
AGH University of Science and Technology
in Kraków, Poland

Faculty of Electrical Engineering, Automatics,
Computer Science and Electronics

Methodology and Tool Supporting
Cooperative Composition of Semantic

Domain Models for Experts and
Developers

Maciej Rza̧sa

Master of Science Thesis
Institute of Computer Science

Supervisor:
PhD Marian Bubak

Consultancy:
Tomasz Gubała

Kraków, September 2011

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że niniejsza̧
pracȩ dyplomowa̧ wykonałem osobiście i samodzielnie i że nie korzystałem ze źródeł innych
niż wymienione w pracy.

Maciej Rza̧sa

Akademia Górniczo-Hutnicza
im. Stanis lawa Staszica w Krakowie

Wydzia l Elektrotechniki, Automatyki,
Informatyki i Elektroniki

Metodologia i narzedzie umożliwiaja̧ce
wspó ltworzenie semantycznych modeli

dziedzinowych przez ekspertów i
programistów

Maciej Rza̧sa

Praca Magisterska
Katedra Informatyki

Promotor:
dr Marian Bubak

Konsultacja:
Tomasz Gubała

Kraków, Wrzesień 2011

Abstract

Development of specialized software requires from computer science spe-

cialists deep understanding of the problem domain. To obtain knowledge

required for creation proper application model, cooperation with a domain

expert is essential. However differences in world description method by

experts and developers may lead to inconvenience and failures in the col-

laboration.

This thesis proposes a method of domain modelling for domain experts

and developers. We describe an iterative cooperation methodology where

each of participants contribute to created model using methods that he

is accustomed with. We also propose methods of model evolution and

validation.

As a result of this work, the Domain Model Builder was implemented. It is

the tool that supports iterative cooperation oriented to knowledge passing.

Using the DMB presented concepts were evaluated during two sessions con-

sisting in model creation according to presented methodology. Experiments

results and participants opinions approved that the methodology is suitable

to domain modelling in cooperation with an expert in that domain.

The thesis starts with problem definition and its background (Chapter 1).

Chapter 1 it describes existing methods of data modelling, especially fo-

cusing on a role of a domain expert during the modelling process. It also

depicts software that facilitates team collaboration.

Chapter 2 introduces a metamodel used as a framework of the domain

modelling process. We describe its elements and transitions. In this chapter

the proposed metamodel is compared with similar ideas.

Chapter 3 describes the methodology of domain modelling. It characterises

consecutive stages of cooperation and defines roles of participants (an ex-

pert and a developer). It also delineates objectives of the cooperation and

requirements of the elaborated model. Finally it discusses features that the

methodology is distinguished by.

The Domain Model Builder is describes in the Chapter 4. This chapter

shows how the methodology is implemented by the tool. It also depicts

design and implementation of the Domain Model Builder.

The methodology and the tool were validated with modelling sessions that

involved various experts. Chapter 5 describes conclusions of two of them:

modelling flood warning system and a part of the civil engineering domain.

Keywords: domain modelling, domain expert, semantic model, metamodel, software

methodology, Ruby on Rails, Redmine

Acknowledgments

First of all I would like to express my gratitude to my supervisor, dr Marian Bubak, for his
invaluable suggestions time and help.

I would like to thank Tomasz Gubała for insightful look and inspiring advices that could
not be overestimated.

I express my gratitude to Pau Fernandez for his consultancy during my scholarship at the
Universitat Politecnica de Catalunya.

I am also grateful to Marek Kasztelnik and Dominik Siwiec for help in evaluation of the
concepts proposed in this thesis.

Warm thanks go to my brother, Wojciech Rza̧sa, because without his inestimable support
and counsel it would have been difficult to finalise this work.

Parts of this work was elaborated during Erasmus Programme scholarship at the Universitat
Politecnica de Catalunya under supervision of Pau Fernandez.

This thesis is related with the UrbanFlood [1], a project funded under the EU Seventh
Framework Programme, Theme ICT-2009.6.4a. ICT for Environmental Services and Climate
Change Adaption. Grant agreement no. 248767.

Contents

1 Background 12
1.1 Role of domain modelling and domain expert in software engineering method-

ologies . 12
1.1.1 Model-Driven Architecture . 1.1.2 Domain-Driven Design . 1.1.3 Agile

methodologies. 1.1.4 Unified Meta Language as a data modelling tool . 1.1.5

Summary – domain expert role.

1.2 Software supporting modelling and collaboration. 16
1.2.1 Case systems . 1.2.2 Wiki . 1.2.3 Project management tools . 1.2.4 User

stories tools.

1.3 Objectives of this work . 18
1.3.1 Motivation. 1.3.2 Aims of the thesis.

2 Metamodel: a Framework of Domain Description 21
2.1 Elements. 21

2.1.1 Entity . 2.1.2 Attribute . 2.1.3 Association . 2.1.4 Alternative names.

2.2 Transitions. 27
2.2.1 Split . 2.2.2 Merge. 2.2.3 Extract .

2.3 Conclusions. 30

3 Methodology of Domain Model Composition 32
3.1 Participants of the cooperation. 32

3.1.1 Domain expert. 3.1.2 Software developer.

3.2 Overview. 33
3.2.1 Initialization: Defining and extracting . 3.2.2 Iteration: Correcting and adding

details. 3.2.3 Stop condition: Consistent model .

3.3 Participants’ tasks. 38
3.3.1 Expert tasks. 3.3.2 Developer tasks.

3.4 Cooperation objectives . 39
3.5 Features . 39

3.5.1 Semantics . 3.5.2 Iterative cooperation. 3.5.3 Early development. 3.5.4 Is it

agile?.

3.6 Conclusions. 41

Contents 7

4 Domain Model Builder: a Tool for Cooperative Domain Modelling 42
4.1 Requirements. 42

4.1.1 Functional . 4.1.2 Nonfunctional.

4.2 Architecture. 43
4.3 Functionality. 45

4.3.1 Metamodel implementation. 4.3.2 Model visualization. 4.3.3 Cooperation

process logging. 4.3.4 Methodology support. 4.3.5 Summary.

4.4 Implementation. 53
4.4.1 Metamodel elements implementation details. 4.4.2 Model transitions.

4.4.3 Activity log. 4.4.4 Diagram generation. 4.4.5 Used tools and mechanisms –

summary.

4.5 Technological dependence. 57
4.5.1 Ruby and Ruby on Rails. 4.5.2 Redmine. 4.5.3 Database. 4.5.4 Graphviz.

4.5.5 Plugins.

4.6 Conclusions. 60
4.6.1 Requirements fulfillment. 4.6.2 Summary.

5 Validation of Metamodel and Methodology 61
5.1 Experiment description. 61

5.1.1 Controlled experiment: flood forecasting. 5.1.2 Full experiment: road design.

5.2 Results of modelling. 62
5.2.1 Result types. 5.2.2 Flood forecasting. 5.2.3 Road design .

5.3 Experts’ opinions. 67
5.3.1 Flood forecasting – software engineer. 5.3.2 Road designing – civil engineer.

5.3.3 Summary.

5.4 Lessons learned. 70

6 Conclusions 72
6.1 Summary. 72

6.1.1 Methodology. 6.1.2 Tool. 6.1.3 Evaluation.

6.2 Future work. 74
6.2.1 Methodology. 6.2.2 Tool.

Bibliography 79

List of Figures

2.1 Domain builder metamodel . 22
2.2 Entity concept . 23
2.3 Attribute concept . 24
2.4 Generalization concept . 26
2.5 Relation concept . 27
2.6 Split operation . 29
2.7 Merge operation . 30
2.8 Extract operation . 31

3.1 Initialization of cooperation process . 34
3.2 Iterative model elaboration . 35
3.3 Modelling iteration step . 36
3.4 Model validation . 37

4.1 MVC in Ruby on Rails . 44
4.2 Sample entity page . 46
4.3 Association features . 47
4.4 Split page . 48
4.5 Merge page . 49
4.6 Model visualisation . 50
4.7 Activity log page . 51
4.8 Changeset page . 52
4.9 Association implementation: class diagram 54
4.10 Association implementation: ERD . 54
4.11 Changeset tree mechanism . 56
4.12 Plugin usage . 58

5.1 Modelling course diagram explanation . 63
5.2 UrbanFlood domain diagram . 64
5.3 UrbanFlood modelling course . 66
5.4 Road design domain diagram . 68
5.5 Road design modelling course . 69

List of Tables

4.1 Technology replacement possibilities . 60

List of Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CASE Computer-Aided Software Engineering

CMS Content Management System

CORBA Common Object Request Broker Architecture

CSS Cascading Style Sheets

CWM Common Warehouse Metamodel

DDD Domain-Driven Design

DMB Domain Model Builder

DNA Deoxyribonucleic acid

ERD Entity Relationship Diagram

EWS Early Warning System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

MDA Model-Driven Architecture

MDD Model-Driven Development

MOF Meta Object Facility

MVC Model-View Controller

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

List of Tables 11

RNA Ribonucleic acid

SCM Source Code Management

UML Unified Modeling Language

VP-UML Visual Paradigm for UML

XMI XML Metadata Interchange

Chapter1
Background

In this chapter we introduce a purpose of this thesis. To obtain this goal

we depict a role of a domain expert and domain modelling in a software

development process. We also show different technical solutions supporting

collaboration and modelling: CASE tools, wiki systems and project man-

agement systems. Finally we introduce the objectives of this work: building

a methodology and a tool supporting domain modelling for experts and

developers.

1.1 Role of domain modelling and domain expert in software engi-
neering methodologies

This section presents the state of the art in the subject of domain modelling in software crafting.
Firstly we present Model-Driven Development. Next we focus on one of its implementation
that focuses on the understanding of a problem domain: Domain-Driven Design. We also
outline agile methodologies with special attention payed to Agile Modelling. The section is
summarised with description of the role of a domain expert in the modelling process.

To facilitate understanding of following chapter, we introduce two basic definitions.

Definition 1 (Model) A model is a simplified version of a certain concept. A model represents
several feature of the original, depending on its purpose and may be usable in place of original
with respect to this purpose [2][3].

Definition 2 (Metamodel) Metamodel is a set of rules and constructs needed for creating mod-
els [2][4][3].

They are a base for further considerations about modelling included in this chapter.

Chapter 1. Background 13

1.1.1 Model-Driven Architecture

Haileper and Tarr in [5] defines Model-Driven Development:

Model-driven development (MDD) is a software-engineering approach consisting
of the application of models and model technologies to raise the level of abstraction
at which developers create and evolve software, with the goal of both simplifying
(making easier) and formalizing (standardizing, so that automation is possible) the
various activities and tasks that comprise the software life cycle.

To implement MDD, Object Management Group (OMG) elaborated Model-Driven Archi-
tecture (MDA). In the MDA the key artifact is the Platform Independent Model (PIM) – a model
of a system being designed that describes its functions but not implementation details. PIM is
intended to be translated to Platfotm Specific Model (PSM). PIM is expressed in a modelling
language whereas PSM is its mapping to programming language and enables deployment the
model as an executable application [6].

MDA uses several OMG standards, such as:

⇒ Unified Modeling Language (UML),

⇒ Meta Object Facility (MOF),

⇒ XML Metadata Interchange (XMI),

⇒ Common Warehouse Metamodel (CWM).

The aim of the MDA is to facilitate software development by enabling higher abstraction
to its design. Providing models that are platform independent MDA is suppose to increase
interoperability introduced by OMG in previous standards (such as CORBA[7]). On the other
hand modelling a system from different points of view, MDA introduces redundancy and adding
abstraction layers hinders changes [5].

1.1.2 Domain-Driven Design

Domain-Driven Development is an approach to software design that is based on deep under-
standing of a problem domain [8]. It can be considered as a MDD method, however, DDD has
slightly different aims than MDA. Whereas a modelling process in the former method focuses
on in-depth domain comprehension, the latter one use models to achieve platform indepen-
dence. Broadly speaking DDD focuses on transmitting and structuring of knowledge, while
MDA solves technological issues [9].

A foundation of a software architecture in DDD is a domain model whose building blocks
are outlined below [10][11]:

Entity – represents an object that has identity.

Value Object – represents object without identity, described by its attributes. Value objects
are immutable.

Chapter 1. Background 14

Service – a stateless operation that refers to domain element but does not naturally belongs to
any of domain elements.

Module – is used to group related entity.

Aggregate – a set of associated objects. Every Aggregate has one root, that is an Entity. A
root is the only element accessible from the outside of an aggregate.

Factory – a class responsible for objects (Entities and Aggregates) creation.

Repository – a structure that encapsulates object persistence and enables obtaining a reference
to an object.

Domain knowledge is built as a result of cooperation with experts [10]. The communi-
cation between a development team and experts consists mainly in conversation concerning
the domain. As a result of this collaboration the team builds an ubiquitous language – a spe-
cialized language that precisely describes the domain and that is intended to use during whole
development process.

During its usage a model should be constantly refactored to adapt it to newly gained knowl-
edge and increase its conformity with a domain. DDD practices contains also rules that help to
preserve model integration. They focuses on bounding models and providing clear methods of
exchanging knowledge between them.

DDD rules supports creation of domain models. From the point of view of this thesis
the most important principles are involvement of a domain expert and elaborating ubiquitous
language.

1.1.3 Agile methodologies

Agile software development methodologies are a group of lightweight methods of delivering
software. They base on competence of individual member of a development team [12]. As they
relay on communication amongst a people, they are well suited to small or medium team and
projects of such size [13].

The essence of these methods is outlined on Agile Manifesto [14]. The Manifesto is elab-
orated in the Principles behind the Agile Manifesto [15]. They emphasize importance of co-
operation between customer and developers and personal traits of team members. The aim
delineated with these two documents is to provide software that satisfy a customer with possi-
ble preservance simplicity, both in the development process and in the software architecture.

The important part of agile concept is to involve a customer in a development process.
Although he is not intended to write code, but he may provide feedback basing on earlies
prototypes. Thus a customer becomes to some extent a member of a development team.

User stories

Creating user stories is a simple method of requirements modelling that strongly involves a
customer. A story is a unit of requirements that describes a user visible functionality that can be

Chapter 1. Background 15

developed within one iteration 1 [17]. A story is prepared by a customer, but then development
team discusses it and may ask a client for clarifications. Therefore a customer is the one that
owns the stories [18]. As they are written by him, they are supposed to be understandable for
him. User stories are a method of problem decomposition in order to plan development.

Agile modelling

Although agile methodologies focus on providing working code rather than comprehensive
documentation, there is an idea agile model creation introduced by Ambler in [19] and out-
lined by Abrahamsson in [16]. Methods described in those papers consists in applying agile
assumptions not only to coding, but also during modelling process. Agile modelling itself is
insufficient. To provide working application one need to consider combining it with other agile
techniques.

As agile methods focus on the working software not on the documentation, agile models
are not required to be comprehensive. Ambler in [19] defines features of model that causes that
they are just barely good enough2 Model fulfill this requirement when:

⇒ fulfill their purpose;

⇒ are understandable;

⇒ are sufficiently accurate;

⇒ are sufficiently consistent;

⇒ are sufficiently detailed;

⇒ provide positive value;

⇒ are as simple as possible.

As one can see, these conditions are not strict and may be treated as guidelines.

1.1.4 Unified Meta Language as a data modelling tool

UML is a general purpose modelling language used for designing object oriented software [21].
It is intended to provide possibility of describing different issues of development, beginning at
requirements modelling through architecture design until deployment planning.

UML defines two categories of diagrams: behavioral and structural. The former define
dynamics of modelled system and its operation, and the latter – its architecture.

The class diagram, one of structural diagrams defined by the UML specification, is a tool
that enables data modelling. It depicts a class graph structure and provides a simple method of

1In agile methodologies development process is split into parts called iterations that lasts one to six weeks and
result running and tested code [16][17].

2Noble and Biddle in [20] contrast good enough software with previous approach that claims that software
should be correct and efficient. They interpret this change as one of symptoms of the postmodern turn in the
software development.

Chapter 1. Background 16

describing object oriented design. Therefore this diagram is used to depict structure of domain
models.

1.1.5 Summary – domain expert role

Domain expert presence is crucial during domain modelling. Without his aid there is always a
risk of misunderstanding modelled concept. However his duty differs depending on the used
methodology.

In the DDD his role is well defined:

⇒ he explains domain concept to developers;

⇒ he creates and verifies ubiquitous language;

⇒ he verifies prepared model.

In case of Agile method it may vary. He may act as a customer mentioned in agile method-
ologies and because of that he should closely cooperate with developers and verify their work.

As can be seen well-known methodologies indicate a need of cooperation with domain
experts. Still in most cases they omit to specify such a method of this collaboration that enables
seamless knowledge transmitting and verifying.

1.2 Software supporting modelling and collaboration

This section presents application that facilitates collaborative creation of software with special
attention to modelling issues. We also focus on the adjustment this software for people that are
not computer science professionals (such as domain experts).

1.2.1 Case systems

Computer-Aided Software Engineering tools are applications that facilitate software develop-
ment process. They aim is to facilitate software development process. CASE systems provides
wide functionality.

The simplest focus on creating UML diagrams and exporting them as images. Some of
them omit to implement whole UML specification and provide only a few diagrams (e.g. UM-
Let [22] enable only class diagram creation). More advanced tools support more sophisticated
functions. Visual Paradigm for UML (VP-UML)[23] supports modelling using all UML dia-
grams. Moreover it enables code generation from models and updating models according to the
source code (round-trip engineering). VP-UML allows also sharing models using XMI. Thus
it may be considered as a tool for MDA.

As CASE tools generally provides non-trivial functionality and an advanced user interface,
majority of them are desktop application. Popular and widely-used desktop CASE systems
are: VisualParadigm [23] and IBM Rational Rose [24]. Comprehensive list of CASE systems
compatible with the UML is available on the web: [25].

Chapter 1. Background 17

While it is not very popular solutions, there are several web-based CASE systems. They fre-
quently enables possibility of cooperation that is not available in classical tools. Mackay, Noble
and Biddle in [26] describe NutCASE – simple web application that provides functionality of
class diagram drawing. There also several tools available on the web:

1. zOOml – application that enables UML class diagram sketching and exporting [27].

2. WebSequenceDiagrams – application to creating UML sequence diagrams, using simple
textual representation [28].

3. BeoModeler – CASE tool implemented as a Rich Internet Application (using Flash).
Supports diagrams: use case, object, class, package, interaction [29].

Advanced CASE tools supports full development process and may considerably facilitate
work of development team. But the rich functionality cause high complexity of these tools. For
that reason they may be difficult to learn for people that are not accustomed to programming.
The simpler tools, seem to be better suited for such people. Especially useful web CASE
applications appear. They provide simple functionality and do not require installation, thus it
should be easy to adapt.

1.2.2 Wiki

Wiki is web application oriented on collaborative creation of documents stored as web pages.
Cunningham and Leuf in [30] define wiki:

Wiki is a piece of server software that allows users to freely create and edit Web
page content using any Web browser. Wiki supports hyperlinks and has a simple
text syntax for creating new pages and crosslinks between internal pages on the fly.

Present wiki systems supports easy markup that allow users to format text stored on pages and
embed media files (e.g. images). Many wiki systems provides version history tracking, access
controll and other functions facilicating collaboration. For example MediaWiki (the engine of
the Wikipedia) enables amongst others [31]:

⇒ editing articles using wiki markup

⇒ discussing about articles

⇒ tracking changes

⇒ spam filtering

⇒ full text search

Wiki systems provides functions enabling collaborative text creating. Designed to be user-
friendly, they are supposed to be easy to adapt for non computer science people. Therefore they
are a tool that is well suited for collaboration with a domain expert.

Chapter 1. Background 18

1.2.3 Project management tools

During project development, a team demand more specific communication tools than simple
wiki documents. Time tracking, task management and work planning are only examples of
these needs. To respond these requirements project management software is used. This type
of application facilitates cooperation by providing functions mentioned above. Frequently they
also enables code repository access, documenting with wiki systems and other specialised ac-
tivities. Typically they are web applications. Examples of this kind of software are Redmine
[32] and JIRA [33].

As project management tools often provides wiki systems and discussion forums, they are
well suited to cooperation with domain experts (similarly to standalone wiki systems). Inte-
grating tool used for knowledge passing with project management allow experts to accustom to
this type of software and to involve in more specific activities (e.g. checking project progress
or task-specific domain problems).

1.2.4 User stories tools

Originally user stories are supposed to be written down on index cards with one story per card.
This solution provides simplicity and intuitiveness, but has several disadvantages. Stories on
index cards are inconvenient for copying and changing. They lacks auto numbering support
and it is difficult to share them (especially in distribute teams) [34].

To respond these needs, various software tools are developed. Rees in [34] discuss adap-
tation of different project management tools to user stories creation, e.g. issue tracker or wiki
system. Although these solutions may be used to manage stories, there are specific user stories
tool. Two of them are described in [34] and [17]. The aim of the former is stories management
especially easily grouping. The latter focus on attaching a user story to code created on the
basis of this story and as a result of that improve software documentation.

There is multitude of other tools that supports user stories. An outline of them is provided in
[35]. Besides standalone applications, such as XPlanner [36], there are plugins of development
tools. e.g. Redmine Backlogs plugin [37].

1.3 Objectives of this work

Understanding of client requirements is important during every software development process.
However in case of specialized software, comprehension of the problem domain is the key
issue.

A method for a developer to obtain needed knowledge is cooperation with a domain expert
that could be for instance a life scientist, a businessman or an engineer. The problem is that a
method of knowledge description used by an expert is utterly different than a software model
needed by a developer.

The aim of the cooperation between these two parties is to correctly transform expert knowl-
edge into a domain model. It requires from a developer elementary understanding of the domain

Chapter 1. Background 19

whereas from an expert – adjusting a domain description to modelling requirements.

1.3.1 Motivation

The survey contained in this chapter (section 1.1) describes different methods that support mod-
elling and cooperation. They indicate importance of modelling as design task (MDA, section
1.1.1), provides leads for cooperation with domain expert (DDD, section 1.1.2) and describe
modelling guidelines (1.1.3). However none of them provides direct methodology of coopera-
tion between domain experts and developers.

The presented solutions omit to define precisely effective manner of expert involvement
during model creation and (especially) validation. They indicate necessity of utilize experts’
knowledge, but fail to specify an exact method of transmitting of this knowledge. Moreover
defined methods of validation of the cooperation process seems to be insufficient for collabora-
tion with a domain expert, because they consists in usage of working software basing on client
requirements (e.g. agile, section), This approach fails to take advantage of expert’s knowledge
concerning domain structure.

Diverse tools described in the section 1.2 supports different activities of software develop-
ment. CASE systems (section 1.2.1) are supposed to facilitate a whole development process.
Other supports specific tasks: documenting (wiki, section 1.2.2) or project management (e.g.
Redmine, section 1.2.3). Software that supports user stories creation are example of tools de-
signed for specific development methodologies.

Amongst variety of applications that facilitate software production it is difficult to find a
tool that is adapted for a process of collaborative building of domain model. Therefore there
is a lack of a tool that would that would support effective building and validation of a domain
model similarly to agile tools that facilitate user stories management.

1.3.2 Aims of the thesis

This thesis responds needs outlined in previous section. Its purpose is to facilitate a process
of domain knowledge transmitting between developers and experts. To achieve this goal, we
propose a collaboration methodology and a tool that supports it:

1. Requirements for the methodology:

Knowledge transmitting oriented – the methodology should help developers to com-
prehend a domain being described. Participants should be able to verify if developer
understands the domain knowledge correctly.

An outcome: semantic domain model – the result of the methodology application should
be a set of connected elements that represent and describe a certain discipline.

Well suited for cooperation with non computer science people – experts involved in
cooperation should be able to use a method of description that is convenient for
them. They should not be obligated to learn any complex notation or software
design principles.

Chapter 1. Background 20

2. Requirements for the tool:

Implementation of the methodology – the tool should support creation and validation
a domain model according to the methodology.

Possibility of verification of the methodology – the tool should enable evaluation of
the methodology by examining if a course of the cooperation is convenient for par-
ticipants and if an elaborated model conforms with domain knowledge.

Easy to use for domain experts – experts should be able to easily adapt to work with
the tool.

A methodology and a tool that fulfill these requirements should improve cooperation be-
tween specialist of various domain and computer science professionals. To prove worth of
proposed solutions experimental modelling sessions involving experts of different disciplines
should be conducted.

Chapter2
Metamodel: a Framework
of Domain Description

In this chapter we present a metamodel used to build domain model during

cooperation between an expert and a developer. It describes main parts

of the metamodel (entity, attribute and association) and their transitions

(merge, split and extract). We also show relation between formal model

and domain description and discuss sources of this solution: DDD and UML

class metamodels.

2.1 Elements

The metamodel is a static part of proposed domain modelling methodology. It serves as a
framework to develop domain model basing on natural language description. Building blocks
are shown in the Fig. 2.1 and described in this section. The most important part of the meta-
model is an entity (section 2.1.1) which gathers whole knowledge related to specific concept.
Simple features of an entity are described by a set of attributes (section 2.1.2) whereas entity

interconnections are characterised by entity associations (section 2.1.3). Alternative names of
model elements (section 2.1.4) facilitates resolution of terminology vagueness.

As solutions presented in this thesis are supposed to be rather an evolution than a revolution,
the metamodel is based on several concepts, that are described in the Chapter 1. Domain-Driven
Design is source of an Entity as central element of the metamodel linking real-word concept
with object-oriented structures (see section 1.1.2). As the metamodel bases closely on object-
oriented languages structure represented, thus it is similar to the UML class diagram metamodel
(see section 1.1.4). Basing on the mentioned solutions the presented metamodel enhanced them
adding possibility of semantic modelling.

Chapter 2. Metamodel: a Framework of Domain Description 22

Entity
name
alternalive_names
definition
+sp l i t
+merge

Association

GeneralizationRelation
name_in_source
name_in_target
cardinality_of_source
cardinality_of_target
alternalive_names_in_source
alternalive_names_in_target

Attr ibute
name
type
alternalive_names
cardinality

1 0..*
source

1 0..*
target

 1

 0..*

AlternativeName
name

 1

 0..*
 10..*

1

 0..*

Figure 2.1: Domain builder metamodel.

2.1.1 Entity

Main building blocks of any description of the reality are definitions. Each definition consists in
two main parts: definiendum (a defined word) and definiens (a description) [38][39] and fulfill
a dual function. Firstly it introduces a proper vocabulary, that apply for the domain. Creation
of a set of definitions produces foundations of a specialized language that can be used during
discussions. Second function of definitions is depiction parts of the domain. A group of related
definitions provides a precise description of a reality part, disambiguates used terms and assigns
them an unequivocal meaning.

Definition 3 (Entity) Entity is an element of the metamodel that describes a single concept
of modelled domain. Entity is defined by its name, a set of attributes (Def. 4) and a set of
associations (Def. 5). Entity is associated to a concept definition that is written using natural
language.

An entity is an equivalent of a definition in the metamodel (see: Fig. 2.3). It is a main
building block of the metamodel and is used to depict a single concept of the described domain.
An entity is identified by name that corresponds to the definiendum.

A substitute of the definiens is twofold. First part is natural language description enriched
with necessary figures, formulas etc. It encapsulate essence of a defined concept and should
be rather simple than comprehensive. Therefore it may contain illustrations that depict de-
fined idea, mathematical formulas that provides quantitative information and text fragments
that summarize knowledge referring to described concept.

Chapter 2. Metamodel: a Framework of Domain Description 23

Definition
Entity
Name
Attributes
Associacions

Brief definition

Class

Student is a Person
Pupil, Learner
Name, Age
University

Student

someone who attends an
educational institution

Name
Age
University

Student
A student as a
person is identified
by name and is a
learner, or
someone who
attends an
educational
institution. In some

b.

a.

Figure 2.2: An entity lays between a real word concept and a programming language class.
Intended to be easily understood by an expert and a developer, an entity enhances a knowledge
exchange process. The entity concept: a. overview; b. example.

Features of the entity (alternative names, attributes, entity associations: generalizations

and relations; see: Fig. 2.1) are complementary description of the modelled concept and for-
malise its definition. Although one entity is identified by one name, it can posses several aliases
(alternative names see section 2.1.4) that occur during the cooperation. Features of the entity

are described by attributes (simple features, section 2.1.2) and relations (complex features). A
generalization servers to encapsulate fact that certain entities have common parts. The gener-

alization and the relation are types of the entity association (section 2.1.3). Associations serves
to connect entities to each other. All of elements mentioned in this paragraph are described
carefully in successive subsections.

The entity is a simplified equivalent of the class in object-oriented modelling, thus it can be
directly mapped to a class definition.

2.1.2 Attribute

A complex being may be partially described by displaying set of its simple features, those
that could be characterised with a short value or set of short values. For a student examples
are: name (few words), date of birth (few numbers), or list of used email addresses (a set of
addresses). To express this in an entity, it has set of attributes (Fig. 2.3).

Definition 4 (Attribute) Attribute is a metamodel element that describes a simple feature of a
concept. Attribute is characterised with: name, type, cardinality and a list of sample values.

Chapter 2. Metamodel: a Framework of Domain Description 24

Definition
Entity
Name
Attributes
Associacions

Brief definition

Class

Student
A student as a
person is identified
by name and is a
learner, or
someone who
attends an
educational
institution. In some

Student

Name
Age
University

attributes

Student is a Person
Pupil, Learner
Name, Age
University

someone who attends an
educational institution

b.

a.

Figure 2.3: Attribute serves as a description of simple entity features. Describing simple entity
features, attributes serve to separate incomplex aspects of a described idea. Attribute concept:
a. overview; b. example.

The first of them, a name, is the most important one. An attribute name should be unique
amongst one entity attributes set as the name identifies an attribute. And as it describes an
essence of an attribute, a name should be selected with care, taking a domain terminology
under consideration. An attribute has also an attached list of alternative names. Their role is
analogous to another cases and is described in a subsection 2.1.4.

A feature complementary to an attribute name, a set of sample values characterizes exem-
plary data that could be described by the attribute. Sample values help to understand a purpose
of an attribute and enable possibility to infer further features of it (type and cardinality). Al-
though they do not posses strict equivalent in object oriented modeling, they can be useful
during preparing test cases during development phase.

Type is one of those attribute features that are more important from the programming point
of view than from the semantic one. It enables to determine data type of a class field during
development phase. Classifying an attribute structure, a type definition helps to understand
what kind of data is represented by it. Basic attribute types are: whole numbers (integers),
real numbers (floats) and texts (strings). This list can be extended in specific cases.

Similarly to type, cardinality is especially useful during development, but what is more it
also represents significant part of domain knowledge. By defining cardinality, one can distin-
guish between features that can be singular (one) or plural (many). Singular ones are name or
age, and plural – list of favourite quotations or used emails.

Chapter 2. Metamodel: a Framework of Domain Description 25

The attribute is an equivalent of the class field in object-oriented programming. The name

is mapped to a field name, the type to a field type. Cardinality decides if a field is a simple
variable or an array.

2.1.3 Association

Describing only simple features of the entity, attributes fail to depict concepts interrelationships
and complex features introduced by them (cf. Def. 4). These connections are essential to obtain
model integrity and relate all dependencies inside the described domain. A representation of
these junctions in the metamodel are associations.

Definition 5 (Association) Association is an ordered link between two entities (called associ-

ation ends): one of them is a source of the association and another one is its target.

Associations has two subgroups: generalizations an relations.

Generalization

The main reason of using generalization is categorisation of entities. This type of entity in-
terconnection can be described as is a kind of interrelation: Student is a kind of a person. It
enables clustering entities by its superentity.

Definition 6 (Generalization) Generalization is type of association (Def. 5) whose source and
target represent similar ideas, but the idea described by the source is more specific than the one
described by the target.

The secondary purpose of introduction of generalization is reusability of entity elements.
When several entities posses similar features it is highly possible that the intersection of the fea-
tures could be extracted as generalizing entity. This technique facilitates modelling by reducing
model complexity.

Generalization is mapped onto class inheritance. With regard to model simplicity one entity
can posses only one superentity. This limitation is also important to obtain seamless code
generation because many programming languages (e.g. Java, Ruby) do not support multiple
inheritance.

Relation

Definition 7 (Relation) Relation is type of association (Def. 5) that represents complex fea-
tures of modelled concepts or their strong connection. Each end of relation is characterised
with a name and cardinality.

Containment and strong connection are two types of inter-concept link represented by the
relation. In first case (containment) relation describes complex features of an entity, that cannot
be depicted by attributes. Semantics of this association is: source entity consists of target one

Chapter 2. Metamodel: a Framework of Domain Description 26

Definition
EntityA is a EntityB

Name
Attributes
Associacions

Brief definition

ClassB

ClassA

Person

Student

Student
A student,
as a person, is
identified by name
and is a learner, or
someone who
attends an
educational
institution. In some

Student is a Person

Pupil, Learner
Name, Age
University

someone who attends an
educational institution

a.

b.

Figure 2.4: A generalization is an entity association that serves to represent fact when one
concept is kind of another (e.g. a student is a kind of a person). It is also directly mapped to
class inheritance in object oriented programming. The generalization concept: a. overview; b.
example.

and target is part of a source (Fig. 2.5). The second case (strong connection) corresponds with
two entities that are not containment relation in real word, but they require one another to be
understood. Semantics of this meaning is: source has a target and a target belongs to a source.

The relation extends the association definition by adding several fields that describe both
ends. Name in source is a relation field identifier in source entity. Alternative names in source
enables resolve naming problems. Cardinality (one or many) of a source entity determine mul-
tiplicity of source entity in this relation (one or many). A target end posses equivalent features
that acts likewise.

The relation in both cases is mapped onto a class aggregation. Names in a source and in
a target becomes fields names that relates to respective aggregations. Cardinalities are base to
decide if relation should be represented as single reference or as a array of references.

2.1.4 Alternative names

During creating a description of a domain naming doubts can arise. Furthermore one element
may be described by many different names. Methodology participants have to decide, which

Chapter 2. Metamodel: a Framework of Domain Description 27

Definition
Entity
Name
Attributes
Associacions

Brief definition

ClassA ClassB

association

Student
A student as a
person is identified
by name and is a
learner, or
someone who
attends an
educational
institution. In some

Student is a Person
Pupil, Learner
Name, Age
University

someone who attends an
educational institution

Student

Name
Age
University

University

Students

b.

a.

Figure 2.5: A relation has two-fold semantics. Basically it expresses that a being consists of
other ones (e.g student group consists of students). Second meaning of the relation is strong
connection between two beings, represented by a statement has a, e.g. a student has a super-
vising professor. Both meaning of association are mapped to a class aggregation. The relation
concept: a. overview; b. example (second case).

name is the most adequate one and set is as main name of element. Remaining ones could be
saved as alternative names. Moreover one of them could be set as code name - name used to
identify element is generated code.

Definition 8 (Alternative names) Altenative names are a list of names that equivalently define
a metamodel element. A list of alternative names is attached to every metamodel element that
is characterised with a name, i.e. entity (Def. 3), attribute (Def. 4), and relation (Def. 7).

This feature is especially important if code and model languages are different (e.g. model
description is made in Polish and code identifiers are in English). Elements that can have
alternative names are: entity, attribute, and relation (alternative names in source and in target).

2.2 Transitions

Because of iterative nature proposed methodology, participants should be able to evolve a model
in an easy way. A final model should represent distinct concepts in distinct entities and further-
more one concept should be mapped to exactly one entity.

Definition 9 (Model transition) Model transition is operation conducted at the same time on
several model elements that changes their state.

Chapter 2. Metamodel: a Framework of Domain Description 28

To facilitate a process of obtaining such consistency we define three operation on the model
(called transitions): split (section 2.2.1), merge (section 2.2.2) and extract (section 2.2.3).

2.2.1 Split

As we propose to develop a model in top-down approach, an initial coarse classification of
domain into entities must be elaborated and specified in further cooperation. With growing
amount of details in its definition and features, an entity may become describe too wide part
of a domain. It is also possible that a feature that initially seemed to be simple enough to be
represented as an attribute, needs more exhaustive description. In these and similar cases split

is the operation that facilitates model evolution (Fig. 2.6).

Definition 10 (Split) Split is a model transition that creates a new entity using elements and
definition of an existing one.

During split any subset of entity elements can be chosen as a base to create new one. A part
of the features transferred to a new entity may remain attached to original entity. In this case
they are copied instead of being moved and become an intersection of these entities.

Split operation is intended to achieve state when one entity describe only one real-word
concept. It is useful for step-wise process, when the modelled domain is described as a couple
of entities (in particular as one entity) and then iteratively split into smaller ones.

2.2.2 Merge

During development of a model it may happen that information related to one concept is spread
over several entities. Lowering the cohesion, described situation is cause reduction of the model
clarity. There are two cases when described problem emerges: recurrent entities and overlap-
ping ones.

Definition 11 (Merge) Merge is a model transition that transfer elements or parts of defini-
tions between two entities.

In first case two entities depicts the same concept, but each consists different elements (Fig.
2.7.a). Given that merge joins two entities and create one that consists of a sum of recurrent
entities elements. Second situation happens when one entity contains elements that refer to
another already created one (Fig. 2.7.b). In that case merge omit to delete an entity, but only
move or copy several elements between entities (information exchange).

2.2.3 Extract

The aim of an extract operation is to facilitate knowledge-to-model transition. For an expert the
most natural way of creating domain description is writing it as a single document. Especially
during initial stage of the cooperation, it can be problematic for an expert to divide the descrip-
tion into separate concepts. Therefore preferable way of starting the cooperation is writing one

Chapter 2. Metamodel: a Framework of Domain Description 29

EntityA
Brief definitionName

Attributes
Associacions

EntityB
Name
Attributes
Associacions

Brief definition

EntityA
Brief definitionName

Attributes
Associacions

Student is a Person
Pupil, Learner
Name, Age,
UniversityName,
UniversityCity

Person idenfied by name,
who attends to educational
institution called university.
University has specific
name and location.

Student is a Person
Pupil, Learner
Name
Age

Person idenfied by name,
who attends to educational
institution called university.

University

Name
City

educational
institution called university.
that has specific
name and location.

a.

b.

Figure 2.6: During top-down model development, a split operation is an elementary transforma-
tion. When one entity describes several fundamental domain concepts, collaborators separate
new entities by consecutive splits. As a result cohesion of the model grows. The split operation:
a. overview; b. example.

document that depicts whole domain. During next steps the document is transformed into a set
of entities. This operation is intended to help participants to perform this process.

Definition 12 (Initial definition) Initial definition is a document that coarsely describes mod-
elled domain and is prepared as a first document during the cooperation process.

Definition 13 (Extract) Extract is a model transition that creates a new entity using parts of
an initial domain definition.

Extract creates new entity basing on fragments of initial domain definition. Selected defini-
tion parts becomes a definition of a newly created entity (Fig. 2.8).

Chapter 2. Metamodel: a Framework of Domain Description 30

University

Name
City

educational
institution called university.
that has specific
name and location.

Academy

Name
Professors

An academy is an
institution of higher learning,
research, or
honorary membership.

University

Name
City
Professors

educational
institution called university.
that has specific
name and location.
Purpose of an university is
higher learning, research, or
honorary membership

Academy

Student is a Person
Pupil, Learner
Name
Age
DegreeType

Person idenfied by name,
who attends to educational
institution called university.
As result of studies, student
obtain a degree, depends on
the university: M.A. or M.Sc.

University

Name
City

educational
institution called university.
that has specific
name and location.

University

Name
City
DegreeTypes

An educational
institution called university.
that has specific
name and location.
Depend on a university type,
students graduate with diffrent
degree: M.A. or M.Sc

Student is a Person
Pupil, Learner
Name
Age
DegreeType

Person idenfied by name,
who attends to educational
institution called university.
As result of studies, student
obtain a degree, depends on
the university: M.A. or M.Sc.

a.

b.

Figure 2.7: A merge operation has dual purpose. Firstly it serves to eliminate recurrent or
similar entities by merging them into one. Secondly it may be used to exchange data between
two overlapping entities. Examples of two types of merge: a. simple merge; b. information
exchange.

2.3 Conclusions

The presented metamodel is a bridge between domain description used by experts and class
structure that is a language used by developers. The metamodel enables relating this two meth-
ods of world description by creation a semantic domain model. Elements that are parts of the
metamodel provides a language to formalise definitions provided by an expert and structurise
it into a form that allows code generation of domain classes.

Chapter 2. Metamodel: a Framework of Domain Description 31

Domain description

Domain Entity
Brief definition

Entity
Brief definition

Higher education

Higher education refers to
the stage of learning
that occurs at universities,
academies.

An academy is an institution of
higher learning, research,
or honorary membership.

Peaple that attends to
higher education institutions
arecalled students.

Academy
An academy is an
institution of higher learning,
research, or
honorary membership.

Student
Person who attends
to educational
institution

a.

b.

Figure 2.8: Extract is creation of new entities basing on a domain description document that
is an outcome of initial steps of the collaboration. It is similar to split because it divides an
extensive text into smaller definitions encapsulated in entities. The extract operation idea (a)
and example (b).

Chapter3
Methodology of Domain
Model Composition

In this chapter we describe a methodology of the cooperation that aim at

creation of a semantic domain model. Firstly we characterise participants

of the collaboration: a domain expert and a software developer. Then

work steps: initialization, iterations and stop conditions are introduced.

Next we depict tasks assigned to each participant of model creation and

we define objectives and a stop condition of the collaboration. Finally we

characterise methodology features that distinguish this solution from similar

ones: semantic integration, early development possibility and knowledge

flow tracking.

3.1 Participants of the cooperation

The methodology that is presented in this document is intended to facilitate cooperation be-
tween two collaborators: a domain expert and a developer. Before we define their roles in the
modelling process, we will describe them.

3.1.1 Domain expert

A domain expert is a person that posses extensive knowledge concerning discipline that is in-
tended to be modelled. He could be a scientist, for instance a biologist that needs a DNA
simulation, a businessman e.g. an owner of small factory that want to computerise the produc-
tion or a qualified clerk that assists development of new software that supports communication
with citizens.

In some cases he could be identified with a client in development process. However intimate
knowledge concerning the modelled domain is a necessary condition. A shop owner that needs

Chapter 3. Methodology of Domain Model Composition 33

a simple website to advertise his products is evident example of client that is not a domain
expert at the same time, as his broad understanding of sales is not useful during development
of a CMS (Content Management System) application.

3.1.2 Software developer

A developer is computer science professional that specialize in software development. He is
not required to be experienced in modelled domain, but he needs knowledge about the domain
to create proper software.

3.2 Overview

The aim of this section is to depict stages of the modelling process To achieve this goal, we
describe consecutive phases of the collaboration: initialization (section 4.3.4) and iteration
(section 3.2.2). We also define validation of the model and a stop condition that finalize the
process (section 3.2.3).

3.2.1 Initialization: Defining and extracting

At the beginning of the cooperation participants should collect as much domain knowledge as
possible. They are not required to care about organizing collected data. It is not essential to
eliminate duplication and minor disambiguation. The point of this step is to outline main points
of modelled domain and describe it in holistic way. This phase is shown in the Fig. 3.1.

An expert task during the initialization is to define main concepts of the domain. To make it
as effortless as possible, he should use a language that is specific to his discipline. Besides nat-
ural language descriptions, an expert can use figures, formulas and graphs. Whole description
may be put in one document (an initial definition).

Developer should split document made by an expert into parts that describe distinct con-
cepts. Data (text, figures, formulas etc.) from each part is foundation to build entity. Developer
should name each entity, propose its attributes and connects created entities with associations.

After this initial step basic domain model is attained. It consists of several entities describ-
ing main concepts of modelled domain. Each entity should have initial definition name and
definition. It can have attributes, but it is not essential to define them precisely (by putting
their cardinality and type). More important is to define a name and sample values of each of
them. The goal of adding entities associations is similar: they should be identified rather than
precisely defined.

The best circumstance to conduct this step is face-to-face meeting of participants. Personal
contact of would be for expert a good opportunity to explain to developer building blocks of a
domain. After such session conclusions could be recorded as a document or even as bunch of
entities. However, if organising a meeting is not possible, cooperation could be conduced via
the Internet. In this case participants should start with creating coarse domain description and
then divide it into separate entities.

Chapter 3. Methodology of Domain Model Composition 34

Expert Developer

Papers

Formulas

Figures

Expert knowledge

Domain description

Domain

Entity
Brief definition Entity

Brief definition

Entity
Brief definition

Simple entities

asking for explanationsdefining

extracting

checking

Knowledge representation
transformations

First-class activity
(transforming)

Second-class activity
(feedback)

Legend:

Figure 3.1: Initialization of cooperation. The goal is to create coarse domain description and
extract several basic entities. Collaborators should focus on knowledge gathering (first step)
and basic entities extracting. Information redundancy is acceptable at this point. In the event of
effective communication between parties, creation of domain description document might be
omitted. In this case the knowledge transmitted by an expert could be directly transformed into
simple entities set.

3.2.2 Iteration: Correcting and adding details

After establishing foundation of model during initialization phase, participants should specify
its details. The goal of this phase is to obtain model state when one entity describes precisely
one concept and information related to specific domain part is encapsulated by exactly one
entity. Furthermore entities should be connected by proper associations and defined by their
attributes. Outline of the iteration phase is shown on the Fig. 3.2.

While during the first phase of the communication participants concerns a general vision
of the domain, throughout iterations they should take care about details. Correct names of
elements should be specified. Alternative names should be recorded and one of them should be

Chapter 3. Methodology of Domain Model Composition 35

Entity
Brief definition Entity

Brief definition

Entity
Brief definition

Simple entities

Expert Developer

Entity
Name
Attributes
Associacions

Brief definition

Name
Attributes
Associacions

Entity
Brief definition

Entity
Brief definitionName

Attributes
Associacions

Entity
Brief definitionName

Attributes
Associacions

Name
Attributes
Associacions

Entity
Brief definition

Complete entity set

iterative collaboration
process

Figure 3.2: Iterative model elaboration. The goal is to create a cohesive and consistent set
of entities that precisely describes the modelled domain. Parties should focus on extracting
entities features and association. Collaborators ought to concentrate on redundancy removal
and specifying model details.

chosen as a code name. Cardinalities and types should be defined.
The expert role (Fig. 3.3) is to review elements created by developer and to correct mis-

takes. He should check if extracted entities correspond with domain concepts. His task is also
to specify definition details, to explain ambiguities and to answer questions submitted by a
developer. He should also propound developer corrections of model elements.

A developer should take into consideration observations of an expert. His task is also to
transform model in order to obtain consistency. He can obtain it applying transformations to

Chapter 3. Methodology of Domain Model Composition 36

already created entities.

Expert Developer

ask for details
add details

check correctness
transform model

validate consistency

model inconsistent
model satisfactorily

consistent

First-class activity
(transforming)

Second-class activity
(feedback)

Legend:

Process continuation
(next iteration
or termination)

Figure 3.3: Iteration step. Subsequent tasks done by the parties aim at creating a consistent set
of entities. The role of an expert is to provide required details of domain description and check
developer work. The task of a developer is to transform model by specifying entity elements
or transforming them. After several steps of model elaboration, collaborators should validate
model consistency and decide on process continuation or termination.

3.2.3 Stop condition: Consistent model

After several iteration steps when participants are concerned about detailing domain description
and organizing, they should validate the model. It is done by examining various perspectives:
entities, generated code or even working application (Fig. 3.4).

First phase of consistency validation is entities review. Expert’s role is to check if all entities
elements are related to the domain. He should also assure that none of important concepts
is omitted. Developer’s task is to examine if the model is consistent. He ought to inspect
correctness of entities associations and elements, especially focusing on type and cardinality

accuracy.
If state of the entity set is satisfactory, further methods of validations may be applied. De-

Chapter 3. Methodology of Domain Model Composition 37

Entity
Name
Attributes
Associacions

Brief definition

Name
Attributes
Associacions

Entity
Brief definition

Entity
Brief definitionName

Attributes
Associacions

Entity
Brief definitionName

Attributes
Associacions

Name
Attributes
Associacions

Entity
Brief definition

Complete entity set

ClassA

ClassB ClassC

ClassD ClassE

Domain-layer class structure

Application

code generation

integration & deployment

Knowledge representation
transformations

First-class activity
(transforming)

Second-class activity
(feedback)

Legend:

Expert Developer

domain correctness
verification

application
beta-testing

model integrity
verification

class structure
verification

Figure 3.4: Model validation could be done using different perspectives. Firstly both parties
should examine an entities set. If it is satisfactory, a developer generates code and check if
it is convenient for development. Finally the model could be used in working application to
facilitate providing an expert feedback. Code generation and possible deployment concentrate
on a possibility of such model review that is convenient for both parties.

veloper generates domain model code. Then he checks if it is conforming with information
aggregated in the entity set. If this test passes, code is ready to use in an application. A pro-
grammer can utilize it in the application development. Then working prototype may be shown
to an expert. This is last stage of model validation as during beta tests conducted by an expert
several model lacks might be revealed. If validation fails in any stage, collaborators should
return to iterative process of model development (section 3.2.2).

Chapter 3. Methodology of Domain Model Composition 38

3.3 Participants’ tasks

The presented methodology is distinguished by precisely defined roles of both types of par-
ticipants: experts and developers (for description of collaborators see section 3.1). Tasks per-
formed by these two parties of modelling process are twofold: model development and feed-
back. Model development tasks are also known as first-class activities because they are a direct
contribution to the model. Feedback (second-class activities) is a model review that enables op-
portunity to correct created model or ask for clarification. Interleaving and complementing one
another, these two types of action constitutes process of iterative domain model composition.

3.3.1 Expert tasks

Defining

The most important task of an expert is knowledge transmitting by defining of domain con-
cepts. The method of information passing should be convenient for him so as he can describe
without unnecessary obstacles. An expert may use any knowledge representation that helps to
understand domain depiction. Therefore it is desirable to use mathematical formulas, diagrams,
figures or even movies to illustrate definition text.

Second aspect of this task is responding to developer’s questions and clarifying ambiguities.
By this activity an expert helps a programmer to understand the domain properly.

Correcting

The second-class activity of an expert is checking model elements prepared by a developer.
This task is important because when a developer transforms information provided by an ex-
pert, he could misunderstand some part of it. As a result of his mistake, prepared model will
not completely correspond with described domain. To avoid this situation, an expert should
supervise model information extracting process and correct any error that occurred.

3.3.2 Developer tasks

Extracting and transforming

The main task of developer consists in transforming knowledge from raw form provided by
an expert to consistent structure that enables code generation. This first class activity of the
programmer is two-folded: he extracts entities from textual domain definition (initial definition)
and transforms them and in this way he improve model state.

Extraction introduces structure to plain and linear domain description. Not only extraction
from initial text this task encloses, but also inferring attributes and association from entity
definition. This activity consists also in specifying entity elements details (e.g. cardinality or
type). This actions transform expert knowledge into a domain model.

Transitions applied to entities increase consistency of the model and organizes it. They
enclose entity splits and merges that are precisely described in section 2.2. This activity causes

Chapter 3. Methodology of Domain Model Composition 39

that the model is easier to understand. It also enables possibility of generating correct code.

Consistency checking

The second-class developer activity is model validation of consistency. Whereas an expert task
is checking if model conforms to a domain knowledge, a duty of a developer is reviewing model
formal features.

3.4 Cooperation objectives

The model in its final state should be characterized by several features that decide about its qual-
ity. They are more guidelines than strict requirements but familiarity with them would facilitate
model validation. The set of these rules consists in three elements: cohesion, completeness and
consistency.

Cohesion refers mainly to a single entity state. A coherent entity relates to one and only one
concept. Its definition and elements describes only one modelled being. At the same time
entity that describes a concept is the only place in the model that contains this concept’s
definition. In other words cohesion can be expressed as: one entity per a concept and one
concept per an entity.

Completeness is a feature of a whole model that describes a well defined and strictly limited
part of a domain. All concepts referenced in definitions are represented as entities. Model
completeness requires coherent entities that are connected with precisely described asso-
ciations.

Consistency of model mean that parts of it neither contradict against each other nor are mutu-
ally exclusive. Although inconsistency may occur inside a scope of a single entity, it is
more probable amongst several definitions.

Whereas cohesion and completeness are desirable, consistency is necessary condition of
model correctness. Therefore participants concentrate on obtaining this feature even at the
expense of remaining ones.

3.5 Features

This section briefly recapitulate these features of methodology that distinguish it among other
approaches. Aspects described below are mentioned in various parts of this chapter, but the aim
of this section is to emphasise their significance.

3.5.1 Semantics

The metamodel proposed in this document constitutes a rendezvous-point of domain knowledge
and programming techniques. Definitions written in natural language specific for a domain are
transformed into formal model consisting in entities and then into source code.

Chapter 3. Methodology of Domain Model Composition 40

As a result of this process the code is enriched with domain information what causes that
programming structures posses semantics that refers to real-word concepts. It facilitates later
understanding of code because domain definitions provides documentation of code of a model.
Thus a development team, that use such enriched code, is able to adopt ubiquitous language
required by DDD process [10].

Furthermore structuring domain knowledge with formal defined entities makes this knowl-
edge available for further automated processing. First example of such automation is code
generation mentioned above. Another possibilities are for instance model evolution tracking,
visualization or advanced search.

3.5.2 Iterative cooperation

Iterative characteristic of modelling process enables possibility of repeated attempts of domain
comprehension. Therefore aspects omitted or misunderstood during initial steps might be clar-
ified during later ones. This approach is especially convenient when participants are not able to
work full-time on model development because of other activities.

3.5.3 Early development

Code generation is a part of model validation, thus it creates an opportunity to start using the
model early during development. Through this feature, programmer is able to utilize expert’s
knowledge in initial application prototypes. As a result of that collaborators can precise re-
quirements early basing on beta tests.

3.5.4 Is it agile?

The idea of proposed process has its origin in agile methodologies. User stories were an inspira-
tion of entities method of creating their definitions. Although stories describes usage scenarios
whereas entities defines part of a domain, the common feature is partiality and conciseness
of both descriptions. Similarly to the stories entities’ definitions are created using a language
understandable by a customer (expert) and he owns them (cf. section 1.1.3). A customer (an
expert) is actually part of development team. This fact improves requirements collecting and
enables utilization of his domain knowledge.

Why agile approach adapts to this case? We describe cooperation that characterised by
special features.

1. It involves small group of people (even as few as two of them: a developer and an expert).

2. The cooperation must be very close and efficient, because of non-trivial character of
knowledge being transmitted.

3. As the modelled domain are often related to research projects, requirements may change
during developments process.

Chapter 3. Methodology of Domain Model Composition 41

Problems characterised by such features suits well to agile methodologies.
On the other hand, the one of Agile Principles [15] is:

Working software is the primary measure of progress.

In this case working software is not an absolute aim of the cooperation. More important is to
pass knowledge between participants that may lead to create software. In most cases working
application is one of artifacts of the modelling process, but a model itself is a satisfactory result
of the cooperation. Thus this solution is similar to Agile Modelling mentioned in the section
1.3.1.

To conclude, one would seem that proposed methodology could be classified as Agile.
However it is essential to remember, that the final outcome of typical agile method is working
software whereas the methodology described in this thesis concerns rather organising knowl-
edge by creating semantic models. Thus it is better adapted to scientific applications.

3.6 Conclusions

The methodology presented in this paper is derived from existing methods of modelling. It
uses the metamodel that bases on the UML and DDD metamodels. We also adapted DDD
expert interaction and join it with agile practice of customer being a part of a team. However it
introduces several innovations and improvements:

⇒ well defined developer and expert tasks,

⇒ well defined model transitions,

⇒ joining textual domain definition with formal one,

⇒ adaptation to small teams (especially one to one cooperation).

For these reasons the methodology can be easily adapted by a small team that is preparing to
elaborate domain model.

Iterative conduct of the cooperation facilitate creation of cohesive, complete and consistent
model. As a result of the collaboration, expert knowledge is structured and stored as a semantic
model.

Chapter4
Domain Model Builder: a
Tool for Cooperative
Domain Modelling

The Domain Model Builder – the tool, that implements the methodology

proposed in the thesis is described in this chapter. It shows prototype appli-

cation than enables model composition and presents programming methods

that provide possibility of effective implementation.

Firstly we present requirements for a tool that supports presented method-

ology. Then a general architecture of the DMB is outlined, with special

attention to Redmine with its plugin mechanism. Next we depict tool func-

tionality proving, that it fulfill requirements of the methodology. Finally

DMB implementation is described focusing on used algorithms and special

mechanisms provided by the Ruby programming language.

4.1 Requirements

The goal of the Domain Model Builder is to support an iterative cooperation between an expert
and a developer. Therefore it is intended to enable model building and facilitate participants’
communication.

4.1.1 Functional

Metamodel implementation The most important function of the tool is possibility of model
creation. Therefore it should implement the metamodel structure presented in this thesis (Chap-

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 43

ter 2) and provide functions to manipulate instances of its elements (CRUD1 functions). The
tool is also required to implement model transitions: split, merge and extract (see: section 2.2).

Methodology support The tool should provide functions to creation of model in a manner
described in the methodology. Thus the tool should enable iterative model creation and valida-
tion. The tool also needs to enable text editing and media embedding.

Model visualisation A created model should be visualised in a diagram. The diagram should
contain all important information contained in the model. It also need to be a gateway to all
parts of the model: user should be able to access information concerning any part of model
using its diagram.

Model evolution tracking The tool should not only support the methodology, but also enable
its validation. The tool should record a history of the cooperation and present it to users. It
needs to track changes and their authors. In consequence usefulness and convenience of the
methodology could be validated.

4.1.2 Nonfunctional

Collaboration The tool should provide convenient method of collaboration. As it will be
used by distributed teams, it should be available via the Internet and should be usable by many
people at the same time.

Intuitiveness As domain expert often omit to be computer science professionals, the tool
should be easy to use for such people. Although a user interface needs not to be self explanatory
but still messages presented to its user should not contain technical terminology.

4.2 Architecture

Web application is a type of distributed application. Main part of computation is done in a server
side. A thin client, that is a web browser mainly interprets data sent by a server. A synchronous
communication of these kind of applications is conducted using the HTTP protocol (or, in
secure version, HTTPS). A server response for a client request with a HTML page. This is a
solution that is widely used in modern applications, especially these that requires cooperation
between significant number of users.

The Domain Model Builder is a web application implemented as a Redmine plugin. Red-
mine is project management tool written in Ruby on Rails [40] – a framework based on the
Model-View-Controller design pattern Fig 4.1. This section describes basis of Rails and Red-
mine with special attention to a method of integration the DMB with Redmine.

1Create, Read, Update, Delete

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 44

DatabaseModelView

Controller
Web

Browser

HTTP request

HTTP
response

Figure 4.1: Ruby on Rails implements the Model-View-Controller design pattern. A web
browser sends HTTP request that is processed by one of controllers. Models encapsulates data
and communicates with database. Basing on models data and website template stored in a view,
the controller generates a HTTP response that is sent back to the browser [41]

.

Redmine provides various functions facilitating cooperation. Issue tracker, Gantt chart and
calendar facilitate task planning. Wiki system, news and forums enable cooperative project
documenting. Integration with SCM repositories facilitates code management. Changes con-
tributed by users are stored and presented in the activity log allowing to review cooperation
history. Access control is based on user roles [32].

Redmine functionality can be extended or changed with plugins. According to the Redmine
documentation [42][43] it may be done in several ways:

1. Overriding views – defining a view with the same name as original one overrides the
latter.

2. Adding methods to existing classes – Ruby provides mechanism of adding methods to
existing classes by redefining them or including modules to them (mixins).

3. Wrapping existing methods – methods in Rails application can be aliased and then wrapped
by another method. That mechanism facilitated by a method alias method chain

[44] enables extending existing Redmine methods (e.g. in a model or in a controller).

4. Using Rails callbacks – ActiveRecord, a standard ORM in Rails 2 defines several
callbacks that can be registered and triggered during changes in model state [45]. Call-
backs enable injecting methods into Redmine classes life cycle.

5. Registering Redmine hooks – Redmine also provides callback API called hooks. They
enable Redmine extending in a elegant way, without changing its code [43]. List of hooks
is available in the Redmine documentation [46].

6. Adding own classes or modules – the most straightforward way of extending Redmine.
Created plugin can act similarly to regular Rails application, but use Redmine classes.
A plugin integrates with it during plugin initialization using configuration options (as
described in the Redmine plugin tutorial [47])

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 45

The Domain Model Builder may be described as a separate application embedded in Red-
mine and integrated with it. Thus the DMB is intended rather to use Redmine functions than
to change them. Therefore it uses mechanisms described in points 2 and 6. It uses Redmine
user management, wiki system and activity logger and it is presented using Redmine layout.
However it is not typical Redmine plugin that just changes its functionality.

4.3 Functionality

The DMB is an implementation of concepts characterised in the preceding chapters. It en-
ables creating domain model using the metamodel described in the Chapter 2 according to the
methodology proposed it the Chapter 3. This section presents functions of the tool that supports
these ideas.

4.3.1 Metamodel implementation

As an entity in the metamodel is a knowledge aggregation, an entity page (Fig. 4.2) contains
references to all significant information related to presented entity. The page provide access to
model elements defining functions. It also contains links to model transition actions.

The entity page is divided into two main parts. The right one is natural language description
of modelled concept. The left one presents formal entity definition: its attributes and associa-
tions.

A concept encapsulated by an entity is defined using a wiki page. Intended to be used for
collaborative document creating, wiki seems to be the best tool for definition creating. Easy
media files (images, data files) embedding and edition history tracking are two most important
amongst wiki features.

The Domain Builder directly implements concepts of association and attribute defined in
the metamodel description. Attribute and association summary are shown in the entity page.
Showing inherited elements and helper texts near relations facilitates understanding model se-
mantics (Fig. 4.3).

The initial page is a welcome page of each project for the Domain Model Builder and
starting point for the cooperation. Using this page an expert is supposed to prepare a general
domain description (initial definition) that is afterwards used as a basis for entities creation. Thus
the only two operation that can be performed on the initial page is a definition edit and extract

(a simplified split).
The Domain Builder implements all main model transformations: split, merge and extract.

The transition page (similar for all transformations) shown on the Fig. 4.4 is divided horizon-
tally into two main parts. The first one contains entities names and definition and another one
refers to entity elements: associations and attributes. The main difference between split and
merge (Fig. 4.5) forms lays in the kind of presented data. Whereas the merge page shows
elements of both merged entities, the split form has data of an entity being divided and a new
one. The extract operation is a simplified split, but it contains only definition texts.

Conlcuding, the DMB implements CRUD operations one the model and model tranitions.

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 46

1
1

2
3

4

5

7
6

Figure 4.2: Sample entity page. 1 – entity name; 2 – alternative names; 3 – relation with its
most important features; 4 – attributes (one’s own and inherited); 5 – new entity form; 6 –
definition; 7 – menu with main functions

Therefore it building semantic models in accordance to the idea presented in the Chapter 2.
Then the DMB fulfil the first of functional requirements outlined in the section 4.1.1

4.3.2 Model visualization

During development of a model, its complexity grows. What is more during the cooperation
some information might be duplicated and that reduces clarity of the model. A standard point
of view at the model: a single entity with its dependencies seems to be insufficient for model
validation. Therefore a model in its advanced stage can be difficult to understand without a
holistic view.

A feature that responds to this need is a model diagram representation (Fig. 4.6). The
diagram is based on UML class diagram and shows entities, its attributes and associations. The
diagram is also a place that facilitates navigation, because each of a diagram element is enriched
by a link to its definition. This feature corresponds to third of the funcional requirements (cf.
section 4.1.1)

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 47

1

2

4

3

Figure 4.3: Association features. 1 – generalization; 2 – explaining text for a relation; 3 –
inherited relations; 4 – specializations list.

4.3.3 Cooperation process logging

Although the purpose of the tool is creation of a domain model, the process of cooperation is
also worth of exploration. It is not only for the reason that the knowledge transmitting pro-
cess itself is absorbing; examination of it also enables a possibility of methodology validation.
Recorded communication between participants and a model evolution may show if the proce-
dure of cooperation is well suited and efficient.

To obtain this aim successive edition of model elements are archived and grouped in change-
sets. Every model change is stored with information about its author and date. A changeset
groups consecutive changes and adds to them a comment and a user that created the changeset.

After metamodel transitions, changeset is created automatically. User is also able to create

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 48

1

2

3

Figure 4.4: Split page. 1 – names; 2 – definitions; 3 – associations (generalizations and re-
lations). The tool enables using all of elements of original entity during creation of new one.

a changeset manually to store and comment other changes in the model (e.g. definition edits or
new element creation). Changeset are presented in the Redmine activity log (Fig. 4.7). User is
also able to examine changeset details (Fig. 4.8). One may examine process of cooperation and
commitment of every participant. It may also support error tracking process as users are able
to check simple history of editions.

To sum up, the DMB tracks evolution of a model and because of that feature provides
possibility of methodology validation. Therefore the tool fulfils the last functional requirement
(cf. section 4.1.1).

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 49

1 2

3

Figure 4.5: A merge page is very similar to a split form. The difference is that instead of
original and new entity, there are two entities (1,2) to exchange data.

4.3.4 Methodology support

To prove that the tool enables metamodel building according to the methodology we discuss
phases of the cooperation and the most important features of this concept, characterised in the
sections 3.2 and 3.5.

Defining

The first and the most important feature of the DMB is domain concepts defining. Firstly
participants are able to create general definition of the described discipline using an initial
page. That is especially useful during first stage of the cooperation (initialization phase, see
section). Text that is attached to each entity and rendered with it enables defining particular
parts of the domain. As definitions (general ones in the initial page and partial in entity pages)

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 50

Figure 4.6: Model is visualised on a diagram that is based on UML class diagram. Entities are
depicted as classes; attributes are listed inside an entity ; association are described by names at
both ends (blue text).

are implemented as wiki page, they enable enriching description with embedding images (e.g.
figures, photos).

Textual definitions are not the only way of concepts defining. The DMB supports creating
formal definitions using metamodel elements. The definitions written in the language natural
for the expert may be easily transformed into formal ones structured with the metamodel. Thus
the tool enables creating of the domain model using approach presented in the methodology.

Correcting and evolving

The DMB provides functions to model evolving and correcting. Firstly it implements model
transitions (see section 2.2) that are crucial for convenient model development. Moreover as all
of model elements are editable, the tool enables evolving and correcting each element after its
creation.

Very important feature is wiki page attached to each entity (what was already mentioned).
As wiki enables convenient way of text editing and stores history of its changes, it can be used
not only for simple definition editing, but for discussing about it as well.

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 51

1

2 3

4

5

6

Figure 4.7: Activity log page. 1 – activity date; 2 – activity time; 3 – comment: normal changes;
4 – comment: merge of RNA and Nucleic Acid entities; 5 – comment: split DNA into DNA
and Nucleic Acid; 6 – author.

Validation

As a text definition of an entity is displayed next to the formal one, participants are able to
check correctness of the latter one in a convenient way. The diagram provides cooperation
result overview and enables completeness checking of the model.

The metamodel implementation in the DMB is designed to preserve model consistency.
To obtain this aim several validation and constraints were developed. Name of an entity must
be unique in the project and a name of an attribute – in scope of one entity. Additionally an
entity cannot be its own superentity and cannot be merged with itself. These solutions facilitate
maintenance of the model and protect model validity.

Iterative cooperation

Participants are able to edit model elements in any stage of the cooperation. They can exchange
knowledge using wiki pages and create new entities using model transitions. Model elements
are easy to edit and correct thus modifications may be made any time.

Changesets groups adjacent editions of a model and definitions. Owing to this mechanism
consecutive iteration of a cooperation process may be examine.

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 52

1

2

3

4
5

6

7

Figure 4.8: Changeset page. 1 – comment; 2 – changeset author; 3 – changeset creation date; 4
– root of changes tree: entity; 5 – changed element: attribute; 6 – date of attribute change; 7 –
changes.

Semantics

Creating a set of connected definitions formalised with attributes and associations, participants
build semantic domain model. The result of the cooperation is a formal model that is under-
standable for a machine. The model is ready for code generation. On the other hand formal
model is enriched by textual definitions that document it. Therefore the model created using
the DMB is a bridge between domain knowledge and formal software models and is an ex-
act implementation of the semantics concept explained it the methodology description (section
3.5.1).

Conclusions

The tool is characterised with the same features that the methodology (cf. section 3.5). There-
fore it supports creating a domain model according to this methodology. We could conclude
that DMB responds to the second functional requirement (cf. section ??).

Nonfunctional requirements

The tool responds also to the nonfuctional requirements described in the section 4.1.2. As it
is a web application, it enables cooperation of multiple users that works simultaneously and
remotely. Clear messages and tooltips enhances intuitiveness and facilitates using of the tool.

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 53

4.3.5 Summary

The DMB responds to all of requirements outlined at the beginning of this chapter (section
??). It provides implements the metamodel and provides functions to create and evolve it
conforming to the methodology. Moreover the created model is visualised using the diagram.
The process of cooperation is tracked and thus the tool enables validation of usefulness of the
methodology.

4.4 Implementation

4.4.1 Metamodel elements implementation details

Entity

An entity is the central point of the presented metamodel. Therefore the Entity class has
associations with all important classes of the metamodel. Associations in the Rails models are
always bidirectional. As classes Attribute, Association and AlternativeName are
part of the DMB, creating references is easy. To obtain references from the WikiPage the
original class must have been patched. A required method was added to class by encapsulating
a function in the module that is included to the WikiPage class during the DMB initialization.

Attribute

An Attribute class is direct implementation of the Attribute concept presented in the Chap-
ter 2.1.2. It enables defining name, alternative names, type and sample values of the attribute.

Association

Similarly to the presented metamodel Association has two subclasses: Generalization
and Aggregation (the latter one is code name for the relation).

To store this generalization structure, Single Table Inheritance is used. In this object-
relational mapping, described by Fowler in [48], all classes of the inheritance hierarchy are
stored in the one table (in described case called associations) That table has columns cor-
responding to fields of all subclasses and a super class. To determine which class is stored in a
particular row, additional column (type) with class name is recorded.

In case of the association hierarchy, only Aggregation class adds new attributes to the
table (Fig. 4.10). To avoid repetition of code, data related to a relation endpoint is stored in the
class AggregationEndpoint (Fig. 4.9).

Alternative names

Alternative name are implemented by a class Aka (Also known as), that is associated to each
metamodel class. To represent the situation, when one association links different classes, Rails
provides polymorphic associations. This mechanism is extension of normal associations: be-
sides the id of the associated object, its type is stored. During fetching an associated object,

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 54

Association
source: Entity
target: Entity

Generalization Aggregation
source_end: AggregationEndpoint
target_end: AggregationEndpoint

AggregationEndpoint
name: String
alternative_names: AlternativeName
cardinality: String

1 2

Figure 4.9: Association implementation: class diagram

entity_associations
id INT, PK
source_id INT
target_id INT
type VARCHAR
source_end_id INT
target_end_id INT

aggregation_endpoints
id INT, PK
name VARCHAR
cardinality VARCHAR

Figure 4.10: Association implementation: an entity relationship diagram of Single Table In-
heritance mapping of the Association hierarchy. Because of Ruby on Rails persistence
strategy, tables are not connected by foreign keys. Inter-table integration rules are maintained
by the Rails framework, not by the database engine.

not only is its id used to specify the query but also its type. In the DMB the table akas, that
stores instances of Aka class, has column aliasable id and aliasable type. The type
column is used to determine a class (and a table) that is a target of the association. The id points
to a particular instance of this class (and a row in its table) [49][41][50].

Model elements that can posses alternative names provides additional methods. To improve
implementation and follow the DRY2 principle, the declaration of association with Aka class
and all related methods are encapsulated in Aliasable module.

Modules in Ruby serve two purposes: they are namespaces for functions classe and con-
stants and they can encapsulate methods to use them in mixin mechanism. Module can be
mixed into a class using include statement and as a result the class has access to the func-
tions defines in the module as if they are defined in this class [51][52].

2Don’t repeat yourself

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 55

Initial page

An initial page is implemented as a simplified entity. It has only a natural-language def-
inition and no formal elements. The definition can be edited by each participant. The only
transition that can be conducted is simplified split (concerning only the textual definition)
that implements extract operation.

4.4.2 Model transitions

All operations are conducted using the same web form template and the same backend func-
tion. User interface is adapted depending on the transition type and data sent by a user are
transformed to fit the interface of the generic transition method.

During split and merge operation several elements (attributes and relations)
may be assigned to both entities. In this case an element is deeply cloned (with associa-
tion). The original is saved with its entity and the copy is saved with an another entity.

4.4.3 Activity log

Redmine provides an activity log that presents changes made by users in the data stored in the
system. To use the log in class provided in a plugin, one must fulfill three conditions:

⇒ use two plugins provided with Redmine inside the class (acts as event, acts as activity provider);

⇒ register event type in the plugin init.rb file;

⇒ add permission type corresponding to the event type: :view EVENT TYPE.

To enable model changes tracking, plugins acts as audited and acts as paranoid

are used. The first one serves to record changes in model elements and their authors (prove-
nance). Each change is stored with differences between old and new version, date of the change
and contributing user. The second plugin has auxiliary role: it prevents model elements from
being completely deleted, because in this case they are untraceable. This plugin causes that
objects instead of being removed are marked as deleted but they are still stored in the database.

A class MetamodelChangeset is used to group stored changes and enable commenting
them. Audits are connected to a particular changeset basing on the creation date: audit is
associated to a first changeset that was created after it.

Changeset page shows changes in entities. To properly assign their elements, entity
searching process depicted in Fig. 4.11 is conducted. Starting from an audit, an entity is
being searched by subsequent jumps creating branches:

⇒ Audit to Auditable (it may be any model element),

⇒ Aka to Aliasable (any model element with alternative names),

⇒ AggregtionEndpoint to Aggregation,

⇒ Association to Entity (two branches to source one and to target one),

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 56

⇒ Attribute to Entity.

Afterwards branches are merged to create trees with an entity in the root, other model elements
in branches and audits as leafs. This is achieved in a top-down approach. The first branch is an
initial forest (with only one tree). When a next branch is being added to a forest, a tree with the
same entity in a root is searched. If found, duplicating elements in the branch are removed and
the rest of the branch is attached in a place of first difference.

Audit Attribute Entity
auditable entity

Audit Attribute Entity
auditable entity

Alternative
name

aliasable

Entity
#1

Attribute
#1

Audit
#1

Entity
#1

Attribute
#1

Audit
#2

Entity
#1

Attribute
#2

Alternative
name

#1

Entity
#2

Attribute
#3

Audit
#4

Entity
#2

Audit
#3

Audit
#5

Entity
#1

Attribute
#1

Audit
#1

Attribute
#2

Audit
#2

Entity
#2

Attribute
#3

Audit
#4

Audit
#5

Audit
#3

Alternative
name

#1

a.

b.

Figure 4.11: Changeset forest is created in two-step process basing on changes stored in
audit objects. During first phase (a) every link to an entity is created for every audit
in the changeset. An attribute is connected straight to its entity; alternative
name is linked to its aliasable (attribute) and then to an entity. The aim of the
second phase (b) is to merge redundant parts of branches and produce changeset forest.

4.4.4 Diagram generation

The domain diagram is generated using Graphviz. Graphviz is software for manipulating and
viewing graphs. It enable creation a graph description using textual representation (e.g. dot
language). Graphviz create diagrams with one of the choosen layout. It can produce various
types of output, including image maps what is especially useful during presenting a graph on a
website [53].

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 57

Dot output is generated basing on the model class structure. It is stored in a wiki page and
processed by redmine plugin – wiki graphviz plugin. The diagram is generated each
time user access a diagram page that is non optimal, but sufficient for prototyping purposes.

4.4.5 Used tools and mechanisms – summary

The DMB is implemented using Ruby (version 1.8.7) – an interpreted, dynamic programming
language. This project take advantage of several features of this language.

The first one is mixin mechanism: adding methods to a class by including a module. This
feature enables reusability of methods without changing inheritance hierarchy. The second
one is changing existing classes without modifying their original source code. It is one of the
methods of Redmine extending. This practice is informally called monkey patching or duck
punching 3 [54][55].

The most important mechanism provided with Rails and used in the implementation are
polymorphic associations, that link Aka and Audit with model elements. The feature that
simplified development process was also database independence. Database engine was changed
several times without additional effort.

The DMB uses several Rails or Redmine plugins. They are summarised in the Fig. 4.12.

4.5 Technological dependence

The methodology described in this thesis omit to rely upon any particular technology. However
the second part of this work, the Domain Model Builder, is strongly dependent on the tools that
are used during the implementation.

4.5.1 Ruby and Ruby on Rails

As the tool is implemented using Ruby on Rails, it is strongly dependent on this framework.
Abandonment of using Ruby or Rails would cause necessity or redevelopment of the DMB.
However, as several frameworks similar to the RoR exist (e.g. Django [56]), another imple-
mentation would be far simpler than the first one.

Both the language and the framework are mature, open source projects with vital commu-
nities. Thus it seems not very possible that they suddenly disappear. Still it may well be that
the DMB will become difficult to deploy because of version the language or the framework.
Nowadays there exists two maintained branches of Ruby: 1.8.x and 1.9.x, and the latter is not
backward compatible. The latest stable Rails version is 3.14 but there are still applications using

3 Happe in [54] cites a Patrick Ewing quote from RailsConf 2007:

Well, I was just totally sold by Adam, the idea being that if it walks like a duck and talks like a duck,
it’s a duck, right? So if this duck is not giving you the noise that you want, you’ve got to just punch
that duck until it returns what you expect.

4Rails 3.1 were released 30th Aug 2011 [40]

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 58

acts_as_revisionable
acts_as_audited
acts_as_paranoid

Entity
#1

Attribute
#1

Audit
#1

Attribute
#2

Audit
#2

Entity
#2

Attribute
#3

Audit
#4

Audit
#5

Audit
#3

Alternative
name

#1

changeset
details

diagram
image generation

soft deletion

provenance

commenting

acts_as_activity_provider
acts_as_event

wiki_graphviz_plugin

redmine activity mechanism

activity log

Figure 4.12: Redmine core plugins (acts as activity provider and
acts as event) are used to implement activity log. Details of changesets are pro-
vided using three plugins. acts as revisionable enables adding comments to stored
changes. acts as audited stores information of what and by whom changes are made.
acts as paranoid prevent permanent removal of model elements and thus enables
tracking changes in deleted ones. wiki graphviz plugin interprets dot language stored
at Redmine wiki pages and processes it to a model diagram using graphviz.

Rails 2.3. Used Redmine version is developed in Rails 2.3.5 and Ruby 1.8.6 and so does the
DMB. With outdating these pieces of software, the tool will have to be adapted to new versions.

4.5.2 Redmine

The Redmine project is still evolving. The DMB evaluation deployment uses version 1.1.1 and
the current stable is 1.2.1. During Redmine evolution, the DMB may become incompatible. It
is especially required in case of significant changes in the activity log or wiki system.

In case of abandoning Redmine usage in the project, one must consider finding other vendor
of several functions (or he may implement them on his own):

⇒ user management and access control,

⇒ multiple project management,

⇒ wiki system,

⇒ activity log,

⇒ diagram drawing (currently the diagram is drawn with a Redmine wiki plugin),

⇒ user interface: CSS layout.

From above list it can be seen, that the core of the DMB, the metamodel implementation omit to
depend on functions provided by Redmine. In case of implementing the tool without Redmine,

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 59

the metamodel implementation is the only part that remains unchanged. The most complex
Redmine element used by the DMB is wiki system. To replace it one may consider usage of
other wiki implemented in Ruby on Rails, e.g. instiki [57] or olelo (gitwiki)[58].

4.5.3 Database

Ruby on Rails provides for a developer convenient database interface and for that reason Rails
applications are slightly dependent on the database. Thus a database engine may be easily
changed during development. Several nearly semless migrations from PostgreSQL to MySQL
and back, that took place in the middle of application crafting, proved this claim. Therefore an
application is not bound to any particular relational database management system.

4.5.4 Graphviz

Graphviz is used to draw a diagram. It is a stable open source tool and it can be assumed that
it will be maintained. To remove Graphviz without changing the functionality of the DMB,
one must implement diagram drawing, for instance using one of JavaScript graph libraries. The
disadvantage of such solution is necessity of implementing diagram layout (that is implemented
in Graphviz and might not be in JavaScript libraries).

4.5.5 Plugins

The last dependency of the DMB are used plugins. They are not always as stable as Redmine
or Ruby on Rails whereas their role in the tool design is significant. Therefore abandoning any
of them may require serious changes in the the tool implementation. However, as they provide
well-defined functionality, they can be replaced by other plugins that have similar purpose. The
replacement may require several changes in the remaining parts of the project, but is feasible.

acts as activity provider and acts as event These plugins are provided with
Redmine thus they are supposed to be as stable as Redmine. To replace them, one must imple-
ment module responsible for recording events.

acts as audited This plugin records changes in the model. To replace it one should
use plugins that provides two kind of action: versioning (e.g. acts as versioned) and
provenance (e.g. paper trail).

acts as paranoid The only purpose of this plugin is soft-delete mechanism (records in
a database are marked as deleted instead of being deleted). Thus to replace it one should find
plugin with similar functionality (e.g. acts as trashable).

wiki graphviz plugin This plugin interprets a wiki page text that is written in dot lan-
guage and execute Graphviz commands that produce diagram image displayed on the final

Chapter 4. Domain Model Builder: a Tool for Cooperative Domain Modelling 60

Table 4.1: Technology replacement possibilities

Technology Replacement
probability

Replacement
cost

Possible
technologies

Required changes

Ruby, Ruby
on Rails

very low very high Django, Sina-
tra

redevelopment of the tool

Redmine low high instiki, olelo wiki system, diagram
drawing, activity log,
CSS layout

Database medium very low PostgreSQL,
MySQL,
Oracle

deployment configuration

Graphviz low medium JS libraries
(e.g. JointJS
[59])

diagram generation, dia-
gram layout

Plugins medium medium plugins with
similar func-
tionality

adaptations to another
plugin

page. Replacement of this plugin would require preparing a function that calls Graphviz and
produces proper image. Therefore abandoning usage of this plugin seems to be easy.

4.6 Conclusions

4.6.1 Requirements fulfillment

The metamodel presented in this thesis is fully implemented in the Domain Model Builder.
The tool enables creation and transition instances of metamodel elements. It also supports the
methodology that is described in this work. Participants are able to iteratively develop a model
gradually transforming domain knowledge into a formal model. The result of the cooperation
is visualised on a diagram and collaboration is recorded using activity log. As it is a web
application, the tool supports collaboration in a distributed team.

It can be seen that the DMB implements all requirements that are stated in the beginning
of this chapter. Part of the nonfunctional requirements concerning usability and intuitiveness
is additionally evaluated and summarised in the next chapters, because it requires reference to
users’ opinions.

4.6.2 Summary

The Domain Model Builder is a prototype implementation of the methodology presented in this
thesis (Chapter 3). The tool fully supports metamodel creation and transforming in an iterative
way. Used technologies meet development requirements and omit to cause a risk of vendor
lock-in. As the subject considered in the thesis is extensive, there are still several features that
might improve and extend the tool.

Chapter5
Validation of Metamodel
and Methodology

This chapter presents conclusions based on applying the methodology to

real-world problems. Firstly it introduces a usage scenario, next describes

a course of modelling and its result and finally contains opinions of users.

The aim of this chapter is to verify ideas described in previous chapters and

possibly suggests changes in the methodology and the tool.

5.1 Experiment description

To evaluate the methodology and verify the tool two experimental modelling session took place.
The first domain was flood forecasting, and the second one – road designing. In both of them
domain experts were involved, whereas the author of this thesis acted as a developer. This
section outlines the domains, characterises the experts and describes the circumstances of ex-
periments. The results of the cooperations are described in the next section. The purpose of
this one is to summarise the cooperation course.

5.1.1 Controlled experiment: flood forecasting

The first experiment was related to the UrbanFlood [1]: a forecasting system aiming to respond
natural threats (in this case floods). In fact, this experiment was a modelling of an existing
system, so the final model could be compared with a UrbanFlood software design. Thus it was
an opportunity to validate the methodology not only by checking the conduct of the modelling,
but also its outcome.

The expert involved in the experiment was one of developers working on the UrbanFlood.
Although he was not a flood expert, he possessed detailed domain knowledge that he had ac-

Chapter 5. Validation of Metamodel and Methodology 62

quired during project elaboration. His computer science skills were substantial facilitation of
modelling process.

The cooperation process started with a meeting that consisted in quick tutorial of the DMB
(presented to the expert by the developer) and description of the domain. The meeting was
summarised in an initial definition written in the DMB by a developer. That was an
initialization phase of the cooperation.

Further iterative collaboration was conducted remotely. Participants was communicating
using the DMB and email. The definitions stored in the tool was edited by the developer
whereas the expert was checking results and sending his comments using email. After approx-
imately one week the model was found complete and the cooperation was finished.

This experiment proved importance of personal contact between participants. After the
initial meeting the outline of the domain was established and further cooperation was mainly
transforming this description into a formal model. This experiment indicated a need of a tool
for discussion about a model, since in this case participants use email for this purpose.

5.1.2 Full experiment: road design

The second experiment was related to a domain model of road design application. The appli-
cation was supposed to aid the design of road surface layers with special attention payed to
selection of building materials.

The expert was a civil engineer specialised in roads and motorways. Although he had basic
computer science knowledge, it was insufficient to model the domain on his own.

The cooperation was conducted without personal contact between participants. They used
the DMB, email and phone to communicate. The general description of a domain was prepared
by an expert and send as via email and then stored in the DMB as the initial definition. Relying
on this document, first entities were created by a developer.

The iterative improvement of the model was conducted using initial definition. The wiki
page that contained that definition was used similarly to a forum: the developer was asking
there for clarifications and an expert was answering using the same page. Iterations lasted three
weeks, but there were significant intervals between them.

This experiment showed that the cooperation without a personal contact, though diffucult,
is possible. It also indicated a need of communication tool embedded in the DMB, as wiki
pages are intended to store definitions not discussions.

5.2 Results of modelling

This section describes outcome of the modelling session: a domain model and a cooperation
course diagram. Firstly we explain meaning of these diagram, then, using diagrams, we present
results of modelling. The experiments are summarised with experts’ opinions about the method-
ology and the tool.

Chapter 5. Validation of Metamodel and Methodology 63

5.2.1 Result types

Domain model The model is represented with a diagram shown in the tool description (Fig.
4.6). As an simplified result of the cooperation process it enables final model verification. Thus
may be used to evaluation of the methodology.

Modelling course The another type of modelling outcome is cooperation process record.
Basing on the information from the DMB activity log (see: 4.3.3), the modelling course di-
agram is prepared. This infographics, that bases on the subway maps, shows the process of
model evolution by presenting changes in entities (Fig. 5.1). Each metro line represent an en-
tity. Stations represent model changes: ordinary ones – adding or editing elements to entities;
junctions – model transitions.

a. b. c. d. e. f.

Entity1

Entity2

Entity1

Entity2

Entity1 attribute:
attr1

Entity1

relation:
entity1 has entity2

Entity2

Entity1 Entity1

Figure 5.1: The modelling course diagram is based on subway maps. Metro lines represent
entities and stations – model changes events.
a. entity Entity1 created; b. entity Entity1 deleted; c. attribute attr1 added to
Entity1; d. relation between Entity1 and Entity2 added; e. Entity1 split opera-
tion creating Entity2; f. merge operation of Entity1 and Entity2.

5.2.2 Flood forecasting

The UrbanFlood project relates to the problem of effective filtering and processing environ-
mental data collected with sensors placed on dikes. The aim of the project is to forecast flood
threat and minimise risk related to them. The modelled domain was briefly summarised by an
initial definition elaborated during the experiment:

Data from sensors are collected by Sensor Cabinet (tools allowing to connect to
the sensor using e.g. GPRS) and sent to computer system (AnySense - sensor
storage and JMS for further processing). Next sensor data are sent into filters which
estimate a level of danger. Estimation is done by various simulations (e.g. Artificial
Intelligence Anomaly detection, Reliable – Risk Calculation tool, Hydrograph or
Flooding Simulator) . A simulation can be started automatically or manually by a
user. Simulations have different importance level and depending on it have more
or less resources (e.g. critical simulations during real danger should be calculates
as fast as possible). The result of the simulations (and the state of the dam) are
presented to the use on multi touch table.

Chapter 5. Validation of Metamodel and Methodology 64

Set of simulations and monitoring tools working together compose Early Warning
System, which allows to monitor the environment threats. Basing on the EWS
results crisis management centres takes decision while crisis occurs.

Domain model

The result of the cooperation process is a domain model visualised on the diagram (Fig. 5.2). To
represent input data of simulations, the model contain entities Dike and Sensor. Simulation
can posses different importance levels and it affect what Resources it could obtain.

The model contains also two helper entities: ResourceAmount and SensorState.
They connect two entities with a relation of many to many semantics and they add data (a
value) to this relation. They are equivalent of linking table in the relational model.

Figure 5.2: The model represents a system (Early Warning System) used to collect and process
data concerning state of dikes. The data is an input to simulations of dikes behaviour and
possible floods. Resources amount given to the simulation depends on its importance level.

Chapter 5. Validation of Metamodel and Methodology 65

Modelling course

The cooperation process is summarised in the Fig. 5.3. As described in the beginning of the
chapter (section 5.2), the figure presents model evolution.

Initialization In the beginning of the cooperation a meeting of participants took place. The
main part of it focuses on presenting the domain for developer. Opportunity of asking for clari-
fication enabled for a developer well understanding of the domain. An outcome of the meeting
was an initial definition of the domain saved in the DMB. Important role in the creation of this
definitions played deliverables of the UrbanFlood project that deeply describe the domain. The
initialization phase finished with validation of the initial definition by the expert.

Iterations Further cooperation consists in extracting and precising entities. The process
might be divided into two branches developed in parallel: Dike-Sensor branch (domain
entities) and Simulation-Resource branch (computational entities). Firstly three main
entities was created (Dike, Sensor, Simulation) and then detail were being added to the
model.

Validation The expert validated a model inspecting the diagram and initial definition check-
ing their compliance to the domain. The developer verified model consistence. Although it
failed to posses complete information about each element, it enabled understanding of a do-
main and would facilitate possible implementation.

5.2.3 Road design

The second experiment consisted in elaboration of a domain model for an application support-
ing road design with special care to planning material usage and optimising building cost.

From technical point of view the main part of road is a surface. In this case surface means
a whole structure that is above the ground. The surface consists on several layers that are
strictly composed. Each layer is built with a specific materials that have to fulfill requirements
depending on road type. Properties of a road depends on traffic characteristic.

Domain model

The model diagram (Fig. 5.4) presents outcome of the cooperation process. As the language
of the collaboration was Polish, all names on the diagram are writtnen in this language. Next
paragraph provides translation.

1. Droga (Road) describes road characteristic, thus it has following attributes: lenght
(dlugosc), traffic type(kategoria ruchu), width of roadsides (szerokosc
poboczy), width of traffic lanes (szerokosc pasa ruchu), width of

pavements (szerokosc chodnikow).

2. Road is connected with Surface (Nawierzchnia) that consists of several

Chapter 5. Validation of Metamodel and Methodology 66

Initial Definition

Dike

Simulation

Sensor

Resource

ResourceAmount

EarlyWarningSystem

attribute:
location

relation:
dike has sensors

attribute:
measured condition type

attributes: importance level
started by
simulation type

attributes: name
unit

SensorState

relation:
simulation has sensorStates

relation:
sensor has sensorStates

relation:
EWS has dikes

relation:
EWS has simlations

relation:
resource has
resourceAmount

relation:
simulation has
resourceAmount

attribute:
 value

Figure 5.3: Dike as a was the first extracted entity. With Sensor it create a domain branch
in the modelling process. The second branch (computational) consists in Simulation and
Resource. Early Warning System was added in the end to encapsulate and link main
elements. SensorState and ResourceAmount are helper entities that are attached to
relations between other model elements.

3. Layers (Warstwa). Each layer has an upper layer (warstwa wyzsza) and
lower layer (warstwa nizsza). A Layer is characterised with two attributes:
name (nazwa) thikness (grubosc).

4. Layers are built with Materials (Material) characterised with attributes: unit
price (cena jednostkowa), transportation cost (koszt transportu),
avalaible amount (dostepna ilosc), using cost (koszt wbudowania),
type (typ). As can be seen most of Material attributes describe the cost of its usage.
Only the last one (type) describes its constructional characteristic.

5. Each material has a set of

Parameters (Parametr) and linked with them
ParameterValues (WartoscParametru) – a helper entity. A Parameter is
characterised with two attributes: name (nazwa) and unit (jednostka).

6. The last group of entities is Requirements (Wymagania) hierarchy. There are two
types of Requirements.

Chapter 5. Validation of Metamodel and Methodology 67

⇒ The first is RangeRequirements (WymaganiaPrzedzialowe), characterised
with minial value (min) and maximal value (max) – it models situation,
when a parameter value have to lay inside the range created with these attributes.

⇒ The second is EnumerationRequirements (WymaganiaWyliczeniowe)
and it has one attribute: permissible values (dopuszczalne wartosci)
– it corresponds to the situation, when a discrete parameter may have several ac-
ceptable values.

The created model corresponds with the domain and enalbes its comprehension. Therefore
it is a good starting point for developing an CAD application supporting road design.

Modelling course

The cooperation process is shown in the Fig. 5.5. This section evaluates conformity of the
cooperation with the methodology presented in this thesis.

Initialization The cooperation started with a document prepared by the expert. The document
described basics of the domain and suggested application of the model being prepared (CAD
tool). The text of the document were stored in the DMB and first entities with their attributes
were extracted by the developer (Material, Droga, Nawierzchnia).

Iterations Iterations can be divided into three phases. The first was specifying entities ex-
tracted during initialisation, related to the road construction. The new one (Warstwa) was
extraxted and merged with other ones. In the next phase a developer made an attempt to rep-
resent material types as Material subentities. This solution appeared to be wrong. Finally
this problem was solved by adding attribute typ to the entity Material. The last part of
cooperation was representing parameters and modelling requirements. As a result a flexible
structure to requirement modelling was prepared.

Validation The model integrity was validated by the developer. The cooperation process was
conducted mainly using the initial page. Thus the expert omitted to check particular entities.

5.3 Experts’ opinions

After the experiments the experts were asked to give on opinion on the methodology and on the
tool. The most important question they were inquired was if the methodology was a convenient
way of knowledge transition and verification. They were also asked about readability of the user
interface of the DMB. Finally they were supposed to suggest functions that might be added to
the tool.

This section firstly refers experts’ opinions and then summarises and comments them.

Chapter 5. Validation of Metamodel and Methodology 68

Figure 5.4: The model describes road design problem. A Road (Droga) con-
sists in Surface (Nawierzchnia) that has Layers (Warstwa) with spe-
cific order (thus every layer has relation to its neighbours). Layers are built with
Materials (Material) that has Parameters (Parametr) and have to ful-
fill requirements (Wymagania). Requirements depend on the Layer and
have two types: RangeRequirements (WymaganiaPrzedzialowe) and
EnumerationRequirements (WymaganiaWyliczeniowe).

Chapter 5. Validation of Metamodel and Methodology 69

Initial Definition

Materiał Droga

Nawierzchnia

Warstwa

Kruszywo

Beton Asfaltowy

Masy Asfaltowe

Beton Cementowy

Geosyntetyk

Parametr

Wymagania

Wymagania Przedziałowe

Wymagania Wyliczeniowe

Wartość parametru

Kruszywo

relation:
warstwa has
warstwa wyższa

relation:
warstwa has
warstwa niższa

attributes: nazwa
grubość

attributes: nazwa
jednostka

attributes: min
max

attribute: dopuszczalne
wartości

attribute: wartość

attributes: kategoria ruchu
szerokość poboczy
szerokość pasa ruchu
szerokość chodników
długość

attributes: cena jednostkowa
koszt transportu
dostępna ilość
koszt wbudowania

Figure 5.5: The modelling course may be divided into three parts. The first phase was extracting
of main domain building blocks (Material,Road, Surface and Layer) and building their
formal definitions. Second part was an unsuccessful attempt of representing different mate-
rial types as subentities of a Material entity (Geosyntetyk – Geosynthetic; Beton
Cementowy – cement concrete; Masy asfaltowe – asphalt mastic; Beton
Asfaltowy – asphalt concrete; Kruszywo – aggregate). This solutions was fi-
nally abandoned and replaced with attribute typ (type) in the material entity. The last
part of the modelling related to material parameters and their requirements.

5.3.1 Flood forecasting – software engineer

The first expert affirmed that the method provides an easy way of knowledge extraction. He
also pointed several possible improvements of the tool. He observed that overlapping elements
of the diagram decrease clarity of the model visualisation. He also suggested that the diagram
might be difficult to understand for people without strong computer skills thus it would be
reasonable to enhance the diagram with a legend. Readability of entities was assessed to be
decent yet their presentation require improvements.

The suggestions of new functions concerned mainly usability of the tool. The expert
claimed that navigation of the tool was troublesome. He also suggested that model elements
might be linked to parts of definitions that relates to them. Another improvement could be
editing elements of a model from the diagram.

Chapter 5. Validation of Metamodel and Methodology 70

5.3.2 Road designing – civil engineer

The second expert approved the method as convenient and well suited for cooperation involving
engineers. He affirmed that the method enabled precise transmission and verification of knowl-
edge. However, the expert pointed that it lacked feedback questions: in his opinion a expert
should be able to ask if a developer understands a domain concepts correctly.

The expert stated that the diagram and entities interface is clear and understandable. He
also pointed that at the end of the cooperation the initial definition had become chaotic and
hard to understand because in this case it contained domain description, expert suggestions and
a list of questions and answers. Therefore he proposed to split these types of information and
display them in different pages.

5.3.3 Summary

The experts acknowledged the methodology as a well suited to the knowledge transition. The
only improvement was concerning the cooperation method was verifying, if a developer un-
derstands a domain correctly. This suggestion may result from usability lacks mentioned by
experts. They might have cause that the civil engineer has difficulties with model verification.
Apart from the usability issues the experts indicted two important tool improvements: linking
definition parts with model elements and separation definition from discussion.

5.4 Lessons learned

The experiments confirmed worth of the presented solution. The iterative methodology is well
suited to the knowledge transmitting. The metamodel enables convenient and precise formalise
a domain. Especially useful are the transitions. Facilitating model evolution they supports
iterative aspect of the methodology.

The DMB proved its usefulness for domain modelling in accordance with the methodology.
Its main functions: defining, model evolution and visualisation enables knowledge transmitting.
Recording cooperation history made possible validation of the methodology. The experiments
indicated several possible improvements in both (theoretical and practical) parts of this work.

The most important function missing in the metamodel is possibility of attaching entities to
relations. It would facilitate creating many to many relations and improve model clarity.

The extract operation was intended to act similarly to split: to create new entity basing on
the initial definitions. The experiments showed a need of second type of extract that is similar
to merge and enable transfer parts of an initial definition to already created entities.

The phases of methodology failed to be strictly distinguished. After establishing initial
definition of the domain iterative correcting was starting. Therefore extracting part of the ini-
tialization phase (section 4.3.4) may be considered as a first step of the iteration phase.

The use of the tool showed several possible enhancements. Minor ones were introduced in
the initial phase of experiments. Other ones require considerable amount of work and are only
outlined below. Firstly the usability of the tool should be improved. Navigation could more

Chapter 5. Validation of Metamodel and Methodology 71

smooth and presentation more intuitive for non computer science users. Thus pages should
contain more explanation text, especially important is a legend for the diagram. Secondly the
diagram itself requires elaboration, because (as can be seen on the Fig. 5.2 and Fig. 5.4)
sometimes elements overlap what reduces legibility of the diagram. Moreover the tool misses
a discussion function that would separate model description and comments. Finally possibility
of linking definition parts to model elements is also worth considering.

The suggestions gathered in this section approve that experiments helped evaluation of the
concepts presented in this thesis. These observations are important advice for adaptation of the
methodology and further development of the tool.

Chapter6
Conclusions

This chapters summarize domain modelling solutions proposed in this paper.

It contains conclusions and suggestions related to future work in this field.

6.1 Summary

The objectives introduced in the section 1.3 were developed in subsequent chapters of this the-
sis. In this section we present how this work relates to the objectives and fulfills requirements.

6.1.1 Methodology

Metamodel

The Chapter 2 presents the metamodel – the framework for building and evolving semantic
domain models.

The elements of the metamodel 2.1 are suited to real-word concept modelling as well as
to generating domain layer code. Therefore the metamodel is a bridge between a discipline of
knowledge and programming techniques. As a result of that each both participants (expert as
well as developer) are able to interpret a model using a method that is natural for each of them.

The metamodel transitions: split, merge and extract are a formal method of evolving model.
This innovative approach enables transforming model to obtain its consistency.

Cooperation method

The Chapter 3 introduces a methodology itself: a method of collaboration that enables creation
of semantic domain models.

The cooperation starts with defining a general discipline description (an initial definition)
and extracting simple entities. Iterative model transitions and editions leads to transmitting
expert knowledge to a developer and verifying his understanding of a domain. Finally the

Chapter 6. Conclusions 73

model characterised with three features: consistency, cohesion and completeness (see section
3.4) is ready to use in a working application.

The main advantage of the methodology are precisely defined tasks of each participants. An
expert defines concepts and checks correctness of model from a domain point of view whereas
a developer extracts model elements and is concerned about its consistency (formal features).

Summary

To summarise this section we would say that the requirements concerning the methodology are
sufficiently satisfied:

1. The cooperation enables transmitting a domain knowledge from an expert to a developer
and verifying its comprehension.

2. A result of the cooperation is semantic domain model. It posses semantics from the
human point of view (the formal model is enriched with definitions) as well as from
the machine point of view (domain description is formalised and understandable for a
machine).

3. As an expert’s main task is writing textual definition that he is accustomed to use for
description of the discipline, the method should be usable for him.

6.1.2 Tool

The Domain Model Builder, the tool that implements the methodology is described in the Chap-
ter 4.

The DMB enables creating and evolving a model according to rules introduced in the Chap-
ter 2. It provides model transitions that facilitates its management. To achieve easy validation,
formal definition of an entity is displayed together with its textual description. Furthermore, to
facilitate verification of its whole structure, a model is outlined using a diagram basing on the
UML class diagram.

Not only is the Domain Model Builder an implementation of the methodology, but also
provides possibility of its evaluation. The cooperation between participants is recorded thus
one may verify difficulties that were encountered during the modelling process. It enables
adapting the method basing on conducted modelling sessions.

Concluding: the tool fulfills requirements defined in the beginning of this thesis:

1. It is implementation of the methodology: it directly realises assumptions presented in the
metamodel description (both elements and transitions) and it provides functions to build
the model in iteratively and verify it.

2. Recording the history of the cooperation enable review of conduct of the cooperation and
thus – verification of the methodology.

3. Experiments proved that the tool is usable for domain experts.

Chapter 6. Conclusions 74

6.1.3 Evaluation

To verify reasonableness of presented solution two experimental modelling sessions were con-
ducted. Cooperation with a software developer and a civil engineer proved usefulness of the
methodology.

6.2 Future work

This section summarises all task that were not realised and may be executed in the future. They
concerns both the methodology and the tool however the methodology appeared to be better
elaborated, thus more improvements is proposed for the DMB.

6.2.1 Methodology

Representation of the entities attached to a relation This type of entities would facilitate
modelling of complex many to many relations. An example of such a relation occured during
road design modelling (see section 5.2.3): WartoscParametru (ParametrValue) was a
helper entity attached to relation Parametr – Material.

Merge with initial definition As during modelling process information about created entity
may be added to an initial definition, merge operation should be available to apply to an initial
definition.

Experiments Two modelling sessions that were conducted proved usability of the method.
Yet to develop it, more experiments with various type of experts is required to check if establish
approach enables knowledge verification in various conditions.

6.2.2 Tool

Although the DMB implements the presented methodology and enables building domain mod-
els according to its assumptions, there are several functions by whom the tool may extended.

Code generation

To obtain seamless transition from modelling to implementation, automated code generating is
required. Developer should be able to transform domain model into code stubs in an imple-
mentation technology (e.g. Java classes, ActiveRecord migrations and classes).

The prototype version of the DMB omit to provide such functionality, because the subject
of the code generation is well known and implemented by numerous tools.

Model versioning

Present DMB implementation provides simple history of model evolution and presents differ-
ences between subsequent version. To facilitate cooperation it is reasonable to consider adding

Chapter 6. Conclusions 75

versioning similar to one provided by source code management systems. Model would be
reverted to a particular version, and owing to that participants could consider more possible
solutions.

Implementation of this functionality may be an extension of current version of the DMB
with a database as a model persistence backend. However there is another possible solution:
model stores in a DSL and a version control system to store the changes. In this implementation
finding elements might be difficult, but versioning is natural and relays on VCS functionality.

Knowledge tracking

Currently in the DMB two definitions of an entity: textual and formal, although displayed
together, are hardly linked. Participants should be able to connects parts of a textual definition
with model elements. Then a process of transforming domain knowledge into a formal model
could be tracked and monitored. Moreover, linking parts of text with an entity elements would
improve understanding of a formal model.

Model-focused discussion

The tool should enable a discussion about the model. It should be possible attaching discussion
threads. This function would allow to consult specific problems concerning a model. It would
also improve communication between participants.

Usability

As the DMB is a prototype, it requires several improvements in GUI layer and application
navigation. The interface should contain more explanations. A diagram requires a legend to
be understandable and pages related to model elements should clarify details of performed
operations. Navigation through the DMB may be inconvenient: passing from one element
to another ought to be smoother. To improve user experience and speedup the application
introducing of AJAX (asynchronous communication) may be considered.

Bibliography

[1] UrbanFlood project homepage. http://urbanflood.eu. Accessed September 10,
2011.

[2] Jean Bézivin. On the Unification Power of Models. In Software and System Modeling.

[3] Thomas Kühne. What is a Model? In Jean Bezivin and Reiko Heckel, edi-
tors, Language Engineering for Model-Driven Software Development, number 04101 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[4] What is metamodeling, and what is it good for? http://infogrid.org/wiki/

Reference/WhatIsMetaModeling. Accessed September 5, 2011.

[5] B. Hailpern and P. Tarr. Model-Driven Development: the good, the bad, and the ugly.
IBM Syst. J., 45:451–461, July 2006.

[6] John D. Poole. Model-Driven Architecture: Vision, Standards and Emerging Technolo-
gies. In In In ECOOP 2001, Workshop on Metamodeling and Adaptive Object Models,
2001.

[7] CORBA home page. http://www.corba.org/. Accessed September 12, 2011.

[8] What is Domain-Driven Design? http://domaindrivendesign.org/

resources/what_is_ddd. Accessed June 7, 2011.

[9] Karsten Klein. Domain Driven Design and Model Driven Software Development, 2007.

[10] Floyd Marinescu and Abel Avram. Domain-Driven Design Quickly. Lulu.com, 2007.

[11] Glossary of Domain-Driven Design Terms. http://domaindrivendesign.org/
resources/ddd_terms. Accessed June 7, 2011.

[12] Alistair Cockburn and Jim Highsmith. Agile Software Development: The People Factor.
IEEE Computer, 34(11):131–133, 2001.

[13] Dan Turk, Robert France, and Bernhard Rumpe. Limitations of agile software processes.
In In Proceedings of the Third International Conference on Extreme Programming and

http://urbanflood.eu
http://infogrid.org/wiki/Reference/WhatIsMetaModeling
http://infogrid.org/wiki/Reference/WhatIsMetaModeling
http://www.corba.org/
http://domaindrivendesign.org/resources/what_is_ddd
http://domaindrivendesign.org/resources/what_is_ddd
http://domaindrivendesign.org/resources/ddd_terms
http://domaindrivendesign.org/resources/ddd_terms

Bibliography 77

Flexible Processes in Software Engineering (XP2002), pages 43–46. Springer-Verlag,
2002.

[14] Kent Beck et al. Agile manifesto. http://agilemanifesto.org/. Accessed June
7, 2011.

[15] Kent Beck et al. Principles behind the Agile Manifesto. http://agilemanifesto.
org/principles.html. Accessed June 7, 2011.

[16] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile software
development methods. Technical report, VTT Publications, 2002.

[17] Karin K. Breitman and Julio Cesar Sampaio do Prado Leite. Managing User Stories. In
Armin Eberlein and Julio Cesar Sampaio do Prado Leite, editors, Proceedings of the In-
ternational Workshop on Time Constrained Requirements Engineering, Essen, Germany,
September 2002.

[18] Rachel Davies. The Power of Stories, 2001.

[19] Scott Ambler. Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[20] James Noble and Robert Biddle. Postmodern Prospects for Conceptual Modelling. In
Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki, editors, Third Asia-Pacific Con-
ference on Conceptual Modelling (APCCM2006), volume 53 of CRPIT, pages 11–20,
Hobart, Australia, 2006. ACS.

[21] OMG. Unified Modeling Language, Infrastructure and Superstructure (Version 2.2, OMG
Final Adopted Specification), 2009.

[22] UMLet home page. http://www.umlet.com/. Accessed September 5, 2011.

[23] Visual Paradigm home page. http://www.visual-paradigm.com/. Accessed
June 7, 2011.

[24] IBM Rational Rose home page. http://www.ibm.com/software/awdtools/

developer/rose/. Accessed June 7, 2011.

[25] OMG UML Vendor Directory. http://uml-directory.omg.org/. Accessed
June 7, 2011.

[26] Daniel Mackay, James Noble, and Robert Biddle. A Lightweight Web-Based Case Tool
for UML Class Diagrams. In Robert Biddle and Bruce Thomas, editors, Fourth Aus-
tralasian User Interface Conference (AUIC2003), volume 18 of CRPIT, pages 95–98,
Adelaide, Australia, 2003. ACS.

[27] zOOml home page. http://www.zooml.com/. Accessed September 5, 2011.

http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://www.umlet.com/
http://www.visual-paradigm.com/
http://www.ibm.com/software/awdtools/developer/rose/
http://www.ibm.com/software/awdtools/developer/rose/
http://uml-directory.omg.org/
http://www.zooml.com/

Bibliography 78

[28] WebSequenceDiagrams home page. http://www.websequencediagrams.

com/. Accessed September 5, 2011.

[29] BeoModeler home page. http://www.beotic.org/us/projects/

beomodeler/index.php. Accessed September 5, 2011.

[30] Bo Arne Leuf and Ward Cunningham. What is wiki? http://www.wiki.org/

wiki.cgi?WhatIsWiki. Accessed September 5, 2011.

[31] Manual:MediaWiki feature list. http://www.mediawiki.org/wiki/Manual:

MediaWiki_feature_list. Accessed September 5, 2011.

[32] Redmine web page. http://www.redmine.org/. Accessed June 7, 2011.

[33] JIRA home page. http://www.atlassian.com/software/jira/. Accessed
June 7, 2011.

[34] Michael J Rees. A Feasible User Story Tool for Agile Software Development? In Pro-
ceedings of the Ninth Asia-Pacific Software Engineering Conference, APSEC ’02, pages
22–, Washington, DC, USA, 2002. IEEE Computer Society.

[35] User stories: All products. http://www.userstories.com/products. Ac-
cessed September 9, 2011.

[36] XPlanner home page. http://www.xplanner.org/. Accessed September 9, 2011.

[37] Redmine Backlogs home page. http://www.redminebacklogs.net/. Accessed
September 9, 2011.

[38] James W. Moore. The Logic of Definition, 2009.

[39] Patryk Burek. Adoption of the Classical Theory of Definition to Ontology Modeling. In
Christoph Bussler and Dieter Fensel, editors, AIMSA, volume 3192 of Lecture Notes in
Computer Science, pages 1–10. Springer, 2004.

[40] Ruby on Rails homepage. http://rubyonrails.org/. Accessed September 9,
2011.

[41] Sam Ruby, Dave Thomas, and David Hansson. Agile Web Development with Rails, Third
Edition. Pragmatic Bookshelf, 3rd edition, 2009.

[42] Redmine: Plugin internals. http://www.redmine.org/projects/redmine/

wiki/Plugin_Internals. Accessed August 24, 2011.

[43] Redmine plugin hooks. http://www.redmine.org/projects/redmine/

wiki/Hooks. Accessed August 24, 2011.

http://www.websequencediagrams.com/
http://www.websequencediagrams.com/
http://www.beotic.org/us/projects/beomodeler/index.php
http://www.beotic.org/us/projects/beomodeler/index.php
http://www.wiki.org/wiki.cgi?WhatIsWiki
http://www.wiki.org/wiki.cgi?WhatIsWiki
http://www.mediawiki.org/wiki/Manual:MediaWiki_feature_list
http://www.mediawiki.org/wiki/Manual:MediaWiki_feature_list
http://www.redmine.org/
http://www.atlassian.com/software/jira/
http://www.userstories.com/products
http://www.xplanner.org/
http://www.redminebacklogs.net/
http://rubyonrails.org/
http://www.redmine.org/projects/redmine/wiki/Plugin_Internals
http://www.redmine.org/projects/redmine/wiki/Plugin_Internals
http://www.redmine.org/projects/redmine/wiki/Hooks
http://www.redmine.org/projects/redmine/wiki/Hooks

Bibliography 79

[44] Ruby on Rails API: alias method chain. http://apidock.com/rails/

ActiveSupport/CoreExtensions/Module/alias_method_chain. Ac-
cessed August 24, 2011.

[45] Ruby on Rails API: Callbacks. http://apidock.com/rails/ActiveRecord/
Callbacks. Accessed August 24, 2011.

[46] Redmine plugin hooks list. http://www.redmine.org/projects/redmine/

wiki/Hook_List. Accessed August 24, 2011.

[47] Redmine: Plugin tutorial. http://www.redmine.org/projects/redmine/

wiki/Plugin_Tutorial. Accessed August 24, 2011.

[48] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

[49] Chad Fowler. Rails Recipes. Pragmatic Bookshelf, 2006.

[50] Ruby on Rails API: Associations. http://apidock.com/rails/

ActiveRecord/Associations/ClassMethods. Accessed August 27, 2011.

[51] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby: The Pragmatic Pro-
grammers’ Guide, Second Edition. Pragmatic Bookshelf, 2nd edition, October 2004.

[52] Alexandre Bergel and Stéphane Ducasse. Analyzing module diversity. Journal of Univer-
sal Computer Science, 11:2005, 2005.

[53] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon
Woodhull. Graphviz and dynagraph – static and dynamic graph drawing tools. In GRAPH
DRAWING SOFTWARE, pages 127–148. Springer-Verlag, 2003.

[54] Andreas Happe. Agile Provenance. Master’s thesis, Technische Universität Wien, A-1040
Wien Karlsplatz 13, 2010.

[55] Plone Glossary: Monkey path. http://plone.org/documentation/

glossary/monkeypatch. Accessed August 30, 2011.

[56] Django home page. https://www.djangoproject.com/. Accessed September
12, 2011.

[57] Instiki homepage. http://www.instiki.org/show/HomePage. Accessed
September 4, 2011.

[58] Olelo homepage. http://www.gitwiki.org/. Accessed September 4, 2011.

[59] CORBA home page. http://www.jointjs.com/. Accessed September 12, 2011.

http://apidock.com/rails/ActiveSupport/CoreExtensions/Module/alias_method_chain
http://apidock.com/rails/ActiveSupport/CoreExtensions/Module/alias_method_chain
http://apidock.com/rails/ActiveRecord/Callbacks
http://apidock.com/rails/ActiveRecord/Callbacks
http://www.redmine.org/projects/redmine/wiki/Hook_List
http://www.redmine.org/projects/redmine/wiki/Hook_List
http://www.redmine.org/projects/redmine/wiki/Plugin_Tutorial
http://www.redmine.org/projects/redmine/wiki/Plugin_Tutorial
http://apidock.com/rails/ActiveRecord/Associations/ClassMethods
http://apidock.com/rails/ActiveRecord/Associations/ClassMethods
http://plone.org/documentation/glossary/monkeypatch
http://plone.org/documentation/glossary/monkeypatch
https://www.djangoproject.com/
http://www.instiki.org/show/HomePage
http://www.gitwiki.org/
http://www.jointjs.com/

	Background
	Role of domain modelling and domain expert in software engineering methodologies .
	1.1.1 Model-Driven Architecture .
	1.1.2 Domain-Driven Design .
	1.1.3 Agile methodologies.
	1.1.4 Unified Meta Language as a data modelling tool .
	1.1.5 Summary – domain expert role.

	Software supporting modelling and collaboration.
	1.2.1 Case systems .
	1.2.2 Wiki .
	1.2.3 Project management tools .
	1.2.4 User stories tools.

	Objectives of this work .
	1.3.1 Motivation.
	1.3.2 Aims of the thesis.

	Metamodel: a Framework of Domain Description
	Elements.
	2.1.1 Entity.
	2.1.2 Attribute .
	2.1.3 Association .
	2.1.4 Alternative names.

	Transitions.
	2.2.1 Split.
	2.2.2 Merge.
	2.2.3 Extract.

	Conclusions.

	Methodology of Domain Model Composition
	Participants of the cooperation.
	3.1.1 Domain expert.
	3.1.2 Software developer.

	Overview.
	3.2.1 Initialization: Defining and extracting .
	3.2.2 Iteration: Correcting and adding details.
	3.2.3 Stop condition: Consistent model .

	Participants' tasks.
	3.3.1 Expert tasks.
	3.3.2 Developer tasks.

	Cooperation objectives .
	Features .
	3.5.1 Semantics .
	3.5.2 Iterative cooperation.
	3.5.3 Early development.
	3.5.4 Is it agile?.

	Conclusions.

	Domain Model Builder: a Tool for Cooperative Domain Modelling
	Requirements.
	4.1.1 Functional .
	4.1.2 Nonfunctional.

	Architecture.
	Functionality.
	4.3.1 Metamodel implementation.
	4.3.2 Model visualization.
	4.3.3 Cooperation process logging.
	4.3.4 Methodology support.
	4.3.5 Summary.

	Implementation.
	4.4.1 Metamodel elements implementation details.
	4.4.2 Model transitions.
	4.4.3 Activity log.
	4.4.4 Diagram generation.
	4.4.5 Used tools and mechanisms – summary.

	Technological dependence.
	4.5.1 Ruby and Ruby on Rails.
	4.5.2 Redmine.
	4.5.3 Database.
	4.5.4 Graphviz.
	4.5.5 Plugins.

	Conclusions.
	4.6.1 Requirements fulfillment.
	4.6.2 Summary.

	Validation of Metamodel and Methodology
	Experiment description.
	5.1.1 Controlled experiment: flood forecasting.
	5.1.2 Full experiment: road design.

	Results of modelling.
	5.2.1 Result types.
	5.2.2 Flood forecasting.
	5.2.3 Road design .

	Experts' opinions.
	5.3.1 Flood forecasting – software engineer.
	5.3.2 Road designing – civil engineer.
	5.3.3 Summary.

	Lessons learned.

	Conclusions
	Summary.
	6.1.1 Methodology.
	6.1.2 Tool.
	6.1.3 Evaluation.

	Future work.
	6.2.1 Methodology.
	6.2.2 Tool.

	Bibliography

