
Exploratory Programming in the Virtual Laboratory

Eryk Ciepiela, Daniel Harężlak, Joanna Kocot,
Tomasz Bartyński, Marek Kasztelnik, Piotr Nowakowski, Tomasz Gubała,

Maciej Malawski, Marian Bubak
Institute of Computer Science, AGH,

Mickiewicza 30, 30-059 Krakow, Poland

ACC CYFRONET-AGH

Nawojki 11, 30-950 Krakow, Poland

Email: {malawski,bubak}@agh.edu.pl

Abstract—GridSpace 2 is a novel virtual laboratory framework
enabling researchers to conduct virtual experiments on Grid-
based resources and other HPC infrastructures. GridSpace 2
facilitates exploratory development of experiments by means of
scripts which can be written in a number of popular languages,
including Ruby, Python and Perl. The framework supplies a
repository of gems enabling scripts to interface low-level re-
sources such as PBS queues, EGEE computing elements, sci-
entific applications and other types of Grid resources. Moreover,
GridSpace 2 provides a Web 2.0-based Experiment Workbench
supporting development and execution of virtual experiments by
groups of collaborating scientists. We present an overview of the
most important features of the Experiment Workbench, which is
the main user interface of the Virtual laboratory, and discuss a
sample experiment from the computational chemistry domain.

I. INTRODUCTION

M
ODERN life sciences, particularly simulations in bio-

chemistry, genetics and virology, impose significant

requirements on underlying IT infrastructures. Such require-

ments can be loosely grouped into two general domains:

demand for computational resources and demand for new soft-

ware tools facilitating effective, productive and collaborative

exploitation of such resources by a vast range of beneficiaries.

While the key goal of supporting scientific experimentation

with computerized infrastructures remains the provision of

large-scale computational and data storage facilities [1], it is

equally important to supply scientists with tools enabling them

to collaboratively develop, share, execute, publish and reuse

virtual experiments.

The presented Virtual Laboratory, first conceived as part of

the ViroLab project [2] and currently being extended within

the scope of the PL-Grid project, aims to respond to these re-

quirements by supplying software which permits the execution

of virtual experiments. Experiments can be written in popular

scripting languages and executed on the distributed resources

provided by HPC institutions participating in the project.

The goal of the Virtual Laboratory is to a propose a model

and facilities for exploratory, incremental scripting – already

omnipresent in e-scientific research – and make it reusable and

actionable for entire communities. Our framework bridges the

gap between the oft-inaccessible high performance computing

infrastructures and the end users (i.e. domain scientists),

accustomed to running calculations and collating experimental

data on their desktop computers. Rather than persuade the

scientists to change their daily habits, we want to provide

an environment which meshes seamlessly with their style

of work, yet extends their experimentation and collaboration

potential with the capabilities of high-performance computing

clusters.

Our experience gathered in the course of developing the

ViroLab Virtual Laboratory for virologists [2], [3], [4], the AP-

PEA runtime environment for banking and media applications

in the GREDIA project [5] as well as the GridSpace environ-

ment for running in-silico experiments, has been augmented

with user requirement analysis conducted during the initial

phase of the PL-Grid project, involving groups of scientists

from various domains such as physics, chemistry and biology.

The Virtual Laboratory presented in this paper should be

considered as an evolution of the approach undertaken in the

ViroLab project. The new virtual laboratory is focused on

interactive and exploratory programming [6], together with a

Web 2.0 interaction model.

This paper is organized as follows. In section II we compare

our concept with other approaches. After describing our moti-

vation in section III we introduce the main concepts of Virtual

Laboratory in section IV while its architecture is discussed in

section V. In section VI we introduce GridSpace platform,

which is the base technology which implements the virtual

laboratory. Section VII contains an overview of the most

important features of the Experiment Workbench, which is the

main interface of the Virtual laboratory. Further on, we provide

a description of the steps which the user undertakes while

working with the Virtual Laboratory (section VIII), together

with use cases. The conclusions and future work can be found

in section IX.

II. RELATED WORK

Scientific workflow systems are important tools for devel-

opment and execution of e-science applications [7]. Thanks

to the well-defined workflow and dataflow models in systems

such as Taverna [8] or Kepler [9] it is possible to graphically

design applications which can then be executed on remote

infrastructures. Scientific workflows can be subject of ex-

ploratory programming, as in the case of Wings project [6],

as well as of collaborative sharing, such as in the case

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 621–628

ISBN 978-83-60810-22-4

ISSN 1896-7094

978-83-60810-22-4/09/$25.00 c© 2010 IEEE 621

of myExperiment social networking website [10]. The main

drawbacks of workflow systems are related to the fact that

contrary to programming languages, abstract workflow models

are often insufficient for describing the required application

flow.

Scripting environments are becoming increasingly important

in scientific applications and modern petascale systems. An

example of this evolution is Swift Script [11] – a dedicated

language designed to describe large-scale computations, in-

volving massive data processing. An important feature of Swift

is its mapping between data files and programming language

variables, which facilitates input/output processing. Scripting

can also be used for debugging and instrumenting parallel

applications [12]. Our approach is similar in the sense that

we intend to use scripting to describe the high-level workflow

of the application while retaining interactivity and enabling

multiple interpreters to be combined together.

The need to integrate diverse applications, data sources

and technologies emerges not only in scientific applications,

but also in enterprise systems [13]. Enterprise Service Bus

solutions such as ServiceMix or GlassFish, aim to facili-

tate such integration in the Web service context [14]. The

BPEL workflow language can also be applied to scientific

applications [15]. However, we believe that such enterprise

workflow systems are too heavyweight for simple exploratory

programming, where a scripting approach seems to be more

appropriate.

The GridSpace environment, which is the foundation of

the ViroLab Virtual Laboratory [4], has beed developed by

our team to support complex applications running on e-

infrastructures such as clusters, Grids and Internet-accessible

Web services. One of the goals was to support heteroge-

neous middleware systems using the Grid Object abstraction

layer [16] and facilitate access to distributed data sources.

Additional important features include support for collaborative

work including tools for application development, sharing,

reuse and Web-based accces. Moreover, provenance and result

management components provide semantic descriptions of

data and enable users to view experiment execution histories.

The limitations of GridSpace include its relatively high archi-

tectural complexity and the fact that only the Ruby scripting

language is supported.

III. MOTIVATION AND GOALS OF THE VIRTUAL

LABORATORY

The main features of Virtual Laboratory result from the ex-

perience gained during the ViroLab project, the requirements

of external users, as well as from discussions with potential

users of the PL-Grid project. The main high-level objectives

are as follows:

• To provide an environment which facilitates dealing with

scientific application throughout its entire lifecycle (de-

velopment, deployment, operation, maintenance);

• To reflect and support the day-to-day work of scientists

who need to deal with software tools – workflows, proce-

dures (including informal ones), scripts, etc. – enhanced

by modern Web 2.0 tools;

• To addresses exploratory programming and a specific type

of applications called experiments.

• To support collaborative work of teams of scientists in a

Web 2.0 model.

The specific goals of Virtual Laboratory are based on the

analysis of e-science applications and discussions held with

their authors. The main contributions come from the fields

of bioinformatics and computational chemistry. Requirements

include:

• Support for different scripting languages – particularly

Ruby, Python, Perl and awk;

• Provisioning of tools for publishing and reusing applica-

tions/experiments;

• Support for dynamic workflows – as each step of an

experiment may depend on the results of previous steps,

some workflows cannot be entirely predefined. Moreover,

some experiment steps may involve batch jobs;

• Support for parameter-study research, conducted either

on the level of a single tool or an entire workflow;

• Support for logging experiments and ensuring their re-

producibility;

• Providing easy access to scientific software packages;

(the suites most commonly used in PL-Grid include

Gaussian, GAMESS, TurboMole and ADF1);

• Direct access to local PBS systems without an additional

grid middleware layer;

• Support for creating and using format converters for

different tools, as well as adapters for different data

sources (not necessarily databases);

• Secure management of user credentials and other sensi-

tive data.

In addition to these requirements, the virtual laboratory

needs to satisfy several non-functional and more technical

requirements, which are described in more detail in section VI.

IV. VIRTUAL LABORATORY CONCEPTS

The key concept associated with the Virtual Laboratory is

the experiment. As defined in [3], an experiment is a process

that combines data with a set of activities (programs, services)

which act on that data in order to produce experiment results.

it is important to distinguish the experiment plan – a specific

piece of software, written using scripting languages – from the

experiment run (execution of the experiment). The key feature

here is that the experiment may represent a complex workflow,

going beyond simple, repeatable manual execution of installed

programs.

The experiment plan combines steps realized by a range of

software environments, platforms, tools, languages etc. It is de-

veloped, shared and reused collaboratively by ad-hoc research

teams. The experiment is composed of collaboratively owned

libraries and services used (called gems) and experiment parts

(called snippets). Gems are used to represent either program

libraries, such as BioPython [17], or applications such as

622 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Interactive experiment
planning

Snippets: scripts,
config files

Experiment running

Experiment
workbench
in portal

Experiment
plan

Experiment
execution

environmentGems: programs,
libraries, services

Inputs:
files, URLs

script
script
script
script.

Data Gem
Data GemGem

Figure 1. The GridSpace 2 experiment concept

Gaussian [18] or external services, such as the ones from

EBI [19]. Snippets refer to separate pieces of code, either

in scripting languages, such as Python or Bash, or in other

domain specific languages or input file formats, such as used

by Gnuplot or Gaussian.

The key paradigm of the enhanced version of virtual labora-

tory, namely exploratory programming, involves experimenta-

tion – step-by-step programming where steps are not known in

advance but rather defined on an ad-hoc basis, depending on

the results of previous steps. The experiment may need to be

re-enacted numerous times, with some ad-hoc customization

introduced dynamically, once workflow execution has already

commenced. Experiment execution cannot be fully automated

and requires continuous supervision, validation or even inter-

vention. This implies a dynamic nature of experiment plan

– certain decisions need to be taken at runtime (e.g. code

provided from input data). Nevertheless, experiment execution

has to remain traceable, verifiable and repeatable.

Due to its focus on exploratory programming, the virtual

laboratory is best suited for a try-evaluate-decide process,

without losing the context of the experimentation, as opposed

to applications with well-known implementations. The vir-

tual laboratory aims at composing and automating higher-

level, time-consuming workflows that combine existing soft-

ware. This property contrasts with applications which perform

“atomic” processing. Another interesting feature involves sup-

port for novel combinations of existing software modules, data

sources and computational capabilities which may result in

valuable utilities, as opposed to well-defined workflows which

are already addressed by existing software.

V. ARCHITECTURE OF VIRTUAL LABORATORY

Fig. 2 presents the architectural overview of the Virtual

Laboratory. It is divided into four layers: the Experiment Wok-

bench layer, available to the user as a set of Web applications,

the Experiment Execution Layer which forms the runtime

environment of the platform, the Gem Layer which includes

all generic and application-specific libraries accessible to the

experiments, and the Grid Fabric layer, with all the resources

and middleware needed to access them.

The topmost layer is formed by a Web portal which

constitutes an entry point for the whole Virtual Laboratory.

This gives users access to the Virtual Laboratory from any

workstation equipped with a web browser. This layer exposes a

portal which is intended as a common, tool-rich workbench for

all Virtual Laboratory researchers where they can perform their

daily experimentation, collaborate, communicate and share

resources (including reusable code). This layer is accessible

to end-user browsers via the HTTPS protocol. File Manager

is responsible for easy access to data files, Experiment Console

allows editing and running experiment snippets, Credential

Manager helps handle passwords, certificates and other se-

crets required by some parts of experiments, and Graphical

Experiment Builder is intended to construct more complex

experiments graphically.

Further down lies the Experiment Execution Layer where

consecutive parts of experiments, provided by the users

through the Portal, are evaluated in the context of a partic-

ular user account on an experiment host machine. A single

experiment can invoke multiple interpreters, such as Python

or Ruby. The key concept here is that an experiment can be

developed in a piecewise fashion. Individual experiment parts

are executed by an experiment interpreter which preserves

state (namespace, runtime values) between evaluations. Conse-

quently, experiment development and execution may overlap,

and the activities of writing and executing code are inter-

twined. Such an approach admits introspective, interactive,

explorative and dynamic experimentation recorded as exper-

iment code. Moreover, interpreters are executed in separate

processes, which provides better isolation and fault tolerance

(i.e. a crash o a single interpreter does not influence the

others). The Experiment Workbench Layer and the Experiment

Execution Layer are in constant communication via the SSH

protocol family. We also intend to allow direct user access to

the Experiment Execution Layer though bare SSH and SCP.

The next layer consists of Gems which are libraries/mod-

ules/utilities invoked by experiments at runtime. The Gem

Layer provides APIs for experiment developers, enabling

programmatic access to underlying resources (Grid, clusters)

and functionality exposed in the form of libraries or services.

There are gems which are generic, such as the one which

provides access to PBS batch system, or application specific

ones, such as Gaussian.

The Grid Fabric Layer forms the lowest level of the in-

frastructure. It consists of grid resources available to Virtual

Laboratory users, including clusters accessible through PBS,

grids available through their dedicated middleware packages

(e.g. gLite), external services (e.g. Web Services) and data

sources (e.g. RDBMSs) which the users may explit of in the

course of their research activities.

The entire Virtual Laboratory operates in a Single Sign On

(SSO) mode, according to the accounts defined in the external

authentication system and incorporating security policies in-

volved in accessing Grid middleware. In the case of PL-Grid

installation, it uses PL-Grid LDAP directory so that the virtual

laboratory is automatically accessible to all registered PL-Grid

users.

The four layers of the Virtual Laboratory are distributed and

spread over physical computational nodes. The Experiment

Workbench Layer operates on the so-called Portal Host. The

ERYK CIEPIELA, DANIEL HARĘŻLAK ET AL.: EXPLORATORY PROGRAMMING IN THE VIRTUAL LABORATORY 623

Experiment Execution

File Manager Experiment Console Graphical Experiment Builder

Interpeter X Interpeter YInterpeter Y Interpeter Z

Gem P Gem Q Gem R

Authentication
System

Grid Fabric
PBS

gLite

Unicore

Custom Services

Experiment A Plan Experiment B Plan

QosCosGrid

Credential Manager

Experiment
Workbench

Layer

Gem
Layer

Experiment
Execution

Layer

Grid
Fabric
Layer

Credentials

Experiment Workbench

Figure 2. Architecture of the Virtual Laboratory including logical layers (captions on the left-hand side), main modules and their dependencies.

Experiment Execution Layer and the Gem Layer reside in one

or more Experiment Hosts, which can be one of the front-end

machines (user interfaces) of the clusters. The Grid Fabric

Layer spans many distributed computational resources. The

Portal Host and the Experiment Host may reside on distinct

machines (in order to improve scalability); however they may

also operate on a single host when system compactness is more

important.

VI. GRIDSPACE – IMPLEMENTATION

The presented Virtual Laboratory, is based on the core

technology, called GridSpace, first conceived as part of the

ViroLab project [2] and currently being extended within the

scope of the PL-Grid. While still supporting the earlier version

of the GridSpace framework, in GridSpace 2 we implement the

new functionalities which focus on interactive and exploratory

programming [6], together with a fully Web-based user inter-

action model.

In addition to the requirements specified in section III,

there are some technical goals, which were not satisfied by

earlier versions of the Virtual Laboratory. They include support

for multiple scripting languages and more interactive and ad-

hoc scripting capabilities. Non-functional requirements such as

performance, maintability and ease of use have also been taken

into account, motivated by the need to deliver production-

quality software to be deployed on the PL-Grid national

infrastructure.

It is important to note that GridSpace is a generic envi-

ronment rather than a specific application. This means that

it can be used to set up a specific instance of the Virtual

Laboratory in support of a specific application domain. It can

be applied whenever existing software modules, interpreters

etc. need to be combined with other components. The learning

curve involved in porting an application to the platform should

be minimized.

Another feature of GridSpace is that it exploits Web 2.0

mechanisms by facilitating application development, operation

and provisioning. This means that the entire experiment devel-

opment and execution cycle is accessible from within a web

browser, and moreover, experiments and their results can be

shared among community members.

VII. CURRENT FEATURES OF THE EXPERIMENT

WORKBENCH

The main features of the current version of the Experiment

Workbench include:

• File management

• Dedicated visualization openers

• Interactive interpretation of experiment script snippets

• Storing and sharing experiments using XML format

• Secure management of user credentials (passwords, cer-

tificates etc.)

The main exeriment workbench window is shown in Fig. 3.

The file management tab is seen on the left, while the right-

hand part of the application screen is taken up by the experi-

ment console consisting of several experiment snippets. Above

the console, in a separate window, a plugin for displaying

graphical data is shown.

In addition to the basic features available directly in the

Experiment Wokbench there are additional mechanisms which

can be used in more advanced experiments. The first one

is WebGUI, which allows experiments to expose dedicated

Web interfaces. Another – semantic integration – enables the

construction of domain-specific models and data exchange

624 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Figure 3. Experiment Workbench screen, including experiment snippets and a sample result plot.

formats to facilitate colaboration and data sharing between

experiments and users.

A. File management

At the present stage of development, the GridSpace 2 plat-

form provides basic but stable functionallity which presents

a sound basis for further expansion. The most fundamental

feature is to enable users to manage their files on an ex-

periment host through an HTTPS interface, enabling basic

file system operations as well as uploading, downloading

and accessing files via URLs. Data elements and experiment

files are assigned globally unique URLs, which facilitate

access, annotations and linking resources in a weblike manner.

The URLs are given as: https://experiment.workbench.name/

experiment.host.name/files/username/path/to/a/file. The Exper-

iment Workbench handles these URLs by accessing the remote

experiment host in the scope of the authenticated session.

An SSH connection is established with the host, using the

provided login/password pair. Following authentication, the

workbench performs all file system operations via SCP/SFTP

on behalf of the end user. Therefore, authorization relies on

file access policies of the operating system residing on the

experiment host.

B. Visualization openers

Files served by the Experiment Workbech can be down-

loaded to the end-user’s desktop or viewed and edited within

a web browser using so-called openers. The mechanism fol-

lows and extends the idea URL-accessible files by introduc-

ing the HTTPS GET param "opener", yielding URLs such

as https://experiment.workbench.name/experiment.host.name/

files/username/path/to/a/file?opener=openerName. The Exper-

iment Workbench handles such requests by serving a page

with an embedded opener applet instead of the file itself. The

opener applet is configured on the fly, using the input URL, so

that it is able to get and put a file using the above mentioned

HTTPS interface. As the opener applet launches within the

web browser, the authenticated session context (implemented

using cookies) covers its function as well.

C. Interactive interpretation of experiment script snippets

The Experiment Workbench implements the exploratory

programming paradigm through interactive interpretation of

experiment parts called snippets. A snippets is an atomic

planning and execution unit of an experiment. Exploratory

development involves experiment planning and execution, both

of which start at the same time and proceed in parallel. During

the exploration process snippets can be incremetally added

to the experiment plan, which, in turn, can be incrementally

executed in a snippet-by-snippet manner. If the experiment

plan calls for a change in a snippet which has alrady been

evaluated in a run, the experiment needs to be reexecuted or

rolled back (the latter functionality is, however, a challanging

issue which will be addressed in the scope of further research).

D. Storing and sharing of experiments using the XML format

The experiment plan is modeled as a sequence of snippets.

Each snippet is associated with an interpreter required for its

ERYK CIEPIELA, DANIEL HARĘŻLAK ET AL.: EXPLORATORY PROGRAMMING IN THE VIRTUAL LABORATORY 625

execution. Interpreter specification includes a command, a set

of environment variables and a prompt character sequence

which is required in order to enable identification of script

line evaluation completeness. Interpreters can be intaractive

(capable of evaluating snippets line by line) or batch-oriented

(the whole snippet is sent to the interpreter followed by an

EOT character, upon which the environment waits for output).

Any executable capable of operating in one of the above modes

may be configured as a GridSpace 2 interpreter. The idea of

an experiment file is that it presents a complete and standalone

artifact sufficient for performing the experiment run. As long

as it is contained in a single file, it can be associated with

a global URL, which makes the experiment an addressable,

shareable and linkable resource within the Web 2.0 space.

Along with snippet code and interpreter specifications, the

experiment XML file contains metadata including the name of

the experiment, its description, its creation date, author names

and comments. In addition, each snippet may specify a list of

so-called secrets, i.e. data elements (such as passwords) which

represent user credentials. This data should not be stored in

experiment files but instead retrieved from the local user’s

wallet each time a given experiment is run. The Workbench

provides a user-friendly way to manage secrets and use them

in experiments while the GridSpace platform facilitates secure

storage of credentials and other sensitive data.

A sample experiment XML file in a simplified notation

is shown in Fig. 4. It includes a metadata tag, where user

comments can be added during experiment evolution. An

interpreter definition is presented in line 26 where it is possible

to specify the command to initiate an interactive session using

PBS. In lines 31–36 of this “hello world” example we can see

the sample code in the specified languages.

E. WebGUI

In order to enrich user experience a WebGUI integration tool

is available. It provides well-defined frames for incorporating

external web applications in the experiment execution flow.

The tool enables experiment creators to plan interactions with

the end user and either retrieve additional data or present

intermediate experiment results. For integration with external

web applications simple JSON communication is used, which

makes the process of creating new or modifying existing web

applications straightforward. For less demanding experiment

creators who do not wish to create or reuse external applica-

tions, a generic web UI implementation is available. Through

a simple JSON-based definition, available from the experiment

code, a graphical interface can be spawned and presented

during experiment execution. This implementation allows for

building web forms using standard controls (e.g. text fields,

text areas, radio boxes, etc.) In addition, a rich text editor

control is available.

F. Semantic integration

Among the goals of the Virtual Laboratory, as stated in

Section III, is the provision of a generic technology, supporting

scientists from specific application domains. Since each of the

1 experiment:

2 metadata:

3 expname: Hello Experiment

4 author: plgciepiela

5 description:

6 Demo example that prints out hello messages.

7 comments:

8 comment:

9 author: plgciepiela

10 payload: Very simple example, just demo.

11 interpreters:

12 interpreter:

13 cmd="bash --noprofile --norc"

14 interactive="true"

15 name="Bash 3.00"

16 prompt1="$

17 " prompt2="> "

18 envvar: name="PS1" value="$ "

19 interpreter:

20 cmd="/software/local/bin/python"

21 interactive="true"

22 name="Python 2.6.4"

23 prompt1=">>> "

24 prompt2="... "

25 interpreter:

26 cmd="qsub -I -q plgrid -S /bin/bash -v PS1=$"

27 interactive="true"

28 name="PBS - Bash 3.00"

29 prompt1="$"

30 prompt2="> "

31 snippet: id="1" interpreterName="Bash 3.00"

32 code: echo "Hello, Bash"

33 snippet: id="2" interpreterName="Python 2.6.4"

34 code: print("Hello, Python")

35 snippet id="3" interpreterName="PBS - Bash 3.00"

36 code: echo "Hello, Bash via PBS"

Figure 4. Sample “Hello world” experiment XML file (tags are represented
as bold text for clarity).

in-silico experiments supported by our platform comes from

a specific field of science, the need for domain-specific data

models is clear. The semantic integration concept [20] is a

method of building application-specific data models and cross-

combining them with protocols and tools developed for the

application environment. In other words, semantic integration

helps scientific developers support structures and taxonomic

characteristic for a given field of science via generic storage

mechanisms and generic information exchange protocols.

The incorporation of semantic integration in the presented

Virtual Laboratory provides a means of storing data and meta-

data for bioinformatics applications (such as protein pocket

finding), as well as for computational chemistry applications

running Gaussian and GAMESS. In the former case it is used

to store and publish several gigabytes of data produced in

high-throughput computations involving numerous proteins.

In the later case it helps store and exchange metadata for

the output files generated by various chemistry packages.

Since the Virtual Laboratory application pool is still being

extended, we can expect that the semantic integration solution

will eventually cater to other scientific domains as well.

VIII. WORKING WITH GRIDSPACE AND EXAMPLES OF

USAGE

Virtual Laboratory defines a specific model of interacting

with applications. The main procedure for preparing an exper-

iment is as follows:

626 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

1) The user identifies a procedure (process, workflow) that

involves manual use of a number of software pieces

which could benefit from (semi-)automation, making

them easy to use for the user and for the research team.

2) The user writes this procedure in a stepwise fashion

where each step is decided upon by viewing the outcome

of previous steps.

3) At each step the user takes advantage of one of a num-

ber of programming languages, platforms or programs

which are the most suitable for the current purpose.

4) Following each step the user may open the retrieved files

with the available tools (e.g. display a graph, visualize

molecules, show text content etc.)

5) The user can retrace his/her steps in order to find the

best path to the solution.

6) The user can save the current sequence of steps (i.e. the

experiment) and open it later for further development.

7) Having discovered the right sequence of steps, the user

can save the experiment again and specify the group of

users who will be allowed to run or further modify that

experiment.

8) The user can send a link to the experiment web appli-

cation to his/her group.

9) The link leads to a page where, following successful

login, other users can run the web application or open

it in an experiment editor.

10) The user can enrich experiments with custom graphical

user interfaces which collect input and display results.

As an example of use we can present an application from the

chemistry domain involving the study of aqueous aminoacid

solutions. The analysis process is a workflow which involves

multiple steps realized using many tools, languages and li-

braries. First, Packmol [21] is used to perform molecular dy-

namics simulations for animoacid aggregation in the presence

of water. The resulting solution is visualized with Jmol [22]

and can be manually checked prior to further processing, i.e.

computing a spectrum using the Gaussian [18] tool. In order to

extract spectrum-related information from the Gaussian output

file we need to use the CCLIB [23] library written in Python.

Finally, spectrum information can be visualized as a plot using

GnuPlot.

In addition to the above, many other programming lan-

guages and tools can be configured in the Experiment Work-

bench and thus made available for experiment developers.

Our sample installation of the Experiment Workbench sup-

ports a set of interpreters and tools including Bash 3.00,

Python 2.6.4, Perl 5.8.5, Ruby 1.8.7, Packmol, Gaussian 09

and Gnuplot 4.0. All interpreters can be launched directly

on the experiment host or through the Torque Portable Batch

System.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the main requirements,

concepts and current status of the Virtual Laboratory based

on GridSpace platform. Although based on experience gained

in the course of the ViroLab project, GridSpace 2 consti-

tutes a novel framework. Its main advantage is support for

exploratory programming, where each experiment consists of

snippets programmed interactively in multiple programming

languages using a web console. The Experiment Workbench

allows interactive experiment development, file manegement

and experiment sharing. The Virtual Laboratory also supports

web-based graphical user interfaces and semantic integration.
GridSpace 2 has been made available for the users of

the Pl-Grid project for beta testing. Preliminary feedback

from bioinformatics and computational chemistry applicaiton

domains shows promising results. The final release and in-

tegration with the PL-Grid infrastructure is planned for the

end of 2010. The continuously updated beta installation of the

Virtual Laboratory has been made available to the PL-Grid

users and is accessible at the Virtual Laboratory website [24].

More information about the GridSpace 2 technology, including

demos and presentations can be found at [25].
Future work will focus on enhancing the usability and

security features. One of the planned enhancements involves

development of a graphical tool for constructing experiments

with hierarchical snippet trees. Another will provide handling

of multiple security credentials to facilitate access to hetero-

geneous middleware systems and data sources. We are also

adding support for more application-specific gems, interpreters

and visualization tools to extend the range of supported

application domains.

ACKNOWLEDGMENTS

The research presented in this paper has been partially sup-

ported by the European Union within the European Regional

Development Fund program no. POIG.02.03.00-00-007/08-

00 as part of the PL-Grid project (www.plgrid.pl) and ACC

Cyfronet AGH grant 500-08. Maciej Malawski acknowledges

support from the UDA–POKL.04.01.01-00-367/08-00 AGH

grant.

REFERENCES

[1] U. Schwiegelshohn, R. M. Badia, M. Bubak, M. Danelutto,
S. Dustdar, F. Gagliardi, A. Geiger, L. Hluchy, D. Kranzlmueller,
E. Laure, T. Priol, A. Reinefeld, M. Resch, A. Reuter, O. Rienhoff,
T. Rueter, P. Sloot, D. Talia, K. Ullmann, R. Yahyapour, and
G. von Voigt, “Perspectives on grid computing,” Future Generation

Computer Systems, vol. In Press, Corrected Proof, pp. 1104–1115,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V06-5046M26-9/2/48b1a0c4be91df6f89554f74e94ae792

[2] ViroLab team at CYFRONET, “The ViroLab Virtual Laboratory Web-
site,” 2009, http://virolab.cyfronet.pl.

[3] M. Bubak et al., “Virtual laboratory for development and execution of
biomedical collaborative applications,” in Proceedings of the 21st IEEE
CBMS, June 17-19, 2008, Jyväskylä, Finland. IEEE Computer Society,
2008, pp. 373–378.

[4] M. Bubak, M. Malawski, T. Gubala, M. Kasztelnik, P. Nowakowski,
D. Harezlak, T. Bartynski, J. Kocot, E. Ciepiela, W. Funika, D. Krol,
B. Balis, M. Assel, and A. T. Ramos, “Virtual laboratory for collabora-
tive applications,” in Handbook of Research on Computational GridTech-

nologies for Life Sciences, Biomedicine and Healthcare, M. Cannataro,
Ed. IGI Global, 2009, ch. XXVII, pp. 531–551.

[5] P. Nowakowski, D. Harezlak, and M. Bubak, “A new approach to
development and execution of interactive applications on the grid,” in
8th IEEE International Symposium on Cluster Computing and the Grid

(CCGrid 2008), 19-22 May 2008, Lyon, France. IEEE Computer
Society, 2008, pp. 681–686.

ERYK CIEPIELA, DANIEL HARĘŻLAK ET AL.: EXPLORATORY PROGRAMMING IN THE VIRTUAL LABORATORY 627

[6] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim, “Wings
for pegasus: Creating large-scale scientific applications using semantic
representations of computational workflows,” in Proceedings of the

Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26,

2007, Vancouver, British Columbia, Canada. AAAI Press, 2007, pp.
1767–1774.

[7] Z. Zhao, A. Belloum, and M. Bubak, “Special section on workflow
systems and applications in e-science,” Future Generation Comp. Syst.,
vol. 25, no. 5, pp. 525–527, 2009.

[8] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows of
services,” Nucl. Acids Res., vol. 34, no. suppl_2, pp. W729–732, July
2006. [Online]. Available: http://dx.doi.org/10.1093/nar/gkl320

[9] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B.
Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the kepler system,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[10] D. De Roure, C. Goble, and R. Stevens, “The design and
realisation of the myexperiment virtual research environment for
social sharing of workflows,” Future Generation Computer Systems,
vol. 25, no. 5, pp. 561–567, May 2009. [Online]. Available:
http://eprints.ecs.soton.ac.uk/15709/

[11] M. Wilde, I. T. Foster, K. Iskra, P. H. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu, “Parallel scripting for applications
at the petascale and beyond,” IEEE Computer, vol. 42, no. 11, pp. 50–60,
2009.

[12] F. Gioachin and L. V. Kale, “Dynamic high-level scripting in parallel
applications,” in Parallel and Distributed Processing Symposium, Inter-

national. Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp.
1–11.

[13] G. Hohpe and B. Woolf, Enterprise Integration Patterns : Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.
[14] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson,

Web Services Platform Architecture : SOAP, WSDL, WS-Policy, WS-

Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice
Hall PTR, March 2005.

[15] W. Tan, P. Missier, R. Madduri, and I. Foster, “Building scientific
workflow with taverna and bpel: A comparative study in cagrid,” in

Service-Oriented Computing âĂŞ ICSOC 2008 Workshops. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 118–129. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-01247-1_11

[16] M. Malawski, T. Bartyński, and M. Bubak, “Invocation of operations
from script-based grid applications,” Future Gener. Comput. Syst.,
vol. 26, no. 1, pp. 138–146, 2010.

[17] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox,
A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and
M. J. L. de Hoon, “Biopython: freely available python tools for
computational molecular biology and bioinformatics,” Bioinformatics,
vol. 25, no. 11, pp. 1422–1423, June 2009. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btp163

[18] Gaussian, Inc., “Gaussian,” 2010, http://www.gaussian.com.
[19] H. McWilliam, F. Valentin, M. Goujon, W. Li, M. Narayanasamy,

J. Martin, T. Miyar, and R. Lopez, “Web services at the european
bioinformatics institute-2009.” Nucleic acids research, vol. 37, no.
Web Server issue, pp. W6–10, July 2009. [Online]. Available:
http://dx.doi.org/10.1093/nar/gkp302

[20] T. Gubala, M. Bubak, and P. M. Sloot, “Semantic integration of
collaborative research environments,” in Handbook of Research on
Computational Grid Technologies for Life Sciences, Biomedicine and

Healthcare, M. Cannataro, Ed. IGI Global, 2009, ch. XXVI, pp. 514–
530.

[21] L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez,
“Packmol: a package for building initial configurations for molecular
dynamics simulations.” Journal of computational chemistry, vol. 30,
no. 13, pp. 2157–2164, October 2009. [Online]. Available: http:
//dx.doi.org/10.1002/jcc.21224

[22] A. Herraez, “Jmol: an open-source Java viewer for chemical structures
in 3d,” 2010, http://www.jmol.org/.

[23] N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, “cclib: a library
for package-independent computational chemistry algorithms.” Journal

of computational chemistry, vol. 29, no. 5, pp. 839–845, April 2008.
[Online]. Available: http://dx.doi.org/10.1002/jcc.20823

[24] Virtual Laboratory Team at CYFRONET, “The PL-Grid Virtual Labo-
ratory Website,” 2010, http://wl.plgrid.pl.

[25] DICE Team at CYFRONET, “GridSpace 2 Website,” 2010, http://gs2.
cyfronet.pl.

628 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

