

ICT 269978

Integrated Project of the 7
th

 Framework Programme

COOPERATION, THEME 3

Information & Communication Technologies

ICT-2009.5.3, Virtual Physiological Human

Work Package: WP2

Data and Compute Cloud Platform

Deliverable: D2.3

First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 2 of 55

DOCUMENT INFORMATION

IST Project Num FP7 – ICT - 269978 Acronym VPH-Share

Full title Virtual Physiological Human: Sharing for Healthcare – A Research Environment

Project URL http://www.vphshare.org

EU Project officer Joël Bacquet

Work package Number 2 Title Data and Compute Cloud Platform

Deliverable Number 2.3 Title First Prototype of the Cloud Platform

Date of delivery Contractual 29-Feb-12 Actual 19-Mar-12

Status Version 1v3 Final

Nature Prototype Report Dissemination Other

Dissemination
Level

Public (PU) Restricted to other Programme Participants (PP)

Consortium (CO) Restricted to specified group (RE)

Authors (Partner) CYFRONET, UCL, UvA, AOSAE

Responsible
Author

Piotr Nowakowski Email p.nowakowski@cyfronet.pl

Partner CYFRONET Phone +48600280105

Abstract (for
dissemination) This document details the features and technologies used in the implementation of the

initial prototype of the VPH-Share cloud management platform. It lists the status of each

component produced by WP2, ongoing work in each technical task and the specifics of

integration with external Work Packages.

Keywords cloud computing, data storage federation, high performance computing, hybrid
clouds

The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability. Its owner is not liable for damages

resulting from the use of erroneous or incomplete confidential information.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 3 of 55

Version Log

Issue Date Version Author Change

30.01.2012 0.1 Piotr Nowakowski Initial draft

6.02.2012 0.2 Piotr Nowakowski,
David Chang, Spiros
Koulouzis, Rodrigo
Diaz Rodriguez

Inclusion of selected descriptions of technical
tasks

14.02.2012 0.9 Piotr Nowakowski,
Jan Meizner, Tomasz
Gubała, Tomasz
Bartyński, Marek
Kasztelnik

Preparing the deliverable for internal review:
inclusion of additional descriptions of technical
tasks; writing the summary and conclusions;
proofreading and formatting

17.02.2012 0.95 Piotr Nowakowski,
Marian Bubak

Additional updates and revisions

20.02.2012 1.0 Piotr Nowakowski,
Marian Bubak

Internal review release

12.03.2012 1.1 Piotr Nowakowski,
Susheel Varma,
Dario Ruiz Lopez,
Tomasz Gubała, Jan
Meizner

Additional changes following internal review and
the Consortium Meeting in Krakow (5-6 March
2012)

16.03.2012 1.2 Susheel Varma, Piotr
Nowakowski

Final check

19.03.2012 1.3 PMO Submission Version

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 4 of 55

Contents

Executive Summary .. 8

1 Status of the VPH-Share WP2 Architecture ... 9

1.1 End-User Functionality ... 11

1.2 Software Engineering Aspects ... 12

2 Features of the First WP2 Prototype .. 13

2.1 Cloud Resource Allocation Management .. 13

2.1.1 Implementation status .. 14

2.1.2 Allocation Management Service metadata schema ... 15

2.1.3 Deviations from proposed design ... 16

2.1.4 Ongoing development and future work... 16

2.2 Atmosphere Internal Registry .. 16

2.2.1 Description of the first AIR prototype .. 17

2.2.2 Architecture and Deployment Mechanism .. 17

2.2.3 Interfaces of the AIR Prototype .. 18

2.2.4 Cloud Data Source harvesting .. 20

2.2.5 Future Development Plans ... 21

2.3 Cloud Execution Environment .. 21

2.3.1 Structure of the existing Cloud platform ... 21

2.3.2 Cloud middleware stack ... 24

2.3.3 Infrastructure provisioning status ... 24

2.3.4 Ongoing work .. 25

2.4 High-Performance Execution Environment ... 26

2.4.1 Current Status of the Prototype .. 26

2.4.2 Deviations from Proposed Design .. 30

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 5 of 55

2.4.3 Ongoing Work and Future Plans .. 31

2.5 Data Access for Large Binary Objects ... 31

2.5.1 Status of the Prototype ... 32

2.5.2 Ongoing and Future Work .. 35

2.6 Data Reliability and Integrity .. 37

2.6.1 Status of the Prototype ... 37

2.6.2 Ongoing and Future Work .. 39

2.7 Security Framework .. 40

2.7.1 Security requirements .. 40

2.7.2 Security for Atomic Service invocations: the Security Proxy 42

2.7.3 Status of the prototype and ongoing work .. 46

3 Integration with External Work Packages .. 48

3.1 WP2 End-user Interfaces ... 48

3.1.1 General description of WP2 user interfaces .. 48

3.1.2 Ongoing development .. 49

3.2 Status VPH-Share Atomic Services ... 49

4 Summary ... 51

5 References ... 52

List of Key Words/Abbreviations .. 54

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 6 of 55

LIST OF FIGURES

Figure 1: VPH-Share Work Package 2 architecture as of Project Month 12 (conceptual view).

 ... 10

Figure 2: Architecture diagram of Allocation Management Service in the scope of WP2 tools.

The light green box indicates internal AMS components while yellow boxes indicate other

WP2 subsystems that AMS depends on (i.e. the Atmosphere Internal registry and the Cloud

Execution Environment) as well as the Cloud Facade which exposes AMS functionality

through REST and Web Service interfaces. ... 14

Figure 3: UML class diagram of the internal representation of the Cloud infrastructure,

Atomic Services and Atomic Service Instances used by the Allocation Management Service.

Classes coloured light green are persisted in the Atmosphere Internal Registry. 16

Figure 4: Deployment model used for the first prototype of AIR. During subsequent

development cycles both the Domain Model and the API are expected to grow considerably,

while other elements should remain relatively stable. .. 18

Figure 5: First AIR prototype – main menu of the Web user interface. 20

Figure 6: First AIR prototype – sample administrator dialog for management of registered

Appliance Types. .. 20

Figure 7: Architecture of the Cloud Execution Environment (light green area in the middle),

including OpenStack nodes (CC, VM, Swift), additional management VM (for the Nginx-

based reverse proxy) as well as external components. .. 22

Figure 8: Conceptual design of LOBCDER. .. 32

Figure 9: LOBCDER class diagram. .. 33

Figure 10: HTTP basic authentication. .. 36

Figure 11: LOBCDER access control list. ... 36

Figure 12: DRI Runtime architecture ... 38

Figure 13: DRI data model .. 39

Figure 14: Overview of WP2 security mechanisms ... 43

Figure 15: Inter-service communication with Nginx .. 44

Figure 16: Updating policy rules of the Security Proxy. ... 45

Figure 17: User authentication and authorisation in the context of invoking Atomic Services

deployed in a private network. ... 46

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 7 of 55

Figure 18 Architecture diagram of WP2 user interfaces and dependencies 48

LIST OF TABLES

Table 1: List of technologies applicable to each component of the WP2 architecture 12

Table 2: Complete list of all API calls available in the first prototype of AIR (February 2012).

A detailed manual on the supported API operations is available online, together with the

prototype. .. 18

Table 3: Virtual Machines provisioned to VPH-Share developers as of Project Month 12. .. 24

Table 4: AHE service API. .. 27

Table 5: ACD service API. .. 29

Table 6: List of Atomic Services provided to and registered by WP2 by Project Month 12. . 50

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 8 of 55

EXECUTIVE SUMMARY

This document presents the current state of development of Work Package 2 tools and

services in the context of the VPH-Share project. The goal of this document is to summarize

the existing features of the Cloud application development, enactment and data storage

platform, explain how the prototype can be used to deploy existing WP5 workflow services

and present possible use cases which are already supported by the prototype. In addition, the

document outlines future development plans in Work Package 2.

This deliverable is meant as a follow-up to Deliverable 2.2, published at the end of Project

Month 6. Where D2.2 focused on the design of individual application components, this

document is meant as a report on how this design translates into practical solutions and

deployable software. Any deviations from the initial design, whether due to evolving user

requirements or discovery of additional technical possibilities, are listed and explained, as is

their impact on the overall Project architecture.

The following topics are addressed in this document:

 Implemented components of the platform, including cloud computing infrastructure and

management tools, data storage federation, HPC frontend and data validation

components;

 Available functionality (from the user’s perspective);

 Technologies applied in the implementation of each component and tool;

 Software engineering methods used.

This document is divided as follows:

 Section 1 introduces the WP2 prototype by briefly explaining the goals of WP2 and

referencing its design document (Deliverable 2.2). An updated architecture diagram is

presented and discussed. In addition, this section contains short, introductory descriptions

of the work performed in each of technical tasks of WP2.

 Section 2 contains in-depth descriptions of the implementation progress achieved in each

technical task of WP2 as well as the features supported by the first prototype (released in

Project Month 12). A subsection has been prepared for each clearly identifiable technical

component of WP2, explaining its features, status of prototype releases and ongoing

work. In addition, any deviations from the original design (if present) are highlighted and

explained.

 Section 3 describes the status of integration of WP2 with external tasks and Work

Packages, focusing on the availability of end-user interfaces (which are covered by WP6)

as well as the progress in identifying, preparing, registering and exposing Atomic

Services (ASs) obtained from WP5 workflow.

 Section 4 contains closing remarks.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 9 of 55

1 STATUS OF THE VPH-SHARE WP2 ARCHITECTURE

As explained in the Project’s Technical Annex [1] and discussed in detail in deliverable D2.2

[2], the goal of Work Package 2 is to provide a backbone for the VPH-Share computational

and data storage services, enabling the application workflow representatives from Work

Package 5, as well as the data storage and management teams from Work Package 4 to

deploy their respective applications and data sources within a Cloud-based distributed

computing infrastructure. Specifically, Work Package 2 fulfils the following goals:

 Integrate and oversee the Cloud-based computing and data storage resources made

available to the Project;

 Expose a unified, heterogeneous, secure Cloud computing platform where application

services and binary data repositories can be deployed and made available to authorised

users without the need to install high-performance computing hardware at said users’

local sites;

 Facilitate the development and deployment of the VPH-Share Atomic Services (please

refer to deliverable D2.1 [3] for an explanation of what constitutes an Atomic Service and

what features it offers to end users) on the Cloud resources managed by WP2;

 Provide extensions for traditional (Grid-based) high performance computing resources

wherever required by application services;

 Facilitate access to potentially sensitive data sets by managing them with the use of the

available Cloud data storage and monitoring their integrity, consistency and availability

with automated, configurable tools;

 Collaborate with application and data storage providers as well as with partner projects

(specifically, p-medicine) on providing an open, extensible infrastructure into which

additional application services can be imported with minimum effort.

Whereas deliverable D2.2 provides an in-depth description of each technical component of

the Work Package, the goal of this section is to explain which features (presented in D2.2)

have been implemented and are integrated in the first prototype. In order to focus this

discussion, we would like to refer the reader to an updated version of the Work Package 2

architecture diagram, which is presented in Figure 1.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 10 of 55

Figure 1: VPH-Share Work Package 2 architecture as of Project Month 12 (conceptual view).

The central part of the diagram lists the WP2 application components and explains how these

components map to technical tasks in WP2, according to the Project’s Description of Work

[1].

Following the initial design period, concluded in Month 6, the technical tasks have

commenced implementation of their assigned components, as shown in Figure 1. While the

following chapter will contain further information regarding the status of development within

each technical task, a general outline is presented below:

 The Cloud Resource Allocation Management framework, known as Atmosphere, is now

capable of managing images of virtual machines and Atomic Services and it can also

deploy Atomic Service Instances to the cloud resources provided by Task 2.2. Currently

we support the OpenStack middleware platform. Support for EC2-compatible cloud

stacks is under development.

 A basic Cloud Execution Environment is in place at CYFRONET, consisting of 16 four-

CPU nodes to which VPH-Share Atomic Service Instances can be deployed. The newest

version of the OpenStack Nova has been deployed and is available for development and

testing purposes. In addition, an attached mass storage directory is provided and can be

interfaced with the use of the OpenStack Swift protocol.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 11 of 55

 A prototype service-based deployment of the HPC framework for VPH-Share has been

deployed, based on the Application Hosting Environment (AHE) suite, as described in

deliverable D2.2.

 The data access framework, known as LOBCDER, is now capable of exposing attached

storage resources (including Swift-managed mass storage) as a simulated WebDAV

(Web-based Distributed Authoring and Versioning) directory, which can in turn be

mounted and accessed on the virtual machines used to host Atomic Service Instances.

 The Data Reliability and Integrity tool, in its prototype version, can register and

periodically monitor managed datasets in the WP2 framework, ensuring their consistency

and availability.

 Finally, an initial version of the WP2 security framework has been implemented – this

includes Service Proxies capable of intercepting incoming calls and invoking an external

policy decision point (PDP) to determine whether a given call should be cleared for

execution.

Section 2 provides more information regarding the status of work in each of the tasks listed

above.

1.1 End-User Functionality

From the perspective of the end user, the WP2 prototype provides the ability to do the

following:

 A Virtual Machine can be spawned from one of the available templates. Atmosphere

takes care of instantiating the Virtual Machine upon one of the available Cloud hosts, and

returns to the developer a list of credentials that they can use to interact with this machine

and deploy production services.

 Once the developer installs the services, the Virtual Machine can be registered as an

Atomic Service in Atmosphere. Upon doing so Atmosphere takes over management of

this VM, enabling it to provision the functionality of domain services when requested by

the scientist or by automated tools (such as the workflow management tools developed in

WP6) acting on behalf of the scientist.

 Atmosphere is capable of replicating Atomic Service Instances and spawning dedicated

instances when requested by the developer.

 A basic version of the LOBCDER storage federation is in place, enabling authorised users

to download and upload domain-specific data to Cloud data repositories by means of a

WebDAV interface. This interface can be further mounted on the Virtual Machines (and,

consequently, on Atomic Service Instances) as an element of the local file system, thus

permitting application services to directly interact with Project data.

 An AHE frontend is supplied, enabling high-performance computational jobs to be

submitted. In essence, the AHE frontend mimics an Atomic Service and can be managed

by Atmosphere.

 The Data Reliability and Integrity service can be directed to inspect and validate datasets

stored in Cloud resources and registered with the Project (using the initial prototype of the

Atmosphere Internal Registry, which has also been deployed). At present, notifications

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 12 of 55

are dispatched to administrators in the form of e-mail messages, though in the future a

dedicated notification system is expected to be built into the Master Interface.

 A basic version of the AS Security Proxy is in place. While a SSO (single sign-on)

Project-wide security system has not yet been deployed, the Security Proxy enables

Atomic Service Instances to be invoked in a secure manner. In addition, TLS (Transport

Layer Security) is also provided.

1.2 Software Engineering Aspects

As far as software engineering methods are concerned, we follow the rapid prototyping

approach, with short development cycles and frequent validation of results against the

expectations of their intended users (whether the WP5 workflow teams or other technical

tasks of VPH-Share). Progress reports are collected from WP2 developers on a monthly

basis, and corrective actions introduced whenever requested by WP2 management. In

addition, CYFRONET operates a WP-wide code repository at https://gforge.cyfronet.pl

where the source code of individual components can be collected and managed. We intend to

carry on with this scheme in the second year of the Project, focusing in particular on the

specifics of end-user interfaces (which are developed as part of WP6, but which involve WP2

to a significant degree).

Table 1 presents a generalised list of technologies exploited by WP2 components. A more

detailed technical description of each component can be found in deliverable D2.2 [2], while

any discrepancies or deviations from the WP2 design documentation will be explained in

Section 2 of this deliverable.

Table 1: List of technologies applicable to each component of the WP2 architecture.

Component Applicable technologies

Cloud Resource Allocation

Management (Atmosphere

core services)

Java SE6 components deployed as OSGi bundles to an Apache Karaf

container. Nagios framework for instance monitoring. Integration layer

based on Apache Camel.

Atmosphere Internal Registry Semantic registry layer implemented in Ruby on top of MongoDB storage.

REST-based service endpoint and custom jQuery-based GUI.

Cloud Execution Environment OpenStack (Diablo release) private cloud stack deployed at CYFRONET
(HP ProLiant BL2x220c G5, 2 x Intel Xeon L5420, 16GB RAM, 120 GB

internal HDD); 3 TB attached storage (NFS).

High Performance Execution

Environment

Middleware connections for QcG (using the QcG Java SDK), Unicore (using
the UCC java library) and Globus (using the JGlobus library). SOAP-based

service endpoint.

Data Storage Federation Support for OpenStack Swift storage resources; data exposed by a
WebDAV-like API (mimicking a true WebDAV server). Service-based

control endpoint for management actions.

Data Reliability and Integrity Standalone Java-based service, integrated with OpenStack storage. Managed
dataset metadata stored in AIR. Service-based control endpoint for

management actions.

WP2 security components Java-based Security Proxy implemented as plugin for the Apache server

framework, deployable on any Atomic Service template.

https://gforge.cyfronet.pl/

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 13 of 55

2 FEATURES OF THE FIRST WP2 PROTOTYPE

The goal of this section is to detail the features of each of the technical components which

comprise the WP2 platform, present their integration with external components and outline

ongoing development activities in each technical task.

2.1 Cloud Resource Allocation Management

At the core of the Cloud resource management infrastructure lies the Atmosphere

Management Service (AMS). AMS is responsible for optimising utilisation of computational

resources and will be used by:

 Application providers, who need to select an appropriate virtual machine template, install

and configure their software and save the Virtual Machine as an Atomic Service.

 Scientists, who will specify their requirements in terms of the required functionality (as a

list of Atomic Services and their configurations) and will be provided with a pool of

resources that is monitored and managed automatically by AMS. This includes interaction

with single Atomic Service Instances as well as running workflows which access a set of

Atomic Service Instances.

For a more detailed description of AMS features please refer to Section 4.1.1 of deliverable

D2.2 [2].

The internal architecture of AMS and its interactions with other WP2 subsystems are

illustrated in Figure 1. The main component of AMS is the Manager, which supervises the

process of preparing an optimal deployment plan and provisioning resources. It exposes the

AMS functionality to the Cloud Facade and accepts requests from clients. The Manager is

also responsible for maintaining a representation of the infrastructure, available Atomic

Services and AS Instances in a dedicated registry called the Atmosphere Internal Registry

(AIR), described in Section 2.2. When a new request arrives, the Manager queries AIR for

available resources and invokes the Optimizer to prepare a deployment plan that will ensure

optimal resource allocation. The Manager then enacts the deployment plan by using the

Cloud Client to manage resources in the Cloud Execution Environment (CEE), and the Proxy

Controller Client to register Atomic Service Instances in the HTTP reverse proxy. A detailed

description of this process can be found in Section 4.1.7 of deliverable D2.2 [2].

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 14 of 55

Figure 2: Architecture diagram of Allocation Management Service in the scope of WP2 tools. The light green box

indicates internal AMS components while yellow boxes indicate other WP2 subsystems that AMS depends on (i.e. the

Atmosphere Internal registry and the Cloud Execution Environment) as well as the Cloud Facade which exposes
AMS functionality through REST and Web Service interfaces.

2.1.1 Implementation status

The initial prototype of the framework includes all Allocation Management Service

components depicted in Figure 2. The candidate technologies mentioned in Section 4.1.8 of

deliverable D2.2 [2] are being used to implement the actual prototype. All AMS components

are implemented in Java as OSGI [4] bundles and deployed in a Karaf [5] container.

Additionally, AIR and Proxy Controller Clients employ the Camel integration framework [6]

that facilitates communication with external services. The Cloud Client is based on the

JClouds [7] library. The Optimizer component implements a simple optimisation algorithm in

Java that relies on the number of clients using a specific Atomic Service Instance.

The Allocation Management Service prototype provides all the features required by users to

start interacting with the WP2 Data and Compute Platform. It implements end-user services

(see Section 4.1.1 of deliverable D2.2 [2] for a full list of AMS features), such as:

 Browsing the available templates in AIR

 Instantiating Virtual Machines from selected templates

 Saving Virtual Machines as Atomic Services

 Requesting instances of specified Atomic Services

The prototype supports all the identified use cases, albeit in a very minimalistic manner. This

can be explained by considering the fourth item in the above list. The AMS prototype is able

to start Atomic Service Instances only in a private Cloud infrastructure, and register them in

an HTTP proxy to make them publicly accessible. It does not yet collect monitoring data

from Atomic Service Instances and does not take into account required data replication and

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 15 of 55

security constraints – thus, the deployment plans prepared by the Optimizer are far from

being optimal and Atomic Service Instances are not subject to automatic scaling.

2.1.2 Allocation Management Service metadata schema

In order to fulfil its responsibilities, AMS maintains a representation of the Cloud

infrastructure, Atomic Services and Atomic Service Instances. A simplified view of this

internal representation is depicted in Figure 3. At the topmost level lies the

ExecutionEnvironment, composed of DataSources and ComputeSites. The former

represent data storage services such as Amazon S3 or OpenStack Swift, while the latter

model commercial data centres, private cloud deployments, and HPC infrastructures. Each

DataSource and ComputeSite may be associated with a CostModel, which defines the

expenses for storing and transferring data or running virtual machines of a specific size.

ComputeSites are composed of Hosts which, in the case of private cloud providers,

represent physical machines and their capacity. A Host should be treated as a physical

computational resource which is capable of hosting VPH-Share Atomic Services. Since

information about physical machines is not available for public Cloud infrastructures each

ComputeSite of this type will have only one Host that represents the resources available for

single cloud client (i.e. Atmosphere). Hosts run virtual machines with VPH-Share

applications (Atomic Service Instances) represented by Appliances. Virtual Machines are

characterised by Load (CPU, memory and disk usage statistics) and Performance (duration

of a single request or number of requests per second). Each Appliance is assigned a certain

amount of resources (CPU, memory and disk storage, expressed as Cloud instance size)

represented by ResourceAllocation. Appliances may be instantiated from and saved as

ApplianceTemplates. AvailableAppliance is a base class for Appliance and

ApplianceTemplate classes. It encapsulates attributes and methods common for both of

these classes. Examples of such common attributes include ApplianceState, which represents

the condition of a resource (whether it is running, stopped etc.) and ApplianceType,

determined on the basis of what type of Application (i.e. arbitrary VPH-Share process) is

installed. An Appliance requires an InitialConfiguration which contains the initialisation

context for a given Virtual Machine (for instance a root public SSH key), data required to

properly configure and start the hosted Application as well as a list of DataSources that will

be used by the application (required for deployment plan optimisation). Applications

consume and produce data represented by LogicalData items that are grouped in DataSets

retrieved from/stored in DataSources. Applications and LogicalData may have

SecurityConstraints associated with them that will – for instance – restrict the list of

CloudSites at which sensitive data may be processed. DependentWorkflow models any

application that requires the availability of specific Atomic Service Instances.

Classes that are coloured light green are persisted in the Atmosphere Internal Registry.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 16 of 55

Figure 3: UML class diagram of the internal representation of the Cloud infrastructure, Atomic Services and Atomic

Service Instances used by the Allocation Management Service. Classes coloured light green are persisted in the

Atmosphere Internal Registry.

2.1.3 Deviations from proposed design

In the original design (see Section 4.1.2 in deliverable D2.2 [2]) it was stated that AIR is a

component of the Allocation Management System; however we have since discovered that

AIR functionality is also useful for other WP2 tools, such as DRI. Therefore, AIR has been

extracted from AMS as a standalone subsystem and will be separately described in the next

section of this deliverable. It was also assumed that AMS would expose its interface as a

REST or Web Service endpoint. During development it turned out that it is more convenient

to provide a single entry point for all WP2 remote endpoints and publish it through the Cloud

Facade. Hence, AMS will only provide a local OSGI [4] service for the Cloud Facade.

2.1.4 Ongoing development and future work

During the coming months work on AMS will focus on collecting online monitoring data

about the availability and load of Virtual Machines, and storing such data in AIR. A

dedicated AMS component, called the Monitoring Controller Client will be developed. It will

be responsible for registering and unregistering Atomic Service Instances in the Nagios

monitoring framework deployed in CEE. We will also focus on enhanced optimisation

algorithms, taking into account the load of Atomic Service Instances, rather than just their

availability.

2.2 Atmosphere Internal Registry

The Atmosphere Internal Registry (AIR) is responsible for delivering the persistence layer

and inter-component exchange mechanism for metadata regarding the Project’s computing

and data cloud. This information is stored, shared and consumed by components of the VPH-

Share software; particularly by elements of the Atmosphere cloud computing and data

provisioning platform (see Section 2.1.2 for details). Conceptually, AIR should be treated as

part of Task 2.1; however due to the fact that it is implemented as a standalone component

and its functionality is not limited to supporting the AMS service, we have decided to

describe it in a separate top-level subsection of this deliverable.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 17 of 55

The main duties of AIR (see Section 2, Figure 2 in deliverable D2.2 [2]) involve establishing

a common domain model for VPH-Share metadata exchange, providing a suitable persistence

mechanism to securely store and manage that metadata and exposing a set of appropriate API

(Application Programming Interface) operations for the other entities in VPH-Share to use

that functionality for their purpose.

The following sections describe in detail the state of the AIR prototype, deployed as an

internal VPH-Share Consortium tool, as it existed during the publication of this deliverable.

2.2.1 Description of the first AIR prototype

The initial AIR prototype was deployed in late 2011. The development plan for AIR assumes

tight, “small-delta” incremental development cycles with a SaaS-like deployment and

management model. Each cycle consists (with occasional deviations) of the following steps:

1. Going through all use cases and user stories described so far as external requirements

for AIR; filtering out and choosing the most important, relevant and urgent cases for

the present cycle.

2. Communication with relevant parties who authored the request (which may include

the user community, application developers or other tool/platform developers) in

order to adjust the use case to the current state of affairs and to address all issues in

detail so it is ready for implementation.

3. Designing the changes required for AIR to support the cases and implementing the

changes; updating the online documentation where needed.

4. In-situ deployment of the new version of AIR and broadcast communication with the

Consortium to announce the new version and stress the most important changes.

5. Direct communication with the parties mentioned in point 2 of this list in order to

obtain acceptance for the changes made.

The initial prototype follows these assumptions and has already gone through two

development cycles (one related to Data Source metadata and another for Appliance and

Atomic Service metadata).

2.2.2 Architecture and Deployment Mechanism

Regarding the internal architecture of AIR, there were no deviations with respect to what was

planned during the design phase (see Section 4.1.2 of deliverable D2.2 [2]). The prototype

consists of three main building blocks (see Figure 4).

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 18 of 55

Figure 4: Deployment model used for the first prototype of AIR. During subsequent development cycles both the
Domain Model and the API are expected to grow considerably, while other elements should remain relatively stable.

Currently, the prototype stores and publishes information about four elements of the

Atmosphere resource pool. The data management part is described with DataSources,

DataSets and LogicalData concepts (see Section 2.5) while the Cloud computing elements

are described with Host, VM (Virtual Machine), ApplianceType and InitialConfiguration

concepts (see Section 2.1.2).

The set of technologies used is also in line with the initial assumptions made at the design

stage. The persistence layer is provided with an installation of the MongoDB schemaless

database, while the domain models, defined using the Semantic Integration [8] methodology,

provide semantic abstractions (concepts) over the data inside that database. The controller

layer (according to the Model-View-Controller principle; not shown in Figure 4 for clarity)

manages those abstractions for the sake of both HTTP APIs and Web-based GUIs.

2.2.3 Interfaces of the AIR Prototype

The prototype provides two types of interfaces – a HTTP API through which other

applications and clients can use AIR automatically, and a basic Web UI, targeted for human

users.

The current set of API calls supported by the AIR prototype is given in Table 2.

Table 2: Complete list of all API calls available in the first prototype of AIR (February 2012). A detailed manual on
the supported API operations is available online, together with the prototype.

AIR model API operation call header Meaning

DataSource

management

GET: get_managed_data_sets Get all Data Sets that have the flag is_managed

set.

 GET:

get_logical_data_for_data_set
Retrieves all Logical Data items registered for

given Data Set of ID dsid. Please use the internal

AIR ID for the Data Set.

 POST: update_dri_checksum

Updates the value of the Logical Data item
checksum computed by DRI (the dri_checksum

field).

Atmosphere Internal Registry

Persistence Layer
based on Ruby

Mongo Driver and
SemInt library

Domain Model
MongoDB

NoSQL
database

<<artifact>>

REST API Service

HTML Service

Web Interface

LogicalData API

DataSources model
<<artifact>>

DataSets/LogicalData model
<<artifact>>

Appliances model
<<artifact>>

Hosts and VMs model
<<artifact>>

Hosts/VMs API

Appliances API

For AIR administration,

testing and curation of

current metadata.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 19 of 55

AIR model API operation call header Meaning

Appliance

management

GET: get_appliance_config Downloads the payload of the configuration file
with configuration ID equal to conf_id. The AIR

internal identification system is used for

configuration ID.

 GET:

get_vms_by_appliance_type
Gets the JSON array of VMs which are currently
set to be of certain appliance type. The type is

determined by the type of the appliance

configuration identified with the configuration ID

equal to conf_id.

 POST: upload_appliance_config Uploads a configuration string as a new appliance

configuration.

 GET: get_running_vm_config Returns the JSON-encoded configuration object
with the 200 code on success or a 400 and an error

message on failure. The returned object structure

is given below.

 GET:

get_appliance_type_for_config
Gets the JSON structure with all Appliance Type

fields. The Appliance Type is chosen according to
the Initial Configuration ID passed as the conf_id

parameter.

 GET:

get_appliance_type_for_vm
Gets the JSON structure with all Appliance Type
fields. The Appliance Type is chosen according to

the VM identified with the vms_id parameter.

Host and VM

management

POST: add_host 'Upserts' another host to the topology - adds it if no
such host is found in the data or updates altered

fields if the host was registered before.

 POST: add_vms 'Upserts' another VM server or template to the
topology - adds it if no such VM is found in the

data or updates altered fields if the VM was

registered before.

 GET: get_running_vm_specs Generates a JSON file with detailed list of hosts
and running VM, along with the specification and

used/free resources.

 DELETE: remove_vms Removes the VM metadata for appliance

identified by vms_id.

 DELETE: remove_host Removes the host metadata from the registry,

where the host is identified by host_id.

Note that the list in Table 2 is not closed – rather, it is expected to grow and change during

future implementation cycles of AIR, according to the evolution of VPH-Share user

requirements and software. All the listed operations are secured with basic (HTTP)

authentication protocol at the time of publication of this deliverable. Future AIR versions are

expected to be secured with specific VPH-Share security mechanisms developed in Task 2.6.

The second type of interface is a Web GUI (see Figure 5 and Figure 6 for sample

screenshots).

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 20 of 55

Figure 5: First AIR prototype – main menu of the Web user interface.

Figure 6: First AIR prototype – sample administrator dialog for management of registered Appliance Types.

The AIR Web user interface is not meant to be used by the actual end users in the VPH-Share

community, i.e., the scientists. Instead, the aim is to provide application developers and

system administrators (see p.11 in deliverable D2.2 [2] for user group definitions) the ability

to register new entities inside AIR, check if the metadata stored is valid and not outdated, and

optimise the mechanisms of the Atmosphere cloud provisioning platform according to user

requirements (such optimisation can be effected e.g. through careful definition of the

available Appliance Types; see Figure 6).

2.2.4 Cloud Data Source harvesting

The final feature provided with the first prototype of AIR is the cloud data sources harvesting

ability. This feature is available offline, as a set of dedicated scripts that can be used by

Atmosphere system administrators (due to the powerful impact of such an action on the

metadata stored in AIR, it is not meant to be available online).

The purpose of those harvesting scripts is to connect to a predefined Cloud data source

instance, use the provided credentials to list all the DataSets and LogicalData objects stored

there, then transfer any useful metadata about those objects back to AIR. By periodically

executing this harvester, Atmosphere administrators may easily keep the internal registry in

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 21 of 55

sync with any external Cloud data sources and may also add new data sources to the

platform.

Currently, the harvesting scripts support OpenStack Swift servers as well as Amazon EC2

data catalogues. Upon executing them, the user has to supply the credentials required by AIR

to access such sources, as no such credentials are presently stored in AIR.

2.2.5 Future Development Plans

The current AIR prototype is already integrated with AMS (Allocation Management Service)

and DRI (Data Reliability and Integrity) services. Future development plans for AIR are as

follows (in no particular order):

 Integration with LOBCDER (Large OBject Cloud Data storage fedERation) to establish a

common metadata space for DataSources used in the Project.

 Integration with the main Metadata Management platform (WP6) in order to integrate the

concepts and terms used inside the Atmosphere platform with the semantic terminology

used by the VPH-Share end user communities.

 Development of more sophisticated use cases for both AMS and DRI components.

Carrying out those plans is expected to follow the same tight-cycle development

methodology as was used to provide the current prototype of AIR (see Section 2.2.1).

2.3 Cloud Execution Environment

2.3.1 Structure of the existing Cloud platform

The Cloud Execution Environment (CEE) constitutes a specialised platform, which is

required by:

 The Atmosphere component described in Section 2.1, to enable low-level operations on

Virtual Machines, such as managing the VM lifecycle or preparing snapshots that can be

used as templates.

 The WP3 tools, as a Private Cloud storage backend used by such tools to store and

manipulate data.

CEE is composed of several components, shown in Figure 7, some of which are off-the-shelf

while others are custom-developed.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 22 of 55

Figure 7: Architecture of the Cloud Execution Environment (light green area in the middle), including OpenStack

nodes (CC, VM, Swift), additional management VM (for the Nginx-based reverse proxy) as well as external
components.

The main components are elements of the OpenStack [9] middleware suite (described in

more detail later on in this document) responsible for providing computational and storage

features for the Private Cloud installation.

For the computational part, we have thus far deployed 7 physical nodes with identical

hardware specifications (HP ProLiant BL2x220c G5, 2 x Intel Xeon L5420, 16GB RAM, 120

GB internal HDD). One of them acts as the Cloud Controller (CC) and the rest are used to

run VMs. All nodes have access to approximately 3 TB of external shared storage space

(NFS on iSCSI volume) backed by a disk array with fast (15000 RPM) SAS hard drives. This

shared space is used to store VM templates and images of running Atomic Services. We have

also deployed infrastructure monitoring tools which allow us to judge that, at the current

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 23 of 55

stage of the project, the presented resources are more than sufficient; however we are ready to

extend our resource pool if demand increases. All mentioned nodes are connected to an

Ethernet switch with support for 802.1Q VLANs using 1 Gbps ports (switch uplink port is

10 Gbps). As such, the physical network layout is consistent with the description and diagram

presented in Section 4.2.3 of deliverable D2.2 [2]. According to the description contained in

that document, this layout enables us to choose any network mode available for Open Stack.

As a result, we have decided to use the most powerful VLAN-based network setup. At

present we use 2 VLANs – one for physical nodes and one for VPH VMs, which provides L2

level separation. However, if required (e.g. for security reasons), this deployment allows us to

provide additional VLANs for multiple VM groups that should be separated. Finally, in

addition to internal LANs (using private IP addresses) the CC Node is connected to the

Internet (WAN) and has a public IP address. Thus, the CC node can act as a NAT-enabled

router for the remaining physical nodes and VMs, including both SNAT (for all IP outbound

traffic) and DNAT (for some inbound traffic on predefined TCP/UDP ports) between cloud

VMs in a private LAN and the Internet.

The DNAT (Destination Network Address Translation) mechanism is fully remotely

configurable via the NAT Controller – a lightweight service written in Python, exposing a

RESTful API, and is used by AMS to provide TCP/UDP port redirection for any network

service (other than Atomic Service Instance HTTP(s) endpoints) such as SSH or VNC. ASI,

on the other hand, required a more intelligent solution enabling redirection of traffic based on

deeper packet inspection (at the application layer) for which we have proposed a solution

based on the Nginx [10] server acting as a reverse proxy. It is configured using the Proxy

Controller, a lightweight service written in Ruby that exposes a RESTful API (with the help

of the Sinatra library). The Proxy Controller is used by the Proxy Controller Client (part of

AMS) to register and unregister ASIs. All components of the proxy are deployed on a

dedicated VM (marked in the figure as “management VM”), directly connected to both the

Internet (public IP) and all LANs (private IPs). Both mechanisms (NAT and the proxy)

facilitate conservation of the public address space which should not be wasted needlessly,

especially given the exhaustion of IANA’s IPv4 pool and near-exhaustion of RIRs pools,

such as RIPE NCC responsible for allocations in Europe [11]. Unfortunately, direct use of an

IPv6-only network (with public addresses) for our Cloud installation is not possible as IPv6

support in the public Internet is still lagging; however OpenStack already supports this

protocol and it remains a possible option for the future. Note that the use of dual-stack

(private IPv4 network and public IPv6 addresses) solutions would preclude direct access from

IPv4 clients (NAT/Proxy mechanisms still would be required).

The storage component of our private Cloud is currently deployed on two physical nodes. Its

frontend is deployed on the CC node, while storage nodes are provided as three separate VMs

on a dedicated physical node (Swift Node with the same specification as computational

nodes). Each VM has access to ca. 500 GB space on a dedicated (not shared) volume, backed

by the aforementioned external disk array. As suggested by OpenStack developers, the XFS

file system is used on those volumes. As data is stored by our installation of Open Stack in a

triple-redundant manner, ca. 500 GB of space is available; however, just like the

computational part of our Cloud, the storage space can be flexibly increased if required.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 24 of 55

2.3.2 Cloud middleware stack

As foreseen during the design phase, we have deployed the OpenStack middleware suite in

our private Cloud infrastructure. The currently installed release is Diablo, which at the time

of preparation of this document, is the most current stable version of OpenStack.

More specifically, we have deployed all three “core” components of this release:

 Computing (Nova) – directly responsible for managing the lifecycle of VMs and ASIs. It

provides an external REST-based OpenStack Compute API (a.k.a. Nova API, currently in

version 1.1) which is used by the Cloud Client component of Atmosphere (by way of the

JClouds [7] library).

 Image Service (Glance) – this enables storage of VM templates used to instantiate Atomic

Service Instances. It also provides a REST-based API (called the OpenStack Image

Service API; a.k.a. Glance API, currently in version 1.0) however this API is only used

internally by the stack and not exposed to the rest of the platform as it is not required by

external clients.

 Object Storage (Swift) – for the storage part of the Private Cloud used by WP3 tools and

WP5 services. Like other parts it also provides a REST-based “OpenStack Object

Storage” API (a.k.a. Swift API, currently in version 1.0), which is exposed for external

clients and can be interfaced by the LOBCDER storage federation described in

Section 2.5.

We have performed standard manual software installation using official package repositories

as described in the project documentation. In accordance with this description we have used

Ubuntu (10.04 LTS) on all nodes.

2.3.3 Infrastructure provisioning status

We have thus far provisioned several VMs to serve the needs of VPH application and service

developers. Table 3 summarises our activity in this regard.

Table 3: Virtual Machines provisioned to VPH-Share developers as of Project Month 12.

VM no. Allocated

resources

Recipient Purpose

1 1 VCPU, 2 GB

RAM, 5 GB

HDD

David Chang

[UCL]

VM for hosting AHE ACD software

2 1 VCPU, 2 GB

RAM, 5 GB

HDD

Breanndan

O'Nuallain

[UVA]

VM for development and testing of

the ViroLab workflow

3 1 VCPU, 2 GB

RAM, 5 GB

HDD

Martin

Steghöfer [UPF]

VM for the Taverna Server

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 25 of 55

VM no. Allocated

resources

Recipient Purpose

4 1 VCPU, 2 GB

RAM, 5 GB

HDD

Xavier Planes

[UPF]

Non-interactive part of the @neurIST

workflow

5 1 VCPU, 2 GB

RAM, 5 GB

HDD

Xavier Planes

[UPF]

Interactive part of the @neurIST

workflow

6 1 VCPU, 2 GB

RAM, 10 GB

HDD

Eric Kerfoot VM for Atomic Services used as part

of the euHeart workflow

7 1 VCPU, 2 GB

RAM, 25 GB

HDD

Xavier Planes

[UPF]

VM for the ANSYS simulation

package

8 1 VCPU, 2 GB

RAM, 10 GB

HDD

[ATOS] euHeart workflow VM clone to

enable development and testing of the

security framework

In addition to these resources we have also allocated space on storage part of the cloud for:

 Testing the WP3 tools during their development process.

 Storage of data required to test the @neurIST workflow.

2.3.4 Ongoing work

Overall, the deployment of Cloud middleware was smooth; however we had to overcome

several minor glitches, while other issues may still require some work.

The issues already addressed include:

 Lack of a built-in mechanism for redirecting TCP/UDP ports – there is a mechanism for

redirection of public IPs through DNAT, however, as already explained, we wanted to

conserve public IPs. As a result, we have developed the previously described NAT

Controller.

 Minor incompatibilities between the OpenStack DB and management tools – this required

manual updates of the network-related portion of the DB to allow proper extraction of

VM IPs through the OpenStack API using JClouds.

 JClouds bends the HTTP protocol (by providing an “Accept” header in a format not

defined by the standard); however the Nova client responsible for handling these requests

performs very strict checking, which, in turn leads to errors which prevent destroying and

restarting VMs. A fix for this problem was proposed to (and accepted by) the developers

and a patched version has been installed (cf. ticket number 794 in JClouds issue tracker –

https://code.google.com/p/jclouds/issues/detail?id=794).

https://code.google.com/p/jclouds/issues/detail?id=794

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 26 of 55

One additional problem which still needs to be resolved relates to errors in handling VM

snapshot requests issued to the Nova API by JClouds (this, however, works well when using

the official client and hence may be a JClouds issue).

Additionally, we plan to deploy a dedicated Nagios-based monitoring infrastructure for the

VMs and ASIs, as well as a Monitoring Controller that would enable AMS to

register/unregister ASIs.

2.4 High-Performance Execution Environment

The Application Hosting Environment (AHE) 3.0 is a lightweight middleware suite which

virtualises grid applications and exposes their features as RESTful web services. Grid

middleware tools are complicated applications with a steep learning curve. This is often a

troublesome issue for scientific end users. AHE attempts to hide the complexity of the

underlying HPC resources by providing a lightweight layer between the grid middleware and

the user. An expert user is required to setup AHE with information on how and where to

execute an application. Once this is completed, the scientific end user can execute the

application through a set of simple RESTful web service commands.

The Audited Credential Delegation application (ACD) provides a secure solution that audits,

authenticates and authorises user commands. It also provides virtual organisation

management as well as credential delegation features. ACD is implemented as a RESTful

web service and, in conjunction with AHE, provides a simple way to handle grid credentials,

and manage data and computational jobs.

AHE and ACD can be accessed using RESTful web service commands. AHE will access the

underlying grid middleware using a number of Java middleware client libraries, including

UCC (unicore), JGlobus (Globus) and QcG to launch applications that have already been

installed in the relevant grid infrastructure. AHE will use ACD to authenticate and authorise

the user and generate proxy certificates on behalf of the user.

2.4.1 Current Status of the Prototype

A prototype of AHE has been implemented using Java. The current prototype can be

deployed in two different versions: as a standalone Java application using an embedded Jetty

Server, or as a servlet that can be deployed on a servlet-compliant server such as Apache

Tomcat. AHE 3.0 has the following features implemented: AHE Core library, workflow

engine, middleware connectors and RESTful web services.

The AHE core library consists of the core data structures and libraries that implement AHE

functionality – these include user, security, application, resource, and workflow management.

AHE is currently able to create and edit user information and security credentials. This allows

AHE to authenticate or map the user to ACD for authentication and authorisation. It is also

able to set up a credential to connect to the underlying grid middleware. An application and

resource registry has been implemented in AHE using the Hibernate ORM (Object-Relational

Mapping) framework, which allows AHE to set up virtual applications on corresponding

resources. These applications translate into VPH-Share Atomic Services and can be managed

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 27 of 55

by Atmosphere. The main features enabling AHE to create and initiate virtual applications

have also been implemented. This allows the user to find the application they wish to launch

and submit it, along with the required input data, to the resource they desire. When the user

initiates a virtual application or workflow, the persistent workflow engine starts a new

workflow and proceeds through successive workflow stages. The AHE workflow engine

enables simple job submission with pre- and post-processing stages to be implemented, it also

allows more complicated workflows for virtual applications (such as error recovery) to be

created.

AHE currently includes a number of middleware connectors: QcG (using the QcG Java

SDK), Unicore (using the UCC java library) and Globus (using the JGlobus library). AHE is

able to generate a submission object compliant with those connectors from the application

execution details and configurations provided by the user.

A RESTful web service for AHE has been implemented. The interface of this service is

presented in Table 4.

Table 4: AHE service API.

Command HTTP Method Resource Comment

AddUser Post CMD Add User

EditUser Post User Edit user

ListUsers Get CMD List all user

RemoveUser Delete User Remove User

AddCredential Post CMD Add credential

EditCredential Post Credential Edit credential

ListCredential Get CMD List credentials

RemoveCredential Delete Credential Remove credential

AddUserCredential Post User Add Credential to

user

RemoveUserCredential Delete User Remove credential

from user

Status Get CMD Get status of App

Instance

SetDataStaging Post AppInstance Set Data staging

for both stage in

and out

SetStageIn Post AppInstance Set Stage In

command

SetStageOut Post AppInstance Set Stage out

command

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 28 of 55

Command HTTP Method Resource Comment

GetDataStaging Get AppInstance Get data staging

information

GetStageIn Get AppInstance Get date stage in

information

GetStageOut Get AppInstance Get data stage out

information

Prepare Post CMD Prepare virtual

application

Start Post AppInstance Start application /

workflow

Terminate Delete AppInstance Terminate

ListJobs Get CMD List all jobs

SetProperty Post AppInstance Set Application

instance property

GetProperty Get AppInstance Get application

instance property

ListProperties Get AppInstance List all application

instance properties

CreateResource Post CMD Create a resource

in the resource

registry

EditResource Post Resource Edit a resource in

the registry

ListResource Get Resource List all resources

in the registry

CreateApp Post CMD Create an

application in the

application

registry

EditApp Post AppReg Edit an application

in the application

registry

ListApp Get AppReg List all

applications in the

registry

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 29 of 55

The Audited Credential Delegation (ACD) application has also been implemented as a

RESTful web service. Currently, ACD can be deployed as a standalone application using an

embedded Jetty server or as a servlet container deployable on servlet compliant servers such

as Apache Tomcat.

ACD is currently able to audit commands issued by the user. It is also able to set up virtual

organisations (VO) including member management and group certificate setup, allowing

ACD to generate proxy certificate for each member of the VO. Finally, ACD is able to

authenticate and authorise the user based on their roles (administrator or scientist). It supports

a Shibboleth authentication mechanism, as well as local username/password database

authentication.

A summary of ACD RESTful web service commands can be found in Table 5.

Table 5: ACD service API.

Command HTTP

Method

Resource Comment

createlocalACDAccount Post User Create New

ACD account

createNewVO Post CMD Create New

Virtual

Organisation

generateProxies Post CMD Generate Proxy

registerUser Post CMD Register User to

VO

getACDAudit Get CMD Get ACD aduit

getCertificateDetail Get VO Get certificate

details

getRoleAssignment Get ACD

Credential

Get role

assignment

getuserACDAccounts Get User Get User ACD

account

getUserVOs Get ACD

Credential

Get user VO

viewAllRoles Get CMD View all roles

viewCurrentVOs Get CMD View current

VO

assignP12CertToVO Post VO Assign P12

certificate to VO

assignUserToRole Post ACD

Credential

Assign user to

role

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 30 of 55

Command HTTP

Method

Resource Comment

assignUserToVO Post VO Assign user to

VO

changelocalACDPassword Post Login Change user

local ACD

password

updateP12VOCert Post VO Update P12

certificate of

VO

updateRegisteredUserDetails Post User Update user

details

resetACDPassword Post Login Rest user ACD

password

RevokeUserRole Delete ACD

Credential

Revoke user

role

deactivateACDUser Delete Login Deactivate ACD

user

Deactiveteall Delete User Deactivate all

removeUserVOs Post VO Remove user

from VO

2.4.2 Deviations from Proposed Design

Several changes in AHE have occurred since the publication of Deliverable 2.2. First,

JavaGAT will not be used in the Connector module as AHE does not currently require the

features provided by JavaGAT or general-purpose grid SDK libraries. Instead, it is simpler to

use UCC for Unicore, JGlobus for Globus and additional middleware Java client libraries as

required.

Several components have been added as extensions to the presented design, particularly in the

context of user credential management. This is due to the fact that AHE may have to be

deployed without ACD. Proxy Delegation support has also been added to AHE, enabling

AHE to automatically obtain proxy certificates on behalf of the user.

Another change relates to interoperation between AHE and GridSpace, which is no longer

required.

In ACD, one major change is that AHE will no longer intercept commands from AHE and

authorise them. Instead, all commands will be authorised by AHE, while ACD will be used to

authenticate the user and – if necessary – generate proxy certificates.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 31 of 55

2.4.3 Ongoing Work and Future Plans

Currently the most notable issue affecting AHE are Java dependency conflicts caused by the

large number of external libraries used. One example of this is when different versions of the

same library are found in multiple external packages. This may cause some packages to

function incorrectly. One possible solution is to implement AHE in an OSGI framework,

such as Eclipse Equinox or Apache Felix runtime.

The current development plan for AHE is to implement several use cases to ensure that AHE

are able to run real-world scenarios. As ascertained in the course of discussions with WP5

representatives, this includes using GROMAC for HIV studies in ViroLab, and euHeart

simulations.

AHE will also implement more complex workflow support, enabling error recovery, batch

job submissions and application scheduling. Error recovery will allow users to reconfigure a

virtual application when AHE has discovered an error during job submission: once an error is

detected, AHE waits for the user to correct the error or terminate the application. Batch job

workflows will allow users to run simulations which exploit the same application but with a

different range of variables per submission. The job scheduler will allow users to run

applications concurrently, creating a coupled simulation. We will also investigate more

intuitive complex workflow management methods and integration with the workflow engine.

A number of other aspects of AHE will be subject to improvements. These include AHE

response messages (more intuitive information passed from the underlying middleware to the

user). Additionally, AHE will be integrated with external grid libraries, including Steering,

SPRUCE emergency submission and advance reservation functions. We will also be adding

more connectors for different middleware and data transfer components, such as the VPH-

Share data transfer API (see Section 2.5 for details).

Currently, there are no major issues with ACD. However, we are investigating the

implementation of OpenID in ACD for authentication as well as implementing database

access using Hibernate ORM. This will allow ACD to be more easily deployed.

2.5 Data Access for Large Binary Objects

The Large OBject Cloud Data storagE fedeRation (LOBCDER) is a service that aims to

provide reliable, managed access to large binary objects stored in various storage frameworks

and providers. LOBCDER transparently integrates multiple autonomous storage resources,

and exposes all available storage as a single name space. The LOBCDER service is divided

into three main layers. Figure 8 shows a conceptual design of LOBCDER, which includes the

frontend, resources and the backend.

The frontend’s purpose is to provide access and control through standardised well known

interfaces. This removes the need for developing and maintaining specialised clients.

LOBCDER’s frontend is a Web-based Distributed Authoring and Versioning (WebDAV)

servlet, which presents the entire available storage space via HTTPs.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 32 of 55

Figure 8: Conceptual design of LOBCDER.

The purpose of the resource layer is to create a logical representation of the physical storage

space. The first part of the resource layer is the WebDAV resource and the resource

catalogue. The WebDAV resource implements the WebDAV specifications while the

catalogue is responsible for querying the persistence layer for logical resources. The logical

resources are middle layers that bind the WebDAV resources with the physical data. This is

achieved with the help of the storage resource, where is holds a representation of a physical

storage location. Logical resources also hold metadata that contain content types, sizes,

creation dates, permissions, etc. Such metadata is stored in AIR on behalf of LOBCDER.

Finally, the backend layer provides the necessary abstraction for uniformly accessing

physical storage resources. The main component is a Virtual Resource System Client which

is able to access any physical resource system, thus providing a uniform API to the

components above it.

2.5.1 Status of the Prototype

As described in deliverable D2.2 [2], the frontend would enable the following operations on

the WebDAV resources:

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 33 of 55

 Copy creates a duplicate of a source dataset (identified by its Logical Data Resource

Identifier or LDRI, which is an URI (Universal Resource Identifier) pointing to the

dataset in LOBCDER), at a destination data resource.

 Delete removes a data resource.

 Lock/Unlock locks and unlocks access to a data resource while its owner is modifying it.

 Make Collection creates a new collection (or bucket) at the location of the specified

LDRI.

 Move moves a data resource to the location specified by an LDRI.

 Get Properties retrieves properties for a data resource such as mime type, and length.

 Upload/Download

Currently LOBCDER is able to provide all of these operations, except the lock/unlock

operation. More specifically, the current state of the LOBCDER prototype is depicted in the

class diagram shown in Figure 9. Note that at this stage the LOBCDER prototype is not

connected to the persistence layer, i.e. the Atmosphere Internal Registry (AIR). Instead, it

runs its own persistence mechanism through a local database. At this point we will provide a

description of the classes listed in Figure 9.

Figure 9: LOBCDER class diagram.

WebDataResourceFactoryFactory: As the name suggests, this class is responsible for

creating WebDataResourceFactory instances. The WebDataResourceFactoryFactory class

is instantiated when a new request comes from client through the WebDavServlet.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 34 of 55

Moreover, this class is meant for configuring and instantiating the

WebDataResourceFactory class.

WebDataResourceFactory: This class’s role is to create WebDataResource resources, and

return them to the WebDavServlet. Thus, the main method of this class is getResource. This

method locates an instance of a WebDataResource for a given URL (Universal Resource

Location). Additionally, this class creates the IDLCatalogue instances.

IDLCatalogue: This class is created when the WebDataResourceFactory receives a

request. The role of this class is to query the persistence layer for LogicalData and

DataSource entries. Two of the most frequently used methods of this class are

registerResourceEntry and getResourceEntryByLDRI. registerResourceEntry will

register a LogicalData instance in the persistence layer only if there is no duplicate entry

present. Otherwise this method will throw an exception. getResourceEntryByLDRI is quite

straightforward: given a Logical Data Resource Identifier (LDRI), the method should return a

single one LogicalData entry.

WebDataResource: This is a superclass for all the WebDAV resources (file and folder). The

methods not currently implemented in this class are authenticate, authorise and

checkRedirect. WebDAV provides the ability to authenticate and authorise each resource

separately, providing better granularity for user permissions. These two methods will be

implemented in order to reflect the permissions each member of the VPH-Share community

has with respect to data resources. Additionally, the checkRedirect method will be

implemented at a later stage, when LOBCDER is deployed on multiple hosts. Under this

setup LOBCDER will be able to redirect incoming calls to the nearest LOBCDER instance.

WebDataDirResource/WebDataFileResource: These two classes are subclasses of

WebDataResource, and provide a representation of the logical and physical data to a

WebDAV client.

LogicalData: This class encapsulates the logical entries held on the persistence layer together

with the physical data stored on the cloud services. Hence, this class holds a LDRI, which

uniquely identifies the logical resource, and a set of DataSources that hold replicas of the

physical data. When a new LogicalData object is created, it is not necessary to have any

physical data associated with it either because the client may create an empty file, or because

this instance represents a folder or a collection. Moreover, this class holds a Metadata

member that provides creation and modification dates as well as mimetypes.

DataSource: This class is a representation of the storage resource that holds the actual data.

Since there are many different storage resources this class needs to have a Credential

member that will provide access to storage resources. This class can hold credentials such as

passwords, certificates, etc.

VFSClient: In order to be able to interact with the physical storage resources, each

DataSource uses a VFSClient. This class provides numerous methods for manipulating and

managing data on the remote storage resource.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 35 of 55

To obtain a better understanding of how LOBCDER works, the specific sequence of

operations involved in processing user requests is presented below.

1. A WebDAV client sends a request to the WebDavServlet.

2. The WebDavServlet calls the WebDataResourceFactoryFactory to create a

WebDataResourceFactory instance.

3. A WebDataResourceFactory instance is returned to the

WebDataResourceFactoryFactory.

4. The WebDataResourceFactory class creates an IDLCatalogue in order to be able to

query the requested resource.

5. The WebDavServlet will now call the getResource method from the

WebDataResourceFactory class.

6. The WebDataResourceFactory will use its IDLCatalogue to query the requested

resource from the persistence layer.

7. The returned entry is an instance of LogicalData class which contains a DataSource

that indicate the physical location of the requested resource.

8. At this moment the WebDataResourceFactory will get the DataSource from the

IDLCatalogue the requested user has access to.

9. The WebDataResourceFactory will instance the WebDataResource, and set its

DataSource.

10. Finally, the WebDataResourceFactory will return the requested WebDataResource

back to the WebDavServlet, where it will respond to the WebDAV client.

2.5.2 Ongoing and Future Work

2.5.2.1 Performance

Since the design goal for LOBCDER is to federate data located in the cloud, we will optimise

our implementation to handle extensive datasets before we start developing distributed

solutions in order to address scale issues. We will also investigate possible optimisation

techniques such as asynchronous requests, parallel streams and caching, to better alleviate the

effect of backend drivers on LOBCDER performance.

2.5.2.2 Authentication

In parallel with this effort we are developing a security mechanism that protects LOBCDER

resource handles against unauthorised access. This implies that for each request, we need to

know who is accessing a given resource (credentials) and make a decision on whether the

requestor has sufficient rights (permissions). For a typical set of credentials consisting of a

username and a password, the HTTPS authorisation a scenario is depicted in Figure 10.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 36 of 55

Figure 10: HTTP basic authentication.

Each LOBCDER user is authenticated by their VPH username. We also assume that an

Authentication Service (AS) is available where the user is authenticated prior to accessing

LOBCDER. As a result of this authentication, the user receives a security token. Later this

token is included in the password field whenever LOBCDER needs to authenticate the user.

If the user is not considered to be authenticated, LOBCDER calls AS passing this token as a

parameter. If the token is valid (i.e. was issued to the user by AS during the authentication

procedure and has not expired) then AS returns a positive answer and the list of roles assigned

to the user. This list is placed in the request context for later authorisation.

2.5.2.3 Authorisation

When an authenticated user tries to access a LOBCDER resource, the system has to decide if

this user is authorised. Any logical path in LOBCDER (LogicalData resource) shall have an

Access Control List (ACL) attached to its metadata. ACL consists of the list of the roles

associated with a resource and permissions set by the resource owner for these roles. There

are two pseudo roles called “owner” and “others” respectively. If an authenticated user is the

owner of a resource (the resource was created by him), he is automatically assigned this role.

Any authenticated user is a member of the “others” pseudo-role (Figure 11). If the user has

more than one role, the least restrictive role is used for ACL permissions. To manipulate the

content of ACL, LOBCDER may require an additional extension, going beyond its data

access (WebDAV) interface. This issue will be investigated further.

Figure 11: LOBCDER access control list.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 37 of 55

2.6 Data Reliability and Integrity

As presented in Deliverable 2.2 [2], the goal of the Data reliability and integrity (DRI) tool is

to ensure reliable use of the biomedical datasets manipulated with the use of VPH-Share

applications and tools. Simulations results and inferred medical outcomes must be based on

reliable data. Due to the large size and long-term persistence of medical data files, special

reliability and integrity mechanisms should be enforced on top of Cloud storage. Thus, the

infrastructure developed in Task 2.5 needs to be able to perform the following tasks:

 periodic integrity checks on data objects with the use of hash algorithms,

 facilitating storage of multiple copies of data on various Cloud platforms,

 tracking the history and origin of binary datasets.

2.6.1 Status of the Prototype

The DRI Runtime is responsible for enforcing Task 2.5 data management policies. It keeps

track of managed components and periodically verifies the accessibility and integrity of the

managed data. As designed, the Runtime assumes the form of a generic (i.e. non-application-

specific) Atomic Service in the WP2 infrastructure. Thus, it can be managed and deployed by

Atmosphere tools, just like any other type of Atomic Service. For scalability purposes,

multiple instances of DRI Runtime may coexist in the system, integrated into a coherent

platform by sharing a common registry (the WP2 persistence layer), although at present only

a single instance of the prototype service has been deployed on the computing resources

contributed by CYFRONET (see Section 2.3 for details).

In line with the Atomic Service specification, the DRI service has been deployed into a

virtual machine and further registered with Atmosphere mechanisms for automatic

management. It is currently able to monitor and validate the data sets registered with the

Atmosphere Internal Registry and present in the Swift data storage that is part of the VPH-

Share cloud federation. Figure 12 presents the architecture of DRI Runtime.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 38 of 55

Figure 12: DRI Runtime architecture.

At the core of the prototype lies the DatasetValidator class, which performs periodic

validation of data items represented in the Atmosphere Internal Registry. This class is

configurable by a dedicated set of parameters stored in the Registry. As part of our ongoing

development work, we are implementing an end-user interface that will enable administrators

to manage the runtime parameters of the DRI service. Furthermore, the DRI prototype

provides a service frontend that can be used to register, unregister and query the status of

managed datasets.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 39 of 55

Figure 13 presents the persistence schema upon which DRI Runtime bases its operation. This

schema is managed by the Atmosphere Internal Registry which thus provides a uniform

persistence layer for DRI (as well as for other core components of WP2).

Figure 13: DRI data model.

DataItem is a virtual concept shared between DRI and LOBCDER. It can describe either a

single file or a collection of files. A DataItem is optionally associated with a

ManagedDataset object, which implies that it needs to be validated by DRI, in accordance

with the parameters stored within that instance of ManagedDataset. ManagementPolicy

specifies the general operating characteristics of DRI and can be configured by system

administrators.

The DRI Runtime prototype is developed in Java. The service is deployed to a an application

server residing on a virtual machine currently provided by CYFRONET and exposes a

RESTful Web Service API (Jersey implementation) backed by the DRI component internally.

Quartz Scheduler [12] is utilised for scheduling validation routines periodically.

2.6.2 Ongoing and Future Work

Having deployed the first prototype of DRI our focus will now shift from low-level

conceptual and implementation-oriented details to providing a more robust set of interfaces

and measuring the performance of various data validation algorithms. We intend to deploy a

notification service (in collaboration with WP6) where any emerging problems could be

communicated to system administrator and resource owners, either synchronously (e.g. via

e-mail) or through notifications stored in AIR and displayed in the Master Interface whenever

an authorised user has logged in.

The service is also in the process of being secured with authenticity tokens provided by task

T2.6. When deployed in production mode, it will contact the common Policy Decision Point

to guard against unauthorised access.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 40 of 55

2.7 Security Framework

The security framework is responsible to ensure that all Atomic Services in the system are

properly secured. To do so, any communications with these services are properly encrypted

and have their authorisation checked before actually invoking any of the services.

2.7.1 Security requirements

2.7.1.1 Scope

In order to explain the scope of the requirements of the security framework, it is important to

remember that VPH-Share is a platform that integrates a dynamic set of heterogeneous

applications, each of them with its own security requirements. As such, the security

framework does not aim to address all the security requirements that are specific to each

integrated application, especially when new applications with new requirements can be added

dynamically.

Hence VPH-Share, and more specifically – its security framework, will deal with the security

issues resulting from the integration of these applications into a common and publicly

accessible framework, but the intrinsic security requirements which are specific to each

application will remain as the responsibility of that application and associated application

developer.

VPH-Share will provide a generic mechanism to enable application developers to define the

security constraints for the accessibility of each application based on information relative to

the user, which in turn will be stored and retrieved from a common authentication platform.

2.7.1.2 Authentication

One of the goals of VPH-Share is to help augment the VPH initiative by providing a reliable

and consolidated infostructure. To help foster and cement trust relationships with existing

VPH users, the system will try to reuse the same authentication platform used for the

BiomedTown portal. This will provide a single sign-on mechanism for the users of both

BiomedTown and VPH-Share applications.

2.7.1.3 Security perimeter

As explained in Section 2.7.1.1, the security framework will deal with the security issues

resulting from the integration of applications. This, in practice, means that the security

framework will protect the integrated platforms from unauthorised access from outside the

VPH-Share platform.

2.7.1.4 Atomic services

VPH-Share applications, also referred to as Atomic Services in this document, will be

supported with:

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 41 of 55

 Privacy assurance by encrypting all incoming and outgoing communication to/from the

VPH-Share platform.

 Specific authentication by integrating user attributes with a common identity provider

(BiomedTown)

 Authorisation support:

 Basic role-based authorisation by checking role attributes stored by the common

shared identity provider

 Customisable policy system able to define complex access rules based on user

attributes stored by the common identity provider.

The security framework aims to transparently incorporate these features as a wrapper around

the Atomic Services. Note, however, that both the security roles and the access rules are

specific to each Atomic Service and hence it is the responsibility of the application

developers to define such rules and the user attributes needed to validate these rules. The task

of surveying and the definition of such rules will be performed during the second year of the

Project.

2.7.1.5 LOBCDER / WebDAV

The LOBCDER service provides a standardised WebDAV interface to unified distributed file

system and with respect to security, it will at least provide:

 Privacy assurance by encrypting all incoming and outgoing communication to/from the

platform;

 Basic user/password authentication – LOBCDER cannot reuse any of the complex

authorisation features provided by the Atomic Services because the WebDAV standard

does not support them. Thus, LOBCDER will alternatively use basic user/password

mechanisms to ensure compatibility with the WebDAV standard and third-party

WebDAV clients.

Although LOBCDER authentication requirements differ slightly from the approach suggested

for Atomic Services, a common model can be applied by taking these inconsistencies into

account.

2.7.1.6 Workflow Management / Taverna

The Taverna workflow system will have the same security requirements as the Atomic

Services, with the only addition that applications may be launched from a command line

instead of a web client. It is acceptable for the authentication process to be performed from

the command line, by having the Taverna workflow system supply authentication parameters

to the identity platform through a secure API.

2.7.1.7 Performance

The security layer should not introduce significant overhead within the system or, at least, it

should not be larger than its other working components within ASI. The initial goal for the

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 42 of 55

security proxy execution time is set on 1 second, subject to server workload and the impact of

other system components.

2.7.1.8 External services

VPH-Share includes a search engine to look for additional external services to be used

conjunctly with VPH-Share Application Services. However, VPH-Share has no way to

guarantee the security of these external services at all. Therefore, VPH-Share will follow a

classic trust/deny mechanism, meaning that external services will be initially labelled as

untrusted, and access to them banned from the firewall configuration of the system. However,

the system will also maintain a list of trusted external services. Hence, the correct procedure

for accessing these services will be to ask the system administrator for access to a given

service. An administrator will be responsible for granting such access (or denying it) and

configuring the firewall appropriately.

2.7.1.9 Security policies

As explained above, the system will provide the ability to define access criteria for services

based on the attributes assigned to the user. These policies can be as simple as a role-based

mechanism or as complex as a combination of policy rules depending on more complex

attributes.

An example of a simple role-based policy could be: “If the user has the role paediatrics

assigned, then they should be granted access to the Paediatrics database service”.

An example of a complex policy rule could be: “If the user has at least a bachelor’s degree

in medicine and has signed a confidence agreement then grant access to all medical stores”.

Security policies can be a very powerful mechanism for developers to express accessibility

constraints via rules for services. However, there is no way that the VPH-Share platform can

know them beforehand, as they are specific to each service. As a result, it will be the

responsibility of application developers to infer these criteria from the application

requirements and user attributes provided by the Master Interface. These security policies

will be defined and implemented during the second year of the Project.

The administration of the security system will have to be integrated with the Atmosphere

Internal Registry via the Master Interface, allowing application developers to update the

policy rules associated with their services (even already instantiated ones). It will therefore be

possible to maintain and update the access criteria for services without the need to define a

new service template in each case.

2.7.2 Security for Atomic Service invocations: the Security Proxy

The Security Proxy, which is preinstalled on any Virtual Machine which hosts an Atomic

Service works jointly with the Reverse Proxy, which is in charge of forwarding all incoming

requests from a public IP address to private addresses and balancing the workload of the

system. Note, that, as mentioned in Section 2.3.1, the actual Atomic Service Instances sit

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 43 of 55

behind an IP forwarding Reverse Proxy so that the ASIs do not expose their private IP

addresses.

Figure 14: Overview of WP2 security mechanisms.

Figure 14 presents a schematic view of how the Security Proxy integrates with the Reverse

Proxy, external clients, Atomic Services and WP6.

As the first step, the user authenticates via the Master Interface, which performs the necessary

actions, including forwarding the authentication request to the BiomedTown identity provider

and retrieving all user attributes. Subsequently, this authentication information (user +

attributes) is signed by the Master Interface and included in the password field of the header

of the HTTP request, which will travel through the whole invocation.

To further secure data transmission, all communication between the different servers is

encrypted at the HTTP level by using the SSL (Secure Socket Layer) protocol over HTTP

(HTTPS). This implies that the Reverse Proxy itself decrypts the message, performs any

calculations required for message forwarding, and encrypts it again prior to contacting the

service recipient. Dealing with SSL can be easily performed on the Nginx server by

configuring the nginx HTTP SSL module (see the nginx HTTPS Module [13] for details).

On the Atomic Service Instance side, all HTTP requests are intercepted by the Security

Proxy, which listens to incoming requests on configurable ports and performs two tasks:

decrypting messages and checking for authorisation for a given service based on the

attributes of the user provided along with the request into the VPH-Share platform. It is

capable of extracting user attributes from the HTTP header and confirming their integrity by

checking the signature of the field containing it. These user attributes are then used jointly

with the security policies stored in the policy store to decide whether to grant or deny access

to the service.

WP6
Authentication

Master
Interface

VPH-Share
application

Security Proxy

Policy
Enforcer

Encrypting
Layer

Atomic Service Instance

Nginx

Reverse Proxy

Ngynx
SSL

Support

User token + Attributes

HTTPS VPN

BiomedTown
identity
provider

HTTPS

HTTP

Policy
Store

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 44 of 55

If the request is granted, the invocation is forwarded to the service on a local host address.

Therefore, all services (including the Apache server) are required to communicate through

the local host. An advantage of this design is that it also allows different services to invoke

each other on different networks, by passing through the Nginx server responsible for

properly forwarding the request. Figure 15 shows how such communication can be

accomplished.

Figure 15: Inter-service communication with Nginx.

The sequence of steps a request takes within the VPH-Share platform is shown in Figure 15.

The initial request to invoke any Atomic Service will first be authenticated in Work

package 6, which will properly include the user token and attributes. This user token and

attributes then need to travel along with the request to the Security Proxy in the HTTP

header, and will reach the corresponding VPH-Share application service. When the

VPH-Share application wishes to invoke another Atomic Service, it will invoke its

corresponding public IP address and follow the same path again without the WP6

authentication, with the original user token travelling through all the invocations.

The presented architecture allows any HTTP-based services, including REST and SOAP

services to be secured in a transparent manner. Regarding the Reverse Proxy, the design

facilitates the required encryption by simply adapting the configuration files of the Nginx

server.

Regarding the security policies, they will be stored locally in the Atomic Service template,

which implies that its configuration will be copied to all instances of the Atomic Service

upon deployment. However, Atomic Service policies can be modified either when defining

the template or after it has been instantiated through the Atmosphere Internal Registry

management console. To do so, each Atomic Service Instance will have a security agent

installed on it, which will securely accept configuration files from the management console

WP6
Authentication

VPH-
Share
app.

Security
Proxy

Atomic Service Instance

Nginx

Reverse Proxy

Ngynx
SSL

Support

HTTPS

HTTP

VPH-
Share
app.

Security
Proxy

Atomic Service Instance

HTTP
HTTPS

MI /
Client
app

Initial Invocation: https://service
User Token
+ attributes

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 45 of 55

and perform basic syntactic validation prior to accepting them. This allows the application

developer to update policy rules and define access criteria for the security proxy on a given

machine. Figure 16 presents this process.

Figure 16: Updating policy rules of the Security Proxy.

Security Proxy

Policy
Enforcer

Atomic Service Instance

Policy
Store

Encrypting
Layer

Security Agent

AIR

Policies file

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 46 of 55

Figure 17: User authentication and authorisation in the context of invoking Atomic Services deployed in a private
network.

Figure 17 shows the sequence diagram involved in communication with an Atomic Service,

for an arbitrary process launched in any external client application (or within the context of

the Master Interface).

The process starts with the external client (or the service which launches a given application

in a terminal session on the service host). The client logs into VPH-Share and subsequently

issues a service invocation request to a public IP address, which is properly encrypted with

SSL. The Nginx proxy decrypts the request, selects the appropriate private IP of the Atomic

Service Instance and forwards the request, having again encrypted it with SSL.

Once the request arrives at the local (instance-bound) Security Proxy, it is decrypted, and its

security attributes used to decide whether the user is authorised to perform the given

operation. If so, the HTTP request is redirected to a local host address of the Atomic Service.

Once the service produces a result, it is properly encrypted and sent back to the reverse

proxy, which can finally deliver it to the client application.

2.7.3 Status of the prototype and ongoing work

The initial prototype of the security framework includes the Security Proxy, which has been

deployed on the first Atomic Services produced by WP5 and can be used to contact said

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 47 of 55

services. Thus, service communication proceeds in a secure manner and the Security Proxy

can be replicated to additional Atomic Services (by inclusion in the host VM).

There is ongoing work on integration of the WP2 security mechanisms with the user identity

and credential management tools provided by WP6, which will be delivered in its first

prototype (due by Month 15).

During the next 12 months, work will focus on:

 Negotiation and definition of an initial set of policy rules (in collaboration with

application developers) to be used in the deployment of the first Atomic Services

 Detailed design of the policy engine

 Initial implementation of the policy engine

 Study on collaboration with p-medicine

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 48 of 55

3 INTEGRATION WITH EXTERNAL WORK PACKAGES

This section presents the core issues pertaining to integration with external WPs, especially in

the context of user interfaces and deployment of application-specific Web Services.

3.1 WP2 End-user Interfaces

3.1.1 General description of WP2 user interfaces

WP2 user interfaces will consist of two main parts. The Cloud Management Portlet handles

the lifecycle of Atomic Services which includes instantiating basic templates from which

Atomic Services can be created, listing the active Atomic Services which can be accessed by

the current user and invoking their operations. The second part – Data Management Portlet –

provides views for managing data sources and files in the VPH-Share federated storage

infrastructure. As schematically depicted in Figure 18, both components are part of the

Master Interface (developed by WP6) and share a common dependency upon the Cloud

Facade module. This is dictated by the requirement for a uniform interface to the cloud

infrastructure, enabling different clients (not just a single web application) to obtain access to

VPH-Share resources by interfacing directly by the core services exposed by WP2.

Figure 18: Architecture diagram of WP2 user interfaces and dependencies.

The Cloud Facade exposes its interface using well-known standards such as WS (Web

Services) and REST, which are utilised by WP2-specific portlets and can be conveniently

adapted by other clients. The underlying cloud and data components include the following:

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 49 of 55

 Atmosphere – manages the lifecycle of virtual machines (VMs) and Atomic Services

(ASs), provides methods for starting, stopping or pausing VMs and AS Instances,

 AIR – a common registry which stores information about the state of Atomic Services

and data sources. This is the internal WP2 registry referenced in Figure 1.

 DRI – a standalone service which ensures data integrity and reliability, configured by

VPH administrators,

 LOBCDER – VPH-Share data federation facade, used for file payload transfers.

Operations invoked on the components listed above are synchronised by the cloud facade

which delivers a coherent and convenient way of accessing the entire VPH-Share cloud

infrastructure.

3.1.2 Ongoing development

The Portlet specification (JSR-286) was chosen as a base for implementation of WP2 user

interfaces. The Jetspeed-2 Portal [14], with its flexible customisation mechanisms, was

approved as the portlet container used to host WP2 portlets (individual user interface views).

Currently, the flow of the Cloud Management Portlet is fully implemented on top of mock

data as the Cloud Facade dependencies are not yet operational. The flow includes listing

user’s active Atomic Services, instantiating VM template images and Atomic Service

Instances, registration of new Atomic Services and presenting credential information that

allows users to log into the virtual machines.

Integration with the Master Interface (MI) is handled by embedding individual portlet views

via mash-up techniques. To keep the overall look-and-feel consistent, separate CSS

(Cascading Style Sheets) may be applied to pages integrated within the MI. For development

purposes the portal may also act as a standalone web application, with its own layout, at least

until integration with the Master Interface has been concluded.

In terms of deployment, installation is divided between two servers: the portlet container

(responsible for serving the user interface views) and the Cloud Facade service (deployed

inside an OSGI container [15] as a SOAP or REST web service). Such separation facilitates

integration with dependent WP2 components and makes the facade endpoint operational and

accessible by different clients independently of the portal.

3.2 Status VPH-Share Atomic Services

This section briefly describes the status of Atomic Services, which have been made available

for testing as of the publication date of this deliverable. Note that these are application

components correctly deployed and tagged as Atomic Services – additional components are

in the pipeline, but until they have been registered with WP2, Atmosphere will be incapable

of managing their status.

Details of each of the Atomic Services currently known to WP2 are listed in Table 6. Please

note that as, in many cases, the services themselves remain under development by the

respective workflow teams, WP2 maintains a set of “persistent” instances that are not shut

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 50 of 55

down whenever a given service is not performing calculations. The purpose of this temporary

arrangement is to facilitate development and testing of Atomic Services by their creators and

maintainers.

Table 6: List of Atomic Services provided to and registered by WP2 by Project Month 12.

WP5

Workflow

Atomic Service

Name

Deployment status

 EUHeart VTK 2 Ex Format

Convertor

Up and running on

http://149.156.10.131:55000/vtk2ex/?wsdl

 EUHeart Meshing Service

(Ongoing)

Up and running on

http://149.156.10.131:55000/ex2vtk/?wsdl

 EUHeart Meshing Tools Up and running on

http://149.156.10.131:55000/heartgen/?wsdl

 @neurist Meshing Service

(May be split into

separate tools)

http://149.156.10.131:33502/axis2/services/wsGimias?

wsdl (VNC interaction required),

http://149.156.10.131:38529/axis2/services/wsGimias?

wsdl

 @neurist Image Segmentation

Service

http://149.156.10.131:33502/axis2/services/wsGimias?

wsdl (VNC interaction required),

http://149.156.10.131:38529/axis2/services/wsGimias?

wsdl

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 51 of 55

4 SUMMARY

The features chosen for implementation within the initial development period enable us to

deploy a coherent prototype, which can then be used to deploy and run sample applications,

based on the services provided by WP5. While out of scope of this document, it should be

noted that WP2 representatives continue to liaise with the WP5 application teams in order to

help them extract the core functionality of their application workflows and deploy such

functionality in the form of Atomic Services, in line with the requirements imposed by the

Project architecture (and specifically by WP2). During the Consortium Meeting held in

Barcelona in September 2011 we jointly prepared a list of prospective Atomic Services and

data sets that would be contributed to the Project by each workflow team. Implementation

and integration of these Atomic Services is ongoing and the results can be directly used to

showcase the features of WP2 tools. As time goes by, we expect to be able to present

additional workflow scenarios, acting upon real-life datasets and accessed with the use of

user interfaces provided by WP6.

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 52 of 55

5 REFERENCES

1. VPH-Share Project Consortium. Grant Agreement for Collaborative Project "VPH-

Share", Annex I: Description of Work, 2nd revision. 2011..

2. VPH-Share Work Package 2. Deliverable D2.2: Design of the Cloud Platform. Internal

Project Deliverable. ACC CYFRONET AGH; 2011.

3. VPH-Share Project Consortium. Deliverable D2.1: Analysis of the State of the Art and

Work Package Definition. Internal Project Deliverable. ACC CYFRONET AGH; 2011.

4. OSGi Alliance Homepage. [Online].; 2011. Available from:

http://www.osgi.org/Main/HomePage.

5. Apache Karaf OSGi Container. [Online].; 2011. Available from: http://karaf.apache.org/.

6. Apache Camel Integration Framework. [Online].; 2011. Available from:

http://camel.apache.org/.

7. JClouds. [Online].; 2011. Available from: http://code.google.com/p/jclouds/.

8. Sloot PMA, Gubała T, Bubak M. Semantic Integration of Collaborative Research

Environments. Handbook of Research on Computational Grid Technologies for Life

Sciences, Biomedicine and Healthcare. 2009: p. 514-530.

9. OpenStack Project Home. [Online]. Available from: http://openstack.org/.

10. Nginx Project Home. [Online]. Available from: http://wiki.nginx.org/Main.

11. IPv4 Exhaustion. [Online]. Available from: http://www.ripe.net/internet-

coordination/ipv4-exhaustion.

12. Quartz Scheduler homepage. [Online].; 2012 [cited 2012 2 29. Available from:

http://quartz-scheduler.org/.

13. Nginx HTTPS Module. [Online]. Available from: http://wiki.nginx.org/HttpSslModule.

http://www.osgi.org/Main/HomePage
http://karaf.apache.org/
http://camel.apache.org/
http://code.google.com/p/jclouds/
http://openstack.org/
http://wiki.nginx.org/Main
http://www.ripe.net/internet-coordination/ipv4-exhaustion
http://www.ripe.net/internet-coordination/ipv4-exhaustion
http://quartz-scheduler.org/
http://wiki.nginx.org/HttpSslModule

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 53 of 55

14. Jetspeed 2 Web Portal. [Online].; 2012. Available from:

http://portals.apache.org/jetspeed-2.

15. Alliance O. OSGI Web Portal. [Online]. Available from:

http://www.osgi.org/Main/HomePage.

16. Davidoff F, Godlee F, Hoey J, Glass R, Overbeke J, Utiger R, et al. Uniform

requirements for manuscripts submitted to biomedical journals. JAOA: Journal of the

American Osteopathic Association. 2003; 103(3).

http://portals.apache.org/jetspeed-2
http://www.osgi.org/Main/HomePage

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 54 of 55

LIST OF KEY WORDS/ABBREVIATIONS

ACD Audited Credential Delegation

ACL Access Control List

AHE Application Hosting Environment

AIR Atmosphere Internal Registry

AMS Atmosphere Management Service

AS Atomic Service

AS Authentication Service

ASI Atomic Service Instance

API Application Programming Interface

CC Cloud Controller

CEE Cloud Execution Environment

DNAT Destination Network Address Translation

DRI Data Reliability and Integrity

EC2 Amazon Elastic Computing Cloud v2

HPC High Performance Computing

HTTP HyperText Transfer Protocol

LDRI Logical Data Resource Identifier

LOBCDER Large OBject Cloud Data storagE fedeRation

MI Master Interface

NAT Network Address Translation

ORM Object-Relational Mapping

OSGI Open Service Gateway Initiative

REST REpresentational State Transfer

FP7 – ICT – 269978, VPH-Share

WP2: Data and Compute Cloud Platform

D2.3: First Prototype of the Cloud Platform

Version: 1v3

Date: 19-Mar-12

 Page 55 of 55

SaaS Software as a Service

SDK Software Development Kit

SOAP Simple Object Access Protocol

SSH Secure SHell

SSL Secure Socket Layer

SSO Single Sign-On

TLS Transport-Layer Security

URI Universal Resource Identifier

URL Universal Resource Location

VM Virtual Machine

VCN Virtual Network Computing

WebDAV Web-based Distributed Authoring and Versioning

WP Work Package

