

Dziedzinowo zorientowane usługi i zasoby infrastruktury PL-Grid dla wspomagania Polskiej Nauki w Europejskiej Przestrzeni Badawczej

Benchmarking and Normalization of Computing Resources in PL-Grid Infrastructure

<u>Wojciech Ziajka</u>, Marcin Radecki, Paweł Szepieniec and Tomasz Szepieniec ACC Cyfronet AGH

CGW Krakow, October 22-24, 2012

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Differences in performance between clusters

CPU consumption on some less powerful system does not have the same value for the user as an equal consumption on an up-to-date resource.

"Odra"

"Zeus"

Motivation for normalization

GRID

- Fair accounting in heterogeneous infrastructure
 - Different classes of nodes = different efficiency
 - between computing centers
 - inside the clusters
 - The conversion of the use of resources, depending on nodes efficiency
- Support for users in applying for computational grants.
 - give information about the expected performance of the infrastructure
 - User should be able to estimate the size of the grant
 - Example: user experimets: sample test taks 6min on PC and user have to perform 100 000 simulations – on PC it taks 10 000h, but how much time it will take on heterogeneous clusters ?

System Requirements

- Ability to automatically adapt to dynamically changing computing cluster infrastructure in following cases:
 - hardware modification,
 - addition or removal of nodes.
- System automation
 - Avoiding manual steps performed by administrators.
- **Real reflection** of user's feeling of the infrastructure
- Measuring of the infrastructure in production:
 - complements the current approach (tests on unloaded nodes),
 - involves performing tests on loaded nodes.

Benchmarking procedure

- Testing during the production use of the cluster.
- HPL benchmark is used implementation of Linpack, which is the basis of the TOP500 ranking
 - This benchmark solves a dense system of linear equations for floating point double precision. By which mainly tests the floating-point arithmetic and memory access.
- Benchmark will run in sequential manner
 - Single bechmark test taks 3-5 minutes (using 256MB memory)
 - Perform tests every 3 hours
- Cluster administrators will be able to offer a set of options it will allow for the most effective benchmark running.

Averaging benchmark results

6

Exponential moving average (EMA)

Weights of older benchmarks results decrease exponentially

System Architecture

Benchmark results for two clusters

CPU model name	CPU Count	Current EMA	AVG	DEV	MIN	MAX	No. tests
Intel L5420 @ 2,50GHz	8	0,5	0,51	0,12	0,1	0,64	397
Intel L5640 @ 2,27GHz	12	0,99	0,96	0,16	0,45	1,26	200
Intel X5650 @ 2,67GHz	12	1,09	1,09	0,17	0,54	1,6	442
Intel E5645 @ 2,40GHz	12	1,01	0,98	0,21	0,38	1,44	287
Intel L5640 @ 2,27GHz	24	1,02	1,15	0,13	0,5	1,2	68
Intel E5345 @ 2,33GHz	8	0,49	0,49	0,05	0,2	0,51	275
Intel L5640 @ 2,27GHz	12	1,05	1,06	0,22	0,35	1,21	929
Intel E5530 @ 2,40GHz	8	1,04	1,04	0	1,04	1,04	1

Results for two clusters with the same CPU class

Sample results for one node

Running tests parallelly on a single 6-core machine

Averaging results of benchmark in time

Averaged benchmark results using EMA

INNOWACYJNA GOSPODARKA Narodowa strategia spójności

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Normalization of sample job

GRID

- Class A nodes performance (EMA) = 0.49 GFlops
 - Job properties:
 - Execution time = 72h
 - Processors count = 64
 - Normalized Accounted walltime = 72h*64*0.49 = 2257.92 PLGh
- Class B nodes performance (EMA) = 1.09 GFlops
 - Job properties:
 - Execution time = 72h
 - Processors count = 64
 - Normalized Accounted walltime = 72h*64*1.09 = 5022.72 PLGh

Future work

Extend the benchamark to be more comprehensive

Include RAM and I/O characteristics

Tuning benchmark using compilation options

