal semi-optimal correct semi-correct incorrect feasible
none 0.1% 1.6% 78.1% 88.1% 2.4% 99.8%
Melbourne 0.5% 2.2% 3.3% 43.4% 50.6% 56.0%
Guadalupe 0.3% 1.9% 3.4% 41.1% 53.3% 54.8%
Mumbai 0.1% 2.5% 2.8% 42.9% 51.7% 53.8%

Table 7.5: A result breakdown for binary-encoded QAOA with different noise models

Domain wall encoding

The experiment chosen for domain wall and VQE originally returned an optimal answer
with a 33% probability (see Section 7.1.3). The noise simulation performed much worse,
as experiments with each model returned virtually 0% of optimal solutions. The greatest
deterioration can be seen for the optimal and the semi-optimal metric. The noise models
performed quite similarly, and their results are summarized in Table 7.6.

noise model optimal semi-optimal correct semi-correct incorrect feasible
none 33.2% 39.0% 8.4% 17.9% 1.5% 100.0%
Melbourne 0.0% 1.1% 5.9% 67.0% 26.1% 10.8%
Guadalupe 0.0% 1.4% 5.5% 75.0% 18.2% 8.3%
Mumbai 0.1% 0.4% 7.0% 72.4% 20.1% 19.3%

Table 7.6: A result breakdown for domain-wall-encoded VQE with different noise models

The experiment chosen for domain wall and QAOA originally returned an optimal answer
with a 4% probability. The greatest deterioration after applying one of the noise models
(see Table 7.7) can be seen for the incorrect solutions metric, as its percentage increased
from 8% to 50%. Optimal and semi-optimal solutions percentage did decrease that much as
for VQE simulation. Thus, the conclusion might be that QAOA algorithm – even using the
noise model – returns eigenvalues from a wider range, as can be seen by analyzing the number
of optimal and semi-optimal solutions, while VQE rather returns eigenvalues from a narrower
range. The ordering of each metric on the eigenvalue axis was presented in Section 6.1.4

115

in Fig. 6.4. It is also important that the mixer did not work perfectly as it did in the simulator,
which is due to the decoherence of a real quantum computer. Therefore, the solution space
searched was not limited to only the feasible solutions.

noise model optimal semi-optimal correct semi-correct incorrect feasible
none 4.2% 17.9% 8.1% 61.9% 7.9% 100.0%
Melbourne 0.2% 2.3% 3.0% 42.7% 51.8% 26.0%
Guadalupe 0.2% 1.7% 2.5% 46.8% 48.8% 28.1%
Mumbai 0.2% 1.8% 2.6% 45.1% 50.3% 27.1%

Table 7.7: A result breakdown for domain-wall-encoded QAOA with different noise models

Comparison

The noisy experiments presented in this section are not entirely comparable, as they were run
with entirely different parameters. However, there is one clear observation that seems fair
to make – out of the six experiments that were repeated with noise, all of them originally re-
turned close to 100% feasible results. After adding noise, the feasibility percentage lowered
to 10-30% for both one-hot encoding and domain wall encoding, but it remained quite
high for binary encoding: around 80% for QAOA and around 55% for VQE, regardless
of the chosen noise model. This could be explained with the fact that binary encoding has
fewer infeasible states – to encode three states we use two qubits, so there is just one infeasi-
ble state (see Section 3.3.2), however this is exactly the same as for three-state domain wall
encoding (see Section 3.3.3), therefore there has to be another reason. Although these results
are very promising, it is important to note that binary encoding grows in complexity, so for
large problems its performance might be less satisfactory.

Another interesting conclusion can be made in regard to the use of dedicated QAOA
mixers (see Section 3.3.4). Such mixers were used for one-hot encoding and domain wall
encoding, and the results are presented in Tables 7.3 and 7.7. The two noiseless simula-
tions had a 100% feasibility probability, which is caused by the fact that the mixing operator
didn’t allow the algorithm to consider any infeasible states. The noisy simulations did not
perform good as well – the feasibility probability dropped considerably for both the en-
coding schemes. The overall performance of the noisy QAOA simulations for one-hot and

116

domain wall encoding could also be affected by the fact that in both of those experiments, the
objective Hamiltonian was simplified due to the assumption that only feasible configurations
would be considered (see Section 5.2). Since the mixing operator did not act as expected,
this resulted in the objective function potentially prioritizing infeasible configurations over
feasible, or even correct, states.

7.2 Larger problem

In this section, we will provide the results for the two larger problem instances, as described
in Section 6.2.2. The larger problem was designed to fit on the publicly available 15-qubit
IBMQ_16_MELBOURNE machine, previously mentioned in Sec. 7.1. For one-hot encod-
ing, it was impossible to design a larger problem instance, since the small problem already
occupied 13 qubits.

For the small problem, we presented a deeper analysis of each encoding and algorithm
(see Section 7.1), but for the larger problem instances, we will only describe a comparison of
the incorrect and correct solution percentages between the two encodings. The performance
of each specific algorithm within an encoding won’t be evaluated.

A comparison of QAOA with both the default and the custom mixer for binary and domain
wall encoding is presented in Fig. 7.34 (incorrect solution percentages) and Fig. 7.35 (correct
solution percentages).

The first thing to notice from the percentage of incorrect solutions (see Fig. 7.34) is that
for QAOA with a default mixer in every case it was binary encoding that performed better,
e.g. for L-BFGS-B the median percentage of incorrect solutions dropped by about 10%. A
similarly large improvement can be observed for POWELL, but not in terms of the median,
but in terms of the lower quartile.

Next, it can be seen that using a custom mixer for QAOA with domain wall encoding
significantly improved the results. For example, for the POWELL optimizer, the median of
incorrect solutions decreased by about 35% when compared to binary encoding. The same
relationship can be observed for all the optimizers used.

Another thing to note is that again it was the POWELL optimizer that performed the
best. However, compared to the smaller problem (see Figure 7.30), the advantage of the

117

POWELL optimizer is larger – which may also be due to the fact that in the smaller problem,
all optimizers had a low percentage of incorrect solutions when using QAOA with a custom
mixer.

Compared to the smaller problem, the larger problem produced worse results, as the me-
dian of incorrect solution was never even close to 0%, regardless of the chosen optimizer.
This is because the problem itself uses a large number of qubits and is therefore more diffi-
cult to solve.

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

mixer and encoding

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.34: Larger problem instance: An incorrect solution comparison between two en-
codings with the QAOA algorithm

118

The number of correct solutions obtained in the larger problem instance using the QAOA
algorithm is unsatisfactory for all encodings and possible mixers. The percentage of correct
solutions (see Fig. 7.35) did not exceed 1.5% in all cases, which is much worse than for the
smaller problem instance. However, a trend between the different optimizers can be observed,
namely that the most correct solutions were obtained for domain wall encoding with a custom
mixer.

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

de
fau

lt

do
main

 wall
de

fau
lt

bin
ary

cus
tom

do
main

 wall

mixer and encoding

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.35: Larger problem instance: A correct solution comparison between two encod-
ings with QAOA

119

The results obtained by VQE are presented in Fig. 7.36 and Fig. 7.37. Most importantly,
VQE resulted in fewer incorrect solutions than QAOA (regardless of the mixer used) for the
COBYLA and POWELL optimizers. This confirms a similar conclusion made in Section 7.1
that VQE is strongly optimizer-dependent, as the L-BFGS-B and NELDER-MEAD op-
timizers performed worse than in QAOA, which clearly implies that they are not suffi-
cient for VQE.

domain wall binary domain wall binary domain wall binary domain wall binary
encoding

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]

COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.36: Larger problem instance: An incorrect solution comparison between two en-
codings with the VQE algorithm

Comparing the performance of binary and domain wall encoding with the VQE algorithm,
we find that for the COBYLA, L-BFGS-B, and NELDER-MEAD optimizers, binary encoding

120

produced fewer incorrect solutions (see Fig. 7.36), while the opposite is true for the POWELL

optimizer. It is noteworthy that for COBYLA and POWELL, the results span across the 0%–
100% range.

While the analysis of incorrect solution numbers for VQE did not fully resolve which
encoding performed better, it is the number of correct solutions (see Fig. 7.37) that might
answer that question. As it turned out, for all optimizers, it is binary encoding that resulted in
larger number of correct solutions. The results are obviously not satisfying (as they did not
even exceed 1.6%), but the trend is clearly notable.

domain wall binary domain wall binary domain wall binary domain wall binary
encoding

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

COBYLA L-BFGS-B NELDER-MEAD POWELL

Figure 7.37: Larger problem instance: A correct solution comparison between two encod-
ings with the VQE algorithm

121

What is worth noticing is that in this case it was the COBYLA optimizer that had the
highest number of correct solutions, not the POWELL optimizer, which usually performed
best. This agrees with the number of incorrect solutions, where COBYLA and POWELL had
nearly the same median percentage of incorrect solutions (around 40%).

To conclude, for the larger problem instance, the VQE algorithm with binary encoding
and COBYLA optimizer obtained the highest number of correct solutions (median of 0.3%)
and at the same time the lowest number of incorrect ones (median of 40%). Comparing the
percentage of correct solutions, it can be said that QAOA with custom mixer for domain wall
encoding obtained a similar number of correct solutions, however VQE performed better in
terms of the number of incorrect solutions. Nevertheless, this conclusion could indicate that
QAOA may have more potential in larger, more real-world problems.

Summary

This section describes the results obtained on the quantum simulator for smaller and larger
problem instances. For the smaller problem instance, an in-depth analysis of each encod-
ing and the algorithms available for it (QAOA with default or custom mixer and VQE) is
presented. For the larger problem, only a comparison of encoding-specific algorithms is pre-
sented.

The most important conclusion is that the alternatives to the most commonly used one-hot
encoding, perform quite well while using fewer qubits, which will have a huge impact on the
results when solving problems on real quantum devices.

122

Chapter 8

Conclusions and future works

In today’s quantum computing, we are limited to noisy near-term quantum devices with a
relatively small number of qubits. Although the true potential of quantum computing has not
yet been reached, many researchers focus on trying to improve the existing algorithms and
methods, in order to prepare for the hardware of the future.

8.1 Achieved goals and observations

The goal of this thesis was to research various methods of improving the existing solutions
of workflow scheduling. Additionally, we also wanted to compare different problem repre-
sentations with the hope that they would allow us to solve larger problems.

8.1.1 General findings

While working on this thesis and designing our experiments, we made many general obser-
vations. They are as follows:

• Using encoding methods alternative to one-hot encoding allows for encoding larger
problems.

• The inclusion of slack variables severely complicates the objective function and leads
to the introduction of semi-correct and semi-optimal states. Those states are very hard

123

for the optimizer to handle, because they are penalized in the same way as states that
break the time constraint. Additionally, the number of possible configurations increases
majorly when slack variables are introduced, meaning for each valid state there are
several versions of it that are penalized. With such numerous configurations, it becomes
harder and harder to get to the optimal solution.

• Denser encodings, such as binary encoding, limit the number of infeasible configura-
tions, which in some cases can lead to better results. In some specific situations, binary
encoding can even limit the number of infeasible configurations to zero.

• Selecting good weights for the objective function and constraints is crucial. Introducing
energy jumps between feasible and infeasible states leads to an improvement in the
results.

• The inclusion of QAOA mixers allows the algorithm to disregard infeasible configura-
tions, which in turn leads to an improvement of the simulation results. However, in our
experiments, the noisy simulation results were not as satisfactory, which might suggest
that the additional noise generated by the inclusion of a custom mixer might counteract
any real benefits of the mixer.

8.1.2 Problem-specific findings

In Chapter 7, we presented our results in detail and discussed their importance. Those obser-
vations can be summarized as follows:

• For the problems solved in the thesis, it was the VQE algorithm that performed bet-
ter, but for a bigger problem instance the difference between VQE and QAOA is not
as significant. This may suggest that QAOA has more potential for larger problem
instances.

• Increasing the p parameter used by QAOA usually improved the results only when
it was increased to 2. When increased to 3, the results deteriorated. For VQE, any
increase in the reps parameter resulted in worse results. This trend was observed for
both smaller and larger instances of the problem. Although it is not presented in this

124

thesis, we also made attempts to increase these parameters further, but we were not
able to improve our results.

• The VQE algorithm is highly dependent on the chosen classical subroutine, and the
best results were obtained when the COBYLA or POWELL optimizers were used. For
QAOA there are no such discrepancies between optimizers.

• The use of custom mixers allowed us to reduce the complexity of the objective func-
tion (see Section 5.2). This performed well as a perfect simulation, however with the
inclusion of noise, there were no real benefits from the mixer.

8.2 Future work

In this work, we focused on exploring several aspects of quantum optimization, but there are
still many other approaches that could be tested.

Firstly, we believe that the inclusion of slack variables is worth reexamining, since those
variables increase the complexity of the circuit and the number of qubits. Other methods
of encoding inequality constrains should be considered, such as the Alternating Direction
Method of Multipliers, based on augmented Lagrangians [24].

Another interesting direction for further research would be in finding better ways of de-
termining the weights used for the objective and the constraints. As shown in Chapter 7,
modifying those weights influences the results visibly, therefore some specific paradigm for
choosing good weights should be established.

Thirdly, since we did not observe any noticeable improvement in the results of QAOA af-
ter increasing the p parameter, we believe that this method should be explored further. In this
thesis, we only included the results for low values of p, however we initially also conducted
experiments for much larger values and those experiments did not return promising results.
Other researchers report noticeable improvements for growing values of p [26], which leads
us to believe that our methodology might be worth reevaluating. A good starting point might
be to reconsider the metric used for selecting the best angles from a number of runs. Some
ideas for different metrics were discussed in Section 6.1.6. In this thesis, we chose to focus
on the lowest average energy metric, however it is likely that other metrics would perform

125

better. Similarly, we experimented with modifying the reps parameter passed to VQE, and
we did not observe any clear correlation between this value and the quality of the results.

While our research focused mainly on improving the results obtained on a simulator, in
the future it will be necessary to guarantee reasonable results on a real quantum computer
as well. The first step in this exploration is the inclusion of artificial noise models, which
serve as an indication of how a specific implementation might perform under decoherence.
Some of the techniques tackled in this thesis seemed to perform well as a perfect noiseless
simulation, however the inclusion of noise severely affected the results. It would be particu-
larly valuable to reexamine the performance of QAOA mixers to evaluate if their performance
outweighs the potential implementation cost. Ultimately, in order to minimize the influence
of decoherence on a real quantum computer, it would be a good idea to explore some error
mitigation techniques [18].

126

List of Figures

2.1 The visual representation of two states, generated with Qiskit 20

3.1 An overview of VQE . 30
3.2 A MAX-CUT toy problem and its solution 31
3.3 An overview of QAOA . 34
3.4 Top: The one-dimensional ferromagnetic Ising chain encoding. Bottom: An

equivalent model without the fixed qubits, which encodes Z5 42
3.5 One-hot and domain wall qubit connectivity 49

4.1 Toy problem: task order DAG . 52

5.1 An example of a one-hot encoded workflow scheduling vector V 59
5.2 An example of a binary encoded workflow scheduling vector V 60
5.3 An example of a domain wall encoded workflow scheduling vector V 61

6.1 A histogram of the number of correct results in 1024 samples over 100 ran-
domized initial points . 68

6.2 A one-dimensional visualization of the ideal ordering of solution energies . . 71
6.3 A one-dimensional visualization of the naive ordering of solution energies . . 71
6.4 A one-dimensional visualization of the feasibility jump ordering of solution

energies . 72
6.5 Small problem: task order DAG . 75
6.6 Large problem: task order DAG . 75

7.1 The eigenvalues for one-hot encoding and QAOA with a default mixer 80

127

7.2 A result breakdown for one-hot encoding and QAOA with a default mixer . . 81
7.3 The eigenvalues for one-hot encoding and QAOA with a custom mixer 82
7.4 A result breakdown for one-hot encoding and QAOA with a custom mixer . . 83
7.5 The eigenvalues for one-hot encoding with VQE 84
7.6 A result breakdown for one-hot encoding with VQE 85
7.7 A result breakdown for all experiments with one-hot encoding: incorrect and

correct percentages . 86
7.8 A result breakdown for all experiments with one-hot encoding: optimal and

feasible percentages. Note: two outliers for VQE with POWELL with more
than 85% of optimal solutions were removed from the plot to increase read-
ability . 87

7.9 An eigenstate histogram for the best one-hot QAOA experiment 88
7.10 An eigenstate histogram for the best one-hot VQE experiment 89
7.11 The eigenvalues for binary encoding with QAOA 90
7.12 A result breakdown for binary encoding with QAOA 91
7.13 The eigenvalues for binary encoding with VQE 92
7.14 A result breakdown for binary encoding with VQE 93
7.15 A result breakdown for all experiments with binary encoding: incorrect and

correct percentages . 94
7.16 A result breakdown for all experiments with binary encoding: optimal and

feasible percentages . 95
7.17 An eigenstate histogram for the best binary QAOA experiment 96
7.18 An eigenstate histogram for the best binary VQE experiment 96
7.19 The eigenvalues for domain wall encoding and QAOA with a default mixer . 97
7.20 A result breakdown for domain wall encoding and QAOA with a default mixer 98
7.21 The eigenvalues for domain wall encoding and QAOA with a custom mixer . 99
7.22 A result breakdown for domain wall encoding and QAOA with a custom mixer100
7.23 The eigenvalues for domain wall encoding with VQE 101
7.24 A result breakdown for domain wall encoding with VQE 102
7.25 A result breakdown for all experiments with domain wall encoding 103
7.26 An eigenstate histogram for the best domain wall QAOA experiment 104

128

7.27 An eigenstate histogram for the best domain wall VQE experiment 105
7.28 The difference in incorrect solution percentages for different orderings with

one-hot encoding and VQE algorithm . 106
7.29 The difference in incorrect solution percentages for different orderings with

binary encoding and VQE algorithm . 107
7.30 An incorrect solution percentage comparison between three encodings with

QAOA . 109
7.31 A correct solution comparison between the three encodings with QAOA . . . 110
7.32 An incorrect solution comparison between three encodings with the VQE

algorithm . 111
7.33 A correct solution comparison between three encodings with the VQE algo-

rithm . 112
7.34 Larger problem instance: An incorrect solution comparison between two en-

codings with the QAOA algorithm . 118
7.35 Larger problem instance: A correct solution comparison between two encod-

ings with QAOA . 119
7.36 Larger problem instance: An incorrect solution comparison between two en-

codings with the VQE algorithm . 120
7.37 Larger problem instance: A correct solution comparison between two encod-

ings with the VQE algorithm . 121

129

List of Tables

3.1 An example of categorical data . 36
3.2 An example of one-hot-encoded categorical data 37
3.3 An example of one-hot-encoded categorical data, simplified 37
3.4 A simple example of binary-encoded categorical data 39
3.5 An example of domain-wall-encoded categorical data 43
3.6 A comparison of binary, one-hot, and domain wall encoding 47

4.1 Toy problem: cost matrix . 52
4.2 Toy problem: time matrix . 52

6.1 Small problem: cost matrix . 74
6.2 Small problem: time matrix . 74
6.3 Large problem (binary encoding): cost matrix 76
6.4 Large problem (binary encoding): time matrix 76
6.5 Large problem (domain wall encoding): cost matrix 77
6.6 Large problem (domain wall encoding): time matrix 77

7.1 A comparison of real quantum machine specifications 113
7.2 A result breakdown for one-hot-encoded VQE with different noise models . . 113
7.3 A result breakdown for one-hot-encoded QAOA with different noise models . 114
7.4 A result breakdown for binary-encoded VQE with different noise models . . 114
7.5 A result breakdown for binary-encoded QAOA with different noise models . 115
7.6 A result breakdown for domain-wall-encoded VQE with different noise models115

130

7.7 A result breakdown for domain-wall-encoded QAOA with different noise
models . 116

131

Bibliography

[1] Arute F., Arya K., Babbush R., Bacon D., Bardin J., Barends R., Biswas R., Boixo S.,
Brandao F., Buell D., Burkett B., Chen Y., Chen Z., Chiaro B., Collins R., Courtney
W., Dunsworth A., Farhi E., Foxen B., Martinis J.: Quantum supremacy using a pro-
grammable superconducting processor. In: Nature, vol. 574, pp. 505–510, 2019. URL
http://dx.doi.org/10.1038/s41586-019-1666-5.

[2] Aspuru-Guzik A.: Simulated Quantum Computation of Molecular Energies. In: Sci-

ence, vol. 309(5741), pp. 1704–1707, 2005. ISSN 1095-9203. URL http://dx.doi.

org/10.1126/science.1113479.

[3] Barkoutsos P.K., Nannicini G., Robert A., Tavernelli I., Woerner S.: Improving Varia-
tional Quantum Optimization using CVaR. In: Quantum, vol. 4, p. 256, 2020. ISSN
2521-327X. URL http://dx.doi.org/10.22331/q-2020-04-20-256.

[4] Benioff P.: The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines. In: Journal of

Statistical Physics, vol. 22, pp. 563–591, 1980. URL http://dx.doi.org/10.1007/

BF01011339.

[5] Benmeleh Y., Turner G., Day M.: Amazon Is Laying the Groundwork for Its Own Quan-
tum Computer, 2020. URL https://www.bloomberg.com/news/articles/2020-

12-01/amazon-is-laying-the-groundwork-for-its-own-quantum-computer.

[6] Bernstein E., Vazirani U.: Quantum Complexity Theory. In: Proceedings of the Twenty-

Fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pp. 11–20. Associ-

132

http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1126/science.1113479
http://dx.doi.org/10.1126/science.1113479
http://dx.doi.org/10.22331/q-2020-04-20-256
http://dx.doi.org/10.1007/BF01011339
http://dx.doi.org/10.1007/BF01011339
https://www.bloomberg.com/news/articles/2020-12-01/amazon-is-laying-the-groundwork-for-its-own-quantum-computer
https://www.bloomberg.com/news/articles/2020-12-01/amazon-is-laying-the-groundwork-for-its-own-quantum-computer

ation for Computing Machinery, New York, NY, USA, 1993. ISBN 0897915917. URL
http://dx.doi.org/10.1145/167088.167097.

[7] Bertels K., Sarkar A., Hubregtsen. T., Serrao M., Mouedenne A.A., Yadav A., Krol A.,
Ashraf I.: Quantum Computer Architecture: Towards Full-Stack Quantum Accelera-
tors. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE),
2020. URL http://dx.doi.org/10.23919/date48585.2020.9116502.

[8] Bharti K., Cervera-Lierta A., Kyaw T.H., Haug T., Alperin-Lea S., Anand A., Deg-
roote M., Heimonen H., Kottmann J.S., Menke T., Mok W.K., Sim S., Kwek L.C.,
Aspuru-Guzik A.: Noisy intermediate-scale quantum (NISQ) algorithms. arXiv:quant-
ph/2101.08448, 2021.

[9] Bishnoi B.: Quantum-Computation and Applications. arXiv:quant-ph/2006.02799,
2020.

[10] Bouzidi M.R., Soltani A., Bouhank A., Daoudi M.: New Search Based Methods to
Solve Workflow Scheduling Problem in Cloud Computing. In: 2018 5th International

Conference on Control, Decision and Information Technologies (CoDIT), pp. 647–652.
2018. URL http://dx.doi.org/10.1109/CoDIT.2018.8394855.

[11] Bovet D.P., Crescenzi P.: Introduction to the Theory of Complexity. Prentice Hall Inter-
national (UK) Ltd., GBR, 1994. ISBN 0139153802.

[12] Chancellor N.: Domain wall encoding of discrete variables for quantum annealing and
QAOA. In: Quantum Science and Technology, vol. 4(4), p. 045004, 2019. URL http:

//dx.doi.org/10.1088/2058-9565/ab33c2.

[13] Chen J., Stollenwerk T., Chancellor N.: Performance of Domain-Wall Encoding for
Quantum Annealing. In: IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–14,
2021. ISSN 2689-1808. URL http://dx.doi.org/10.1109/tqe.2021.3094280.

[14] Cho A.: IBM promises 1000-qubit quantum computer-a milestone-by 2023,
2020. URL https://www.sciencemag.org/news/2020/09/ibm-promises-1000-

qubit-quantum-computer-milestone-2023.

133

http://dx.doi.org/10.1145/167088.167097
http://dx.doi.org/10.23919/date48585.2020.9116502
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/2006.02799
http://dx.doi.org/10.1109/CoDIT.2018.8394855
http://dx.doi.org/10.1088/2058-9565/ab33c2
http://dx.doi.org/10.1088/2058-9565/ab33c2
http://dx.doi.org/10.1109/tqe.2021.3094280
https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023

[15] Deutsch D., Jozsa R.: Rapid solution of problems by quantum computation. In: Pro-

ceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
vol. 439, pp. 553–558, 1992. URL http://dx.doi.org/10.1098/rspa.1992.0167.

[16] Dutta A., Aeppli G., Chakrabarti B.K., Divakaran U., Rosenbaum T.F., Sen D.: Quan-

tum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to

Quantum Information. Cambridge University Press, 2015. URL http://dx.doi.

org/10.1017/CBO9781107706057.

[17] Elmougy S., Sarhan S., Joundy M.: A Novel Hybrid of Shortest Job First and Round
Robin with Dynamic Variable Quantum Time Task Scheduling Technique. In: J. Cloud

Comput., vol. 6(1), 2017. ISSN 2192-113X. URL http://dx.doi.org/10.1186/

s13677-017-0085-0.

[18] Endo S., Benjamin S.C., Li Y.: Practical Quantum Error Mitigation for Near-Future
Applications. In: Physical Review X, vol. 8(3), 2018. ISSN 2160-3308. URL http:

//dx.doi.org/10.1103/physrevx.8.031027.

[19] Farhi E., Goldstone J., Gutmann S.: A Quantum Approximate Optimization Algorithm.
arXiv:quant-ph/1411.4028, 2014.

[20] Farhi E., Goldstone J., Gutmann S.: A Quantum Approximate Optimization Algorithm
Applied to a Bounded Occurrence Constraint Problem. arXiv:quant-ph/1412.6062,
2015.

[21] Farhi E., Goldstone J., Gutmann S., Sipser M.: Quantum Computation by Adiabatic
Evolution. arXiv:quant-ph/0001106, 2000.

[22] Fuchs F., Øie Kolden H., Aase N.H., Sartor G.: Efficient Encoding of the Weighted
MAX k-CUT on a Quantum Computer Using QAOA. In: SN Computer Science, vol. 2,
p. 89, 2021. URL http://dx.doi.org/10.1007/s42979-020-00437-z.

[23] Gaily S.E., Imre S.: Derivation of Parameters of Quantum optimization in Resource
Distribution Management. In: 2019 42nd International Conference on Telecommunica-

134

http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1017/CBO9781107706057
http://dx.doi.org/10.1017/CBO9781107706057
http://dx.doi.org/10.1186/s13677-017-0085-0
http://dx.doi.org/10.1186/s13677-017-0085-0
http://dx.doi.org/10.1103/physrevx.8.031027
http://dx.doi.org/10.1103/physrevx.8.031027
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1412.6062
https://arxiv.org/abs/quant-ph/0001106
http://dx.doi.org/10.1007/s42979-020-00437-z

tions and Signal Processing (TSP), pp. 58–61. 2019. URL http://dx.doi.org/10.

1109/TSP.2019.8769092.

[24] Gambella C., Simonetto A.: Multiblock ADMM Heuristics for Mixed-Binary Opti-
mization on Classical and Quantum Computers. In: IEEE Transactions on Quantum

Engineering, vol. 1, pp. 1–22, 2020. ISSN 2689-1808. URL http://dx.doi.org/

10.1109/tqe.2020.3033139.

[25] Gilyén A., Arunachalam S., Wiebe N.: Optimizing Quantum Optimization Algorithms
via Faster Quantum Gradient Computation. In: Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pp. 1425–1444. Society
for Industrial and Applied Mathematics, USA, 2019. URL http://dx.doi.org/10.

1137/1.9781611975482.87.

[26] Glos A., Krawiec A., Zimborás Z.: Space-efficient binary optimization for variational
computing. arXiv:quant-ph/2009.07309, 2020.

[27] Gomes J., McKiernan K.A., Eastman P., Pande V.S.: Classical Quantum Optimization
with Neural Network Quantum States. arXiv:cond-mat.dis-nn/1910.10675, 2019.

[28] Grover L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In: Proceed-

ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96,
pp. 212–219. Association for Computing Machinery, New York, NY, USA, 1996. ISBN
0897917855. URL http://dx.doi.org/10.1145/237814.237866.

[29] Gyongyosi L.: Quantum State Optimization and Computational Pathway Evaluation for
Gate-Model Quantum Computers. In: Scientific Reports, vol. 10, p. 4543, 2020. URL
http://dx.doi.org/10.1038/s41598-020-61316-4.

[30] Hadfield S., Wang Z., O’Gorman B., Rieffel E., Venturelli D., Biswas R.: From
the Quantum Approximate Optimization Algorithm to a Quantum Alternating Op-
erator Ansatz. In: Algorithms, vol. 12(2), p. 34, 2019. ISSN 1999-4893. URL
http://dx.doi.org/10.3390/a12020034.

135

http://dx.doi.org/10.1109/TSP.2019.8769092
http://dx.doi.org/10.1109/TSP.2019.8769092
http://dx.doi.org/10.1109/tqe.2020.3033139
http://dx.doi.org/10.1109/tqe.2020.3033139
http://dx.doi.org/10.1137/1.9781611975482.87
http://dx.doi.org/10.1137/1.9781611975482.87
https://arxiv.org/abs/2009.07309
https://arxiv.org/abs/1910.10675
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1038/s41598-020-61316-4
http://dx.doi.org/10.3390/a12020034

[31] J. A., Adedoyin A., Ambrosiano J., Anisimov P., Bärtschi A., Casper W., Chennupati
G., Coffrin C., Djidjev H., Gunter D., Karra S., Lemons N., Lin S., Malyzhenkov A.,
Mascarenas D., Mniszewski S., Nadiga B., O’Malley D., Oyen D., Pakin S., Prasad
L., Roberts R., Romero P., Santhi N., Sinitsyn N., Swart P.J., Wendelberger J.G., Yoon
B., Zamora R., Zhu W., Eidenbenz S., Coles P.J., Vuffray M., Lokhov A.Y.: Quantum
Algorithm Implementations for Beginners. arXiv:cs.ET/1804.03719, 2020.

[32] Jaybhaye S., Attar V.: Adaptive Workflow Scheduling Using Evolutionary Approach
in Cloud Computing. In: Vietnam Journal of Computer Science, vol. 7, 2020. URL
http://dx.doi.org/10.1142/S2196888820500104.

[33] Johnson M., Amin M., Gildert S., Lanting T., Hamze F., Dickson N., Harris R., Berkley
A., Johansson J., Bunyk P., Chapple E., Enderud C., Hilton J.P., Karimi K., Ladizinsky
E., Ladizinsky N., Oh T., Perminov I., Rich C., Thom M.C., Tolkacheva E., Truncik
C., Uchaikin S., Wang J., Wilson B., Rose G.: Quantum annealing with manufactured
spins. In: Nature, vol. 473, pp. 194–198, 2011. URL http://dx.doi.org/10.1038/

nature10012.

[34] Kadowaki T., Nishimori H.: Quantum annealing in the transverse Ising model. In:
Physical Review E, vol. 58(5), pp. 5355–5363, 1998. ISSN 1095-3787. URL http:

//dx.doi.org/10.1103/physreve.58.5355.

[35] Khachatryan D.: Tutorials for Quantum Algorithms with Qiskit implemen-
tations. URL https://github.com/DavitKhach/quantum-algorithms-

tutorials/blob/master/variational_quantum_eigensolver.ipynb.

[36] Kurowski K., Wȩglarz J., Subocz M., Różycki R., Waligóra G.: Hybrid Quantum An-
nealing Heuristic Method for Solving Job Shop Scheduling Problem. In: Computa-

tional Science – ICCS 2020, pp. 502–515. Springer International Publishing, Cham,
2020. ISBN 978-3-030-50433-5. URL http://dx.doi.org/10.1007/978-3-030-

50433-5_39.

136

https://arxiv.org/abs/1804.03719
http://dx.doi.org/10.1142/S2196888820500104
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1103/physreve.58.5355
http://dx.doi.org/10.1103/physreve.58.5355
https://github.com/DavitKhach/quantum-algorithms-tutorials/blob/master/variational_quantum_eigensolver.ipynb
https://github.com/DavitKhach/quantum-algorithms-tutorials/blob/master/variational_quantum_eigensolver.ipynb
http://dx.doi.org/10.1007/978-3-030-50433-5_39
http://dx.doi.org/10.1007/978-3-030-50433-5_39

[37] Lara P., Portugal R., Lavor C.: A New Hybrid Classical-Quantum Algorithm for Con-
tinuous Global Optimization Problems. In: Journal of Global Optimization, vol. 60, pp.
317–331, 2014. URL http://dx.doi.org/10.1007/s10898-013-0112-8.

[38] Lavrijsen W., Tudor A., Muller J., Iancu C., de Jong W.: Classical Optimizers for
Noisy Intermediate-Scale Quantum Devices. In: 2020 IEEE International Conference

on Quantum Computing and Engineering (QCE), 2020. URL http://dx.doi.org/

10.1109/qce49297.2020.00041.

[39] Lewis M., Glover F.: Quadratic Unconstrained Binary Optimization Problem Prepro-
cessing: Theory and Empirical Analysis. arXiv:cs.AI/1705.09844, 2017.

[40] Li H., Liu H., Li J.: Workflow scheduling algorithm based on control structure reduction
in cloud environment. In: 2014 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pp. 2587–2592. 2014. URL http://dx.doi.org/10.1109/SMC.

2014.6974317.

[41] Li R., Di Felice R., Rohs R., Lidar D.: Quantum annealing versus classical machine
learning applied to a simplified computational biology problem. In: npj Quantum Infor-

mation, vol. 4, p. 14, 2018. URL http://dx.doi.org/10.1038/s41534-018-0060-

8.

[42] Low G.H., Bauman N.P., Granade C.E., Peng B., Wiebe N., Bylaska E.J., Wecker
D., Krishnamoorthy S., Roetteler M., Kowalski K., Troyer M., Baker N.A.: Q#

and NWChem: Tools for Scalable Quantum Chemistry on Quantum Computers.
arXiv:quant-ph/1904.01131, 2019.

[43] Lucas A.: Ising formulations of many NP problems. In: Frontiers in Physics, vol. 2,
2014. ISSN 2296-424X. URL http://dx.doi.org/10.3389/fphy.2014.00005.

[44] Marszałek K.: Ocena środowiska do obliczeń kwantowych Rigetti Quantum Services.
Master’s thesis, AGH University of Science and Technology, Kraków, 2020.

137

http://dx.doi.org/10.1007/s10898-013-0112-8
http://dx.doi.org/10.1109/qce49297.2020.00041
http://dx.doi.org/10.1109/qce49297.2020.00041
https://arxiv.org/abs/1705.09844
http://dx.doi.org/10.1109/SMC.2014.6974317
http://dx.doi.org/10.1109/SMC.2014.6974317
http://dx.doi.org/10.1038/s41534-018-0060-8
http://dx.doi.org/10.1038/s41534-018-0060-8
https://arxiv.org/abs/1904.01131
http://dx.doi.org/10.3389/fphy.2014.00005

[45] McGeoch C., Farre P.: The D-Wave Advantage System: An Overview. D-Wave,
2020. URL https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-

wave_advantage_system_an_overview.pdf.

[46] Mermin N.D.: Quantum Computer Science: An Introduction. Cambridge University
Press, New York, 2007. ISBN 0521876583. URL http://dx.doi.org/10.1017/

CBO9780511813870.

[47] Nandhakumar C., Ranjithprabhu K.: Heuristic and meta-heuristic workflow scheduling
algorithms in multi-cloud environments – A survey. In: 2015 International Conference

on Advanced Computing and Communication Systems, pp. 1–5. 2015. URL http:

//dx.doi.org/10.1109/ICACCS.2015.7324053.

[48] Nelder J., Mead R.: A Simplex Method for Function Minimization. In: Comput. J.,
vol. 7, pp. 308–313, 1965. URL http://dx.doi.org/10.1093/comjnl/7.4.308.

[49] Orús R., Mugel S., Lizaso E.: Quantum computing for finance: Overview and prospects.
In: Reviews in Physics, vol. 4, p. 100028, 2019. ISSN 2405-4283. URL http://dx.

doi.org/10.1016/j.revip.2019.100028.

[50] Outeiral C., Strahm M., Shi J., Morris G.M., Benjamin S.C., Deane C.M.: The prospects
of quantum computing in computational molecular biology. In: WIREs Computational

Molecular Science, vol. 11(1), p. e1481, 2021. URL http://dx.doi.org/10.1002/

wcms.1481.

[51] Panetta K.: 5 Trends Emerge in the Gartner Hype Cycle for Emerging Technologies,
2018, 2018. URL https://www.gartner.com/smarterwithgartner/5-trends-

emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/.

[52] Pautasso L., Pflanzer A., Soller H.: The current state of quantum computing: Be-
tween hype and revolution, 2021. URL https://www.mckinsey.com/business-

functions/mckinsey-digital/our-insights/tech-forward/the-current-

state-of-quantum-computing-between-hype-and-revolution#.

138

https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
http://dx.doi.org/10.1017/CBO9780511813870
http://dx.doi.org/10.1017/CBO9780511813870
http://dx.doi.org/10.1109/ICACCS.2015.7324053
http://dx.doi.org/10.1109/ICACCS.2015.7324053
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1016/j.revip.2019.100028
http://dx.doi.org/10.1016/j.revip.2019.100028
http://dx.doi.org/10.1002/wcms.1481
http://dx.doi.org/10.1002/wcms.1481
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-forward/the-current-state-of-quantum-computing-between-hype-and-revolution#
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-forward/the-current-state-of-quantum-computing-between-hype-and-revolution#
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/tech-forward/the-current-state-of-quantum-computing-between-hype-and-revolution#

[53] Pawlik M., Banach P., Malawski M.: Adaptation of Workflow Application Scheduling
Algorithm to Serverless Infrastructure. In: U. Schwardmann, C. Boehme, D. B. Heras,
V. Cardellini, E. Jeannot, A. Salis, C. Schifanella, R.R. Manumachu, D. Schwamborn,
L. Ricci, O. Sangyoon, T. Gruber, L. Antonelli, S.L. Scott, eds., Euro-Par 2019: Paral-

lel Processing Workshops, pp. 345–356. Springer International Publishing, Cham, 2020.
ISBN 978-3-030-48340-1. URL http://dx.doi.org/10.1007/978-3-030-48340-

1_27.

[54] Pellow-Jarman A., Sinayskiy I., Pillay A., Petruccione F.: A comparison of various
classical optimizers for a variational quantum linear solver. In: Quantum Information

Processing, vol. 20(6), 2021. ISSN 1573-1332. URL http://dx.doi.org/10.1007/

s11128-021-03140-x.

[55] Peruzzo A., McClean J., Shadbolt P., Yung M.H., Zhou X.Q., Love P.J., Aspuru-Guzik
A., O’Brien J.L.: A variational eigenvalue solver on a photonic quantum processor. In:
Nature Communications, vol. 5(1), 2014. ISSN 2041-1723. URL http://dx.doi.

org/10.1038/ncomms5213.

[56] Porter J.: Google wants to build a useful quantum computer by 2029, 2021.
URL https://www.theverge.com/2021/5/19/22443453/google-quantum-

computer-2029-decade-commercial-useful-qubits-quantum-transistor.

[57] Powell M.J.: A view of algorithms for optimization without derivatives. In: Mathemat-

ics Today-Bulletin of the Institute of Mathematics and its Applications, vol. 43(5), pp.
170–174, 2007. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.591.6481&rep=rep1&type=pdf.

[58] Powell M.J.D.: An Efficient Method for Finding the Minimum of a Function of Several
Variables Without Calculating Derivatives. In: The Computer Journal, vol. 7(2), pp.
155–162, 1964. URL http://dx.doi.org/10.1093/comjnl/7.2.155.

[59] Powell M.J.D.: A Direct Search Optimization Method That Models the Objective and

Constraint Functions by Linear Interpolation, pp. 51–67. Springer Netherlands, Dor-

139

http://dx.doi.org/10.1007/978-3-030-48340-1_27
http://dx.doi.org/10.1007/978-3-030-48340-1_27
http://dx.doi.org/10.1007/s11128-021-03140-x
http://dx.doi.org/10.1007/s11128-021-03140-x
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
https://www.theverge.com/2021/5/19/22443453/google-quantum-computer-2029-decade-commercial-useful-qubits-quantum-transistor
https://www.theverge.com/2021/5/19/22443453/google-quantum-computer-2029-decade-commercial-useful-qubits-quantum-transistor
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.6481&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.6481&rep=rep1&type=pdf
http://dx.doi.org/10.1093/comjnl/7.2.155

drecht, 1994. ISBN 978-94-015-8330-5. URL http://dx.doi.org/10.1007/978-

94-015-8330-5_4.

[60] Powell M.J.D.: Direct search algorithms for optimization calculations. In: Acta

Numerica, vol. 7, pp. 287–336, 1998. URL http://dx.doi.org/10.1017/

S0962492900002841.

[61] Preskill J.: Quantum computing and the entanglement frontier. arXiv:quant-
ph/1203.5813, 2012.

[62] Shor P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In:
Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–
134. 1994. URL http://dx.doi.org/10.1109/SFCS.1994.365700.

[63] Smanchat S., Viriyapant K.: Taxonomies of workflow scheduling problem and tech-
niques in the cloud. In: Future Generation Computer Systems, vol. 52, pp. 1–12, 2015.
ISSN 0167-739X. URL http://dx.doi.org/10.1016/j.future.2015.04.019.
Special Section: Cloud Computing: Security, Privacy and Practice.

[64] Stachoń M.: Solving Optimization problems using Qiskit Aqua. Master’s thesis, AGH
University of Science and Technology, Kraków, 2020. URL http://dice.cyfronet.

pl/publications/source/MSc_theses/Malgorzata_Stachon_msc.pdf.

[65] Suzuki M.: Generalized Trotter’s formula and systematic approximants of exponen-
tial operators and inner derivations with applications to many-body problems. In:
Communications in Mathematical Physics, vol. 51, pp. 183–190, 1976. URL http:

//dx.doi.org/10.1007/BF01609348.

[66] Tan B., Lemonde M., Thanasilp S., Tangpanitanon J., Angelakis D.: Qubit-efficient
encoding schemes for binary optimisation problems. In: Quantum, vol. 5, p. 454, 2021.
URL http://dx.doi.org/10.22331/q-2021-05-04-454.

[67] Tomasiewicz D.: Analysis of D’Wave 2000Q Applicability for Job Scheduling Prob-

lems. Master’s thesis, AGH University of Science and Technology, Kraków,

140

http://dx.doi.org/10.1007/978-94-015-8330-5_4
http://dx.doi.org/10.1007/978-94-015-8330-5_4
http://dx.doi.org/10.1017/S0962492900002841
http://dx.doi.org/10.1017/S0962492900002841
https://arxiv.org/abs/1203.5813
https://arxiv.org/abs/1203.5813
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1016/j.future.2015.04.019
http://dice.cyfronet.pl/publications/source/MSc_theses/Malgorzata_Stachon_msc.pdf
http://dice.cyfronet.pl/publications/source/MSc_theses/Malgorzata_Stachon_msc.pdf
http://dx.doi.org/10.1007/BF01609348
http://dx.doi.org/10.1007/BF01609348
http://dx.doi.org/10.22331/q-2021-05-04-454

2020. URL http://dice.cyfronet.pl/publications/source/MSc_theses/

Dawid_Tomasiewicz_msc.pdf.

[68] Tomasiewicz D., Pawlik M., Malawski M., Rycerz K.: Foundations for Workflow Ap-
plication Scheduling on D-Wave System. In: V.V. Krzhizhanovskaya, G. Závodszky,
M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos, J. Teixeira, eds., Computational

Science – ICCS 2020, pp. 516–530. Springer International Publishing, Cham, 2020.
URL http://dx.doi.org/10.1007/978-3-030-50433-5_40.

[69] Wang Z., Rubin N.C., Dominy J.M., Rieffel E.G.: XY mixers: Analytical and numer-
ical results for the quantum alternating operator ansatz. In: Physical Review A, vol.
101(1), 2020. ISSN 2469-9934. URL http://dx.doi.org/10.1103/physreva.

101.012320.

[70] Xiao Q., Zhong J., Feng L., Luo L., Lv J.: A Cooperative Coevolution Hyper-Heuristic
Framework for Workflow Scheduling Problem. In: IEEE Transactions on Services

Computing, 2019. ISSN 1939-1374. URL http://dx.doi.org/10.1109/TSC.2019.

2923912.

[71] Yan Z., Shen H., Huang H., Deng Z.: Constrained Optimization via Quantum Genetic
Algorithm for Task Scheduling Problem. In: H. Shen, Y. Sang, eds., Parallel Archi-

tectures, Algorithms and Programming, pp. 234–248. Springer Singapore, Singapore,
2020. ISBN 978-981-15-2767-8. URL http://dx.doi.org/10.1007/978-981-15-

2767-8_22.

[72] Yanofsky N.S., Mannucci M.A.: Quantum Computing for Computer Scientists. Cam-
bridge University Press, USA, 1 ed., 2008. ISBN 0521879965. URL http://dx.doi.

org/10.1017/CBO9780511813887.

[73] Yuan X., Endo S., Zhao Q., Li Y., Benjamin S.C.: Theory of variational quantum
simulation. In: Quantum, vol. 3, p. 191, 2019. ISSN 2521-327X. URL http:

//dx.doi.org/10.22331/q-2019-10-07-191.

[74] Zhong H.S., Wang H., Deng Y.H., Chen M.C., Peng L.C., Luo Y.H., Qin J., Wu D.,
Ding X., Hu Y., Hu P., Yang X.Y., Zhang W.J., Li H., Li Y., Jiang X., Gan L., Yang G.,

141

http://dice.cyfronet.pl/publications/source/MSc_theses/Dawid_Tomasiewicz_msc.pdf
http://dice.cyfronet.pl/publications/source/MSc_theses/Dawid_Tomasiewicz_msc.pdf
http://dx.doi.org/10.1007/978-3-030-50433-5_40
http://dx.doi.org/10.1103/physreva.101.012320
http://dx.doi.org/10.1103/physreva.101.012320
http://dx.doi.org/10.1109/TSC.2019.2923912
http://dx.doi.org/10.1109/TSC.2019.2923912
http://dx.doi.org/10.1007/978-981-15-2767-8_22
http://dx.doi.org/10.1007/978-981-15-2767-8_22
http://dx.doi.org/10.1017/CBO9780511813887
http://dx.doi.org/10.1017/CBO9780511813887
http://dx.doi.org/10.22331/q-2019-10-07-191
http://dx.doi.org/10.22331/q-2019-10-07-191

You L., Wang Z., Li L., Liu N.L., Lu C.Y., Pan J.W.: Quantum computational advantage
using photons. In: Science, vol. 370(6523), pp. 1460–1463, 2020. ISSN 0036-8075.
URL http://dx.doi.org/10.1126/science.abe8770.

[75] Zhu C., Byrd R.H., Lu P., Nocedal J.: Algorithm 778: L-BFGS-B: Fortran Subrou-
tines for Large-Scale Bound-Constrained Optimization. In: ACM Trans. Math. Softw.,
vol. 23(4), pp. 550–560, 1997. ISSN 0098-3500. URL http://dx.doi.org/10.

1145/279232.279236.

142

http://dx.doi.org/10.1126/science.abe8770
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1145/279232.279236

	Preface
	Motivation
	State of the art
	Quantum and hybrid quantum-classical algorithms
	Optimization problems
	Quantum algorithm optimizations
	Workflow scheduling

	Goals of this work
	Author contributions
	Content of this work

	Quantum computing concepts
	Qubits
	Dirac notation
	Tensor product
	Quantum gates
	Measurement
	Superposition
	Entanglement
	Quantum computers

	Optimization problems in quantum computing
	Problem representation
	Hamiltonian
	Ising model
	QUBO

	Optimization algorithms
	VQE
	QAOA
	Comparison

	Encoding schemes
	One-hot encoding
	Binary encoding
	Domain wall encoding
	QAOA mixers
	Comparison

	Workflow scheduling
	Basic intuition
	Objective function
	Constraints
	Optimized function

	Formal definition

	Solution implementation
	Encoding-dependent solution representations
	One-hot encoding
	Binary encoding
	Domain wall encoding

	Mixers
	One-hot encoding
	Domain wall encoding

	Experiment design
	Optimization algorithms
	Classical optimizers
	Initial point selection
	Initial state
	QUBO parameter selection
	Experiment randomization
	Result evaluation metrics

	Considered workflows
	Small problem
	Large problems

	Evaluation of the results
	Smaller problem
	One-hot encoding
	Binary encoding
	Domain wall encoding
	Objective function weight selection
	Encoding comparison
	Noisy results

	Larger problem

	Conclusions and future works
	Achieved goals and observations
	General findings
	Problem-specific findings

	Future work

	List of Figures
	List of Tables
	Bibliography

