
Optimization of Grid Application

Execution

Joanna Kocot, Iwona Ryszka

Master of Science Thesis

supervisor: Marian Bubak, PhD

advice: Maciej Malawski, MSc

Outline

• MSc Goals

• ViroLab Environment

• Optimization Model

• Optimizer Architecture

• Optimizer Implementation

• Optimizer Testing

• Summary

MSc Thesis Goals

• Providing a Virtual Laboratory subsystem for
optimization of Grid-based applications

� Identification of available optimization solutions in Grid
computing

• Research into related work to gain a wider view on the problem and
find solutions useful for the thesis.

� Identification and analysis of the problem of optimization in
ViroLab

• Problem statement taking into account the target environment.

� ViroLab Optimizer design and development

� Proving the usefulness of the developed Optimizer for ViroLab

• Execution of unit tests, integration tests and quality tests.

ViroLab – Virtual Laboratory

• A research project of the EU 6th Framework Program

� Its mission is to provide researchers and medical doctors with a virtual
laboratory for infectious diseases (mainly HIV virus infections).

• ACK Cyfronet AGH responsible for development of ViroLab Virtual
Laboratory Runtime

� Runtime for
execution of
experiments.

� Developed with
use of Grid
infrastructure
and
heterogeneous
resources.

Levels of Abstraction – ViroLab Entities

• ViroLab Experiment

� Composed of calls to Grid
Operations

• Grid Object Class

� Interface declaring Grid
Operations

� Can be implemented by
various Grid Object
Implementations

• Grid Object Implementation

� Static entity - codebase

� Represented by Grid Object
Instances

• Grid Object Instance

� Created by deploying Grid
Object Implementation on Grid
Resource

Motivation for Optimization in ViroLab

• While executing an experiment, the ViroLab Runtime:

� Knows which Grid Object Class is able to perform a certain operation.

� Needs information which instance of the Grid Object Class (Grid Object
Instance) should perform the operation.

• The aim of ViroLab Optimizer is to decide:

� Which Grid Object Implementation will be the most suitable to perform
the processing.

� Which ready Grid Object Instance of this Grid Object Implementation
will be the most suitable to perform the processing.

� Whether the Grid Object Instance should be chosen or a new one is to
be deployed.

� Where (on which Grid Resource) a new Grid Object Instance should be
created.

• Optimization result (solution): Grid Object Instance or Grid Object
Implementation + resource URL

Optimization Model

• Characteristics of the ViroLab Optimizer

� No direct control over resources – works like a broker or an
agent.

� No exclusive access to resources – reliability of optimization
information is not as high as it would be when obtained from a
local scheduler.

� No queue – no management of jobs after their submission.

� Global – one optimizer with a system-wide performance
objective.

� Hybrid solution between static and dynamic optimization – both
historical data and information, if available at runtime, are used.

� Application centric – optimization process concentrates on the
performance of application.

� Adaptive – the optimization process can be dynamically adapted
to changes in the ViroLab environment.

Optimization Modes

• Available optimization modes:

� short-sighted optimization mode

• The aim is to choose an optimum solution only for one Grid Object
Class at a time.

� medium-sighted optimization mode

• Finds solutions for a group of Grid Object Classes at a time.

• Tasks are not reordered nor arranged in queues.

� far-sighted optimization mode

• Similar to the above mode.

• The whole application is being analyzed at a time.

• Ordering the Grid Object Classes is performed by taking into
account dependencies between them.

Cooperation with other ViroLab Components

GRR Grid Resource

Registry

Optimizer

RL Runtime Library

GOI Grid Operation

Invoker

MS Monitoring

System

PS Provenance

System

Runtime

Middleware

application structure

information about

Grid Objects

historical performance

data
information about

resource condition

Grid Object Class

Grid Object Instance

- data sent only on demand

- data sent periodically

Key

• Runtime

� Grid Operation Invoker (GOI)

queries for optimum Grid Object

Instance or Implementation

� Grid Resource Registry (GRR)

provides information about

registered Grid Object Instances

and Implemetations

� Runtime Library (RL) provides

the application graph

• Middleware

� Monitoring Infrastructure

provides resources condition

information

� Provenance System provides

performance data from earlier

experiments

General Architecture of GridSpace Application

Optimizer (GrAppO)

• GrAppO Manager – coordinates
GrAppO components

• Optimization Engine –
calculates optimization algorithms

• Performance Predictor –
estimates performance of
possible solutions using:

� Historical Data Analyzer –
analyzes historical performance
data

� Resource Condition Data
Analyzer – analyzes current
state of resources

• Application Analyzer - retrieves
the application graph and
analyzes it

GridSpace Application Optimizer

GrAppO

Manager

Application

Analyzer

Optimization

Engine

Resource

Condition Data

Analyzer

Historical Data

Analyzer

Grid Resource

Registry

Grid

Operation

Invoker

Runtime

Library

Monitoring

Infrastructure

Provenance

System

Performance

Predictor

Control Flow in GrAppO: Short- and Medium-

Sighted Optimization

Grid

Resources

Registry

Grid

Operation

Invoker

Provenance

System

Monitoring

Infrasructure

[1]

[2]

[3] [4]

[5a]

[5b]

[6a]

[6b]

[8b]

[8a]

[10][12]

[13]

Resource

Condition

Data Analyzer

Historical

Data Analyzer

Performance

Predictor

Optimization

Engine

GrAppO

Manager

[11]

[9]

[7a]

[7b]

[1] request optimization (GOb ClassName(-s)*)

[2] get GOb Instance, Implementation

 and resource information (GOb ClassName(-s))

[3] request search for optimum solution

 (information from GRR)

[4] request performance estimation

 (information from GRR)

[5a] check resources condition (resource locations)

[5b] check historical performance data

 (GOb Implementations, resource locations)

[6a] query the Monitoring Infrastructure (locations)

[6b] query the Provenance System

 (GOb Implementations, resource locations)

[7a] analyze resource condition data

[7b] analyze historical performance data

[8a, 8b] return results of the analysis

[9] estimate performance - for all possibilities

[10] return estimation results

[11] evaluate scheduling algorithms to find best solution(-s)

[12] return the result: GOb Instance ID(-s)

 or GOb Impl(-s) + resource location(-s)

[13] forward the obtained solution to GOI

* the -s form is used in medium-sighted optimization

Control Flow in GrAppO: Far-Sighted

Optimization
[1*] request optimization (application)

[2] process the application

[3*] get GOb Instance, Implementation

 and resource information (GOb Classes)

- about classes included in application

[4] request search for optimum solution

 (information from GRR)

[5] request performance estimation

 (information from GRR)

[6a] check resources condition (resource locations)

[6b] check historical performance data

 (GOb Implementations, resource locations)

[7a] query the Monitoring Infrastructure (locations)

[7b] query the Provenance System

 (GOb Implementations, resource locations)

[8a] analyze resource condition data

[8b] analyze historical performance data

[9a, 9b] return results of the analysis

[10] estimate performance - for all possibilities

[11] return estimation results

[12] map solutions to GOb Classes

* the contact with RuntimeLibrary and GRR is

 realized through GrAppO Manger

GrAppO Implementation

• Current status
� Short- and medium- sighted optimization mode.

� Possible analysis of information from all data sources.

� Connection to Grid Resource Registry (other data sources
unavailable).

• Adaptive optimization using XML-based Optimization
Policy
� Determines optimization algorithms.

� Declares preferred implementation type (e.g. Web Service).

� Specifies additional data sources.

• Technologies:
� Core of GrAppO: Java 2 Platform SE 5.0

� Connection to GRR service: Codehaus XFire – Java SOAP
framework

� GrAppO unit tests: JUnit – testing framework

GrAppO Testing

• Unit tests
� All main classes of GridSpace Application Optimizer are

covered.

• Integration tests
� Testing GrAppO integration with Grid Resource Registry and

Grid Operation Invoker – communication channels work
correctly.

� Monitoring System and Provenance System Tracking are not
available yet, but in GrAppO the required interfaces are ready.

• Acceptance tests
� Successful execution of real ViroLab experiments (weka,

alignment, subtyping, from-geno-to-drug resistance).

� Performed within a distribution of ViroLab Runtime – in the target
environment (available at http://virolab.cyfronet.pl).

Quality tests of GrAppO (1) - Introduction
• Performed in a simulated environment

� Monitoring Systems and Provenance Tracking systems were implemented as
mock components providing random data.

• Metrics: Minimum Completion Time (MCT)
� Completion Time – a moment of time when a resource completes a Grid Object

Class's operation: after finishing execution of previously planned jobs (AT –
Availability Time) and executing the operation (ET – Execution Time)

GObClass1 (ET1)
GR (AT1)

GR (AT2)

GR (AT3)

GR (AT4)

GObClass2 (ET2)

GObClass3 (ET3)

?

• Optimization objective: minimization of makespan (maximum of
MCTs of Grid Object Classes from a given set)

• Used heuristics
� Min-min - considers the MCT of each Grid Object Class (average of its operations)

on available Grid Resources and chooses the one with the lowest MCT

� Max-min - again the MCT for each Grid Object Class is evaluated. The one with
the maximum MCT is assigned to the corresponding Grid Resource.

Quality tests of GrAppO (2) – Comparison of
Optimization Modes

0%

10%

20%

30%

40%

50%

60%

70%

80%

10 2,5 1 0,5

#GObClasses / #Grid Resources

Improved results

Not changed results

Worse results

0%

2%

4%

6%

8%

10%

12%

14%

Im
p
ro
v
e
m
e
n
t
o
f
m
a
k
e
s
p
a
n

10 2,5 1 0,5

#GObClasses / #Grid Resources

� Average improvement of
makespan

� Percentage of improved / not
changed makespans

• Improvement of makespan while using medium-sighted optimization
mode in comparison to short-sighted optimization mode – for
different proportions of Grid Object Classes to available Grid
Resources

Quality tests of GrAppO (3) – Comparison of
Optimization Algorithms

• If no information about resources is provided, a random
solution is chosen.

• Every tested optimization algorithm brings over 200%
better result than choosing random solution – even in
short-sighted optimization mode.

• The tested heuristics (Min-min and Max-min) give similar
results

� Max-min heuristic is better when some of the Grid Object
Classes to optimize has significantly longer execution time (ET)
than others.

� Improvement of 5.6% in comparison to Min-min heuristic.

Quality tests of GrAppO (4) – Influence of
Information Quality

• The optimizer is easily influenced by the quantity and the

quality of information gathered from external data

sources.

0%

20%

40%

60%

80%

100%

120%

140%

d
e
te
ri
o
ra
ti
o
n
 o
f
m
a
k
e
s
p
a
n

10% 20% 30% 40% 50%

percentage of removed data

Summary

• The main goal of the thesis – providing an optimizer for
ViroLab was successfully achieved.

• GrAppO was integrated with ViroLab and operates for
real experiments correctly.

• Executed tests gave satisfactory results and proved the
benefits of introduction different optimization modes and
algorithms.

• Future work:

� Implementation of real connections to other ViroLab components
– Monitoring System and Provenance Tracking System.

� Implementation of far-sighted optimization mode.

� Graphical interface for GrAppO configuration.

For more information please visit:

http://www.virolab.org

http://virolab.cyfronet.pl

http://gforge.cyfronet.pl/projects/grappo

