
AGH

University of Science and Technology in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and Electronics

DEPARTMENT OF COMPUTER SCIENCE

MASTER OF SCIENCE THESIS

PAWEŁ PIERZCHAŁA

MULTISCALE APPLICATIONS IN THE GRIDSPACE VIRTUAL
LABORATORY

SUPERVISOR:

Katarzyna Rycerz Ph.D

Krakow 2011/2012

OŚWIADCZENIE AUTORA PRACY

OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIAD-

CZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM

OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH

NIŻ WYMIENIONE W PRACY.

. .

PODPIS

Akademia Górniczo-Hutnicza

im. Stanisława Staszica w Krakowie

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

KATEDRA INFORMATYKI

PRACA MAGISTERSKA

PAWEŁ PIERZCHAŁA

APLIKACJE WIELOSKALOWE W WIRTUALNYM
LABORATORIUM GRIDSPACE

OPIEKUN PRACY:

dr inż. Katarzyna Rycerz

Kraków 2011/2012

Acknowledgements

It is with immense gratitude that I acknowledge the support and
help of my Supervisor Katarzyna Rycerz.

I share the credit of my work with my colleague Marcin Nowak,
with whom we have developed the initial version of tool described in
this thesis.

I would like to thank Eryk Ciepiela and Daniel Har¦»lak from
GridSpace team, for their invaluable help with integrating G�MUST
with GridSpace.

I wish to thank Mirek Wo¹niak for his patient proofreading of this
thesis.

Works presented in this thesis are related to the MAPPPER project
which receives funding from the EC's Seventh Framework Programme
(FP7/2007-2013) under grant agreement no RI-261507.

5

Abstract

Multiscale modeling in multiple �elds of science allows scientists to
create more complex and precise models that weren't possible before.
Such models require signi�cant computational power and are often
distributed to fully utilize resources of grids and clouds.

Graphical�MUST User Support Tool was developed to address the
problem of optimal distribution of multiscale application. In order
to successfully distribute an application author's knowledge of hard-
ware requirements is necessary. G�MUST assists users in application
distribution.

G-MUST was used to learn the performance characteristic of mul-
tiscale in-stent restenosis simulator under distribution. Several con�g-
urations were tested in order to �nd the system bottlenecks.

Chapter 1 gives problem outline and explains the aims and scope
of this thesis. In Chapter 2 multiscale problems are introduced and
several problems are discussed. Multiscale libraries are discussed and
compared. Work�ow Managments systems are compared in Chapter 3.
The architecture of Graphical�MUST User Support Tool is described
in Chapter 4. It is followed by a Chapter 5 on G�MUST implementa-
tion details. Chapter 6 containing a case study presents the results of
running a multiscale application in various distribution con�gurations.
Last Chapter, i.e. 7 sums up the thesis goals and results.

Appendix A is a glossary of terms used in this thesis. Article [27],
which compares cloud and HPC environments using tool described in
this thesis, is attached in Appendix B

7

Contents

Contents 9

List of Figures 11

List of Tables 12

1 Introduction 13
1.1 Problem outline . 13
1.2 Aims and scope . 14
1.3 Contribution of other authors 14
1.4 Thesis overview . 15

2 Multiscale problems 17
2.1 Description . 17
2.2 Examples . 18
2.3 Multiscale libraries . 18

2.3.1 AMUSE . 19
2.3.2 MCT . 19
2.3.3 MUSCLE . 19

2.4 Multiscale description . 20
2.5 Summary . 20

3 Work�ow Management 23
3.1 Introduction . 23
3.2 Work�ow systems . 23

3.2.1 Pegasus . 23
3.2.2 Kepler . 24
3.2.3 GridSpace . 25

3.3 Comparsion . 26

4 Graphical�MUST User Support Tool 29
4.1 Features . 29
4.2 Concurrency model . 30
4.3 Requirements . 30
4.4 Use cases . 31
4.5 Architecture . 32

4.5.1 Grouping module . 32
4.5.2 GridSpace module . 34
4.5.3 Sender module . 35

9

4.5.4 Computational platform 36
4.6 Summary . 36

5 Implementation 37
5.1 Grouping module . 37
5.2 GridSpace module . 37
5.3 Sender module . 38
5.4 Communication . 39
5.5 Code structure . 39
5.6 Extensions Possibilities . 41
5.7 Summary . 42

6 Case study 43
6.1 In-stent restenosis application 43
6.2 Results . 44

6.2.1 Grid . 45
6.2.2 Cloud . 46

6.3 Summary . 50

7 Summary 53

References 55

A Glossary 59

B Publication � Comparison of Cloud and Local HPC approach
for MUSCLE-based Multiscale Simulations 61

10

List of Figures

1 Scale map of Multiscale Material Modelling 17
3 Example of Pegasus Work�ow: DART Audio Processing . . . 24
4 Example of Kepler work�ow: Lotka-Volterra 25
5 G�MUST running a mutliscale application in GridSpace . . . 26
6 G�MUST Use Cases . 31
7 G�MUST tool modules . 32
8 Grouping module screenshot visualizing ISR2D kernels 33
9 Sequence diagram: Grouping module interactions with GridSpace 34
10 Master � Slave architecture of Sender module 35
11 Multiscale tool modules and used protocols 40
12 MUST class diagram . 41
13 ISR2D Kernels connections . 44
14 Grid results plot . 47
15 Cloud results plot � Small instances 50
16 Cloud results plot � Large instances 52

11

List of Tables

1 Work�ows comparison . 27
2 Grid results . 46
3 Cloud results � Small instances 49
4 Cloud results � Large instances 51

12

1 Introduction

This Chapter elaborates on the aim of this thesis. It presents the problem
outline and related works and describes the requirements of the created tool.
Finally, it presents the contribution of other authors and gives an overview
on the paper organization.

1.1 Problem outline

Mutliscale problems are emerging from multiple disciplines, involving sci-
entists with and without technical background that need to cooperate in an
e�cient manner to solve problems. Multiscale applications are used to simu-
late the most complex problems from di�erent �elds of science. Solutions are
built from various components demanding more computational power every
year.

Multiscale problems are recognized and supported by the work�ow sys-
tems. Those systems allow users to de�ne computations and operations
through well de�ned APIs or GUI interfaces. Created components can be
later composed in order to solve more sophisticated problems. Solutions from
the complete solvers to the smallest transformations can be easily shared and
reused by experts.

Work�ow systems provide mechanisms for binding operations to compu-
tational infrastructure. Those bindings require di�erent amounts of con�g-
uration. More or less complicated tools are available for users to con�gure
execution environments.

From the point of view of this work, the most interesting system with
work�ow capabilities is the virtual laboratory GridSpace[14]. It is a web
based access and execution system for multiple grids and clusters. Users can
write and share scripts in various interpreters that can be used to orches-
trate experiment �ow. As a single point of access service it is a perfect �t
for the usage of multiple infrastructures. The web 2.0's nature makes user
cooperation extremely convenient and smooth.

As the multiscale applications get more and more profound, their in-
frastructure requirements grow. It also results in complicated setups, which
tend to be done manually. Deployment processes performed by hand are
cumbersome and error-prone, thus MUST User Support Tool (MUST)[12]
was created, a tool that makes infrastructure con�guration simple. It as-
sists the user in both application and infrastructure con�guration, and then
executes the very application.

Distributed multiscale applications have di�erent hardware requirements,
some perform extensive computations on CPU, other require fast communica-

13

tion services. To successfully distribute such application, authors knowledge
is necessary. This thesis proposes Graphical�MUST (G�MUST), a tool that
helps in distribution con�guration.

1.2 Aims and scope

The goals of this thesis are following:

1. Create MUST. Initial version was created as a joint e�ort with Marcin
Nowak. Later, he enhanced MUST with cloud support which he de-
scribes in his thesis [12].

2. Create Graphical�MUST (G�MUST) an extension of MUST that as-
sists the user in distribution con�guration of a multiscale application.
Multiscale application are mostly distributed and may use network or
CPU heavily. In order to make its run e�cient author's knowledge of
application is necessary. We present such tool in Chapter 4.

3. Extend GridSpace. G�MUST needs to be tightly integrated with GridSpace
virtual laboratory platform to create an interactive tool for running
mutliscale applications. An implemented solution is presented in Chap-
ter 5.1.

4. Examine strategies for running multiscale distributed applications. Per-
formance of multiple con�gurations of in-stent restnosis application [9]
were evaluated to learn the best practices for running multiscale solvers.
We present the results in Chapter 6.

5. Comparison of the Work�ow systems. As G�MUST extends GridSpace,
other work�ow systems are compared together to explain why the
GridSpace was chosen for extension. This is presented in Chapter 3

1.3 Contribution of other authors

G-MUST was created as a part of MAPPER Project [1]. This project is
an initiative funded by European Union to create computational strategies,
software and services for distributed multiscale simulations across disciplines,
utilizing existing and evolving European e-infrastructure. The project is
coordinated by Alfons Hoekstra from University of Amsterdam.

The tool is the e�ect of works on this thesis and Marcin Nowak's paper
[12]. The goal of the former is to aid in examining strategies for running
multiscale distributed simulations, while the latter addresses the support of

14

cloud infrastructures. Additionally this thesis contains a survey of work�ow
systems and results of experiments comparing various distribution strategies,
while the second includes an overview of multiscale libraries and results of
empirical comparison of cloud and grid environments.

1.4 Thesis overview

This Chapter presents the goals of the thesis and general view on the
subject. In Chapter 2 the description of multiscale problems is given. Ex-
ample multiscale problems and libraries are presented. Next Chapter 3 is an
overview of work�ow systems. De�nitions of relevant terms are introduced.
Selected solutions are described and compared. Chapter 4 is a detailed de-
scription of Graphical�MUST architecture. Requirements and resulting de-
cisions are discussed. Created tool implementation is described in Chapter
5. Chapter 6 is a performance analysis of In-stent restnosis, an existing ap-
plication from Mapper-Project. Thesis works are concluded in �nal Chapter
7.

Appendix A is a glossary of terms used in this thesis. Appendix B is an
article that compares grid and cloud environments using G�MUST.

15

2 Multiscale problems

This Chapter introduces de�nition of multiscale problems in Section 2.1.
Three practical and interdisciplinary problems are discussed in Section 2.2.
Selected multiscale libraries are presented in 2.3. Multiscale description lan-
guages are covered in Section 2.4.

2.1 Description

The interdisciplinary problems like Climate System Model or In-stent
Restenosis require the knowledge from multiple disciplines resulting in the
multiscale problems. Multiscale problems are composed from coupled models
created by numerous science teams. Each model is working in di�erent spatial
and time scale. Models of subproblems are interacting in di�erent scales and
inconsistent data formats are possible. Algorithms complexity in multiscale
problems is very high, thus heavy computational resources are needed.

An example of multiscale problem is the material modeling. Models used
in such simulation are depicted on Fig. 1. Components in multiple scales
work and cooperate with solvers in di�erent scales, for example Quantum
mechanics model (QM) results are used by a larger scale Atomistic model,
allowing di�erent precisions of simulation.

Figure 1: Scale map of Multiscale Material Modelling
https://www.multiscale-modelling.eu/

17

https://www.multiscale-modelling.eu/

2.2 Examples

This Chapter presents three examples of multiscale problems. Applica-
tions were chosen to cover di�erent disciplines and approaches.

Community Climate System Model [2] is used to model and predict cli-
mate changes. Originally developed as Community Climate Model in 1983, is
one of the most accurate climate models. In order to predict climate changes,
various models of chemical, physical and biological processes have to coop-
erate. Composition of atmosphere, land surface, ocean and sea ice models
results in a climate model.

Complex scienti�c project like ITER [8] require complex models. Project
Fusion was started to address this problem. The goal of Fusion is to cover and
simulate many scenarios and aspects of nuclear fusion. The most important
simulation is the Transport Turbulence Equilibrium which is a simpli�ed and
approximate version of a simulation of the full fusion core in a nuclear fusion
reactor.

Another example of a multiscale problem is the in-stent restenosis [9]
problem from physiology. The purpose of the model is to study arteries
narrowing after stent placement. In-sten restenosis simulates stent deploy-
ment and other processes involved. The model is composed from biological
and physical models like blood �ow, drug di�usion and smooth muscle cell
proliferation.

Two dimensional simulation of in-stent restnosis was used for G-MUST
case study. Results are presented in Chapter 6.

2.3 Multiscale libraries

Multiscale libraries are written in various languages according to di�erent
paradigms meeting di�erent requirements. Following Sections will discuss
Amuse, a library for dense stellar systems simulations; MCT, a toolkit for
creating parallel coupled models using message passing and MUSCLE, a
framework for building applications according to Complex Automata theory.

Multiscale problems are usually too profound to compute them on a single
PC in feasible time thus high performance infrastructures are used. Grids,
clusters and clouds are used, subproblems are computed on di�erent ma-
chines and many types of communication schemes are used, from the low
level interfaces like MPI to higher level Agent communication protocols like
JADE.

18

2.3.1 AMUSE

AMUSE is an Astrophysical Multipurpose Software Environment [3]. Ac-
cording to the website, it is a �software framework for large-scale simulations
of dense stellar systems, in which existing codes for dynamics, stellar evolu-
tion, hydrodynamics and radiative transfer can be easily coupled, and placed
in appropriate observational context.�

The whole framework is implemented in Python on top of MPI utilities.
User scripts are usually written in Python, however it is possible to integrate
Amuse with Fortran or C++ code.

2.3.2 MCT

The Model Coupling Toolkit [4], [5] is a parallel coupling library. Prob-
lems are decomposed into component models which may use distributed-
memory parallelism and occupy the processing elements. The message pass-
ing layer is provided by MPEU, Message Passing Environment Utilities is
a toolkit created by NASA to support their parallel operational data as-
similation system. The Model Coupling Toolkit was created as a part of
improvements in Community Climate System Model (CCSM).

The basic MCT package is available as a Fortran library, but Python and
C++ bindings are available through Babel interface. Programming model is
very similar to MPI one.

2.3.3 MUSCLE

The MUSCLE [6] is a framework for building multiscale applications ac-
cording to the complex automata theory. The library is a platform indepen-
dent solution working on top of Java Agent DEvelopment Framework. The
core of the library is written using a mix of Java and Ruby code. Developers
are allowed to create computational kernels in pure Java or native code like
C++, C or Fortran. The name of the library stands for Multiscale Cou-
pling Library and Environment. The Muscle library was created as part of
Mapper-Project [1].

Complex Automata (CxA) [7] is a paradigm to model multi-scale systems.
The idea behind CxA is to decompose a multi-scale system into several cel-
lular automates (CA) working in di�erent spatial and time scales. Those
cellular automates are represented on Scale Separation Map (SSM) which is
a two dimensional map where vertical axis is a spatial space and horizontal
one is a temporal scale. Every CA is working on its own scales, time steps
are known in respect to the global scale. Edges of automates exchange data

19

using information about each other's scale provided by the Scale Separation
Map.

2.4 Multiscale description

Multiscale problems' solutions are usually applications decomposed into
multiple subproblems, thus there is a need for a formal description of the
connections on computations method. Each one of the previously described
frameworks has its own description, although there are unifying descriptions
like MML [11].

Muscle projects are using cxa description �les, which are describing com-
putational modules and connections between them. Current Muscle imple-
mentation stores cxa description in plain Ruby �les.

The Multiscale Modeling Language (MML) is a language describing the
architectures of multiscale applications. Architecture is de�ned by:

• submodels that are performing actual computations

• �lters which know about scales of connected submodels and are respon-
sible for performing necessary conversions.

• mappers are used when more then two submodels are connected. They
receive and combine information from all connected subproblems and
send it back to proper recipients

Multiscale Modelling Language variant based on XML is known as xMML
[10].

More detailed information about multiscale description languages is avail-
able in Marcin Nowak's thesis [12].

2.5 Summary

With the still growing computer power more complex problems will be
solved. However, many new multiscale problems, even more complicated
than the ones previously described, will emerge.

Multiscale problems require complex software solution, as a result frame-
works and libraries were created to aid professionals in their work. Packages
like MCT were results of works on the Climate System Model, Amuse was
created to support large scale simulations of dense stellar systems. Gen-
eral purpose libraries like Muscle are also helping in modeling the multiscale
phenomena.

20

The current version of G-MUST supports applications created in Muscle
library. Rationale behind this choice is that Muscle library is not bound to
any speci�c kind of problem.

21

3 Work�ow Management

This Chapter introduces the work�ow concept in Section 3.1. Several
work�ow managements systems are discussed in Section 3.2 and compared
in Section 3.3.

3.1 Introduction

Nowadays scienti�c work involves experiments in-silico, which are getting
more popular every year due the increase of the computer power and decrease
of its price. However not every scientists have a information technology
background needed for development of the software. The problems being
researched are getting more and more multidisciplinary, thus being composed
from independent modules developed by separate teams.

Work�ow management systems make the process of experiment develop-
ment easier, in some cases by providing graphical tools, in other cases by
exposing easy to use high level APIs. The idea behind work�ow systems is
to broke applications into smaller jobs, that will be easier to develop and
maintain independently. Work�ow unit is a multi-step computational task,
that might perform the actual computations or reformat the data to meet
di�erent interface or get the input from an external storage. The experiment
is created by ordering and connecting those units together.

Created work�ows can be shared between the users, thus minimizing the
duplicate work and maximizing the computer resources to human time ratio.
Sharable and reusable work�ows are bringing the in-silico experiments to non
IT scientists like chemists and biologists.

3.2 Work�ow systems

Following Section brings the author's pick of the commonly used work�ow
systems.

3.2.1 Pegasus

Pegasus[21] is a planning framework for mapping abstract work�ows for
execution on the Grid. Pagasus changes abstract work�ows into concrete
ones by associating execution resources with each operation in work�ow and
adding tasks for transferring input and output data. Concrete work�ows can
be executed using grid middlewares like DAGMan or Condor-G [23]. Pegasus
can execute work�ows in a number of di�erent environments from desktops
to grids and clouds. Installation of this tools might be complex and not every

23

grid user has necessary privileges for that. To address this problem, Pegasus
team released Pegasus Portal [24].

Fig. 3 presents an audio analysis work�ow implemented in Pegasus. The
DART (Distributed Audio Retrieval using Triana) uses Pegasus to run nine
hours lasting experiments of music information retrieval. Multiple audio �les
are processed by a series of sub-alghoritms (depicted as D1 � Dx in Fig. 3)
that determine pitch.

Figure 3: Example of Pegasus Work�ow: DART Audio Processing

3.2.2 Kepler

Kepler is an open source work�ow management system under lead devel-
opment of University of California Davis, Santa Barbara and San Diego. It is
a mature project witch aims to solve problems in a broad range of scienti�c
end engineering disciplines.

It is a multiplatform solution written in Java based on Pytolemy II [25]
that allows users to create work�ows using built-in GUI or programming
interfaces. Thanks to work�ows' independent nature it is possible to write
them in tools such as R and MATLAB.

GUI is designed in a similar manner to programming IDEs. It is used to
develop, compose and run work�ows. Lotka Vloterra simulator implementa-
tion is depicted in Fig. 4. It is a pair of di�erential equations that describe
dynamics of biological system in which predator and prey interact. Kepler

24

work�ow in Fig. 4 is composed from actors that represent predator and prey
equations, integrals and their plotters.

Figure 4: Example of Kepler work�ow: Lotka-Volterra

3.2.3 GridSpace

GridSpace [14] is a new and unique web�based computing and data access
platform for scienti�c problems. It is suited to ease up the access to high�
throughput and high performance infrastructures. It was originally developed
in the ViroLab project [15]; currently it is part of MAPPER Project.

GridSpace user work on experiments which are created in form of scripts
called snippets in GridSpace. Experiments may be composed from many
snippets written in various languages like Ruby, Python etc. or domain
speci�c tools like G�MUST.

G�MUST extended the GridSpace with the capability of running multi-
scale applications. Screen shot in Fig. 5 shows GridSpace running G�MUST
while it executes the code in a grid environment.

25

Figure 5: G�MUST running a mutliscale application in GridSpace

3.3 Comparsion

All the previously described tools are used to design and execute ex-
periments in-silico. Some of them use more abstract work�ow formats like
Pegasus and Kepler, other, like GridSpace, use groups of scripts to form an
experiment.

Kepler and Pegasus are standalone applications and can execute work-
�ows on local machines or remote resources like grids or clouds. GridSpace
is a SaaS application that is used to access grids, although clouds can still
be reached from the grid resources.

Pegasus, GridSpace and Kepler are not bound to any speci�c scienti�c
domain, they are generic purpose work�ow management solutions. They
o�er di�erent interfaces, standalone GUIs or APIs in case of Pegasus and
Kepler, web based in case of GridSpace, to solve various heavy computational
problems.

Work�ow system are compared in table 1. It gathers information about
infrastructure characteristic like type of installation or supported environ-
ment. Moreover, work�ows types and formats are compared and support for

26

multiscale applications is discussed.

Table 1: Work�ows comparison

Pegaus Kepler GridSpace
Supported work-
�ows

Formalized
XML based.

XML Based. In form of source
code snippets.

Support for
multiscale appli-
cations

Multiscale ap-
plications can
be modeled in
Pegasus us-
ing standard
Work�ow mech-
anisms. Focused
on DAG work-
�ows.

Kepler supports
multiscale via
regular work-
�ows. That may
expose di�erent
types of concur-
rency according
to underlying
Pytolemy II
framework.

GridSpace sup-
ports multiscale
application
via MUST.
MUST exe-
cutes MUSCLE
applications.

Work�ows edi-
tor

Using XML edi-
tor.

Graph based
GUI ediotr.

Web based
source code
editor.

Supported
infrastructures

Clouds, Grids,
Clusters, Local

Grids, Local Clouds, Grids,
Clusters, Local

Type of installa-
tion

Standalone,
Web based via
Pegasus Portal

Standalone Web based

GridSpace was chosen for an extension for several reasons. Thanks to
its web based nature it does not require users to install any software, which
makes it a very convenient tool. Source code based notation of work�ow
enables wide range of multiscale applications to be imported easily, including
the existing ones like in-stent restnosis.

27

4 Graphical�MUST User Support Tool

This chapter presents G-MUST features in Section 4.1. Next Section
4.2 describes the tool concurrency model. Utility requirements are listed in
Section 4.3. Implemented use cases are presented in Section 4.4. Architecture
of G�MUST modules is explained in Section 4.5.

4.1 Features

G�MUST User Support Tool runs distributed multiscale application in a
grid or cloud environment with minimal con�guration. It is an extensions of
MUST and the created utility is tightly integrated within GridSpace virtual
laboratory which removes repetitive tasks in every day scienti�c work. Out-
puts of the multiscale application are displayed in real time in GridSpace,
both in the form of output streams and �les with results.

To utilize environment resources e�ciently, end users can con�gure the
distribution scheme. G�MUST adds a web based tool to MUST, that al-
lows authors to use there insights on application details and precisely group
computational task for parallel execution.

Both cloud and grid environments are supported by MUST: it automat-
ically allocates and cleans up all the resources needed by an experiment.
The tool seamlessly integrates with grid environments through PBS queue
system, where cloud is managed via Amazon EC2 API. MUST support for
cloud is described in Marcin Nowak's thesis [12].

Developed tool removes repetitive parts from in-silico experiments. Repet-
itive updates of application con�guration, which required remote machine
access, are now matter of con�guration update through GridSpace web in-
terface. Results are no longer spread across multiple machines � they are
collected during the tool clean up phase.

G�MUST was created with usage simplicity in mind, thus does require
only minimal changes within con�guration. It is integrated with GridSpace to
utilize simple access and user friendly interface, enabling rapid result analysis
with built�in statistical packages.

There are multiple multiscale frameworks and cloud providers available;
it is impossible to support them all at once, however G�MUST was built to
be extensible. At the moment of writing only applications using MUSCLE
are supported. Application can be deployed in grids supporting PBS and
Amazon cloud.

29

4.2 Concurrency model

The tool can be described as an actor�oriented system for hosted ap-
plications which are a process network [26] in terms of Pytolemy II [25].
Pytolemy is a project that studies modeling, simulation and design of ac-
tor oriented concurrent systems. It supports multiple classes of commu-
nication process networks (PN), discrete-events (DE), data�ow (SDF), syn-
chronous/reactive(SR), rendezvous-based models, 3-D visualization, and con-
tinuous-time models.

The process network model describes a concurrent system in which se-
quential components communicate through unidirectional FIFO channels.
Messages send through channels are called tokens, every process can read
from a channel but it cannot poll it for presence of a token, in such case the
read operation blocks.

4.3 Requirements

G�MUST is a user support tool, that helps in everyday scienti�c work,
thus it has di�erent set of goals than any multiscale framework or application.
The following list presents requirements that shaped the architecture:

• Support tool for heavy applications � The tool itself is a set of pro-
grams that host other multiscale applications which need to monitor
and collect the outputs of supervised applications.

• Cannot introduce visible overhead once hosted application is started.
It has to be e�cient in output transportation.

• Runs mutliscale application � has to support multiscale frameworks, in
the initial version only MUSCLE is supported.

• Distributed � runs application in both grid and cloud environments.

• Accessible � it has to be a highly available tool following usability
standards; the web�based approach makes it accessible to anyone with
a browser.

• Con�gurable � G�MUST needs to provide an easy mechanism for the
hosted application's con�guration.

• Extensible � Process of adding support for new infrastructures should
involve minimal overhead. New multiscale frameworks should be pos-
sible to add.

30

4.4 Use cases

Graphical�MUST extends primary set of MUST use cases by the kernel
distribution con�guration scenario. G�MUST and MUST use cases relations
are depicted in Fig. 6. Following use cases are supported by the application:

• Con�gure kernel distribution � user can con�gure the distribution
scheme using G�MUST's graphical tool.

• Start experiment � user can start the con�gured application in a
remote environment.

• Stop experiment � application can be stopped at any time.

• Monitor experiment � user can monitor output of the hosted appli-
cation in real time using GridSpace web application.

Described use cases help user in e�cient tweaking of optimal distribution.
After user starts the experiment, they can monitor the output, to determine
if performance is satisfying. If the user wants to try other con�guration they
can terminate the experiment and quickly recon�gure kernel groupings.

Figure 6: G�MUST Use Cases

31

4.5 Architecture

To meet the requirement, the application was designed as a set of sepa-
rated modules, each of which has a particular role in the whole process.

G�MUST can be divided into two layers which are presented in Fig.
7. The Access Layer divided into two modules is responsible for multiscale
application con�guration. The Grouping module assists the end user in dis-
tribution scheme con�guration and the GridSpace module allows the end
user to edit the hosted application con�guration and start the experiment.
Execution Layer runs the actual experiment. The Sender module is respon-
sible for communication with the Computational platform and experiment
supervision. Modules are described in details in next Sections.

Grouping module

Gridspace module

Sender module

Computational platform

Access Layer

Execution Layer

Figure 7: G�MUST tool modules

4.5.1 Grouping module

The Access Layer is divided into two modules. This Section describes
Grouping Module. It is G�MUST's key extension of MUST, a web applica-
tion that visualizes the connection con�guration of multiscale kernels. Users
can inspect the kernels and group them using the editor for optimal run of

32

application. The visualization application communicates with GridSpace,
which then proceeds with execution.

Fig. 8 depicts the in-stent restnosis application kernel con�guration with
all kernels in separate groups. As it can be seen in the screen shot, kernels
are displayed in a graph form, with kernels in the same group rendered with
the same color. In order to group tasks, the user has to assign them the
same color. When the user is �nished with con�guration they can submit
the result to GridSpace.

Figure 8: Grouping module screenshot visualizing ISR2D kernels

Interactions between GridSpace and Grouping module are presented in
the sequence diagram in Fig. 9. Presented sequence consists of following
steps:

1. User logs in to GridSpace and starts the experiment.

2. GridSpace returns the URL of Grouping module which is displayed
in the browser. It is displayed in a modal in GridSpace; the group-
ing module receives kernel con�guration and session data as a JSON
request.

3. User con�gures the kernels and submits the con�guration.

33

4. Grouping module noti�es the GridSpace about con�guration changes.
Then it sends a post request to GridSpace with con�guration in JSON
format. Application authenticates with session data received in the
initial request.

5. GridSpace continues with the experiment.

Figure 9: Sequence diagram: Grouping module interactions with GridSpace

4.5.2 GridSpace module

This Section discusses the second Access Layer module, the GridSpace
Module. It is the MUST's entry point, after accessing which they can run
its multiscale application using a provided interpreter.

GridSpace module is used to con�gure experiment parameters via con�g-
uration �les and environment variables. It can start the Grouping module
to get additional kernel con�guration if needed. It is responsible for sending
the start and stop signals to the Sender module. This module can present
the Sender live output stream from multiscale application in the GridSpace
interface. After the experiment has ended, users can access the application
artifacts stored on �le system.

34

4.5.3 Sender module

It is the key module of MUST. Sender communicates and prepares the
selected infrastructure and manages the experiment run.

Based on multiscale con�guration sent by GridSpace module it allocates
computational platform resources. It packages and sends the tool code to
allocated machines. It is responsible for the application life cycle � it starts
it, monitors the output, and ensures a clean shutdown.

The Sender module follows Master � Slave architecture depicted in Fig.
10. After the Sender allocates resources, through PBS in case of grid, it
becomes the Master; allocated machines become Slaves that wait for a list
of kernels to execute.

Master is responsible for sending initial kernels con�guration to Slaves,
output gathering, statistics collection and monitoring the end conditions.

Slaves ask the Master node for a set of kernels to execute. Each slave
monitors a single process and sends its output to the Master � after the
shutdown signal the monitored process is terminated and slave quits.

Slave

Kernel

Slave

Kernel

Slave

Kernel

Master

Access machine

Nodes

PBS

Sender

rpc rpc rpc

Figure 10: Master � Slave architecture of Sender module

35

4.5.4 Computational platform

The Computational platform is accessed by the Sender module via a
platform-speci�c communication mechanism. In case of grids it is an adapter
for the Portable Batch System. Cloud infrastructure is supported via an
adapter on Amazons Web Services client.

4.6 Summary

This Chapter described MUST architecture requirements and the mod-
ules that implement it. Design of each application module was discussed.

MUST has a simple two layer architecture. User�facing functionalities
are contained in Access Layer. Experiment runner and platform speci�c
code are in Execution Layer. Each layer is divided into modules which follow
the single responsibility principle. The most complex module � the Sender,
which is responsible for application distribution, is designed as Master � Slave
application.

The decision to make the Grouping module a web application and the
usage of GridSpace access infrastructure make MUST a easly accessible tool,
which after deployment requires only web browser from end users. It provides
both text based and GUI based tools for con�guration. Separated adapters
for di�erent infrastructures make it extensible.

36

5 Implementation

This Chapter describes the implementation of G�MUST. Each module's
implementation details are described in following Sections: Grouping module
in 5.1, GridSpace module in 5.2 and Sender module in 5.3. Communication
sequence overview is given in Section 5.4. Code structure is the subject of
Section 5.5. Possible extensions are discussed in Section 5.6.

MUST is implemented as a set of separate JavaScript and Ruby appli-
cations with minor parts written in Bash. Tool modules run on di�erent
machines and communicate over network using HTTP based APIs, SSH ses-
sions and distributed Ruby services.

This thesis is concerned with details of grid implementation only, the
adapter for cloud infrastructure was a subject of Marcin Nowak's thesis. He
implemented and described the cloud module architecture in his work [12].

5.1 Grouping module

Grouping module is a web application that visualizes kernel con�gurations
and enables users to con�gure the distribution scheme using a simple graph
based tool. The purpose of the module is to group the kernels for execution.

The grouping module is a single web page application, frontend is imple-
mented in Javascript and backend code is written in Ruby. The application
itself is hosted on heroku cloud: http://mapper-webgui.heroku.com/.

Frontend part of application is implemented in JavaScript and the graph
manipulation is implemented with the use of InfoVis library [19].

The web server side code is implemented in Ruby using the Sinatra [16]
micro framework. It is responsible for serving the frontend code and submit-
ting the result back to GridSpace.

Application is rendered inside user's web browser using the GridSpace
webgui mechanism.

5.2 GridSpace module

The GridSpace module is the entry point to the MUST. It is the user
facing part of the application, which is a Ruby script that can be run as a
GridSpace interpreter. It con�gures and runs the experiment.

GridSpace module reads the con�guration �les and allows the end user
the edit them using GridSpace interface. It uses the GridSpace Webgui API
to show the user a modal with Grouping module. Finally it is used to start
the experiment by executing the Sender module.

37

http://mapper-webgui.heroku.com/

GridSpace infrastructure allows the user to monitor the mutliscale ap-
plication outputs in nearly real time. Application artifacts are available
immediately after the experiment ends through GridSpace web interface.

The script executes following steps:

1. The con�guration is passed by user as a snippet content and saved in
a �le.

2. The con�guration �le is parsed and information about computational
tasks and their connections is extracted.

3. Extracted information is passed to Grouping module 5.1.

4. When the grouping module sends the connections back, the sender
module 5.3 is started.

5.3 Sender module

Sender module is the one responsible for conducting the experiment. It
allocates the resources using platform speci�c mechanism, runs the mutliscale
application and monitors its progress. It is an application written in Ruby.

After the Sender program starts working on the access machine it reads
the con�guration from standard input and saves it in �le for the mutlis-
cale application. Current implementation supports only applications written
with the MUSCLE library. Based on the con�guration it allocates the grid
machines using PBS queue system, each allocated machine executes a bash
script that starts the slave task.

One type of infrastructure is handled by one computational module. In
current release the module for PBS is only available. The module handles
allocation of nodes, computational tasks distribution and output redirec-
tion. Computational module implements a simple Master�Slave architecture.
Master is responsible for distributing computational tasks, synchronization
between leader task if necessary and output gathering. Slave asks server for
a job to execute and then redirects its output. Both parts are implemented
using library Distributed Ruby [17], the library doesn't o�er the best per-
formance, but the actual computations are using their own communication
facilities and the amount of communication needed to start experiment is
limited. The server might wait for a speci�c task to achieve the desired
state, which is checked based on regular expression matched against its out-
put. The Master functionality is implemented in TaskManager class, Slave
is implemented in Task class.

Master side module started by GridSpace executes following steps:

38

1. Proper number of nodes is allocated through PBS [20].

2. The Ruby TaskManager server is started.

3. Each one of the assigned nodes is starting the same bash script which
will eventually start a Ruby Task that connects to TaskManager (Slave
side).

4. TaskManager executes and prints the received output to the standard
output.

Slave side steps:

1. Slave connects to TaskManager and asks Master for a job

2. Received command line is executed on local machine and the output is
redirected to Master

5.4 Communication

Fig. 11 shows all modules and the connections outside and inside them.
In order to start the tool the user has to log into GridSpace and execute the
�muscle interpreter� passing the contents of con�guration �le to a snippet
body.

After the user starts the experiment, GridSpace sends a HTTP request
with JSON encoded body to external Grouping module.

Once con�guration is submitted back to GridSpace, it starts the Sender
module in selected infrastructure using an SSH connection.

The hosted application uses its own communication facilities, in case of
MUSCLE it is JADE. Master�Slave orchestrating code communicates using
Distributed Ruby Protocol. Slaves monitors kernel output by capturing the
kernel standard output and error streams.

5.5 Code structure

The experimental part of this thesis required the author to write small
utilities that would share the code base with MUST, the tool code was split
into smaller classes. G�MUST is an extension of refactored MUST code base.
Shared code was extracted into smaller classes and throughly unit tested.
Unit testes were written in RSpec. G-MUST was developed with the use
of Guard - a program that monitors �les changes and executes con�gured
commands. The source code contains guard con�guration that runs tests
automatically when the production or test code changes.

39

Figure 11: Multiscale tool modules and used protocols

Fig. 12 presents must classes that are used for the grid part. Following
classes are used:

• PBSSender is the main grid class, it is responsible for infrastructure
allocation and start of the TaskManager.

• Command wraps common tasks around monitoring of the running
program. It starts the command, monitors its output using pipe and
can stop the program on given regular expression.

• TaskManger is a distributed object that orchestrates the Tasks, sends
them jobs to execute and gathers their output.

40

• Task is the slave part of Sender. There is one Task per node in a grid
which runs a part of multiscale application and reports its progress to
TaskManager.

• ExecutionTimesLogger Responsible for logging execution times to
given stream.

• ISROutputParser Extracts progress information from the in-stent
restenosis output.

• CsvFormatter Formats the run time statistics in CSV format.

Figure 12: MUST class diagram

5.6 Extensions Possibilities

The logic was separated into several submodules to simplify the process
of adding new computational platforms. New platforms have to implement
adapter aligning with PBSSender interface. Marcin Nowak's thesis [12] gives
a detailed description of the cloud extension.

41

Complexity of adding support for a new multiscale libraries depends
greatly on the library structure. For libraries that use similar application
description language, existing code should be fairly easy to adapt, for other,
it may be a challenging task.

5.7 Summary

This Chapter presented G-MUST's implementation details. Section 5.1
described the Grouping module's implementation. The GridSpace module
was described in Section 5.2. Details of sender implementation are presented
in part 5.3. Communication between modules was described in Section 5.4.
Detailed information on code structure was presented in Code structure 5.5.
Extension possibilities were discussed in Section 5.6.

42

6 Case study

This Chapter presents the in-stent restenosis application (ISR2D) in Sec-
tion 6.1 and the rationale behind choosing it as a benchmark application.
G�MUST was used to run the application both in grid and cloud environ-
ment, results are presented in Section 6.2.

G�MUST is used to learn the in-stent restensosis performance character-
istic. Multiscale applications performance will depend on distribution con�g-
uration, too many process on one machine with not enough cores will result in
CPU contention, on the other hand, too distributed applications may su�er
from high network latency.

Successful distribution requires understanding of the application archi-
tecture. Created tool provides an useful mechanisms for the user to choose
the best con�guration. It is also a valuable tool for authors that want to see
if the distribution improves overall experiment times.

Measurements and analysis are presented in Section Results.

6.1 In-stent restenosis application

Coronary heart disease is the most common cause of death in Europe. It
is treated with stent placement, however sometimes the treatment results in
in-stent restenosis, which can cause serious implications, including death.

The In-stent restnosis is brie�y described in Section 2.2. ISR2D is multi-
scale application that models the process of stent restenosis. Multiple mod-
ules called kernels operate in various scales and communicate through net-
work. Each of has a di�erent purpose and environment requirements, both
in hardware and software.

Application is composed from following kernels:

• IC � Initial conditions, reads parameters, calculates boundary condi-
tions and passes them to SMC

• SMC � Smooth Muscle Cells simulation, computationally intensive
solver written in C++

• BF � Blood Flow model implemented using Lattice Boltzmann meth-
ods. Heavy computations implemented in Fortran.

• DD � Drug Di�usion model written in Java, it is not as computation-
ally intensive as the previous two.

• dd2scm, smc2bf, bf2smc � small modules, called connectors, that
are responsible for input/output transformation between kernels

43

Kernel connections are visualized in Fig. 13.
Given that two kernels are computationally intensive and the rest plays

a supporting role, machine with three or more cores should be able to e�-
ciently run the application. More complicated version of in-stent restnosis
application exists � it is a three dimension model called ISR3D [9]. Three
dimensional simulations have more demanding hardware requirements, for
example blood �ow is simulated using the MPI model, which would require a
multi core machine itself. Simpler two dimensional solver was chosen because
it was ready at the time the works on this thesis begun.

IC - Initial Conditions

DD - Drug Di�usion BF - Blood �owSMC - Smooth Muscle Cells

smc2bf

bf2smcdd2smc

Figure 13: ISR2D Kernels connections

Rationale behind choosing in-stent restnosis as a benchmark application
was:

• it is a part of a Mapper-Project

• it is a distributed application with exhaustive computations

• distribution scheme is con�gurable

• heterogeneous nature of computation makes it a challenging problem

6.2 Results

This Section presents results of ISR2D execution in grid and cloud en-
vironments. Grid experiments were performed on PL-Grid machines from
ACK Cyfronet AGH, where cloud ones were held in Amazon Elastic Com-
puter Cloud. In grid environment only one type of machine was available, in

44

EC2 small and large instances were selected to present nontrivial spectrum
of runtime scenarios.

The aim of those experiments was to determine the best kernel con�g-
uration for every environment. Another important aspect was to prove the
usefulness of distribution con�guration mechanism.

The same set of kernel con�gurations was run in each environment and se-
lected type of machines, additional con�gurations were added in case of EC2
small instances to help understand the performance characteristic in more
detail. Following kernels con�gurations were tested in every environment:

• [ic,smc,bf2smc,bf,smc2bf,dd,dd2smc] All the kernels grouped to-
gether to show bottlenecks in CPU contention.

• [ic],[smc],[bf2smc],[bf],[smc2bf],[dd],[dd2smc] Every kernel run-
ning alone to maximize the impact of network throughput and latency.

• [ic,smc],[bf2smc,bf,smc2bf],[dd,dd2smc] Blood �ow is computa-
tionally intensive, it is grouped together with its connectors, to validate
network impact.

• [ic,smc],[bf2smc],[bf],[smc2bf],[dd,dd2smc] Symmetric case to the
previous one, they are both used to measure network impact and the
connectors' role in the overall performance characteristic.

• [ic],[smc,smc2bf],[bf,bf2smc],[dd,dd2smc] Kernels and connectors
together, again to validate connectors' impact.

• [ic,smc],[smc2bf,bf],[bf2smc,dd],[dd2smc] Drug Di�usion connec-
tor separated to see its impact on performance.

Results are presented in a tabular and graphical form. The tabular data
contains kernels con�guration, number of iterations performed, execution
time average in seconds and standard deviation of time. Each experiment
was performed �ve times. Each table has a corresponding plot of times.

Following Sections cover the results per environment, the last one com-
pares them and summarizes the conclusions.

6.2.1 Grid

Grid execution times are gathered in table 2, Fig. 14 shows the graphical
representation.

PL-Grid node Zeus is a powerful computational unit with following spec:

• 24GB of RAM

45

• 2x Intel Xeon X5650 2,66 Ghz � a 6 core high performance CPU

• In�niBand network

Due to PL-Grid machines resources di�erences between particular con�g-
urations are not signi�cant. The ISR2D is mostly a CPU bound application
with relatively low and synchronized communication between application
modules. Given that, there is no considerable di�erence between running
all the kernels on separate machines than on a single one, as long as it has
enough cores to take advantage of parallelism. PL-Grid high end network
infrastructure and small tra�c generated by application take the inter kernel
communication out of the picture.

In PL-Grid environment the best choice for running the ISR2D is the
con�guration with all kernels running one machine, thus the application is
isolated from any network issues.

Table 2: Grid results

Kernel groupings Iterations Time [s] δ
[ic,smc],[bf2smc,bf,smc2bf],[dd,dd2smc] 150 1621,67 124
[ic,smc,bf2smc,bf,smc2bf,dd,dd2smc] 150 1629,67 101

[ic,smc],[bf2smc],[bf],[smc2bf],[dd,dd2smc] 150 1646,67 150
[ic],[smc],[bf2smc],[bf],[smc2bf],[dd],[dd2smc] 150 1595,67 111
[ic],[smc,smc2bf],[bf,bf2smc],[dd,dd2smc] 150 1611,00 114
[ic,smc],[smc2bf,bf],[bf2smc,dd],[dd2smc] 150 1644,33 153

6.2.2 Cloud

Cloud experiments were held in the Amazon EC2 infrastructure. It o�ers
multiple instances for di�erent types of computations. From the vast array
of standard machines:

• Micro Instance � t1.micro

� 613 MB memory

� Up to 2 EC2 Compute Units (for short periodic bursts)

• Small Instance � m1.small

� 1.7 GB memory

� 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)

46

0 20 40 60 80 100 120 140 160
0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

1800,00

[ic,smc],[bf2smc,bf,smc2bf],[dd,dd2smc] [ic],[smc,smc2bf],[bf,bf2smc],[dd,dd2smc]
[ic,smc],[bf2smc],[bf],[smc2bf],[dd,dd2smc] [ic],[smc],[bf2smc],[bf],[smc2bf],[dd],[dd2smc]
[ic,smc,bf2smc,bf,smc2bf,dd,dd2smc] [ic,smc],[smc2bf,bf],[bf2smc,dd],[dd2smc]

iterations

tim
e

[s
]

Figure 14: Grid results plot

• Medium Instance � m1.medium

� 3.75 GB memory

� 2 EC2 Compute Unit (1 virtual core with 2 EC2 Compute Unit)

• Large Instance � m1.large

� 7.5 GB memory

� 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units
each)

• Extra Large Instance � x2.large

47

� 15 GB memory

� 8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units
each)

Two machines were chosen:

• m1.small � because of simple 1 core architecture

• x2.large � for the multicore CPU that can e�ciently run ISR2D on one
machine

Micro instances were ignored because they are designed for tasks that
are stale for the most of the time and in peaks require higher CPU power.
Under normal circumstances it operates with CPU power around 0.5EC,
under heavy load it can work as 2EC machine. Its performance did not meet
the ISR2D requirements, so m1.small instances was chosen, as it provides a
constant 1EC of computational power.

For the large instance x2.large was selected, because it o�ers capacity
high enough to run complex problems on one machine.

Following paragraphs present results from two selected instance types.

Small instances

Results of execution on small instances are presented in table 3 and Fig.
15.

Execution times vary from under 4000 to over 18000 seconds, from total
distribution to a single machine run. Small instances are not big enough to
meet performance requirements of an ISR2D application, while being run in
the same instance heavier kernels have to compete for CPU time and result
in high execution times. A ingle machine for every kernel resulted in one of
the fastest executions because there was no contention for the computational
resources between the kernels. The less distributed the application was, the
worse the results were.

In addition to baseline con�gurations, four other kernel con�gurations
were used to measure results on smaller set of machines:

• [ic,smc,bf2smc,bf],[smc2bf,dd,dd2smc]Kernels and corresponding
connectors are evenly split into two groups to measure impact of the
CPU's load.

• [ic,smc],[bf2smc,bf,smc2bf,dd,dd2smc] Uneven split chosen as a
reference.

48

• [ic,smc,bf2smc,bf,smc2bf],[dd,dd2smc] Another uneven split cho-
sen as a reference.

• [ic,smc,bf,dd],[smc2bf,bf2smc,dd2smc]Kernels and connectors are
running on separated machines to emphasis to network impact.

The most distributed con�guration has one of the best times, what con-
�rms that network e�ciency is not a key factor of ISR2D overall performance.

One of the con�gurations that groups the kernels and corresponding trans-
formations on the same machine would be the optimal one.

Table 3: Cloud results � Small instances

Kernel groupings Iterations Time [s] δ
[ic],[smc],[bf2smc],[bf],[smc2bf],[dd],[dd2smc] 150 4229 174
[ic,smc],[bf2smc],[bf],[smc2bf],[dd,dd2smc] 150 3731,5 639
[ic,smc],[bf2smc,bf,smc2bf],[dd,dd2smc] 150 3797 573
[ic],[smc,smc2bf],[bf,bf2smc],[dd,dd2smc] 150 3909,67 573
[ic,smc,bf2smc,bf,smc2bf,dd,dd2smc] 150 18327 1535

[ic,smc],[smc2bf,bf],[bf2smc,dd],[dd2smc] 150 10076,5 957
[ic,smc,bf2smc,bf],[smc2bf,dd,dd2smc] 150 6820 967
[ic,smc],[bf2smc,bf,smc2bf,dd,dd2smc] 150 14474,5 1457
[ic,smc,bf2smc,bf,smc2bf],[dd,dd2smc] 150 12416 1119
[ic,smc,bf,dd],[smc2bf,bf2smc,dd2smc] 150 15141 1128

Large instances

Tabular data from cloud run on large instances is gathered in table 4. It
is plotted in Fig. 16.

Execution times on large instances show only slight di�erences in run
times. It is due to the fact that multicore architecture of x2.large machines
allows an e�cient run of the whole application on a single machine.

Similar results of distributed and single machine runs con�rm that amount
of communication between machines is quite small.

The optimal kernel selection for the large instances in EC2 environment
is the single machine as it isolates the application from any network issues.
It can occur much often than in the HPC Grid environment.

49

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

[ic],[smc],[bf2smc],[bf],[smc2bf],[dd],[dd2smc] [ic,smc],[bf2smc],[bf],[smc2bf],[dd,dd2smc]
[ic,smc],[bf2smc,bf,smc2bf],[dd,dd2smc] [ic],[smc,smc2bf],[bf,bf2smc],[dd,dd2smc]
[ic,smc,bf2smc,bf,smc2bf,dd,dd2smc] [ic,smc,bf2smc,bf],[smc2bf,dd,dd2smc]
[ic,smc],[bf2smc,bf,smc2bf,dd,dd2smc] [ic,smc,bf2smc,bf,smc2bf],[dd,dd2smc]
[ic,smc,bf,dd],[smc2bf,bf2smc,dd2smc]

iterations

tim
e

[s
]

Figure 15: Cloud results plot � Small instances

6.3 Summary

Case study Chapter presented a challenging mutliscale application ISR2D.
Application introduction was followed by runtime results analysis of ISR2D
executed by G�MUST.

Large cloud instance results are very similar to the grid ones, because
both environments o�er a high performance environment for multiscale ap-
plications. The major di�erence is the network performance, which in case
of EC2 cloud is not a HPC class, although it has no visible in�uence on
the execution times. Again, it is because ISR2D is a CPU, not network IO,
bound problem.

50

Table 4: Cloud results � Large instances

Kernel groupings Iterations Time [s] δ
[ic,smc,bf2smc,bf,smc2bf,dd,dd2smc] 150 2050 81,88

[ic,smc],[smc2bf,bf],[bf2smc,dd],[dd2smc] 150 2043 53,42
[ic],[smc],[bf2smc],[bf],[smc2bf],[dd],[dd2smc] 150 2036 62,57
[ic,smc],[bf2smc],[bf],[smc2bf],[dd,dd2smc] 150 2039 69,40
[ic,smc],[bf2smc,bf,smc2bf],[dd,dd2smc] 150 2041 72,16
[ic],[smc,smc2bf],[bf,bf2smc],[dd,dd2smc] 150 2071 92,02

Experiments on small cloud instances shown that di�erent kernel con�g-
urations can have a large impact on application performance.

G�MUST proved to be a valuable tool for learning the performance char-
acteristic of an application and choosing the optimal con�guration. Its light
weighted con�guration and resources allocation automatization allowed the
author of this thesis to easily perform the experiments and collect the results.

For the author of mutliscale applications G�MUST o�ers lightweight way
to learn about the application behaviour under distribution. Its interactive
nature enables the user to quickly end the ine�cient runs, minimizing the
time spent on �nding the best con�guration.

51

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

500

1000

1500

2000

2500

[ic,smc,bf2smc,bf,smc2bf,dd,dd2smc] [ic,smc],[smc2bf,bf],[bf2smc,dd],[dd2smc]
[ic],[smc],[bf2smc],[bf],[smc2bf],[dd],[dd2smc] [ic,smc],[bf2smc],[bf],[smc2bf],[dd,dd2smc]
[ic,smc],[bf2smc,bf,smc2bf],[dd,dd2smc] [ic],[smc,smc2bf],[bf,bf2smc],[dd,dd2smc]

iterations

tim
e

[s
]

Figure 16: Cloud results plot � Large instances

7 Summary

As a result of the work on this thesis, MUST was created as joint e�ort
with Marcin Nowak. It runs multiscale applications both in grid and cloud
environments, relieving the user from error-prone and cumbersome tasks as-
sociated with manual execution.

G�MUST, an extension of MUST, was created. It is a tool that assists
the user in distribution con�guration of a multiscale application. Multiscale
application are mostly distributed and may use network or CPU heavily
and in order to make its run e�cient, author's knowledge of application is
necessary.

G�MUST was tightly integrated with the GridSpace virtual laboratory
platform to create an interactive con�guration tool for distribution scheme
of multiscale applications.

G-MUST and MUST are both presented in Chapter 4.
Comparison of two popular work�ow systems and GridSpace was pre-

sented in Chapter 3. They were compared in terms of their infrastruc-
tures support, multiscale problem recognition, work�ow types and instal-
lation type.

Results from Chapter 6 revealed the nature of performance of two dimen-
sional in-stent restenosis. G-MUST assisted by running multiple distributed
con�gurations of ISR2D in both grid and cloud environments. On HPC grid
machines and large instances from cloud the results were very similar no mat-
ter how the application was spread across the machines. On the contrary,
small instances from cloud resulted in the slowest execution times, while total
distribution was one of the fastest con�gurations and con�rmed that ISR2D
simulation is CPU-bound.

Case study described in Chapter 6 proved the tool to be useful in dis-
tributing the multiscale application, as well in learning the performance char-
acteristic of in-stent restnosis simulation.

53

References

[1] MAPPER Project. http://www.mapper-project.eu/web/guest

[2] The Community Climate System Model The National Center for Atmo-
spheric Research http://www.cesm.ucar.edu/

[3] Amuse The AMUSE Team, 2009, 2010, 2011, http://www.amusecode.
org/

[4] M × N Communication and Parallel Interpolation in CCSM3 Using
the Model Coupling Toolkit. Robert Jacob, Jay Larson, Everest Ong,
2005, International Journal of High Performance Computing Appli-
cations archive Volume 19 Issue 3, August 2005, Pages 293 - 307
http://www.mcs.anl.gov/research/projects/mct/mxnP1225.pdf

[5] The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Mul-
tiphysics Parallel Coupled Models. Jay Larson, Robert Jacob, and Ever-
est Ong, 2005, International Journal of High Performance Computing
Applications archive Volume 19 Issue 3, August 2005 Pages 277 - 292
http://www.mcs.anl.gov/research/projects/mct/mctP1208.pdf

[6] Multiscale Coupling Library and Environment (MUSCLE). research
project COAST, http://muscle.berlios.de/

[7] Towards a Complex Automata Framework for Multi-Scale Modeling:
Formalism and the Scale Separation Map. Alfons G. Hoekstra, Eric
Lorenz, Jean-Luc Falcone, and Bastien Chopard, 2007, ICCS '07 Pro-
ceedings of the 7th international conference on Computational Science,
Part I: ICCS 2007 Pages 922 - 930 http://staff.science.uva.nl/

~elorenz/docs/hoekstra_07_towards.pdf

[8] International Thermonuclear Experimental Reactor. ITER Organiza-
tion, http://www.iter.org/

[9] A distributed multiscale computation of a tightly coupled model using the
Multiscale Modeling Language Joris Borgdor�, Carles Bona-Casas, Mar-
iusz Mamonski, Krzysztof Kurowski, Tomasz Piontek, Bartosz Bosak
, Katarzyna Rycerz, Eryk Ciepiela, Tomasz Gubala, Daniel Hare-
zlak, Marian Bubak, Eric Lorenz, Alfons G. Hoekstra, 2012, Proceed-
ings of the International Conference on Computational Science, ICCS
2012, Volume 9, 2012, Pages 596�605 http://www.sciencedirect.

com/science/article/pii/S1877050912001858

55

http://www.mapper-project.eu/web/guest
http://www.cesm.ucar.edu/
http://www.amusecode.org/
http://www.amusecode.org/
http://www.mcs.anl.gov/research/projects/mct/mxnP1225.pdf
http://www.mcs.anl.gov/research/projects/mct/mctP1208.pdf
http://muscle.berlios.de/
http://staff.science.uva.nl/~elorenz/docs/hoekstra_07_towards.pdf
http://staff.science.uva.nl/~elorenz/docs/hoekstra_07_towards.pdf
http://www.iter.org/
http://www.sciencedirect.com/science/article/pii/S1877050912001858
http://www.sciencedirect.com/science/article/pii/S1877050912001858

[10] MML: towards a Multiscale Modeling Language Jean-Luc Falconea,
Bastien Choparda, Alfons Hoekstrab 2010, Procedia Computer Science,
Vol. 1, No. 1. (May 2010), pp. 819-826

[11] The xMML format . http://www.mapper-project.eu/web/guest/

wiki/-/wiki/Main/XMML%20format

[12] Multiscale applications composition and execution tools based on simula-
tion models description languages and coupling libraries. Marcin Nowak,
2011.

[13] myExperiment. The University of Manchester and University of
Southampton, http://www.myexperiment.org/

[14] The Capabilities of the GridSpace2 Experiment Workbench. Marian
Bubak, Bartosz Bali±, Tomasz Barty«ski, Eryk Ciepiela, Wªodz-
imierz Funika, Tomasz Gubaªa, Daniel Har¦»lak, Marek Kasztelnik,
Joanna Kocot, Maciej Malawski, Jan Meizner, Piotr Nowakowski,
Katarzyna Rycerz, 2010 http://dice.cyfronet.pl/publications/

filters/source/papers/CGW2010workbench_abstract.doc

[15] Development and Execution of Collaborative Application on the Vi-
roLab Virtual Laboratory Marek Kasztelnik, Tomasz Gubaªa, Maciej
Malawski, and Marian Bubak, 2008

http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/

WikiStart/vl07-a02-collab.pdf?format=raw

[16] Sinatra. Blake Mizerany, http://www.sinatrarb.com/

[17] Distributed Ruby. Masatoshi Seki http://www.ruby-doc.org/stdlib/
libdoc/drb/rdoc/index.html

[18] JSON, Douglas Crockford http://json.org/

[19] JavaScript InfoVis Toolkit. Nicolás García Belmonte, http://thejit.
org/

[20] Portable Batch System. http://doesciencegrid.org/public/pbs/

[21] Pegasus Work�ow Management System Ewa Deelman, Gaurang Mehta,
Karan Vahi, Fabio Silva, Mats Rynge, Jens Voeckler, Rajiv Mayani
http://pegasus.isi.edu/

56

http://www.mapper-project.eu/web/guest/wiki/-/wiki/Main/XMML%20format
http://www.mapper-project.eu/web/guest/wiki/-/wiki/Main/XMML%20format
http://www.myexperiment.org/
http://dice.cyfronet.pl/publications/filters/source/papers/CGW2010workbench_abstract.doc
http://dice.cyfronet.pl/publications/filters/source/papers/CGW2010workbench_abstract.doc
http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a02-collab.pdf?format=raw
http://virolab.cyfronet.pl/trac/vlvl/attachment/wiki/WikiStart/vl07-a02-collab.pdf?format=raw
http://www.sinatrarb.com/
http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html
http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html
http://json.org/
http://thejit.org/
http://thejit.org/
http://doesciencegrid.org/public/pbs/
http://pegasus.isi.edu/

[22] Pegasus : Mapping Scienti�c Work�ows onto the Grid Ewa Deelman,
James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal
Patil, Mei-Hui Su, Karan Vahi, Miron Livn http://www.isi.edu/

~deelman/pegasus_axgrids.pdf

[23] Condor and DAGMan Condor Team, University of Wisconsin-Madison
http://www.cs.wisc.edu/condor/dagman/

[24] Pegasus portal Gurmeet Singh, Ewa Deelman, Gaurang Mehta, Karan
Vahi, Mei-Hui Su, G. Bruce Berriman, John Good, Joseph C. Jacob,
Daniel S. Katz, Albert Lazzarini, Kent Blackbur, Scott Korand http:

//pegasus.isi.edu/publications/Pegasus_Portal_final2.pdf

[25] Ptolemy II - Heterogeneous Concurrent Modeling and Design in Java
Christopher Brooks, Edward A. Lee http://chess.eecs.berkeley.

edu/pubs/655.html

[26] Process Networks in Ptolemy II Mudit Goel http://ptolemy.eecs.
berkeley.edu/papers/98/PNinPtolemyII/pninptII.pdf

[27] Comparison of Cloud and Local HPC approach for MUSCLE-based Mul-
tiscale Simulations Katarzyna Rycerz, Marcin Nowak, Paweª Pierzchaªa,
Marian Bubak, Eryk Ciepiela and Daniel Harezlak 2011

57

http://www.isi.edu/~deelman/pegasus_axgrids.pdf
http://www.isi.edu/~deelman/pegasus_axgrids.pdf
http://www.cs.wisc.edu/condor/dagman/
http://pegasus.isi.edu/publications/Pegasus_Portal_final2.pdf
http://pegasus.isi.edu/publications/Pegasus_Portal_final2.pdf
http://chess.eecs.berkeley.edu/pubs/655.html
http://chess.eecs.berkeley.edu/pubs/655.html
http://ptolemy.eecs.berkeley.edu/papers/98/PNinPtolemyII/pninptII.pdf
http://ptolemy.eecs.berkeley.edu/papers/98/PNinPtolemyII/pninptII.pdf

A Glossary

AMUSE � an Astrophysical Multipurpose Software Environment. Software
framework for large-scale simulations of dense stellar systems.

MCT � The Model Coupling Toolkit

MUST � MUST User Support Tool

G�MUST � Graphical�MUST User Support Tool

ISR2D � Two dimensional in-stent restnosis simulation

ISR3D � Three dimensional in-stent restnosis simulation

Kernel � A single scale simulation from MUSCLE

GridSpace � a web�based computing and data access platform for scienti�c
problems.

MUSCLE � a framework for building multiscale applications according to
the complex automata theory.

59

B Publication � Comparison of Cloud and Lo-

cal HPC approach for MUSCLE-based Mul-

tiscale Simulations

The author of this thesis is also a coauthor of publication [27]. The article
is attached below.

61

Comparison of Cloud and Local HPC approach for
MUSCLE-based Multiscale Simulations

Katarzyna Rycerz∗‡, Marcin Nowak∗, Paweł Pierzchała∗, Marian Bubak∗†, Eryk Ciepiela‡ and Daniel Harȩżlak‡
∗AGH University of Science and Technology

Instutute of Computer Science
al. Mickiewicza 30,30-059 Krakow, Poland

Email: kzajac|bubak@agh.edu.pl and marcin.k.nowak|pawelpierzchala@gmail.com
† University of Amsterdam,

Institute for Informatics, Science Park 904,
1098XH Amsterdam, The Netherlands.

‡ AGH University of Science and Technology
Academic Computer Centre – CYFRONET,

Nawojki 11,30-950 Kraków, Poland
Email: e.ciepiela|d.harezlak@cyfronet.krakow.pl

Abstract—In this paper we present and compare a support
for setting up and execution of multiscale applications in the
two types of infrastructures: local HPC cluster and Amazon
AWS cloud solutions. We focus on applications based on the
MUSCLE framework, where distributed single scale modules
running concurrently form one multiscale application. We also
integrate presented solution with GridSpace virtual laboratory
that enables users to develop and execute virtual experiments on
the underlying computational and storage resources through its
website based interface. Last but not least, we present a design
of a user friendly visual tool supporting application distribution.

I. I NTRODUCTION

Multiscale modeling is one of the most significant chal-
lenges which science faces today. There is a lot of ongoing
research in supporting composition of multiscale simulations
from single scale models on various levels: from high level
description languages [1], through dedicated environments
[2], [3], [4] to the efforts of exploiting European Grid e-
Infrastructures such as Euforia [5], MAPPER1 or the Urban-
Flood.eu [6] projects.

In this paper we present a support for programming and
execution of MUSCLE-based multiscale applications in the
variety types of infrastructures – namely we comparatively
evaluate the performance of local HPC cluster approach with
cloud-based solutions (i.e. performance of their resourceman-
agement mechanism). Recently, there is a lot of ongoing effort
in fulfilling high performance computational requirements
on cloud resources, which general advantage over classical
clusters is ad-hoc provisioning (instead of using long queues
in batch queue systems) and pay-as-you-go pricing (instead
of large investment in dedicated, purpose-built hardware). The
goal of this work was to use some of these solutions to
build a support for multiscale applications and compare it
with a classical HPC. There are some other affords in this

1http://www.mapper-project.eu

direction - such as VPH-Share2 project that aims at using
clouds for multiscale simulations from Virtual Physiological
Human research area. However, up to our best knowledge,
there is no any particular mature solution yet.

We investigate and integrate solutions from: virtual ex-
periment frameworks, such as the GridSpace Platform [7]3,
tools supporting multiscale computing such as MUSCLE [2]4

and Cloud and HPC infrastructures. Additionally, we present
a design of a user friendly interface, suitable for scientists
working on multiscale problems (computational biologists,
physicists) without computer science background.

The paper is organized as follows: In Section II we present
background of our work, in Section III we describe character-
istic and requirements for chosen MUSCLE-based multiscale
applications, in Section IV we outline overall architecture of
our environment. In the next two Sections we present detailsof
our solution: in Section V we describe Kernel Graph Editor - a
visual tool aiding a user in distribution of application modules
(kernels) and in Section V we show details of supporting HPC
cluster and Cloud execution. The use case of the example
multiscale medical application is presented in Section VIIand
the preliminary results are shown in Section VIII. Conclusion
and future work can be found in Section IX.

II. BACKGROUND

Multiscale simulations are of the great importance for a
complex system modeling. Examples of such simulations in-
clude e.g. blood flow simulations (assisting in the treatment of
in-stent restenosis) [8], solid tumor models [9], stellar system
simulations [4] or virtual reactor [10]. The requirements of
such applications are addressed by numerous partial solutions.

MML [1] developed in the MAPPER project is the language
for description of multiscale application consisting of different

2http://uva.computationalscience.nl/research/projects/vph-share
3http://dice.cyfronet.pl/gridspace/
4http://muscle.berlios.de

singe-scale modules. The Model Coupling Toolkit (MCT) [3]
is a tool capable of simplifying construction of parallel coupled
models that applies a message passing (MPI) style of commu-
nication between simulation models and it is oriented towards
domain data decomposition. The Astrophysical Multi-Scale
Environment (AMUSE) [11] is a software environment for
astrophysical applications where different simulation models
of stars systems are incorporated into a single framework
using scripting approach. The Multiscale Coupling Libraryand
Environment (MUSCLE)[2] provides a software framework
for constructing multiscale application from so-called single
scale kernels connected by uni-directional conduits. MUSCLE
has its roots in the complex automata theory [12], but can
be used for multiscale applications in general. Because it is
already designed for distributed execution of kernels, it has
been chosen as a basic tool for applications supported in our
solution. In the future, we also plan to extend our solution also
to other, not MUSCLE-based, applications.

We extended the capabilities of the GridSpace (GS) platform
developed as a basis for the Virtual Laboratory in the ViroLab
project5 and currently further developed in MAPPER project.
GS is a framework enabling researchers to conduct virtual
experiments on Grid-based resources and HPC infrastructures.
Additionally, the preliminary experiments using GridSpace
with cloud computing have been described in [13]. An ex-
perimental environment supporting building and executionof
multiscale applications consisting of HLA-based components
in the Grid environment can be found in [14].

In this paper we present the further results towards building
a support for multiscale simulations running on Clouds in a
GridSpace environment.

III. SUPPORTEDMULTISCALE APPLICATIONS

CHARACTERISTIC AND REQUIREMENTS

Multiscale applications implement models of multiscale
processes [15], [16]. We focus on such multiscale applications
that can be described as a set of connected single scale
modules i.e. modules that implement models of single scale
processes. Therefore, a typical multiscale application consists
of:

• software modules simulating certain phenomena in cer-
tain time or space scale (scaleful); usually this mod-
ules are computationally intensive, could require HPC
resources, often (but not always) are implemented as
parallel programs,

• software modules that convert data from one scaleful
module to another; usually these modules do not have de-
manding computational requirements; however, to avoid
additional communication, they often required to be exe-
cuted ”close” to the scaleful modules they are connecting;
they can even be implemented in the same process as one
of the scaleful modules.

In this paper we focus on peer to peer type of computa-
tion where all application modules are executed concurrently

5http://www.virolab.org

kernel 1

cs.attach(kernel1 => kernel2) {

 tie(entrance, exit)

}

CxA file

kernel 2

plumber

muscle

Fig. 1: Example MUSCLE application. Entrance of the ker-
nel 1 is connected with exit of kernel 2.

and exchange data in usually asynchronous fashion; exam-
ple is part of MAPPER In-stent Restenosis application [8],
Canals [17] and Fusion [5] applications; during the course of
execution, applications often pass many synchronization points
(the number can be static or dynamic); therefore, this type
often requires mechanism of efficient communication.

As a supporting communication environment we have cho-
sen MUSCLE communication library that connects tightly
coupled simulation modules (MUSCLE kernels). The library
allows to concurrently run all modules of the simulation
that communicate directly using message passing paradigm.
MUSCLE API is specifically designed for Complex Automata
(CxA) simulation model and allows a user to specify con-
nection ports (called Exits and Entrances). The MUSCLE
communication is based on actor-based concurrency model i.e.
asynchronous sending, synchronous receiving. Exits and En-
trances are connected using external configuration mechanism
(implemented as ruby script called CxA file) for specifying
connections between modules and their parameters. The ex-
ample architecture of MUSCLE application is shown in the
Fig.1. The two kernels are executed in Muscle environment
and are managed by so-called plumber that assures that all
kernels are properly started and joined.

Current MUSCLE implementation is using Java Agent
DEvelopment Framework (JADE) framework6 Kernel commu-
nication is performed at JADE agents level, which uses JICP
protocol based on TCPI/IP.

IV. GENERAL ARCHITECTURE OFPROPOSED

ENVIRONMENT

The general architecture of the solution is shown in the
Fig.2 In our research we have combined solutions from:
the GridSpace Experiment Workbench, tools supporting mul-
tiscale computing such as MUSCLE and Cloud and HPC
infrastructures. The GridSpace Experiment Workbench is a
Web 2.0-based tool supporting joint development and ex-
ecution of virtual experiments by groups of collaborating

6http://jade.tilab.com/

Browser

Kernel

Graph

Editor

GridSpace

Experiment

Workbench

Experiment

Host

Cluster Nodes

Amazon AWS

Cloud

Fig. 2: General Architecture of Proposed Environment

scientists. GridSpace experiments consist of scripts which can
be expressed in a number of popular languages, including
Ruby, Python and Perl as well as domain specific languages.
The framework supplies a repository of gems enabling scripts
to interface various resources (e.g external Web Applications,
local resource management queues, etc.)

For the purpose of this paper, we have extended GridSpace
Environment by adding support for experiments consisting
also of CxA connection specification. This was done by
designing and implementing additional set of CxA interpreters
(different for each infrastructure), launched from GS Work-
bench. We have also built graphical editor showing con-
nections between MUSCLE kernels and supporting grouping
them for execution purposes (called Kernel Graph Editor) that
is accessible from GridSpace as external Web Application.
After the connections between MUSCLE kernels are specified,
the actual application is executed on a chosen infrastructure
(local HPC cluster or AWS Amazon cloud7) dependent on
chosen interpreter. Thanks to user friendly design of GS
Experiment Workbench switching between interpreters (and
therefore choosing the infrastructure) is very easy and does
not require any changes from MUSCLE application developer.
The support for both types of infrastructures is described in
more detail in the next section.

The detailed use case of the proposed environment is as
follows:

1) User logs to chosen access machine (called Experiment
Host) using GridSpace Experiment Workbench. The
actual connection is done using ssh mechanism.

2) User creates or loads (from Experiment Host) CxA
connection scheme to the GS Experiment Workbench.
The scheme describes how to join MUSCLE kernels
(that are available on the Experiment Host as software

7http://aws.amazon.com

packages). A Simple example of such scheme is shown
in the Fig.3.

3) CxA scheme is parsed and sent to Kernel Graph Editor
that displays connections.

4) Gridspace prompts user with the Kernel Graph Editor,
which aids the user in joining kernels in groups that
should be executed at the same host.

5) Depending on user preference the application is per-
formed on HPC Cluster or AWS Amazon Cloud.

V. K ERNEL GRAPH EDITOR

Grouping is needed to achieve good performance by reduc-
ing the volume of network communication between compu-
tational and converter type kernels (see Section III). Kernel
Graph Editor is an external web application that enables
graphical modification of application structure.

Once CxA script is created in GS Experiment Workbench,
it is parsed and application connection scheme is sent to
Kernel Graph Editor. The editor processes the message and
renders it inside user web browser using GridSpace gem called
Webgui. Once a user decides about final connection scheme
and grouping of kernels, the final scheme is sent back to the
GridSpace CxA Interpreter for execution. The communication
between Kernel Graph Editor and GridSpace CxA interpreter
is done using simple POST of HTTP protocol. The application
structure and information about kernel groups are described
in JavaScript Object Notation (JSON) format. The Kernel

Kernel

Graph

Editor

GridSpace

CxA

Interpreter

User

connections

groups WebGui

(JSON over

HTTP POST)

Fig. 3: Loading of CxA connection scheme in the Kernel
Graph Editor

Graph Editor server is implemented in Ruby using the Sinatra
framework8. The client is written in JavaScript with the use
of library InfoVis9.

VI. A PPLICATIONSDISTRIBUTION SUPPORT IN

DIFFERENT INFRASTRUCTURES

After preparation of MUSCLE application as described
in Section IV, it is executed on the chosen infrastructure.
As described in Section III, MUSCLE application is a peer
to peer type of computation where all kernels are executed
concurrently. The execution is controlled by a plumber that
once started, registers all kernels, connect them according to
the CxA schema and initiates execution.

When using plain legacy MUSCLE software, plumber and
groups of computational kernels are started manually on dif-
ferent computing nodes (each kernel group needs information

8http://www.sinatrarb.com/
9http://thejit.org/

Experiment Host

Task

Manager

DRb

Allocated

PBS Node

Task

Allocated

PBS Node

muscle

Allocated

PBS Node

Task

k k p

k - kernel

p - plumber

Task

k k

(a) local HPC cluster.

Experiment Host

Task

Manager

Amazon

Instance

Task

Amazon

Instance

muscle

Amazon

Instance

Task

k k p

k - kernel

p - plumber

Task

k k

Amazon SQS

Amazon

S3

(b) Amazon AWS Cloud.

Fig. 4: Setting up MUSCLE application on various infrastructures

about plumber localization). To automatically control running
such an application in a distributed environment we decided
to apply a general Master - Slave architecture. Master is
responsible for distributing computational tasks (plumber or
group of kernels for one node), synchronization and standard
output/error gathering. Slaves asks Master for a job to execute
and then redirect its standard output and error streams. Once
started by Slaves, actual kernels communicate with each other
using MUSCLE. This scheme is generally used for both types
of infrastructures (local HPC and Cloud) described in this
paper. The detailed solutions differ with the chosen technology
(used according to actual infrastructure) as described in the
next subsections and shown in the Fig.4.

Usually, apart from sending control messages to the out-
put/error streams, scientific applications produce quite alot of
data that are stored in files. This type of output is also treated
differently regarding if the computation took place on a host
with local or remote file system. The details are described in
the next two subsections.

A. Local HPC solution - distributed Ruby and PBS queue
system

In case of local HPC solution we have chosen Portable
Batch System (PBS) local management system for allocating
resources and Distributed Ruby (DRb) for communication
between master and slaves. This communication requires a
number of short control messages as the actual connection
between kernels is done using MUSCLE mechanisms and
main simulation output is saved in the files. The detailed
architecture of our solution is shown in the Fig.4(a). Master
algorithm is as follows:

1) Proper number of nodes is allocated through PBS. This
is done as one singe allocation (by using pbsdsh tool).

2) The TaskManager is started.
3) On each of the assigned nodes a Task process (Slave) is

started (via pbsdsh tool) that connects to TaskManager
using DRb.

4) As asked by a Task, TaskManager sends request to start
the plumber

5) As asked by a Task, TaskManager sends requests to start
appropriate group of kernels

6) TaskManager prints the received Task’s output to the
screen.

Slave algorithm is as follows:

1) Task connects to Task Manager using DRb and asks it
for a job description

2) Task receives a job description (request for staring a
plumber or the kernels in a single group)

3) Task redirects the output and error streams to the Task
Manager

In a case of local HPC resources the computational nodes
share filesystem with the Experiment Host, so the output files
are seen immediately by File Browser which is a standard part
of GS Experiment Workbench.

B. Amazon AWS cloud solution

In case of Amazon AWS cloud infrastructure we have
used standard mechanisms for launching virtual instances
(one instance for one group of kernels). The images used by
instances were based on a preconfigured Amazon Machine
Image (AMI) with added MUSCLE installation. For communi-
cation between Master and Slave we have used Amazon SQS10

queues. The detailed architecture of our solution is shown in
the Fig.4(b). Master (Task Manager) algorithm is as follows:

10http://aws.amazon.com/sqs/

1) Amazon SQS queues (one for control messages and one
for output and error streams) are created

2) messages to start the plumber and kernels are sent to the
control SQS queue.

3) CxA file and Input sandbox with kernels input and
implementation are sent to Amazon S3 storage11

4) Proper number of virtual instances are started through
Amazon EC2 Ruby API. On each virtual machine the
Task process is started automatically after the booting.

5) the received (by SQS queues) output and error messages
are printed to the screen.

Slave (Task) algorithm is as follows:

1) Tasks fetches the input sandbox from S3 and unpacks
it.

2) Task connects to Task Manager using control SQS
queue. The first Task fetches job description (request
for staring a plumber and group of kernels). The other
Tasks wait if there are no messages.

3) The Task that fetched the job description starts the
plumber and distributes rest of jobs (name of kernels
in each group) to the other Tasks using SQS control
queue.

4) Each Task sends the output and error streams to the Task
Manager using appropriate SQS queue

5) After the job executes, the files with simulation output
are sent to S3.

This scenario assumes that the kernel implementation is
lightweight and portable (e.g. in form of simple java jars).If
some of the kernels needed more sophisticated dependencies
(e.g native libraries), it would require to prepare AMI accord-
ingly before the execution. This process is, however; often
more convenient as a user has a full access to virtual instance,
in comparison to local cluster resources, when he has to ask
administrator for additional installation of packages.

As the computational nodes do not share filesystem with
the GS2 user access machine (Experiment Host), the output
files have to be fetched from Amazon S3 storage to be seen
by GridSpace File Browser.

VII. U SE CASE - INSTENT RESTENOSIS

As an example of multiscale application we have used the
Instent Restenosis Application (ISR) [8] that simulates treating
of recurrent stenosis of artery after surgical correction.We
have used 2D version of the simulation. More information
about the application can be found in [18]. As shown in
Fig. 5 the application consists of three modules of different
time scale: simulation of blood flow (BF), simulation of
muscle cells (SMC), and drug diffusion (DD). The application
includes also scale-less transformation modules connecting
ones which feature a scale (scaleful) and initial condition
module. All modules are implemented as MUSCLE kernels.
The BF, SMC and DD modules are synchronized and perform
around 1700 iterations in total (around 70 hours wallclock
time). They exchange about 10MB data during each iteration.

11http://aws.amazon.com/s3/

BF

time:microscale

SMC

time:macroscale

IC

scaleless

DD

time:mesoscale

SMC2BF

scaleless BF2SMC

scaleless

DD2SMC

scaleless

Fig. 5: Simulation of In-stent restenosis - 2D version.

The example screenshot of the kernel graph editor showing
connections for in-stent restenosis application is shown in the
Fig.6.

VIII. L OCAL HPC VS CLOUD - PERFORMANCERESULTS

To compare local HPC and Cloud approach we have per-
formed preliminary tests of ISR application. As the total
execution time of the application is very long (3 days for 1700
iterations), we present tests for a partial execution (for 15 and
150 number of iterations). The demo of running the application
from GridSpace is available online12.

The local HPC cluster used was the HP Cluster Platform
3000 BL 2x220, connected with Infiniband hosted at ACC
Cyfronet, Krakow. The machine is number 81 on the June
2011 Top 500 list. When using Cloud we compared following
types of instances (please note that One EC2 Compute Unit
provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor):

• High-CPU Extra Large (m1.xlarge) Instances with 7 GB
of memory, 20 EC2 Compute Units (8 virtual cores
with 2.5 EC2 Compute Units each), 1690 GB of local
instance storage, 64-bit platform. Benchmark results of
network parameters between Amazon instances can be
found in [19]

• Cluster Compute Quadruple Extra Large (m2.4xlarge)
Instances 23 GB memory, 33.5 EC2 Compute Units, 1690
GB of local instance storage, 64-bit platform, 10 Gigabit
Ethernet.

In case of the local HPC cluster thesetting up phase
included waiting in a PBS queue and dispatching tasks us-
ing DRb as described in Section VI-A, theexecution phase

12http://www.youtube.com/watch?v=3S9-kljyXIw

Fig. 6: Screenshot of Kernel Graph Editor for Instent Restenosis 2D application

TABLE I: Setting up and execution times of sample MUSCLE application on Local HPC Cluster and AWS Amazon Cloud -
comparison

ISR 2D 15 iterations
Infrastructure Setting up Execution Sending Output Total

min - max (sec) avg (sec) σ min - max (sec)
Local

HPC Cluster 6 - 363 190 16 N/A 196 - 553
avg(sec) σ avg (sec) σ avg(sec) σ avg(sec) σ

AWS Cloud
m1.xlarge 81 6 250 20 100 10 430 20
m2.4xlarge 80 10 187 3 130 20 400 20

ISR 2D 150 iterations
Infrastructure Setting up Execution Sending Output Total

min - max (sec) Avr (sec) σ min - max (sec)
Local

HPC Cluster 6 - 363 1500 130 N/A 1506 - 1863
avg(sec) σ avg (sec) σ avg(sec) σ avg(sec) σ

AWS Cloud
m1.xlarge 72 4 2068 15 120 20 2260 30
m2.4xlarge 74 4 1526 4 110 60 1710 60

included actual application execution (including MUSCLE
environment start-up).

In case of the AWS Cloudsetting up phase included all steps
required to set up the application as described in Section VI-B:
creation of SQS queues, sending input sandbox to S3, booting
instances, dispatching Tasks by SQS queue and fetching input
sandbox by Tasks. Additionally, we separately included time
of sending output to S3 for permanent storage (this step is
not necessary in local cluster case with the shared filesystem).

The amount of output is around 1MB (for 15 iterations) and
3MB (for 150 iterations).

As mentioned before, in ISR application the amount of
communication between legacy MUSCLE kernels was 10MB
per iteration. During actual execution the amount of commu-
nication between TaskManager and Tasks is much lower and
includes transferring single lines of diagnostic output oforder
of kilobytes (information about iteration number etc.)

As can be seen in the Tab.I, the results show that using

cloud resources is more predictable. For most of results, we
show average (avg) from 10 application runs andσ indicates
standard deviation. PBS queue waiting time depended on
frequency of scheduler execution and of a number of waiting
jobs of other users and vary significantly from one run to
the other, therefore we present only maximum and minimum
values. The time of setting the application up on the cloud
is more stable and is much lower that actual application
execution. The the application execution time is comparable
on both infrastructures, especially when using Quadruple Extra
Large instances dedicated for HPC applications.

IX. SUMMARY AND FUTURE WORK

In this paper we presented and compared the two approaches
for using computing infrastructure for MUSCLE-based multi-
scale applications: local HPC cluster and Amazon AWS Cloud.
Both types of infrastructures were integrated with GridSpace
Experiment Workbench. Additionally, we have introduced vi-
sual Kernel Graph Editor for setting up connection scheme of
multiscale application based on MUSCLE and CxA approach.

The preliminary results have shown that setting up multi-
scale application in a Cloud environment is comparable to its
submission on a classical PBS-based HPC cluster. The detailed
comparison was summarized in Tab.II.

TABLE II: Local HPC Cluster and AWS Amazon Cloud -
comparison summary

Local HPC Cloud
requires hardware investment pay for what you use
shared and persistent file systemfile system is not persistent, re-

quires additional time to stage
data in and out from/to external
storage (e.g. S3)

often requires contact with ad-
ministrator for additional instal-
lation of packages

a user has administrative access
to a virtual instance

variable PBS waiting time de-
pending on number of other
users’ jobs

constant and predictable virtual
instances booting time

using DRb requires setting up
point to point socket connec-
tions, hosts and ports have to be
explicitly known

using SQS more convenient:
high level API to shared mes-
sage queue, communicating en-
tities are not visible to each
other.

In a future we plan to perform more sophisticated tests
with different number of kernels and different type of Amazon
instances, we also plan to test the presented solution on other
cloud stacks (e.g. Eucalyptus on FutureGrid resources13).
Additionally, we plan to build a multiscale application skele-
ton framework for creating various parametrized MUSCLE
application skeletons for further testing.

ACKNOWLEDGMENT

The authors wish to thank Alfons Hoekstra, Joris Borgdorff
and Eric Lorenz from UvA for discussions on ISR2D, CxA
and MUSCLE and our colleagues from DICE team for input
concerning GridSpace, especially Maciej Malawski and Jan

13https://portal.futuregrid.org/

Meizner for discussions about cloud computing. The research
presented in this paper was partially supported by MAPPER
project – grant agreement no 261507, 7FP UE and the AGH
grant 15.11.120.090 Access to the Amazon EC2 cloud was
supported by an AWS in Education grant.

REFERENCES

[1] J.-L. Falcone, B. Chopard, and A. Hoekstra, “MML: towards a
Multiscale Modeling Language,”Procedia Computer Science, vol. 1,
no. 1, pp. 819 – 826, 2010, ICCS 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050910000906

[2] J. Hegewald, M. Krafczyk, J. Tölkeet al., “An Agent-Based Coupling
Platform for Complex Automata,” inICCS ’08: Proceedings of the 8th
International Conference on Computational Science, Part II. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 227–233.

[3] J. Larson, R. Jacob, and E. Ong, “The Model Coupling Toolkit: A New
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models,”
Int. J. High Perform. Comput. Appl., vol. 19, no. 3, pp. 277–292, 2005.

[4] S. Portegies Zwart, S. Mcmillan, S. Harfstet al., “A Multiphysics and
Multiscale Software Environment for Modeling Astrophysical Systems,”
New Astronomy, vol. 14, no. 4, pp. 369–378, May 2009.

[5] B. Guillerminet, I. C. Plasencia, M. Haefeleet al., “High
Performance Computing tools for the Integrated Tokamak
Modelling project,” Fusion Engineering and Design, vol. 85,
no. 3-4, pp. 388 – 393, 2010, Proceedings of the 7th
IAEA Technical Meeting on Control, Data Acquisition, and
Remote Participation for Fusion Research. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0920379610000049

[6] B. Balis, M. Kasztelnik, M. Bubaket al., “The urbanflood common
information space for early warning systems,”Procedia CS, vol. 4, pp.
96–105, 2011.

[7] E. Ciepiela, D. Harezlak, J. Kocotet al., “Exploratory programming in
the virtual laboratory,” inProceedings of the International Multiconfer-
ence on Computer Science and Information Technology, Wisla, Poland,
2010, pp. 621–628.

[8] A. Caiazzo, D. Evans, J.-L. Falconeet al., “Towards a Complex
Automata Multiscale Model of In-Stent Restenosis,” inComputational
Science ICCS 2009, ser. Lecture Notes in Computer Science, G. Allen,
J. Nabrzyski, E. Seidel, G. van Albada, J. Dongarra, and P. Sloot, Eds.
Springer Berlin / Heidelberg, 2009, vol. 5544, pp. 705–714.

[9] S. Hirsch, D. Szczerba, B. Lloydet al., “A Mechano-Chemical Model
of a Solid Tumor for Therapy Outcome Predictions,” inICCS ’09:
Proceedings of the 9th International Conference on Computational
Science. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 715–724.

[10] V. V. Krzhizhanovskaya, “Simulation of multiphysics multiscale sys-
tems, 7th international workshop,”Procedia CS, vol. 1, no. 1, pp. 603–
605, 2010.

[11] S. Portegies Zwart, S. Mcmillan, B. O. Nualláinet al., “A Multiphysics
and Multiscale Software Environment for Modeling Astrophysical Sys-
tems,” in ICCS ’08: Proceedings of the 8th international conference on
Computational Science, Part II. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 207–216.

[12] A. Hoekstra, E. Lorenz, J.-L. Falconeet al., “Toward a Complex
Automata Formalism for Multi-Scale Modeling,”International Journal
for Multiscale Computational Engineering, vol. 5, no. 6, pp. 491–502,
2007.

[13] M. Malawski, J. Meizner, M. Bubaket al., “Component Approach
to Computational Applications on Clouds,”Procedia Computer
Science, vol. 4, pp. 432–441, May 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.procs.2011.04.045

[14] K. Rycerz and M. Bubak, “Building and Running Collaborative Dis-
tributed Multiscale Applications,” inLarge-Scale Computing Techniques
for Complex System Simulations Wiley Series on Parallel and Distributed
Computing, W. Dubitzky, K. Kurowski, and B. Schott, Eds. John Wiley
& Sons, 2011, vol. 1, ch. 6, pp. 111–130.

[15] A. Hoekstra, J. Kroc, and P. Sloot, Eds.,Simulating Complex Systems
by Cellular Automata, ser. Understanding Complex Systems. Springer,
2010. [Online]. Available: http://springer.com/978-3-642-12202-6

[16] E. Weinan, B. Engquist, X. Liet al., “Heterogeneous Multiscale
Methods: A Review,” Communications in Computational Physics,
vol. 2, no. 3, pp. 367–450, Jun. 2007. [Online]. Available:
http://www.global-sci.com/openaccess/v2367.pdf

[17] P. van Thang, B. Chopard, L. Lefèvreet al., “Study of the
1D lattice Boltzmann shallow water equation and its coupling
to build a canal network,”Journal of Computational Physics, vol.
229, no. 19, pp. 7373–7400, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.jcp.2010.06.022

[18] E. Lorenz, “Multi-scale simulations with complex automata:
in-stent restenosis and suspension flow,” Ph.D. dissertation,
Universiteit van Amsterdam, November 2010. [Online]. Available:
http://dare.uva.nl/en/record/358709

[19] T. Ristenpart, E. Tromer, H. Shachamet al., “Hey, you,
get off of my cloud: exploring information leakage in third-
party compute clouds,” inProceedings of the 16th ACM conference
on Computer and communications security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 199–212. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653687

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem outline
	Aims and scope
	Contribution of other authors
	Thesis overview

	Multiscale problems
	Description
	Examples
	Multiscale libraries
	AMUSE
	MCT
	MUSCLE

	Multiscale description
	Summary

	Workflow Management
	Introduction
	Workflow systems
	Pegasus
	Kepler
	GridSpace

	Comparsion

	Graphical–MUST User Support Tool
	Features
	Concurrency model
	Requirements
	Use cases
	Architecture
	Grouping module
	GridSpace module
	Sender module
	Computational platform

	Summary

	Implementation
	Grouping module
	GridSpace module
	Sender module
	Communication
	Code structure
	Extensions Possibilities
	Summary

	Case study
	In-stent restenosis application
	Results
	Grid
	Cloud

	Summary

	Summary
	References
	Glossary
	Publication – Comparison of Cloud and Local HPC approach for MUSCLE-based Multiscale Simulations

