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Abstract: This paper describes the Virtual Laboratory for e-Health system which is 
currently being developed in the EU IST ViroLab project. The Virtual Laboratory is 
an environment which enables clinical researchers to prepare and execute computing 
experiments  using  a  distributed  Grid  infrastructure,  while  not  requiring  in-depth 
knowledge  on  Grid  computing  technologies.  By  virtualizing  the  hardware, 
computing infrastructure  and databases,  the  Virtual  Laboratory is  a  user  friendly 
environment, with tailored workflow templates to harness and automate such diverse 
tasks as  data archiving,  data integration,  data mining and analysis,  modeling and 
simulation.

1. Introduction

Important scientific breakthroughs of tomorrow will most probably be delivered by large 
teams of multidisciplinary researchers gathered in different institutes and cooperating on 
defined issues. An example of such an endeavor is the field of virology research, especially 
the part of it tackling anti-HIV treatment problems [1]. For this kind of challenges there is a 
strong  need  for  modern,  distributed  and  robust  virtual  laboratories  with  capabilities, 
allowing many scientists from distinct domains and institutes to collaborate.

The main objective of this research is to carefully design and deliver a person-centric 
environment that could combine efforts of computer scientists, virology and epidemiology 
experts and experienced physicians. The virtual laboratory should provide means for the 
first group of users to develop in-silico experiments and for the later ones to use previously 
prepared experiment plans to perform complex research. Therefore a set of dedicated tools 
need to be provided in the integrated fashion as different  types of users  need specific  
approach yet they altogether should be used in the same research endeavor. Moreover, the 
laboratory needs to be robust enough to overcome infrastructure failures, enabling adjusting 
and extensions, supporting multiple technological solutions.

Many solutions have been proposed for the construction of application for deployment 
on the Grid. The Grid environment is diverse in its nature, hence elements of application 
may be deployed on various computing resources within the Grid and may utilize various 
implementation and access technologies. In order to maintain flexibility and adaptability of 
the proposed solution, it is imperative to provide a way in which to access and make use of 
all those types of resources, whenever a workflow is to be constructed.

We believe that the solution to this problem is the introduction of an abstract  layer 
which would hide the technological diversity of Grid computing services and allow us to 
construct applications in a uniform way. The application specified by the user would then 
be  executed  within  the  virtual  laboratory  and  the  system  would  take  care  of  calling 
individual elements in an appropriate manner. This would potentially span the following 



technologies:  Grid  jobs  (specified  and  executed  through  JDL files)  [2],  Web  Services, 
WSRF [3] and the CCA component framework [4].

To access this range of middleware technologies a mechanism should be developed that 
enables this in an easy and uniform way. What is more, a uniform description (e.g. semantic 
description)  of  Grid  resources  is  very  important  for  building  such  components  as  the 
Collaborative  Virtual  Laboratory  for  e-Health,  hereafter  called  the  ViroLab  Virtual 
Laboratory. 

2. Objectives

The paper provides a discussion of challenges and solutions related to development of a 
virtual laboratory for virology and epidemiology. The description is centered around a e-
science  experiment  case  study,  involving  different  types  of  users,  with  focus  on  a 
experiment development and execution on the Grid infrastructure. The paper presents an 
environment  for  experiment  developer,  underlying  runtime  system,  and  a  provenance 
tracking tool.

The main goal of the paper is to show how these tools can be integrated to provide a 
complete and robust virtual laboratory, assisting the users in conducting modern in-silico 
experiments. 

For development of the ViroLab platform, we have identified a number of objectives 
which  will  determine  the  use  of  selected  components  and  existing  systems.  The  most 
important of these are:
• performance  and  technological  dependencies  (whether  the  component  in  question 

performs adequately in a Grid environment and whether it bases on well-established 
technologies), 

• take-up of  the  component  (whether  the  component  is  being actively developed and 
whether there is a sizeable user community dedicated to supporting this component),

• consistency of component functionality and the requirements of ViroLab users (whether 
the  component  provides  functionality  which  can  be  easily  adapted  to  the  needs  of 
medical practitioners and other types of ViroLab users),

• open-source licence (since ViroLab is a scientific project, open-source and free software 
components are naturally preferable to commercial ones).
The virtual laboratory is a tool for the viral disease experts to plan and conduct in-silico 

experiments.  These  experiments  yield  results  that  can  be  shared,  discussed  and  stored 
within the virtual laboratory. The tools that are at the user’s disposal within the laboratory 
help to plan and run experiments using distributed Grid resources, including unified data 
sources  and  the  previously  prepared  computational  units.  The  chosen  unified  naming 
schema  and  common  terminology  helps  the  various  users  inside  the  ViroLab  virtual 
laboratory understand one another and exchange ideas more easily. The design of a virtual 
laboratory serving such a purpose is the subject of this document.

In  order  to  keep  the  following  text  easier  to  understand,  introduction  of  certain 
definitions  is  needed.  An  experiment  is  any  kind  of  processing  being  developed  and 
executed within the ViroLab virtual laboratory. It may, and in fact usually does, involve 
acquiring experiment input data from distributed resources, running remote processing on 
this  data  using  distant  computing  units  and  storing  the  obtained  experiment  results  in 
dedicated  storage  space.  A result  of  an  experiment  is  any  data  being  produced  by the 
experiment that is meaningful for the performed research (this excludes for instance any 
control flow variables, temporary variables etc.). A ViroLab experiment result does not need 
but usually is a subject of analysis, sharing and storing. We use the experiment plan concept 
to refer to a definition of experiment execution flow of control – such a plan is provided in 
a form described by the experiment planning notation. The notation defines what constructs 



may be  used  in  an  experiment  plan  and  explains  their  semantics.  An experiment  plan 
written down in such a form is sometimes called a script. The script will utilize operations 
(called  Grid  Operations)  executed  on  a  set  of  entities  called  Grid  Objects  which  will 
provide a virtualization of the resources present in the underlying Grid infrastructure.

3. Methodology

One of the most important challenges facing the virtual laboratory is the diversity of users 
(from programmers to medical doctors) and the heterogeneity of underlying resources and 
technologies available for scientists (from local databases to Grid infrastructures as EGEE). 
Therefore our approach is  based on the idea of multiple  abstraction levels  of provided 
resources  which  may be  offered  to  different  types  of  users  and hide  the  technological 
differences. The high-level view will be provided by the portal available for end users such 
as physicians, whereas the experiment development and execution process will be assisted 
by tools allowing full control over the experiment as needed, including the programming 
phase.

A crucial decision to support required flexibility while preserving the ease of use and 
high  level  of  abstraction,  was  to  use  a  modern  scripting  language  approach.  This 
assumption, supported by the analysis of the state-of-the art and discussions with the users, 
has led to the design of tools presented in the following section.

The concept of our virtual laboratory is inspired by the state of the art in systems such 
as virtual laboratories  and scientific workflow engines. Several leading technologies should 
be mentioned in this context.

Geodise [5] is a Grid-enabled optimization and design search tool for engineering which 
includes the environment for creating new applications (workflows). It is based on Matlab 
[6] or Jython [7]. Different approach is represented by Kepler [9], Taverna [9] and Triana 
[10], which are the systems for building scientific workflows. Worth mentioning are also 
VL-e  [11]  which  is  a  virtual  laboratory  for  e-Science  project  funded  by  the  Dutch 
government which also exploits a scientific workflow concept, whereas projects such as 
NESSgrid [12] and Polish Virtual Laboratory developed by PSNC [13] are  focused on 
providing remote access to scientific instruments to perform real experiments.

4. Technology Description and Development

An overview of the ViroLab virtual laboratory structure is shown in Figure 1. This figure 
shows the  interaction and role  sharing  of  the  ViroLab subparts  of  the  architecture  and 
indicates the main interface channels between these modules. The diagram also proposes 
the  main flow of  information in the channels  and the nature  of  the data  being pushed 
through them. Identified parts of the architecture are subject to research and development 
activities in specific Work Packages and tasks.

The  first  tool,  the  Experiment  Development  Environment,  is  designed  to  support 
domain-related  applications  developers.  It  is  an  integrated  development  platform for  a 
programmer planning a future experiment. The central idea is to use modern, easy-to-learn 
scripting language (Ruby) and extend it with a set of dedicated capabilities. This additional 
functionality  provides  an  interface  to  the  Grid  infrastructure  used  for  processing 
experiments. As the Grid resources tend to be numerous and volatile, the environment helps 
to use them on a higher level of abstraction - the details regarding execution mechanism, 
communication protocols and instance location are hidden from the developer who uses 
their  abstractions  to  plan  an  experiment.  Ontological  vocabularies  and  taxonomies  are 
provided for easy searches among those abstractions of resources. Once an experiment is 
prepared, it is shared with interested scientists for the purposes of execution.



The  lower  layer  of  virtual  laboratory runtime  controls  the  experiment  execution.  It 
consists of Grid computation access and distributed data access. The first  component is 
responsible  for  searching  specific  computational  resources,  detecting  the  appropriate 
protocols to be used and contacting these resources to perform given steps of experiments. 
The tool is able to interface RPC-type of services (suitable for low-communication short 
tasks such as the virus sequence genotyping tool [14]) as well  as batch job submission 
systems  like  gLite  (for  longer  and  computationally-demanding  tasks  such  as  binding 
affinity calculation using molecular dynamics techniques [15]).

A  scheduling  module  uses  current  information  about  the  state  of  the  computing 
infrastructure to choose proper resource instances to call.

Data integration, a crucial part of many eScience activities, is used to combine multiple 
(possibly heterogeneous) data resources and to present them to the virtual laboratory user as 
a  single,  virtual  data  source.  This  involves dynamic  translation of  database  schemas at 
runtime and delivering them in a  uniform format.  The use  of both those techniques to 
combine  various  remote  data  with  dedicated  computations  into  a  single  experiment, 
together with the rich standard library of the scripting language, creates a powerful tool 
both for developers of domain-specific experiments and scientists who use experiments  
to obtain results.

The scientific results that are obtained using the virtual laboratory may be subject to 
sharing  and  further  analysis,  therefore  a  dedicated  provenance  tracking  subsystem  is 
provided for recording and storing the result derivation paths. Using both a set of sensors to 
gather runtime events and annotations provided manually by the users, the system is able to 
re-create on demand the set of processing steps that led to a certain result of experiment. 
This capability helps other researchers trust the shared results. Furthermore, a dedicated  
repository of developed experiment scripts is provided to share the experiments themselves 
so other scientists may test the repeatability of results on their own.
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Figure 1: Virtual Laboratory structure

5. Results

Figure  2  outlines,  in  a  rather  detailed  diagram,  the  steps  required  to  plan  a  simple 
experiment  that  runs  on  the  ViroLab  virtual  laboratory  infrastructure.  The  example 



considers a simple program to load a set of data (particularly, an array of patient-related 
records),  perform complex processing on it  (processing that is  in fact  both parallel  and 
distributed) and, finally, store the acquired results in a data store. While the specific details 
regarding the syntax of the language of the behavior of the accompanying tools are not 
firmly set and may well be subject to changes, the overall picture is what is important in 
this example. The step-by-step description below assumes an experiment developer as the 
active user.

def PatientClassification (minAge)
c = new SimpleClassWeka
p = load “Patient:age>minAge”
foreach (p) {
  pds =
     DSTool.DataSetToSQL(p)
  c.loadData(pds)
  c.setParams(...)
  save c.getClassification()
}
end

Idea: classify
patients into

illness classes

1. start planning

we need:
 - a classifier
 - patients
 - classification 
loop over patients

c = #|

Grid Object
Taxonomy Search

Classifier

OneRule
ClassifierSimple

Classifier

Grid Data Search

NT
Seq

Data
Store

Patient

c = new SimpleClassWeka
p = load “Patient:age>20”
c.getClassification()

Grid Operation 
InOut Search

Data Set SQL Row

c = new SimpleClassWeka
p = load “Patient:age>20”
pds =
   DSTool.DataSetToSQL(p)
c.loadData(pds)
c.getClassification()

2. find a classifier

4. narrow Patient data

5. add the classification operation

6. find suitable transformation

7. add transformation

8. put in a parallel loop, 
parametrize it and save

Simple Classifiers:
SimpleClassWeka
[stateful, not shared, ...]

ClassificationService
[stateless, shared, ...]

... (further choices)

c = new SimpleClassWeka
p = #

3. include the main input data

Patient schema:
age: integer

gender: boolean

... (further attributes)

c = new SimpleClassWeka
p = load “Patient:age>20”
//c.loadData(#dataset)
c.getClassification()

Transformations:
DSTool::DataSetToSQL
[stateless, ...]

... (further choices)

Experiment save:

PatientClassification|

Figure 2: Preparation of experiment plan

The developer starts with the main idea of a new experiment such as “load all patients 
who are older than 20 and classify them with respect to the types of illnesses”. From this 
high  level,  flow-based  viewpoint  the  basic  blocks  that  are  common  to  most  of  such 
analytical  applications  need  to  be  selected  and  configured,  such  as  for  example  input 
requisition, processing part execution and output management. In order to commence the 
main  processing  part  the  developer  starts  the  functional  ontological  search  widget  that 
allows him/her to choose the desired functional block. This step is immediately followed by 
the resource registry interface that allows to choose a specific class of resources from those 
annotated as Simple Classifiers. This part is labeled as step 2 in the diagram in Figure 2. 
This also triggers the acquisition of possible operation signatures and their transfer into the 
developer’s  workspace.  This  is  a  pre-condition  for  the  autocompletion  functionality 
presented in step 5. In addition to simple display of possibilities, the end user is guided 
through  the  knowledge  technology  supported  hinting  systems  such  as  the  what-to-do 
information provided by the workspace in step 6. 

The input data for the experiment is acquired by means of the unified ViroLab data 
access schema and involves several steps: invocation of the domain ontology browser to 
choose a proper entity to be loaded and preparing the use of the ViroLab autogenerated 
database  schema  tool  simplifying  the  query  creation  process.  Both  those  actions  are 
represented by steps 3 and 4 in the diagram. By using the ontology schema search the 
developer will also be able to define the type of data transformation that is required (see 
step 6 in the figure). 



Finally,  execution  of  the  processes  in  parallel  and  ensuring  that  the  execution  is 
performing well and that the results are saved properly concludes the design process. An 
optional additional step can be added to make the developed experiment more general and 
parameterize each step.  As a result,  the experiment  may be reused with different  input 
values (in the chosen example this could be patient age). An experiment plan prepared in 
this way may now be stored in the experiment repository for other developers as baseline or 
for the medical scientists who can use it directly. 
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 - loadData

Runtime Resources
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SCW instance called

KUL database

Specific SQL query

ELTE file store

File retrieval

Experiment load:

PatientClassification grid.cyfronet.pl

SCW instance created

User machine

def PatientClassification (minAge)
c = new SimpleClassWeka
p = load “Patient:age>minAge”
foreach (p) {
  pds =
     DSTool.DataSetToSQL(p)
  c.loadData(pds)
  c.setParams(...)
  save c.getClassification()
}
end

minAge:

20|

2. type in parameter value and run it

Figure 3: Execution of experiment plan

Once an experiment has been prepared, it can be executed by the end user – namely, the 
medical scientist. The pre-assumption is that at least one experiment has been prepared as 
described in the previous section. In this specific case a medical scientist wants to use the 
newly prepared patient-by-illness  classification software.  The  procedure  is  presented in 
Figure 3, and, as previously, the overall picture is what matters now (the specific details of 
syntax and presentation may easily be altered in the further development process). 

First of all, the user loads the experiment plan e.g. by using a known name. Assuming 
that the experiment plan has been prepared in the parameterized form, the user is forced to 
provide input for the minAge parameter. What happens afterwards is presented in steps 
from 3 to 5 in the picture. These parts depicts in turn the act of remote object instantiation 
(step 3), contacting the data access server to obtain a response to the data retrieval query 
(step 4) and the actual remote operation invocation with the acquired data as input (step 5). 
In the first case the virtual laboratory runtime enacts the Grid object invocation mechanism 
and uses the built-in scheduler to list available resource instances that are conformant with 
the developer-chosen class of resources (in  this  case,  every option identifies a possible 
location where an instance of the SimpleClassWeka may be created). The decision which 
place to choose could be either given explicitly by the developer in the experiment plan or 
left  to  the  artificial  Scheduler.  The  Scheduler  takes  into  consideration  the  available 
information  sources  and  chooses  optimal  solutions  according  to  a  user-selected  policy. 
Once the remote object has been contacted (or, in this case, previously instantiated on a 



suitable machine and then contacted) the remote operation call performed in step 5 may 
occur. 

In the meantime, the experiment executes the predefined query on behalf of the user as 
in the example of patient data categorization for patients with the user-defined parameter of 
a min age of 20, utilizing the ViroLab unified data access server. This server is able to 
determine which real data sources have to be contacted in relation to this query and it is 
also able to perform the appropriate data retrieval afterwards. The specific set of user access 
rights may influence the available choice of data sources. Data from different data sources 
are merged and integrated before being delivered to the experiment execution host.  The 
runtime  mechanism  within  the  execution  host  controls  proper  data  import  into  the 
experiment interpreter making it accessible to the application (see step 4 in the diagram). 

While  not  depicted  in  Figure  3,  during  each  of  the  steps  1,  3  and  4  a  process  of 
authorization  may  take  place.  This  depends  on  the  access  restrictions  of  a  particular 
resource.  The components of the virtual laboratory that access the resources have to be 
integrated with the security mechanism. This ensures that all secured interactions at runtime 
are done by properly authenticated and authorized users or components.

6. Benefits

The  Virtual  Laboratory  carries  with  itself  several  important  advantages,  particularly  in 
comparison  to  existing  workflow  construction  tools.  The  following  benefits  should  be 
mentioned:
• compatibility  with  a  wide  spectrum of  computing resources  (Web Services,  WSRF, 

component architectures),
• integration of various types of data resources (plain databases, OGSA-DAI database 

aggregations, custom data access solutions),
• concealment of the underlying implementation details, enabling experiment developers 

to prepare experiments with little knowledge on Grid computing, and experiment users 
to execute these experiments without any such knowledge,

• powerful  and  open-ended  nature  of  the  development  environment,  which  does  not 
constrain developers in the same way as current “drag and drop” workflow construction 
tools do.

It should also be noted that while the presented solution is used in support of a scientific 
endeavor, namely improving the quality of HIV treatment through exhaustive studies of 
HIV virus mutations, this in no way restricts the Virtual Laboratory from being applied to 
other  areas  of  science  and  business  where  high-performance  computing  is  deemed 
necessary and Grid solutions may be applied.

7. Conclusions

In this paper we describe an approach to development of a virtual laboratory for modern e-
science  experiments  in  the  framework  of  eHealth.  These  experiments  involve  different 
types of users and harness heterogeneous resources. The integrated use of several levels of 
abstraction and a  set  of  dedicated,  task-oriented tools enables a high-level  view on the 
system for its end users (such as medical doctors) while at the same time giving full control 
over experiment to advanced users such as scientists assisted by scientific programmers.

This virtual laboratory will be integrated into the ViroLab system [16] which aims at 
facilitating  medical  knowledge discovery and decision  support  for  infectious  diseases.  
Initial prototypes have been developed and are now under testing with further applications 
expected towards the end of 2007.



Acknowledgements
The authors wish to express their thanks to E. Ciepiela, J. Kocot, P. Pęgiel and I. Ryszka  
for fruitful discussions. The work described in this paper is supported by the European 
Union through the IST-FP6-027446 project “ViroLab”.

References
[1] P.M.A. Sloot; A. Tirado Ramos; I. Altintas; M.T. Bubak and C.A. Boucher: From Molecule to Man: 
Decision Support  in  Individualized  E-Health,  IEEE Computer,  (Cover  feature)  vol.  39,  nr  11 pp.  40-46. 
November 2006
[2] Ian  Foster  el  al.,  "Modeling  Stateful  Resources  with  Web  Services",  Globus  Alliance,  Argonne 
National  Laboratory,  IBM,  USC  ISI,  Hewlett-Packard,  Jan,  2004. 
http://www.globus.org/wsrf/ModelingState.pdf.
[3] The gLite project: http://glite.web.cern.ch/
[4] Maciej Malawski, Marian Bubak, Michał Placek, Dawid Kurzyniec, Vaidy Sunderam: Experiments  
with  Distributed  Component  Computing  Across  Grid  Boundaries,  Proc.  of  HPC-GECO/COMPFRAME 
Workshop in Conjunction with HPDC'06, Paris, June 2006
[5] Geodise homepage; http://www.geodise.org
[6] Matlab homepage; http://www.mathworks.com
[7] Jython project homepage; http://www.jython.org
[8] Kepler project homepage; http://kepler-project.org
[9] Taverna homepage; http://taverna.sourceforge.net
[10] Triana homepage; http://www.trianacode.org
[11] VL-e homepage; http://www.vl-e.nl
[12] NESSGrid homepage; http://www.neesgrid.org/
[13] PSNC Virtual Laboratory homepage; http://vlab.psnc.pl
[14] T. de Oliveira, et al: An Automated Genotyping System for Analysis of HIV-1 and other Microbial 
Sequences. Bioinformatics 21(19): 3797-3800 (2005)
[15] S.K. Sadiq, S.J. Zasada, P.V. Coveney, Grid Assisted Ensemble Molecular Dynamics Simulations of  
HIV-1 Proteases Reveal Novel Conformations of the Inhibitor Saquinavir, Computational Life Sciences II, 
Springer 2006, LNCS vol 4216, pp. 150-161
[16] ViroLab: Virtual Laboratory for Decision Support in Viral Disease Treatment; EU IST Project FP6-
027446; www.ViroLab.org


	1. Introduction
	2. Objectives
	3. Methodology
	4. Technology Description and Development
	5. Results
	6. Benefits
	7. Conclusions
	References

