
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ INFORMATYKI, ELEKTRONIKI I TELEKOMUNIKACJI

KATEDRA INFORMATYKI

PRACA DYPLOMOWA MAGISTERSKA

Multi-stage optimization of workflow execution in clouds

Wieloetapowa optymalizacja wykonania grafów zadań w chmurze obliczeniowej

Autor: Tomasz Dziok

Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Maciej Malawski

Kraków, 2016

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994

r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto

przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego ut-

woru albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia

wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudon-

imu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystyczne wykonanie albo

publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także

uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005

r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.) "Za naruszenie przepisów

obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzial-

ność dyscyplinarną przed komisją dyscyplinarną albo przed sądem "żeńskim samorządu studenckiego,

zwanym dalej "sądem koleżeńskim", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) oso-

biście i samodzielnie i że nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Foremost, I would like to express my
sincere gratitude to my supervisor Ma-
ciej Malawski, for the continuous sup-
port of my M.Sc. study, motivation,
enthusiasm, and immense knowledge.
His guidance helped me a lot during
my research and writing of this the-
sis. Besides my supervisor, I would also
like to thank Kamil Figiela for valuable
discussions and consultancy. Finally I
would like to thank my wife and parents
for their endless love and support.

Contents

1. Introduction .. 1

1.1. Motivation.. 1

1.2. Cloud Computing .. 1

1.3. Scientific Workflows.. 2

1.4. Problem Statement... 2

1.5. Goal of Thesis.. 2

1.6. Summary.. 3

2. State of the Art Overview .. 4

2.1. Workflow Overview... 4

2.2. Linear Programming.. 4

2.2.1. Definition ... 4

2.2.2. Example ... 5

2.3. Related Work ... 6

2.4. Summary.. 6

3. Adaptive Algorithm ... 7

3.1. Introduction ... 7

3.2. Assumptions .. 7

3.3. Input/Output .. 8

3.4. High Level Flow .. 8

3.5. Description of Each Algorithm Step ... 10

3.6. Illustrative Example... 10

3.7. Optimization Models ... 15

3.7.1. Global Planning Phase Model.. 15

3.7.2. Global Planning Phase Alternative Model ... 16

3.7.3. Local Planning Phase Model.. 16

3.8. Summary.. 17

4. Implementation .. 18

4.1. High level description.. 18

5

4.2. Experiment Input ... 18

4.3. Flow Diagrams .. 19

4.4. Generated Output... 20

4.5. Languages and Tools ... 21

4.6. How To Run... 22

4.7. Source Code... 22

4.8. Summary.. 22

5. Experiments and Results ... 23

5.1. Experiments Description ... 23

5.2. Experiments Environment ... 23

5.3. Workflows Description .. 24

5.3.1. Montage ... 24

5.3.2. Cybershake... 25

5.3.3. Genome .. 25

5.4. Workflow Scheduling Experiments ... 25

5.4.1. Montage ... 26

5.4.2. Cybershake... 28

5.4.3. Genome .. 30

5.5. Workflow Disturbance Experiments.. 32

5.5.1. Montage ... 32

5.5.2. Genome .. 32

5.6. Workflow Comparison Experiments.. 33

5.7. Summary.. 33

6. Conclusions and Future Work .. 34

6.1. Accomplished tasks ... 34

6.2. Algorithm Summary.. 34

6.3. Future Work... 35

6.4. Summary.. 35

A. File Formats and Outputs ... 39

A.1. Input files format ... 39

A.2. Output files format... 40

B. Publication .. 47

6

LIST OF FIGURES 7

List of Figures

1.1 Sample DAG . 2

1.2 Montage work�ow structure . 3

2.1 Linear programming example input data . 5

3.1 High level �ow of scheduling algorithm . 9

3.2 Example algorithm �ow - iteration 1 . 11

3.3 Example algorithm �ow - iteration 2 . 12

3.4 Example algorithm �ow - iteration 3 . 13

3.5 Example algorithm �ow results - time and cost plots . 14

4.1 Implementation - experiments �ow diagram . 19

4.2 Implementation - planner and executor �ow diagram 20

5.1 Experiment results - montage - random disturbance . 26

5.2 Experiment results - montage - static mode . 26

5.3 Experiment results - montage - tasks overestimation . 27

5.4 Experiment results - montage - tasks underestimation 27

5.5 Experiment results - cybershake - random disturbance 28

5.6 Experiment results - cybershake - static mode . 28

5.7 Experiment results - cybershake - tasks overestimation 29

5.8 Experiment results - cybershake - tasks underestimation 29

5.9 Experiment results - genome - random disturbance . 30

5.10 Experiment results - genome - static mode . 30

5.11 Experiment results - genome - tasks overestimation . 31

5.12 Experiment results - genome - tasks underestimation 31

5.13 Experiment results - montage - different disturbances 32

5.14 Experiment results - genome - different disturbances 32

5.15 Experiment results - work�ows comparison . 33

T. Dziok Multi-stage optimization of work�ow execution in clouds

Abstract

Scheduling of scienti�c work�ows in IaaS clouds with pay-per-use pricing model and multiple types of

virtual machines is an important challenge. Most static scheduling algorithms assume that the estimates

of task runtimes are known in advance, while in reality the actual runtime may vary. To address this

problem, there is proposal of an adaptive scheduling algorithm for deadline constrained work�ows

consisting of multiple levels. The algorithm provides a global approximate plan for the whole work�ow

in a �rst phase, and a local detailed schedule for the current level of the work�ow in the second one.

By applying this procedure iteratively after each level completes, the algorithm is able to adjust to the

runtime variation. Each phase uses optimization models that are solved using Mixed Integer Program-

ming (MIP) method. The preliminary simulation results using data from Amazon infrastructure, and

both synthetic and Montage work�ows, show that the adaptive approach has advantages over a static one.

This work contains:

1. Introduction to presented topics [chapters 1. Introduction and 2. State of the Art Overview].

2. Overview of existing solutions [chapter 2. State of the Art Overview].

3. Detailed description of presented algorithm [chapter 3. Adaptive Algorithm].

4. Implementation details [chapter 4. Implementation].

5. Results of performed experiments [chapter 5. Experiments and Results].

6. Conclusions and future work [chapter 6. Conclusions and Future Work].

7. Appendix with �le formats and outputs [appendix A. File Formats and Outputs].

8. Appendix with article presented in Parallel Processing and Applied Mathematics with presented

algorithm [appendix B. Publication].

1. Introduction

This chapter introduces topics covered in this work and presents its goal. Section 1.1 describes mo-

tivation why this work has been started. Next two ones (1.2 and 1.3) quickly introduce cloud comput-

ing [19] [20] and scienti�c work�ows [21] [22]. Then section 1.4 contains problem statement and in 1.5

there is a goal of thesis with listed tasks which should be completed.

1.1. Motivation

Every year cloud computing becomes more and more popular. There are a lot of applications of

clouds. Among them are scienti�c work�ows which are used in almost all areas of science. They become

more complex and time consuming (even up to a few days). Ef�cient usage of available resources in

clouds are crucial point when taking into account the cost of scienti�c research. In other words effective

usage allows to save money.

There are many scheduling algorithms, but unfortunately not many of them are dedicated to work-

�ows which address uncertainties. These uncertainties are big issue because they have in�uence on real

execution time which affects costs and given deadline. Additionally they come from various, independent

sources. Handling them during scheduling work�ows is an interesting challenge.

The problems described above are topics of my interests and they constitute the reasons for preparing

this work.

1.2. Cloud Computing

Cloud computing is another episode of dynamic development of computer science. There are a few

types of clouds. In this work, IaaS (Infrasturcture as a Service) [5] is in an area of interest. Basically

it means that user can request on demand speci�ed number of various types of precon�gured virtual

machines. Generally, each type is characterised by performance and price. Besides virtual machines it

is possible to request other resources like for example, storage. What is important, whole management

of available resources is performed remotely by dedicated software or webservices. Cloud resources are

available for all - not only for chosen companies or organisations. In other words, everybody can gain

access and this is why popularity of the cloud computing is increasing.

1

1.3. Scienti�c Work�ows 2

1.3. Scienti�c Work�ows

Scienti�c Work�ow is a series of computional tasks which must be executed to achieve the �nal result

of experiment or simulation. They are widely used in science world and become more and more popular

every year. Work�ows are used e.g. for generating mosaic of the sky from multiple images (Montage, is

presented on Fig. 1.2), in genome sequence processing (Epigenomic) or for characterizing earthquakes

(Cybershake). Execution of complex work�ows could take even up to a few days. Basic work�ow is

presented on Fig. 1.1. On Pegasus website [26] the work�ows gallery is available.

Figure 1.1: DAG example

1.4. Problem Statement

Problem is characterized as follows: there is a work�ow (set of tasks) which must be executed on

available cloud infrastructure with minimized total cost under given deadline constraint.

There is an information about dependencies between tasks (that one must be executed before another

one). Each task has estimated required resources. Infrastructure is a set of available virtual machines

characterized by performance (CPU, RAM, etc.) and price per time unit.

As a result there is an expectation to have information on which virtual machine each task should be

executed to keep total time under deadline and minimize total cost.

1.5. Goal of Thesis

The goal of thesis is to design, implement and verify an algorithm that optimizes the work�ow

execution in the cloud by minimizing total cost under the given deadline with uncertain tasks estimates.

To achieve the above goal, the following tasks are de�ned:

1. Analyze problem.

T. Dziok Multi-stage optimization of work�ow execution in clouds

1.6. Summary 3

Figure 1.2: Montage work�ow structure. Each node represents up to a hundreds of tasks. (Source: [26])

2. Review existing solutions.

3. Design adaptive algorithm.

4. Implement adaptive algorithm.

5. Verify adaptive algorithm.

6. Summarize results and de�ne future work.

1.6. Summary

This chapter provides motivation to conduct this work followed by a short introduction to cloud

computing and scienti�c work�ows. After that there is a problem statement and goal of thesis with

de�ned tasks provided.

T. Dziok Multi-stage optimization of work�ow execution in clouds

2. State of the Art Overview

This chapter introduces scienti�c work�ows (section 2.1) which are the subject of this work. Then

there is a a description of linear programming (section 2.2) used in work to model and solve goal of

thesis. At the end (section 2.3) there are presented related works in this area.

2.1. Work�ow Overview

As mentioned in introduction section, work�ows are basically series of tasks. From formal point of

view, work�ow can be presented as aDirected Acyclic Graphwhere node represents one task and edge

dependency between tasks. On the basis of dependencies between tasks it is possible to group them into

levels. Each level contains independent tasks which can be executed in parallel. This fact gives more

opportunities to optimize work�ow execution by executing in parallel tasks from the same level.

Such work�ows can be classi�ed according to tasks number (even up to 1,000,000 number of tasks),

width (in wide work�ow there are sets of tasks which can be executed in parallel, in narrow one by one)

or tasks size in relation to pricing unit time: �ne-grained (task execution time is lower then pricing unit

time) or coarse-grained (task execution time is longer than unit time).

2.2. Linear Programming

2.2.1. De�nition

Linear programming is a optimization method which allows to achieve the best solution (minimum

or maximum) represented in a mathematical model as linear relationships.

Linear programming consists of linear function to be maximized (or minimized) known asan objec-

tive function, problem constraints and non-negative variables.

Linear programs (are problems that) can be expressed in canonical form as:

maximizecT x

subject toAx � b

andx � 0

where:

x represents the vector of variables (to be determined)

c andbare vectors of known coef�cients

4

2.2. Linear Programming 5

A is a known matrix of coef�cients

and(:)T is the matrix transpose

cT x is aobjective function

inequalities are the constraints which specify the search space over which the objective function is to be

optimized.

Linear programming can be applied in many areas of science and engineering.

Mixed integer linear programming (MIP) is a variant of linear programming in which only some of

the variables are constrained to be integers, while other variables are allowed to be non-integers.

2.2.2. Example

One of the popular examples of usage is a planning production in a factory to minimize total cost

under given deadline.

A Factory which produces three different products: A, B and C will be provided as an example. They

can be produced on two assembly lines: I (faster and more expensive) and II (slower and cheaper). There

is an order forNA A products,NB B andNC C ones. Client gives deadline T to complete the order. From

factory point of view crucial information is a plan describing which (and how many) products should be

produced on each assembly line to minimize total cost under given deadline.

Assembly line I II

Cost/hour CI CII

Product/Assembly line I II

A E A
I E A

II

B E B
I E B

II

C E C
I E C

II

(a) The left table presents cost per hourCl for line for l assembly line, on the right there is an ef�ciency per hourE p
l for l line

andp product

Product Order amount

A NA

B NB

C B C

Product/Assembly line I II

A X A
I X A

II

B X B
I X B

II

C X C
I X C

II

(b) On left side there is a product order, on right production plan - variableX p
l represents how many productsp will be produced

on linel

Figure 2.1: Tables above represent available assembly lines and performance, then ordered products and

unknown variables.

The objective is to minimize total cost:

min
LP

l

PP

p
Cl � X l;p

Constraints are:

to meet deadline:
LP

l

PP

p
E l;p � X l;p < T

amount of the ordered products:8p 2 P
LP

l
X p

l = Np; where P = f A; B; C g and L = f I; II g

T. Dziok Multi-stage optimization of work�ow execution in clouds

2.3. Related Work 6

andX p
l variables non-negative:8x 2 X : x � 0

There are a few ways of solving the problem de�ned above. But this is out of scope of this work.

Worth to comment is that such solution may not exist at all. Basically it could be impossible to complete

the order under speci�ed deadline.

2.3. Related Work

Mathematical programming has been applied to the problem of work�ow scheduling in clouds. The

model presented in [11] is applied to scheduling small-scale work�ows on hybrid clouds using time

discretization. Large-scale bag-of-task applications on hybrid clouds are addressed in [12]. The cloud

bursting scenario described in [13], where a private cloud is combined with a public one, also addresses

work�ows. None of these approaches address the problem of inaccurate estimates of actual task runtimes.

Adaptive approach is known in engineering systems [14]. Dynamic algorithms for work�ow schedul-

ing in clouds have been proposed e.g. in [17], where there is an assumption of the dynamic stream of

work�ows. In [15] the goal is to minimize makespan and monetary cost, assuming an auction model,

which differs from this approach where there is an assumption of cloud pricing model of Amazon EC2.

In [6] there are presented scheduling workloads of work�ows with unknown task runtimes - here also

work�ows are treated as stream.

MIP approach to schedule multi-level work�ows is used in work [1], but the dynamic nature of cloud

is not considered. In other works there were analysis of impact of uncertainties of runtime estimations

on the quality of scheduling bag-of-task in [3] and work�ow ensembles in [2], with the conclusion that

these uncertainties cannot be always neglected.

Uncertainties which may come almost from all sides are described in details in [7].

Task estimation for work�ow scheduling is a non-trivial problem, but several approaches exist, e.g.

those based on stochastic modeling and work�ow reductions [8]. It is also possible to create perfor-

mance models to estimate work�ow execution time using application and system parameters, as pro-

posed in [16]. The error of these estimates is less than 20% for most cases, which gives a hint on the size

of possible uncertainties.

2.4. Summary

In this chapter there is information about scienti�c work�ows and then a short introduction to linear

programming with an example. At the end related work papers are listed.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3. Adaptive Algorithm

This chapter describes adaptive algorithm for multi-stage optimization of work�ow executions in

IaaS clouds under a deadline constraint. At the beginning there is a general description (sections 3.1 and

3.2), then input and output are described (section 3.3). After that there is a presentation of high-level �ow

with a detailed description of each phase (sections 3.4 and 3.5). This is followed by execution of sample

work�ow with comments to each step (section 3.6). At the end optimization models used in algorithm

(section 3.7) are presented .

3.1. Introduction

Algorithm provides an adaptive method for minimizing cost of work�ow execution on IaaS clouds

under a deadline constraint. Algorithm is run many times during work�ow execution. Each execution

is just one iteration which consists of two phases:global planning phaseandlocal planning phase. In

�rst phase the algorithm approximately assigns VMs to whole work�ow under deadline constraint. As

a result of a second phase it returns detailed assignments between VM and each task - but only for the

�rst available subset of independent tasks (level). Then tasks from this subset are executed. After that

algorithm updates remaining deadline with real execution time and starts next iteration. Thanks to that

it is able to adjust to differences between an estimated and actual execution time. This approach can be

considered as a hybrid between static and dynamic scheduling algorithms.

For example, if we have deadline for 3 days, but in runtime it shows a possibility to �nish in 2

days (e.g. when tasks were overestimated) algorithm will minimize total cost by choosing slower and

cheaper VMs. And as a result work�ow will be executing for 3 days. In second scenario when tasks are

underestimated algorithm tries to keep deadline and selects more powerful VMs.

3.2. Assumptions

The main assumption is that work�ow can be divided into levels. Tasks from each level are indepen-

dent and can be executed simultaneously on multiple VMs. Level of task is a length of the longest path

from an entry node. What is important, tasks from one level can have different estimates of execution

time.

7

3.3. Input/Output 8

3.3. Input/Output

The algorithm requires:

1. Information about available infrastructure (VMs)

(a) The performance expressed in metric called CCU (which is a result of a benchmark, as in

Cloud Harmony Compute Units [18])unit time (e.g. hour)

(b) List of available VM instances

2. Work�ow (see Fig. 1.1) represented as directed acyclic graph (DAG):

(a) Nodes represent tasks

(b) Edges represent dependencies between tasks

(c) Each task has estimated execution time on a VM with performance of 1 CCU

3. Global deadline for the whole work�ow.

3.4. High Level Flow

The algorithm is shown in Fig. 3.1 and consists of the following steps described below.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.4. High Level Flow 9

Start

1) Load input data

2) Perform approximate work-

�ow planning (global planning

phase) with cost minimization

3a) Solution found?

3b) Perform approximate work-

�ow planning (global planning

phase) with time minimization

4) Perform the local plan-

ning for the �rst available

level (local planning phase)

5) Execute tasks from de-

tailed planned level (ex-

ecution phase) and col-

lect actual execution time

6) Work�ow

�nished?

7) Update remaining time

for the whole work�ow

Stop

Yes

No

No

Yes

Figure 3.1: High level �ow of scheduling algorithm.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.5. Description of Each Algorithm Step 10

3.5. Description of Each Algorithm Step

1. In this step all required data is loaded: information about work�ow, available infrastructure (list of

VMs) and global deadline. Detailed input is described above in section 3.3.

2. In global planning phasealgorithm assigns VMs to all not �nished levels. Tasks estimated exe-

cution time could have different values in the same level which makes calculation complex and

time consuming. To simplify optimization model used in this phase, algorithm calculates average

tasks execution time for each level and uses as input. The goal of this phase is to �nd assignments

with minimal total execution cost under global deadline. As a result algorithm returns which VMs

will execute tasks from given level and also how many tasks should be executed on each VM.

Additionally algorithm returns information about estimated execution time and cost for each level.

3. Next step is introduced to check if the solver �nds a solution. If yes, then algorithm goes to the

4th step. If solution is not found (e.g. global deadline is too short), the optimization is run again

without deadline constraint, but with time minimization as an objective. Execution cost is skipped

in this model. This is one of the possible ways of handling this situation. Returned results are the

same as in the previous model with global deadline constraint.

4. Local planning phaseassigns individual tasks to VMs in the current level. It uses the results from

previous step as an input: VMs assigned to this level and number of tasks which should be exe-

cuted on each VM. In this phase there are used exact task estimates, so tasks could have different

estimates (inglobal planning phasealgorithm calculates average estimates). The objective of op-

timization is to minimize the total execution time. Total cost is not taken into account because the

VMs are already chosen and the estimated execution time for each level is known – so the cost

does not change. As a result the algorithm returns information on which VM task will be executed.

5. In this step tasks fromlocal planning phaseare executed on assigned VMs. Actual task execution

time is collected and used in next iterations. Tasks may be executed on real VMs instances or in a

cloud simulator (which allows to easily test many scenarios).

6. The algorithm �nishes if there are no remaining levels to be scheduled (all tasks are executed).

7. Remaining total time is decreased by real execution time and then algorithm performs planning for

remaining part of the work�ow, repeating process from step 2. Thanks to such iterative planning

the algorithm adjusts to the current situation of work�ow execution.

3.6. Illustrative Example

To illustrate the operation of described algorithm, an example below has been prepared using the

simple work�ow from Fig. 1.1. The input is provided in Table 3.2a. The work�ow consists of 3 levels,

so the algorithm is executed in three iterations, as shown in Fig. 3.2, Fig. 3.3 and Fig. 3.4. The results are

presented and commented in Fig. 3.5.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.6. Illustrative Example 11

Task ID T1 T2 T3 T4 T5

Est. Task Size 22 18 10 10 20

VM ID Performance (CCU) Cost per Time Unit

A 5 10

B 10 25

(a) Input to the illustrative example algorithm execution: estimated task sizes, VM performance and costs for the work�ow

shown in Fig. 1.1. Global deadline is 15.

Level L1 L2 L3

Number of Tasks 2 2 1

Avg. Task Time 20 10 20

Planned Time 8 2 4

Planned Cost 80 45 40

Assigned VMs A A, B A

(number of tasks) (2) (1), (1) (1)

(b) Iteration 1,Global planning phase. Estimated cost of executing work�ow is 165 and the total time is 14. Algorithm

plans to use almost all of the available time, selects cheaper instance (A) and minimizes the total cost.

Task ID / Level T1 T2 L1

VM A A

Planned Time 5 4 9

Planned Cost 50 40 90

(c) Iteration 1,Local planning phase. In this phase algorithm uses exact values of task estimates - because of that

total execution time and cost is different from global phase for this level (8 vs. 9). Planned time for level is 9, planned

cost is 90.

Task ID / Level T1 T2 L1

VM A A

Actual Time 3 2 5

� Time -2 -2 -4

Actual Cost 30 20 50

� Cost -20 -20 -40

(d) Iteration 1,Execution phase. In this case tasks from level 1 were overestimated - execution time was shorter than

estimated (planned 9, actual 5).

Figure 3.2: 1st iteration. InGlobal planning phasethere are all 3 levels used, inlocal planning phase

the �rst one - L1. Execution took less time than estimated. Algorithm updates remaining time with actual

value (now 10 time units remained) and current total cost is 50.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.6. Illustrative Example 12

Level L2 L3

Number of Tasks 2 1

Avg. Task Time 10 20

Planned Time 4 4

Planned Cost 40 40

Assigned VMs A A

(number of tasks) (2) (1)

(a) Iteration 2,Global planning phase. Due to more time available than expected, algorithm assigned all tasks to the

cheapest VM - to minimize the total cost. Previously there was selected VM A and B to level L2, now VM A is

assigned to both tasks from level L2.

Task ID T3 T4 L2

VM A A

Planned Time 2 2 4

Planned Cost 20 20 40

(b) Iteration 2,Local planning phase. Planned time for level is 4, planned cost is 40.

Task ID T1 T2 L2

VM A A

Actual Time 4 4 8

� Time +2 +2 +4

Actual Cost 40 40 80

� Cost +20 +20 +40

(c) Iteration 2,Execution phase. Tasks from level L2 were underestimated - execution time was longer than expected.

Actual level execution time is 8 and cost 80.

Figure 3.3: 2nd iteration. In the �rst phase algorithm selects cheaper VMs due to more available time

comparing to the �rst iteration (L1 was overestimated).Execution phaseshows that L2 was underes-

timted. Total cost is 130 and remaining time is 2.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.6. Illustrative Example 13

Level L3

Number of Tasks 1

Avg. Task Time 20

Planned Time 2

Planned Cost 50

Assigned VMs B

(number of tasks) (1)

(a) Iteration 3,Global planning phase- algorithm selects the most powerful VM B to keep the deadline constraint.

Task ID T5

VM B

Planned Time 2

Planned Cost 50

(b) Iteration 3,Local planning phase. Level L3 has only one task so level execution time equals to the task execution

time.

Task ID T5

VM B

Actual Time 2

� Time -

Actual Cost 50

� Cost –

(c) Iteration 3,Execution phase- in this case estimate for T5 was exact.

Figure 3.4: 3rd iteration. Before this iteration L3 was assigned to VM A, but due to less available time

for L3 then before (due to underestimated L2) inglobal planning phasethe algorithm selects the most

powerful VM B to keep the deadline constraint. Total time is 15, total cost is 180 and the work�ow

completed in the given deadline.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.6. Illustrative Example 14

Figure 3.5: Execution time and cost of the algorithm, shown level by level. In the �rst iteration, the

global planning phase estimates the completion time of level 1 as 8 (purple bar) and the local planning

estimates it to be 9 (solid line). In iteration 2, it turns out that the level L1 �nished at time 5 (grey bar).

Both global and local planning for level 2 (red bar and solid line) predict the �nish time to be 9. The

actual execution of level 2 completes at time 13 (grey bar), so in iteration 3 both global and local phases

plan the execution of level 3 (orange bar) to complete just within the deadline. The execution in iteration

4 shows that the level 3 actually completed as planned. As we see the assignments of tasks to VMs

change whenever the actual execution time differs from the estimated one.

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.7. Optimization Models 15

3.7. Optimization Models

Algorithm uses three optimization models: the �rst one forglobal planning phase, the second one in

the case when deadline cannot be met, and the third one for thelocal planning phase. Since the domain

is discrete, each model belongs to a mixed-integer programming (MIP) class. In all three models there is

an assumption of simplicity that VMs start immediately and have no latency. Thanks to that the problems

are solved quicker. However, there is an assumption that all possible delays are included in the error of

estimates, which is taken into account in step 7 of the algorithm. Below there is a description of the

models with reference to the source code in the public repository [29]

3.7.1. Global Planning Phase Model

Model used inglobal planning phaseassigns VMs and sub-deadlines to each level. Sub-deadlines

are evaluated during computation based on global deadline for the whole work�ow. Instead of scheduling

individual tasks, it uses an approximation of average task runtimes. For each level, it calculates an average

task size and based on this, an estimated cost of executing its tasks on a given VM. As a result, it is known

which VMs should be used for each level and how many tasks should be executed on given VM. The

objective is to minimize total cost of the whole work�ow execution.

Input to thisglobal planning phaseis de�ned by the following data:

– m is number of VMs

– n is number of levels

– V is a set of VMs

– L is a set of levels

– d is global deadline

– L l is number of tasks in levell

– Ta
l;v is average estimated execution time of task from levell on VM v

– pv is cost of running VMv for one time unit

– Cl;v = pvTa
l;v is average estimated cost of executing task from levell on VM v

The search space is de�ned by the following variables:

– Ql;v is integer matrix which provides how many tasks from levell will be executed on VMv

– Te
l is vector of real numbers which stores execution time for levell (estimated sub-deadlines)

– T v
l;v is matrix which stores execution time for VMv on levell . A l;v is used as an auxiliary variable

to simplify de�ning constraints

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.7. Optimization Models 16

The objective is to minimize total cost:

Minimize:
LP

l

VP

v
Cl;v � Ql;v

Search space is constrained to keep the total execution time below the deadline, divide the deadline

into sub-deadlines and to enforce them, and to ensure that all the tasks from each level are executed. This

is achieved by following constraints:

– enforce work�ow deadline:
LP

l
Te

l � d

– determine VM working time for each level:

8l 2 L; 8v 2 V : T v
l;v = Ql;v � Ta

l;v

– determine time for level (sub-deadline) - which is equal to the longest working vm time:

8l 2 L; 8v 2 V : Te
l � T v

l;v

– make sure that execution time for vm in level is less or equal to level execution time:

8l 2 L : Te
l �

VP

v
T v

l;v

– enforce that all tasks from level are executed:

8l 2 L :
VP

v
Ql;v = L l

– enforce that values from matrix Q are not negative:

8l 2 L; v 2 V : Ql;v � 0

3.7.2. Global Planning Phase Alternative Model

Model used inglobal planning phasewhen deadline cannot be metis used when searching for solution

using the �rst model fails. It can happen e.g. when real execution time of previous level takes much more

time than expected and global deadline for work�ow can not be met. In comparison to the previous

model, the algorithm ignores global deadline constraint and the objective function minimizes total time

of work�ow execution:

Minimize:
LP

l
Te

l

De�ned constraints are almost the same as inglobal planning phase- all are used without the �rst

one (enforce global deadline)

3.7.3. Local Planning Phase Model

Model used in local planning phaseassigns one VM (from VMs assigned to level) to each task from

a single level. The goal is to minimize time of level execution, which is equal to the time of the longest

working VM.

Input to this optimization problem is de�ned by the following data:

– m is number of VMs

T. Dziok Multi-stage optimization of work�ow execution in clouds

3.8. Summary 17

– k is number of tasks in current level

– K is a set of tasks

– V is a set of VMs (only VMs assigned to current level – results fromglobal planning phase)

– Te
k;v is an estimated execution time of taskk on VM v

– Nv is a number of tasks which will be executed on VMv (results fromglobal planning phase)

Search space is de�ned by the following variables:

– Ak;v is binary matrix which provides if taskk will be executed on VMv

– T r
v is vector of real numbers which provides how long each VMv works

– w is helper variable which stores the longest working time for VMs fromV

The objective is to minimize time of the longest working VM:

Minimize: max(T r
v jv 2 V)

that is implemented as

Minimize: w.

Search space is constrained to ensure that all the tasks are executed, to assign given number of tasks

on each VM, and to assign the correct value tow which is the longest working VM. This is achieved by

the following constraints:

– determine working time for each VM:

8v 2 V :
KP

k
Te

k;v � Ak;v = T r
v

– determine time of the longest working VM:

8v 2 V : T r
v � w

– enforce number of tasks assigned to each VM:

8v 2 V :
KP

k
Ak;v = Nv

– enforce that each task should be executed:

8k 2 K :
VP

v
Ak;v = 1

3.8. Summary

This chapter describes adaptive multi-stage algorithm for minimizing cost of work�ow execution on

IaaS clouds under deadline constraint. At the beginning there is a description of algorithm idea - split

work�ow to levels and execute two-phase planning for each level. Flow is described in Fig. 3.1 and then

each step is explained. Illustrative example presented in Fig. 3.2, Fig. 3.3, Fig. 3.4 and Fig. 3.5 allows

to easily understand how algorithm works. At the end there is a description of optimization models

implemented using mixed-integer programming language.

T. Dziok Multi-stage optimization of work�ow execution in clouds

4. Implementation

This chapter describes implementation of presented algorithm and optimization models. At the begin-

ning there is a high level description (section 4.1) and a description of experiments input (section 4.2).

Two �ow diagrams (section 4.3) show how experiment runner, work�ow planner and executor work.

Then there is showed generated output (section 4.4) which includes planning results. At the end there are

used languages and tools listed (section 4.5), how to run tutorial (section 4.6) followed by link to public

repository with a quick layout description (section 4.7). There is also presented a project organisation

and a high level �ow of application presented on diagrams. At the end there is a sample output generated

by application.

4.1. High level description

Application consists of modules speci�ed below:

1. Experiment runner

2. Input data loader

3. Global planning phasemain planner

4. Global planning phasealternative planner

5. Local planning phaseplanner

6. Task executor at simulated cloud

7. Output data presenter

4.2. Experiment Input

There are three types of experiments implemented. Except standard work�ow planning and executing

experiment, application provides two more experiments: work�ow comparison and disturbance. Experi-

ments are described in the next chapter 5. Experiments and Results. Experiments inputs are described by

.json �les which include a lists of experiments. They de�ne .dag �les with work�ows and .json �les with

infrastructure descriptions. Sample input �le with description is attached in appendix A.1

18

4.3. Flow Diagrams 19

4.3. Flow Diagrams

Whole �ow is split into two levels: �rst one is experiment phase (Fig. 4.1), second one is work�ow

schedule and execution phase (Fig. 4.2).

(a) Experiment Runner Flow.

Figure 4.1: Experiment Runner Flow - experiments are read and dispatched to proper runner.

T. Dziok Multi-stage optimization of work�ow execution in clouds

	Introduction
	Motivation
	Cloud Computing
	Scientific Workflows
	Problem Statement
	Goal of Thesis
	Summary

	State of the Art Overview
	Workflow Overview
	Linear Programming
	Definition
	Example

	Related Work
	Summary

	Adaptive Algorithm
	Introduction
	Assumptions
	Input/Output
	High Level Flow
	Description of Each Algorithm Step
	Illustrative Example
	Optimization Models
	Global Planning Phase Model
	Global Planning Phase Alternative Model
	Local Planning Phase Model

	Summary

	Implementation
	High level description
	Experiment Input
	Flow Diagrams
	Generated Output
	Languages and Tools
	How To Run
	Source Code
	Summary

	Experiments and Results
	Experiments Description
	Experiments Environment
	Workflows Description
	Montage
	Cybershake
	Genome

	Workflow Scheduling Experiments
	Montage
	Cybershake
	Genome

	Workflow Disturbance Experiments
	Montage
	Genome

	Workflow Comparison Experiments
	Summary

	Conclusions and Future Work
	Accomplished tasks
	Algorithm Summary
	Future Work
	Summary

	File Formats and Outputs
	Input files format
	Output files format

	Publication

