
Scaling Evolutionary Programming with use of Apache Spark
Włodzimierz Funika

1,2
and Paweł Koperek

1

1
AGH University of Science and Technology, Faculty of Computer Science, Electronics and

Telecommunications, Department of Computer Science, al. Mickiewicza 30, 30-059 Kraków, Poland
2
ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Kraków, Poland

Acknowledgements

This research is partly supported by the European Union within the EU ICT-269978 VPH-Share Project.

1. Zaharia M., et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012. April 2012
2. Hindman B., et. Al, Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center, NSDI'11, p. 295-308
3. Funika W., Koperek P., Genetic Programming in Automatic Discovery of Relationships in Computer System Monitoring Data, In Proc. PPAM 2013, Part
I, LNCS 8384, pp. 371–380, Springer, 2014
4. Apache Hadoop project: http://hadoop.apache.org/, accessed: 2014-09-11

References Source code available at: https://github.com/pkoperek/nibbler

Automatic caching data in memory speeds up

subsequent evaluation iterations.

Sample functions used for evaluation

A) sin(x+y)

B) (x-y+cos(x)-4.906+5.8+x-y)/(cos(4.56575)+cos(x)+sin(x)*x/y)

Research motivation: mitigate hubert
3
scalability problems.

Support for large data sets – limited only by available

computing resources.

Decoupling evaluation from other stages of algorithm –

refactoring towards microservice architecture.

Enabling usage of computing clusters.

Ov
er
7 t
im
es

sp
ee
du
p

Spark features

Clear programming model using RDD abstraction.

Straightforward deployment in Mesos, YARN
4
.

Processing resilence: recomputation of failed steps.

Spark master is notified about progress of tasks.

In case a node fails or data of required RDDs is not

cached anymore – recomputation of missing information is

scheduled.

Evaluation service sends back the evaluation result.

References to RDDs related to finished computations are

cached in service.

Evaluation service triggers creating a new Spark
1
cluster

through mesos
2
. Mesos master downloads and installs

Spark executors on all slave nodes. Evaluation service

submits new job to newly created Spark master.
2

6 5

Spark master splits the job and sends it in form of

serialized Java code to slaves. Mesos slave nodes

process Spark jobs with use of Spark executors.
3

Client computes the

individuals for

evaluations. For each

individual a separate

request is created.

The request contains:

- matematical

expression (the

individual)

- data set location

- which algorithm use

for numerical

differentiation

1
Input data is read

from HDFS or local

filesystems (in this

case each node

needs to contain the

same files).

Intermediate data

(RDD partitions) is

stored in memory to

prevent subsequent

*FS reads.

4

slave nodes

mesos cluster

(Amazon EC2)

client (hubert) request

results

HDFS Data nodes

mesos slaves

Spark executors

e
v
a
lu
a
ti
o
n
 s
e
rv
ic
e

H
D
F
S
 N
a
m
e
N
o
d
e

m
e
s
o
s
 m
a
s
te
r

S
p
a
rk
 m
a
s
te
r

Why Spark? Hubert vs Spark assesment

Automatic in-memory caching of

data sets.

Based on Java VM platform.

Cluster size up to hundreds of

nodes.

Integration with HDFS
4
.

Encourages implementing services.

Streaming extensions available.

Uses algorithm which can reuse

intermediate processing results.

Written in Java.

Able to utilize only a single

processor.

Input size limited to single machine.

Monolithic architecture.

Aiming to process streams of data.

Evaluation results

Best effects achieved for big

datasets with more complicated

computations – 7,19 speedup for

1024MB.

For smaller amount of data

overhead of framework prevails

gains from parallel processing.

Subsequent iterations are

processed faster due to Spark

caching mechisms.

Spark demonstrates capacity for

further improvement by using

larger number of nodes, manual

cache tuning, pre-computing

numerical differentiation results.

