

ICT 269978

Integrated Project of the 7
th

 Framework Programme

COOPERATION, THEME 3

Information & Communication Technologies

ICT -2009.5.3, Virtual Physiological Human

Work Package: WP2

Data and Compute Cloud Platform

Deliverable: D2.2

Design of the Cloud Platform

Version: 1.3

Date: 31/08/2011

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 2 of 100

DOCUMENT INFORMATION

IST Project Num FP7 ï ICT - 269978 Acronym VPH-Share

Full title Virtual Physiological Human: Sharing for Healthcare ï A Research Environment

Project URL http://www.vphshare.eu

EU Project officer Joël Bacquet

Work package Number 2 Title Data and Compute Cloud Platform

Deliverable Number 2.2 Title Design of the Cloud Platform

Date of delivery Contractual 2011-08-31 Actual 2011-08-31

Status Version 1.3 Final |

Nature Prototype Å Report | Dissemination Å Other Å

Dissemination
Level

Public (PU) Å Restricted to other Programme Participants (PP) Å

Consortium (CO) | Restricted to specified group (RE) Å

Authors (Partner) Marian Bubak, Tomasz BartyŒski, Marek Kasztelnik, Maciej Malawski, Jan
Meizner, Piotr Nowakowski (CYFRONET)

Spiros Koulouzis (UvA)

David Chang, Stefan Zasada (UCL)

Enric Sarries (AOSAE)

Responsible
Author

Piotr Nowakowski Email p.nowakowski@cyfronet.pl

Partner CYFRONET Phone n/a

Abstract (for
dissemination) This deliverable constitutes the design document of Work Package 2 of the VPH-

Share project, devoted to designing, implementing and deploying the Cloud
management platform and services for application deployment and execution. It
covers the implementation details and technology-related information for a number
of WP2 components, including the resource management layer, application
execution services and tools for uniform data access and integrity monitoring.

Keywords Cloud platforms, PaaS, IaaS, distributed systems, Cloud resource management,
distributed data access

http://www.vphshare.eu/
mailto:p.nowakowski@cyfronet.pl

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 3 of 100

Version Log

Issue Date Version Author Change

2011-07-19 0.1 Piotr Nowakowski First draft

2011-08-02 0.2 Piotr Nowakowski Extended draft

2011-08-09 0.3 Piotr Nowakowski with
contributions from CYF and UCL

Extended draft

2011-08-10 0.4 Piotr Nowakowski with
contributions from AOSAE and
UvA

Extended draft

2011-08-15 0.5 Piotr Nowakowski with
contributions from UvA

Extended draft

2011-08-16 0.6 Piotr Nowakowski, Marian Bubak Further refinements and
updates as requested by WP2
management

2011-08-22 0.9 Piotr Nowakowski Updated version following
internal review

2011-08-29 1.0 Piotr Nowakowski, Marian Bubak,
David Chang, Blanca Jordan
Rodriguez, Maciej Malawski,
Xavier Planes, Enric Sarries,
Dmitry Vasunin

Additional updates following
internal review

2011-08-30 1.2 Piotr Nowakowski Additional updates and
revisions

2011-08-31 1.3 PMO Final proof read

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 4 of 100

Contents

Executive Summary .. 9

1 Introduction ... 9

2 VPH-Share User Groups and User Requirements Related to WP2 11

3 Work Package 2 Architecture Description ... 13

4 Detailed Design of Work Package 2 Components .. 16

4.1 Cloud resource allocation management ... 16

4.1.1 Functionality .. 17

4.1.2 Architecture ... 18

4.1.3 Deployment plan .. 20

4.1.4 Data stored in Atmosphere Internal Registry .. 21

4.1.5 Provided interfaces... 22

4.1.6 Dependencies ... 23

4.1.7 Control flow... 23

4.1.8 Candidate technologies .. 26

4.2 Cloud application deployment and execution .. 27

4.2.1 Functionality .. 27

4.2.2 Atomic Service Instance... 29

4.2.3 Architecture ... 31

4.2.4 Provided interfaces... 35

4.2.5 Dependencies ... 35

4.2.6 Control flow... 35

4.2.7 Candidate technologies .. 41

4.3 Access to high-performance computing environments ... 42

4.3.1 Component description .. 42

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 5 of 100

4.3.2 How HPC fits into the overall architecture of WP2 and VPH-Share 44

4.3.3 Detailed Design ... 45

4.3.4 Audited Credential Delegation Security Component 53

4.3.5 Components ... 54

4.3.6 Interfaces ... 58

4.3.7 AHE/ACD implementation technologies .. 60

4.4 Access to large binary data in the cloud ... 60

4.4.1 Introduction ... 60

4.4.2 System Overview ... 62

4.4.3 Frontend .. 63

4.4.4 Operations Backend ... 64

4.4.5 Access Backend ... 65

4.4.6 Data persistence ... 65

4.4.7 Connection Module .. 66

4.4.8 Scaling ... 66

4.4.9 Usage scenarios ... 67

4.4.10 Implementation Technologies .. 68

4.5 Data reliability and integrity .. 68

4.5.1 Structure of a Managed Dataset .. 68

4.5.2 Tagging datasets .. 70

4.5.3 The DRI Runtime service ... 70

4.5.4 DRI Interfaces.. 72

4.5.5 Implementation Technologies .. 73

4.6 Security for Cloud applications ... 74

4.6.1 Architectural Design .. 75

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 6 of 100

4.6.2 Creation and Instantiation of Virtual Appliances .. 83

4.6.3 Invocation of Atomic Service ... 85

4.6.4 Policy Administration Point ... 86

4.6.5 Policy Information Point .. 88

4.6.6 Auditing and Logging .. 89

5 Implementation Methodology .. 90

6 Conclusions ... 92

7 References ... 93

8 List of Key Words/Abbreviations .. 97

LIST OF FIGURES

Figure 1: WP2 in the VPH-Share architecture ... 13

Figure 2: Overall architecture of the VPH-Share Data and Compute Cloud Platform (Work

Package 2) and its relation to external Project components. ... 14

Figure 3: Use case diagram illustrating the roles of the application provider, the Atomic

Service Cloud Facade (part of the WP6 Master Interface) and Atomic Service Instances

accessing the features of the Allocation Management Service subsystem. The diagram also

depicts indirectly used features. ... 18

Figure 4: Architecture of the Allocation Management Service and its functional

dependencies. .. 19

Figure 5: The architecture and elements of the Atmosphere Internal Registry along with its

interactions.. 20

Figure 6: Creation of a new Atomic Service Instance by the application provider. All

interactions between the end user, the Master Interface, AMS and the Cloud Execution

Environment are illustrated in chronological order. ... 25

Figure 7: Actors of the Cloud Execution Environment, namely the Allocation Management

Service, the Atomic Service Cloud Facade and the application provider. Features of the

system that are not directly accessed by users, but are required to provide CEE functionality,

are also presented. ... 29

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 7 of 100

Figure 8: Structure of an Atomic Service Instance. The virtual machine (with a selected OS)

hosts a VPH-Share application with a REST/SOAP interface exposed using wrapper

mechanisms which involve a security module. .. 30

Figure 9: Cloud Execution Environment architecture overview. Components marked in light

green are either developed within Task 2.2 or existing solutions that will be deployed and

configured. Components that are marked in other colours are external to CEE but are

significant to explain its architecture. .. 32

Figure 10: Architecture of a private Cloud deployment. Types of nodes (Cloud controller and

compute) as well as network configuration are presented. ... 34

Figure 11: Creating a new Atomic Service. Interaction of the end user (application provider)

with the infrastructure (Cloud Manager) is presented... 38

Figure 12: Invocation of an Atomic Service Instance. .. 39

Figure 13: Control flow involved in deploying an Atomic Service Instance. 40

Figure 14: VPH-Share Overview. The main aim of Task 2.3 is to provide access to grid

infrastructure and tools to the VPH-Share infostructure. .. 44

Figure 15: An overview of Task 2.3 within Work Package 2. .. 45

Figure 16: A typical AHE workflow .. 46

Figure 17: The AHE Job lifecycle state diagram. ... 48

Figure 18: AHE Runtime module UML diagram ... 49

Figure 19: AHE Engine module UML diagram ... 49

Figure 20: A Simple JBPM workflow document example created using the Eclipse JBPM

editor. JBPM supports complex processes which include human interaction, event handling

as well as rules. ... 50

Figure 21: AHE Connector Module UML diagram .. 51

Figure 22: AHE API module UML diagram .. 52

Figure 23: AHE security module UML diagram .. 52

Figure 24: AHE storage module UML diagram ... 53

Figure 25: ACD wrapper paradigm ... 54

Figure 26: A typical ACD workflow. All commands are intercepted by ACD and checked

before being sent to AHE. ... 55

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 8 of 100

Figure 27: ACD Authentication Service UML diagram ... 56

Figure 28: ACD Authorisation Service UML diagram ... 57

Figure 29: ACD Credential Repository Service UML diagram .. 58

Figure 30: LOBCDER interactions with application developers, end-users, and administrators

 ... 62

Figure 31: LOBCDER architecture.. 63

Figure 32: End users and developers can use standard clients and APIs to mount LOBCDER

 ... 64

Figure 33: StorageResource structure .. 65

Figure 34: DataResource structure ... 66

Figure 35: Distributed LOBCDER architecture ... 67

Figure 36: Schematic representation of a VPH-Share Managed Dataset............................... 69

Figure 37: Autonomous operation of the DRI Runtime. ... 71

Figure 38: Overall architecture of the VPH-Share Security Components 76

Figure 39: Security Proxies - Encrypting/Decrypting the AS requests and responses 77

Figure 40: Security Agent ï Components Diagram and interfaces 78

Figure 41: Securing Atomic Services .. 84

Figure 42: Spawning a Secure Atomic Service Instance .. 85

Figure 43: Security Agent ï Authorizing a request to an Atomic Service 86

Figure 44: Activation of PDP policies. .. 88

Figure 45: Security Audit ï Use case for both the Management and the Agentôs event logging

 ... 90

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 9 of 100

EXECUTIVE SUMMARY

This deliverable constitutes the design document of Work Package 2 of the VPH-Share

project, devoted to designing, implementing and deploying the Cloud management platform

and services for application deployment and execution. The tools deployed by WP2 will

constitute the VPH infostructure upon which domain-specific services can be provisioned to

researchers and medical practitioners from the VPH consortium, in line with the Projectôs

goal (1).

The role of this document is to provide an in-depth overview of how each component of the

WP2 architecture is designed, how it is going to be implemented and deployed and how it is

expected to integrate with other WP2 components (and with the VPH-Share project

architecture in general). To this end, the document includes a summary section where the

overall WP2 architecture is presented and each of the participating user groups is discussed,

along with the ways in which these groups are expected to interact with the system. This

general description is followed by specific technical details related to the implementation of

WP2 subcomponents, including:

 deployment and execution of applications in Cloud infrastructures

 access to high performance computing (non-Cloud) infrastructures

 access to large binary data in the Cloud

 data integrity, availability and retrievability

 security aspects related to Cloud computations

This deliverable should be treated as a follow-up to the preceding WP2 document, namely the

Analysis of the State of the Art and Work Package Definition (D2.1), published at the end of

Project Month 3. The recommendations identified in the course of our research of the state of

the art in the area of Cloud system management, distributed application deployment and

distributed data storage translate into the design choices presented in this deliverable. User

requirements were taken into account by means of a selection of detailed questionnaires

distributed among and collected from the leaders of all four participating workflow teams.

We further intend to coordinate our development efforts with users in the course of

implementation and deployment of WP2 solutions. To this end, personal contacts have been

established between WP2 members and user team representatives.

This document is meant as a live deliverable ï should additional technologies become

relevant to WP2 development at the implementation stage we intend to further address the

topics discussed here when preparing subsequent WP2 deliverables. This document will also

be extended as part of our consecutive prototype releases. WP2 periodic reports and

prototype descriptions will therefore take into account any ongoing developments.

1 INTRODUCTION

The goal of Work Package 2 (Data and Compute Cloud Platform) is to develop, integrate and

maintain an environment which will enable the VPH-Share workflows, as well as any

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 10 of 100

application making use of VPH-Share resources, to operate on top of the Cloud and high-

performance computing infrastructure provided by the project.

In order to fulfil its goal, Work Package 2 needs to deliver a consistent service-based system

that enables end users to deploy the basic components of VPH-Share application workflows

(known as Atomic Services) on the available computing resources and then enact workflows

using these services. The end-user interfaces (and ï by extension ï the Work Package 2

services which support them) must cater to each group of users expected to interact with the

system. This division of responsibilities will be further elaborated upon in Section 2.

Given the above requirements, the primary aim of this document is to constitute an in-depth

presentation of the structure and interactions of tools which, taken together, constitute the

WP2 architecture. The document is structured as follows:

 Section 2 details the characteristics of each group of users who will interact with the WP2

platform (and with the VPH-Share system in general), listing their specific requirements

and the ways in which such requirements impact the architecture of the Data and

Compute Platform. It also presents some generic use cases, further explaining the

relationships between application providers, end users and administrators, as well as the

functionality which needs to be provided to each of these groups, as identified on the

basis of our discussions with VPH-Share workflow developers and application providers.

 Section 3 is meant as a generalised overview of the WP2 architecture. It does not include

detailed descriptions of individual components; rather, it serves as a ñbig pictureò

introduction to the way in which Work Package 2 is structured and the interactions

between its constituent parts.

 Section 4, the most extensive part of this deliverable, is meant as an in-depth description

of each of the components identified in the preceding section. For each of the Work

Package 2 technical tasks, a thorough discussion of the implementation concepts and

technology choices is provided. This discussion is meant to address the following issues

(on a per-component basis):

 component description (How does the component work? How does it fit into the

overall architecture of VPH-Share and, specifically, of WP2?);

 detailed design (A textual description illustrated by UML class/sequence diagrams);

 interfaces (What interfaces will the component provide to other components? What

interfaces will it require of other components?);

 Implementation technologies (Which technologies will be used to implement the

component?),

 Section 5 focuses on development methodologies, laying out the blueprint for the

implementation of the initial prototype of the WP2 platform which is due by Project

Month 12.

 Section 6 summarises the presented descriptions and contains general conclusions.

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 11 of 100

2 VPH-SHARE USER GROUPS AND USER REQUIREMENTS RELATED TO WP2

The goal of VPH-Share is to develop the organisational fabric (the infostructure) and

integrate optimised services to expose and share data and knowledge, jointly develop

multiscale models for the composition of new VPH workflows and facilitate collaborations

within the VPH community. Thus, the Project should enable groups of users to gain

authorised access to a variety of computational and data services, deployed on distributed

hardware resources. Most of the technologies presented with the data and compute platform

are exclusively implemented as services ï applications or other necessary pieces of logic that

encapsulate the data they operate on and provide secure interfaces to access them. In this

sense, the function of WP2 is to provide a Cloud and HPC platform on which to deploy,

instantiate, access and manage VPH-Share services (which are understood as applications, or

components thereof, fulfilling specific needs of researchers). This approach allows each

application to evolve at its own pace thereby reducing the side effects traditionally seen in

former enterprise applications. The starting point for the development of VPH-Share

solutions is a selection of standalone applications derived from four participating workflows:

@neurist, EUHeart, ViroLab and VPHOP. Each of these projects operates a selection of

software tools, presently provided only to its consortium members. With the aid of VPH-

Share these tools are meant to be exposed to a wider community of users and potential

collaborators. The applications will need to be prepared for deployment in a distributed Cloud

environment and a set of interfaces will need to be provided for end users, enabling them to

interact with the exposed tools in a secure and convenient way.

As a consequence of the above, and also with respect to the Projectôs Description of Work (1)

and basing on the workflow questionnaires distributed and collected by WP2 during this

preparatory phase, three specific groups of users were identified in the context of VPH-Share.

These are as follows:

 Application providers (also called developers): These are the people responsible for

developing and installing scientific applications and software packages, as well as

provisioning input data required by such applications to operate. Typically, this group

would comprise IT experts who collaborate with domain scientists and translate their

requirements into executable software. Within the context of VPH-Share developers are

tasked with installing pre-existing applications and components on the virtualised

hardware resources provided by the Project so that these applications can be provisioned

to domain scientists (see below).

 Domain scientists: This group comprises the actual researchers (belonging to the VPH-*

project community) who stand to benefit from access to scientific software packages

provided to them by means of the VPH-Share platform. To some extent the entire VPH-

Share infrastructure exists to support and provide added value to these users and is one of

the determining factors by which the success of the project may be judged. In general, the

scientists will require the ability to access the applications in a secure and convenient

manner, making use of graphical interfaces that will be provided through WP6.

 System administrators: A group of privileged users who will be able to manipulate and

assign the available hardware resources to the Project and define security/access policies

for other groups of users. Administrators will be tasked with making sure the platform

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 12 of 100

remains in an operational state and that no unauthorised or harmful activity is effected

with the use of VPH-Share resources. Administrators will also be able to monitor system

usage statistics and respond to emerging issues by taking advantage of notification

mechanisms built into the system.

The following table summarises the mapping between user groups and technical WP2 tasks,

to better illustrate how the proposed architecture of WP2 corresponds to the user

requirements. For specific use cases and their descriptions, please refer to Section 4 which

contains in-depth presentation of each technical task of WP2.

Technical task Targeted use cases

Task 2.1: Cloud

Resource Allocation

Management

Application providers: Deploy and register Atomic

Services;

Domain scientists: Browse available Atomic Services;

System administrators: Browse and manage available

Cloud computing resources; register new resources; set

allocation policies;

Task 2.2: Cloud

Application Deployment

and Execution

Application providers: Request deployment of Atomic

Service Instances for development and testing purposes;

Domain scientists: Request access to specific Atomic

Services via workflow management tools or directly (with

the use of APIs/GUIs embedded in the Master Interface);

System administrators: Set deployment properties for each

Atomic Service;

Task 2.3: Access to

High-Performance

Computing

Infrastructures

Application providers: Request execution of HPC tasks for

development and testing purposes;

Domain scientists: Request access to specific HPC-based

Atomic Services via workflow management tools or directly

(with the use of APIs/GUIs embedded in the Master

Interface);

System administrators: Manage HPC resources attached to

the Project; review logs and monitoring data;

Task 2.4: Access to

Large Binary Data in the

Cloud

Application providers: Query for and store binary data

generated by VPH-Share Atomic Services;

Domain scientists: Download and utilise the binary data

produced by VPH-Share application workflows;

System administrators: Manage VPH-Share data storage

resources;

Task 2.5: Data

Reliability and Integrity

Application providers: Tag datasets for automatic

reliability/accessibility monitoring; set monitoring,

validation and replication policies;

Domain scientists: Access verified datasets regardless of

location in the VPH-Share data federation;

System administrators: Receive notifications in case of

access problems or policy violations;

Task 2.6: Security Application providers: Safely deploy applications and

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 13 of 100

expose them to selected (authorised) groups of users;

Domain scientists: Access any VPH-Share application

component with common credentials;

System administrators: Manage access rights; add/remove

users; set user attributes.

The next section explains how the system intends to cater to each of these user groups and

how the individual components of Work Package 2 come together to enable provisioning of

integrated services to all types of VPH-Share users.

3 WORK PACKAGE 2 ARCHITECTURE DESCRIPTION

An overview of Work Package 2 and its relationship with the overarching VPH-Share

architecture is presented in Figure 1. It should be noted that this is strictly a conceptual view

as this deliverable focuses on detailing the internal architecture of WP2. The Project

Consortium plans to release a separate document by the end of Project Month 8, where the

overall architecture of the entire Project will be presented in detail. Specific information

regarding the integration of WP2 tools with other components (external to WP2) can be

found in the relevant subsections of Section 4.

Figure 1: WP2 in the VPH-Share architecture

The projected architecture of Work Package 2 reflects the structure of the WP in the Projectôs

Description of Work (1). Each of the technical tasks of WP2 translates into either a specific

component of the proposed architecture, or into several such components. It should also be

noted that since the Cloud deployment and execution platform (being implemented within

WP2) is a crucial element of the VPH-Share architecture, significant attention will be devoted

to description of inter-component interfaces and relation to other tools and services provided

by the Project.

In light of the above, a view of the WP2 architecture is presented in Figure 2. The diagram

covers the basic components of WP2, along with graphical representations of inter-

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 14 of 100

component interactions and positioning of WP2 with relation to other Work Packages of the

Project (WP6 in particular).

Several observations of a general nature should be made at this point. First, the notion of the

Atomic Service, as presented in the Description of Work (and further explained in

Deliverable 2.1 (2)) is central to understanding the features and modes of operation of the

designed platform. It is important to note that each application (or component thereof) needs

to be treated as a service if it is to be managed by WP2 components and deployed in the

Cloud. Along with a schematic depiction of the basic building blocks of the Atmosphere

framework, Figure 2 also presents the structure of an individual Atomic Service, listing the

libraries and tools which will be prepared by WP2 and preinstalled on all virtual machines

hosting Atomic Services within the context of VPH-Share. The specific features and structure

of each of these components will be discussed in Section 4.

Figure 2: Overall architecture of the VPH-Share Data and Compute Cloud Platform (Work Package 2) and its
relation to external Project components.

In light of the above requirements, several operations have to be performed on any

standalone, command-line-based application before it can become part of the VPH-Share

framework:

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 15 of 100

 As mandated by the Description of Work (1), the application needs to expose a remote

interface based upon the Web Services technology. Either the application is already

engineered to present such an interface, or it must be reengineered to comply with this

requirement. Naturally, when legacy applications are concerned (and VPH-Share will

involve numerous such applications), it cannot be expected that developers will

reimplement them only to suit the requirements of VPH-Share. Thus, a different

procedure is planned, where the legacy application is instead wrapped by an external

client which provides the required Web Service interface to the WP2 tools (and to other

components which wish to interact with the application), while internally invoking the

command-line interface(s) that the application provides. A generic description of how a

legacy application can be wrapped to comply with Atomic Service requirements can be

found in Section 4.1.7. Work Package 6 will then attempt to use the WP2 tools enable

components of pilot workflows (derived from ViroLab, VPHOP, @neurist and EUHeart

projects) to function within the VPH-Share infrastructure.

 The Web Service enabled application is then installed onto a virtual machine image

provided to the developers by the Atmosphere component, which implements the

functionality associated with Task 2.1 of the Project. Taking advantage of virtualisation

technologies and OS independence features of modern Cloud solutions, Atmosphere does

not need to enforce a specific programming environment or operating system ï instead, a

selection of virtualised platforms will be offered to developers. The developer will need

to select a specific OS template, which will come with preinstalled components enabling

VPH-Share Atomic Services to function. Having made this choice, the developer will be

presented with a persistent instance of the template, deployed upon Cloud resources,

where the application (or parts thereof) can be installed. In fact, the virtual machine

provided to developers can be directly used to wrap application components into Atomic

Services, with no further hardware requirements. While installing and testing their

application, developers may log in to the virtual machine directly, via the SSH protocol,

with credentials supplied to them by Atmosphere (which is also responsible for

instantiating and managing the virtual machine in question).

 Following installation of the application ñpayloadò (i.e. the application component

depicted in the top right-hand corner of Figure 2), the Atomic Service can be registered

and stored in the Atmosphere internal registry. This operation can be performed by

interacting with the dedicated Atmosphere portlet which will be embedded in the VPH-

Share Master UI and will provide access to specific features of the Atmosphere

component. Upon registration, Atmosphere will store a copy of the Atomic Service

virtual machine image and will later use it to instantiate Atomic Service Instances that

correspond to the specific application (or application component). The developerôs work

concludes at this point as the Atomic Service is now ready for use and can be dynamically

instantiated and served to end users of the Project (i.e. researchers). Note that should

further development work become necessary (for instance to upgrade the Atomic Service,

or to resolve issues/fix bugs), the developer may again check out the specific VM

instance and perform the required actions before committing the updated resource back to

the Atmosphere storage layer.

An interesting issue arises with respect to applications that need to provide a graphical user

interface. Naturally, an application that is not directly input-driven, does not normally expose

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 16 of 100

command-line interfaces, and hence cannot be easily wrapped and deployed as an Atomic

Service. In such cases WP2 aims to preserve the existing features of the application by

enabling the virtual machine on which it is hosted to expose a remote GUI with help from a

remote desktop-type mechanism, specifically the Virtual Network Computing (3) interface.

The virtual machine (on which applications are deployed) includes a generic VNC (Virtual

Network Computing) server while the client front-end (embedded in the VPH-Share Master

Interface) includes a portlet that exposes the applicationôs GUI in the browser window and

enables clients to directly interact with the service.

4 DETAILED DESIGN OF WORK PACKAGE 2 COMPONENTS

4.1 Cloud resource allocation management

Resource allocation management is required to ensure that all computational tasks are

assigned an appropriate share of underlying cloud or HPC resources. As Atomic Service

Instances (ASI) will perform processing tasks, efficient management of those instances is the

main goal of Task 2.1. An Atomic Service Instance is a computer system that:

 has a VPH-Share application installed

 uses wrapping mechanisms provided by Task 2.2 to expose the application as a HTTP

service (either through SOAP or REST Web Service protocols)

 secures access to the application using tools provided by Task 2.6

 has VPH-Share federated data storage access tools installed

 optionally includes tools to directly connect to the machine (such as SSH or VNC server)

 is hosted in the cloud infrastructure (either private or commercial installation) or in an

HPC infrastructure, depending on resource requirements of the application

A detailed description of Atomic Service Instances is presented in Section 4.2.2.

Commercial cloud providers employ the pay-per-use model while private infrastructures have

limited amounts of resources. Submitting a job to HPC infrastructures usually requires

waiting in a queue and consumes computational grants. The usage demand for most Atomic

Service Instances will be dynamic and may frequently be prone to spikes in demand.

Matching capacity to actual Atomic Service Instance usage make dynamically optimised

deployment of instances a necessity. Adjusting the computational environment and providing

dynamic and on-demand features required by end users involves:

 shutting down instances of a given type (if there are too many instances of this specific

type or this type of instance is not required at the moment)

 initializing instances of similar or another type to handle incoming traffic

 configuring instances

 enabling application providers to install their software on machines with operating

systems of their choice

 monitoring the cloud infrastructure and the performance of instances

 controlling and minimizing the cost of hosting instances

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 17 of 100

It is extremely difficult ï if not outright impossible ï for system administrators to manually

harness such a dynamic and complex environment, composed of private and commercial

clouds as well as HPC resources. Therefore Task 2.1 aims to develop and deploy a computer

system ï the Allocation Management Service ï to assist system administrators in performing

their assigned tasks.

4.1.1 Functionality

The Allocation Management Service (AMS) is a subsystem of the VPH-Share Data and

Compute Cloud Platform. Its functionality is depicted in Figure 3. AMS is accessed by three

classes of actors:

1. VPH-Share application providers (already discussed in Section 2) who will be able to

use graphical tools exposed by the Master User Interface to:

a. Browse available virtual machine templates of raw operating systems that can be used

to create new Atomic Services. The application provider may wish to use a specific

distribution of an operating system, depending on the requirements of their

application. Some of the major issues which must be taken into account when

choosing OS distribution include availability of libraries and tools, robustness, system

overhead and individual preferences.

b. Create a new virtual machine based on the selected raw OS distribution. The

application provider does not need to know where and how a virtual machine will be

created on the underlying infrastructure. From the userôs perspective, this will be a

single-click operation that will return the IP address of the created virtual machines

and credentials necessary to log into each machine. Connecting to a virtual machine

and installing applications (creating an Atomic Service) is described in Section 4.2.

c. Save the newly configured virtual machine with the VPH-Share application installed

as a new Atomic Service. This operation can also be invoked using a graphical tool

embedded in the Master User Interface and must require a description of the newly

created Atomic Service. AMS will interface the underlying layers in order to actually

save the virtual machine with the preinstalled VPH-Share application as a new

template and register a new Atomic Service in the WP2 Internal Registry.

2. The Atomic Service Cloud Facade, acting on behalf of end users (scientists), either by

invoking the functionality of a single Atomic Service or executing a more complex

workflow that involves multiple calls to a range of Atomic Services. In both cases, AMS

will be responsible for ensuring that the required Atomic Service Instances are

configured, deployed and monitored properly. Furthermore, AMS will try to allocate

resources in a way that maximises application performance and minimises costs. Despite

the fact that the AMS is unnoticed by the end users, it will perform complex tasks to

deliver this functionality. It has to provision Atomic Service Instances on demand, in an

optimal manner, on the basis of an optimal deployment plan enacted using the Cloud

Execution Environment (CEE). In order to develop such a plan AMS needs to query CEE

for monitoring data describing infrastructure load and performance of ASIs, and then

collate this data with CEE specific policies and ASI-specific resource demands and usage

costs. For more details about the deployment plan please refer to Section 4.1.2.

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 18 of 100

3. Generic subsystems or components developed or deployed within WP2 (including

Atomic Service Instances and the Data Reliability and Integrity runtime ï see Section

4.5). A good example of such an actor is an Atomic Service Instance that queries AMS

for configuration parameters required to initialise and properly customise itself. Atomic

Service Instance configuration may contain information regarding security, data sources

that should be accessed or any other application-specific data required to initialise the

service. Another example is the Data Reliability and Integrity service (see Section 4.5.4)

that stores and access metadata describing managed datasets (see Section 4.5.1).

Figure 3: Use case diagram illustrating the roles of the application provider, the Atomic Service Cloud Facade (part

of the WP6 Master Interface) and Atomic Service Instances accessing the features of the Allocation Management
Service subsystem. The diagram also depicts indirectly used features.

4.1.2 Architecture

The Allocation Management Service subsystem is part of the Data and Compute Cloud

Platform. It is subdivided into components dedicated to specific features. Modularisation

allows independent development of components implementing separate aspects of the

systemôs functionality. The AMS architecture is illustrated in Figure 4. Three key

components can be distinguished:

 Manager

 Optimiser

 Atmosphere Internal Registry (AIR)

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 19 of 100

Figure 4: Architecture of the Allocation Management Service and its functional dependencies.

The Manager is a central component of the AMS subsystem which will supervise the process

of preparing the optimal deployment plan. It will also provide a remote REST interface that

accepts requests from the Atomic Service Cloud Facade regarding currently required Atomic

Service Instances, and requests from application providers to create or save new Atomic

Service Instances. The Manager will interface the Cloud Execution Environment to obtain the

current status of the underlying infrastructure and dispatch deployment plans that will result

in starting or stopping instances. If the deployment plan involves execution of applications on

an HPC infrastructure, the Manager will contact the High Performance Execution

Environment. The Atmosphere Internal Registry (AIR) will be used as the Managerôs

persistence layer; thus the AMS subsystem will be able to survive a crash or reboot and

maintain control over the underlying resources.

Optimisation logic will be encapsulated in a separate module. The Optimiser will implement

the process of preparing an optimal deployment plan. There are many factors which might

influence how Atomic Service Instances should be located and how much resources they

should consume (for a comprehensive list of factors that will be taken into account please

refer to Section 4.1.2). Thus, an approach based on multiple criteria must be applied. We

intend to experiment with various tools and techniques, including the Modelling Language

for Mathematical Programming (AMPL) (4) combined with the DONLP2 (5) solver,

constraint satisfaction programming using CHOCO (6) or finding Pareto-optimal solutions

and normalizing them using objective functions (for a detailed description of these tools and

techniques please refer to Deliverable 2.1 (2)). It is expected that various optimisation

policies will be applied and tested throughout the lifecycle of the VPH-Share project ï hence,

the Optimiser component must be easily replaceable. To achieve this goal, the Optimiser will

only be used by the Manager component and will not have any dependencies on other

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 20 of 100

components. Each invocation of the Optimiser (by the Manager) will include all data

necessary to perform optimisation.

The Atmosphere Internal Registry (hereafter also referred to as the Atmosphere Registry, the

AIR component or simply the Registry) is a core element of the Atmosphere platform,

delivering persistence capabilities. Its components and interactions are depicted in Figure 5.

The main function of AIR is to provide a technical means and an API layer for other

components of Atmosphere to store and retrieve their crucial metadata. Having a logically

centralised (though physically dispersed, if needed to meet high availability requirements)

metadata storage component is beneficial for the platform, as multiple elements may use it

not only to preserve their ñmemoryò but also to persistently exchange data. This is facilitated

through the well-known database sharing model where the data storage layer serves as a

means of communication between autonomous components, making the Atmosphere Internal

Registry an important element of the platform.

Figure 5: The architecture and elements of the Atmosphere Internal Registry along with its interactions.

4.1.3 Deployment plan

The deployment plan is the most significant concept of the AMS subsystem. All user requests

(except requests for browsing available templates and obtaining instance configuration

parameters) will result in preparing a new deployment plan that will be dispatched to the

Cloud Execution Environment. This takes place automatically, based on platform

requirements and the information available in the Atmosphere Internal Registry (see previous

section). The deployment plan is a formal description of actions that are required at a specific

point in time to provision Atomic Service Instances implementing the features requested by

end users. Such a plan needs to be optimal in terms of performance of Atomic Service

Instances and costs of computation, data storage and transfer. The deployment plan will

specify:

 which Atomic Service Instances should be available at the given moment

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 21 of 100

 where each Atomic Service Instance should be initialised (partnerôs private Cloud site,

commercial Cloud, hybrid installation or HPC infrastructure)

 the quantity and size of instances (i.e. the amount of allocated resources)

The deployment plan will be expressed as a list of actions which need to be taken to fine-tune

the computing environment. Those actions may concern:

 managing virtual machines in Clouds (starting, stopping etc.)

 moving data using binary data access tools

 starting/stopping an application in the HPC infrastructure

The deployment plan will be passed to the Cloud Execution Environment and the High

Performance Execution Environment in order to effect the specified resource allocation.

As the deployment plan needs to be optimised, the Allocation Management Service will take

into account several factors. The most significant of these are as follows:

 is it more efficient to transfer input data to the site where the atomic service is deployed

or instantiate the service close to existing datastores

 workflow and atomic service resource demands

 volume and location of input and output data

 load of available resources

 cost of acquiring resources on private and public Cloud sites

 cost of transferring data between private and public Clouds (also between ñavailability

zonesò such as US and Europe)

 cost of using cheaper instances (whenever possible and sufficient; e.g. EC2 Spot

Instances or S3 Reduced Redundancy Storage for some noncritical (temporary) data)

 public Cloud provider billing model (Amazon charges for a full hour ï thus, five 10-

minute tasks would cost 5 more times to run than an individual instance)

 security constrains (for instance: ñsensitive data cannot be transferred to public Cloud

infrastructureò)

 the possibility of reusing pre-deployed instances (sharing instances between workflows)

4.1.4 Data stored in Atmosphere Internal Registry

While the Registry will be prepared to accommodate a wide range of different metadata ï

since its internal mechanisms are based on the Semantic Integration (7) concept which

delivers a high level of generality for domain-specific metadata solutions ï eventually the

following elements will be stored inside the Registry:

 Atomic Service configurations: a set of runtime parameters or documents containing such

parameters as are required to deploy an Atomic Service template and set it up to serve a

running and externally available Atomic Service Instance

 Metadata describing the properties of the Atomic Service ï for instance whether the

Atomic Service is stateless or stateful, what are its computational requirements etc.

 Available templates: the list of Atomic Service templates available for Atmosphere to be

instantly deployed and used in applications when a need arises. While the virtual machine

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 22 of 100

images of these templates are stored in the Cloud stack storage elements, the metadata

describing and identifying them is inside the Registry

 Hosts and operating Atomic Service Instances: the list of available hosting machines

which are able to accept new instances of Atomic Services to be deployed, as well as the

list of all such instances currently deployed, running and available for application

workflows

 Datasets: the list of large binary data sets and storage resources required by Data

Reliability and Integrity tools to monitor the availability of managed data resources (see

Section 4.5.1)

 (optional) Real-time measurements of host parameters: when deploying new Atomic

Service Instances the AMS Manager may require historic data regarding performance and

load of available hosts ï if this is the case, the Registry will serve as a temporary buffer

for recent measurements of the most vital parameters (such as CPU load, memory usage,

available disk space etc.)

4.1.5 Provided interfaces

The following interfaces will be provided by Atmosphere to external actors.

4.1.5.1 AMS Manager

A RESTful interface for managing Atomic Service Instances will be provided by the

Manager component. Two actions will be supported:

 Requesting the provisioning of specific resources (a fresh virtual machine for service

installation, an Atomic Service Instance of a given type or an application running in the

HPC infrastructure). All input parameters will be encoded in the JSON (JavaScript Object

Notation) format.

 Informing AMS that a particular service is no longer needed and can be stopped.

4.1.5.2 Atmosphere Internal Registry

In general, there are two modes of interfacing the Atmosphere Internal Registry (as depicted

in Figure 5). Standard interaction is handled by a remote RESTful API, providing a set of

operations based on the HTTP protocol with signatures described in terms of:

 the URL endpoint to be used when invoking an operation

 the list of required and optional parameters which should (or might) be passed in the

HTTP call to parameterise the output

 the structure of the expected output or the list of possible error messages

This API will be made available for external entities (mainly the AMS Manager and DRI

Runtime components, but also for any other element of the VPH-Share environment which

may need to interface the Registry) to store, retrieve and manage all the metadata stored in

the Registry. The interface will also go beyond the basic (atomic) CRUD (Create, Read,

Update and Delete) set of methods ïcustom operations will be added on a case-by-case basis

when deemed useful for external components. Examples of such specific operations are:

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 23 of 100

 ñlist all running Atomic Services which follow a specific AS configurationò

 ñfor a given dataset, list all storage resources on which it is availableò

 ñlist all hosts which do not currently contain any deployed ASIò

Providing such dedicated operations will facilitate straightforward development of Registry

clients.

Apart from the RESTful programmerôs interface, the Registry will also expose another

interface, dedicated to human users (see Figure 5 again). Any authorised user ï typically an

administrator (see Section 2 for a discussion of user roles) ï can access this interface in order

to modify, register or remove content from the entire domain. Additionally, some restricted

access modes might also be included for all VPH-Share participants to view and browse the

contents of the Registry. As some initial metadata has to be fed into the system by human

users (for instance the prepared AS templates have to be registered by hand), the provisioning

of such a Web interface will be prioritised when developing and deploying the first version of

the Atmosphere Internal Registry. In order to maintain consistency throughout the Project,

the Web interface will be embedded within the Master User Interface. Integration will be

performed using the mashup methodology (8), with the Registry UI occupying an

autonomous section of the interface, backed up by separate web server (which will also be

responsible for serving the aforementioned RESTful API).

4.1.6 Dependencies

The Allocation Management Service has three external dependencies:

 The Cloud Execution Environment (Task 2.2) will host and provision ASIs on demand. It

will also store data describing the status of the cloud infrastructure for the purposes of

creating an optimal deployment plan. Finally, CEE will realise the deployment plan by

starting/stopping Atomic Service Instances accordingly.

 Large Object Binary Federated Storage Access (Task 2.4) will be used to realise part of

deployment plan concerning data management. This will include replicating/moving

binary data to the required storage resources.

 The High-Performance Execution Environment will implement parts of the deployment

related to provisioning Atomic Service Instances requiring HPC resources.

4.1.7 Control flow

This section explains how the functionality listed in Section 4.1.1 will be delivered. It focuses

on explaining interactions between components, starting with those that are close to the end

users (Master Interface), going through the AMS in the middle and ending with CEE.

Creating a new Atomic Service Instance will be described in more detail. Other scenarios will

also be explained, showing how they differ from the former.

The process by which application providers create a new Atomic Service Instance is

described in Figure 6:

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform

 Version: 1.3

 Date: 31/08/2011

 Page 24 of 100

 The AMS Manager needs to store an up-to-date status of the infrastructure ï therefore it

queries the Cloud Execution Environment for current monitoring data.

 The monitoring component of CEE returns the available resources and the load of the

infrastructure. This data is stored in the Internal Registry for further use.

 When the user opens the Master Interface and wishes to browse VM templates that are

available for creating a new ASI, a request is sent to the Atmosphere Internal Registry.

 The reply contains a list of possible VM template choices. This information is presented

to the end user by the Master Interface GUI.

 The application provider subsequently selects a template that will be spawned as a new

ASI, resulting in a request to the AMS Manager to instantiate a new virtual machine from

a specific template in the cloud infrastructure. The manager can also optionally ask AIR

for the status of the infrastructure and receive data describing the available resources and

their load.

 The AMS Manager invokes the Optimiser which analyses the current load of the

infrastructure and prepares an optimal deployment plan (see Section 4.1.3), specifying

that a new virtual machine needs to be spawned on a specific (private or public) cloud

site.

 The Manager stores configuration data required by ASI to start a service in the Internal

Registry. A deployment plan is sent to CEE cloud clients, which implement it by

spawning a new virtual machine.

 The Cloud clients return the IP address of the virtual machine and the credentials needed

for logging in to the Manager. As the virtual machine boots up, it may require some

additional configuration in order to initialise its services. This configuration is obtained

from the Internal Registry via a RESTful API.

 Once the virtual machine is running and configured its address and credentials are

forwarded to the Master Interface and presented to the application provider to connect to

the machine and install additional software (see Section 4.2.2).

Once the application provider has installed and configured the required software, the virtual

machine can be saved as a VPH-Share Atomic Service. The sequence of operations is very

similar to the one described above. The user opens the Master Interface and requests that their

virtual machine be registered. This request is then delegated to the AMS which in turn

contacts the CEE. The virtual machine is stopped and its image converted into a template

which can later be used to spawn further Atomic Service Instances.

Requesting specific Atomic Service Instances follows a similar pattern. The Atomic Service

Cloud Facade, as part of the Master Interface, contacts the AMS Manager to supervise the

creation of a deployment plan. The Manager then queries AIR for the required metadata

describing Atomic Service Instances, and for the status of the cloud infrastructure. It

subsequently invokes the Optimiser that prepares an optimal deployment plan. On this basis

the Manager can dispatch requests to CEE to start/stop ASIs in the cloud, HPEE (High

Performance Execution Environment, see Section 4.3) to start applications and LOBCDER

(see Section 4.4) to move data. As this is conceptually very similar to the ASI creation

process depicted in Figure 6 we will omit a separate sequence diagram describing this case

(to maintain conciseness).

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 25 of 100

Figure 6: Creation of a new Atomic Service Instance by the application provider. All interactions between the end user, the Master Interface, AMS and the Cloud Execution
Environment are illustrated in chronological order.

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 26 of 100

Using the AIR persistence service is quite straightforward. Atomic Service Instances (or the

DRI Runtime) use a RESTful API to obtain or store data in its underlying database. The

Master User Interface contacts the AIR Web interface to present users with requested data.

4.1.8 Candidate technologies

The AMS Manager and Optimiser components will be implemented in a general-purpose

programming language, namely Java SE6. Proven open-source libraries and tools will be

used to facilitate the development process. The Optimiser interacts only with the Manager so

it is very reasonable to implement local communication between these components. They will

be deployed as OSGi (9) bundles, facilitating dependency management and enabling us to

easily switch optimisers implementing different optimisation policies. Bundles will be

deployed in an Apache Karaf (10) container, conserving system memory and making

maintenance easier. This approach ensures low communication overheads and allows these

modules to be developed independently. If performance considerations force us to distribute

these components, this can be easily achieved by deploying them in separate containers

running on two or more servers and switching to remote communication. Apache Camel (11)

will be used as the integration framework.

The development of the Atmosphere Internal Registry will be based exclusively on an open-

source software stack. Below we present a list of candidates which are currently the

technologies of choice for the implementation of the Registry. If, at some point during the

course of the Project, new requirements emerge, the list of technologies may have to be

extended.

The implementation of the Atmosphere Internal Registry will be based on the following

tools:

 The persistence layer will be provided by MongoDB (12), a schemaless NoSQL database:

this allows for flexible adaptation to a growing and rapidly changing metadata model

 The domain model and the domain-specific logic layer will be developed in Ruby due to

its highly dynamic nature: this is especially important for the Semantic Integration

methodology (7) we have chosen to adopt

 External interfaces and the web application will base on Sinatra (13) and Phusion

Passenger (14) technologies ï two stable solutions for this type of software

4.1.8.1 Methodology

The methodology of development assumes tight and rapid development cycles. Accordingly,

the first prototype release will be issued relatively early on in the development process, in

order to make the tool available to the community as soon as possible and to gather valuable

feedback for future versions. These will be released in frequent ñsmall deltaò increments,

ensuring faster response to user requests and lowering the detrimental impact of regression

bugs.

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 27 of 100

4.1.8.2 Security

All components exposing publicly available RESTful interfaces will be secured with

mechanisms provided by Task 2.6 (see Section 4.6).

4.2 Cloud application deployment and execution

The Allocation Management Service ï itself a component of the WP2 framework, deployed

on available computing resources by the VPH-Share developers ï is tasked with creating an

optimal deployment plan. Part of the plan specifies how Atomic Service Instances should be

deployed in the Cloud environment. The Cloud Execution Environment forms part of the

Data and Compute Cloud Platform which will be used to host instances and manage them in

accordance with the deployment plan. Its main goal is to:

 Provide mechanisms for turning domain applications into Atomic Service Instances

 Hosting Atomic Service Instances in private and public Cloud infrastructures

 Provide a means and an API for managing ASIs

Many commercial providers offer mature Cloud services. Moreover, a wide range of open-

source projects implement Cloud software stacks. However, as remarked in our state of the

art analysis (2) none of the existing solutions provide all the functionality required by VPH-

Share. Thus, Task 2.2 will not only deploy existing solutions but also develop custom

modules that are necessary to fill the gap between the required functionality and the features

provided by existing software systems.

4.2.1 Functionality

Describing the functionality of CEE requires us to determine who will use it. The classes of

actors who will directly access different feature subsets provided by Task 2.2 are illustrated

in Figure 7. Accordingly, actors of the subsystem can be classified as follows:

1. The Allocation Management Service, will access REST interfaces in order to:

a. Read the status of the Cloud infrastructure. This data will include standard load

metrics for Atomic Service Instances (virtual machines hosting VPH-Share specific

applications) and performance data. The former will consist of CPU usage, memory

consumption, I/O operations and network transfers, where exposed by the applicable

Cloud stack. The latter will comprise performance indicators such as the number of

requests that can be served in a unit of time or the time required to process a single

request;

b. Manage Atomic Service Instances. This will involve enacting a deployment plan that

specifies actions such as creating new virtual machines from templates for application

providers (see Section 4.1.7), saving a virtual machine as a new Atomic Service;

starting Atomic Service Instances to provision the required functionality or stopping

idle instances to lower costs. CEE must also be ready to provide a management API

for private and public Clouds.

2. The Atomic Service Cloud Facade will access functionality provided by Atomic Service

Instances. The Cloud Execution Environment will be responsible for hosting instances in

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 28 of 100

public and private Clouds. It will also be responsible for providing a well-known endpoint

that will proxy and route requests to a dynamic pool of instances. This endpoint can be

used optionally when direct access to a specific instance is not possible due to e.g.

firewall restrictions.

3. The application providers will:

a. Use wrapping mechanisms enabling them to expose their applications as Atomic

Services. CEE will facilitate publishing a REST or SOAP remote interface to

remotely invoke applications deployed in the Cloud infrastructure. Additionally, it

will ease the process of configuring security for applications;

b. Connect to virtual machines hosted in Cloud infrastructures in order to install and

configure their applications. It is foreseen that console-based access over SSH and

VNC connections will be available for application providers.

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 29 of 100

Figure 7: Actors of the Cloud Execution Environment, namely the Allocation Management Service, the Atomic

Service Cloud Facade and the application provider. Features of the system that are not directly accessed by users, but

are required to provide CEE functionality, are also presented.

4.2.2 Atomic Service Instance

The main building block of a VPH-Share workflow is the Atomic Service Instance. It is a

virtual machine with preinstalled software, published as a SOAP or REST Web Service. An

image of this VM (Atomic Service) needs to be stored in the VM repository and instantiated

on demand when a workflow is started (and then shut down once the workflow finishes). We

can distinguish two types of Atomic Services Instances: stateless instances (capable of being

shared among workflows) and stateful instances, i.e. instances whose lifecycle consists of the

following steps:

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 30 of 100

1. Configuring the application

2. Starting the application

3. Monitoring application execution status

4. Retrieving application results

The defining characteristic of stateful services is that at least one of the provided methods

depends on other method(s). As a result, these services cannot be shared among workflows.

Information on whether a service is stateless or stateful will be stored inside the Atmosphere

Internal Registry (see Section 4.1.4).

In the scope of the Task 2.2 and Task 2.6 we plan to deliver libraries and tools that simplify

the whole process of converting existing applications (in most cases command line

applications) into Atomic Services. Section 3 presents the high level architecture of the

atomic service. This architecture consists of three main layers:

 Security layer ï a library (Apache module) integrated with security tools created in the

scope of Task 2.6. The main responsibility of this layer is to ensure that every request that

reaches lower layers is authenticated and authorised. This component will have only one

implementation and will be generic for all Atomic Services.

 SOAP/REST Service layer ï libraries that are able to expose the application as a SOAP or

REST Service. Our aim is to avoid imposing limits on the number of libraries and

programming languages that can be used here. As a result, the application developer

responsible for wrapping applications into Atomic Services may choose the most suitable

technology for each application.

 Wrapper layer ï tools able to wrap existing command-line applications as libraries. The

process of wrapping consists of several steps: at the beginning, the environment has to be

configured in an appropriate way (e.g. the command-line application may require a

configuration file); subsequently the application is executed and its results collected and

forwarded to upper layers.

Figure 8: Structure of an Atomic Service Instance. The virtual machine (with a selected OS) hosts a VPH-Share
application with a REST/SOAP interface exposed using wrapper mechanisms which involve a security module.

The process of wrapping existing applications into Atomic Services should be as simple as

possible. To fulfil this requirement we plan to deliver preconfigured virtual machine images

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 31 of 100

that can be used as a starting point for creating new Atomic Services. These images will

contain:

 A preinstalled operating system (e.g. Ubuntu, CentOS, Windows)

 Tools that allow Atmosphere to configure the installed software (e.g. security, monitoring

layers) while booting up the virtual machine. We will have two types of configuration

tools: tools delivered by cloud providers (e.g. generating a unique security identifier/key,

enabling providers to log into the freshly spawned virtual machine) and tools created in

the scope of WP2. The second group permits configuration of the Atomic Service

Instance itself. This process consists of several steps: initially, the configuration for the

specific Atomic Service Instance needs to be downloaded from the Atmosphere Internal

Registry; subsequently, security attributes need to be applied in the security layer. This is

followed by configuration of the monitoring system and, finally, a specific part of this

configuration is applied to the wrapper and wrapped application itself.

 Installed security layer which will forward requests to the wrapper given appropriate

credentials (a detailed description of this process can be found in the following part of

this section)

 Sample command-line application (e.g. echo) wrapped as a SOAP or REST Service

4.2.3 Architecture

The Cloud Computing Environment will provide three distinctive types of features (see

Section 4.2.1) and will therefore consist of several software components. An overview of its

architecture is provided in Figure 9. Generally, CEE functionality can be divided into three

categories:

 Standard solutions that will be installed, configured and maintained in order to provide an

execution environment for Atomic Service Instances and build private Cloud

infrastructures. These include:

 Wrapping mechanisms (already described in Section 4.2.2)

 Atomic Service Instance Proxy

 Monitoring System

 Private Cloud software stack

 Public Cloud providers

 Modules that will be developed within Task 2.2 that will control the aforementioned

components in order to provide an efficient platform for hosting Atomic Service

Instances:

 Monitoring Controller

 Atomic Service Instance Proxy Controller

 Cloud Clients

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 32 of 100

Figure 9: Cloud Execution Environment architecture overview. Components marked in light green are either

developed within Task 2.2 or existing solutions that will be deployed and configured. Components that are marked in

other colours are external to CEE but are significant to explain its architecture.

Wrapping mechanisms will facilitate exposing applications as Atomic Service Instances.

These mechanisms have already been described in Section 4.2.2.

The Atomic Service Instance Proxy is a proxy that will enable transparent access to instances

deployed in a dynamic pool of computing resources with IP addresses that are not known

a priori . It will provide a proxy interface for instances under a well-known endpoint and

route requests to an appropriate instance. Existing proxy servers will be deployed and

configured. As standard proxy servers do not support dynamic pools of resources in an out-

of-the-box fashion, an Atomic Service Instance Proxy Controller will be responsible for

updating proxy configurations, reloading the server, and providing basic statistics on Atomic

Service Instances on the basis of proxy server logs.

Similarly, the Monitoring System will be a standard solution for monitoring infrastructure

and services, enhanced with a Monitoring Controller that will enable it to adapt to a dynamic

environment. The Controller will parse monitoring logs and query the Proxy Controller for

ASI performance data, and it will expose a single endpoint for exposing this data to AMS.

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 33 of 100

Cloud Clients will encapsulate client-side libraries that will handle interaction with managers

of both public and private cloud infrastructures. The platform must be extensible with new

clients for infrastructures that may emerge during the course of the VPH-Share project.

Initially, cloud execution environment components of the Atmosphere platform will be used

to manage two types of clouds ï private (provided internally by Project partners) and public

(provided by a selected commercial/scientific provider).

Use of both types of cloud systems is mandatory for several reasons. Private clouds are

needed due to:

 the need to exercise full control over some critical data that is too sensitive to be

processed in a public cloud environment

 cost issues for persistent instances: the cloud business model offers good cost

effectiveness for relatively short-lived tasks by providing huge computational power

without the need to invest in hardware; however, if we know that a given instance would

be required for long periods of time, running it on a private infrastructure will likely

prove cheaper.

At the same time there is also a need for access to public cloud infrastructures:

 to cover for on-demand traffic spikes by temporarily acquiring computational resources

that do not exist in private clouds (or would require significant investment)

 to ensure limitless scalability of the proposed platform (to the extent that computing

power and storage space can be acquired from public providers)

 to allow more manageable access to proprietary software such as MS Windows Server,

whose license is provided as part of the service offered by Amazon, without the need to

obtain separate vendor license agreements when provisioning services to third parties on

custom infrastructure (such as SPLA, Service Provider License Agreement)

The internal architecture of public cloud infrastructures and commercial software stacks are

typically not disclosed, with some notable exceptions (such as the use of open-source stacks

by RackSpace). Such internal architecture details are beyond the of scope of this document,

as these are as varied as they are numerous and VPH-SHARE will only be a customer to

these services. On the other hand, contributed hardware (provided by consortium partners)

needs to be cloud-enabled. This section will describe how to accomplish this task.

We have decided to base our solution on an existing open-source cloud stack ï OpenStack.

Our choice was prompted by the following considerations (2):

 manageable and well documented deployment process

 rich features offered by the stack ï including the ability to run instances, full network

management including floating IP (ability to temporarily assign and reassign public IPs ï

similar to Amazonôs Elastic IP), Nova-Volumes allowing network-provisioned disk

volumes to be mounted on instances (similar to Amazon EBS) etc.

 highly effective and manageable remote API and a large selection of implementing

libraries

 FP7 ï ICT ï 269978, VPH-Share

 WP2: Data and Compute Cloud Platform

 D2.2: Design of the Cloud Platform
 Version: 1.3

 Date: 31/08/2011

 Page 34 of 100

The overall architecture of an OpenStack-based private Cloud deployment is shown in Figure

10.

Figure 10: Architecture of a private Cloud deployment. Types of nodes (Cloud controller and compute) as well as
network configuration are presented.

As shown in Figure 10 we plan to use two types of nodes: a single Cloud Controller Node

(CC Node) as well as multiple identical Compute Nodes. The exact number of Compute

Nodes depends on the partner and may be adjusted during the project to meet demands for

resources.

The Cloud Controller will run all required Nova services except nova-compute (nova-api,

nova-network, nova-scheduler and nova-volumes), the Glance Image Service and the

required dependencies (MySQL server and RabbitMQ). It will act as an entry point into the

cloud and provide general low-level management functionality (such as handling API

requests and scheduling VMs to be run). Each Compute Node will run the nova-compute and

nova-network services including the actual VMs via a standard virtualisation stack (KVM on

Ubuntu with libvirt).

The cloud will employ two types of networks: an internal Local Area Network and an

external Wide Area Network (connected to the Internet via a router ï R-2 in the diagram).

Only the Cloud Controller node will have direct access to both networks and, as such, it will

act as gateway with NAT functionality (R-1) for the Compute Nodes. This will be achieved

through standard Linux routing and filtering mechanisms, supporting outgoing connections

(SNAT) as well as external IP addresses or TCP/UDP port forwarding for incoming

connections to services running within the LAN (DNAT). Both networks will be Ethernet-

based. The local network switch (SW-1) will support all OpenStack networking modes

