Methodology and Tool Supporting Cooperative Composition of Semantic Domain Models for Experts and Developers

Master of Science Thesis

Maciej Rząsa

AGH University of Science and Technology, Kraków

22.09.2011

Supervisor: Marian Bubak, PhD

Reviewer: Maciej Zygmnut, PhD, ABB Kraków

Consultancy: Tomasz Gubała, ACC Cyfronet Kraków

UrbanFlood

Background

Motivation: cooperation participants characteristics Objectives: requirements for a methodology and a tool

Methodology

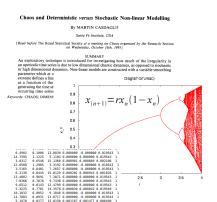
Metamodel: framework of domain description Cooperation method: iterative model building

Tool

Requirements and functionality Architecture and implementation

Evaluation: experimental modelling sessions

Introduction: outcome types


Flood forecasting: controlled experiment

Road designing: full experiment

Conclusions

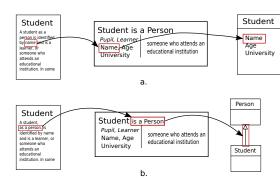
An expert

- posses extensive domain knowledge
- describes the domain using specialized language
- e.g. scientist, businessman

A developer

- uses programming languages, formal modelling tools and technical specifications
- needs a domain description that could be easily mapped onto programming language

```
class Entity < ActiveRecord::Base</pre>
unloadable
include Aliasable
attr accessor :position x, :position v, :row, :col
belongs to :wiki page
has many :at
                  Internet Engineering Task Force (IETF)
                                                                       P Saint-Andre
has_many :sou
                  Request for Comments: 6120
  :class name
                 Obsoletes: 3920
                                                                           March 2011
                 Category: Standards Track
  :foreign ke
                  ISSN: 2070-1721
  :dependent
has many :tai
  :class name
                         Extensible Messaging and Presence Protocol (XMPP): Core
  :foreian ke
                  Abstract
  :dependent
                     The Extensible Messaging and Presence Protocol (XMPP) is an
                     application profile of the Extensible Markup Language (XML) that
has many :chi
                     enables the near-real-time exchange of structured yet extensible data
  :class name
                     between any two or more network entities. This document defines
  :foreign ke
                     XMPP's core protocol methods: setup and teardown of XML streams
                     channel encryption, authentication, error handling, and communication
                     primitives for messaging, network availability ("presence"), and
after destroy
                     request-response interactions. This document obsoletes RFC 3920
validates presence of :wiki page
```


Objectives

- 1. The aims of this work:
 - transmission knowledge from an expert to a developer in convenient way
 - enable effective knowledge validation
- Approach: semantic domain model common (ubiquitous) language for collaborators:
 - consists in domain concepts (expert language)
 - posses structure convenient for formal modelling (developer language)
 - understandable both by humans and computers
- 3. Solution:
 - a methodology of the cooperation
 - ▶ the aim: knowledge passing
 - ▶ the outcome: semantic domain model
 - users: developers and experts
 - a tool
 - support for the methodology
 - validation of the methodology
 - easy to use for non-computer science users

Metamodel elements: structuring knowledge

Metamodel is a framework used for mapping domain concepts onto programming structures.

- ▶ concept definition → $Entity \mapsto \mathtt{Class}$
- ▶ simple feature → $Attribute \mapsto Field$
- \triangleright interconnection \mapsto Association
 - ▶ a kind of association → Generalization \mapsto Inheritance
 - ▶ complex features → $Relation \mapsto$ Association

Mapping examples: (a) attribute; (b) generalization.

Metamodel transitions: evolving the structure

Model transitions (split, merge and extract) enable evolution of domain description to obtain desired level of simplicity and expressiveness.

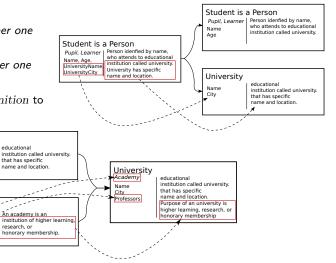
Aims of transitions:

- ► split one concept per one entity
- merge one entity per one concept
- extract initial definition to entity conversion

University

Academy

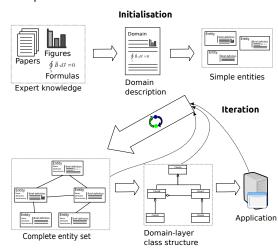
Professors


Name

Name

City

educational


research, or

Methodology: iterative model elaboration

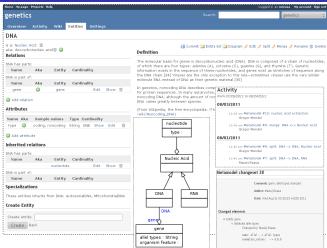
After defining of domain basics (initial definition), collaborators iteratively improve model to obtain sufficient domain description.

- initialisation: domain basics establishment
 - (E) main concepts definition
 - (D) simple entities extraction
- iteration: correcting and adding details
 - ► (E) review of model elements
 - ► (D) model transformation
- stop condition: consistent model
 - (E) validation of domain correctness
 - ► (D) validation of model structure

Validation

Methodology overview

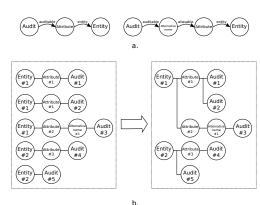
Methodology summary: roles and goals


- 1. Participants' roles
 - expert
 - defining domain concepts
 - correcting developer work
 - developer
 - extracting and transforming
 - consistency checking
- 2. Model state after the cooperation process:
 - Cohesion state of a single entity: one entity per a concept and one concept per entity
 - Completeness state of a whole model: the model describes a strictly limited part of the domain
 - Consistency state of model: elements of the model do not contradict each other

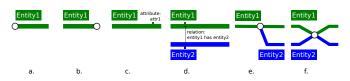
Whereas cohesion and completeness are desirable, consistency is necessary condition of model correctness.

Domain Model Builder: methodology implementation

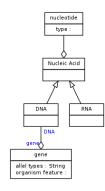
Main functions of the DMB:


- metamodel implementation (elements and transitions)
- methodology support (functions for defining and evolving knowledge)
- model visualisation
- cooperation process logging
- changes tracking

Functionality: entity page, diagram, activity log, changes details.

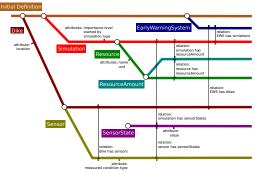

The DMB is a web application implemented using Ruby on Rails as a Redmine plugin.

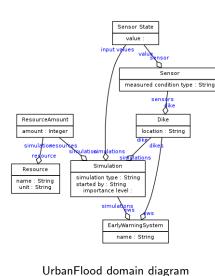
- DMB Redmine plugin:
 - ► Redmine web application for project management;
 - DMB uses Redmine functions (wiki, activity log, user management)
 - DMB adapts Redmine classes (patching them with mixins)
- metamodel: Rails classes
- diagram: generated with Graphviz
- changes tracking (cf. Figure): acts_as_audited. acts_as_paranoid, acts as revisionable (Rails plugins)


Building of changes forest: (a) linking to entity; (b) merging branches.

- 1. Experiments: modelling sessions involving experts of two different domains.
- 2. Outcome: a domain model and a cooperation course:
 - model represented on a diagram
 - cooperation course visualised on a metro map infographics

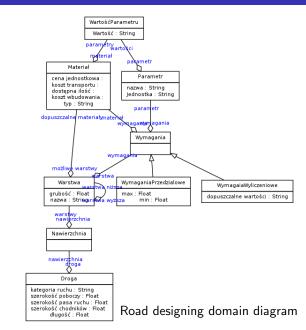
Cooperation diagram: (a) *entity* created;

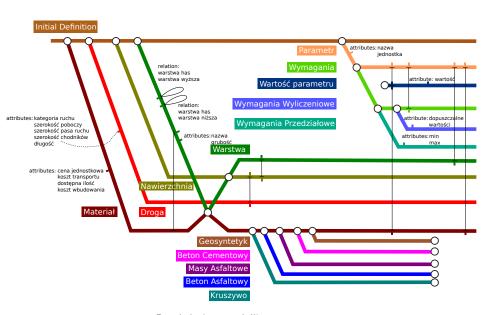

(b) entity deleted; (c) attribute added; (d) relation added; (e) split; (f) merge.


A domain model diagram

Controlled experiment: flood forecasting

- modelling domain of existing system (UrbanFlood)
- expert: UrbanFlood developer
- cooperation: personal + DMB + email
- expert's opinion
 - + easy way of knowledge extraction
 - + readable entities
 - presentation, usability




UrbanFlood modelling course

Full experiment: road designing

- modelling domain of road surface design
- expert: civil engineer
- cooperation: DMB (mainly initial page) + email
- expert's opinion
 - method well suited for cooperation involving engineers
 - precise transmission and verification of knowledge
 - + entities and diagram understandable
 - lack of feedback questions
 - need of place for discussion

Road design modelling course

Summary

Results

- 1. Methodology
 - transmission of domain knowledge and its verification
 - outcome: semantic model that is understandable for human (definitions) and machine (formal structure)
- 2. Tool
 - ▶ implementation of the methodology
 - evaluation of the methodology
- 3. Experiments proved worth of this approach.

Future work

- 1. Methodology
 - representation of an entity attached to a relation
 - merge entity and initial definition
 - more experiments
- 2. Tool
 - code generation
 - enhanced versioning
 - model-focused discussion
 - usability improvements

Please visit project websites:

- DMB source code: https://gforge.cyfronet.pl/projects/dom-comp/
- ▶ test deployment of the DMB: http://gandalf.zagorz.net/dmb

UrbanFlood

This thesis is related with the UrbanFlood, a project funded under the EU Seventh Framework Programme, Theme ICT-2009.6.4a. ICT for Environmental Services and Climate Change Adaption. Grant agreement no. 248767.

Parts of this work were elaborated as a final project during Erasmus scholarship at Universidad Politecnica de Catalunya in Barcelona under supervision of Pau Fernandez. The project was defended with mark 8/10.