GridSpace Based Virtual Laboratory for PL-Grid Users

Maciej Malawski, Eryk Ciepiela, Tomasz Gubała, Piotr Nowakowski, Daniel Harężlak, Marek Kasztelnik, Joanna Kocot, Tomasz Bartyński and Marian Bubak

ACC CYFRONET AGH
Outline

◆ **Motivation** Shift from traditional to *e-science*. IT supporting science in *in-silico* research

◆ **Problem Definition** How to accompany scientists in their *actual daily workflow* and conceal complexity and low-level issues of underlying IT

◆ **Scientific and Technological Challenges** Notion, model and technology for creating, describing, (re) enacting, publishing and sharing actual daily workflows that involve IT

◆ **State of the Art** Virtual Laboratories. GridSpace-based ViroLab Virtual Laboratory

◆ **Description of the Solution** GridSpace2 – platform supporting complex workflow-like applications over computational infrastructure that involve experimentation and exploratory, dynamic and collaborative development.
Motivation

◆ Shift from traditional science to e-science
◆ Significant learning curve for scientist to master IT skills
◆ ...but IT is about leveraging abstraction level
◆ Software tools expected to
 ♦ conceal complexity and low-level issues of underlying technology
 ♦ accompany scientists with a workbench tailored to their demands and their actual style of work
◆ Experience and observations already gathered
 ♦ GridSpace Virtual Laboratory for virologists in ViroLab project
 ♦ APPEA runtime environment for banking and media application in GREDIA project
 ♦ user inquiries, meetings during the user requirements analysis phase of PL-Grid project
 ♦ collaboration with local research groups (virology, chemistry)
Problem Definition

◆ Scientist during their daily work deal with complex workflows that they go beyond simple and repeatable execution of installed programs.

◆ Such workflows may involve experimentation or exploratory programming, where the application consists of multiple steps which are not known in advance and often are selected ad-hoc based on the results of previous steps.

◆ Workflows are conducted by ad-hoc research groups with collaborative participation of group members.

◆ Once enacted, workflows may need to be re-enacted again and again many more times. However, some indispensable adaptation and customization need to be made ad-hoc, dynamically - while the workflow enactment is already started.

◆ Workflows need to be conducted under scientist’s continuous supervision and are subject to scientist’s validation and even intrusion. Workflows cannot be fully automated.

◆ Workflows and their subparts, methods, libraries, ticks (!) involved are weakly described and belong to the individual scientist’s know-how. They are not shared, nor published, not even well-specified.

◆ Workflows involve steps realized on various software platforms (not just written in many programming languages).
Scientific and Technological Challenges

Scientific To develop notion/model for software engineering paradigm that is suitable for conducting scientific research that would embrace:

- experimentation,
- exploratory programming,
- dynamic, ad-hoc programming,
- Multiple software development platforms use
collaborative development,
- reusability of whole experiments, their parts, libraries and services
- re-enactment of experiment under executor’s continuous supervision, ad-hoc intrusion, validation.
- publishing of experiments as a service with specified terms of use.

Technological To enable such paradigm with existing IT

- computational infrastructures (clusters, grid, cloud)
- software programming platforms actually used by target groups of scientists
- infrastructure and administration of PL-Grid
State of the Art

- **GridSpace**
 - Already available technology developed by ACC Cyfronet

- **Virolab Virtual Laboratory**
 - Instance, deployment of GridSpace dedicated to ViroLab project

- **APPEA**
 - Instance, deployment of GridSpace dedicated to Gredia project

- **GridSpace 2**
 - Emerging technology (2.5 months of development preceded by analysis and design phases) developed by ACC Cyfronet
 - New incarnation of GridSpace 1 (new approach to the same problem)
 - Installable on arbitrary computational infrastructures

- **PL-Grid Virtual Laboratory**
 - Instance, deployment of GridSpace 2 technology dedicated to PL-Grid
 - Integrated with PL-Grid security, administration etc.
Description of the Solution – Vision

GridSpace 2

- Platform facilitating programming and execution of complex applications (*experiments*), that go beyond simple and repeatable execution of installed programs
- Experiments involve experimentation and exploratory programming
- Experiments consist of multiple steps often not known in advance and selected ad-hoc, based on the results of previous steps
- Experiments are subject to collaborative work – they can be developed, shared and reused amongst ad-hoc researching teams which collaboratively owns the libraries and services used by applications (*gems*), experiment parts (*snippets*) and whole experiments.
Description of the Solution

- Portal, web tools, collaboration, reusing...
- Experiment hosts (e.g. ui.grid.cyfronet.pl), interpreters (Python, Ruby, Bash, Perl...)
- Libraries, utilities access to services
Current Achievements

◆ User’s requirements analysis
 ♦ Decided to carry out continuously during whole PL-Grid project
 • So talk to us and share your opinions
 ♦ User inquiries analyzed
 ♦ User meetings carried out

◆ Design
 ♦ Decided to allow for modification during whole PL-Grid project
 ♦ First iteration (until mid 2010) designed completed

◆ GridSpace2 platform prototype – premiere now (PL-Grid account needed) – supports so far:
 ♦ File management
 ♦ Basic experimentation
 ♦ PBS gem
 ♦ Gaussian gem
 ♦ Jmol viewer

◆ Your feedback needed to keep making it better
Future Work

◆ Now – First Prototype, subsequent versions will be continuously deployed on https://wl.plgrid.pl
◆ Incremental development
◆ IV.2010 – Second Prototype
◆ VI.2010 – First Release
◆ X.2010 – Second Release
 (to be presented at Cracow Grid Workshop 2010)
◆ XII.2010 – First fully integrated deployment on PL-Grid infrastructure
◆ 2011 - Further development
Conclusions

https://wl.plgrid.pl

For users...

...for feedback, contribution

https://chomik.cyfronet.pl/trac/gridspace2