Enhancing VLAM Workflow Model with MapReduce Operations

Mikołaj Baranowskia, Adam Bellouma, Marian Bubaka,b

aInformatics Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
bDepartment of Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland

{baranowski, a.s.z.belloum}@uva.nl, bubak@agh.edu.pl

Motivation

- Importance of MapReduce in processing big data
- Pig Latin and Sawzall – solutions based on Domain Specific Languages that provide simple and user-friendly access to MapReduce resources
- To get access to MapReduce resources, users have to use different environments for specifying and running MapReduce jobs along with other application models like workflows

Design and Implementation

- Designed DSL describes only Map operation
 - Map operation is changed many times during the implementation process and the most of the execution time is spend on waiting for I/O operations
 - Users rarely change reduce and aggregate operations and they use a small number of them
 - The execution time strongly depends on reduce phase
- DSL translates Map operations to many platforms
 - Specifies types of processed data (required statically typed Hadoop reducers)
 - Defined with Ruby programming language which allows to choose an appropriate implementation

Example application (word count)

- DSL was used to define Map operation (Listing 1)
- Special routines (map, c.string, c.number) were designed to simplify development of Map operations
- Sum reducer (c.sum) is included in the Hadoop distribution

Conclusions

- Comparing to others, developed method provides a portable and pluggable solution
- The solution based on dynamic languages and DLS allows to define Map operation with a short, clear code
- It can be adapted to many existing applications thanks to the limited number of dependencies (Ruby)
- Map operations defined with the proposed DSL can be executed on many MapReduce platforms

Acknowledgements – This work was supported by the Dutch National Program COMMIT.

Bibliography