Experiments with Distributed Component
Computing Across Grid Boundaries

Maciej Malawski*, Marian Bubak*f, Michal Placek*, Dawid Kurzyniec! and Vaidy Sunderam?
*Institute of Computer Science, AGH, Krakow, Poland
Email: {malawski,bubak} @agh.edu.pl
f ACC CYFRONET-AGH, Krakow, Poland
i Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA
Email: {dawidk,vss}@mathcs.emory.edu

Abstract— There are situations when a user has simultaneous
access to computing resources in many virtual organizations built
on different Grid infrastructures, as well as in local clusters or
single machines outside Grids. Such a user may be interested
in running a large-scale application on all available resources
simultaneously, avoiding huge administrative overhead.

We argue that in such situations the component model which
can support parallel execution of distributed components may
be very convenient, especially for scientific applications which
go beyond pre-installed modules. We show how to exploit the
dynamic runtime nature of CCA model, and define mechanisms
for creating components with parametrized numbers of ports.

As a user-centric method of resource aggregation across Grid
boundaries, we create a virtual pool of H20 kernels, spawned on
the resources, using such protocols as SSH or batch scheduling
and brokering systems. We also use a discovery mechanism based
on HDNS and simple scheduling to allocate components.

We validate our approach by experiments, running a compute-
intensive minimization application.

I. MOTIVATION AND RESEARCH GOALS

Grid systems are designed for sharing and aggregating com-
puting resources across administrative domains, by exploiting
the idea of virtual organizations. There are situations, however,
where a user has access to multiple virtual organizations built
upon different Grid infrastructures, as well as to local clusters
or single machines that are not part of Grids. Such a user
may wish to run a large-scale application on all available
resources simultaneously. This should be possible without the
need for setting up a new virtual organization, which usually
requires Grid middleware interoperability and imposes a huge
administrative overhead. Instead, the user-centric scenario
should allow for ad-hoc and transient collaborations formed
spontaneously across Grid systems.

There are two key issues related to realization of this
scenario. The first one is the selection and possible exten-
sion of an appropriate programming model, enabling flexible
composition of distributed applications that can adapt to the
heterogeneous environment. This issue is of great importance
especially for scientific applications that go beyond pre-
installed modules. We argue that the component model that
can support parallel execution of distributed components may
be very appropriate and convenient for programming such
applications.

The second issue is to devise an efficient method for
a user-centric aggregation of the computing power of such
distributed and highly heterogeneous resources, which may
have different access rules, application setup and execution
mechanisms and may belong to many virtual organizations.
The aggregation method should hide the complexity of the
underlying infrastructure and provide a virtualized layer for
executing the application.

In this paper we propose solutions of this problem which
combine the programming model for distributed applications
with methods for aggregation of available infrastructures to
gather computational resources across the boundaries of Grid
and cluster systems. The approach we describe is user-centric
one and avoids the need for involvement and effort on the
part of Grid system administrators. We validate the proposed
approach with experiments on a compute-intensive minimiza-
tion application, using the Common Component Architecture
(CCA) [1] model implemented in our MOCCA [2] framework
based on the H20 platform [3].

The paper is organized as follows. In Section II we provide
an overview of related work in the area of components in the
context of Grid infrastructures, and we briefly introduce H20
and MOCCA. Section IIT describes how the CCA model and
our approach are used to enable parallel constructs therein.
Section IV presents details of our method of user-centric
resource aggregation and application deployment and Section
V describes experiments with the real-world application. Con-
clusions and outline of future research are presented in Section
VL

II. BACKGROUND
A. Programming model

Several programming models may be considered for dis-
tributed computing that transcends administrative and geo-
graphic domains. The first possible candidate is a distributed
virtual machine based on the message-passing paradigm. The
main drawback is the lack of support for environments whose
properties change dynamically as is the case with Grids.
Other alternatives, including Service Oriented Architecture,
Grid, and Web Services, which are very popular nowadays
and convenient for systems integration [4], have extremely
high XML overheads in their use of WSDL and SOAP

documents, unclear vision of statefulness and standardization
issues, and, most importantly — static binding between services
and providers. This type of binding leads to difficulties for
clients wishing to build custom applications which are more
complex than merely invocation of available services installed
by others.

Another (perhaps more appropriate) approach is the compo-
nent model. Components, similarly to services, enable compo-
sition by separating interfaces from implementation. Moreover,
they also provide natural mechanisms for remote component
deployment, which is of key importance for such aggregated
computing. There is a number of specific component models
which have received much attention from the High Perfor-
mance and Grid computing community [5]. In addition to
specifying components and their interactions, these models
also aim to support parallel programming constructs and to
define mechanisms of components deployment on distributed
resources.

One approach to parallelism in component programming
is to consider components consisting of multiple processes,
running on a high performance parallel machine or cluster.
Processes within such a a parallel component may internally
communicate using such mechanisms as e.g. MPL. This ap-
proach is being investigated in the CCA [1] model, taking into
account such issues as data redistribution for MxN component
connections [6]. A parallel extension to the CORBA Compo-
nent Model (CCM) which also focuses on high performance
is proposed within the GridCCM [7] activity.

Another type of component parallelism can be useful for
more distributed and loosely-coupled scenarios, and appears
as multiple components of the same type, often referred as
component collections, running on distributed resources. An
example of applying such approach to CCA model can be
found in the master-worker application scheme implemented
using the XCAT framework [8] or the DG-ADAJ system
for Desktop Grids [9]. The ProActive implementation of the
Fractal component model [10] offers mechanisms for hierar-
chical composition of parallel and distributed components, and
also defines collective ports based on group communication.
A skeleton-based approach can also be used to facilitate
parallel constructs in component models, and is represented
in such projects as ASSIST [11] and HOC-SA [12]. The
importance of supporting parallel components is reflected in
recent endeavours within the CoreGRID project for defining
the Grid Component Model (GCM) [13], which is based on
and extends the Fractal model.

Component models may define mechanisms for component
deployment, e.g. CCA specification defines the BuilderService
port, which is used for component instantiation and assembly.
The implementation of this interface is left to framework
developers; XCAT offers mechanisms for running compo-
nents using the Globus Toolkit. CCM includes packaging and
deployment in the specification, and there are solutions for
deploying Corba components on the Grid infrastructure [14]
using Globus. The ProActive system provides a mechanism
for application deployment based on the concept of virtual

nodes and deployment descriptors [15], and it supports various
methods of running applications on resources where ProActive
is installed, including most common cluster scheduling sys-
tems and Grid middleware. The Grid Component Model also
addresses the deployment problem and proposes a common
solution for automating this process [16].

B. Aggregation of computer resources

We can observe that great enthusiasm for building Grid
systems has led to the development of many middleware
solutions and a diversity of installations across countries. As
examples we can point to such projects as the European Data-
Grid, CrossGrid, Unicore, GridLab and EGEE, the overview
of which can be found e.g. in [17]. Unfortunately, even if
the user has access to many of these systems, they are not
interoperable, which makes it difficult to use their resources
in an aggregated way.

There are several initiatives targeting Grid interoperability
(e.g. projects such as GLUE [18] and UniGridS [19]), but their
goal is first of all integration of middleware and infrastructure
at the organizational level and they require additional work on
commonality issues concerning security, information systems
and policies. The unification of various cluster resource man-
agement systems was one of the initial motivations behind the
development of Globus GRAM, and thus this solution is also
organization-centric.

C. H20 and MOCCA

A promising alternative approach to resource sharing and
virtualization is the H20O [3] project which introduces the
concept of lightweight service containers called H20 kernels.
The kernels allow authorized remote users to deploy and run
their code, called pluglets. The deployed pluglets may be used
by other parties, therefore the roles of resource providers and
service providers, which are tightly coupled in traditional Grid
systems, may be separated in H20. H20 aims to support
multiple programming models, among them MOCCA [2]
which is our implementation of the CCA component model.

MOCCA, as a distributed CCA framework build on top
of H20, enables remote communication between components
and facilitates the process of component deployment. For
the communication, the RMI model is used, leveraging the
extensible RMIX library. Components may be dynamically
deployed on H20O kernels, and their code is automatically
loaded from the location specified as a URL.

Our initial experiments with the MOCCA implementation
show promising results regarding performance and flexibility,
but the main drawback for running applications is the relatively
low level of H20 adoption and lack of large-scale installations.
Therefore, the possibility of using resources available with
existing Grid installations becomes an important issue.

III. CCA PROGRAMMING MODEL FOR DISTRIBUTED
COMPONENTS

The first objective of our research was to choose and to
validate the programming model which would be suitable for

running a custom, user-deployed application on heterogeneous
resources. As we can see, a component model that supports
parallel constructs and deployment mechanisms may be appro-
priate for such a scenario. Specifically, we have selected the
CCA component standard implemented in MOCCA, and this
decision was motivated by our experience with this framework.

A. Approach to parallel constructs

In parallel computing scenarios it is often necessary to
simultaneously run multiple components of the same type
across many distributed resources. In this paper we present
our approach to introducing support for parallel constructs
into the CCA model. Our strategy is based on exploiting the
dynamic runtime nature of CCA components [8], which en-
ables deferred definition of a component interface. In CCA, a
component may add a uses or provides port during application
execution, when required by runtime conditions. We use this
feature to define components with a variable number of ports
of a single type. Such multiple uses ports are suitable for
constructing gather-scatter topologies of components. Another
feature that we leverage is the connectivity between many
users and a single provides port.

Fig. 1 shows an example of multiple components connected
to a single provides port. The server component is not aware of
the actual number of clients connected to its port and handles
their invocations in the very same way as if they were coming
from one component. When there is a need to connect a client
component to multiple providers, the client must have one uses
port for each provider. As CCA allows components to register
the uses ports to the framework at runtime, their number
doesn’t have to be fixed — instead it can be parametrized or
even dynamic.

We have defined a mechanism to facilitate such
parametrized multi-port components. Following component
instantiation, the number of ports can be set as a property
using ParameterPort. Subsequently, the component registers
its multiple ports with the framework, assigning them names
which (by convention) end with consecutive numbers. Such
multiple ports may be then connected, in a simple way, to
multiple components. To enable this, we have extended the
BuilderService interface to handle such multiple components
and connections. It is worth noticing that such an approach
can lead to future possibilities for more dynamic changes of
port numbers at runtime, e.g. in response to changes in the
infrastructure within which the application is running.

B. CCA model specific details

For application assembly CCA does not define the architec-
ture description language (ADL) and therefore the mechanism
for creating and connecting components is framework-specific,
depending only on the BuilderService port defined in the
specification. For this purpose our framework supports Java
API or Python scripts which are flexible and can be easily
edited when needed. The disadvantage of this approach is the
lack of support for automatic tools, enabled by e.g. XML-

Server
Component

=
=
=

Client :‘

Fig. 1. Example of multiple ports and components. It is possible to connect
multiple clients to a single provides port (top figure), whereas it is necessary
to create multiple uses ports in a component, which is a client to multiple
providers (bottom figure).

based ADLs. Adoption of the ADL is currently on our research
agenda in the context of CoreGRID GCM [13].

Unlike other models, CCA does not distinguish between
functional and non-functional interfaces and all ports are
treated in the same way. Separating non-functional interfaces
may be useful in order to emphasize different aspects of
components, as in the Fractal model. Nevertheless, CCA
defines some “standard” ports, which may be useful for non-
functional aspects. Specifically, the CCA specification defines
the ParameterPort, which can be used to set the properties
of a component, and currently we use it for introducing
specific conventions to customize components. This doesn’t
mean changing the CCA specification — rather, we extend it
with specific conventions.

User' —— _bind()
i o
resource
Po%up()
Standalone Cluster
machine

PBST

..

Fig. 2. Setting up the user’s virtual resource pool. A user starts the HDNS server (“NS”), and then spawns H20 kernels on any machines that are accessible.
SSH may be used for standalone machines, the PBS queueing system — for a local cluster and specific middleware, such as LCG with its Resource Broker —
for Grid systems. Once the kernels are up, they are registered in NS and form the user’s virtual pool of resources, available for deployment of the component

application.

IV. AGGREGATION OF RESOURCES

Once we have selected the programming model, the second
stage is the development of a method of aggregating com-
puting resources for application deployment. The important
assumption is that we need a solution for a scenario where
a single user may have access to heterogeneous resources,
with different access methods, possibly distributed across
multiple Grid infrastructures which run different middleware
and belong to separate virtual organizations. In this section we
demonstrate how H20 middleware may be used for creating
a user’s virtual resource pool, which can then be used for
deployment and executing the application on the created
infrastructure without the need for systems administrator in-
volvement. In the following subsections we describe in more
detail our approach to:

« setting up the user’s virtual resource pool,

o executing the application on the created infrastructure.

A. Infrastructure setup

Our approach to creating the inter-Grid, user-centric vir-
tualization layer involves a unified fabric of (transient) H20
kernels spawned dynamically on Grid-enabled resources. For
standalone machines this may be done directly, using SSH,
whereas on a cluster or on a remote Grid resources there is a
need to submit an H20 kernel as a batch computing job. When
the kernel is started, the resource becomes a configurable
element of the user’s virtual pool (see Fig. 2). In the Grid
infrastructure with an automatic resource broker the location
of the computing node on the remote site where the kernel
is running may be unknown to the user in advance so we
proposed a simple discovery mechanism to locate available
kernels. As a discovery service we have used the Java Naming
and Directory Interface (JNDI)-enabled Harness Distributed
Naming Service (HDNS) system [20] running on a centralized

server, however it is also possible to run multiple HDNS
servers to provide fault tolerance. In addition to the discovery
service, we have elaborated a simple scheduling mechanism
to automate the process of assigning components to available
resources for deployment.

An important aspect of our approach is that we do not
require any specific software pre-installation on the target
computing nodes, which might involve huge administrative
overhead, especially in the case of multiple Grid systems.
Consequently, our approach allows seamless installation of the
required base software on the computing machines. This solu-
tion stems from the nature of the distribution of H2O software,
which is designed to run out-of-the-box on any Java-enabled
system. We have prepared a preconfigured thin version of H20
distribution which also contains the MOCCA library and fits
into a 4MB archive file. All that is required to install and
run the H20 kernel, is to unpack the distribution and run the
specified kernel executable. When accessing the target system
using SSH or PBS on a local cluster the installation step
can be done manually by the user. For a Grid infrastructure
such as LCG [21], manual installation is not possible, because
access to worker nodes of computing elements is available
only through a job submission mechanism, i.e. via a Resource
Broker, Globus and a local queueing system. Setting up the
H20 kernel is then achieved by submitting a batch job which
transfers this distribution on the working node, unpacks it and
runs the kernel executable. The only requirement is that a Java
virtual machine must be installed (JVM is present in most
cases). We can note, that if the specified version of JVM is
not available on the Grid site, it will be possible to add the Java
Runtime Environment installation as a first step of the job. If
the need for transferring large files becomes an issue, we can
exploit the possibility of using the Grid replica management
system to optimize file transfer time.

Another aspect we have to take into account is that when
an automatic Grid Resource Broker decides for a Grid node to
run a batch job, the location of the H20 kernel started by this
job may not be known to the user in advance. Locating such a
kernel requires some form of a discovery mechanism. For this
purpose we use the HDNS naming service, which needs to be
set up by the user prior to running H20 kernels. Subsequently,
when the preconfigured H20 kernel is started, it automatically
loads the naming service client pluglet. Its role is to contact the
discovery service and to register the new kernel on the server.
The client contacts the HDNS server using JNDI API, which
gives the possibility of future integration with other naming
services, e.g. ones based on the LDAP protocol.

It is worth mentioning that the first step does not mandate
the usage of a component model for application programming.
Furthermore, both steps may also be performed by different
actors, so we can distinguish the resource pool provider from
the application deployer or even from the final user, just like
in H20.

We should also point out the security aspects. In our current
experiments we use an open system, which may potentially
lead to unauthorized access to the pool of user’s resources.
However, it is possible to guarantee system security by means
of an H20 kernel access policy. One of the option feasible for
our scenario would be to preconfigure all kernels which belong
to the user’s pool in such a way that they accept only code
signed by the specified user’s digital certificate, consequently
denying access to other parties. This would be in agreement
with our user-centric approach, since it is the user who sets
up the H20 kernels and decides who can access a given pool
of resources.

In our current experiments, management of the pool of H20
kernels has to be performed manually by the user. We have
written a set of scripts which may be used for submission
of H20 kernels using the PBS system and Job Description
Language (JDL) scripts for LCG middleware. A set of our
simple command-line tools may be used for querying the
Name Service, testing the connectivity to remote kernels and
performing shutdown of the pool. For monitoring of specific
kernels, the H20 GUI can be used, yielding information on the
state of deployed components. As our experiments with setting
up a pool of H20 kernels have given promising results, we
plan to develop more user-friendly tools which will automate
the process of management.

B. Application deployment and execution

Once the required number of H2O kernels is running and
registered in the discovery service, application execution may
take place. It is worth noticing that when using the Grid
infrastructure, whenever the pool of kernels is created, it
will most probably contain different machines, chosen by
the resource broker. In order to run the application on such
a testbed, the user should prepare the components and the
application description in the following way:

« each component of the application should be available as
a JAR file published on the HTTP server,

« the script which creates the component instances connects
them and finally triggers application execution.

Since the list of available H20 kernels is not known before
runtime, there is a need to use some form of a scheduler be
responsible for automatic selection of locations for running
the component instances. The scheduler contacts the discov-
ery service to query about the available H20 kernels and
selects them according to a specific policy. Whereas various
approaches to component deployment are being researched
[16], for the purpose of our experiments we have implemented
a simple scheduler prototype which selects the kernels based
on a round-robin policy. The scheduler may be invoked by
the deployment script, and the returned locations of kernels
can be then passed to the BuilderService for creating single
or multiple instances of components.

Once the components are instantiated on remote sites and
their ports are connected, the script invokes the starter com-
ponent and passes control to the application components. It
is also worth mentioning that in order to receive application
results, possibly even in an interactive way, it is preferable to
run one of the components on the kernel, locally available to
the user. This provides online access to application logs and
output, whereas inorder to obtain access to the files produced
on Grid worker nodes, it is necessary to use additional Grid
file transfer tools.

V. CASE STUDY - SIMULATION OF GOLD CLUSTERS
FORMATION

The feasibility of the approach presented above was demon-
strated with an application that simulates formation of gold
atom clusters which is a very important phenomenon in the
field of nanoscale devices. Modeling of clusters involves sev-
eral energy minimization methods which are highly compute-
intensive. The computing resources used for these experiments
comprised a computer cluster with a PBS batch system at
the Academic Computer Centre CYFRONET-AGH and the
CrossGrid testbed running LCG middleware [21].

A. Description of the application

Clusters of atoms are an interesting form in between iso-
lated atoms or molecules and solid state; research in this
field may therefore be very important for the technology of
constructing nanoscale devices. Modeling of clusters involves
several energy minimization methods such as Molecular Dy-
namics Simulated Annealing (MDSA) or the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, as well
as choosing an empirical potential [22]. These methods are
highly compute-intensive, and an optimal result depends on
the number of possible iterations and initial configurations for
each simulation run.

The original application (sequential code written in C)
has been rewritten in Java and its functional modules have
been divided into separate components as presented in [23].
Componentization allows for more flexibility of application
assembly when experimenting with different minimization
methods, and the performance penalty incurred by using Java

Generator
Control

Annealing
Control

Simulated
Annealing

Annealing

Simulated
Annealing

Configuration of components in the test application.

Configuration
Generator

Molecule’

Fig. 3.

may be outweighed by the possibility of using distributed re-
sources for computation, offered by the component framework,
i.e. by MOCCA. Our previous results indicate the acceptable
scalability of this application when tested on a single cluster
[23].

For our experiments we used the component configuration
as shown in Fig. 3. The Starter component is responsible
for coordinating the work of other components. Configuration
Generator creates the initial configurations of atoms, which
are then consumed by multiple Simulated Annealing compo-
nents, performing the actual minimization process. The Con-
figuration Generator and Simulated Annealing components
may be used for both sequential and distributed configurations,
since they do not have multiple ports. The Storeroom compo-
nent is responsible for storing all achieved configurations and
may be used to derive results statistics. A single Molecule
port is defined to exchange data between components. The
Storeroom component was initially designed to support a
single Molecule provider, and to keep it simple, we have
decided to add a separate Gather component which handles
multiple connected components and passes their results to the
Storeroom.

B. Experiments on the Grid

For experiments with a heterogeneous infrastructure setup
we used two stand-alone machines at CYFRONET, Krakow,
accessible directly via SSH a cluster node at CYFRONET,
accessible using PBS, and the European CrossGrid testbed
running LCG middleware with a Resource Broker located
at LIP in Lisbon, Portugal. When submitting jobs via the
Resource Broker we had to restrict the list of resources to
only those Grid sites which allowed jobs (in our case — H20
kernels) to open TCP ports for incoming connections from the
outside world. Therefore we were able to use cluster nodes at
PSNC, Poznan and IFCA, Santander, Spain. The machines
at CYFRONET were Intel Xeon CPU 2.40GHz computers,
with 512 MB RAM running Red hat Linux 7.3, and similar

375

325
300
2754
250
2254
200
175
150 -
125 -
100 -

Computing time[s]

50+
25

4 5 6
Number of nodes

Fig. 4. Results achieved on the sample pool of heterogeneous resources,
where the problem size grows with the number of computing nodes.

configurations were available on the remote Grid sites. Sun
J2SDK 1.4.1 was available on all machines, therefore no
additional JVM installation was required.

For setting up the pool of H20 kernels we set up an HDNS
server on one of the machines at CYFRONET, and on another
machine we started the kernel on which the Starter component
had to be deployed in order to have direct access to results
and timing statistics for the application run. Subsequently
we were able to spawn more H20 kernels on local cluster
nodes and on Grid sites using scripts, as described in the
previous section. Using the pool of H20 kernels we were
able to deploy our distributed component application, creating
one compute-intensive Simulated Annealing component for
each available kernel. It should be noted note that once the
pool of kernels was created, deploying the application was as
simple as on a single cluster, requiring only minor changes
to the deployment script. These changes involved replacing a
static list of machines with an appropriate invocation of our
scheduler functions.

Fig. 4 shows the sample application runtime depending on
the number of computing nodes. On each of the nodes there
was one Simulated Annealing component deployed. The total
number of initial configurations for simulation was equal to
the number of computing nodes, so each of the components
was computing one full simulation run for a single molecule.
By increasing the number of resources in the pool the user was
able to simulate more molecules, which is important from the
application’s point of view (in order to gather better statistics).
We can observe that the total computing time does not increase
substantially with the number of nodes, which approximates an
ideal case where the time should remain constant. We should
note, however, that the goal of our tests was to show proof
of concept for our approach to building a user-centric pool of
resources for distributed component applications, and not to
run systematic performance measurements on the Grid, where
speedup is not as clear as on a parallel machine or on a single

cluster [24]. However the results achieved on this sample pool
of resource, are quite promising for such an ad-hoc testbed
and base upon the nature of the tested application (which was
not communication-intensive).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we are dealing with a specific scenario,
where users are willing to aggregate their computing resources
accessible by means of accounts on single machines, accounts
on clusters with batch scheduling systems or membership in
Virtual Organizations for Grid infrastructures. These resources
are needed to perform a single distributed application (possibly
a compute-intensive one) which may be expressed as custom
code, and, even more importantly, doesn’t have to be pre-
installed on the available resources.

We demonstrate that the selected programming model and
the method of resource aggregation provide reasonable so-
lutions for such a scenario. We show that the component
model may be a good choice in this situation, due to its
naturally-provided deployment mechanisms and the possibility
of easy implementation of parallel computing constructs. Our
experience with the CCA suggests that this model, while
simple, is rich enough to allow building usable distributed
applications and may be used for potentially more dynamic
large-scale distributed computing scenarios.

In our experiments with H20 and MOCCA presented in
this paper we show that a single user may create a pool of
resources spanning multiple Grid and non-Grid machines, and
successfully deploy and run component application on such a
virtual infrastructure.

It is important to note that we were able to exploit the
“legacy” CrossGrid testbed, without the need for using system
administrators privileges and at the acceptable cost of the
effort of one user responsible for manual pool setup and
management. This is possible thanks to the H20 kernel being
a lightweight container, suitable for creating a higher virtu-
alization layer on top of a batch-oriented Grid infrastructure.
This “legacy” infrastructure provides, in return, mechanisms
for automatic resource allocation and scheduling, as configured
within the resource brokers and batch schedulers on involved
sites.

During our experiments we also observed some limitations
of CCA and our implementation, such as relying only on
synchronous RMI and the lack of parallel constructs or ADL
support explicitly in the model. We believe that the adoption of
the GCM specification [13] elaborated within the CoreGRID
project could help overcome these issues and open an interest-
ing research area involving component model interoperability.

We are also aware of the fact that the process of setting
up the pool of resources which we have proposed could
potentially be fully automated, so that the user would not
need to know the details of the underlying infrastructure —
merely provide a pointer to the resources and credentials
required to access them. This is also one of directions for
future development, together with elaboration of support for
more dynamic changes of the pool at application runtime.

Another issue which remains to be solved involves the net-
work connectivity problem which we encountered when trying
to access computing nodes belonging to private networks or
hidden behind firewalls. We believe that this may be solved via
our experience with the JXTA peer-to-peer framework [25],
which can be used to create an overlay network spanning
computing nodes from private sub-networks of Grid clusters,
as well as idle desktop machines.

Acknowledgements: This work was partially supported by
the EU IST CoreGRID Project. The authors are grateful to
Piotr Nowakowski for his remarks.

REFERENCES

[1] R. Armstrong, G. Kumfert, L. C. Mclnnes, S. Parker, B. Allan, M. Sot-
tile, T. Epperly, and T. Dahlgren, “The cca component model for high-
performance scientific computing,” Concurr. Comput. : Pract. Exper.,
vol. 18, no. 2, pp. 215-229, 2006.

[2] M. Malawski, D. Kurzyniec, and V. Sunderam, “MOCCA - towards
a distributed CCA framework for metacomputing,” in Proceedings of
the 10th International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS2005) in conjuncion with
International Parallel and Distributed Processing Symposium (IPDPS),
Denver, USA, April 2005. 1EEE, 2005.

[3] D. Kurzyniec et al., “Towards Self-Organizing Distributed Computing
Frameworks: The H20 Approach,” Parallel Processing Lett., vol. 13,
no. 2, pp. 273-290, 2003.

[4] M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez,
J. Bester, J. Gawor, S. Lang, I. Foster, S. Meder, S. Pickles, , and
M. McKeown, “State and events for web services: A comparison of
five WS-resource framework and WS-notification implementations,” in
4th IEEE International Symposium on High Performance Distributed
Computing (HPDC-14), Research Triangle Park, NC, 24-27 July 2005.

[5] V. Getov and T. Kielmann, Eds., Component Models and Systems for
Grid Applications. ~ Springer, 2005.

[6] F. Bertrand, R. Bramley, A. Sussman, D. E. Bernholdt, J. A. Kohl, J. W.
Larson, and K. B. Damevski, “Data redistribution and remote method
invocation in parallel component architectures,” in 19th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’05)
- Papers, 2005, p. 40b.

[7]1 C. Perez, T. Priol, and A. Ribes, “A parallel corba component model
for numerical code coupling,” The International Journal of High Perfor-
mance Computing Applications (IJHPCA), vol. 17, no. 4, pp. 417-429,
2003, special issue Best Applications Papers from the 3rd Intl. Workshop
on Grid Computing.

[8] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrish-
nan, F. Bertrand, K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan,
L. Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and
N. Rey-Cenvaz, “Programming the Grid: Distributed software compo-
nents, P2P and Grid web services for scientific applications,” Cluster
Computing, vol. 5, no. 3, pp. 325 — 336, Jul 2002.

[9] R. Olejnik, B. Toursel, M. Tudruj, and E. Laskowski, “Optimized java

computing as an application for desktop grid,” in Proceedings of the 4th

Cracow Grid Workshop. Krakow, Poland: ACC CYFRONET-AGH,

2005.

F. Baude et al., “From distributed objects to hierarchical grid compo-

nents,” in Int. Symp. on Distributed Objects and Applications (DOA),

Catania, Italy, ser. LNCS, vol. 2888. Springer, 2003, pp. 1226 — 1242.

M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza,

D. Puppin, L. Scarponi, M. Vanneschi, and C. Zoccolo, “Components

for High Performance Grid Programming in Grid.IT,” in Proceedings of

the Workshop on Component Models and Systems for Grid Applications,

ICS 04 Intl. Conf., ser. CoreGRID, V. Getov and T. Kielmann, Eds.

Springer, 2005, pp. 19-38.

[12] J. Duennweber and S. Gorlatch, “HOC-SA: A grid service architecture

for higher-order components,” in Services Computing, 2004 IEEE Int.

Conf. on (SCC’04). Shanghai, China: IEEE, 2004, pp. 288-294.

“Proposals for a grid component model,” Tech. Rep., 2004. [Online].

Available: http://www.coregrid.net

[10]

(11]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Lacour et al., “Deploying CORBA components on a computational
grid,” in Component Deployment: 2nd Int. Working Conf., CD 2004,
Edinburgh, UK, Proc., ser. LNCS, W. Emmerich et al., Eds., vol. 3083.
Springer, 2004, pp. 35 — 49.

F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssiere, “Interactive
and descriptor-based deployment of object-oriented grid applications,”
in Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing. Edinburgh, Scotland: IEEE
Computer Society, July 2002, pp. 93-102.

M. Coppola, M. Danelutto, S. Lacour, C. Perez, T. Priol, N. Tonel-
lotto, and C. Zoccolo, “Towards a common deployment model for
grid systems,” in CoreGRID Workshop on Integrated research in Grid
Computing, S. Gorlatch and M. Danelutto, Eds. Pisa, Italy: CoreGRID,
IST, November 2005, pp. 31-40.

P. Graham, M. Heikkurinen, J. Nabrzyski, A. Oleksiak, , M. Parsons,
H. Stockinger, K. Stockinger, M. Stroinski, and J. Weglarz, “EU Funded
Grid Development in Europe,” in Grid Computing: Second European
AcrossGrids Conference, AxGrids 2004, Nicosia, Cyprus, January 28-
30, 2004. Revised Papers, ser. Lecture Notes in Computer Science, M. D.
Dikaiakos, Ed., vol. 3165. Springer, Jan. 2004, pp. 1-10.

“GLUE information model,” 2005. [Online]. Available:
http://infnforge.cnaf.infn.it/glueinfomodel/

UniGrids Project, “Uniform interface to grid services.” [Online].
Available: http://www.unigrids.org/

D. Gorissen, P. Wendykier, D. Kurzyniec, and V. Sunderam, “Integrating
grid information services using JNDI,” in 6th IEEE/ACM International
Workshop on Grid Computing (Grid 2005), Seattle, Washington, USA,
Nov. 2005.

J. Gomes, M. David, J. Martins, L. Bernardo, A. Garcia, M. Hardt,
H. Kornmayer, J. Marco, R. Marco, D. Rodriguez, 1. Diaz, D. Cano,
J. Salt, S. Gonzalez, J. Sanchez, F. Fassi, V. Lara, P. Nyczyk, P. Lason,
A. Ozieblo, P. Wolniewicz, M. Bluj, K. Nawrocki, A. Padee, W. Wislicki,
C. Fernandez, J. Fontdn, Y. Cotronis, E. Floros, G. Tsouloupas, W. Xing,
M. D. Dikaiakos, J. Astalos, B. A. Coghlan, E. Heymann, M. A.
Senar, C. Kanellopoulos, A. Ramos, and D. Groen, “Experience with
the international testbed in the crossgrid project” in Advances in
Grid Computing - EGC 2005, European Grid Conference, Amsterdam,
The Netherlands, February 14-16, 2005, Revised Selected Papers, ser.
Lecture Notes in Computer Science, vol. 3470. Springer, 2005, pp.
98-110.

N. Wilson and R. Johnston, “Modelling gold clusters with an empirical
many-body potential,” Eur. Phys. J. D, vol. 12, pp. 161-169, 2000.

M. Bubak, M. Malawski, and M. Placek, “Component-based Approach
to Modeling Gold Clusters using MOCCA,” in Proceedings of the 5th
Cracow Grid Workshop. Krakow, Poland: ACC CYFRONET-AGH,
2006, to appear.

A. Hoekstra and P. Sloot, “Introducing grid speedup gamma: A scal-
ability metric for parallel applications on the grid,” in Advances in
Grid Computing - EGC 2005, ser. Lecture Notes in Computer Science,
P. Sloot, A. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, Eds., vol.
3470. Springer, February 2005, pp. 245-249.

P. Jurczyk, M. Golenia, M. Malawski, D. Kurzyniec, M. Bubak, and
V. S. Sunderam, “Enabling Remote Method Invocations in Peer-to-
Peer Environments: RMIX over JXTA,” in Proceedings of PPAM 2005
International Conference, ser. LNCS, R. Wyrzykowski, Ed., vol. 3911.
Poznan: Springer, Sep 2005, to appear.

