
AGH
University of Science and Technology in Krakow

Faculty of Computer Science, Electronics and Telecommunications

DEPARTMENT OF COMPUTER SCIENCE

MASTER OF SCIENCE THESIS

ANDRZEJ DĘBSKI, BARTŁOMIEJ SZCZEPANIK

SCALABLE ARCHITECTURE OF CLOUD APPLICATION
BASED ON CQRS AND EVENT SOURCING

SUPERVISOR:

Maciej Malawski Ph.D

Krakow 2015

OŚWIADCZENIE AUTORÓW PRACY

OŚWIADCZAMY, ŚWIADOMI ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIADCZENIE

NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONALIŚMY OSOBIŚCIE I

SAMODZIELNIE (W ZAKRESIE WYSZCZEGÓLNIONYM W ZAŁĄCZNIKU), I NIE

KORZYSTALIŚMY ZE ŹRÓDEŁ INNYCH NIŻ WYMIENIONE W PRACY.

. .

PODPIS

Akademia Górniczo-Hutnicza
im. Stanisława Staszica w Krakowie

Wydział Elektroniki, Telekomunikacji i Informatyki

KATEDRA INFORMATYKI

PRACA MAGISTERSKA

ANDRZEJ DĘBSKI, BARTŁOMIEJ SZCZEPANIK

SKALOWALNA ARCHITEKTURA APLIKACJI W CHMURZE
Z WYKORZYSTANIEM WZORCÓW CQRS I EVENT

SOURCING

PROMOTOR:

dr inż. Maciej Malawski

Kraków 2015

Abstract

Cloud technologies, due to their capability of dynamic scaling of computing resources on demand, provide new

opportunities for development of scalable applications. To fully benefit from these capabilities, the application

architecture needs to be designed with the scalability as a main design objective. That enables developers to create

low-latency solutions which handle millions of requests per second and adjust the resource usage to their current

needs.

Due to the fact that this type of software is quite recent, we still do not have frameworks or architectural patterns

widely accepted to be a standard in scalable distributed systems development. Moreover, new ideas are being

proposed all the time and there is no consensus on any specific direction so far.

We did an extensive research of the current state of the distributed system design, focusing mainly on the concepts

related to the event-driven architecture. This is one of the most popular approach amongst the all new findings

we see today. We noticed a very particular interest in leveraging the concept of event sourcing (storing state as

a sequence of events) in various forms. We became interested especially in its correlation with the Command-

Query Responsibility Segregation principle (CQRS). We also asked whether several concepts from Domain-Driven

Design, Reactive Manifesto and the actor concurrency model may be helpful for building the application based on

event sourcing (ES) and CQRS. We decided to evaluate this architecture, especially focusing on the scalability in

the cloud environment.

Cooperating with Lufthansa Systems GmbH & Co. KG, we developed a prototype flight scheduling application

based on the CQRS+ES architecture. We designed it with scalability in mind by leveraging auxiliary concepts

we had found during our research. We implemented the application with the Akka toolkit which is based on the

actor model and supports event sourcing. Next, we deployed it to a cloud consisting of 10+ machines. Finally, we

experimentally verified the scalability of both the write and the read parts of the CQRS+ES architecture.

In this study, we prove that it is possible to build a scalable application based on the Command-Query Responsi-

bility Segregation and event sourcing patterns. We show that Domain-Driven Design and the actor model fits well

to this architecture. Thanks to that, we expect the quick adoption of the CQRS+ES architecture by the industry as

it provides many interesting advantages without sacrificing the performance.

Keywords: Scalability, CQRS, Event Sourcing, Domain-Driven Design, Reactive, Akka.

v

vi

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

Acknowledgements

We would like to express our sincere appreciation to our supervisor Dr. Maciej Malawski for his invaluable support,

guidance and patience.

Similarly, we would like to thank Stefan Spahr from Lufthansa Systems GmbH & Co. KG for his constant support,

motivation and fruitful discussions.

This thesis could not happen without a Lufthansa Systems support we are grateful for. Special thanks to Dr. Dirk

Muthig for the thesis proposal and the entire cooperation.

We cannot forget about Flexiant company and GWDG research centre as they shared computational resources with

us allowing us to conduct performance tests.

Finally we would like to thank Dr. Daniel Żmuda, Maciej Ciołek and many other people for lots of suggestions

and discussions.

This work was supported by EU PaaSage project (grant 317715).

vii

viii

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

Contents

Abstract.. v

Acknowledgements ... vii

List of Figures.. xi

List of Tables.. xiii

List of Listings ... xv

1. Introduction... 1

1.1. Motivation.. 1

1.2. Problem statement ... 2

1.3. Goals of the thesis ... 2

1.4. Requirements of flight scheduling applications .. 3

1.5. Outline of the Thesis ... 6

1.6. Summary.. 6

2. State of the art of event-driven architectures ... 7

2.1. Transaction processing .. 7

2.2. Causality and consistency guarantees.. 8

2.3. Stream processing.. 8

2.4. Model building .. 9

2.5. Event Sourcing .. 10

2.6. Logging and monitoring .. 10

2.7. System integration ... 11

2.8. User interface... 11

2.9. Summary.. 11

3. Evaluated architectural concepts .. 13

3.1. Command-Query Responsibility Segregation (CQRS)... 13

3.2. Event Sourcing (ES) .. 15

3.3. Domain-Driven Design.. 18

3.4. Reactive Manifesto .. 19

3.5. Akka toolkit ... 20

3.6. Summary.. 23

ix

CONTENTS x

4. Scalable application architecture based on CQRS .. 25

4.1. Write model ... 25

4.2. Read model .. 27

4.3. Event store ... 28

4.4. Summary.. 30

5. Implementation challenges and choices to ensure scalability ... 31

5.1. Language and frameworks... 31

5.2. Load balancing .. 32

5.3. Domain-driven abstraction .. 32

5.4. Event store ... 34

5.5. Cluster sharding... 34

5.6. Event filtering .. 35

5.7. Graph database .. 36

5.8. Summary.. 36

6. Scalability tests .. 37

6.1. Deployment and monitoring infrastructure ... 37

6.2. Sanity of the load tests... 38

6.3. Read model scalability evaluation ... 41

6.3.1. Evaluation method .. 41

6.3.2. Single instance capacity.. 41

6.3.3. Read model linear scalability.. 43

6.4. Write model scalability evaluation .. 45

6.4.1. Evaluation method .. 45

6.4.2. Write model scalability ... 45

6.5. Conclusions from the tests... 47

6.6. Encountered problems and their solutions .. 48

6.7. Summary.. 48

7. Conclusions and future work ... 49

7.1. Goals achieved... 49

7.2. Results of the Study... 50

7.3. Lessons learned ... 50

7.4. Future work ... 51

Bibliography .. 52

A. Source code of the DDD framework.. 61

B. Division of work .. 63

C. Details of the testing infrastructure... 65

D. Akka Persistence Query ... 69

E. Publications and presentations .. 71

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

List of Figures

1.1 Example of a valid flight schedule . 4

1.2 Example of the flight designator uniqueness constraint . 4

1.3 Example of the continuity constraint . 5

1.4 Example of the minimum ground time constraint . 5

3.1 CQRS architecture . 14

3.2 Event sourcing . 16

3.3 Reactive Manifesto traits . 20

4.1 Write model sharding . 27

6.1 Deployment diagram . 38

6.2 Sample of the metrics dashboard . 39

6.3 The warmup effect on the test results . 40

6.4 Capacity testing results for a single read model node . 42

6.5 Scalability testing results of the read model . 44

6.6 Scalability testing results of the write model . 46

xi

LIST OF FIGURES xii

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

List of Tables

4.1 Objectives of the write model architecture . 26

4.2 Objectives of the read model architecture . 27

4.3 Objectives of the event store architecture . 29

6.1 Capacity testing results for a single read model node . 42

6.2 Scalability testing results of the read model . 44

6.3 Scalability testing results of the write model . 47

xiii

LIST OF TABLES xiv

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

List of Listings

3.1 Akka Actor example . 21

3.2 Akka Clustering example . 21

3.3 Akka Persistence example . 22

5.1 Rotation aggregate implementation using our domain-driven abstraction. 33

5.2 Interface of the read model abstracting the event provisioning logic. 33

5.3 Example of the shard resolver . 35

C.1 Detailed processing units information of machines we used for testing (/proc/cpuinfo content). . . 67

C.2 Configuration of OS resources on machines used for testing (ulimit -a command). 68

C.3 Network interface configuration of machines used for testing (sysctl.conf). 68

C.4 Configuration of Nginx load balancer. 68

D.1 Akka Persistence Query example . 70

xv

LIST OF LISTINGS xvi

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

1. Introduction

This chapter lays out the general idea of the thesis. Section 1.1 describes the motivation for this work. Section

1.2 poses a main question that this thesis addresses. Section 1.3 states the goals of the thesis. Section 1.4 lists the

requirements of the application which need to be implemented. Finally, Section 1.5 outlines the structure of the

thesis.

1.1. Motivation

Nowadays, everyone is moving to the cloud and benefits from the economies of scale. The cloud provides

more efficient resource utilization, easier infrastructure maintenance and lower costs relying in most cases on the

standard hardware. The success of this model triggered a significant boost in the distributed computing field. The

industry experience a ferocious but friendly fight between major companies which constantly supply the world

with new ideas, concepts and frameworks for building distributed applications. However, there are still not many

well-established patterns and solutions. That is a big issue when it comes to build applications today as one need

to guess what direction he should take.

Cloud technologies, due to their capability of dynamic scaling of computing resources on demand, provide

new opportunities for development of scalable applications. To fully benefit from these capabilities, the application

architectures need to be designed with the scalability as a main design objective. That enables developers to create

low-latency solutions which handle millions requests per second and adjust the resource usage to their current

needs.

Due to the fact that this type of software is quite recent, we still do not have frameworks or architectural

patterns widely accepted to be a standard in scalable distributed systems development. Moreover, new ideas are

being proposed all the time and there is no consensus on any specific direction so far.

Lufthansa Systems GmbH & Co. KG (LSY) faced this problem too in the PaaSage project [1], which aims to

create a platform based on a model driven engineering (MDE) approach. It facilitates development of applications

deployed across multiple clouds. As LSY were responsible for an industrial use case, they selected their scalable

1

1.2. Problem statement 2

flight scheduling application as an example of an application that should demonstrate the scalability requirement.

That opened the opportunity to experimentally evaluate several of the most promising concepts in distributed

systems.

1.2. Problem statement

Together with Lufthansa Systems, we did an extensive research on the current state of distributed system design,

especially focusing on the event-driven approaches. The results are presented in Chapter 2.

We became interested in the architecture based on the Command-Query Responsibility Segregation (CQRS)
[2] and Event Sourcing (ES) [2] principles. Moreover, we found several other concepts like Domain-Driven
Design (DDD) [3], the Reactive Manifesto [4] and the Actor Model [5] that may help building an application

based on CQRS and ES patterns. All of these ideas are explained at length in Chapter 3.

We decided to evaluate this architecture. The most important question for us is the scalability of the CQRS+ES

approach. That lead us to the following questions:

– Is it possible to build a flight scheduling application using the selected ideas?

– Is the architecture based on the these patterns horizontally scalable?

The answers on these questions should clear any doubts whether the discussed patterns are suitable for scalable

cloud applications or not.

1.3. Goals of the thesis

Since the main objective is the evaluation of the CQRS+ES architecture scalability, we identified the following

specific goals of this thesis:

Discuss the recent architectural patterns for building scalable systems
The goal is to discuss the recent architectural patterns for scalable systems, with the focus on the event-driven

approach. This includes describing evaluated ideas in detail and presenting the related work.

Propose the architecture of the flight scheduling application using CQRS+ES
To combine all of the aforementioned ideas in a coherent architectural model for our particular use case with

the horizontal scalability in mind.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

1.4. Requirements of flight scheduling applications 3

Experimentally assess the scalability of the proposed solution
To implement the proposed architecture, deploy it in a cloud environment and validate it with a stress test-

ing tool to evaluate if the application is capable of handling more requests with the increasing number of

resources.

Deliver the industrial business use case for PaaSage project
The implementation of the flight scheduling application should be later used in the PaaSage project. It should

be used as an acceptance test for the PaaSage-platform capabilities.

Fulfilling these goals should allow us to answer the questions posed in Section 1.2. Even though the last

objective is not directly connected to the problem, it is definitely helpful in a way that the final implementation

cannot end up to be unrealistic.

1.4. Requirements of flight scheduling applications

The application requirements were set by Lufthansa Systems GmbH & Co. KG. The application implements

a flight scheduling service, with a business logic that is to not elaborate as the focus is put on architecture and

performance evaluation.

The main subject of the application is a flight schedule which consists of airplanes and rotations (see Figure

1.1). A Rotation is an ordered list of legs which do not overlap. A leg is a directed relocation of an airplane

between two airports at a given time. It is identified by a flight designator which consist of a carrier identifier, a

flight number, an optional suffix, a departure airport and day of origin. Airplanes can be assigned to rotations.

The support for bulk loading of the schedule from SSIM files is also required. The SSIM file format is an

industry standard for exchanging flight schedule information between airlines. As SSIM does not preserve rota-

tions explicitly, support for loading leg to rotation assignment from a separate file is needed. During the schedule

planning process no constraint should be forced except for not allowing for overlapping legs in rotations. However,

when the planning is finished a schedule planner needs to check if it is correct. The application needs to validate

the schedule by checking the following constraints:

– Consecutive legs have to share destination and origin airports what enforces rotation continuity (Figure 1.2).

– Every airport and airplane have their minimal ground times defined. The time between all pairs of consec-

utive legs has to be greater than both of the values (see Figure 1.3).

– Legs must have a unique flight designator. It means that there are no legs in the schedule that shares the

same day of origin, flight number and departure airport (see Figure 1.4).

No other validity checks should be performed, e.g. there is no need to check if the airplane is suitable for

handling each leg in the rotation in terms of its capacity or range.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

1.4. Requirements of flight scheduling applications 4

Figure 1.1: Example of a valid flight schedule. Rotations are displayed horizontally with their assigned airplanes.

Legs are described with their origin and destination airports along with the flight designator placed below.

Figure 1.2: A flight schedule with a rotation that does not hold continuity constraint.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

1.4. Requirements of flight scheduling applications 5

Figure 1.3: A flight schedule with two legs that do not hold minimum ground time constraint.

Figure 1.4: A flight schedule with two legs that do not hold unique flight designator constraint.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

1.5. Outline of the Thesis 6

1.5. Outline of the Thesis

The thesis is organized as follows. Chapter 2 presents the newest trends in the event-oriented architectures. In

Chapter 3 we thoroughly describe evaluated ideas and outline their pros and cons. Chapter 4 contains our proposal

of the flight scheduling application architecture based on the chosen patterns. In Chapter 5 we described some of

the challenges we faced during the implementation phase. Evaluation results and methodology are presented in

Chapter 6. Finally, in Chapter 7 we included conclusions, lessons learned and future work.

1.6. Summary

In this chapter we presented the background, the motivation and the goals of this thesis. Nowadays, lots of new

concepts appears constantly in the distributed system design. We found the CQRS and event sourcing concepts

the most interesting ones and decided to evaluate it, focusing especially on the scalability. In order to achieve that,

we want to design, build and experimentally assess the scalability of a flight scheduling application based on the

CQRS+ES architecture.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

2. State of the art of event-driven architec-
tures

Event-driven architecture [6] is an approach for building loosely-coupled systems by exchanging events – the

actual facts describing what happened to them. It covers many different aspects of computing like transaction

processing, system integration and model building. In this chapter we describe current trends in this field.

In Section 2.1 we sketch out how the event-driven approach influences the transaction processing systems of

today. Next, in Section 2.2 we discuss different consistency and ordering guarantees which are given by event-

oriented systems nowadays. In Section 2.3 we lay out current trends in processing continuous streams of events.

Section 2.4 shows approaches to building useful and persistent data representations from events. In the following

Section 2.5 we explain how the industry leverage the idea to store all events that happened in the system. Section

2.6 describes newest logging and monitoring techniques which are deeply event-driven. Section 2.7 tells us about

using events to integrate different systems. Finally, the last Section 2.8 presents how the event-oriented approach

influence on contemporary user interface tooling.

2.1. Transaction processing

Event-driven programming became one of the most popular concurrency models recently. We see a lot of

solutions based mostly on the reactor pattern [7], of which the most successful are the NodeJS framework [8],

the Nginx web/proxy server [9] and the Netty framework [10]. The key factor of their success was the efficient

processing of incoming events (requests) by effective thread manipulation. This model is now being adapted to

current distributed systems and cloud computing trends. The Reactive Manifesto [4] notices that “today’s demands

are simply not met by yesterday’s software architectures” and claims that a new “reactive architecture”, based on

reaction to events (message-driven) is the way to go.

There are a lot of attempts to model the transaction processing in this way. The Akka toolkit brought the actor

concurrency model [5] to the JVM platform based on Erlang’s actor model [11]. Actors are location-transparent,

single-threaded entities which communicate by message-passing. Vert.x, a NodeJS clone for Java based on Netty,

7

2.2. Causality and consistency guarantees 8

introduced the concept of verticles, very similar to Akka actors [12]. LMAX presented the Disruptor [13] which

allows for efficient enqueuing and processing millions of transactions per second on a single thread.

Interestingly, all of those attempts define fine-grained, single-threaded processing units and queues (a.k.a. mail-

boxes) that store the requests to process. They react on events producing new events as a consequence. In fact they

are all derivatives of the Staged Event-Driven Architecture (SEDA) [14]. Moreover, the processing units resemble

entity concept proposed by Pat Helland in [15] as a way to achieve the “Almost-infinite scalability” and Eric Evans’

concept of aggregate defined in Domain-Driven Design [3].

2.2. Causality and consistency guarantees

If a strict ordering between events is necessary in a distributed system, the standard consensus resolution

methods may be used. Apart from the widely-known Paxos [16], there are newer and simpler algorithms available:

Zookeeper Atomic Broadcast (ZAB) [17] and RAFT [18].

Thanks to Brewer’s CAP theorem [19], we know we cannot guarantee high availability without relaxing the

consistency guarantees. Eventually consistent [20] models are used instead of transactional updates of all models

when events are published. Moreover, often ordering between closely occurring events is not preserved.

Concurrent access to eventually consistent data may result in the need of conflict resolution. This is why there is

a big interest currently in a concept of Conflict-free replicated data types (CRDT) [21]. CRDT is a data type which

always gets to the same state regardless of the ordering of applied events (so called strong eventual consistency).

The simplest example is representing a counter as a list of increment events instead of a single integer field.

The CALM theorem [22] generalizes this idea, stating that eventual consistency can be guaranteed by the logical

monotonicity of the operations. Languages like Bloom [22] and Lasp [23] propose a new approach of writing

distributed systems based on the CALM theorem conclusions, which are guaranteed to achieve strong eventual

consistency.

Stronger models are being investigated. COPS [24] introduces a causal consistency model with convergent

conflict handling which does not hinder scalability. Google Spanner [25] implements an externally-consistent

model which guarantees linearizability of non-overlapping transactions. Also distributed databases like Dynamo

[26] uses causal relationship, e.g. in the form of vector clocks to detect conflicting updates.

2.3. Stream processing

The MapReduce [27] computation model, presented by Google in 2004, was a revolution in the data science

world and started the “Big Data” epoch. Now we observe a gradual focus shift from batch-oriented computations

towards stream processing as it allows decreasing the time between getting the data and making use of it. It is

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

2.4. Model building 9

really important in cases such as news recommendation.

That caused a significant boost in the area of processing data using streams. Complex event processing [28]

ideas were revived in a modern, distributed, cloud-ready fashion. Twitter presented Storm [29] which allows cre-

ating a custom stream processing topology in the shape of a directed acyclic graph. Similarly as in MapReduce

the user creates only transformations (graph vertices) and the distribution and reliability is provided under the

hood. The Yahoo! S4 [30] approach is very similar. Spark Streaming [31] is an attempt to unify batch-oriented and

real-time computation models. The idea is to treat streaming computations as a series of deterministic micro-batch

computations on small time intervals. Google’s Millwheel [32] is a streaming system that focuses on fault-tolerant

state building from processed events by using exactly-once delivery semantics and checkpointing.

The data science world is permeated with functional programming concepts. Spark [33] and DryadLINQ [34]

provide abstractions that allow for similar data transformations like functional languages have, e.g. map, filter,

fold. The same approach was successfully adopted in streaming systems like Storm or Spark Streaming. Twitter’s

Summingbird [35] is an attempt to create a similar data transformation abstraction shared both by batch- and

stream-oriented processing. Reactive Extensions [36] is a .NET library which introduced a concept of observables

which treat data streams like asynchronous data sequences and allows applying standard functional-style collection

operators (LINQ) to them. Akka Streams [37] presents a similar approach on the JVM platform. There is also an

initiative called Reactive Streams [38] aiming to unify these stream processing interfaces, focusing especially on

back-pressure.

2.4. Model building

The Lambda Architecture [39] approach combines both batch- and stream-oriented computations within a

single use case. The architecture is composed of three components: a batch layer for computing a precise model

of the entire data, a speed layer approximating the impact of recent updates and a serving layer which answers

queries based on both models. ElephantDB [40] and Druid [41] are databases crafted for handling a large number

of updates in a streaming/batch-oriented manner and they are often used to merge the speed and the batch layer.

Command-Query Responsibility Segregation (CQRS) [2] is a concept which separates updates of the data and

query models. The latter are built from the stream of events generated by the command processing part of the

application. The Axon Framework [42] allows building applications based on this principle. Datomic [43] is a

distributed database which is based on a similar idea: updates are processed by transactors which mutate the state

in the database and reflect accordingly all derived query models and caches. The Change Data Capture concept,

in which the source of events are updates to the relational database, allows synchronizing command and query

models on a lower level. It is especially useful when dealing with legacy systems. This is provided for instance by

LinkedIn Databus [44].

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

2.5. Event Sourcing 10

2.5. Event Sourcing

The idea to leverage the state/events duality and to store the state as a log of all updates was coined as event

sourcing [2]. The Axon Framework [42] and Akka Persistence [45] allows event-sourcing entities in the applica-

tion, however, the latter still does not provide a fully-functional support for projection building from stored events

[46]. Eventuate [47] is a high-availability implementation of event sourcing in which conflicting events may occur.

EventStore [48] is a distributed database crafted especially for storing events, performing complex event processing

and building projections out of them.

LinkedIn presented a log-centric infrastructure [49] based on a similar idea as event sourcing. Events are

gathered from all sources and stored for some time or even indefinitely. That eases fault-tolerant model building by

providing at-least-once consumption model and ability to go back and replay old events. The core component of

the infrastructure is Kafka [50], a durable, distributed log system similar to a write-ahead log in databases. Events

are stored in replicated partitions and preserve strict ordering within a single one. Samza [51] is used for building

models out of Kafka streams, locally to the data in rest. This approach was coined as Kappa Architecture [52]

as an alternative to the Lambda Architecture. The big advantage is that there is only a single processing code as

both real-time computation and reprocessing are done in the same way. Moreover, the model building borrows

close-to-data paradigm from batch-oriented computations.

2.6. Logging and monitoring

Logging and monitoring are the most classic event processing use cases. The most popular approach for dealing

with large amount of logs currently is to flush them locally to disks, periodically push it in a batch manner to the

distributed log server, aggregate them and finally present in a useful representation. This approach was followed

by Facebook’s Scribe [53], Elastic Logstash [54] or Apache Flume [55]. Usually data is piped further to large

data clusters like Hadoop [56] for analytics and/or to search servers like Elasticsearch [57]. Currently, there is a

trend towards pull-based distributed log servers like Apache Kafka as they are less prone to event loss and provide

consumer backpressure.

Google presented Dapper [58], a distributed tracing infrastructure for aggregating and correlating low-level

service events in order to produce performance statistics and request flow visualizations. Twitter Zipkin [59] is its

open source implementation. As the monitoring tools are more and more popular, new solutions for aggregating

events in time series data appeared, e.g. InfluxDB [60] or Graphite’s Whisper [61]. The aggregated data is usually

presented by charting tools like Grafana [62] or Kibana [63].

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

2.7. System integration 11

2.7. System integration

The event-based type of integration between systems is very popular in the industry. It is achieved by us-

ing message-oriented middlewares in the form of standalone queues or Enterprise Service Bus (e.g. Mule [64]).

Recently also distributed, persistent logs like Apache Kafka are becoming popular publish-subscribe solutions.

Gregor Hohpe and Bobby Wolf in their book Enterprise Integration Patterns [65] presented a set of common

patterns for dealing with message/event-oriented systems. That introduced a standard vocabulary and was the

reason of the fact that tools like Apache Camel [66] appeared, making designing and building event-driven systems

easier.

2.8. User interface

User interfaces are event-based since the invention of the MVC pattern [67] in which a view reflects the changes

in the model on the fly. Currently popular UI solutions like AngularJS [68], Backbone [69], JavaFX [70] or Win-

dows Presentation Foundation (WPF) [71] are based on the Presentation Model pattern [72] and data binding [73]

concepts which aim to decouple presentation logic from the actual UI components. This is achieved by making UI

controls event-based and subscribing them to changes in the presentation model.

ReactJS [74] is a library for building real-time web applications focusing on efficient partial updates of the

page based on received events. Facebook Flux [75] is an attempt to introduce dataflow programming paradigm for

user interface building. State of the presentation model reacts on action events, and views are updated based on

update events from state entities.

2.9. Summary

In this chapter we gave a brief overview of event-driven architectural patterns. Industry leaders like Google,

Twitter, Microsoft or Facebook invested recently lots of their resources in the research on this field. That caused a

significant boost and many new event-driven solutions and techniques for transaction processing, model building,

stream processing or displaying user-interface have just appeared. What is more, the evolution speed of the field

does not decrease and we should expect many more exciting findings to appear soon.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

2.9. Summary 12

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3. Evaluated architectural concepts

This chapter introduces architectural concepts and tools that we decided to evaluate in terms of scalability. A

more comprehensive description of these concepts can be found in the referenced bibliography [2] [76] [77].

In Section 3.1 we present CQRS, an architectural pattern for improving application responsiveness. Section

3.2 describes the novel persistence solution called Event Sourcing. Section 3.3 explains the basic ideas behind

the Domain-Driven Design approach for building and maintaining complex systems. In Section 3.4 the Reactive

Manifesto guideline for building efficient applications is discussed. Finally, Section 3.5 lays out Akka toolkit

description, the message-passing middleware built upon Reactive Manifesto ideas.

3.1. Command-Query Responsibility Segregation (CQRS)

CQRS originates from the Command Query Segregation pattern, a widely accepted pattern in the Object-

Oriented Programming community proposed by Bertrand Meyer in 1988 [78]. It states that every method in a class

should either be a query action returning data without any side-effects or a command that mutates the state and

does not return anything.

Greg Young picked up this concept and applied it on the architectural level during his research on Distributed

Domain-Driven Design for high performance systems in 2008 [79]. He admitted [79] that the concept is closely

related to the Side-Effect Free functions presented by Eric Evans in his DDD book [3]. A year later he coined the

Command-Query Segregation Principle term [80] to avoid confusion.

The CQRS (depicted on Figure 3.1) principle is a kind of Event-Driven Architecture [6] that separates an

application into two disjoint parts. The first one is called a write, command or domain model. It is responsible

for handling all state changing operations (commands), i.e. validating them, updating the application state and

publishing events. The second one is called read or query model. It both answers user queries and updates its

model based on received events from the write side. Nothing stops from creating multiple query models crafted for

each application’s use case separately.

13

3.1. Command-Query Responsibility Segregation (CQRS) 14

READ

MODEL

UI

WRITE

MODEL

READ

MODEL
READ

MODEL

Figure 3.1: The diagram depicts the idea of CQRS. Write model handles all user commands, validate them and

produces events. Those events are published to all read models which updates their query models and become

ready to handle new queries.

CQRS pushes the ideas of secondary indexes and materialized views from relational databases to the archi-

tectural level and make them more appealing to the NoSQL world. In fact, a materialized view is the simplest

CQRS implementation in a strictly consistent manner. However, most of the times the eventually consistent model

is perfectly enough. It is better to make queries slightly more outdated (less than 10s usually) and gain better per-

formance. Even having a relational database does not prevent users from dealing with outdated data as they load

the page (query result), usually thinks a while and before they take an action the model may already be outdated.

Adhering to this pattern comes with many advantages:

– You can choose different databases for write and read models. In many cases read to write operation ratios

are greater than one or two orders of magnitude. That means you can select the most performant database

for your query use case without losing advantages of your favourite (e.g. fully ACID, relational) database

for state mutating operations. Sometimes there is no point in scaling the write model.

– Moreover, you can choose different databases for every query use case. You can use for instance simul-

taneously ElasticSearch [57] to answer full-text search queries, Hadoop [56] for building recommendation

model once a day and Riak [81] for counting page views.

– Decoupled models become focused and simple. That means easier maintenance and better caching possibil-

ities.

– Queries are inherently idempotent, so it is much easier to scale out a model without writes.

– Eventually consistent models remove transaction complexity and performance overhead. Commands are

timely acknowledged by the write model without waiting for every model to update. Read models can con-

sume events in their own pace, regardless of bursts of events.

Great benefits always come with a cost:

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.2. Event Sourcing (ES) 15

– You need to synchronize multiple, distributed data models. It is not a trivial task if you want to make it

efficient, correct and resilient (e.g. events may disappear, nodes may go down). Still not too many tools were

created specifically for CQRS.

– A Multicomponent application with multiple types of databases results in deployment model that is harder
to maintain and puts a way more work on devops. It may lead also to code duplication when two models are

quite similar.

– Not every problem is easy to model in this way. For instance, it is hard to provide unique email semantic for

users in the write model as it requires to query the read model with email index first before adding a new

user. Eventual consistency makes it even harder.

CQRS is an interesting concept based on the old pattern and reinvented anew in the DDD community. The

most distinctive feature is the ability to address different non-functional requirements for write and read operations,

which comes with a cost of data synchronization. A more comprehensive description of the concept may be found

in [2], [82].

3.2. Event Sourcing (ES)

Event sourcing is a term coined by Martin Fowler in 2005 [83] for event-oriented persistence in contrast to

popular state-oriented methods. The idea is to record all changes that happened in the system and recreate the state

based on all of those changes when it is needed.

The idea is not new at all and dominates in most of mature sectors like finance or law. They are operating

with journals, ledgers, transaction registers and addendums on a daily manner for a reason. They cannot imagine

destroying or changing any transaction data. Auditing is always strictly required in the software built for them.

What is more interesting the pattern is also common in software. All databases that presents a state-oriented

interface are in fact deeply event-oriented. They register transactions in a write-ahead log and update its state

accordingly. It is not possible to achieve correctness without the log. Similarly, many distributed systems are based

on the state machine replication or primary-backup models which use ordered event logs in their core [49].

In event sourcing, events are stored in a stand-alone ordered log directly (a.k.a. event store) and stay there

indefinitely. The ordering is usually preserved on entity or table level to avoid efficiency problems. When the state

is needed, it is recreated by state machines which reply all events in order (see Fig. 3.2). It’s important to store

events, not commands, as the business logic or external service responses may change over time and that final state

could be different. That would also lead to replaying side-effects.

This approach to persistence has a lot of advantages:

– It gives a full history of what has happened to the system. The complete audit log is really important for

business people, both from safety and analytics perspective.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.2. Event Sourcing (ES) 16

STATE

MACHINE

EVENT

STORE

2

Figure 3.2: Event sourcing, depicted on the diagram, introduces a slightly different approach than the standard flow

of dealing with entities in an enterprise world is: deserialize, mutate state, serialize. First the storage is asked for a

list of all events for a given entity (1), then the brand new state machine applies all retrieved events (2). Finally the

user command is validated and if was successful, new event is produced and stored (3).

– We get 100% reliable audit log in contrast to most of the implementations where the state is changed in

the database and then audit log is updated. When the system crashes in between and we did not harness

complicated distributed transactions we may end up with inconsistencies.

– When events are first-class citizen in the system, it is easier to understand by business people. Events

represents real business facts they are familiar with.

– The semantic of data updates is not lost as it is often in the case of dealing with state. It is hard to reverse-

engineer what happened to the system when we see only its current state.

– Events are only appended to the log and read sequentially. That enables efficient storage implementations
without many disk seeks involved. Moreover, write-once read-many drives may be used for security reasons.

– It opens new possibilities for troubleshooting as we can recreate the application state that it had in any
given time.

– There is no object-relational impedance mismatch and no database model migrations needed as we store

only events, not a state.

There are also some potential problems with event sourcing that one need to be aware of:

– Maintaining total order of application events creates a bottleneck for events writing. In most of the cases it

is possible to have more fine-grained transaction units in the model, for instance an order per entity or entity

type.

– The replay time increases with time as more and more events is being stored. A possible solution is to

regularly create snapshots of the state to avoid replaying all events. If the state representation changes later,

recreating the snapshots is not a problem.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.2. Event Sourcing (ES) 17

– Storing all events may lead to running out of disk space. It may be a problem if more than million events

per second are generated. Usually it is true only for non-critical data like user clicks or ad impressions and

we can store them only for a given time. Other option is to compact the data and leave only the last entry for

a given entity, what is often enough to recreate the state.

– Event definitions may change during the application lifetime and we need to take care about their versioning.

We can solve it by making the business logic aware of all versions of the event, writing converting chains to

newer versions (upcasting) or by using a weak serialization format and handling missing attributes properly

in the code.

Event sourcing is efficient only for dealing with state mutating operations in the system. For efficient querying

we need to create a model derived from the log and that is why when using event sourcing CQRS is a must. It

is not the same in the other way round, however, CQRS gains even more advantages when combined with event

sourcing:

– You can add a new read model later, long time after the system was created. It is hard to envision upfront

how the data may be used.

– There is no need to persist the state. You can cache the state in memory. When something breaks it is easy to

recreate the state. Persistence may be treated only as an optional way for speeding up the replay process or

handling more data than can fit into memory. And even then it is easier to manage - no backups, replication

or model versioning needed.

– You can change freely the projection shape, e.g. when business requirements are changed, technology stack

is updated or a bug was found.

– Synchronization of read and write models becomes easier. There is no need to keep both state and separate

events for synchronization or setting up a sophisticated ETL process between databases.

– It is possible to see the read model state in any point in time. It is especially useful for business people who

introduce new analysis tools. They can see how their analysis would look like if they did it a year before.

Event Sourcing is a surprisingly common idea that predates computing for hundreds of years and prevalent

in software engineering in many different shapes, such as state machine replication, audit logging, write-ahead

log or database change capture. Instead of maintaining the application state in the database, immutable events are

stored and the state is recreated from them when it is needed. We get a complete history of what happened to the

system with the cost of recreating the state when we need the data and that is why it needs CQRS. When used

together, those two patterns create a powerful tandem that makes the application maintenance easier and gives

better performance.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.3. Domain-Driven Design 18

3.3. Domain-Driven Design

Domain-Driven Design is a software development approach proposed by Eric Evans in 2003 [3] meant to deal

effectively with complex and evolving systems. It defines both strategic patterns, high-level guidelines for large

system design and tactical patterns, class-level building blocks for business logic modelling.

The core rules (strategic patterns) suggest i.a.:

– Close cooperation of the development team with domain experts to understand business processes which

later is reflected in the software.

– Defining a common lingo between them called ubiquitous language which is then used across all artifacts,

e.g. in codebase or documentation.

– Partitioning of the system into bounded contexts, manageable and coherent pieces in terms of business

logic. They are later mapped into independent software modules with their own data model and well-defined

external interface called published language.

– Prioritizing bounded contexts and focusing human resources on core subdomains of the business which

gives competitive advantage. Considering of-the-shelf solutions for generic subdomains.

– Building a domain model in the code that defines business logic events and behaviors using the ubiquitous

language. It should be separated completely from any technical concerns.

Tactical patterns introduce a level of abstraction for building a domain model. It helps experts and developers

to reason about the codebase in terms of business processes and behavior instead of classes and state. The most

interesting ones are:

– Value object represents a set of attributes in the domain that are indifferentiable when all its properties are

the same, e.g. date or account balance. Immutable implementation is suggested.

– Entity represents a concept with an identity.

– Domain event records actual facts that happened in the system.

– Aggregate defines a transactional unit in a system and protects its own invariants. A single transaction can

involve only a single aggregate. It consists of entities and value objects. It accepts user commands, mutates

its state and optionally produces domain events.

– Repository abstracts the implementation details of the storage. If stores and fetches aggregates.

– Saga defines a long running business process. In contrast to aggregates, it receives events and trigger com-

mands.

– Application service integrates the infrastructural details with the domain model. Orchestrates repositories,

sagas and aggregates. Handles user requests and transform them into domain commands.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.4. Reactive Manifesto 19

DDD has a lot in common with CQRS+ES architecture. Domain model is a great fit for write model imple-

mentation and deprivation of all queries makes it even more focused on the system behavior and facts. Aggregates

can be eventsourced using domain events they produce. They are also a fine-grained transactionality unit so totally

ordered event log is not needed. Additionally, event sourcing makes persistence-agnostic implementation of the

domain model a trivial task.

Summarizing, Domain-Driven Design is a software development methodology focused on expressive business

logic models, communication, modularization and setting the right priorities. It integrates well with CQRS and

event sourcing ideas.

3.4. Reactive Manifesto

Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson in the Reactive Manifesto [4] claim that 21st

century expectations in terms of software cannot be fulfilled with 20th century techniques. They presented nec-

essary aspects of the relevant architecture that fits to cloud-based deployments, guarantee 100% uptime, process

petabytes of data and respond in milliseconds. Applications adhering to these guidelines are called Reactive Sys-

tems. According to the manifesto, systems built in this way are flexible, loosely-coupled and scalable. They give

user a better, interactive experience and effectively deals with failures.

The Manifesto defines four basic traits characterising a modern architecture. The application may be called a

Reactive System when it has these properties (see Figure 3.3):

– Message-driven as they are using asynchronous message-passing concurrency model. That introduces non-

blocking communication, loose coupling, location transparency and back-pressure.

– Resilient to failure by leveraging replication, bounding failures within isolated components and delegating

recovery process to other units.

– Elastic so it can use more or less resources based on the current workload. That requires no contention point

and ability to distribute or replicate components.

– Responsive, what means that all user requests are responded quickly. It is the primary goal of the reactive

architecture achieved by the previous aspects.

The authors of the Manifesto claim that this should be enough to provide the best experience for end users.

Additionally that helps building composable systems as the traits apply to all levels of scale.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.5. Akka toolkit 20

Figure 3.3: The diagram presents four traits of the Reactive System and their relationships. Responsiveness is an

effect of applying all other aspects. Source of the diagram: http://www.reactivemanifesto.org/

3.5. Akka toolkit

The Akka toolkit [84] is a middleware simplifying the construction of Reactive Systems on the JVM platform.

It was created by Jonas Bonér in 2009 and is now part of the Typesafe Reactive Platform. It exposes Java and Scala

interfaces. Even though multiple concurrency models are supported, the actor model is a core. This model was

invented in 1973 by Carl Hewitt [85] and was popularized by Erlang community.

The actor model is an implementation of the active object pattern. Execution units called actors are very fine-

grained and lightweight in contrast to threads. The communication between them is message-based and asyn-
chronous (see Listing 3.1). Actors do not share mutable state and hence synchronization is not needed. An actor

serves a purpose of the unit of concurrency. It processes messages from its own mailbox one by one.

Akka is distributed by design. Actors are completely unaware of the deployment model. They send messages to

location transparent references (see Listing 3.1) and never make locality assumptions. That introduces elasticity

as it enables dynamic changes in the infrastructure like scaling up (adding more threads) and scaling out (adding

more nodes) without modification.

Finally, resiliency is accomplished with the hierarchical actor systems. The lifecycle of each actor is supervised

by its parent. Supervisors decide how to remedy failures of their children, e.g. they can restart the actor or escalate

the problem upwards in the hierarchy tree.

Akka is not a framework but a modularised toolkit. It consist of multiple building blocks, modules and plugins.

The most important features are routers and clustering support. There are many routing strategies available, e.g.

round-robin, consistent hashing, broadcasting. The most interesting is adaptive routing that takes into consideration

CPU usage or pace of processing (mailbox sizes). Clustering support offers a membership service implemented

with peer-to-peer gossip protocol. It provides automatic failure detection, notifies about cluster updates (see Listing

3.2) and supports routers which dynamically update their routing list based on who joined or left the cluster.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.5. Akka toolkit 21

class MyActor(magicNumber: Int) extends Actor {

def receive = {

case x: Int => sender() ! (x + magicNumber)

}

}

val system = ActorSystem("mySystem")

val myActor = system.actorOf(Props[MyActor], "myactor")

myActor ! 97

val futureResponse = (myActor ? 2).mapTo[Int]

Listing 3.1: The listing presents an example of the actor and its usage. It accepts an integer and replies back with

the result of the computation. Actors reside in the actor system. Bang operator is used to send messages. Ask

operator creates a future representing the result of the query in the asynchronous style. The example is taken from

the Akka documentation.

class SimpleClusterListener extends Actor with ActorLogging {

val cluster = Cluster(context.system)

override def preStart(): Unit = cluster.subscribe(self,

initialStateMode = InitialStateAsEvents, classOf[MemberEvent])

override def postStop(): Unit = cluster.unsubscribe(self)

def receive = {

case MemberUp(member) => log.info("Member is Up: {}", member.address)

case MemberRemoved(member, oldStatus) =>

log.info("Member is Removed: {} after {}",

member.address, oldStatus)

case _: MemberEvent => // ignore

}

}

Listing 3.2: The listing presents an Akka actor which uses cluster membership service. When started, it subscribes

for events of the interest which are later provided as messages. The example is taken from the Akka documentation.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.5. Akka toolkit 22

class ExamplePersistentActor extends PersistentActor {

override def persistenceId = "sample-id-1"

var state = ExampleState()

def updateState(event: Evt): Unit = { state = state.updated(event) }

def numEvents = state.size

def receiveRecover: Receive = {

case evt: Evt => updateState(evt)

case SnapshotOffer(_, snapshot: ExampleState) => state = snapshot

}

def receiveCommand: Receive = {

case Cmd(data) =>

persist(Evt(s"${data}-${numEvents}"))(updateState)

persist(Evt(s"${data}-${numEvents + 1}")) { event =>

updateState(event)

context.system.eventStream.publish(event)

}

case "snap" => saveSnapshot(state)

case "print" => println(state)

}

}

Listing 3.3: The listing presents the actor leveraging Akka persistence module. Persistence id differentiates events

of different actors. Actor implementation is separated into two parts. The first handles commands, the latter one

recreates the state based on stored events. The example is taken from the Akka documentation.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.6. Summary 23

Akka Persistence is a module that makes actors durable. It allows storing incoming messages (command sourc-

ing) or produced events (event sourcing) in the database and thus recreate the actor state when it fails. The process

is transparent for the actor and resembles active record pattern. A persistent actor has a special identifier assigned

(see Listing 3.3). When the actor is started, all messages with this identifier are retrieved from the database and

replayed. There are a lot of plugins available for different storages and snapshots for quicker replays are also sup-

ported. There is also a concept of a view which subscribes to events of a given persistent actor. It is planned to

enhance them in order to support CQRS [46].

There is also a lot of different interesting modules, i.a.:

– Akka Streams which implements the idea of Reactive Streams, a standard for asynchronous stream process-

ing with non-blocking back pressure [38],

– Akka HTTP for exposing actors to the web via HTTP,

– Cluster Sharding for handling stateful actors that together consume more resources (e.g. memory) than fit

on one machine,

– Distributed Publish Subscribe in Cluster for dynamic multicast communication.

All in all, the Akka toolkit introduces an actor-based concurrency model on the JVM platform. It adheres to the

Reactive Manifesto guidelines as actors communicate in a message-driven way, location transparency makes them

elastic and supervision hierarchy ensures resiliency. Akka provides many useful modules for dealing with routing,

clustering, event sourcing and many others.

3.6. Summary

In this chapter we presented the CQRS and the event sourcing in detail, listing their their advantages, drawbacks

and possible places where they can be successfully applied. Additionally we explained the Domain-Driven Design

and the Reactive Manifesto, interesting guidelines that may help design application architecture based on CQRS

and event sourcing. Finally, we presented the Akka toolkit as an example of the actor model and the event sourcing

implementation.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3.6. Summary 24

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

4. Scalable application architecture based
on CQRS

In this chapter we present the architecture of the application. As it is based on CQRS and event sourcing

patterns, we divided it into write model (described in Section 4.1) and read model part (described in Section 4.2).

Section 4.3 describes the event store architecture which connects both models.

Each section starts with the discussion about possible design decisions. Even though we bound ourselves to the

CQRS+ES architecture we have still quite a few degrees of freedom. We refrained from using a complete CQRS

framework as the only mature option at the time was the Axon Framework [42]. That would prevent us from using

actor model and Akka toolkit we wanted to evaluate.

4.1. Write model

In order to design the command side of the application we needed to decide what consistency level we want to

guarantee, how to scale out the command processing and finally what kind of caching strategy we want to choose

to make the write model more responsive. The possible solutions to these issues are discussed in Table 4.1.

Pat Helland in his famous work “Life beyond distributed transactions” [15] introduced the idea of entity, a

fine-grained transactional unit in a distributed system. It needs to fit on a single node, may be a subject of resource

reshuffling when the application is scaled out. No atomic transaction can span over multiple entities. According to

Helland, this approach gives a scale-agnostic programming abstraction and results in ‘almost-infinite‘ scalability.

This description resembles both DDD’s aggregate and actor concept. We decided then to design aggregates as

actors in the system. Fortunately the problem domain do not require strict consistency guarantees and it was

possible to find fine-grained transactional units. We managed to discover two aggregate types:

– rotation consisting of a list of legs with the invariant that they do not overlap,

– airplane with optional rotation assigned.

25

4.1. Write model 26

Table 4.1: Objectives of the write model architecture along with considered means of implementation. The chosen

solutions are underlined.

Objective Possible solutions

Consistency guarantees
Strictly consistent model with transactions spanning over multiple entities.

Fine-grained transactional units eventually consistent with each other.

Scalable processing
Optimistic, multi-master replication with efficient conflicts resolution.

Processing distribution (sharding) using consistent hashing.

Decreasing latency

Caching events from event store.

Persisting state snapshots in the event store.

Caching recreated entities (event sourced state machines).

We made aggregates (actors) event sourced, i.e. they accept commands, validate them, produce events, persist

them in the event store and finally switch to a new state. When fetched, a brand new instance is created and all

associated events are replayed from the event store. Event ordering is maintained only within a single aggregate.

Different aggregate instances are eventually consistent with each other what enables concurrent processing of their

commands without any interference, locking mechanism and blocking.

We had two options of providing scalable processing. The first option was to replicate processing and deal

with conflicts like eventuate [47] does. In our use case it is impractical as we have very fine-grained transactional

units. Partitioning of their processing (sharding) should be elastic enough. Aggregates are assigned to shards by

consistent hashing of aggregate identifiers. Each write model node has a region service which knows the shard-to-

node assignment and is synchronized with the master region service coordinating the shard assignment process.

The command processing flow is presented on Figure 4.1.

We maintain a large number of partitions (shards), at least an order of magnitude more than the number of

machines for write model deployment and assign multiple shards to each machine. That allows us to balance the

load when a new node is added by transferring shards from each of the previous nodes. Similarly, when we want

to deprovision a machine, we transfer all entities to other machines, partitioning them equally. In fact, we change

only the shard assignment as every aggregate is persisted in a database and can be easily recreated on a new node.

To decrease the latency of recreating the aggregates, we considered several caching strategies. We could

shorten the replay time either by periodically creating a snapshot of the state or by caching the events in mem-

ory. We think that the best option is to cache the recreated state that is ready to serve commands and to passivate it

when we need space.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

4.2. Read model 27

Figure 4.1: Scalable command processing is accomplished with the idea of sharding depicted on the diagram.

Requests are dispatched by a round-robin load balancer (1) and hit the shard region service (2) on one of the write

model nodes (WM1-3). The region service maintains the shard-to-node mapping with its peers on other nodes.

It recognizes the shard the command belongs to (3) and dispatches it to a proper node (4). The responsible node

looks up its cache (5) and either returns the cached aggregate or constructs a new instance using past events from

the event store. Finally the command is applied, and the generated event is stored (6).

4.2. Read model

For the query part of the application we needed to make several design decisions too. We considered different

data models, examined two approaches for rebuilding the model from scratch and finally decided how to scale out

the processing (see Table 4.2).

In our case the only queries are the constraint checks which are executed against the loaded flight schedule

(described in Chapter 1). These validations require quick graph traversal operations. We considered in-memory

Table 4.2: Objectives of the read model architecture along with considered means of implementation. The chosen

solutions are underlined.

Objective Possible solutions

Data representation
In-memory model

Graph-oriented database

Place of state building

during replay

At event store, only final state is transferred to read model

At read model, all events transferred to read model

Scalable processing
Processing partitioning in a scatter-gather fashion

Instance replication and round-robin routing

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

4.3. Event store 28

only model first, but finally we decided that a graph-oriented database is the best data representation, as it allows

handling of bigger schedules than the available memory of the node and to avoid recreating the state always from

scratch. Fortunately, the model could fit into a single disk and that allowed us to get rid of the database distribution.

Each read model node manages its own local database instance with a complete model.

When the read model is started, we always recreate it from scratch by replaying all events. We could have used

state snapshots but the replay time was not a problem in our case. Due to the same reason we abandoned the idea

of building the state close to the event data in rest, directly in the event store and transferring the final state only.

We chose a simpler solution in which we transfer all events through the wire and build the state in the read model
during the replay phase. When the replay is finished, the read model subscribes to new events and keeps the model

up to date.

The scalable processing was achieved by replicating the instances of all read models and balancing the load in

front of them. When there is a need to increase the processing power on the read side then a new instance of a read

model is spawned. We avoid complicated model cloning due to the complete history of events that a new instance

can ask the event store for and recreate the current state on its own. When the replay is over, the node joins the load

balancer group to start handling requests and subscribes to new events to keep the model up-to-date.

4.3. Event store

Finally, we developed a simple architecture of the event store. We selected a consistency level that we want to

guarantee and considered available solutions together with multiple designs combining a database with a durable

message queue (see Table 4.3).

We could not achieve horizontal scalability without relaxing consistency guarantees on the query side. Bridg-

ing two models with an asynchronous event store comes with very important consequences. Firstly, the read model

instances may slightly differ at a given time since updates are not synchronized. Secondly, when a new command

is accepted by the write side there exists a time frame where the data contained in the read model nodes is slightly

outdated. Fortunately these effects were acceptable in our use case.

We considered several event storage solutions. EventStore [48] was the only viable off-the-shelf event store

available. It is an efficient and reliable implementation providing complex event processing capabilities. As these

features were not required in our use case we decided to assemble a simpler alternative on our own. We rejected

the idea of storing events only in a database because that would require either polling on the read side or using

sophisticated database change capture tools like LinkedIn Databus [44]. On the other hand, using only a distributed

log or persistent message queue would lead to inefficiency in the state recreation and consequently in command

handling. Currently leading persistent queues like Kafka [50] do not provide so granular partitioning in which all

events of fine-grained aggregates are collocated and easy to find.

Because of this we decided to use both a message queue and a column-oriented database. Every event is both

stored in the database and pushed to the queue where it is retained for a while. That makes the read model more

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

4.3. Event store 29

resilient, it guarantees at-least-once delivery semantics and, most importantly, keeps new events coming to an

instance during its initialization with historical events from the database.

This is to make sure that no event is missed during instance startup. The last question was which storage is
the primary one. As we did not strive for perfect resiliency in the case of the event store, we went with a simpler

solution in which we first store events in the database and later push them to the queue. That may create a problem

if a node crashes in between of such an operation. Storing events in the distributed log first and updating the

database accordingly later would solve the problem, but also made the implementation more challenging.

Table 4.3: Objectives of the event store architecture along with considered means of implementation. The chosen

solutions are underlined.

Objective Possible solutions

Consistency guarantees
Strict consistency

Eventual consistency

Events storage

Tailor made storage (e.g. EventStore)

Distributed log (persistent message queue)

Database only

Database with a persistent message queue

Primary storage
Persistent message queue

Database

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

4.4. Summary 30

4.4. Summary

The architecture we proposed in this chapter adheres to the Reactive Manifesto suggestions. We can distinguish

all of the required traits:

– message-driven - commands trigger events, events trigger read model updates,

– elastic - adding new write model or read model instances results in better performance,

– resilient - losing an instance of a write or a read model does not prevent the system from working and the

lost instance may be easily recreated,

– responsive - the best query model in terms of the performance was chosen, aggregates in the write model

handles commands independently and are easy to cache.

The write model scalability was achieved by creating fine-grained transactional units which are distributed

(sharded) in a cluster of machines. The read model was scaled out using the replication of instances. Finally, the

event store was designed as a combination of a column-oriented database and persistent message queue.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

5. Implementation challenges and choices
to ensure scalability

In this chapter we describe our solutions to challenges we were faced with. We also motivate our technology

choices and describe the most important implementation details. Section 5.1 presents the language we have chosen

and its ecosystem. In Section 5.2 we discuss our load balancing solution. Section 5.3 shows our internal abstraction

for writing applications using CQRS and DDD style. Section 5.4 contains the description of storage technologies

used by the event store. In Section 5.5 we lay out details of the write model distribution. Next, in Section 5.6 we

describe the event filtering which was needed to make our read model idempotent. The last Section 5.7 gives an

explanation of the choice of the read model database.

5.1. Language and frameworks

We implemented the application using the Scala language [86]. This decision was driven mainly by our inten-

tion to use the Akka toolkit. Even though Akka provides a Java interface, we preferred to stick to the native one.

The Scala syntax makes it more expressive and due to the interoperability it is still possible to take advantage of

thousands of available Java libraries.

We used the Akka toolkit to implement most of the application behaviour. Actors are processing incoming

requests both on the command and on the query side. They are also responsible for dealing with events: they push

generated events to the event store (Akka Persistence module), and accept new events on the read side.

Actors are also responsible for handling the HTTP requests/response lifecycle. We expose the REST interface

using the Spray [87] library which builds on top of Akka. We deserialize all commands and serialize responses to

JSON format through a convenient utility provided by the library. Spray actors handle the HTTP communication

and pass messages to other actors in charge of the business logic handling. When we send domain messages, e.g.

commands created from HTTP requests, they are serialized by Akka using default Java serializer when they need

to cross machine boundaries. However, all internal Akka messages, e.g. the clustering gossip protocol traffic is

serialized more efficiently using Protocol Buffers [88].

31

5.2. Load balancing 32

5.2. Load balancing

The load is balanced by a single Nginx server in front of the read and write models. When a new node is started,

it is registered in the load balancer. Originally we wanted to make use of Akka cluster-aware routers. It turned out

to be a problem as that led to the design in which we handle HTTP requests orchestration (e.g. connection handling,

serialization, deserialization) on a single server. That quickly became a bottleneck.

Using an external load balancer enabled us to delegate (de)serialization to the backend nodes and reduce the

overhead of a TCP connection management as we can handle multiple HTTP requests from a single TCP socket.

Without using this persistent connection pattern, the backend nodes spend a lot of time opening and closing TCP

sockets if each client request comes from a different machine.

In the case of the read model we have single-hop routing. For the write model we can have two hops at most.

We did not employed sticky sessions or any other sophisticated routing strategy. We simply evenly distribute com-

mands to all write model nodes and rely on Akka cluster sharding module to deliver commands to the appropriate

aggregates. We describe the sharding in Section 4.1 and Section 5.5

5.3. Domain-driven abstraction

Accordingly to the DDD guidelines, we decided to keep the business logic separate from the Akka actors

and other infrastructural concerns. The business logic resides in plain, immutable classes implementing POJO

interfaces. Every time the state changes, it is replaced by a new object of the aggregate created by the command

handler. The aggregate objects are instantiated and used by generic aggregate handlers implemented as Akka actors.

Each actor takes care of a single aggregate instance.

The core interface in our abstraction is AggregateRoot representing an aggregate. The handleCommand

method validates the received commands and publishes events to change the aggregate state. The applyEvent

method reflects the state of the aggregate when the event is published or replied from the store. An aggregate is

immutable and the event handler returns a new state instead of modifying it. We also hide the aggregate lifecycle

logic by introducing the AggregateRootFactory interface together with AggregateRoot.Removed null

object. We present in Listing 5.1 an example of the business logic from our application which uses this abstraction.

Similarly, we introduced a DomainView interface for the read model side (see Listing 5.2). It accepts events

to update the state and responds to queries. The infrastructure batches events for efficient updates of the model. If

the view does not support it, events are simply consumed one by one. Read models are assumed to be idempotent.

If needed, they can obtain event metadata from the EventEvelope wrapper, e.g. to filter out duplicate events.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

5.3. Domain-driven abstraction 33

case class Rotation(id: UUID, legs: List[FullyDatedLeg])

extends AggregateRoot[Rotation] {

override def handleCommand(eventBus: EventBus): CommandHandler = {

case cmd: AddLegToRotation =>

ensureNoIntersectingLeg(cmd)

eventBus.publish(new LegAddedToRotation(cmd))

case cmd: RemoveLegFromRotation =>

ensureLegExists(cmd.legId)

eventBus.publish(new LegRemovedFromRotation(cmd))

case cmd: RemoveRotation =>

eventBus.publish(new RotationRemoved(cmd.rotationId))

}

override def applyEvent: EventHandler = {

case event: LegAddedToRotation =>

val newFullyDatedLeg = FullyDatedLeg.fromLegAddedEvent(event)

Rotation(id, sortByTime(newFullyDatedLeg :: legs))

case event: LegRemovedFromRotation =>

Rotation(id, legs.filter(_.id != event.legId))

case event: RotationRemoved => removed

}

(...)

}

Listing 5.1: Rotation aggregate implementation using our domain-driven abstraction.

trait DomainView {

def receiveEvent: PartialFunction[EventEnvelope, Unit]

def receiveQuery: PartialFunction[DomainQuery, Any]

def receiveBatch(envelopes: Seq[EventEnvelope]) = {

envelopes.foreach(receiveEvent(_))

}

}

Listing 5.2: Interface of the read model abstracting the event provisioning logic.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

5.4. Event store 34

5.4. Event store

Apache Cassandra [89] and Apache Kafka [50] were chosen as the database and the persistent messaging

queue respectively for the sake of an event store implementation. Akka Persistence along with the already available

Cassandra plugin provided an event store interface for event sourcing purposes. Since the event store was not a

bottleneck during our tests, we simplified the implementation into a single Kafka partition to store events and we

used single-node deployments of both datastores.

In the time of working on the project, Akka Persistence was not capable yet of querying the event store for all

events. We needed to implement our own Cassandra journal reader. A similar functionality is planned to be added

to Akka Persistence soon [46].

5.5. Cluster sharding

We implemented the partitioning of the write model processing with the Akka cluster sharding extension. It

introduces a concept of a shard which is a group of actors which are always present together on a single node.

Entire shards are subject of rebalancing, not single actors. Each node has a ShardRegion actor which knows the

mapping of the shards to the nodes and it routes messages appropriately. The shard assignment is maintained by

ShardCoordinator, a single actor in the entire cluster. The uniqueness of this actor in the cluster is assured

by a cluster singleton [90] feature of Akka. It is event sourced to resist failures. ShardRegion actors reach out

to this actor when they do not know where to route the message. The responses are cached, so they do not need to

involve the coordinator again during the dispatch process.

ShardRegions need to be provisioned with consistent correlation between messages, actors and shards. It comes

in a form of two functions presented in Listing 5.3. The first extracts the persistence identifier of the recipient actor

from the message, the latter groups those identifiers into shards. As actors are backing aggregates, that results in

routing commands to appropriate, sharded aggregates. Our command IDs are UUIDs [91], so we simply bucket

them into a predefined number of shards. It is suggested to use about ten times more shards than the expected

number of machines, as there is no way to change it dynamically in production yet. We also enhanced the cluster

sharding with the recognition of factory commands which creates new aggregates to handle them in a special way.

They do not have a destination identifier, so we intercept those commands and enhance them with a generated one

which ends up to be the identifier of a new aggregate ultimately.

Moreover, cluster sharding gives us a cache layer for aggregates. Aggregate actors remain in the memory after

being recreated and there is no need to fetch events from the database when a next event arrive. They may be

passivated on demand to avoid running out of memory. We decided to use the UUID implementation [91] from the

standard Java library, even though it may cause performance issues due to the fact it is using a cryptographically

safe random number generator.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

5.6. Event filtering 35

ClusterSharding(system).start(

typeName = "Counter",

entryProps = Some(Props[Counter]),

idExtractor = idExtractor,

shardResolver = shardResolver)

val idExtractor: ShardRegion.IdExtractor = {

case EntryEnvelope(id, payload) => (id.toString, payload)

case msg @ Get(id) => (id.toString, msg)

}

val shardResolver: ShardRegion.ShardResolver = msg => msg match {

case EntryEnvelope(id, _) => (id % 10).toString

case Get(id) => (id % 10).toString

}

Listing 5.3: Using cluster sharding requires nothing more than provisioning mapping between messages, actors

and shards and making actors persistent. The example is taken from the Akka documentation.

5.6. Event filtering

Our at-least-once event delivery semantics forces read models to be either idempotent or to filter out duplicate

events. We created a utility class for filtering events. If we want to make the read model able to recover from the

point it stopped consuming events instead of starting from the beginning each time, we need to persist the state of

the filter. Moreover, this state should be persisted transactionally together with the read model updates. For that

reason we left the persistence implementation of the filter to the user. The state of the filter is represented as a set

of the last seen event sequence number for each aggregate.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

5.7. Graph database 36

5.7. Graph database

We decided to use Neo4j [92] as a graph database for the schedule validation read model. We tried out three

available ways of writing the queries:

– Cypher language, a declarative graph query language that allows for expressive and efficient querying and

updating of the graph store provided by the Neo4j,

– Spring Data Neo4j [93], which enables using a template programming model popularized by the Spring

[94] library amongst Java developers,

– native Java API provided by the Neo4j.

We ended up using the Java API both for persistence and for performing the feasibility checks. The performance

of the Cypher language and the Spring Data Neo4j library were not satisfying and we rejected them, even though

they are much easier to use in some cases. We also leveraged Neo4j ACID transactions to make the event filter

state consistent with the schedule representation.

Each read model instance manages a separate Neo4j process in the embedded mode what simplified the de-

ployment. The alternative mode is a standalone server instance. As the read model could fit on a single instance,

we preferred to avoid the separation. Besides the simplicity, we get a better performance, because in the separate

deployment we would need to communicate through REST protocol, possibly crossing network boundary.

5.8. Summary

In this chapter we described the most important implementation decisions: Scala language, Akka toolkit, Nginx,

Apache Cassandra, Apache Kafka and the Neo4j database. We presented crucial features of our domain-driven

framework which separates completely the business logic from the infrastructural concerns. We discussed some of

its implementation challenges that affects scalability: aggregate sharding, event replay and event deduplication.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6. Scalability tests

This chapter presents the evaluation of scalability of our architecture and implementation. In Section 6.1 we

describe the deployment model and the environment the application was running in during the tests, together with

monitoring tools. Next, we show in Section 6.2 what actions we took to ensure that the results are not biased.

Sections 6.3 and 6.4 present how we approached the evaluation and what results we got for each part of the

application architecture respectively, as we decided to test those parts separately. In Section 6.5 we comment the

results and draw conclusions from them. Finally, Section 6.6 lists some of the problems we faced during the tests.

6.1. Deployment and monitoring infrastructure

We deployed our application to the cloud environment provided by GWDG [95], a data processing research

centre from Germany which takes part in PaaSage project together with Lufthansa Systems and AGH University

of Science and Technology. The environment is based on the OpenStack [96] platform. The actual deployment of

the components varied between the tests and is described in the respective sections. The Nginx load balancer was

deployed in all cases on a separate 4 core, 4GB machine, similarly to the monitoring infrastructure residing on a

single 4 core, 4GB machine with a HDD. The general overview of the deployment is depicted on Figure 6.1. All

machines were located in the same cloud zone. We presents a more detailed description in the Appendix C. We

were using the SBT [97] build tool for packaging of the application modules and managing the dependencies. The

infrastructure setup and application deployment was automatized using Ansible [98] playbooks.

We leveraged several tools to monitor the application during testing. We were using Akka Clustering JMX

endpoints to supervise the state of the cluster, JMX endpoints of the embedded Neo4j server to configure and

monitor the database and native JVM JMX endpoints to see the memory layout, i.e. heap and garbage collection

state. Kamon [99] was used to provide Akka-related metrics which allows us to see the current state of each

actor system. It was also used to collect system metrics like CPU or memory usage thanks to kamon-system-

metrics extension that uses the Sigar [100] library and to expose some custom metrics, e.g. number of rotations

in the system. All metrics are gathered by using the statsd [101] collector and are persisted in the influxdb [60]

time-series database. Finally, we displayed the metrics data in the form of real-time charts using the Grafana [62]

dashboard. We used also the VisualVM [102] tool for ad-hoc inspection of metrics exposed by the JMX interface.

During the testing we gathered over 20GB of metrics data grouped in 17,000 unique data series.

37

6.2. Sanity of the load tests 38

Figure 6.1: The diagram shows an overview of the application deployment in the cloud environment. Each box is

a separate virtual machine. In the case of the read model scalability tests that changed slightly as we were running

Kafka and Cassandra on the same VM.

6.2. Sanity of the load tests

We have chosen the Gatling [103] tool to perform the experiments and integrated it with the previously installed

monitoring tools. That enabled to correlate load testing results (e.g. number of requests per second, response time)

with the application resources behaviour (e.g. CPU usage, memory usage). For instance, thanks to that we were

able to see if the load is being evenly distributed among the application instances. Figure 6.2 shows a sample of

the Grafana dashboard in action during one of the load tests.

In order to assert the sanity of the experiments we carefully warmed up both the application and the load testing

tool before each test. It is really crucial with any JVM applications, as the runtime environment is optimizing the

bytecode during several thousands of the initial iterations. We explain the impact of the warming up in Figure 6.3.

The warmup method varied between the tests and they are described in the respective sections. We also cared to

warm up Kafka, Cassandra and the load testing tool before every run. We repeated each test case five times to

obtain more accurate results. We restarted both the application and Gatling between every iteration. Moreover, we

used the JHiccup [104] tool to detect any jitter from the underlying infrastructure that could result in biased results.

We decided to evaluate the scalability of read and write part of the application separately. We designed two

different workloads, the first contains only queries and the latter executes commands alone.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.2. Sanity of the load tests 39

Figure 6.2: This is a fragment of the metrics dashboard captured during one of the write model scalability tests.

We combined a variety of metrics from different sources like JVM metrics (e.g. CPU usage, memory usage,

garbage collection), load testing metrics (requests per second, response time percentiles) and application metrics

(e.g. total number of legs). The correlation of such data in time helped us with the investigation of problems and

the verification of the correct behaviour under load. That was especially useful in conjunction with the separation

of metrics coming from different application instances. In this example they are labeled as backend[1-4]. The full

dashboard had 34 graphs in total.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.2. Sanity of the load tests 40

(a) Two identical workloads run one by one on a fresh instance

(b) Zoom-in on a first 40 seconds of both runs

Figure 6.3: Here we show the warmup effect on the test results. In the top figure (a) we can see a single workload

run. The first part (between 8:13 and 8:18) is a warmup phase, the latter (starting from 8:22) is a real test phase.

We can see clearly the difference in response time between the two caused by the fact that during the first run the

application was not warmed up. In the bottom figure (b) we see the beginning of each workload. The first seconds

of the non-warmed up run reveal how big difference the warming up makes as the median of the response time

drops four times just after a few seconds of receiving requests by the application.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.3. Read model scalability evaluation 41

6.3. Read model scalability evaluation

6.3.1. Evaluation method

Firstly, we decided to found the maximum sustainable request rate for a single instance of a model. In order to

achieve that, we designed a workflow as follows: we start with 1 request/sec and ramp it up to the maximum number

of requests/sec (e.g. 200 requests/sec) during 300 seconds, then we hold the maximum rate for 600 seconds. We

treat the first part of the workload as a warmup phase and only the last 300 seconds are taken into consideration to

calculate final results. The requests were distributed evenly between all the three types of the schedule validation

checks: rotation continuity, minimal ground time and flight designator uniqueness.

We run this workflow with a goal of 125, 150, 175, 200, 225, 250 and 275 requests per second. For each of

the values we repeated the test five times. We measured 75th, 95th, 99th and 100th (maximum) percentiles of the

response time for every run. We also wanted to make sure that the CPUs, as the most demanded resource by the

read model are heavily loaded.

After we learned the sustainable throughput of a single instance, we wanted to run the workload against the

setups with multiple read model instances. We set the frequency of the requests respectively to the capacity of

a single node multiplied by the number of instances. We wanted to see if the application can linearly increase

its capabilities. If the latency does not change between the runs on the different setups, that will prove the linear

scalability.

We reserved 12 machines with HDDs, 4 cores and 4GB of memory each, for running the read model instances.

An additional machine of the same configuration was used to deploy the event store components: Kafka, Cassandra

and Zookeeper (required by Kafka). The Gatling load testing tool was running on a single 4 core machine with

16GB memory.

6.3.2. Single instance capacity

We run the capacity test 35 times in total which is 9 hours of aggregate load and gathered 2.5GB of raw logs.

The maximum throughput that we considered sustainable was achieved when the load testing tool was generating

175 queries per second. In this case, each of CPU cores was 75% utilized on average. All the results are charted in

Figure 6.4 and presented in Table 6.1.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.3. Read model scalability evaluation 42

Request rate [req/s] 125 150 175 200 225 250 275

Average 75th latency percentile [ms] 51 51 51 56 847 1683 1612

Average 95th latency percentile [ms] 59 66 85 131 1383 2249 2086

Average 99th latency percentile [ms] 99 100 132 194 1625 2533 2626

Average maximum latency [ms] 380 429 295 410 2598 3723 3907

Average CPU utilization [%] 220 250 300 340 380 400 400

Number of all requests 37.1k 44.6k 52.0k 59.4k 66.7k 74.2k 81.6k

Number of failed requests 0 0 0 0 0 0 0

Table 6.1: The results of the capacity testing shows that the sustainable request rate correlates closely with the CPU

utilization, as it is the most important resource for the read model. 100% means that a single core is fully utilized.

As the machines were equipped with four cores processing units, 400% is the maximum possible utilization.

Figure 6.4: The figure presents the capacity testing results of a single read model instance. We can see that the

query rate of 125-200 request/sec is acceptable but it changes for higher ones.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.3. Read model scalability evaluation 43

6.3.3. Read model linear scalability

Finally, we conducted the scalability tests. We measured the response time percentiles for setups with 1, 2, 4, 8

and 12 machines. Every machine was hosting a single read model instance. The tests were repeated several times

in order to verify the reproducibility.

The results are shown in Figure 6.5 and also in Table 6.2. There is almost no difference between the request

latencies, only the maximum response time (100th percentile) has greater variance which was in fact expected. It

is extremely hard to bound the maximum response time, as even a single occurrence of any unexpected event like

packet loss contributes to this metric. But 99% percent of all requests had a nearly identical latency upper bound

in each run. That means the read model scales very well, in a linear fashion. We made sure that we selected the

appropriate query rates by verifying the CPU utilization on each node. Every of the four cores on each node during

the tests was 75% utilized nearly all the time.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.3. Read model scalability evaluation 44

Number of nodes (instances) 1 2 4 8 12

Query rate [req/s] 175 350 700 1400 2100

Average 75th latency percentile [ms] 52 51 51 50 51

Average 95th latency percentile [ms] 91 89 86 84 91

Average 99th latency percentile [ms] 145 139 137 134 145

Average maximum latency [ms] 318 416 519 446 481

Average CPU utilization [%] 300 300 300 300 300

Number of all requests 51.9k 104k 208k 416k 624k

Number of failed requests 0 0 0 0 0

Table 6.2: The table shows amongst others that the query generation frequency was well-suited as the CPUs were

heavily loaded. 400% was the maximum possible utilization (4 cores × 100%).

Figure 6.5: No difference in the request latency time proves the linear scalability of the read model. The slight

increase for 12 nodes may suggest that for the greater number of nodes we could be limited by a single load

balancer throughput. The figure was generated from 9GB of raw logs produced by 25 test runs lasting for 15

minutes each (over 6 hours of load testing).

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.4. Write model scalability evaluation 45

6.4. Write model scalability evaluation

6.4.1. Evaluation method

In order to evaluate the write model, we took a different approach. We decided to prepare a fixed command

workload and run it against the setups with a different number of the write model instances. We wanted to choose

a suitable frequency of requests to be able to saturate setups with one or two instances. We were interested how the

response time, the CPU utilization and the number of time-outed requests changes when new instances are being

added to the setup.

The workload is a simulation of multiple users performing the same scenario. First, they create a rotation, next

they add several hundred legs to the rotation, then they create an airplane and finally they assign the rotation to the

airplane. We ramped the number of users, adding 50 new users every 5 seconds until we started all of them. If any

bad response occurred, the user scenario was interrupted. Figure 6.3 displays the progressive growth of active user

sessions during one of our tests. In order to warm up the instances, we were running the same workload twice in

every test case iteration separated by a five minute pause (see Figure 6.3). The first run was considered a warmup

phase and only the latter was taken into consideration when the results where calculated.

We reserved 8 machines with 4 cores and 4GB of memory each, for running the write model instances. In this

case, we deployed event store on two 16 cores, 16GB machines. Kafka with Zookeeper were placed on the first one

and Cassandra on the latter. Finally, we were generating the load on a single 4 core machine with 16GB memory.

6.4.2. Write model scalability

We present the results both in Table 6.3 and in Figure 6.6. We conducted the evaluation with two different

scenarios: 1250 users adding 750 legs each and 1500 users adding 1000 legs each. We refer to them as lower and

higher load scenarios, respectively. We can see that the response time of requests drops when instances are added,

similarly the CPU utilization decreases linearly with the number of nodes. In the higher load scenario we can see

timeouts indicating that the load is too big for the single instance. They disappear as the number of nodes increases.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.4. Write model scalability evaluation 46

(a) Results for slightly lower load

(b) Results for slightly higher load

Figure 6.6: Both figures prove the scalability of the write model architecture. Plot (b) depicts timeouts occurring

in a single-instance deployment. As we add more nodes, the timeouts disappear. A deviation in the number of

timeouts for a 4-node deployment visible on plot (b) was caused by an unrecognized, transient problem with the

Cassandra database. It did not happen again in any other test so we treat it as a noise. We skipped the 100th

percentile for better clarity.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.5. Conclusions from the tests 47

Scenario (req/s) lower load higher load

Number of nodes (instances) 1 2 4 8 1 2 4 8

Average 75th latency percentile [ms] 157 68 15 10 306 148 34 11

Average 95th latency percentile [ms] 336 282 158 26.2 541 411 268 64.8

Average 99th latency percentile [ms] 474 416 281 139 1042 609 537 247

Average maximum latency [ms] 2026 1397 1642 2300 15013 7254 9282 3355

Average CPU utilization [%] 400 350 300 200 400 350 300 200

Average command frequency [req/s] 4073 4444 4709 4528 3377 4154 4321 4220

Average number of all requests 941k 941k 941k 941k 1466k 1504k 1456k 1505k

Average number of failed requests 0 0 0 0 87.8 1.4 220 0

Table 6.3: The results proves the write model scalability. The table lays out the linear decline of the CPU utilization

as more instances of the write model are used. The difference in average command frequencies comes from the

excessive latency of some requests. A single user was simulated in a complete synchronous way, sending a next

request after the previous was completed. Another reason is the fact that failed requests were terminating the

user session and that is why higher load scenario has lower average requests rate even though it generated higher

momentary load and more requests in total.

6.5. Conclusions from the tests

The tests we have conducted proved that the CQRS+ES architecture is scalable. Our implementation is able

to keep the same response time of the read model queries under increasing load when the nodes where added

respectively. We measured that a single instance of the read model handles at most 175 queries per second without

getting into troubles. We managed to handle 2100 (12 * 175) requests per second using 12 instances of the read

model keeping the same level of latency. That proves the linear scalability of the read model.

We are also able to decrease the overall latency of command requests in the write model and the CPU utilization

by adding new instances of the model. The load we generated overwhelmed a single-instance deployment. Two

instances were able to handle it with 87% of CPU utilization, but when we switched to 8 nodes, the utilization

dropped to 50% and 99% of the requests were handled three times faster.

In the case of the read model, the slight increase of latency may indicate that we are close to the limit of a

single load balancer. That means we would need to add a second level of load balancing (e.g. DNS-based) to be

able to scale out even more. We did not test the write model scalability with more than 10 nodes but usually the

real workloads have a ratio of queries to commands between 10 and 100. The scalability level we achieved is

satisfactory for the flight scheduling application and we expect it will behave similarly for other applications of the

architecture.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6.6. Encountered problems and their solutions 48

6.6. Encountered problems and their solutions

During the testing phase, we were faced with several issues impacting our test results. The first one was already

mentioned in the Section 5.2. The setup with the Akka application-level load balancer was inefficient due to

frequent opening and closing of HTTP connections. Next, we tried out HAProxy [105]. That helped significantly

but in this case we encountered occasional, indeterministic problems with persistent connections limiting in the

round-robin routing strategy. As we were not able to eradicate them, we switched to Nginx and the problem

disappeared. We described the problem in more detail in Stack Overflow question [106]

We experienced how much the tuning of low-level JVM and operating system options influences the test results.

Garbage collection (GC) pauses in the Gatling load-testing tool impacted the reported response time of the requests.

Because of that, we struggled to minimize it as much as possible by experimenting with different GC options.

Similarly, we experimentally chose the best heap and GC configuration for read and write model instances. Finally,

we bumped onto a problem of connection socket limiting and need to increase the limit of allowed open descriptors.

We list the detailed JVM, OS and Nginx configuration description in Appendix C.

The conducted stress tests brought out several implementation issues we were not aware of before. One of them

was the contention caused by atomic counters in the Neo4j object cache. The profiling of the read model revealed

that the threads spend most of the time competing for access to atomic counters used in the cache implementation.

We ultimately ended up with turning this cache off. We described the problem in more detail on Neo4j user group

[107].

6.7. Summary

In this chapter we presented the empirical evaluation results of the CQRS+ES architecture scalability. We de-

ployed our application to a cloud environment consisting of 20 VMs and we set up monitoring tools. We load

tested several configurations of the deployment varying in the number of read/write model running instances after

meticulous assessment of the testbed sanity. We tested the read and the write side separately using different meth-

ods. For the read model we scaled the load and expected no change in the response time and for the write model

we had a constant load and expected response time to improve. The results show that both the read and the write

model scale very well.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

7. Conclusions and future work

This chapter contains the summary of the thesis. In Section 7.1 we revisit the objectives defined in Section

1.3. Then, Section 7.2 presents the results of the study and conclusions. In Section 7.3 we discuss lessons learned.

Finally, in Section 7.4 we outline possible ways to continue our research on CQRS+ES architectures.

7.1. Goals achieved

Let us revisit all of the thesis targets and summarize what we managed to do. Below we discuss each of the

objectives of the thesis which were defined in Section 1.3 and explain how they were achieved.

"Discuss the recent architectural patterns for building scalable systems
We provided a comprehensive state-of-the-art survey of the event-driven architectures. We presented all

industrial attempts we are aware of to leverage CQRS and event sourcing concepts. Finally, we described in

detail CQRS, event sourcing, domain-driven design, the reactive manifesto and the Akka toolkit.

"Propose the architecture of the flight scheduling application using CQRS+ES
We designed the application based on the CQRS+ES architecture. We scaled out the write model using

the idea of sharding. The read model was scaled out by leveraging the event-state duality and eventual

consistency. We discussed the event store design which bridges the read and write models.

"Experimentally assess the scalability of the proposed solution
We carefully tested the horizontal scalability of both the write and read part of the application. We deployed

our application to the cloud environment, set up monitoring and load-testing infrastructure and finally got a

positive answer to the main question about the architecture scalability.

"Deliver the industrial business use case for PaaSage project
Our application was accepted by the project consortium as a demonstration of the capabilities of the PaaSage

platform. We managed to successfully prove the scalability in a live demo session.

All of that means that we managed to successfully fulfill the objectives we set ourselves at the beginning. We

are certain that it would not be the case if the thesis was done by a single person.

49

7.2. Results of the Study 50

7.2. Results of the Study

The major goal of this thesis was the assessment of the CQRS+ES architecture scalability. We managed to

successfully approach this problem. Firstly, by an appropriate design, next in the implementation of the flight

scheduling application and finally, by an experimental performance evaluation.

The results presented in this thesis are favourable to the concepts related to event sourcing. The field research

we conducted shows that there is currently an increasing interest trend in this area. We found many reasons arguing

in favor of this approach and discerned the great advantages it brings. We got a very positive impression after our

hands-on experiences. We learned that the actor model, Domain-Driven Design and the CQRS+ES architecture

have a lot in common and together they create a great toolkit for development teams to build highly reliable and

scalable applications which can easily handle complex business logic.

We conclude that the CQRS+ES architecture proves to be both a useful and a scalable solution for building

event-driven business applications. Moreover the Akka toolkit and the actor model approach appear to be a very

appropriate tool for putting the CQRS+ES idea into practice.

7.3. Lessons learned

Similarly to any emerging technique, the CQRS+ES approach still lacks widely adopted patterns and best

practices. There are a lot of things you have to decide or invent yourself. There are also many problems that still

prevent those solutions from becoming production ready in many cases, e.g. lack of support for event versioning in

akka-persistence or the akka-clustering vulnerability to split-brains. On the other hand, we see how rapidly these

tools evolve and in fact, the aforementioned problems should be resolved very soon [46].

We learned that performance measurement is not straightforward. The reason is not only the unintuitive statis-

tical characteristics of the requests latency [108] but also the fact that distributed systems are composed of many

unreliable parts: slow processes, failing disks, many virtual machines sharing the same CPU, sloppy network con-

nections, etc. That makes the experiments sanity and proper results interpretation a non-trivial task. We know now

that in this kind of environment the automatized deployment is crucial. There are too many components to manage

them manually.

CQRS, like many other event-driven approaches, forces us to accept and understand weaker consistency mod-

els. We need to reset our minds in terms of consistency and replace a linear one with an eventual. It requires both

to understand the business logic behind the application better and to become more careful as more things can go

wrong (e.g. duplications, losses, retries). Moreover, we experienced the fact that distribution introduces a lot of

complexity to the architecture design, no matter how good the design is.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

7.4. Future work 51

7.4. Future work

We consider a handful of ideas for our further research. First of all, we would like to improve the event store we

have created, especially focusing on its scalability and reliability. We want to try out different types of databases

to store events, especially those with a support for publish-subscribe queues.

Next, we think about implementing different use cases using the domain-driven abstraction we have created in

our project. We want to make sure it is generic enough to be useful. We consider implementing these interfaces

with different tools, e.g. Axon with the EventStore database to compare them with our own solution. Moreover, we

want to update the current implementation when the support in Akka Persistence for CQRS is done. This should

simplify the framework significantly.

We are also interested in stream processing systems in the context of CQRS+ES architecture. Read model

building and event filtering seems to be a perfect use case to apply this concept. We would like to evaluate causality

ideas presented by COPS [24] and eventuate [47] to merge different streams of events in a sane manner. Finally,

we want to significantly improve the model building speed leveraging the concept of doing that close to the data in

rest, already used in EventStore [48] and Apache Samza [51].

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

7.4. Future work 52

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

Bibliography

[1] “PaaSage: Model-based Cloud Platform Upperware. Project website: http://www.paasage.eu/.”

[2] D. Betts, J. Dominguez, G. Melnik, F. Simonazzi, and M. Subramanian, Exploring CQRS and Event Sourc-

ing: A Journey into High Scalability, Availability, and Maintainability with Windows Azure. Microsoft

patterns & practices, 1st ed., 2013.

[3] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of Software. Boston, MA, USA:

Addison-Wesley Longman Publishing Co. Inc., 2003.

[4] J. Bonér, D. Farley, R. Kuhn, and M. Thompson, “The reactive manifesto.” Published online:

http://www.reactivemanifesto.org/, September 2014.

[5] C. Hewitt and H. G. Baker, “Actors and continuous functionals,” in Proceeding of IFIP Working Conference

on Formal Description of Programming Concepts, August 1977.

[6] G. Hohpe, “Programming without a callstack - event-driven architectures.” Published online:

http://www.enterpriseintegrationpatterns.com/docs/EDA.pdf, 2006.

[7] D. C. Schmidt, “Reactor: An object behavioral pattern for concurrent event demultiplexing and event handler

dispatching,” in Pattern Languages of Program Design (J. O. Coplien and D. C. Schmidt, eds.), Software

Pattern Series, ch. 29, pp. 529–545, Reading, Mass.: Addison-Wesley, 1995.

[8] “Node.js. Project website: http://nodejs.org/.”

[9] “NGINX. Project website: http://www.nginx.com/.”

[10] “Netty. Project website: http://netty.io/.”

[11] R. Virding, C. Wikström, and M. Williams, Concurrent Programming in ERLANG (2Nd Ed.). Hertfordshire,

UK, UK: Prentice Hall International (UK) Ltd., 1996.

[12] “Vert.x Core Manual - Verticles. Available online: http://vertx.io/docs/vertx-core/java/

#_verticles.”

[13] M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stewart, “Disruptor: High performance alternative to

bounded queues for exchanging data between concurrent threads,” tech. rep., 2011.

[14] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for well-conditioned, scalable internet services,”

SIGOPS Oper. Syst. Rev., vol. 35, pp. 230–243, Oct. 2001.

53

BIBLIOGRAPHY 54

[15] P. Helland, “Life beyond distributed transactions: an apostate’s opinion,” in 3rd Biennial Conference on

Innovative DataSystems Research (CIDR), January 2007.

[16] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16, pp. 133–169, May 1998.

[17] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast for primary-backup

systems,” in Proceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable Sys-

tems&Networks, DSN ’11, (Washington, DC, USA), pp. 245–256, IEEE Computer Society, 2011.

[18] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in Proceedings of the

2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, (Berkeley, CA,

USA), pp. 305–320, USENIX Association, 2014.

[19] E. A. Brewer, “Towards robust distributed systems (abstract),” in Proceedings of the Nineteenth Annual

ACM Symposium on Principles of Distributed Computing, PODC ’00, (New York, NY, USA), pp. 7–, ACM,

2000.

[20] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, extensions, and beyond,” Queue, vol. 11,

pp. 20:20–20:32, Mar. 2013.

[21] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free replicated data types,” in Proceedings

of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems, SSS’11,

(Berlin, Heidelberg), pp. 386–400, Springer-Verlag, 2011.

[22] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak, “Consistency analysis in bloom: a calm and

collected approach.,” in In Proceedings of the 5th Conference on Innovative Data Systems Research (CIDR),

pp. 249–260, January 2011.

[23] C. Meiklejohn and P. Van Roy, “Lasp: A language for distributed, coordination-free programming,” in Pro-

ceedings of the 17th International Symposium on Principles and Practice of Declarative Programming,

PPDP ’15, (New York, NY, USA), pp. 184–195, ACM, 2015.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t settle for eventual: Scalable causal

consistency for wide-area storage with cops,” in Proceedings of the Twenty-Third ACM Symposium on Op-

erating Systems Principles, SOSP ’11, (New York, NY, USA), pp. 401–416, ACM, 2011.

[25] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-

lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s

globally-distributed database,” in Proceedings of the 10th USENIX Conference on Operating Systems De-

sign and Implementation, OSDI’12, (Berkeley, CA, USA), pp. 251–264, USENIX Association, 2012.

[26] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly available key-value store,” in Proceedings of

Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, (New York, NY, USA),

pp. 205–220, ACM, 2007.

[27] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” in Proceedings of

the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume 6, OSDI’04,

(Berkeley, CA, USA), pp. 10–10, USENIX Association, 2004.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

BIBLIOGRAPHY 55

[28] D. C. Luckham, The Power of Events: An Introduction to Complex Event Processing in Distributed Enter-

prise Systems. Boston, MA, USA: Addison-Wesley Longman Publishing Co. Inc., 2001.

[29] “Storm, distributed and fault-tolerant realtime computation. Project website: http://storm.apache.org/.”

[30] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream computing platform,” in Proceed-

ings of the 2010 IEEE International Conference on Data Mining Workshops, ICDMW ’10, (Washington,

DC, USA), pp. 170–177, IEEE Computer Society, 2010.

[31] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams: Fault-tolerant stream-

ing computation at scale,” in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, (New York, NY, USA), pp. 423–438, ACM, 2013.

[32] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom,

and S. Whittle, “Millwheel: Fault-tolerant stream processing at internet scale,” Proc. VLDB Endow., vol. 6,

pp. 1033–1044, Aug. 2013.

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with work-

ing sets,” in Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,

(Berkeley, CA, USA), pp. 10–10, USENIX Association, 2010.

[34] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey, “Dryadlinq: A system for

general-purpose distributed data-parallel computing using a high-level language,” in Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, OSDI’08, (Berkeley, CA, USA),

pp. 1–14, USENIX Association, 2008.

[35] “Twitter Inc. Streaming MapReduce with Summingbird. Available online:

https://blog.twitter.com/2013/streaming-mapreduce-with-summingbird,” September 2013.

[36] “Microsoft Open Technologies Inc. Rx - Reactive Extensions. Project website: https://rx.codeplex.com.”

[37] “Typesafe Inc. Akka Streams documentation. Available online at: http://doc.akka.io/docs/akka-stream-and-

http-experimental/1.0/scala/stream-index.html.”

[38] “Typesafe Inc. Reactive Streams.” Published online: http://www.reactive-streams.org/, 2014.

[39] N. Marz, “How to beat the CAP theorem. Available online: http://nathanmarz.com/blog/how-to-beat-the-

cap-theorem.html,” October 2011.

[40] “ElephantDB: Distributed database specialized in exporting key/value data from Hadoop. Project website:

https://github.com/nathanmarz/elephantdb.”

[41] “Druid: Open Source Data Store for Interactive Analytics at Scale. Project website: http://druid.io/.”

[42] A. Buijze, “The Axon Framework. Project website: http://www.axonframework.org.”

[43] “Datomic: The fully transactional, cloud-ready, distributed database. Project website:

http://www.datomic.com/.”

[44] S. Das, C. Botev, K. Surlaker, B. Ghosh, B. Varadarajan, S. Nagaraj, D. Zhang, L. Gao, J. Westerman,

P. Ganti, B. Shkolnik, S. Topiwala, A. Pachev, N. Somasundaram, and S. Subramaniam, “All aboard the

databus!: Linkedin’s scalable consistent change data capture platform,” in Proceedings of the Third ACM

Symposium on Cloud Computing, SoCC ’12, (New York, NY, USA), pp. 18:1–18:14, ACM, 2012.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

BIBLIOGRAPHY 56

[45] “Typesafe, Inc. Akka Persistence documentation. Available online:

http://doc.akka.io/docs/akka/snapshot/scala/persistence.html.”

[46] “Typesafe, Inc. Akka Roadmap Update. Avaiable online: www.typesafe.com/blog/akka-roadmap-update-

dec-2014,” December 2014.

[47] M. Krasser, “The Eventuate toolkit. Project website: http://rbmhtechnology.github.io/eventuate,” January

2015.

[48] G. Young, “Event Store: The open-source, functional database with Complex Event Processing in

JavaScript.. Project website: https://geteventstore.com.”

[49] J. Kreps, “The Log: What every software engineer should know about real-time data’s unifying ab-

straction. Available online: https://engineering.linkedin.com/distributed-systems/log-what-every-software-

engineer-should-know-about-real-time-datas-unifying,” December 2013.

[50] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging system for log processing,” in Proceed-

ings of 6th International Workshop on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[51] “Linkedin Corp. Apache Samza. Project website: http://samza.apache.org.”

[52] J. Kreps, “Questioning the Lambda Architecture. Available online:

http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html,” July 2014.

[53] “Facebook Inc. Scribe. Project website: https://github.com/facebookarchive/scribe/wiki,” 2008.

[54] “Elasticsearch BV. Logstash: Collect, Parse, Transform Logs. Project website:

https://www.elastic.co/products/logstash.”

[55] “Apache Flume. Project website: https://flume.apache.org/.”

[56] “Apache Hadoop. Project website: https://hadoop.apache.org/.”

[57] “Elasticsearch BV. Elasticsearch: RESTful, Distributed Search & Analytics. Project website:

https://www.elastic.co/.”

[58] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and

C. Shanbhag, “Dapper, a large-scale distributed systems tracing infrastructure,” tech. rep., Google Inc.,

2010.

[59] “Twitter, Inc. Distributed Systems Tracing with Zipkin. Available online:

https://blog.twitter.com/2012/distributed-systems-tracing-with-zipkin,” June 2012.

[60] “InfluxDB: An open-source distributed time series database with no external dependencies. Project website:

https://influxdb.com/.”

[61] “Whisper: a file-based time-series database format for Graphite. Available online at:

https://github.com/graphite-project/whisper.”

[62] “Grafana: An open source, feature rich metrics dashboard and graph editor for Graphite, InfluxDB &

OpenTSDB. Project website: http://grafana.org/.”

[63] “Elasticsearch BV. Kibana: Explore, Visualize, Discover Data. Project website:

https://www.elastic.co/products/kibana.”

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

BIBLIOGRAPHY 57

[64] “MuleSoft Inc. Mule ESB. Project website: https://www.mulesoft.com/platform/soa/mule-esb-open-source-

esb.”

[65] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging

Solutions. Boston, MA, USA: Addison-Wesley Longman Publishing Co. Inc., 2003.

[66] “Apache Camel. Project website: http://camel.apache.org/.”

[67] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 2002.

[68] “AngularJS — Superheroic JavaScript MVW Framework. Project website: https://angularjs.org/.”

[69] “Backbone.js. Project website: http://backbonejs.org/.”

[70] “Oracle Corp. Java FX. Project website: http://docs.oracle.com/javafx/.”

[71] “Microsoft Corp. Introducing Windows Presentation Foundation. Available online:

https://msdn.microsoft.com/en-us/library/aa663364.aspx.”

[72] M. Fowler, “Presentation Model. Available online: http://martinfowler.com/eaaDev/PresentationModel.html,”

July 2004.

[73] “Data binding. Wikipedia definition available online: https://en.wikipedia.org/wiki/Data_

binding.”

[74] “Facebook, Inc. React: A JavaScript library for building user interfaces. Project website:

http://facebook.github.io/react/.”

[75] “Facebook, Inc. Flux: Application Architecture for Building User Interface. Project website:

http://facebook.github.io/flux/.”

[76] V. Vernon, Implementing Domain-Driven Design. Addison-Wesley Professional, 1st ed., 2013.

[77] D. Wyatt, Akka Concurrency. USA: Artima Incorporation, 2013.

[78] B. Meyer, Object-Oriented Software Construction. Upper Saddle River, NJ, USA: Prentice-Hall Inc., 1st ed.,

1988.

[79] G. Young, “DDDD 10 - CQS. Available online: http://codebetter.com/gregyoung/2008/04/28/dddd-10-cqs/,”

April 2008.

[80] G. Young, “Command Query Separation?. Available online: http://codebetter.com/gregyoung/2009/08/13/command-

query-separation/,” August 2009.

[81] “Basho Technologies, Inc. Riak KV: Distributed NoSQL Database. Project website:

http://basho.com/products/riak-kv/.”

[82] Z. W. Hendrikse and K. Molkenboer, “A radically different approach to enterprise web application develop-

ment.” Published online: http://www.codeboys.nl/white-paper.pdf, January 2012.

[83] M. Fowler, “Event Sourcing. Available online: http://martinfowler.com/eaaDev/EventSourcing.html,” De-

cember 2005.

[84] “Typesafe, Inc. Akka toolkit. Project website: http://akka.io/.”

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

BIBLIOGRAPHY 58

[85] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for artificial intelligence,” in

Proceedings of the 3rd International Joint Conference on Artificial Intelligence, IJCAI’73, (San Francisco,

CA, USA), pp. 235–245, Morgan Kaufmann Publishers Inc., 1973.

[86] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A Comprehensive Step-by-step Guide. USA:

Artima Incorporation, 1st ed., 2008.

[87] “Typesafe, Inc. Spray: Elegant, high-performance HTTP for your Akka Actors. Project website:

http://spray.io/.”

[88] “Google, Inc. Protocol Buffers: language-neutral, platform-neutral extensible mechanism for serializing

structured data. Project website: https://developers.google.com/protocol-buffers/.”

[89] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system,” SIGOPS Oper. Syst.

Rev., vol. 44, pp. 35–40, Apr. 2010.

[90] “Typesafe Inc. Akka Cluster Singleton documentation. Available online:

http://doc.akka.io/docs/akka/snapshot/scala/cluster-singleton.html.”

[91] “Oracle Corp. Java 8 java.util.UUID class documentation. Available online:

http://docs.oracle.com/javase/8/docs/api/java/util/UUID.html.”

[92] “Neo Technology, Inc. Neo4j: the World’s Leading Graph Database. Project website: http://neo4j.com/.”

[93] “Spring Data Neo4j. Project website: http://projects.spring.io/spring-data-neo4j/ .”

[94] “Pivotal Software, Inc. Spring. Project website: https://spring.io/ .”

[95] “GWDG: IT in science. Institution website: http://www.gwdg.de/index.php?&L=1.”

[96] “OpenStack: Open Source Cloud Computing Software. Project website: https://www.openstack.org/.”

[97] “Typesafe Inc. SBT: The interactive build tool. Project website: http://www.scala-sbt.org/.”

[98] “Ansible: Simple IT automation. Project website: http://www.ansible.com/.”

[99] “Kamon: The Open Source tool for monitoring applications running on the JVM. Project website:

http://kamon.io/.”

[100] “VMWare Hyperic. Sigar: System Information Gatherer And Reporter. Project website:

https://github.com/hyperic/sigar.”

[101] “Etsy, Inc. Statsd: Simple daemon for easy stats aggregation. Project website:

https://github.com/etsy/statsd.”

[102] “Oracle Corp. VisualVM: All-in-One Java Troubleshooting Tool. Project website:

https://visualvm.java.net/.”

[103] “Gatling Project: Stress Tool. Project website: http://gatling.io.”

[104] G. Tene, “jHiccup. Project website: https://github.com/giltene/jHiccup.”

[105] “HAProxy: The Reliable, High Performance TCP/HTTP Load Balancer. Project website:

http://www.haproxy.org/.”

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

BIBLIOGRAPHY 59

[106] “HAProxy: Not reusing connection - Stack Overflow question. Available online:

http://stackoverflow.com/questions/32277981/haproxy-not-reusing-connections.”

[107] “Neo4j object cache under high load and removal of object cache in 2.3.0 - Neo4j discussion group.

Available online at: https://groups.google.com/forum/#!topic/neo4j/SDUrl9O_260/

discussion. .”

[108] G. Tene, “Understanding Latency: Some Key Lessons & Tools. Presentation available online:

http://www.infoq.com/presentations/latency-lessons-tools,” July 2014.

[109] “Gatling SBT plugin. Project website: https://github.com/gatling/gatling-sbt.”

[110] “Typesafe, Inc. Akka 2.4.0-RC2 Released!. Avaiable online: http://akka.io/news/2015/09/04/akka-2.4.0-

RC2-released.html,” September 2015.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

BIBLIOGRAPHY 60

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

A. Source code of the DDD framework

We open-sourced the domain-driven abstraction implementation described in Section 5.3. The code is avail-

able on GitHub hosting service under the following URL: https://github.com/cqrs-endeavour/

cqrs-endeavour.

We published the most important part of the application we have built. The framework reflects the architectural

design of the write model, the read model and the event store that we introduced in Chapter 4. It includes the

solutions to challenges we presented in Chapter 5. The unique feature of this abstraction is a complete separation

of the business logic from Akka actors and other infrastructural concerns.

61

62

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

B. Division of work

The thesis is a result of our joint effort with a similar commitment share. We designed and implemented

the application together. The state-of-the-art research was performed by Bartłomiej Szczepanik. Andrzej Dębski

prepared the deployment and conducted the load testing.

In terms of the thesis text, Chapters 1, 2 and 3 were written by Bartłomiej Szczepanik. Chapters 5 and 6 come

from Andrzej Dębski. Chapters 4 and 7 were prepared together.

63

64

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

C. Details of the testing infrastructure

We deployed our application to a cluster of virtual machines in a cloud environment. Every VM instance was

running Ubuntu 12.04.4 64-bit with a 3.11.0-26-generic kernel version. Detailed information about the processing

units of the underlying infrastructure can be found on Listing C.1. The operating system configuration in terms

of resource management is presented on Listing C.2. Listing C.3 shows the network interface configuration of the

virtual machines. The presented configuration applies to every virtual machine in our cluster.

The Nginx load balancing service was configured accordingly to the Listing C.4. That means it is reusing the

connections to the backend nodes.

To run our Scala applications, the load generator, Kafka and Cassandra we used the standard Oracle Java™SE

Runtime Environment (build 1.8.0_60-b27) with Java HotSpot™64-Bit Server VM (build 25.60-b23, mixed mode).

We tuned a lot our applications to achieve the best performance. We used the following JVM options for the read

model:

– -XX:+AggressiveOpts,

– -Xms3584M,

– -Xmx3584M,

– -XX:SurvivorRatio=12,

– -XX:NewSize=2560M,

– -XX:MaxNewSize=2560M,

– -XX:+UseParallelOldGC.

For the write model:

– -XX:+AggressiveOpts

– -J-Xms3200M

65

66

– -J-Xmx3200M

– -J-server

– -J-XX:+UseG1GC

– -J-XX:-HeapDumpOnOutOfMemoryError

And for the Gatling instance:

– -XX:+UseThreadPriorities,

– -XX:ThreadPriorityPolicy=42,

– -XX:+HeapDumpOnOutOfMemoryError,

– -XX:+AggressiveOpts,

– -XX:+OptimizeStringConcat,

– -XX:+UseFastAccessorMethods,

– -Xms3G (-Xms8G in the case of the write model tests),

– -Xmx3G (-Xmx8G in the case of the write model tests),

– -Djava.net.preferIPv4Stack=true,

– -Djava.net.preferIPv6Addresses=false,

– -XX:+UseG1GC.

Most of items of the last list comes from the gatling-sbt plugin [109]. We also experienced that the new G1

garbage collector from Java 8 is performing very well in the case of this load testing tool.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

67

processor : 3

vendor_id : AuthenticAMD

cpu family : 21

model : 1

model name : AMD Opteron 62xx class CPU

stepping : 2

microcode : 0x1000065

cpu MHz : 2299.998

cache size : 512 KB

fpu : yes

fpu_exception : yes

cpuid level : 13

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall

nx mmxext fxsr_opt pdpe1gb lm rep_good nopl

extd_apicid pni pclmulqdq ssse3 cx16 sse4_1 sse4_2

popcnt aes xsave avx hypervisor lahf_lm cmp_legacy

svm cr8_legacy abm sse4a misalignsse 3dnowprefetch

osvw xop fma4 arat

bogomips : 4599.99

TLB size : 1024 4K pages

clflush size : 64

cache_alignment : 64

address sizes : 40 bits physical, 48 bits virtual

power management:

Listing C.1: Detailed processing units information of machines we used for testing (/proc/cpuinfo content).

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

68

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 0

file size (blocks, -f) unlimited

pending signals (-i) 31469

max locked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 65535

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) 31469

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

Listing C.2: Configuration of OS resources on machines used for testing (ulimit -a command).

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv6.conf.lo.disable_ipv6 = 1

net.ipv4.tcp_max_syn_backlog = 4096

net.core.somaxconn = 4096

net.ipv4.tcp_fin_timeout = 30

net.ipv4.tcp_tw_recycle = 1

net.ipv4.tcp_tw_reuse = 1

Listing C.3: Network interface configuration of machines used for testing (sysctl.conf).

keepalive 24;

keepalive_requests 600000;

worker_processes 4;

worker_connections 16000;

use epoll;

multi_accept on;

worker_rlimit_nofile 32768;

Listing C.4: Configuration of Nginx load balancer.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

D. Akka Persistence Query

As we described in Section 3.5 and Section 5.4, at the time we were designing and implementing the application

Akka Persistence was not yet adapted to handle the read part of our CQRS architecture. We implemented our own

workarounds for this issue, for instance we query the Cassandra database directly to fetch the archived events.

Just before we finished writing the thesis, the release candidate of the new Akka 2.4 version was published at

the beginning of September 2015 [110]. It introduces a large number of improvements and several new modules.

From our perspective, the most important changes are:

– Promoting the Akka Persistence, Cluster Singleton and Cluster Sharding modules to be fully supported.

They were treated experimentally so far.

– Improvement in Akka Persistence, e.g. better resiliency to failures, Persistent Finite State Machine (FSM)

domain-specific language for creating persistent actors and support for schema evolution and migration of

events.

– Improvement of Cluster Sharding, e.g. graceful shutdown and asynchronous shard allocation.

– Introduction of experimental Akka Persistent Query, a module responsible for covering the read side of

CQRS.

We would have definitely benefit of these features if they had appeared earlier. Especially the Akka Persistence

Query module is really interesting, as it solves the problems we needed to fix on our own. It exposes the Akka

Streams API for journals which is designed in a very loose fashion to cover all types of possible underlying event

stores. Journal plugins can decide what types of queries they want to support or how they want to execute them.

For instance they can benefit from the streaming capabilities of the journal or fall back to polling if it is not the

case. There are three types of queries available: AllPersistenceIds, EventsByPersistenceId and

EventsByTag. The last one is a generic way to obtain partial streams, e.g. if only events from a single aggregate

type are needed. Events are tagged using Event Adapters which also facilitate events schema migration. We present

an usage example of the Akka Persistence Query on the Listing D.1.

We are very happy that we have chosen the concepts that serious companies are investing in and the technology

that keeps being updated and extended with new features.

69

70

implicit val system = ActorSystem()

implicit val mat = ActorMaterializer()

val readJournal = PersistenceQuery(system).readJournalFor(JournalId)

val dbBatchWriter: Subscriber[immutable.Seq[Any]] =

ReactiveStreamsCompatibleDBDriver.batchWriter

val readJournal = PersistenceQuery(system).readJournalFor(JournalId)

readJournal

.query(EventsByTag("rotations"))

.map(envelope => envelope.event)

.map(convertToReadSideTypes) // convert to datatype

.grouped(20) // batch inserts into groups of 20

.runWith(Sink(dbBatchWriter)) // write batches to read-side database

Listing D.1: An example of using Akka Persistence Query to maintain a read model database in a batch fashion

taken from the Akka 2.4.0-RC2 documentation. The example makes an assumption that the destination database

exposes Reactive Streams [38] interface.

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

E. Publications and presentations

We present the list of publications related to the thesis which we co-authored together with our supervisor and

engineers from Lufthansa Systems GmbH & Co. KG. Their full content is included below. As the second paper is

still not finished, we enclose its draft. We plan to send this paper to IEEE Software journal soon.

– Bartłomiej Szczepanik, Andrzej Dębski, Maciej Malawski, Stefan Spahr, Dirk Muthig. Towards a Scalable

Architecture of Cloud Application Based on CQRS and Event Sourcing. In: M. Bubak, M. Turała, K. Wiatr

(Eds.), Proceedings of Cracow Grid Workshop - CGW’14, October 27-29 2014, ACC-Cyfronet AGH, 2014,

Krakow, pp. 79–80 (2014).

– Bartłomiej Szczepanik, Andrzej Dębski, Maciej Malawski, Stefan Spahr, Dirk Muthig. Scalable Reactive

Architecture of Cloud Application Based on CQRS and Event Sourcing (in preparation).

We have also presented our work at several venues to 150+ software developers, architects and researchers. We got

immense number of thoughts and suggestions from them which helped us to improve the design of the system.

– On the bleeding edge: Highly scalable, distributed, cloud-based architecture using Scala, Actor Model and

RESTful Web Services. Presentation for the AGH Department of Computer Science and AGH Cyfronet

research center (Krakow, 3rd June 2014).

– On the bleeding edge: Highly scalable, distributed, cloud-based architecture using Scala, Actor Model and

RESTful Web Services. Presentation of the progress and discussion with Lufthansa Systems software archi-

tects (Raunheim/Frankfurt, 30th June 2014).

– Lufthansa Systems Flight Scheduling application: Scalable architecture with Akka and CQRS. Presentation

of the industrial use case provisioning progress for the PaaSage project in front of PaaSage board members

with a live demo of the application scalability (Krakow, 10th September 2014).

– Towards a Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing. Presentation at

Cracow Grid Workshop 14’ (Krakow, 28th October 2014).

– DDD/CQRS/ES with Akka - Case Study. Presentation at DDD-KRK community meetup in front of 80+

software developers (Krakow, 5th March 2015).

Thanks to the presentations and the immense number of discussions with many people we feel we have contributed

to the dissemination of the CQRS and event sourcing concepts in the local community.

71

72

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

Towards a Scalable Architecture of Cloud Application Based on

CQRS and Event Sourcing

Bartłomiej Szczepanik1, Andrzej Dębski1, Maciej Malawski1, Stefan Spahr2, Dirk Muthig2

1 AGH University of Science and Technology

Department of Computer Science, al. Mickiewicza 30, 30-095 Kraków, Poland
2 Lufthansa Systems AG, Frankfurt, Germany

emails: {bszczepa,adebski}@student.agh.edu.pl, malawski@agh.edu.pl,
{stefan.spahr,dirk.muthig}@lhsystems.com

Keywords: Cloud, Scalability, CQRS, Akka, Event-Sourcing, Domain Driven Design

1. Introduction: flight scheduling application in PaaSage

Cloud technologies, due to their capability of dynamic scaling of computing resources

on demand, provide new opportunities for development of scalable applications. PaaSage

platform [1], based on model driven engineering (MDE) approach, aims at facilitating

development of applications that can be deployed across multiple clouds. To fully benefit

from these capabilities, the application architectures need to be designed with the scalability

as a main design objective. In this paper, we describe our experience with the prototype of a

flight scheduling application that has been developed to meet this goal. The (commercial)

application provides rich functionality for airline schedule planning tasks and needs to be

designed as a responsive and resilient, cloud enabled application. The prototype implements

only some basic business functionality of such a real scheduling application, but focuses

more on scalability, elasticity and flexible deployment to demonstrate these new

architectural styles.

2. The proposed architecture based on CQRS

We decided to conform to a quite new and promising concept called Command-Query

Responsibility Segregation (CQRS) [2]. Although based on well-known patterns, by putting

them together CQRS enables a number of advantages, including scalability. Up to our

knowledge, there is currently no off-the-shelf CQRS framework enabling scalability. We

decided to assemble a prototype of such a framework using the following building blocks:

write model, a special variant of an event-bus, and read-models, each of them having

different requirements. The architecture is shown in Fig. 1.
CQRS interplays with two other ideas that help building the write model: Event

Sourcing - the refreshed version of well-known commit log pattern, now considered as a

full-fledged persistence method, and Domain-Driven Design which defines Domain Events

and Aggregate terms perfectly fitting to the previous concepts. Since the common factor of

them are events, we went towards Event-Driven Architecture in a new flavour called

Reactive Programming. Akka toolkit [3] was chosen, because it provides complete solutions

for Event Sourcing (akka-persistence) also in a variant that scales (akka-cluster-sharding)

and is fully event-driven. For the underlying event store the Cassandra database is used.
The read side of the application is loosely constrained by the architecture. Events from

the other part are consumed on a regular basis, denormalized and stored in a model crafted

for a specific use case to get the best responsiveness. In our case, the model is implemented

using Neo4j database [4]. CQRS approach allows scaling read models by running multiple

of them in parallel and balance the load, using Akka toolkit’s clustering and routing features.

E.1. CGW publication 73

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

The most challenging part was the event-bus bridging the two parts of the system. The

requirement is to provide a way to both publish new events and enable read models to read

all the events from the start of the application. Moreover, the solution has to work efficiently

in a distributed environment. We managed to implement it using a Kafka messaging system

[5] by coupling it with Cassandra database.

Fig. 1. Overview of the architecture based on separation of commands and queries.

3. Experience with prototype and performance results

In our preliminary tests we focused on proving that this architecture actually scales. We

set up a cluster of several machines running the application on GWDG Open Stack

infrastructure and load tested it using the Gatling tool [6]. As the load (HTTP requests) was

constantly increasing we were adding new machines and new read models there. The tests

results indicate the architecture scales really well: the read model side scales linearly, we

managed to handle five more times of load using five more machines.
During the work we experienced many new technologies that are not production ready

yet, however, they still make the implementation easier in comparison to the already settled

up methods. The most problematic is the lack of good developer and monitoring tools for

them. Nonetheless, we believe they are on a good way to get a foothold in the industry soon.

4. Conclusions and future work

The developed prototype of a flight scheduling application demonstrates that the

architecture combining CQRS with Event Sourcing and Akka framework allows building a

fully scalable application. The future work includes more performance tests, including write

model scalability. Moreover, in line with the development of PaaSage platform we plan to

use the prototype for evaluation of the model-based approach and its autoscaling

capabilities.

Acknowledgments: This work was supported by EU PaaSage project (grant 317715).

References

1. The PaaSage project website: http://www.paasage.eu/

2. Martin Fowler, CQRS, 14 July 2011, http://martinfowler.com/bliki/CQRS.html

3. Akka toolkit website: http://akka.io/
4. Neo4j website: http://www.neo4j.org/

5. Apache Kafka website: http://kafka.apache.org/

6. Gatling tool website: http://gatling.io/

E.1. CGW publication 74

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

1

Scalable Reactive Architecture of Cloud Application
Based on CQRS and Event Sourcing

Andrzej Debski, Bartlomiej Szczepanik, Maciej Malawski, AGH University of Science and Technology, Poland,
Stefan Spahr and Dirk Muthig, Lufthansa Systems, Germany

Abstract—Distributed system design flourishes. The industry
competes in the arm race, producing constantly lots of new
promising concepts like Command-Query Responsibility Segre-
gation and Event Sourcing. We wondered if they have a chance
to survive. In todays world, there is no point trying to convince
software architects to a concept that does not scale well. Thus, we
wanted to clear any doubts whether the discussed patterns have
a future or not. We propose an architecture of the application
using those patterns accordingly to Reactive Manifesto guidelines,
implement it and experimentally answer the key question. Here
we show that Command-Query Responsibility Segregation and
Event Sourcing patterns are indeed scalable. That means that we
should quickly see their adoption by the industry, as they provide
many interesting advantages without performance trade-offs.

Keywords—Scalability, CQRS, Event Sourcing, Domain-Driven
Design, Reactive, Akka.

I. INTRODUCTION

CLOUD technologies, due to their capability of dynamic
scaling of computing resources on demand, provide new

opportunities for development of scalable applications. To fully
benefit from these capabilities, the application architectures
need to be designed with the scalability as a main design ob-
jective. That enables developers to create low-latency solutions
which handle millions requests per second and adjust resource
usage to their current needs.

Due to the fact that this type of software is quite recent,
we still do not have frameworks or architectural patterns
widely accepted to be a standard in scalable distributed systems
development. Moreover, new ideas are being proposed all
the time and there is no consensus on any specific direction
so far. In this paper, we focus particularly on a movement
called Reactive Manifesto [1], together with Command-Query
Responsibility Segregation (CQRS) [2], a new architectural
pattern for low-latency systems, and Domain-Driven Design
(DDD) [4], a software design approach originating from the
same community as CQRS.

The main goal of our work was to answer the question
whether it is possible to implement a fully working, scalable
CQRS application in a completely reactive fashion. We decided
to build a prototype of a typical application using these
ideas and the Akka toolkit [3] as a concrete technology. The
prototype implements only some basic business functionality
and focuses more on scalability, elasticity and responsiveness
to demonstrate these new architectural styles.

As an example of a concrete problem we addressed a
simplified version of flight scheduling application. Reactive
and scalable application architectures are important aspects

of airline related software. Beside the schedule planning
software example there are other applications, like for flight
operation, passenger handling or baggage tracing etc. Existing
client/server or n-tier application stacks suffer mostly from
(nearly) unbounded scalability available in today’s available
Cloud environments. The application maintains a schedule that
is updated by planners and allows them to perform schedule
validity checks when they are done. Schedule is comprised
of rotations with assigned airplanes. A single rotation consists
of one or more legs (flights). Each airport defines standard
ground time which is the minimum time that airplane have
to spend on ground between consecutive legs. To ensure the
schedule validity, one can check if all legs in a rotation hold
continuity property, do not violate standard ground times and
flight numbers are not duplicated.

The main contributions of this paper are:
• we discuss the recent architectural patterns for scalable

systems, with the focus on reactive applications,
• we propose a prototype architecture of a flight schedul-

ing application using a novel reactive approach that
combines CQRS with DDD principles,

• we evaluate experimentally the scalability of the pro-
posed solution in a cloud environment.

II. EVALUATED CONCEPTS

CQRS principle advises separation of operations mutating
state (commands) from queries. That enables a lot of useful
possibilities, e.g. ability to chose different database for write
and read operations (see Fig. 1a). That means you can select
the most performant one for the querying use case without
losing advantages of original (e.g. relational) database for
state mutation operations. Furthermore, you can optimize each
of your query separately by maintaining several different
read models at once. Those benefits come with a cost of
synchronization of multiple data models.

CQRS plays really well with the Event Sourcing idea,
the refreshed version of commit log pattern, well-known to
database designers, now considered as a full-fledged persis-
tence method. The system behavior is modeled in terms of
facts (events) that happened and state machines, not just the
state representation (see Fig. 1b). This enables us to abandon
the cumbersome object-relational mapping and deliver fully
persistence-agnostic model of the system. Moreover, we get for
free a complete audit log of the system. It is especially useful
when combined with the CQRS architecture. We can add new
read models long time after we deploy a write model and still
be able to make use of all user actions that happened so far.

E.2. IEEE publication 75

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

2

READ

MODEL

UI

WRITE

MODEL

READ

MODEL
READ

MODEL

(a)

STATE

MACHINE

EVENT

STORE

2

(b)

Fig. 1: The 1a diagram depicts the idea of CQRS. Write model handles all user commands, validate them and produces events.
Those events are published to all read models which updates their query models and become ready to handle new queries. Event
Sourcing, depicted on the 1b diagram, introduces a slightly different approach than the standard flow of dealing with entities in
an enterprise world is: deserialize, mutate state, serialize. First the storage is asked for a list of all events for a given entity (1),
then the brand new state machine applies all retrieved events (2). Finally, the user command is validated and if was successful,
new event is produced and stored (3).

We can also always change our mind about the projections
shape and simply recreate them from scratch. It is worth to
notice that maintenance of such a commit log is possible with a
storage providing append-only operations. Databases designed
for event sourcing scenarios are called event stores.

Domain-Driven Design is a software development approach
meant to deal effectively with complex and evolving systems.
It defines both high-level guidelines for large system design
(strategic patterns) and class-level building blocks for business
logic modelling. The core rules suggest:

• total separation of business logic (domain model) from
any technical concerns,

• cooperation of domain experts with the development
team and

• definition of a common language between them (ubiq-
uitous language) which is then used across all artifacts,
e.g. in codebase or documentation.

Strategic patterns in DDD focus on a good partitioning of the
system into manageable and coherent pieces in terms of busi-
ness logic (bounded contexts). Those pieces are then prioritized
by business value what enables effective architecture selection
and human resources utilization. Tactical patterns introduce a
level of abstraction that helps experts and developers to reason
about the codebase in terms of business processes and behavior
instead of classes and state. For example, the most interesting
ones are:

• aggregate - defines a transactional unit in a system,
• domain event - records the actual facts that happened,
• saga - defines complex business processes.
Reactive Manifesto suggests a different approach for build-

ing scalable and responsive systems. It defines basic traits
of a reactive application: elasticity, responsiveness, resiliency
and message-driven approach. It suggests also techniques to

achieve all of them. According to the manifesto it leads to more
flexible, loosely-coupled, scalable and failure tolerant systems.

Akka toolkit helps building applications in the reactive
approach. It is a middleware that enables communication
between entities in the system using message-passing style.
It implements the idea of the actor model [5] introduced many
years ago by Carl Hewitt and popularized by Erlang commu-
nity. The toolkit provides many useful capabilities like cluster
membership service, location transparency of actors, different
routing strategies, supervision of actors and an implementation
of the reactive streams specification (Rx).

III. APPLICATION ARCHITECTURE

We have divided our application into write model and read
model accordingly to CQRS principle. Both parts are con-
nected with an event store. Even though we bound ourselves
to the CQRS+ES architecture we have still quite a few degrees
of freedom. Table I presents the main design objectives and
decisions that we analyzed.

The problem domain do not require strict consistency guar-
antees. That enabled us to divide the write model into small
pieces of transaction scope, influenced by Pat Hellands idea of
entities [6] (defined as a prerequisite for a good scalability) and
DDD aggregate pattern. Aggregates, as we call them, are event
sourced, i.e. they accept commands, validate them, produce
events, persist them in the event store and finally transition to
a new state. When fetched, brand new instance is created and
all associated events are replayed from the event store. Event
ordering is maintained only within a single aggregate. Different
aggregate instances are eventually consistent with each other
what enables concurrent processing of their commands without
any interference, locking mechanism and blocking. We defined
two aggregate types in our system along with their commands:
rotation (a list of legs which do not overlap) and airplane (that
handles a specific rotation).

E.2. IEEE publication 76

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

3

Fig. 2: Scalable command processing is accomplished with the idea of sharding depicted on the diagram. Requests are dispatched
by a round-robin load balancer (1) and hit the shard region service (2) on one of the write model nodes (WM1-3). The region
service maintains the shard-to-node mapping with its peers on other nodes. It recognizes the shard the command belongs to (3)
and dispatches it to a proper node (4). The responsible node looks up its cache (5) and either returns the cached aggregate or
constructs a new instance using past events from the event store. Finally, the command is applied, and the generated event is
stored (6).

In order to enable scalable processing (to scale) out we
used the idea of sharding. Instead of replicating the command
processing units and dealing with conflict resolution we chose
to partition the commands load using consistent hashing of
aggregate identifiers. We maintain lots of partitions (a.k.a.
shards), at least an order of magnitude more than the number of

machines for write model deployment and we assign multiple
shards to each machine. That allows us to balance the load
when a new node is added by transferring shards from each of
the previous nodes. Similarly, when we want to deprovision a
machine, we transfer all entities to other machines, partitioning
them equally. In fact, we change only the shard assignment as

TABLE I: Objectives of the application architecture along with
considered and chosen means of implementation. The chosen
solutions are presented in italics.

Objective Possible solutions
Write model

Consistency
guarantees

Strictly consistent model with transactions spanning multiple
entities.
Fine-grained transactional units eventually consistent with
each other.

Scalable
processing

Processing replication with efficient conflicts resolution.
Processing distribution (sharding) using consistent hashing.

Decreasing
latency

Caching events from event store.
Persisting state snapshots in the event store.
Caching recreated entities (event sourced state machines).

Read model

Effective data
representation

In-memory model.
Graph-oriented database.

Scalable
processing

Processing partitioning in a scatter-gather fashion.
Instance replication and round-robin routing.

Event store

Consistency
guarantees

Strict consistency.
Eventual consistency.

E.2. IEEE publication 77

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

4

every aggregate is persisted in a database and can be easily
recreated on a new node. The command processing flow is
presented on Fig. 2. To decrease the latency, we decided to
cache aggregates created from replayed events in memory.

In our case the read model implements constraints checks
that are executed against a configured flight schedule:

• rotation continuity - consecutive legs shares destination
and origin airport

• minimal ground time - airplane spends required minimal
amount of time grounded

• flight designator uniqueness - each leg has a unique flight
identifier within a day

These validations requires quick graph traversal operations.
We considered in-memory only model though finally we
decided that graph-oriented database is the most effective data
representation. All events that come to the read model from
the event store are transformed to fit this model.

The scalable processing was achieved by replicating the
instances of read models and balancing the load in front of
them. Each node manages its own database instance with a
complete model. When there is a need to increase processing
power on read side then a new instance of a read model is
spawned. We avoid complicated model cloning thanks to the
complete history of events that a new instance can ask the
event store for and recreate the current state on its own. When
the replay is over, the node joins the load balancer group to
start handling requests and subscribes to new events to keep
the model up-to-date.

We could not achieve horizontal scalability without relaxing
consistency guarantees on the query side. Bridging two
models with an asynchronous event store comes with trade-
offs. Firstly, read model instances may slightly differ at a given
time since updates are not synchronized. Secondly, when a new
command is accepted by the write side there exists a time
frame in which data contained in read model nodes is slightly
outdated. Fortunately these effects were acceptable in our use
case.

We decided to create our own event store. In contrary to the
most popular solutions, we did not design it from scratch and
instead, assembled it from proven building blocks: a column-
oriented database and a persistent message queue. Every event
is both stored in the database and pushed to the queue where
it is retained for a while (durable subscription pattern). That
makes the read model more resilient, guarantees at-least once
delivery semantic and, most importantly, holds new events
coming to an instance being initialized with historical events
from the database. This is to make sure that no event is missed
during instance startup.

The architecture we proposed adheres to the Reactive Man-
ifesto suggestions as it is:

• message-driven - commands trigger events, events trig-
ger model updates,

• elastic - adding new write and read model instances
results in better performance,

• resilient - losing an instance of a write or read model
does not prevent the system from working and the lost
instance may be easily recreated,

• responsive - the most performant query model may
be designed, aggregates in write model are completely
independent and easy to cache.

IV. IMPLEMENTATION DETAILS

The application was developed using Scala language and
its ecosystem. Load balancing is implemented by combining
routing and clustering capabilities of Akka toolkit in front of
Akka actors. Spray toolkit is responsible for exposing REST
endpoints and JSON serialization. We decided to keep business
logic separate from Akka actors and other infrastructural
concerns.

Apache Cassandra and Apache Kafka were chosen as
database and persistent messaging queue respectively for the
sake of event store implementation. Akka Persistence along
with the already available Cassandra plugin provided event
store interface for event sourcing purposes. Since the event
store was not a bottleneck during our tests, we simplified the
implementation into a single Kafka partition to store events
and used single-node deployments of both datastores.

On the write side the sharding concept is covered by
Akka Cluster Sharding module that builds on top of Akka
Clustering functionality and requires Akka Persistence for state
management. The module also enabled us to implement a
simple cache layer as it maintains all retrieved aggregates
in memory and allows to passivate them on demand. Neo4j
database in the embedded mode has been placed on each read
model instance. We also went for plain Java API since the
performance of other data access layers were not satisfactory.

V. SCALABILITY TESTS

We decided to evaluate the scalability of read and write part
of the application separately. We designed two different work-
loads, the first contains only queries and the latter executes
commands alone.

A. Read model scalability
Firstly, we decided to found the maximum sustainable

request rate for a single instance of a model. In order to
achieve that, we designed a workflow as follows: we start
with 1 request/sec and ramp it up to the maximum number of
requests/sec (e.g. 200 requests/sec) during 300 seconds, then
we hold the maximum rate for 600 seconds. We treat the first
part of the workload as a warmup phase and only the last 300
seconds are taken into consideration to calculate final results.
The requests were distributed evenly between all the three
types of the schedule validation checks: rotation continuity,
minimal ground time and flight designator uniqueness.

We run this workflow with a goal of 125, 150, 175, 200, 225,
250 and 275 requests per second. For each of the values we
repeated the test five times. We measured 75th, 95th, 99th and
100th (maximum) percentiles of the response time for every
run. We also wanted to make sure that the CPUs, as the most
demanded resource by the read model are heavily loaded.

After we learned the sustainable throughput of a single
instance, we wanted to run the workload against the setups

E.2. IEEE publication 78

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

5

with multiple read model instances. We set the frequency of the
requests respectively to the capacity of a single node multiplied
by the number of instances. We wanted to see if the application
can linearly increase its capabilities. If the latency does not
change between the runs on the different setups, that will prove
the linear scalability.

We reserved 12 machines with HDDs, 4 cores and 4GB
of memory each, for running the read model instances. An
additional machine of the same configuration was used to
deploy the event store components: Kafka, Cassandra and
Zookeeper (required by Kafka). The Gatling load testing tool
was running on a single 4 core machine with 16GB memory.

In order to recognize the single read model instance capacity,
we run the capacity test 35 times in total which is 9 hours of
aggregate load and gathered 2.5GB of raw logs. The maximum
throughput that we considered sustainable was achieved when
the load testing tool was generating 175 queries per second.
In this case, each of CPU cores was 75% utilized on average.
The results are charted in Figure 3.

Finally, we conducted the scalability tests. We measured the
response time percentiles for setups with 1, 2, 4, 8 and 12
machines. Every machine was hosting a single read model
instance. The tests were repeated several times in order to
verify the reproducibility.

The results are shown in Figure 4. There is almost no
difference between the request latencies, only the maximum
response time (100th percentile) has greater variance which
was in fact expected. It is extremely hard to bound the
maximum response time, as even a single occurrence of any
unexpected event like packet loss contributes to this metric.
But 99% percent of all requests had a nearly identical latency
upper bound in each run. That means the read model scales
very well, in a linear fashion. We made sure that we selected
the appropriate query rates by verifying the CPU utilization on
each node. Every of the four cores on each node during the
tests was 75% utilized nearly all the time.

Fig. 3: The figure presents the capacity testing results of a
single read model instance. We can see that the query rate
of 125-200 request/sec is acceptable but it changes for higher
ones.

Fig. 4: No difference in the request latency time proves the
linear scalability of the read model. The slight increase for 12
nodes may suggest that for the greater number of nodes we
could be limited by a single load balancer throughput.

B. Write model scalability

In order to evaluate the write model, we took a different
approach. We decided to prepare a fixed command workload
and run it against the setups with a different number of
the write model instances. We wanted to choose a suitable
frequency of requests to be able to saturate setups with one or
two instances. We were interested how the response time, the
CPU utilization and the number of time-outed requests changes
when new instances are being added to the setup.

The workload is a simulation of multiple users performing
the same scenario. First, they create a rotation, next they
add several hundred legs to the rotation, then they create an
airplane and finally they assign the rotation to the airplane.
We ramped the number of users, adding 50 new users every
5 seconds until we started all of them. If any bad response
occurred, the user scenario was interrupted. In order to warm
up the instances, we were running the same workload twice in
every test case iteration separated by a five minute pause. The
first run was considered a warmup phase and only the latter
was taken into consideration when the results where calculated.

We reserved 8 machines with 4 cores and 4GB of memory
each, for running the write model instances. In this case, we
deployed event store on two 16 cores, 16GB machines. Kafka
with Zookeeper were placed on the first one and Cassandra on
the latter. Finally, we were generating the load on a single 4
core machine with 16GB memory.

We present the results in Figure 5. We conducted the
evaluation with two different scenarios: 1250 users adding 750
legs each and 1500 users adding 1000 legs each. We refer to
them as lower and higher load scenarios, respectively. We can
see that the response time of requests drops when instances
are added, similarly the CPU utilization decreases linearly
with the number of nodes. In the higher load scenario we can
see timeouts indicating that the load is too big for the single
instance. They disappear as the number of nodes increases.

E.2. IEEE publication 79

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

6

Fig. 5: The plot depicts timeouts occurring in a single-instance
deployment. As we add more nodes, the timeouts disappear. A
deviation in the number of timeouts for a 4-node deployment
visible on plot was caused by an unrecognized, transient
problem with the Cassandra database. It did not happen again
in any other test so we treat it as a noise.

VI. RELATED WORK

There are several tools and undertakings revolving around
CQRS and event sourcing ideas, but no comprehensive solu-
tion has been developed so far. In contrast to our use case,
other solutions often focus on efficient and reliable event
store implementation. EventStore [7] is a database crafted for
event sourcing with Complex Event Processing capabilities.
LinkedIn Databus [8] provides a stream of change capture
events for a relational databases, what enables them to be
used as event stores and allows adding read models to existing
applications.

Axon Framework [9] is a robust framework for building
scalable CQRS-based applications with optional event sourced
persistence. Akka toolkit [3] currently does not cover all
aspects of CQRS yet. However, Akka Persistence, a module
for event sourcing applications, is planned to be extended to
cover read side of CQRS [10].

The aggregate-oriented approach represented by those tools
is not the only way to implement CQRS+ES architecture.
Eventuate [11] enables event sourcing implementation with
concurrent updates and conflicts resolution. Kappa Architec-
ture [12] is a concept influenced by CQRS and event sourcing
for designing stream processing applications that combines a
distributed commit log (Apache Kafka) with a stream process-
ing system (e.g. Apache Samza).

VII. CONCLUSION AND FUTURE WORK

We managed to successfully design, implement and
prove the horizontal scalability of the application based on
CQRS+ES architecture. We derived a simple implementation
of the event store and presented other endeavours in the

industry revolving around those patterns. We successfully tried
out Akka toolkit. It provides several out-of-the-box solutions
for non-trivial problems like sharding and constantly is being
enhanced with new features. Finally, we make use of DDD ap-
proach and find it very useful for building scalable, distributed
systems.

Everything comes with a price. Eventual consistency re-
quires developers to challenge their reasoning about control
flow in the system. Distribution entails thinking about du-
plications, losses and retries. Finally, since the approach is
still not widely adopted it lacks battle-tested tools, developer
guides and best practices. Fortunately, we observe a big interest
in CQRS and Event Sourcing patterns currently. New tools,
frameworks, event stores and related concepts are popping out
day by day and the situation may change quickly.

We consider a handful of ideas for our further research.
We are especially interested in stream processing systems in
context of CQRS+ES architecture. They may help providing
stronger consistency guarantees (e.g. causal consistency) and
building a reliable and scalable event store implementation.
The latter option may require to create a robust event store
benchmark and compare existing solutions.

REFERENCES

[1] J. Bonér, D. Farley, R. Kuhn and M. Thompson (2014, Sep), The Reactive
Manifesto, v2.0, [Online]. Available: http://www.reactivemanifesto.org

[2] D. Betts, J. Dominguez, G. Melnik, F. Simonazzi, and M. Subramanian,
Exploring CQRS and Event Sourcing: A Journey into High Scalability,
Availability, and Maintainability with Windows Azure, 1st ed., Microsoft
patterns & practices, 2013.

[3] Typesafe Inc., Akka toolkit, [Online]. Available: http://akka.io.
[4] E. Evans, Domain-Driven Design: Tacking Complexity in the Heart of

Software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[5] C. Hewitt and H. Baker, Actors and Continuous Functionals, in Proc. of
IFIP Working Conf. on Formal Description of Programming Concepts.
August 15, 1977.

[6] P. Helland, Life Beyond Distributed Transactions an Apostates Opinion,
Conf. on Innovative Database Research (CIDR) January 2007.

[7] G. Young, The Event Store database, [Online]. Available:
http://www.geteventstore.com.

[8] S. Das, et al., All Aboard the Databus!, LinkedIn’s Scalable Consistent
Change Data Capture Platform, In Proc. 3rd ACM Symp. on Cloud
Computing (SoCC 2012)

[9] A. Buijze, The Axon Framework, [Online]. Available:
http://www.axonframework.org.

[10] Typesafe Inc. (2014, Dec), Akka Roadmap Update blog post, [Online].
Available: www.typesafe.com/blog/akka-roadmap-update-dec-2014.

[11] M. Krasser (2015, Jan) The Eventuate toolkit, [Online]. Available:
http://rbmhtechnology.github.io/eventuate/.

[12] J. Kreps, Questioning the Lambda Architecture blog post, [On-
line]. Available: http://radar.oreilly.com/2014/07/questioning-the-lambda-
architecture.html.

E.2. IEEE publication 80

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

7

Andrzej Debski is a Computer Science M.Sc. stu-
dent at AGH University of Science and Technol-
ogy in Krakow, Poland and a Software Engineer
in AVSystem. He is mainly interested in distributed
computing, functional programming, software engi-
neering and domain-driven design. His prior profes-
sional experience includes working in IBM Poland
and Sabre Airline Solutions.

Bartlomiej Szczepanik is a Computer Science
M.Sc. student at AGH University of Science and
Technology in Krakow, Poland and a Software En-
gineer in Akamai Technologies. His main scien-
tific interest are highly distributed systems, domain-
driven design, and productivity engineering. His
prior professional experience includes internships in
Sabre Airline Solutions and Google Inc. He lives in
Krakow, Poland.

Maciej Malawski holds Ph.D. in Computer Sci-
ence, M.Sc. in Computer Science and in Physics.
He is an assistant professor and a researcher at
the Department of Computer Science AGH and at
ACC Cyfronet AGH, Krakow, Poland. In 2011-13
he was a postdoc and a visiting faculty at Center
for Research Computing, University of Notre Dame,
USA. He is coauthor of over 50 international publi-
cations including journal and conference papers, and
book chapters. He participated in EU ICT Cross-
Grid, ViroLab, CoreGrid, VPH-Share and PaaSage

projects. His scientific interests include parallel computing, grid and cloud
systems, resource management, and scientific applications.

Stefan Spahr holds a Graduate Degree in Computer
Science (Dipl.-Inform. FH). He works as a senior
software architect for airline application software
and Cloud solutions at Lufthansa GmbH & Co.
KG in Berlin, Germany. Before his current job he
worked as a software engineer, a development- and
implementation-project manager and as a database
expert in different departments of the company. He
participates in the EU FP7 PaaSage projects as well
as in the EU H2020 projects MUSA and BEACON.
His main professional interests are Cloud computing

architectures and related (emerging) technologies, domain driven design and
distributed systems.

Dirk Muthig is the CTO & Innovations of Lufthansa
Systems Hungaria Kft. and head of the team Pro-
duction and Systems Design of Lufthansa Systems
GmbH & Co. KG. He is responsible for innovations,
standards and guidelines that fully shape the lifecycle
of more than 20 major software products for the
aviation industry. This product lifecycle includes
service transition, which refers to the hand-over of
a software system to the operating units. These
products must be able to be operated in various
settings that are heavily constraint by customer-

specific IT infrastructures already existing. Dirk is with Lufthansa Systems
for nearly six years. Before he headed the division Software Development at
the Fraunhofer Institute for Experimental Software Engineering (IESE) and
thus he has intensive experience with all kinds of research projects, as well
as with bridging the gap between research and practice. His main research
topics have been software product lines, system architectures, and service- or
component-based development. He is also the chair of the software product
line hall of fame that selects and presents successful industrial case studies on
the website of the Software Engineeering Institute (SEI) in Pittsburgh, USA.
Dirk has more than 100 publications (listed by the Fraunhofer Publica, see
http://publica.fraunhofer.de/starweb/pub09/index.htm).

E.2. IEEE publication 81

A. Dębski, B. Szczepanik Scalable Architecture of Cloud Application Based on CQRS and Event Sourcing

