
Collaborative Virtual Laboratory
for e-Health

Marian BUBAK1,2, Tomasz GUBAŁA2,3, Marek KASZTELNIK3, Maciej MALAWSKI1,
Piotr NOWAKOWSKI2, Peter M. A. SLOOT3

1Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2ACC CYFRONET AGH, ul. Nawojki 11, 30-059 Kraków, Poland
3Informatics Institute, University of Amsterdam, Kruislaan 403,

 1098 SJ Amsterdam, The Netherlands

Abstract: This paper describes the Virtual Laboratory for e-Health system which is
currently being developed in the EU IST ViroLab project. The Virtual Laboratory is
an environment which enables clinical researchers to prepare and execute computing
experiments using a distributed Grid infrastructure, while not requiring in-depth
knowledge on Grid computing technologies. By virtualizing the hardware,
computing infrastructure and databases, the Virtual Laboratory is a user friendly
environment, with tailored workflow templates to harness and automate such diverse
tasks as data archiving, data integration, data mining and analysis, modeling and
simulation.

1. Introduction

Important scientific breakthroughs of tomorrow will most probably be delivered by large
teams of multidisciplinary researchers gathered in different institutes and cooperating on
defined issues. An example of such an endeavor is the field of virology research, especially
the part of it tackling anti-HIV treatment problems [1]. For this kind of challenges there is a
strong need for modern, distributed and robust virtual laboratories with capabilities,
allowing many scientists from distinct domains and institutes to collaborate.

The main objective of this research is to carefully design and deliver a person-centric
environment that could combine efforts of computer scientists, virology and epidemiology
experts and experienced physicians. The virtual laboratory should provide means for the
first group of users to develop in-silico experiments and for the later ones to use previously
prepared experiment plans to perform complex research. Therefore a set of dedicated tools
need to be provided in the integrated fashion as different types of users need specific
approach yet they altogether should be used in the same research endeavor. Moreover, the
laboratory needs to be robust enough to overcome infrastructure failures, enabling adjusting
and extensions, supporting multiple technological solutions.

Many solutions have been proposed for the construction of application for deployment
on the Grid. The Grid environment is diverse in its nature, hence elements of application
may be deployed on various computing resources within the Grid and may utilize various
implementation and access technologies. In order to maintain flexibility and adaptability of
the proposed solution, it is imperative to provide a way in which to access and make use of
all those types of resources, whenever a workflow is to be constructed.

We believe that the solution to this problem is the introduction of an abstract layer
which would hide the technological diversity of Grid computing services and allow us to
construct applications in a uniform way. The application specified by the user would then
be executed within the virtual laboratory and the system would take care of calling
individual elements in an appropriate manner. This would potentially span the following

technologies: Grid jobs (specified and executed through JDL files) [2], Web Services,
WSRF [3] and the CCA component framework [4].

To access this range of middleware technologies a mechanism should be developed that
enables this in an easy and uniform way. What is more, a uniform description (e.g. semantic
description) of Grid resources is very important for building such components as the
Collaborative Virtual Laboratory for e-Health, hereafter called the ViroLab Virtual
Laboratory.

2. Objectives

The paper provides a discussion of challenges and solutions related to development of a
virtual laboratory for virology and epidemiology. The description is centered around a e-
science experiment case study, involving different types of users, with focus on a
experiment development and execution on the Grid infrastructure. The paper presents an
environment for experiment developer, underlying runtime system, and a provenance
tracking tool.

The main goal of the paper is to show how these tools can be integrated to provide a
complete and robust virtual laboratory, assisting the users in conducting modern in-silico
experiments.

For development of the ViroLab platform, we have identified a number of objectives
which will determine the use of selected components and existing systems. The most
important of these are:
• performance and technological dependencies (whether the component in question

performs adequately in a Grid environment and whether it bases on well-established
technologies),

• take-up of the component (whether the component is being actively developed and
whether there is a sizeable user community dedicated to supporting this component),

• consistency of component functionality and the requirements of ViroLab users (whether
the component provides functionality which can be easily adapted to the needs of
medical practitioners and other types of ViroLab users),

• open-source licence (since ViroLab is a scientific project, open-source and free software
components are naturally preferable to commercial ones).
The virtual laboratory is a tool for the viral disease experts to plan and conduct in-silico

experiments. These experiments yield results that can be shared, discussed and stored
within the virtual laboratory. The tools that are at the user’s disposal within the laboratory
help to plan and run experiments using distributed Grid resources, including unified data
sources and the previously prepared computational units. The chosen unified naming
schema and common terminology helps the various users inside the ViroLab virtual
laboratory understand one another and exchange ideas more easily. The design of a virtual
laboratory serving such a purpose is the subject of this document.

In order to keep the following text easier to understand, introduction of certain
definitions is needed. An experiment is any kind of processing being developed and
executed within the ViroLab virtual laboratory. It may, and in fact usually does, involve
acquiring experiment input data from distributed resources, running remote processing on
this data using distant computing units and storing the obtained experiment results in
dedicated storage space. A result of an experiment is any data being produced by the
experiment that is meaningful for the performed research (this excludes for instance any
control flow variables, temporary variables etc.). A ViroLab experiment result does not need
but usually is a subject of analysis, sharing and storing. We use the experiment plan concept
to refer to a definition of experiment execution flow of control – such a plan is provided in
a form described by the experiment planning notation. The notation defines what constructs

may be used in an experiment plan and explains their semantics. An experiment plan
written down in such a form is sometimes called a script. The script will utilize operations
(called Grid Operations) executed on a set of entities called Grid Objects which will
provide a virtualization of the resources present in the underlying Grid infrastructure.

3. Methodology

One of the most important challenges facing the virtual laboratory is the diversity of users
(from programmers to medical doctors) and the heterogeneity of underlying resources and
technologies available for scientists (from local databases to Grid infrastructures as EGEE).
Therefore our approach is based on the idea of multiple abstraction levels of provided
resources which may be offered to different types of users and hide the technological
differences. The high-level view will be provided by the portal available for end users such
as physicians, whereas the experiment development and execution process will be assisted
by tools allowing full control over the experiment as needed, including the programming
phase.

A crucial decision to support required flexibility while preserving the ease of use and
high level of abstraction, was to use a modern scripting language approach. This
assumption, supported by the analysis of the state-of-the art and discussions with the users,
has led to the design of tools presented in the following section.

The concept of our virtual laboratory is inspired by the state of the art in systems such
as virtual laboratories and scientific workflow engines. Several leading technologies should
be mentioned in this context.

Geodise [5] is a Grid-enabled optimization and design search tool for engineering which
includes the environment for creating new applications (workflows). It is based on Matlab
[6] or Jython [7]. Different approach is represented by Kepler [9], Taverna [9] and Triana
[10], which are the systems for building scientific workflows. Worth mentioning are also
VL-e [11] which is a virtual laboratory for e-Science project funded by the Dutch
government which also exploits a scientific workflow concept, whereas projects such as
NESSgrid [12] and Polish Virtual Laboratory developed by PSNC [13] are focused on
providing remote access to scientific instruments to perform real experiments.

4. Technology Description and Development

An overview of the ViroLab virtual laboratory structure is shown in Figure 1. This figure
shows the interaction and role sharing of the ViroLab subparts of the architecture and
indicates the main interface channels between these modules. The diagram also proposes
the main flow of information in the channels and the nature of the data being pushed
through them. Identified parts of the architecture are subject to research and development
activities in specific Work Packages and tasks.

The first tool, the Experiment Development Environment, is designed to support
domain-related applications developers. It is an integrated development platform for a
programmer planning a future experiment. The central idea is to use modern, easy-to-learn
scripting language (Ruby) and extend it with a set of dedicated capabilities. This additional
functionality provides an interface to the Grid infrastructure used for processing
experiments. As the Grid resources tend to be numerous and volatile, the environment helps
to use them on a higher level of abstraction - the details regarding execution mechanism,
communication protocols and instance location are hidden from the developer who uses
their abstractions to plan an experiment. Ontological vocabularies and taxonomies are
provided for easy searches among those abstractions of resources. Once an experiment is
prepared, it is shared with interested scientists for the purposes of execution.

The lower layer of virtual laboratory runtime controls the experiment execution. It
consists of Grid computation access and distributed data access. The first component is
responsible for searching specific computational resources, detecting the appropriate
protocols to be used and contacting these resources to perform given steps of experiments.
The tool is able to interface RPC-type of services (suitable for low-communication short
tasks such as the virus sequence genotyping tool [14]) as well as batch job submission
systems like gLite (for longer and computationally-demanding tasks such as binding
affinity calculation using molecular dynamics techniques [15]).

A scheduling module uses current information about the state of the computing
infrastructure to choose proper resource instances to call.

Data integration, a crucial part of many eScience activities, is used to combine multiple
(possibly heterogeneous) data resources and to present them to the virtual laboratory user as
a single, virtual data source. This involves dynamic translation of database schemas at
runtime and delivering them in a uniform format. The use of both those techniques to
combine various remote data with dedicated computations into a single experiment,
together with the rich standard library of the scripting language, creates a powerful tool
both for developers of domain-specific experiments and scientists who use experiments
to obtain results.

The scientific results that are obtained using the virtual laboratory may be subject to
sharing and further analysis, therefore a dedicated provenance tracking subsystem is
provided for recording and storing the result derivation paths. Using both a set of sensors to
gather runtime events and annotations provided manually by the users, the system is able to
re-create on demand the set of processing steps that led to a certain result of experiment.
This capability helps other researchers trust the shared results. Furthermore, a dedicated
repository of developed experiment scripts is provided to share the experiments themselves
so other scientists may test the repeatability of results on their own.

Laboratory
Database
(for storing
experiment
results, read

and write
access)

Experiment
Repository

(contains saved
experiment plans)

Unified
Data

Sources
(mainly

read-only
access to
secured
data)

Presentation (T 2.3)
Includes Portal and Experiment Planning
Environment (both include Collaboration tools UIs)

Session Manager
Runtime (T 3.1)

Data Access
(T 3.3)

Grid Object
InstanceM

id
dl

ew
ar

e
(T

 2
.2

)

Sp
ec

if
ic

 T
ec

hn
ol

og
y

In
te

rf
ac

e
(T

 2
.2

)

G
ri

d
O

bj
ec

t
M

an
ag

em
en

t
G

ri
d

O
pe

ra
ti

on
In

vo
ca

ti
on

Inter
action

Execution
events,
resources
state etc.

Domain Ontology Store (T 3.1)
(taxonomies of concepts

related to the modelled domain)

Execution
monitoring
information

C
ol

la
bo

ra
ti

on
T

oo
ls

(T
 3

.2
)

Grid Resources
Registry (T 3.1)

(with description of
Grid Objects, operations

and instances)

Experiment
execution

Co
m

pu
ta

ti
on

 A
cc

es
s

D
at

a
A

cc
es

s
Cl

ie
nt

Runtime Library

Ex
pe

ri
m

en
t

sa
ve

/l
oa

d

Search

Resources state

Grid Object
information

Search

Experiment Session
(experiment state)

D
at

a
re

tr
ie

va
l a

n
d

da
ta

 s
to

ri
n
g

Provenance Tracking
System (T 3.4)

Provenance
queries,
user
actions

Events regarding
provenance

Monitoring Infrastructure
(T 2.2)

Repository
(for events and
intermed. data)

Sp
ec

if
ic

 d
at

a
so

ur
ce

 a
cc

es
s

En
cr

yp
ti

on
 a

nd
 d

ec
ry

pt
io

n

A
cc

es
s

A
ut

ho
ri

za
ti

on
(W

P2
 s

ec
ur

it
y)

Re
sp

on
se

Tr
an

sf
or

m
at

io
n

(t
o

VL
 s

ch
em

a)

Monitoring and
Messaging

Figure 1: Virtual Laboratory structure

5. Results

Figure 2 outlines, in a rather detailed diagram, the steps required to plan a simple
experiment that runs on the ViroLab virtual laboratory infrastructure. The example

considers a simple program to load a set of data (particularly, an array of patient-related
records), perform complex processing on it (processing that is in fact both parallel and
distributed) and, finally, store the acquired results in a data store. While the specific details
regarding the syntax of the language of the behavior of the accompanying tools are not
firmly set and may well be subject to changes, the overall picture is what is important in
this example. The step-by-step description below assumes an experiment developer as the
active user.

def PatientClassification (minAge)
c = new SimpleClassWeka
p = load “Patient:age>minAge”
foreach (p) {
 pds =
 DSTool.DataSetToSQL(p)
 c.loadData(pds)
 c.setParams(...)
 save c.getClassification()
}
end

Idea: classify
patients into

illness classes

1. start planning

we need:
 - a classifier
 - patients
 - classification
loop over patients

c = #|

Grid Object
Taxonomy Search

Classifier

OneRule
ClassifierSimple

Classifier

Grid Data Search

NT
Seq

Data
Store

Patient

c = new SimpleClassWeka
p = load “Patient:age>20”
c.getClassification()

Grid Operation
InOut Search

Data Set SQL Row

c = new SimpleClassWeka
p = load “Patient:age>20”
pds =
 DSTool.DataSetToSQL(p)
c.loadData(pds)
c.getClassification()

2. find a classifier

4. narrow Patient data

5. add the classification operation

6. find suitable transformation

7. add transformation

8. put in a parallel loop,
parametrize it and save

Simple Classifiers:
SimpleClassWeka
[stateful, not shared, ...]

ClassificationService
[stateless, shared, ...]

... (further choices)

c = new SimpleClassWeka
p = #

3. include the main input data

Patient schema:
age: integer

gender: boolean

... (further attributes)

c = new SimpleClassWeka
p = load “Patient:age>20”
//c.loadData(#dataset)
c.getClassification()

Transformations:
DSTool::DataSetToSQL
[stateless, ...]

... (further choices)

Experiment save:

PatientClassification|

Figure 2: Preparation of experiment plan

The developer starts with the main idea of a new experiment such as “load all patients
who are older than 20 and classify them with respect to the types of illnesses”. From this
high level, flow-based viewpoint the basic blocks that are common to most of such
analytical applications need to be selected and configured, such as for example input
requisition, processing part execution and output management. In order to commence the
main processing part the developer starts the functional ontological search widget that
allows him/her to choose the desired functional block. This step is immediately followed by
the resource registry interface that allows to choose a specific class of resources from those
annotated as Simple Classifiers. This part is labeled as step 2 in the diagram in Figure 2.
This also triggers the acquisition of possible operation signatures and their transfer into the
developer’s workspace. This is a pre-condition for the autocompletion functionality
presented in step 5. In addition to simple display of possibilities, the end user is guided
through the knowledge technology supported hinting systems such as the what-to-do
information provided by the workspace in step 6.

The input data for the experiment is acquired by means of the unified ViroLab data
access schema and involves several steps: invocation of the domain ontology browser to
choose a proper entity to be loaded and preparing the use of the ViroLab autogenerated
database schema tool simplifying the query creation process. Both those actions are
represented by steps 3 and 4 in the diagram. By using the ontology schema search the
developer will also be able to define the type of data transformation that is required (see
step 6 in the figure).

Finally, execution of the processes in parallel and ensuring that the execution is
performing well and that the results are saved properly concludes the design process. An
optional additional step can be added to make the developed experiment more general and
parameterize each step. As a result, the experiment may be reused with different input
values (in the chosen example this could be patient age). An experiment plan prepared in
this way may now be stored in the experiment repository for other developers as baseline or
for the medical scientists who can use it directly.

Resource Registry
Search

1. load the experiment

SCW @ grid.cyfronet.pl

SCW @ science.uva.nl

3. find realization

new SimpleClassWeka

Local Stub Creation

c : SimpleClassWeka
 - loadData
 - setParams
 - getClassification

3b. instantiate

Meta Query Lang. query

4. unified db search

load “Patient:age>20”

SELECT * FROM
#Patient WHERE
age > 20

Query Dispatch

#Patient
- db @ KUL
- file @ ELTE

4b. query sources
and gather results

SimpleClassWeka
possible locations

Remote call via stub

5. call grid operation

c.loadData(pds)

c : SimpleClassWeka
 - loadData

Runtime Resources

grid.cyfronet.pl

SCW instance called

KUL database

Specific SQL query

ELTE file store

File retrieval

Experiment load:

PatientClassification grid.cyfronet.pl

SCW instance created

User machine

def PatientClassification (minAge)
c = new SimpleClassWeka
p = load “Patient:age>minAge”
foreach (p) {
 pds =
 DSTool.DataSetToSQL(p)
 c.loadData(pds)
 c.setParams(...)
 save c.getClassification()
}
end

minAge:

20|

2. type in parameter value and run it

Figure 3: Execution of experiment plan

Once an experiment has been prepared, it can be executed by the end user – namely, the
medical scientist. The pre-assumption is that at least one experiment has been prepared as
described in the previous section. In this specific case a medical scientist wants to use the
newly prepared patient-by-illness classification software. The procedure is presented in
Figure 3, and, as previously, the overall picture is what matters now (the specific details of
syntax and presentation may easily be altered in the further development process).

First of all, the user loads the experiment plan e.g. by using a known name. Assuming
that the experiment plan has been prepared in the parameterized form, the user is forced to
provide input for the minAge parameter. What happens afterwards is presented in steps
from 3 to 5 in the picture. These parts depicts in turn the act of remote object instantiation
(step 3), contacting the data access server to obtain a response to the data retrieval query
(step 4) and the actual remote operation invocation with the acquired data as input (step 5).
In the first case the virtual laboratory runtime enacts the Grid object invocation mechanism
and uses the built-in scheduler to list available resource instances that are conformant with
the developer-chosen class of resources (in this case, every option identifies a possible
location where an instance of the SimpleClassWeka may be created). The decision which
place to choose could be either given explicitly by the developer in the experiment plan or
left to the artificial Scheduler. The Scheduler takes into consideration the available
information sources and chooses optimal solutions according to a user-selected policy.
Once the remote object has been contacted (or, in this case, previously instantiated on a

suitable machine and then contacted) the remote operation call performed in step 5 may
occur.

In the meantime, the experiment executes the predefined query on behalf of the user as
in the example of patient data categorization for patients with the user-defined parameter of
a min age of 20, utilizing the ViroLab unified data access server. This server is able to
determine which real data sources have to be contacted in relation to this query and it is
also able to perform the appropriate data retrieval afterwards. The specific set of user access
rights may influence the available choice of data sources. Data from different data sources
are merged and integrated before being delivered to the experiment execution host. The
runtime mechanism within the execution host controls proper data import into the
experiment interpreter making it accessible to the application (see step 4 in the diagram).

While not depicted in Figure 3, during each of the steps 1, 3 and 4 a process of
authorization may take place. This depends on the access restrictions of a particular
resource. The components of the virtual laboratory that access the resources have to be
integrated with the security mechanism. This ensures that all secured interactions at runtime
are done by properly authenticated and authorized users or components.

6. Benefits

The Virtual Laboratory carries with itself several important advantages, particularly in
comparison to existing workflow construction tools. The following benefits should be
mentioned:
• compatibility with a wide spectrum of computing resources (Web Services, WSRF,

component architectures),
• integration of various types of data resources (plain databases, OGSA-DAI database

aggregations, custom data access solutions),
• concealment of the underlying implementation details, enabling experiment developers

to prepare experiments with little knowledge on Grid computing, and experiment users
to execute these experiments without any such knowledge,

• powerful and open-ended nature of the development environment, which does not
constrain developers in the same way as current “drag and drop” workflow construction
tools do.

It should also be noted that while the presented solution is used in support of a scientific
endeavor, namely improving the quality of HIV treatment through exhaustive studies of
HIV virus mutations, this in no way restricts the Virtual Laboratory from being applied to
other areas of science and business where high-performance computing is deemed
necessary and Grid solutions may be applied.

7. Conclusions

In this paper we describe an approach to development of a virtual laboratory for modern e-
science experiments in the framework of eHealth. These experiments involve different
types of users and harness heterogeneous resources. The integrated use of several levels of
abstraction and a set of dedicated, task-oriented tools enables a high-level view on the
system for its end users (such as medical doctors) while at the same time giving full control
over experiment to advanced users such as scientists assisted by scientific programmers.

This virtual laboratory will be integrated into the ViroLab system [16] which aims at
facilitating medical knowledge discovery and decision support for infectious diseases.
Initial prototypes have been developed and are now under testing with further applications
expected towards the end of 2007.

Acknowledgements
The authors wish to express their thanks to E. Ciepiela, J. Kocot, P. Pęgiel and I. Ryszka
for fruitful discussions. The work described in this paper is supported by the European
Union through the IST-FP6-027446 project “ViroLab”.

References
[1] P.M.A. Sloot; A. Tirado Ramos; I. Altintas; M.T. Bubak and C.A. Boucher: From Molecule to Man:
Decision Support in Individualized E-Health, IEEE Computer, (Cover feature) vol. 39, nr 11 pp. 40-46.
November 2006
[2] Ian Foster el al., "Modeling Stateful Resources with Web Services", Globus Alliance, Argonne
National Laboratory, IBM, USC ISI, Hewlett-Packard, Jan, 2004.
http://www.globus.org/wsrf/ModelingState.pdf.
[3] The gLite project: http://glite.web.cern.ch/
[4] Maciej Malawski, Marian Bubak, Michał Placek, Dawid Kurzyniec, Vaidy Sunderam: Experiments
with Distributed Component Computing Across Grid Boundaries, Proc. of HPC-GECO/COMPFRAME
Workshop in Conjunction with HPDC'06, Paris, June 2006
[5] Geodise homepage; http://www.geodise.org
[6] Matlab homepage; http://www.mathworks.com
[7] Jython project homepage; http://www.jython.org
[8] Kepler project homepage; http://kepler-project.org
[9] Taverna homepage; http://taverna.sourceforge.net
[10] Triana homepage; http://www.trianacode.org
[11] VL-e homepage; http://www.vl-e.nl
[12] NESSGrid homepage; http://www.neesgrid.org/
[13] PSNC Virtual Laboratory homepage; http://vlab.psnc.pl
[14] T. de Oliveira, et al: An Automated Genotyping System for Analysis of HIV-1 and other Microbial
Sequences. Bioinformatics 21(19): 3797-3800 (2005)
[15] S.K. Sadiq, S.J. Zasada, P.V. Coveney, Grid Assisted Ensemble Molecular Dynamics Simulations of
HIV-1 Proteases Reveal Novel Conformations of the Inhibitor Saquinavir, Computational Life Sciences II,
Springer 2006, LNCS vol 4216, pp. 150-161
[16] ViroLab: Virtual Laboratory for Decision Support in Viral Disease Treatment; EU IST Project FP6-
027446; www.ViroLab.org

	1. Introduction
	2. Objectives
	3. Methodology
	4. Technology Description and Development
	5. Results
	6. Benefits
	7. Conclusions
	References

