
AGH

University of Science and Technology in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and Electronics

DEPARTMENT OF COMPUTER SCIENCE

MASTER OF SCIENCE THESIS

MARCIN NOWAK

MULTISCALE APPLICATIONS COMPOSITION AND
EXECUTION TOOLS BASED ON SIMULATION MODELS

DESCRIPTION LANGUAGES AND COUPLING LIBRARIES

SUPERVISOR:

Katarzyna Rycerz Ph.D

Krakow 2011/2012

OŚWIADCZENIE AUTORA PRACY

OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIAD-

CZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM

OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH

NIŻ WYMIENIONE W PRACY.

. .

PODPIS

Akademia Górniczo-Hutnicza

im. Stanisława Staszica w Krakowie

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

KATEDRA INFORMATYKI

PRACA MAGISTERSKA

MARCIN NOWAK

NARZĘDZIA DO KONSTRUOWANIA I WYKONYWANIA
WIELOSKALOWYCH APLIKACJI W OPARCIU O JĘZYKI

OPISU MODELI SYMULACYJNYCH I BIBLIOTEKI ŁĄCZĄCE

OPIEKUN PRACY:

dr inż. Katarzyna Rycerz

Kraków 2011/2012

Acknowledgements

I wish to thank my supervisor�Dr. Katarzyna Rycerz�for her
invaluable help and patient guidance she has provided during my work
on this Thesis. Without her support and contribution this Thesis
would not have been possible.

I would like to express my gratitude to Dr. Marian Bubak for his
accurate advice.

I would also like to thank my colleague Pawe l Pierzcha la with whom
I worked on the initial version of the MUST User Support Tool.

Next, the thanks for the help with integrating MUST User Support
Tool with the GridSpace virtual laboratory go to Eryk Ciepiela and
Daniel Hare�
zlak from ACC CYFRONET.

Last, but not least, I would like to help Ma lgorzata Palej for her
suggestions and proofreading this work.

This work is related with the Mapper project which receives fund-
ing from the EC's Seventh Framework Programme (FP7/2007-2013)
under grant agreement no RI-261507.

Abstract

Multiscale applications are crucial in better understanding of the
processes from various �elds of science. Modeled processes frequently
require substantial computing capabilities. This is the reason why
the grid and the cloud computing environments are chosen as suitable
platforms for executing multiscale applications.

However, execution of multiscale applications in remote distributed
environments is relatively complicated. Therefore, we developed MUST
User Support Tool which aids execution of multiscale applications in
the grid and the cloud environments as a part of this Thesis. The
proposed tool provides a simple interface which may be used to fa-
cilitate the work with multiscale applications in remote distributed
environments.

Furthermore, we thoroughly compare the grid and the cloud com-
puting environments. Various aspects ranging from the de�nitions of
the grid and the cloud, through computing and programming models
to performance results are taken into consideration.

This Thesis is organized as follows: Chapter 1 presents the prob-
lems discussed, the scope and main goals of this Thesis. Chapter 2
introduces multiscale applications, discusses their main requirements
and describes examples from various �elds of science. Chapter 3 de-
scribes model description languages commonly used to describe sin-
gle and multiscale models frequently used in multiscale applications.
Various libraries aiding development of multiscale applications are de-
scribed in Chapter 4. Chapter 5 is a detailed comparison of the grid
and the cloud computing environments. Chapter 6 presents various
middleware tools used for accessing the remote environments. MUST
User Support Tool is introduced and exhaustively described in Chap-
ter 7. Chapter 8 presents MUST implementation details and the pos-
sibilities of expansion. Performance results of executing a scienti�c
application using MUST User Support Tool with various setups are
presented in Chapter 9. Finally, Chapter 10 summarizes this Thesis
and presents its results and conclusions.

Appendix A is a glossary of terms and abbreviations used in this
Thesis. Appendix B contains various MUST User Support Tool usage
examples and installation details. Appendix C presents The Compari-
son of Cloud and Local HPC approach for MUSCLE-based Multiscale
Simulations paper related to this Thesis.

Contents

Contents 9

1 Introduction 13

1.1 Problem outline . 13
1.2 Goals and scope . 14
1.3 Organization of this Thesis . 15
1.4 Contribution of other authors 17

2 Multiscale applications 19

2.1 Introduction . 19
2.2 Requirements . 19
2.3 Examples . 21
2.4 Summary . 25

3 Model description languages 27

3.1 SBML and CellML . 27
3.2 MML and CxA . 29
3.3 Comparison . 32
3.4 Summary . 33

4 Coupling libraries 35

4.1 AMUSE . 35
4.2 MCT . 36
4.3 MUSCLE . 37
4.4 Comparison . 39
4.5 Summary . 40

5 Infrastructures 41

5.1 Grid . 41
5.2 Cloud . 43
5.3 Comparison . 44
5.4 Summary . 48

6 Accessing infrastructures 49

6.1 Local resources�Portable Batch System 49
6.2 Grid resources�GridSpace . 49
6.3 Cloud resources�Amazon Web Services 51

6.3.1 Elastic Compute Cloud 51
6.3.2 Simple Storage Service 51

9

6.3.3 Elastic Block Storage 52
6.3.4 Simple Queue Service 52

6.4 Summary . 52

7 MUST User Support Tool 55

7.1 Concept of MUST . 55
7.2 Requirements . 56
7.3 Use cases . 57
7.4 Architecture . 58

7.4.1 MUST Architecture�Grid 59
7.4.2 MUST Architecture�Cloud 63

7.5 Summary . 67

8 Implementation details 69

8.1 MUST implementation . 69
8.2 Expansion possibilities . 72
8.3 Tools used . 72
8.4 Summary . 73

9 Case study 75

9.1 ISR2D performance results . 75
9.2 Performance results interpretation 78
9.3 Summary . 79

10 Summary 81

10.1 MUST User Support Tool . 81
10.2 Grid and cloud comparison . 82

List of Figures 85

List of Tables 85

References 87

Appendices 91

A Glossary 91

B Examples 93

B.1 Example GridSpace experiment 93
B.2 Example usage . 98
B.3 Installation guide . 99

10

B.3.1 Prerequisites . 99
B.3.2 Access machine and nodes con�guration 100
B.3.3 EC2 instance con�guration 101

B.4 Summary . 101

C Publication�Comparison of Cloud and Local HPC approach

for MUSCLE-based Multiscale Simulations 103

11

12

1 Introduction

This Chapter introduces the user support tool that allows automatic execu-
tion of multiscale applications in distributed environments (MUST User Sup-
port Tool) proposed in this Thesis and its main requirements. The MUST
tool facilitates the work with multiscale applications in the grid and the
cloud environments. This Chapter also speci�es the goals and the scope of
this Thesis (Sections 1.1�1.2). Sections 1.3 and 1.4 present the organization
of this Thesis and the contribution of other authors respectively.

1.1 Problem outline

The need for high-performance computing and storing vast amounts of data
is constantly growing. Not everyone, however, is able to build and maintain
their own supercomputers or mass storage devices. Therefore, this need
is nowadays frequently ful�lled by remote systems. Details concerning the
infrastructure or the physical localization of such systems are irrelevant to
the end-users. Both grid and cloud computing provide applicable resources.
Grid computing focuses on large-scale computations, commonly in the form
of batch jobs. Grid systems process few large requests (e.g. jobs allocating
several hundreds of nodes). On the other hand, cloud systems primarily allow
users to deploy their services. Consequently, cloud systems process sizeable
numbers of small requests.

Multiscale applications depend on such substantial computing capabili-
ties. Simulation of three-dimensional models is a key task in numerous �elds
of science. Models at di�erent spatial and temporal scales are widely used.
Multiscale applications depend on numerous model description languages,
coupling libraries and work-�ow management systems. Integration and ex-
ecution of di�erent models is a crucial task. Unfortunately, it often has to
be performed manually and, in consequence, is very time-consuming. In this
paper, we propose a user support tool which assists in automatic execution
and distribution of multiscale applications on various infrastructures.

Multiscale applications are generally used by non-programmers. There-
fore, their execution on distributed architectures should be relatively uncom-
plicated.

The user support tool presented in this Thesis was built as a part of
the GridSpace virtual laboratory which allows users to create experiments.
Created experiments can be executed locally (on a computing cluster) or
remotely (on the grid). The GridSpace virtual laboratory provides a user-
friendly web interface. MUST can be used to facilitate work with multiscale
applications in distributed environments. It allows users to automatically

13

distribute their GridSpace experiments and execute them on the grid and
the cloud infrastructures.

Utilization of the resources provided by grid and cloud computing can be
a great opportunity to develop multiscale applications.

1.2 Goals and scope

There were two main goals of this Thesis:

• Design and development of a user support tool which allows automatic
distributed execution of multiscale applications in various infrastruc-
tures (hereinafter referred to as MUST�MUST User Support Tool).
The main requirements:

� Support for distributed execution of multiscale applica-

tions. The purpose of the tool is to allow distributed execution
of multiscale applications i.e. applications which use coupling li-
braries to link multiple separate single-scale models. In this Thesis
we focus on support for multiscale applications built using MUS-
CLE coupling library. The MUSCLE coupling library was chosen
based on the conclusions of Chapter 4. The distributed execu-
tion of MUSCLE-based applications must not require substantial
changes to the existing applications. The distribution should be
based on the existing features of the supported library.

� Support for both grid and cloud distributed infrastruc-

tures. The proposed tool should allow execution of multiscale
applications on both grid and cloud infrastructures. Live trans-
mission of the standard input and error streams from the remote
environments should be possible as well as optional upload of
the input sandbox �les�allowing automatic deployment of sim-
ple multiscale applications (assuming that other prerequisites are
available on the remote machines).

� Access from the GridSpace virtual laboratory level. The
proposed tool should be accessible from the GridSpace virtual lab-
oratory web interface. Automated execution and distribution of
the GridSpace experiments based on multiscale application should
be possible using the proposed tool.

A detailed description of the requirements is presented in Section 7.2.
Chapters 7 and 8 describe the MUST tool in detail.

• Comparison of grid and cloud computing, including:

14

� Theoretical comparison. The aim of the throughout theo-
retical comparison of grid and cloud computing is to highlight
di�erences and similarities between them. Aspects such as pro-
gramming model, computing model, usability, standarization, etc.
should be taken into consideration.

� Performance results. Performance results of the grid and the
cloud infrastructures based on the execution of a scienti�c multi-
scale application using various setups should be compared. The
comparison should specify, describe and separately confront all
the steps necessary to execute an application in the distributed
environment including the preparation step, the execution itself
and downloading results from the remote machines.

� Ease of access, di�culty of installation and amount of

changes required in legacy applications. Middleware tools
used for accessing the grid and the cloud infrastructures should
be described and compared as well as the APIs exposed and stan-
dards/proprietary solutions used. Installation and con�guration
steps required should also be discussed.

A comparison of the grid and the cloud infrastructures is presented in
Chapter 5 while the performance results are discussed in Chapter 9.

To achieve these goals, we developed the MUST tool and then performed
appropriate tests.

1.3 Organization of this Thesis

This Chapter presented the problem outline and brie�y introduced MUST�a
user support tool facilitating execution of multiscale applications in various
distributed environments. The subsequent chapters present theoretical con-
cepts related to multiscale applications and distributed environments (the
Grid and the Cloud) as well as tools used for execution and description of
multiscale applications on various levels (ranging from low level job schedul-
ing systems through middleware coupling libraries to high-level description
tools and execution environments).

The concept of multiscale applications is presented in Chapter 2 which
discusses their requirements thoroughly and presents problems related to ac-
curate model description and comprehensible inter-model communication.
Eventually, a few examples of multiscale applications from various �elds of
science are described (with particular emphasis on di�erent spatial and tem-
poral scales at which each application operates).

15

The subsequent Chapter (3) focuses on an e�cient and understandable
description of multiscale applications. Therefore, we present various model
description languages. Firstly, some recognized and widely used languages
concentrating on single model description such as Cell Markup Language
and Systems Biology Markup Language are presented. Then, we describe
the concept of Multiscale Modeling Language (MML) enabling a description
of multiple models and inter-model interactions. CxA�a format preceding
MML�is also shortly discussed as a format closely related to MUltiScale
Coupling Library and Environment (MUSCLE). Finally, a comparison of all
the languages is presented.

Chapter 4 presents Astrophysical Multipurpose Software Environment
(AMUSE), Model Coupling Toolkit (MCT) and MUltiScale Coupling Library
and Environment (MUSCLE)�three di�erent coupling libraries facilitating
building and execution of multiscale applications. First of all, each library is
separately described. Then, all the libraries are compared with emphasis on
aiding execution of multiscale applications in distributed environments.

Chapter 5 leaves the subject of multiscale applications and focuses on
generic distributed environments. The Grid and the Cloud computing envi-
ronments are exhaustively described and compared. A theoretical compari-
son starting with quotations of various Grid and Cloud de�nitions is followed
by a presentation of more pragmatic aspects, such as programming model,
computing model and usability.

The middleware tools enabling access to the Grid and the Cloud environ-
ments are described in Chapter 6. It includes job scheduling systems used
for local computing clusters as well as an API allowing access to various
Cloud-based resources (on the example of Amazon Web Services API). In
this Chapter, we also introduce and describe the GridSpace virtual labora-
tory. Utilization of the previously listed middleware tools in MUST is also
mentioned in the summary.

The MUST tool is described in detail in Chapter 7, a general concept of
the tool is speci�ed, followed by a presentation of detailed requirements and
a description of some use cases. Subsequently, the tool's layered architecture
is described and depicted, divided into two sections�one for the Grid and
one for the Cloud architecture. Detailed diagrams showing cooperation of
consecutive layers are also included. We list as well the steps performed
before, during and after execution of the particular multiscale application
using the MUST tool, which are depicted on the suitable sequence diagrams.

Chapter 8 describes MUST's implementation details, with a class dia-
gram included, showing the similarities and implementation di�erences on
both Grid and Cloud computing infrastructures. The chapter ends with a
discussion about possibilities of expansion, divided into supporting both new

16

execution environments and other coupling libraries.
Various performance results are included in Chapter 9. The tests per-

formed include a division into various stages of execution (including submis-
sion, execution and results gathering stages). A scienti�c application (In-
stent restenosis 2D, described in detail in Section 2.3) was used to achieve
conclusive results. All tests were performed on both Grid and Cloud in-
frastructures. The chapter is summarized by a discussion of the measured
performance results.

Appendix A is the short glossary of uncommon terms and abbreviations
used in this Thesis.

Appendix B shows various examples of MUST usage. A sample GridSpace
experiment which may be launched using MUST is included as well as its de-
tailed description. Some MUST's command line usage are also demonstrated.
The Chapter ends with a short description of the MUST installation.

Appendix C includes The Comparison of Cloud and Local HPC approach
for MUSCLE-based Multiscale Simulations paper (by K. Rycerz and co-
authors M. Nowak, P. Pierzchala, M. Bubak, E. Ciepiela and D. Harezlak).

1.4 Contribution of other authors

MUST was developed as a part of the GridSpace virtual laboratory (GS)[44].
GS enables development, sharing, execution and reusability of the so-called
experiments�sets of high-level scripts created by scientists (more details in
Section 6.2).

The initial version allowed running MUSCLE-based multiscale applica-
tions on the grid infrastructure. It was developed by Pawe l Pierzcha la and
the author of this Thesis. Pawe l Pierzcha la focused on integration with
GridSpace while the author of this Thesis concentrated on the usage of the
grid resources. MUSCLE usage, live results streaming, etc. was a result of a
joint work of Pawe l Pierzcha la and the author of this Thesis.

After �nishing the initial version, Pawe l Pierzcha la continued building a
graphical tool which allows mapping groups of single scale simulations to
computing nodes. That JavaScript based tool was developed to cooperate
with the GridSpace virtual laboratory as an external Web application[2].

Concurrently, the author of this Thesis developed a tool which allowed
launching MUSCLE multiscale applications on the Amazon Web Services-
based cloud infrastructure.

17

18

2 Multiscale applications

In this Chapter, we introduce the concept of multiscale applications (Section
2.1). The common requirements of multiscale applications are presented in
Section 2.2 while Section 2.3 presents some exemplary multiscale problems
and applications from various �elds of science.

2.1 Introduction

Multiscale modeling is nowadays used in multiple �elds of science. Examples
include Physiology, Computational Biology, Engineering and Nano-material
Science [1].

The multiscale model may be perceived either as a single model span-
ning many spatial and temporal scales or as a set of coupled single scale
models (as presented on Figure 1). Models at various scales require simula-
tion at di�erent levels of detail (ranging from intermolecular to macroscale
interactions).

TT

L L

Figure 1: The same model shown as a single multi-scale model and decom-
posed to the set of single-scale models (based on [1]).

Multiscale applications cannot be easily decomposed by nature�they con-
sist of many components which are often tightly coupled. Each component
may be simulated separately using di�erent techniques (by molecular dynam-
ics, cellular automata or Monte-Carlo methods, etc.).

2.2 Requirements

Multiscale applications are widely used as tools helping to understand com-
plex processes. Multiple single scale simulations forming one multiscale ap-
plication are often computationally heavy. Receiving results in real time is
crucial in some appliances (e.g. when aiding health-related decisions).

19

Computing, communication and storage requirements

Multiscale applications may require very large computing capabili-

ties (sometimes exceeding PetaFlops [1]). Communication between compu-
tational processes (both at the intra- and inter-simulation level) may easily
become the application's bottleneck.

This is the main reason why the concurrent execution and an e�ective
communication between single scale models is a crucial task. There are sev-
eral approaches to communication between single scale models (as described
in [3], e.g. the timing of a particular simulation may be regulated by another
one, there may be a rollback needed, etc.).

Signi�cant amounts of data are often used and/or produced by multiscale
applications. This is why many multiscale applications require the utiliza-
tion of large and easily accessible storage devices.

Simulation dependencies and model description

Dependencies between single scale models are highly diversi�ed. Models
may have to be simulated concurrently or sequentially. Simulation of the
same period in various spatial scales may require varied computing capabil-
ities resulting in di�erent simulation times (i.e. a simulation of 1 second of
blood �ow may take signi�cantly longer when simulated on cell level than
when simulated on vessel level�nevertheless simulation results on each level
may a�ect another one).

The description of models themselves and their cooperation is an
important requirement. Models should be described in a clear, structured
way so that they could be easily understandable and reusable. XML-based
model description languages (e.g. SBML, CellML) usually meet these re-
quirements. Although there are many formats available a single standard
has not been chosen yet (as discussed further in Chapter 3).

While there are a few model description languages describing single scale
models, there are signi�cantly less languages which would describe connec-
tions and dependencies between models (i.e. languages which would model
a whole multiscale application). For instance, the MML language (described
also in Chapter 3) attempts to achieve this goal.

There are multiple tools facilitating execution of multiscale applications.
For example, the AMUSE library [18] is used for simulation of stellar sys-
tems. Other examples include MCT [19, 20] and MUSCLE [21], which are
more general purpose tools. MCT operates on a slightly lower level than
MUSCLE. MUSCLE uses the CxA model description format (described in
Section 3.2. The tools mentioned above, allowing simulation of existing mod-
els, are described more widely in Chapter 4.

20

2.3 Examples

Mutliscale problems from various �elds of Science are brie�y described below.
Example domains include Physiology, Flow Control and Fusion processes. All
the presented applications span many spatial and temporal scales and require
supercomputing capabilities to be modeled.

Physiology

The �rst example of a multiscale application is a multiscale model of
in-stent restenosis created in the COAST project [4].

Coronary artery disease remains the most common cause of death in
Europe. It refers to stenosis of coronary arteries caused by accumulation of
atheromatous plaque[1, 5]. Possible treatment involves the use of a metal
frame (stent) to maintain an open vessel lumen. Unfortunately, there is a
common complication�in-stent restenosis (ISR)�which is the return of the
vessel lumen to a size similar to that before intervention.

Figure 2: A Scale Separation Map depicting the dependencies between single
scale models forming the simulation of In-Stent Restenosis (based on [6, 5]).

Modeling ISR may help to understand and prevent this ailment. Processes
participating in ISR act on scales from microns up to centimeters. Temporal
scales involved are also widely separated (from seconds to months). The
factors such as administered drugs or changing blood pressure a�ect the
patient on multiple scales, ranging from individual cell characteristics up to

21

global hemodynamics. Figure 2 shows a simpli�ed Scale Separation Map
(a diagram type described in Section 3.2) proposed by Evans et al. in [6],
depicting dependencies between single scale models forming a simulation of
ISR.

A real time simulation of 3D ISR models is crucial in many areas (e.g. de-
signing patient-speci�c chemotherapy and radiotherapy applications). This
simulation however requires up to thousands of processors.

Flow Control

Figure 3: A Scale Separation Map depicting the single scale models used to
simulate water �ow (based on [1]).

Flow control model developed by the Universit�e de Geneve in collabora-
tion with the Ecole Sup�erieure d'Ing�enieurs en Systemes Industriels Avanc�es
Rh�one-Alpes is another example of a multiscale problem.

Simulating �ow of canals and rivers is an important task. It may help to
maintain the adequate water levels needed in agriculture, water transport,
etc., and, which is even more important, it may help to avoid �ooding.

Three models at di�erent scales are involved in simulating the full system
of irrigating canals[1, 9]:

22

1. One-dimensional shallow water equation for simulating the water �ow
in long canal sections. This model considers the sediment transport
which may have a signi�cant in�uence on the water �ow (i.e. irrigation
e�ciency reduction).

2. Two-dimensional shallow water equation for simulating branching and
large water pools.

3. Three-dimensional, free-surface model is used in simulations of a de-
tailed �ow of water in gates and/or in descriptions of the sediment
transport. This simulation uses Lattice Boltzmann Model for Free Sur-
face Flow[10].

The third model requires supercomputing capabilities. Figure 3 shows a
Scale Separation Map which includes 1D shallow water model, 3D free-surface
model and scales at which each model is used.

Fusion

Another example of a multiscale problem includes modeling fusion pro-
cesses proposed as a part of the ITER[11] project. The project focuses on
a description of core plasma in a tokamak. A tokamak1 is a toroidal device
using a magnetic �eld to con�ne plasma. The range of scales modeled in the
application is depicted in Figure 4.

Hydrogen atoms collide in the core of the Sun and fuse into heavier He-
lium atoms. The fusion of two atoms produces great amounts of energy (as
calculated in Einstein's formula E = mc2). The ITER project models fusion
processes so that they can be used to produce commercially available energy.
To achieve that, complex states need to be modeled.

An example of such a state is an equilibrium describing the reference
plasma state and a series of equilibria varying in the edge current and edge
pressure pro�les. A stability analysis needs to be performed on each equilib-
rium in order to show the stable region and instabilities at its boundaries[1].

Computational Biology

The last example of a multiscale problem presented in this Chapter is
the modeling of bile acid and xenobiotic system, performed as a part of the
NucSys program[8].

An analysis of interactions between several components of a biological
system may help to understand the system as a whole. E�orts have been

1Tokamak�Russian ÒÎðîèäàëüíàÿ ÊÀìåðà ñ ÌÀãíèòíûìè Êàòóøêàìè�a
toroidal chamber with magnetic coils

23

Figure 4: Range of scales modeled in the fusion multiscale application.

made to model processes at di�erent scales, ranging from molecular to organ
level and from fractions of a second to months.

An example of such a multiscale process is the previously mentioned
modeling of bile acid and xenobiotic system (BAXS). It comprises model-
ing the processes of metabolism, conjugation and modi�cation and transport
phases[1].

The supercomputing capabilities used for modeling this system may result
in a better understanding of the model's parameters and the model's reaction
to various experimental conditions.

24

2.4 Summary

In this Chapter, we introduced multiscale applications, their requirements
and examples. Studying multiscale applications requirements shows that
they require not only supercomputing capabilities to run simulations but
also an e�cient description language to aid development, cooperation and
reusability of models. Popularization of easy to use middleware libraries
which enable an automatic code-stubs creation is also vital.

This Chapter presented various examples of multiscale applications. Con-
current (and/or sequential) simulation of di�erent single scale models is used
in domains as distant from each other as Flow Control and Fusion processes.

Frequently used and recently proposed model description languages are
described in subsequent Chapter. A review of the various single scale models
coupling tools is also presented in Chapter 4.

25

26

3 Model description languages

This Chapter brie�y presents various model description languages, their com-
mon usage and collaboration with the MUST tool. In Section 3.1 we focus
on the languages used mainly for describing single scale models. Section 3.2
introduces a new language, MML, the main target of which is the modeling
of multiscale applications as a whole (including interactions between single
scale models). In Section 3.3 we compare the previously introduced types of
languages.

3.1 SBML and CellML

Both Systems Biology Markup Language (SBML) [12] and Cell Markup Lan-
guage (CellML) [13] focus on description of the models themselves (i.e. they
do not stress describing connections and interactions between models or sim-
ulation details). SBML focuses on modeling physical and chemical phenom-
ena, whereas CellML is primarily used to describe mathematical models of
cellular biological function[13]. Physical phenomena are mostly described by
di�erential equations and linear algebra.

SBML

SBML models are hierarchical. An SBML model may contain various
child elements: notes, functions, units, compartments, species, parameters,
rules, reactions and events. The so-called compartment is, in fact, a single
model with a certain spatial and temporal scale de�ned. Unfortunately,
compartments can only be contained in another compartment (i.e. no other
relation between compartments is possible). Species sections may represent
chemicals used in the model (ranging from simple ions to complex structures
like RNA).

Figure 5 shows an exemplary fragment of an SBML �le. Example units,
compartments and species are de�ned.

CellML

CellML models are built from a set of smaller components. A component
may represent a physical object (i.e. a cell), a physical or chemical reaction
or a simple variable.

Besides components, a CellML model may contain unit, group, connection
and import sections. The unit section is used for de�ning complex units
(just like a similar section in SBML). The group section describes physical
and logical component relations. There are two prede�ned relations�physical

27

...

<Model name="EnzymaticReaction">

<ListOfUnitDefinitions >

<UnitDefinition id="per_second">

<ListOfUnits >

<Unit kind="second" exponent="-1"/>

</ListOfUnits >

</UnitDefinition >

<UnitDefinition id="litre_per_mole_per_second">

<ListOfUnits >

<Unit kind="mole" exponent=" -1"/>

<Unit kind="litre" exponent="1"/>

<Unit kind="second" exponent="-1"/>

</ListOfUnits >

</UnitDefinition >

</ListOfUnitDefinitions >

<ListOfCompartments >

<Compartment id="cytosol" size="1e-14"/>

</ListOfCompartments >

<ListOfSpecies >

<Species compartment="cytosol" id="ES"

initialAmount="0" name="ES"/>

...

Figure 5: SBML �le fragment example.

containment and encapsulation (representing a logical component hierarchy).
The connection section is used to connect variables between components (so
that a change in a particular model may a�ect another model). The import
section may be utilized to reuse the previously de�ned compartments and
units.

Figure 6 shows a fragment of a CellML �le. The units are de�ned in a
fashion similar to SBML. An example compartment with several variables is
also shown.

SBML models may be described on a higher level of detail than CellML
models. CellML models are more loosely coupled, therefore they allow slightly
easier reusability (by use of compartments).

28

...

<Units name="concentration_units">

<Unit units="mole" prefix="milli"/>

<Unit units="litre" exponent="-1"/>

</Units >

<Component name="intra_cellular_space">

<Variable name="Na" units="concentration_units"

public_interface="out"/>

<Variable name="Ca" units="concentration_units"

public_interface="out"/>

<Variable name="time" units="second"

public_interface="in"/>

...

Figure 6: CellML �le fragment example.

Both SBML and CellML may describe models from di�erent �elds at
many scales. Both languages were designed for ease of models reusability.
Unfortunately, in CellML the only possible relation between models (or com-
partments) is inclusion. Connections between compartments can be de�ned.
On the other hand, SBML does not allow to de�ne relations or connections
between models. Therefore, SBML and CellML are the tools suited for de-
scribing a single scale model rather than a set of models at di�erent scales.

There are many tools which support creation (OpenCell, E-Cell, CellML
Viewer) and/or simulation (JSim�supporting both CellML and SBML) of
CellML and SBML models. Large repositories2 of both CellML and SBML
models exist.

3.2 MML and CxA

Multiscale Modeling Language (MML) [14, 15, 16] is a concept language
proposed as a part of the Mapper project. MML can be used to describe
models similarly to SBML and CellML. Furthermore, MML can describe the
coupling between single scale models (including relations between computa-
tional domains and scales), and the types of coupling (coarse graining, scale

2Such as http://physiome.org, http://models.cellml.org, http://e-cell.org/
ecell-models or http://www.ebi.ac.uk/biomodels-main/

29

http://physiome.org
http://models.cellml.org
http://e-cell.org/ecell-models
http://e-cell.org/ecell-models
http://www.ebi.ac.uk/biomodels-main/

splitting, ampli�cation). MML models can be described in the xMML for-
mat (XML Multiscale Modeling Language) and depicted using the graphical
representation of MML�gMML (Graphical Multiscale Modeling Language).

MML describes accurately connections between models. Various types of
sent information are distinguished (e.g. information sent during or after com-
putation, initial conditions, information updating the domains or boundaries,
information regarding scales, etc.).

Single scale models in MML are standalone and were designed for ease
of reusability. MML introduces �lters�they can be used as links between
models and perform required transformation of the exchanged data (including
change of scale, interpolation or decimation).

MML also describes mappers�entities controlling the �ow of information
between models. A mapper gathers information from all connected models,
then processes and combines it as required and, �nally, sends it to receiver
models.

Figure 7: An example Coupling Diagram showing ISR (described in Section
2.3) application (based on [1]).

MML models may be easily depicted using gMML. There are two kinds
of diagrams in gMML: Scale Speci�cation Maps (SSM) and Coupling Dia-
grams. SSM illustrates the coupling of di�erent scale models. It is suited for
depicting models with well separated scales. Coupling Diagram which shows
interactions between single scale models is best suited for depicting more

30

complex multiscale applications. It may contain all the elements of MML
(including �lters, mappers and �ow of information).

Figure 7 shows an example of Coupling Diagram. Single scale submodels
are shown as rectangular boxes. Couplings between submodels are shown
as di�erently styled connectors. Filled ends of a connector are attached to
the submodels sending data and empty ends are attached to the submod-
els receiving data. Connectors may be labeled to describe data transferred
between models. Di�erent connector types are described in detail in [14].

set physical properties

cxa.env["kin_viscosity[m2/s]"] = 4E-6

cxa.env["U_max[m/s]"] = 0.121

cxa.env["rho0[kg/m3]"] = 1000

...

declare kernels

cxa.add_kernel('bf',

'kernel.flow3d.FlowTestController ')

cxa.add_kernel('smc',

'kernel.smc2d.SMCController ')

cxa.add_kernel('smc2bf ',

'cxa.cxa3d.smc2bf.ObsArray2IncrementalLists3D ')

...

configure connection scheme

cs.attach('smc2bf ' => 'bf') {

tie('StaticSolid ', 'BFObsExit ')

tie('NewSolid ', 'BFincSolidExit ')

tie('NewFluid ', 'BFincFluidExit ')

}

...

Figure 8: CxA �le fragment example.

The xMML format may be used as a base for generating code for coupling
libraries such as MUSCLE (described in Section 4.3).

There are several tools using the xMML format, e.g. MAD (Multiscale
Application Designer) and MAME (Mapper Memory)[1] developed as a part
of the MAPPER project. MAD allows modeling multiscale applications in

31

a graphical environment. The resulting graphs can be stored as (or loaded
from) xMML. Moreover, MAD supports creation of CxA �le stubs. The
second tool, MAME, allows storing, sharing and reusing various metadata
describing multiscale applications (including mappers, �lters and even im-
plementations). MAME can also store xMML application descriptions (so
that they could be easily accessed by other MAPPER tools).

CxA�MML prototype

The Complex Automata theory (CxA)[17] is a methodology for modelling
complex multiscale systems. A Complex Automaton is a set of connected
Cellular Automata and agent-based models, every one of them represent-
ing a single-scale simulation. Each automaton may consist of several other
automata (hierarchical coupling).

The CxA theory is a base for the MUSCLE framework (described in
Section 4.3). Each MUSCLE simulation must contain a con�guration �le,
de�ning kernels (each representing a single automaton) and the connections
between them.

The con�guration �le itself is written in Ruby programming language,
therefore it is strongly attached to the MUSCLE framework.

Figure 8 shows an example fragment of CxA �le. First, the environmental
physical properties are set in the example. Then the computing kernels are
declared and a connection scheme between them is con�gured.

3.3 Comparison

CellML and SBML are primarily used as single scale model description lan-
guages, therefore their possible uses as a primary tool for describing a mul-
tiscale application are limited. Although, they may be the best choice if it
comes to modeling a single model contained in the application.

MML is a promising format, although not yet an established standard
(such as CellML and SBML in their �eld). Tools such as MAME or MAD[1],
which use MML, may help to promote the language. If MML earns well-
deserved recognition it may become a leading format in description of mul-
tiscale models. The use of MML would certainly facilitate the design and
development of multiscale applications. The proposed MML diagrams are
also a tool which may ease the transfer of knowledge about legacy applica-
tions.

CxA is a successfully used format, although not a model description lan-
guage per se. Its tight coupling to the MUSCLE framework greatly limits
the possibility to use it with other libraries.

32

The tools allowing conversion from xMML to a library speci�c description
format or even code stubs (as proposed in [14]) would certainly help promote
MML as a multiscale model description language.

3.4 Summary

In this Chapter, we presented various model description languages. Lan-
guages aiming at detailed single scale models descriptions (SBML, CellML)
have been introduced and described. XML code samples were shown and
discussed.

The MML language and related diagram types describing multiscale ap-
plications as a whole were introduced in Section 3.2. We also presented an
example of a CxA �le and its relation to the MML language and the MUS-
CLE library.

This Chapter ended with a short comparison of di�erent types of model
description languages.

33

34

4 Coupling libraries

This Chapter presents di�erent coupling libraries used for building multi-
scale applications. In Sections 4.1�4.3 we introduce three example libraries.
Section 4.4 compares the previously introduced tools.

4.1 AMUSE

Astrophysical Multipurpose Software Environment (AMUSE) is a framework
for large-scale simulations of stellar systems (dynamics, stellar evolution,
hydrodynamics, radiative transfer, etc.).

Figure 9: AMUSE architecture overview (based on [18]).

AMUSE is a tree layer framework, the layers being:

1. User Script layer�de�nes a speci�c problem and couples two or more
codes from the lower layers.

2. AMUSE Code layer�a generic layer providing an object oriented inter-
face on top of the legacy codes.

3. Legacy Codes layer�de�nes interfaces to the legacy codes, contains
existing legacy codes (actual simulations).

35

Each higher layer adds functionality to the lower layer.
The AMUSE framework is written in Python with use of the Message

Passing Interface. The �rst layer user scripts are written in Python. It is
possible to integrate legacy C++ or Fortran code with the AMUSE frame-
work.

Figure 9 shows an overview of the AMUSE architecture. Python scripts
can be used to access the underlying AMUSE code layer which enables ac-
cessing the underlying codes using MPI.

4.2 MCT

The Model Coupling Toolkit (MCT)[19, 20] is a library for coupling mod-
els to form a parallel coupled model. MCT was build to bring together
the parallel submodels which form the Community Climate System Model
(CCSM). MCT solves problems of transferring data between di�erent paral-
lel programs, allowing for e�cient data transfer for demanding interpolation
algorithms. The MCT library is scalable and high-performing.

Figure 10: MCT usage in Community Climate System Model (CCSM).

Figure 10 shows cooperation between MCT and various submodels form-
ing the CCSM model. MCT is used to transfer signi�cant amount of data

36

between submodels.
MCT is available as the Fortran library, but C++ and Python bindings

are also available through the external Babel library.

4.3 MUSCLE

Multiscale Coupling Library and Environment (MUSCLE)[21] is a framework
for running multiscale simulations. MUSCLE was primary developed in the
COAST project and is currently used in the MAPPER project[4]. MUS-
CLE allows running simulations based on the complex automata theory (as
described brie�y in Section 3.2).

A complex automaton is a group of cellular automata and agent-based
models. A MUSCLE simulation is a group of independent kernels�single
scale simulations wrapped into a controller agent communicating with the
core kernel (a plumber). Optional conduit �lters may be used to alter data
transferred between kernels. A conduit �lter may perform simple transforma-
tions such as scale altering or coordinate conversion. A MUSCLE simulation
can often be depicted using a Scale Speci�cation Map (Section 3.2).

Figure 11 shows an example MUSCLE environment. Kernel 1 commu-
nicates with kernels 2 and 3. A conduit �lter is used for altering the data
transferred from kernel 2 to kernel 3. A plumber kernel is also depicted.

The MUSCLE framework is written in Ruby and Java, based on the Java
Agent DEvelopment framework (JADE) [22].

MUSCLE allows developers to write kernels in Java and (using a supple-
mentary library) in native code (C++/C, Fortran). Each kernel must de�ne
the scale it is operating at and the portals (in/out connections) it is using.
Kernels can be connected using a con�guration �le (CxA, Section 3.2).

37

kernel 1

kernel 2

kernel 3

plumber

conduit filter

MUSCLE environment

(a) A simple MUSCLE environment example.

declare kernels

cxa.add_kernel('kernel1 ',

'example.kernel.Kernel1 ')

cxa.add_kernel('kernel2 ',

'example.kernel.Kernel2 ')

cxa.add_kernel('kernel3 ',

'example.kernel.Kernel3 ')

configure connection scheme

cs.attach('kernel1 ' => 'kernel2 ') {

tie('OutA', 'InA')

}

cs.attach('kernel1 ' => 'kernel3 ') {

tie('OutB', 'InB',

Conduit.new("example.filter.ConduitFilter"))

}

(b) A CxA �le fragment.

Figure 11: A MUSCLE environment example with a CxA �le fragment de-
scribing it.

38

4.4 Comparison

Table 1 presents a short comparison of the previously described coupling li-
braries. The AMUSE and the MUSCLE frameworks seem to operate on a
similar level of abstraction, whereas the MCT library solves the lower level
problems, more related to parallel programming than to multiscale simula-
tions.

MUSCLE library is more generic than AMUSE (AMUSE is limited to the
large-scale stellar simulations).

AMUSE MCT MUSCLE
Level Multiscale

simulations
Parallel pro-
gramming

Multiscale
simulations

Scope Stellar simu-
lations

Generic Generic

Supported
languages

C/C++, For-
tran, Python

C/C++, For-
tran, Python

C/C++, For-
tran, Ruby,
Java

Table 1: Coupling libraries comparison.

The three libraries compared allow the developer to use similar sets of
programming languages (C++, C and Fortran for native code). AMUSE
and MCT o�er Python bindings, whereas MUSCLE kernels can be written
in Java and the con�guration �les�in Ruby (as the whole framework is based
on these two languages).

The MUSCLE framework seems to be the best suited tool for high level
multiscale simulations. On the other hand, the MCT library may be the best
choice for the parallel applications for which the performance is crucial.

39

4.5 Summary

In this Chapter, we presented three example coupling libraries (AMUSE,
MCT and MUSCLE) which can be used to aid execution of multiscale simu-
lations. After introducing each library, we presented their short comparison.

The MUST tool presented in this Thesis uses the MUSCLE framework
based applications. The MUSCLE framework was chosen as the tool best
suited for running multiscale applications because it operates on a high level
of abstraction (contrary to the MCT toolkit) and is not a problem-specialized
tool (as AMUSE). Its close relationship to the MML language was also an
advantage, as MML aims at describing single scale models and interactions
between them (i.e. whole multiscale applications). Section 3.2 describes
MML in detail.

40

5 Infrastructures

This Chapter presents the grid and the cloud infrastructures. Various def-
initions of the grid are quoted in Section 5.1, which contains also a list of
the most notable grid characteristics. Section 5.2 describes cloud comput-
ing: introduces its de�nitions and characteristics. Section 5.3 compares the
grid and the cloud infrastructures, highlighting the di�erences and similari-
ties between them. Aspects such as programming model, computing model,
usability and standarization are compared in detail. Furthermore, both grid
and cloud architectures are compared.

5.1 Grid

The term grid computing was �rst used in Ian Foster and Cart Kesselman's
work The Grid: Blueprint for a new computing infrastructure[23]. It is a
metaphor for computing power being as common and easy to access as public
utilities such as electricity and water. Since then, many grid de�nitions
emerged.

De�nitions

Ian Foster, in his 2002 work What is the Grid? A Three Point Check-
list [24], de�nes a grid as a system that:

1. coordinates resources that are not subject to centralized control

2. using standard, open, general-purpose protocols and interfaces

3. to deliver nontrivial qualities of service.

In his de�nition, Foster highlights the grid's independence from any cen-
tralized form of control. A grid system serves many di�erent types of users
oriented to various types of resources. A Grid system should also use standard
protocol and interfaces to perform such fundamental tasks as user authenti-
cation, local and global security policies application, resource management.
These qualities should allow the grid system to deliver service of a higher
quality than a sum of it parts (e.g. meaning the automation of inter-system
communication, single sign on policy, lower response times, higher availability
and security levels).

Vaidy Sundernam proposes the following de�nition of a grid system [25]:

• A grid system is a paradigm/infrastructure that enables the sharing,
selection and aggregation of geographically distributed resources (com-
puters, software, data/databases, people)

41

• depending on availability, capability, cost, QoS requirements

• for solving large-scale problems/applications

• within virtual organizations.

Moreover, according to Vaidy Sundernam a grid system is NOT:

• The Next generation Internet

• A new Operating System

• Just (a) a way to exploit unused cycles (b) a new mode of parallel
computing (c) a new mode of P2P networking

Sundernam emphasizes the geographic distribution of resources and their
structured arrangement within Virtual Organizations. A Virtual Organiza-
tion (VO) is a logical set of groups/institutions created to solve a common
problem using the grid resources. Resource sharing, access restrictions, se-
curity policies etc. may be applied on the level of a Virtual Organization.

In [23] yet another grid de�nition is proposed by Foster and Kesselman:
A computational grid is a hardware and software infrastructure that pro-

vides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities. This concise de�nition stresses high quality of
grid services and large scale computing capabilities of the grid.

A common vision of a grid system emerges from all the de�nitions. It is
a dependable infrastructure, o�ering the highest computing (and not only)
capabilities by a common e�ort of many geographically spread institutions.
Below, we present the main di�erences between the grid and a traditional
distributed system or a computing cluster.

Grid Characteristics

The most signi�cant grid characteristics which distinguish the grid from
other distributed systems and computing clusters are brie�y described below:

• Grid systems bring together heterogenic resources (as opposed to a dis-
tributed system) from di�erent physical locations. It forces the cooper-
ation with Wide Area Networks (which is rarely the case in computing
clusters).

• Cooperation of numerous Virtual Organizations allows solving higher
scale problems. Interoperability between VOs (intra-grid) and between

42

grid systems (inter-grid) is assured by the common open protocols and
interfaces (few to none closed proprietary solutions are used).

• Grid systems are more generic and o�er diversi�ed resources as opposed
to distributed systems and clusters which are often computing power-
oriented.

Grid systems are generic tools having wide problem-solving appliance. Al-
though the use of grid-speci�c tools is often needed but only once employed,
it is easy to migrate between di�erent grid systems thanks to uni�ed archi-
tecture.

5.2 Cloud

Cloud computing is a metaphor for the abstraction of actual resources it
represents. In general, cloud computing is associated with scalable computa-
tional resources available on a pay-per-use basis. There are three basic types
of services exposed by Clouds.

1. Infrastructure as a Service (IaaS)�basic services (such as computa-
tional power, data storage) are available to the customers through ab-
straction and virtualization (i.e. computational power is abstracted to
virtual machine instances, storage�to �lesystems). Amazon Web Ser-
vices (described further in Section 6.3) are probably the largest cloud
services o�ered in such model.

2. Platform as a Service (PaaS) adds an extra abstraction level to IaaS.
The service provided is an actual platform on which customer applica-
tions may run. This model hides unnecessary details from the customer
(i.e. scaling of the application may be transparent for the customer de-
veloper). An example of such model is the Google App Engine[28].

3. Software as a Service (SaaS) exposes to users applications running in
cloud systems. Such applications may be accessed from devices with
small computational power (such as mobile devices, PDAs). Google
Docs[29] is an example of SaaS. Although this application does not
require large computing power (so it could be run on a PC), it takes
advantage of being hosted in the cloud di�erently�by enabling docu-
ment sharing between users (such a functionality is more natural since
the whole application is run in the cloud).

43

Clouds may expose services on slightly di�erent levels (theoretically, SaaS
could be built on PaaS which could be deployed to IaaS) but there are def-
initions which try to �nd intersection between these kinds of services. The
de�nition proposed in [27] is quoted below:

Clouds are a large pool of easily usable and accessible virtualized resources
(such as hardware, development platforms and/or services). These resources
can be dynamically recon�gured to adjust to a variable load (scale), allowing
also for an optimum resource utilization. This pool of resources is typically
exploited by a pay-per-use model in which guarantees are o�ered by the In-
frastructure Provider by means of customized Service Level Agreements.

This de�nition includes the key cloud features: virtualization, dynamic
scalability, pay-per-use (utility-like) model and SLAs application. Other
characteristics of the cloud mentioned in [27] are: user-friendliness, located
in (available by) the Internet, variety of resources, automatic adaptation and
resource optimization.

Some of these features (especially variety of resources, automatic adaption
and resource optimization) could characterize also grids. On the other hand,
user-friendliness does not seem to be a feature of grids. Doerksen in [30] even
goes as far as saying that Cloud computing is ... the user-friendly version of
grid computing, which is an obvious exaggeration.

5.3 Comparison

In 1990s, Grids were thought of as a technology which would allow consumers
to use computing capabilities as a public utility (the term Grid itself comes
from a comparison to the electrical grid). The growth of Grids was moti-
vated by a good cause�to provide high computing capabilities transparent
to everyone, using open protocols and interfaces.

Two decades later, supported by multi-billion dollar budgets of companies
like Amazon, Google and Microsoft, Clouds emerged. The aim of those
companies was slightly di�erent�to bring computing power to the customers.
Clouds use mostly proprietary solutions, they o�er simple APIs, but there is
little to no support for interoperability between di�erent providers.

Both the Grid and the Cloud serve a similar purpose�to provide large
scale computing capabilities for end-users. Table 2 shows a short comparison
of the Grid and the Cloud infrastructures in a few di�erent �elds.

44

Grid Cloud

D
e�
n
it
io
n
s In 2002, Ian Foster created a short

checklist de�ning a Grid:

1. Grid resources are not sub-
ject to centralized control.

2. Grid uses standard, open,
general-purpose protocols
and interfaces.

3. Grid provides non-trivial
qualities of service.

Corresponding checklist describing
a Cloud:

1. Cloud resources are often
governed by a single organi-
zation.

2. Proprietary solutions are
used, no interoperability
between providers has been
established so far.

3. Cloud provides non-trivial
qualities of service.

B
u
si
n
es
s
M
o
d
el Resources (i.e. CPU hours) are as-

signed per project. Virtual Orga-
nizations use resource trading.

End-users pay for the resources
consumed (a payment model simi-
lar to basic resources such as elec-
tricity, water etc.).

C
om

p
u
te

M
o
d
el Resources are governed by a queu-

ing system (such as PBS). Inter-
active tasks are rarely supported.
However, e�orts have been made
to lower the latencies to resources.

Resources are shared by all users
at the same time. This model al-
lows latency-sensitive applications
to operate. QoS may be di�cult
to preserve when the Clouds grow
in scale and number of users.

D
at
a
M
o
d
el As the amounts of data to process grow exponentially, the

data transfer becomes the bottleneck of large scale computing.
This is the concern of Grids as well as Clouds. E�orts have
been made to ensure that data is processed in the nearest
available location. Nevertheless, assurance of high QoS in
such scenarios seems to be a challenge yet to be faced by
both Grids and Clouds.

45

Grid Cloud

V
ir
tu
al
iz
at
io
n Grids do not use virtualization as

often as Clouds (although some
VOs may do so). However, there
are technologies such as Nimbus
which provide virtualization in the
Grid. Its main purpose is to cre-
ate virtual workspaces in separa-
tion from the physical resources.

Virtualization in the Cloud is used
for separating the service from
the physical infrastructure. It
also helps to provide Service Level
Agreement as the virtualized re-
sources are easier to raise back in
case of failure.

P
ro
gr
am

m
in
g
M
o
d
el Grid programming does not dif-

fer much from the standard dis-
tributed programming, although
there are some extra factors which
have to be taken into considera-
tion, such as: restricted access to
resources, heterogenic resources,
di�cult exception handling.

Clouds (e.g. Amazon Web Ser-
vices, Microsoft's Azure) gener-
ally o�er pre-de�ned web services
API (although integration of ap-
plications between di�erent service
providers is not a trivial task).

S
ec
u
ri
ty

M
o
d
el Security has always been a fun-

damental part of Grids design as
Grid spans on multiple organiza-
tions, each applying their own ad-
ministration policy. Grids support
single sign-on, delegation (user's
program may inherit user's access
rights) and privacy. User creden-
tials required for login are never
transported in an insecure way
(i.e. emailed)�this policy is time-
consuming but ensures a high level
of security.

Clouds generally use slightly lower
level of security than Grids. All
user credentials may be creat-
ed/changed online. That may
present a potential risk (e.g.
emailed passwords). It is in Cloud
service providers interest to ensure
the customers that their data is
treated in a Grid-alike (i.e. re-
dundant data storage, knowledge
of physical localization of data, re-
stricted access to data, etc.).

U
sa
b
il
it
y Although they aim at usability

from the beginning, Grids are still
not very user-friendly. The devel-
oper has to be aware of many mid-
dleware tools necessary for using
the grid. Applications require a
special design to be grid-runnable.

Clouds have been designed for
usability. There are no special
changes or design required for the
applications to run in the cloud.

46

Grid Cloud

S
ta
n
d
ar
iz
at
io
n Grids are based on open protocols

and interfaces. Interoperability
has always been a major concern in
the grid design. Well de�ned stan-
dards on every level of communica-
tion help to expand, upgrade and
maintain the grids.

Clouds are mostly proprietary and
the inner mechanisms have been
closed for the public. The lack
of standards in inner APIs and,
for example, virtual machine im-
age format is an inhibitory fac-
tor for the global expansion of the
Clouds.

T
y
p
ic
al

U
sa
ge

Grids are typically used for de-
manding batch jobs (spanning
hundreds to thousands of nodes)
requiring little to none user inter-
action.

Clouds are usually used for expos-
ing scalable services to the outside.

Table 2: Grid and Cloud comparison (based on [26, 27])

Figure 12 shows a comparison of the Grid and the Cloud architectures.
The architectures may seem similar but there are many di�erences.

Application

Collective

Connectivity

Fabric

Resource

(a) Grid architecture overview.

Application

Platform

Unified Resource

Fabric

(b) Cloud architecture overview

Figure 12: Grid and Cloud architectures comparison (based on [26]).

The Grid's fabric layer provides access to the underlying resources includ-
ing not only computing power and storage devices but also code repositories,

47

computed data or organization speci�c equipment. Resource managers (such
as PBS) reside in fabric layer. The above connectivity layer ensures stable
and secure communication. The resource layer is responsible for manag-
ing and restricting/providing access to individual resources. The application
layer uses the Grid resources provided by lower layers APIs.

The Cloud's fabric layer represents the actual physical resources used by
cloud services (most notably�the compute and storage resources). The above
uni�ed resource layer exposes and encapsulates the fundamental resources
(e.g. in form of a virtual machine or a �le system). The higher platform level
adds necessary middleware and APIs to the lower layers, so that they can be
accessed from the outside. The topmost application layer contains the actual
applications running in the cloud.

The Grid's layers seem to be better separated and more specialized than
those of Cloud. Each one of them has a single responsibility. This may be
the result of the well de�ned protocols and interfaces of the Grid.

5.4 Summary

In this Chapter, we presented grid and cloud computing. Firstly, various
grid and cloud de�nitions were quoted and, secondly the characteristics of
the Grid and the Cloud were speci�ed. We described also the three basic
types of services exposed by cloud computing (Infrastructure as a Service,
Platform as a Service and Software as a Service).

Later, grid and cloud computing were compared in detail with various
aspects taken into consideration, including programming model, computing
model and standarization of both infrastructures. Also, we compared sepa-
rately the layered architectures.

48

6 Accessing infrastructures

This Chapter presents middleware tools used for accessing the grid and the
cloud infrastructures described in the previous Chapter. Section 6.1 describes
a queuing system used to access local PL-GRID resources (on the example of
PBS�Portable Batch System). Section 6.2 introduces the GridSpace virtual
laboratory�a high level framework allowing access to Grid-based resources.
Section 6.3 describes an API used to access cloud computing, storage and
messaging resources (on the example of the Amazon Web Services API).

6.1 Local resources�Portable Batch System

One of the main requirements for the MUST tool was integration with locally
available PL-GRID resources. Those resources can be accessed using a PBS
queue.

The Portable Batch System (PBS)[31] is a tool which allows job schedul-
ing on distributed resources (most notably, cluster environments). PBS con-
sists of both server and client side components. The server component man-
ages queues and jobs, while the client components are mostly the commands
allowing the user to handle batch jobs.

The most important PBS features are:

• Running tasks serially or concurrently.

• Scheduler which supports priorities and time restrictions.

• Support for policies that restricting access to certain resources for var-
ious jobs.

There are tools which use PBS and expose a higher level API, such as
the grid middleware PBS-Globus interface[32]. It allows running jobs on the
grid-based resources without using grid-speci�c job scheduling interfaces.

The GridSpace Virtual Laboratory allows using PBS on the PL-Grid
resources through the language speci�c gems (described further in Section
6.2).

Other examples of queuing systems include OGE (Oracle Grid Engine,
previously Sun Grid Engine)[42] and LSF (Load Sharing Facility)[43].

6.2 Grid resources�GridSpace

An integration with the GridSpace virtual laboratory was another vital re-
quirement for the MUST tool.

49

The GridSpace Virtual Laboratory (GS)[44] is a high-level framework
which improves and facilitates the usage of Grid-based resources. It allows
scientists to develop, share and execute the so-called virtual experiments. A
GridSpace experiment is a set of scripts (each script is called a snippet�
available languages include Python, Ruby, Perl and Bash) which can be run
on the provided HPC resources.

Experiment Workbench
Experiment
Workbench
Layer

Experiment
Execution
Layer

Grid Fabric Layer

Gem Layer

Grid Fabric

Experiment Execution

Figure 13: GridSpace architecture overview (based on [44]).

GridSpace has been developed with high usability in mind. The main GS
advantages include:

• High-level experiments can be prepared by scientists in isolation from
the grid middleware layer.

• All GridSpace features are accessible through a simple to use yet pow-
erful Web 2.0 portal.

• Usage of the Single Sign On authentication mode (e.g. the PL-Grid
installation uses the PL-Grid LDAP directory) so that a logged user
may use the grid resources without any further authentication.

• Support for collaborative work (sharing experiments) with secure han-
dling of sensitive data such as user credentials or certi�cates.

Figure 13 shows a simpli�ed overview of the GridSpace layered archi-
tecture. The Experiment Workbench (a web browser accessible portal) layer

50

includes inter alia the Experiment Console and the Credential Manager. The
Experiment Execution Layer (EE) contains a plan of the experiment execu-
tion and various script interpreters. The EE layer calls the lower gem layer.
Gems are the small libraries providing APIs for the lower level resources in
a particular scripting language.

An example grid fabric middleware accessible through the gem layer in-
cludes PBS[31], gLite[33], Unicore[34] or QosCosGrid[35].

The role of GridSpace is similar to that of work�ow systems (e.g. Swift[36],
Kepler[37], Taverna[38], Triana[39], MyExperiment[40], Pegasus[41], etc.).

6.3 Cloud resources�Amazon Web Services

The Amazon Web Services (AWS) based cloud infrastructure was chosen as
the second execution environment for the MUST tool. Ease of access, wide
use and availability of many middleware tools providing access to AWS were
the main reasons behind the choice of this cloud environment. A wide range
of services was another signi�cant advantage.

Amazon provides a web services-based platform allowing users to use the
cloud infrastructure. All AWS are accessible through a SOAP API which is
a base for many programming languages APIs (including Ruby's RightAWS
library[50], AWS Java Library or AWS .NET Library). The most important
web services are brie�y described below.

6.3.1 Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2)[45] is the core web service provid-
ing scalable computing capabilities. A simple API allows developers to run
and manage numerous virtual machine instances (types di�erentiating in
con�guration of memory, CPU and hard drive are available). Various oper-
ating systems (including Microsoft Windows Server and many distributions
of Linux) may be used. Virtual machine images with preinstalled specialist
software (databases, web hosting software, etc.) are accessible.

A virtual machine (called an instance) may be started by means of a
SOAP API. It can be accessed via SSH. EC2 has been designed for easy use
with other AWS, such as Simple Storage Service (S3), Relational Database
Service (RDS) or Simple Queue Service (SQS).

6.3.2 Simple Storage Service

Amazon Simple Storage Service (S3)[46]�allows users to store data online.
Stored data may be public or private. Data is stored in so-called buckets. A

51

bucket is accessible through various authentication methods, while an object
within a bucket is identi�ed by a unique name. Each object may contain up
to 5 terabytes of data. Standard REST and SOAP APIs are available for
the data manipulation. The HTTP protocol is the default method of data
transfer but a BitTorrent interface may also be used. The data is stored
redundantly in a few localizations to minimize the probability of data loss.

6.3.3 Elastic Block Storage

Amazon Elastic Block Storage (EBS)[47] provides storage volumes which
can be used with running EC2 instances. Usual usage examples of such
volumes are databases, �le systems or raw block level storage. The state of
EBS volumes persists while detached from running EC2 instance, redundant
copies of the data are automatically created (transparently for the end-user).
It is possible to create a so-called snapshot of an EBS volume, which may
serve as a backup copy or the source for a new EBS volume. Amazon hosts
public data sets which may be used as an EBS volume (examples of data
available in such sets include: Annotated Human Genome Data, US Census
Databases, Freebase Data Dump, etc. [48]).

6.3.4 Simple Queue Service

Amazon Simple Queue Service (SQS)[49]�is a simple distributed queue mes-
saging service. SQS may be used for building a work�ow whose elements may
be on di�erent networks, using di�erent technologies and not even running at
the same time. SQS allows creating, reading and deleting messages. A read
message may become locked (i.e. not visible) for other machines processing
messages from the same queue. If processing fails, message is unlocked again.
Otherwise, the message may be deleted so that it is not processed multiple
times.

SQS queues may be shared between applications (i.e. multiple applica-
tions may have the access to the same queue) but simultaneously access to the
queues is restricted and requires the usage of one of the few authentication
methods (unless the queue is accessible anonymously).

6.4 Summary

This Chapter presented di�erent middleware tools operating on various levels
used by MUST to access and manage resources provided by the Grid and the
Cloud infrastructures.

52

The PBS queuing system which is used by the MUST tool to execute
applications on the local PL-GRID infrastructure was described in Section
6.1.

The GridSpace virtual laboratory, whose web interface allows the usage
of the MUST tool, was introduced in Section 6.2. Con�guration �les, startup
arguments and input sandboxes may be de�ned from the GS level. While
running in the Grid environment, MUST employs the previously mentioned
PBS pbsdsh command to allocate nodes and run a slave script on each of
them.

Amazon Web Services API described in Section 6.3 is used to communi-
cate with AWS from the MUST sender script level.

Detailed information regarding the usage of the mentioned tools is pro-
vided in subsequent chapters.

53

54

7 MUST User Support Tool

This Chapter presents MUST User Support Tool. Section 7.1 introduces the
MUST tool and lists its requirements. Then, in Section 7.3, various use cases
are presented.

Section 7.4 describes the MUST architecture (divided into the grid and
the cloud architecture). Sequence diagrams showing time dependencies are
also included in this Section.

7.1 Concept of MUST

MUST allows the end-users to run MUSCLE (Section 4.3) based multiscale
applications (such as ISR�Section 2.3) in form of a batch job from the
GridSpace (Section 6.2) level. It reserves applicable resources and then starts
each group of computing kernels on a separate working node. The standard
output and error streams are constantly submitted back to GridSpace and
displayed live. After the execution, results can be send back to GridSpace
for analysis.

MUST supports multiscale applications written using the MUSCLE li-
brary. They can be run both on the grid (Section 5.1) and the cloud (Section
5.2) infrastructures.

Running MUSCLE applications manually in distributed infrastructures
is very time-consuming. When using a local cluster, it requires requesting
the applicable number of working nodes using a PBS queue (Section 6.1),
then logging in to each working node and manually coupling the computing
kernels (i.e. specifying the group of computing kernels to be run on each
node and providing the physical address of the plumber; Section 4.3). The
manual process of starting a MUSCLE application using EC2 (Section 6.3.1)
is even more complicated�the user needs to start multiple virtual machine
instances, manually couple the computing kernels and download the result
�les (if necessary).

MUST simpli�es the process described above. The end-user can start
MUSCLE applications in distributed environment using the GridSpace vir-
tual laboratory�there is no need to request computing nodes or to start vir-
tual machine instances, as the computing kernels are coupled automatically
by MUST and, when using the EC2 version, the output �les are automati-
cally sent to the user's S3 bucket (Section 6.3.2).

MUSCLE-based applications require CxA (Section 3.2) con�guration �les
to de�ne the input/output parameters (which are exchanged between the
computing kernels) and the connection scheme of the computing kernels.
Various application settings may also be saved in CxA �les. MUST allows

55

the user to edit CxA in the GridSpace virtual laboratory. The edited CxA
�les are then sent to the cluster's working nodes or running virtual machine
instances and used by the MUSCLE application.

7.2 Requirements

Requirements for the MUST tool are described below.

Cooperation with GridSpace virtual laboratory

MUST had to be accessible from the GridSpace level so that users could
easily share experiments and results. Moreover, minimum to none changes
to the legacy applications are required.

Di�erent infrastructures support

MUST can execute applications on both grid and cloud infrastructures.
Applications have to be deployed manually, although there is a basic virtual
machine image which can serve as a base for a personalized image (for use
on the cloud infrastructure).

Ease of expansion

Support for other infrastructures and di�erent multiscale coupling li-
braries can be easily added to MUST. Logic concerning di�erent infrastruc-
tures is carefully separated. To expand the tool (i.e. add support for a new
infrastructure) the developer should implement a few steps (e.g. allocating
nodes, launching tasks, collecting output). The implementation details and
expansion possibilities are described in Sections 8.1 and 8.2 respectively.

56

7.3 Use cases

System

User
Setup experiment

Execute experiment
Execute experiment on Grid

<<extend>>
Execute experiment on Cloud<<extend>>

Terminate running experiment Gather results<<include>>

Run experiment
<<include>>

<<include>><<include>>

Figure 14: Use case diagram.

Figure 14 shows a use case diagram. The run experiment use case is
described below:

• Setup experiment�The user inputs experiment parameters and may
de�ne the input sandbox for cloud use.

• Execute experiment�The experiment is started on the chosen in-
frastructure (grid or cloud).

• Terminate running experiment�The running experiment may be
terminated. If it is running on the cloud infrastructure, after the ex-
periment has stopped (i.e. it has �nished or has been terminated),
computed resulting �les are gathered.

57

7.4 Architecture

GridSpace

MapperSender

MUSCLE

Infrastructure

Access Layer

Transport
/Execution Layer

Computational
Layer

Figure 15: Layered architecture overview.

Figure 15 presents the layered architecture of the MUST environment.
Please note that the layers presented on Figure 15 are separated conceptually
rather than physically.

The Access layer is responsible for interaction with the end-user (i.e.
de�ning startup scripts, setting up environmental variables, displaying results
etc.).

The Transport and Execution layer consists of:

• MUST�responsible for launching the MUSCLE platform in the dis-
tributed environment, sending necessary input �les and gathering the
results,

• MUSCLE platform�which executes the underlying single scale simula-
tions and is responsible for inter-simulation communication.

The Computational layer performs the actual calculations (i.e. runs a
single MUSCLE kernel).

58

7.4.1 MUST Architecture�Grid

Sender script

DRb Server PBS

GridSpace

Access Machine

MUSCLE plumber

Slave script

Slave script Slave script

MUSCLE kernel MUSCLE kernel

Worker node

Worker node

Worker node

Grid Resources

Figure 16: Grid architecture overview.

Figure 16 shows a detailed MUST architecture (with a usage of the grid
infrastructure). MUSCLE kernels running on working nodes are depicted
using yellow rectangles. Intra-MUSCLE communication is shown in yellow
as well. MUST parts are depicted using blue rectangles (sender script and
DRb Server on the access machine and slave scripts on the working nodes).
MUST messages are shown in blue (scheduling PBS tasks and starting DRb
Server, starting MUSCLE on each working node and reporting progress to
the DRb Server). Other communication is shown in gray (i.e. GridSpace

59

communication with the access machine and starting PBS tasks on worker
nodes).

Communication on various levels is shown on the Diagrams 16, 17 and
18.

Communication overview

The course of action of the tool on di�erent infrastructures is described
below.

First, a sender script is executed on the access machine. It reserves work-
ing nodes, starts a DRb server and sends a task description to nodes using
the local queuing system.

Then, a slave script is executed on each working node. It connects with
the server and waits for a command description. This command description
is prepared by the server (i.e. each working node is assigned a di�erent
group of kernels to execute). After receiving the description, an appropriate
command is executed on each working node. The standard output end error
streams are then sent back to the server line by line.

Access
Machine

1

2

3

Grid
Resources

DRb
Server

Slave
script

Slave
script

Slave
script

3

3

2

2

Figure 17: Course of action on grid infrastructure.

A detailed communication process is depicted on Figure 17 and described
below:

1. Access machine sender script: the server on access machine is started,
the grid resources are reserved using the local queuing system.

2. Nodes slave scripts: each node connects with the server.

60

3. Server method: The details about groups of kernels are sent to working
nodes. Groups of kernels are then started.

Figure 18 shows a sequence diagram describing time cooperation between
the entities taking part in the process of running MUST on the grid infras-
tructure. A detailed description follows:

1.�3. PBSSender creates an instance of PBSTaskManager, a DRbServer is
started and PBS environment is initialized.

4.�5. Jobs are submitted and an adequate number of PBSTask instances is
started.

6.�8. Tasks register themselves with the task manager and get the command
to be executed.

9. MUSCLE kernels are started.

10.�11. Progress is reported by the MUSCLE kernels to PBSTask, and then to
the task manager.

12.�15. MUSCLE kernels report having �nished computations. PBSTask in-
stances unregister themselves from the task manager. PBSTaskMan-
ager and DRbServer are stopped.

61

k
e
rn

e
ls

_
ru

n
n
in

g
=

tr
u
e

lo
o
p a
ll_

ta
sk

s_
fi
n
is

h
e
d
=

tr
u
e

a
lt

se
n
d
e
r

:
P
B
S
S
e
n
d
e
r

T
a
sk

M
a
n
a
g
e
r

:
P
B
S
T
a
sk

M
a
n
a
g
e
r

se
rv

e
r

:
D

R
b
S
e
rv

e
r

p
b
s

:
P
B
S

ta
sk

 :
 P

B
S
T
a
sk

k
e
rn

e
l
:

M
u
sc

le
 k

e
rn

e
l

1
 :

 I
n
it
ia

liz
e
()

2
 :

 S
ta

rt
()

3
 :

 I
n
it
ia

liz
e
()

4
 :

 S
u
b
m

it
Jo

b
s(

)
5
 :

 S
ta

rt
()

6
 :

 G
e
tT

a
sk

M
a
n
a
g
e
r(

)

7
 :

 R
e
g
is

te
r(

)

8
 :

 G
e
tC

o
m

m
a
n
d
()

9
 :

 S
ta

rt
()

1
0
 :

 R
e
p
o
rt

P
ro

g
re

ss
()

1
1
 :

 R
e
p
o
rt

()

1
2
 :

 R
e
p
o
rt

F
in

is
h
e
d
()

1
3
 :

 U
n
re

g
is

te
r(

)

1
4
 :

 S
to

p
()

1
5
 :

 S
to

p
()

F
ig
u
re

18
:
S
eq
u
en
ce

d
ia
gr
am

.

62

7.4.2 MUST Architecture�Cloud

Sender script

GridSpace

Access Machine

MUSCLE plumber

Slave script

Slave script Slave script

MUSCLE kernel MUSCLE kernel

Instance

Instance

Instance

Amazon Web Services

SQS S3

EC2

Figure 19: Cloud architecture overview.

Figure 19 shows a MUST architecture overview with use of the cloud in-
frastructure. The layered architecture is highlighted with di�erent colours.
MUSCLE kernels running on the virtual machine instances are shown as yel-
low rectangles. Intra-MUSCLE communication is shown in yellow as well.
MUST scripts are depicted using blue rectangles (sender script and slave
scripts executed on running virtual machine instances). MUST communica-
tion is shown in blue. Amazon services used are depicted using dark gray

63

rectangles (SQS, S3 and EC2). Other communication is shown in gray (i.e.
GridSpace communication with the access machine and MUST communica-
tion with the Amazon web services).

Communication overview

First, a script similar to the one described above is executed on the access
machine. It creates SQS queues which will enable communication between
the access machine and the working nodes. There are �ve SQS queues used
by the application:

• Control queue�this queue is used for sending the initial message to
the virtual machine which will start the MUSCLE plumber, and for
sending the commands to be executed to all running virtual machine
instances.

• Plumber queue�this queue is used for notifying the virtual machine
instances if the MUSCLE plumber has already been started.

• Report queue�this queue is used for sending the output streams from
the running virtual machine instances back to the sender.

• Shutting down queue�this queue is used for sending the terminating
message if the application has been shut down.

• Results queue�this queue is used for notifying the sender that the
result �les from each working instance have been sent to the S3 bucket
after the execution has ended.

After the queues have been created, a starting message containing groups
of kernels is sent to the control queue. Finally, a preset amount of virtual
machines is started with the RightAWS API.

The launched machines are based on a precon�gured Amazon Machine
Image. After booting, each virtual machine executes a startup script. It
reads a message from a speci�ed control SQS queue (or waits if there are no
messages). First, a processed message results in starting of a plumber kernel
on one of the working nodes. After that, the same node sends messages to
the control SQS queue (each containing details about one job to start, i.e.
one group of the MUSCLE kernels). The messages are then read by other
working nodes and each group of kernels is respectively started.

After the execution, an S3 bucket is created and the generated results are
gathered and sent to the bucket.

A detailed communication process is depicted on Figure 20 and described
below (sending a live output and gathering results is omitted for clarity):

64

SQS

EC2

1

2

3

4 5 6

Access
Machine

Figure 20: Course of action on cloud infrastructure.

1. Access machine script: SQS queues are created.

2. Access machine script: A message containing information about all
groups of kernels is sent to the SQS queue.

3. Access machine script: A required number of virtual machine instances
is started.

4. Instance startup script: The message containing information about all
groups of kernels is read from the queue by the �rst instance.

5. Instance startup script: Messages (each containing information about
one group of kernels) are sent to the SQS queue.

6. Instance startup script: One message containing information about a
particular group of kernels is read by each virtual machine instance.
An appropriate group of kernels is then started by each instance.

Figure 21 shows a sequence diagram depicting cooperation and time de-
pendencies of di�erent entities present in the process of running MUST. A
brief speci�cation follows:

1.�4. The Sender script creates an SQS queue and sends to it a message con-
taining information about the MUSCLE kernels. Then, an S3 bucket
is created and an input sandbox is sent.

5. An adequate number of EC2 instances is started.

65

kernels_runn
ing = true

loop finished = fa
lse

loopsender
queue : SQS

Queue bucket : S3 B
ucket

instance : EC
2 Instance

kernel : Musc
le kernel

1 : create() 2 : send_info
() 3 : create() 4 : send_san
dbox()

5 : run()
6 : get_info() 7 : get_sand

box()
8 : start() 9 : report_pr

ogress()
10 : check_fo

r_progress()
11 : report_p

rogress()
12 : report_p

rogress()
13 : report_f

inished()
14 : send_re

sults()
15 : check_if

_finished()
16 : report_f

inished()
17 : get_resu

lts() F
ig
u
re

21
:
S
eq
u
en
ce

d
ia
gr
am

.

66

6.�7. The EC2 instances read messages from the SQS queue and download
the input sandbox.

8. The MUSCLE kernels are started.

9.�12. A progress is reported by the MUSCLE kernels to the EC2 instances,
then to the SQS queue, and �nally to the sender script which is con-
tinuously checking the SQS queue.

13.�17. The MUSCLE kernels report having �nished computations. The EC2
instances gather the results and send them to the S3 bucket. Finally,
the sender script downloads the results.

7.5 Summary

In this Chapter we presented the MUST tool and its requirements. MUST
allows execution of MUSCLE-based multiscale applications in the grid and
the cloud environments. The tool is accessible through the GridSpace virtual
laboratory web interface.

We also described in detail the architecture of the MUST tool and pre-
sented the sequence diagrams (divided into grid and cloud cases).

The following Chapter shows the implementation details and describes
steps needed in order to add support for di�erent execution environments.

67

68

8 Implementation details

This Chapter presents the MUST implementation details. Section 8.1 in-
cludes a class diagram showing dependencies between di�erent parts of the
MUST tool (and its use of external libraries). Section 8.2 describes di�erent
possibilities of expansion (i.e. adding support for various execution environ-
ments and coupling libraries). Section 8.3 lists and describes the tools used
by MUST to cooperate with MUSCLE applications, the GridSpace virtual
laboratory and grid and cloud resources.

8.1 MUST implementation

Figure 22 shows the class diagram depicting the structure of the MUST
tool and the relationships between its components. The classes are brie�y
described below (for readability, grid and cloud classes have been separated).

• ISender�an interface exposing the highest level methods invocated
by the execution scripts (the implementing class is chosen based on
the script execution mode). ISender exposes only three methods�
PrepareStart(), Start() and ReceiveOutput().

• Grid classes�PBSSender, PBSTaskManager, PBSTask and PBS.

� PBSSender is used to read input arguments to prepare a dis-
tributed execution of the MUSCLE kernels in grid environment.
PrepareStart() method starts an instance of PBSTaskManager and
creates a PBSDSH job description �le. Start() method prepares
the PBS environment (using GridSpace's PBS gem) and starts
a PBSDSH job (reading the job description from the previously
created �le). ReceiveOutput() method uses PBSTaskManager to
print a standard output.

� PBSTaskManager class is used for PBSTask management�it
registers and unregisters tasks, receives their output (while there
are any tasks running) and creates a command to execute for
each task (based on the parameters received form PBSSender).
PBSTaskManager uses a Distributed Ruby server to communicate
with tasks (server is started when PBSTaskManager is created
and its address is passed to the working nodes in the PBSDSH
job description �le).

� PBSTask class instance is created on each working node. It con-
nects to an instance of PBSTaskManager (using its DRb server

69

M
a
p
p
e
rS

e
n
d
e
r

P
B
S
G

e
m

R
ig

h
tA

W
S

I
S
e
n
d
e
r

<
<

in
te

fa
ce

>
>

+
P
re
p
a
re
S
ta
rt
()

+
S
ta
rt
()

+
R
e
ce
iv
e
O
u
tp
u
t(
)

P
B
S
S
e
n
d
e
r

-T
a
sk

M
a
n
a
g
e
r:

 P
B
S
T
a
sk

M
a
n
a
g
e
r

-P
B
S
:

P
B
S

+
In

it
ia

liz
e
(k

e
rn

e
ls

:
S
tr

in
g
[]

,
cx

a
P
a
th

:
S
tr

in
g
,
re

su
lt
sP

a
th

:
S
tr

in
g
,
m

u
sc

le
P
o
rt

:
in

t)
+

P
re

p
a
re

S
ta

rt
()

+
S
ta

rt
()

+
R
e
ce

iv
e
O

u
tp

u
t(

)
+

S
to

p
()

P
B
S
T
a
s
k
M
a
n
a
g
e
r

+
R
e
g
is

te
rT

a
sk

(t
a
sk

:
P
B
S
T
a
sk

)
+

U
n
re

g
is

te
rT

a
sk

(t
a
sk

:
P
B
S
T
a
sk

)
+

G
e
tC

o
m

m
a
n
d
()

:
S
tr

in
g

+
R
e
p
o
rt

(o
u
tp

u
t:

 S
tr

in
g
)

P
B
S
T
a
s
k

-T
a
sk

M
a
n
a
g
e
r:

 P
B
S
T
a
sk

M
a
n
a
g
e
r

+
S
ta

rt
()

+
R
u
n
C
o
m

m
a
n
d
(c

o
m

m
a
n
d
:

S
tr

in
g
)

1 1 1 *

C
lo
u
d
S
e
n
d
e
r

-T
a
sk

M
a
n
a
g
e
r:

 C
lo

u
d
T
a
sk

M
a
n
a
g
e
r

-H
e
lp

e
r:

 C
lo

u
d
H

e
lp

e
r

+
In

it
ia

liz
e
(k

e
rn

e
ls

:
S
tr

in
g
[]

,
cx

a
P
a
th

:
S
tr

in
g
,
sa

n
d
b
o
x
P
a
th

:
S
tr

in
g
,
m

u
sc

le
P
o
rt

:
in

t)
+

P
re

p
a
re

S
ta

rt
()

+
S
ta

rt
()

+
R
e
ce

iv
e
O

u
tp

u
t(

)
+

S
to

p
()

-S
e
n
d
M

e
ss

a
g
e
()

-S
e
n
d
In

p
u
tS

a
n
d
b
o
x
()

-W
a
it
F
o
rR

e
su

lt
s(

)
-T

e
rm

in
a
te

In
st

a
n
ce

s(
)

C
lo
u
d
H
e
lp
e
r

+
S
Q

S
:

S
Q

S
+

E
C
2
:

E
C
2

+
S
3
:

S
3

C
lo
u
d
T
a
s
k
M
a
n
a
g
e
r

+
R
e
ce

iv
e
M

e
ss

a
g
e
()

-P
ro

ce
ss

M
e
ss

a
g
e
(m

e
ss

a
g
e
:

S
Q

S
M

e
ss

a
g
e
)

-G
e
tI

n
p
u
tS

a
n
d
b
o
x
()

-S
ta

rt
T
a
sk

()
-S

e
n
d
R
e
su

lt
s(

)

1

*
S
Q
S

E
C
2

S
3

P
B
S

F
ig
u
re

22
:
M
U
S
T
cl
as
s
d
ia
gr
am

.

70

whose address is passed to each working node by PBSDSH). PB-
STask runs a group of MUSCLE kernels and sends its output to
PBSTaskManager.

� PBSSender uses GridSpace's PBS gem (GridSpace gems are de-
scribed in Section 6.2) to access the underlying PBS system.

• Cloud classes�CloudSender, CloudTaskManager, CloudHelper and RightAWS
classes.

� CloudSender class prepares, starts and terminates the distributed
execution of the MUSCLE kernels in cloud environments. Pre-
pareStart() method creates an instance of CloudHelper, creates
SQS queues, sends an input sandbox to an S3 bucket and sends
a message containing information about groups of MUSCLE ker-
nels to the previously created coordinating queue. Start() method
starts Amazon EC2 instances using the previously created Cloud-
Helper class instance. ReceiveOutput() method reads messages
from the output queue and prints them. After the execution is
�nished, ReceiveOutput() receives output from the S3 bucket and
terminates the running instances.

� CloudTaskManager instance is created on each started EC2
instance. It reads information about SQS queues from instance
startup arguments, connects with the coordinating SQS queue,
reads information about a group of the MUSCLE kernels to run,
downloads an input sandbox from the S3 bucket and starts the
execution of a particular group of the MUSCLE kernels. The
output is transmitted to the SQS output queue and, after the
execution is �nished, the resulting �les are sent to the S3 bucket.

� CloudHelper class creates, initializes and exposes RightAWS li-
brary classes allowing access to the Amazon Web Services in Ruby.

A CloudTaskManager instance is created on each running instance, con-
trary to the PBSTaskManager, because communication uses SQS queues, and
each EC2 instance has to connect with the appropriate queues separately.

71

8.2 Expansion possibilities

There are two main possibilities of expansion of the MUST tool�adding
support for new infrastructures and adding support for di�erent coupling
libraries.

New infrastructures

In order to add support for a new infrastructure, it would be necessary
to create a class implementing the ISender interface (described in Section
8.1) to the MUST tool. The new class could take advantage of the existing
execution scripts to integrate with the GridSpace virtual laboratory, read
the MUSCLE CxA �les and group the MUSCLE kernels. It would be nec-
essary, however, to expand the execution scripts�add new execution mode
and pass any infrastructure-speci�c arguments to a new class implementing
the ISender interface.

Depending on the type of the new infrastructure to support, the existing
classes could be expanded to allow switching between infrastructures (i.e.
cloud classes could be expanded to add support for any non-Amazon-based
cloud infrastructure; grid classes could be expanded to allow usage of a queu-
ing system other than PBS).

New coupling libraries

It would be necessary to abstract the execution commands in order to
add support for executing multiscale applications based on coupling libraries
other than MUSCLE. Execution commands could be switched based on the
chosen library mode. Passing execution arguments, however, would present
a greater challenge, as the current execution model allows only to pass
MUSCLE-speci�c arguments and a group of kernels to particular working
nodes.

8.3 Tools used

MUST uses various tools to cooperate with MUSCLE applications, the GridSpace
virtual laboratory, grid resources and the AWS-based cloud infrastructure.
The version of each tool used for development and testing is given in brackets
where suitable.

The MUSCLE (MUSCLE_2010-01-11_13-51-27)3. library is necessary
to use MUST.

3The latest MUSCLE version can be downloaded from http://muscle.berlios.de/

72

http://muscle.berlios.de/

Ruby (1.8.7) and Java (1.6.0) are used to run MUSCLE-based appli-
cations. Rubygems (1.3.5) library is also needed by some of the further
dependencies.

The right_aws (2.1.0) Ruby gem and EC2 API Tools (1.4.4.1) are used
to communicate with the AWS cloud.

The pbs_gem4 is used to communicate with the local PBS queue from
the GridSoace virtual laboratory.

The json (1.5.1) Ruby gem is used by the graphical tool for grouping
kernels [2].

8.4 Summary

This Chapter described the MUST implementation details. The usage of
external libraries was discussed, including a detailed speci�cation of classes
forming the MUST tool.

After the implementation details, we discussed the possibilities of ex-
panding MUST and we also listed the steps necessary to add support for
new execution environments and new coupling libraries.

Finally, various tools used by MUST were listed and described.

4A gem developed as a part of the GridSpace virtual laboratory.

73

74

9 Case study

This Chapter presents the comparison of the performance results of the ex-
ecution of a scienti�c application launched using the MUST tool on the grid
and the cloud infrastructures. The tests results using di�erent setups and
infrastructures are presented and interpreted. We discuss separately all the
executed steps and compare them.

9.1 ISR2D performance results

The tests were performed in order to compare performance results on the
grid and the cloud infrastructures. An in-stent restenosis 2D application
(described in Section 2.3) was executed on both infrastructures with di�erent
setups.

Simulation
of muscle cells

(time - macroscale)

Drug diffusion
(time - mesoscale)

Blood flow
(time - microscale)

SMC2BF

BF2SMC

DD2SMC

Initial Condition
(time - scaleless)

Figure 23: ISR2D computing kernels cooperation.

Figure 23 shows the MUSCLE computing kernels taking part in the in-
stent restenosis 2D simulation (with time scales and data �ow marked).

75

There are four main computing kernels (initial condition, blood �ow, drug
di�usion and simulation of muscle cells) taking part in the simulation. There
are also three helper kernels which aid communication between kernels in
di�erent time scales.

The in-stent restenosis modeling is started by the initial condition kernel
which holds information about initial cell placement and metadata. In each
iteration, the simulation of muscle cells kernel (SMC) processes the current
information to check whether any thrombus is formed due to the back �ow
of the blood. Updated conditions are then passed to blood �ow and drug
di�usion kernels (using helper kernels). New information about blood �ow
and drug di�usion are then sent back to the SMC kernel, which can start the
next iteration[7].

The local PL-Grid resources (Zeus cluster) have been used for the grid
tests. Speci�cation: Zeus, Cluster Platform 3000 BL 2x220 with Xeon X5650
6C 2.66 GHz processors, connected with In�niband, hosted at Cyfronet,
Krak�ow, number 88 on the November 2011 Top 500 list5.

The Amazon Web Services Cloud resources have been used for the cloud
tests. Two di�erent setups were used and compared:

• m1.xlarge instances (High-CPU Extra Large)�20 EC2 Compute Units6,
7GB memory, 1690 GB local storage, 64 bit platform.

• m2.4xlarge instances (Cluster Compute Quadruple Extra Large)�33.5
EC2 Compute Units, 23GB memory, 1690 GB local storage, 64 bit
platform.

Table 3 shows the performance results on both grid and cloud infrastruc-
tures. The columns of Table 3 are described below.

• Iterations column shows how many ISR2D iterations were executed in
the test.

• Infrastructure�indicates the type of infrastructure (grid/cloud).

• Instance type�various instance types were used while testing on the
cloud infrastructure (m1.xlarge and m2.4xlarge).

• Submission column lists the submission time in seconds. It is comprised
of:

5http://i.top500.org/system/177388
6One EC2 Compute Unit is the equivalent of 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processor.

76

http://i.top500.org/system/177388

� Grid�executing sender script, sending a PBS job to the queue,
waiting in the queue and launching the MUSCLE environment.

� Cloud�executing sender script, creating the SQS queues needed,
sending starting messages, sending an input sandbox to an S3
bucket, launching EC2 instances, downloading an input sandbox
on each launched instance and launching the MUSCLE environ-
ment.

• Execution column lists the actual MUSCLE kernels execution time in
seconds (starting after launching the MUSCLE environment and ending
after receiving the last line of kernels output).

• Total column is the sum of the submission and the execution time in
seconds.

• Sending output column lists the time needed to send the output �les
to an S3 bucket in seconds (the step performed only while executing in
the cloud infrastructure).

• Total + sending output column is the sum of the total and the sending
output times in seconds.

Table 3 shows the minimum, average and maximum execution times and
their standard deviations of each step for each setup.

it
er
at
io
n
s

in
fr
as
tr
u
ct
u
re

in
st
an
ce

ty
p
e

su
b
m
is
si
on

[s
]

ex
ec
u
ti
on

[s
]

to
ta
l
[s
]

se
n
d
in
g
ou
tp
u
t
[s
]

to
ta
l+
se
n
d
in
g
ou
tp
u
t
[s
]

min 15 grid - 10 166 198 0 198

average 15 grid - 96,7 195,1 291,8 0 291,8

max 15 grid - 363 211 562 0 562

σ 15 grid - - 16,8 - 0 -

min 15 cloud m1.xlarge 73 195 278 82 382

average 15 cloud m1.xlarge 81,3 247,2 328,5 101,8 430,3

max 15 cloud m1.xlarge 91 259 345 116 447

σ 15 cloud m1.xlarge 6,58 18,6 19,68 10,06 18,7

77

it
er
at
io
n
s

in
fr
as
tr
u
ct
u
re

in
st
an
ce

ty
p
e

su
b
m
is
si
on

[s
]

ex
ec
u
ti
on

[s
]

to
ta
l
[s
]

se
n
d
in
g
ou
tp
u
t
[s
]

to
ta
l+
se
n
d
in
g
ou
tp
u
t
[s
]

min 15 cloud m2.4xlarge 69 181 259 102 374

average 15 cloud m2.4xlarge 80,36 187,18 267,55 128,09 395,64

max 15 cloud m2.4xlarge 101 191 289 189 448

σ 15 cloud m2.4xlarge 10,28 3,19 10,07 24,7 22,06

min 150 grid - 6 1381 1394 0 1394

average 150 grid - 12 1512,46 1524,46 0 1524,46

max 150 grid - 15 1708 1719 0 1719

σ 150 grid - - 131,83 130,09 0 130,09

min 150 cloud m1.xlarge 67 2048 2123 95 2218

average 150 cloud m1.xlarge 72,6 2068,07 2140,67 121,07 2261,73

max 150 cloud m1.xlarge 83 2107 2178 152 2312

σ 150 cloud m1.xlarge 4,21 15,35 15,80 18,11 29,74

min 150 cloud m2.4xlarge 69 1521 1592 11 1614

average 150 cloud m2.4xlarge 73,64 1526,5 1600,14 110,71 1710,86

max 150 cloud m2.4xlarge 82 1534 1608 213 1809

σ 150 cloud m2.4xlarge 4,18 3,80 4,85 60,59 60,23

Table 3: ISR2D�minimum, average and maximum execution times and their
standard deviations in di�erent setups.

9.2 Performance results interpretation

The results show that the cloud infrastructure is slightly slower when execut-
ing a larger number of iterations (1524s total time on the grid vs 1600s total
time on the cloud�including the after step in comparison is purposeless, as
the step is not executed on the grid infrastructure because of a common �le
system).

The total average execution time is only about 5% longer on the cloud�it
is caused primarily by the extra steps performed (i.e. sending and download-
ing an input sandbox and booting virtual machine instances). The virtual-
ization overhead on the cloud seems negligible, based on the results of the
tests performed.

78

All the tests show that the standard deviation of execution and submis-
sion times is much lower on the cloud infrastructure. The execution and
submission times on the grid seem much more dependent on instantaneous
load of the execution nodes. The execution times range from 1394 to 1719
seconds on the grid (23% di�erence) and from 1592 to 1608 seconds on the
cloud (only 1% di�erence).

The submission times on the grid infrastructure depend primarily on the
number of jobs currently queued in the PBS system. This is clearly visible
when comparing the 15 and 150 iterations test results, as the tests were
performed separately (96,7s average for 15 iterations and 12s average for 150
iterations�805% di�erence).

9.3 Summary

This Chapter presented the performance results of the execution of an ISR2D
multiscale application. Numerous tests were performed, di�ering in terms of
the environment setup and the iterations executed.

The test results showed the submission and the execution times in di�er-
ent environments. The results gathering (i.e. sending the output �les to S3
buckets) was also measured on the cloud infrastructure.

In Section 9.2, the test results were discussed and interpreted. The ex-
ecution times were generally slightly shorter on the grid environment. On
the other hand, the grid environment performance was signi�cantly more
dependent on the instantaneous load of the working nodes.

79

80

10 Summary

In this Thesis we proposed a user support tool that facilitates the execution
of multiscale applications in distributed environments. Development of the
MUST User Support Tool was the major goal of this Thesis. MUST meets
the requirements established in Chapter 1. The subsequent Section 10.1
describes how the goals of the MUST User Support Tool were achieved in
detail.

The second main goal of this Thesis was a throughout comparison of the
grid and the cloud computing environments. All the areas of comparison
assumed in Chapter 1 were taken into consideration. Section 10.2 sums up
the research results and conclusions of the former Chapters.

10.1 MUST User Support Tool

The main requirements of the MUST tool were (presented originally in Sec-
tion 1.2): support for distributed execution of multiscale applications, sup-
port for both grid and cloud distributed infrastructures and access from the
GridSpace virtual laboratory level.

The main requirements of the proposed tool were ful�lled. The MUST
tool proposed in this Thesis facilitates the execution of multiscale applica-
tions in distributed environments. Key features of the MUST tool are listed
below:

• Ability to execute MUSCLE-based multiscale applications in the local
cluster environment.

• Ability to execute MUSCLE-based multiscale applications in the Ama-
zon Web Services cloud environment.

• Accessibility from the GridSpace virtual laboratory.

• Ability to send sandbox �les to the Amazon Web Services cloud envi-
ronment which may be used for automatic deployment of MUSCLE-
based applications.

• Ability to send output �les from the EC2 virtual machine instances to
S3 buckets.

To create the above-described tool, we studied multiscale applications,
model description languages, coupling libraries and both grid and cloud dis-
tributed infrastructures.

81

In Chapter 2, we discussed multiscale applications in general, their main
requirements and some example multiscale problems (e.g. an ISR2D appli-
cation, used later for the MUST performance testing). Later, various model
description languages which may be used for describing both single scale
models and multiscale applications as a whole were presented in Chapter 3.
Next, coupling libraries used for development of multiscale applications were
presented in Chapter 4.

Based on the research and conclusions of Chapters 2�4, MUSCLE envi-
ronment was chosen as the most suitable middleware tool. The MUST tool
supports execution of MUSCLE-based multiscale applications. MUSCLE is
an applicable tool for executing multiscale applications, as it operates on the
adequate level of abstraction (computing kernels which can be used as sin-
gle scale models), it supports implementing �lters facilitating communication
between single scale models. MUSCLE is closely related to MML (Multiscale
Modeling Language, described in Section 3.2), the best suited language for
describing multiple models and their relationship. The MUSCLE environ-
ment was presented in detail in Section 4.3.

In Chapters 5 and 6, we presented the grid and the cloud computing archi-
tectures and dealt with various tools used for accessing them. The GridSpace
virtual laboratory was described in Section 6.2. Detailed description of the
MUST tool and its accessibility from the GridSpace virtual laboratory were
presented in the subsequent Chapters, 7 and 8. Layered architecture of both
grid and cloud-based versions of the MUST tool were also presented, as well
as the implementation details relating to accessing both grid and cloud dis-
tributed environments.

10.2 Grid and cloud comparison

Main areas of comparison of both grid and cloud distributed infrastructure
were (presented in Section 1.2): theoretical comparison, performance results
and ease of access, di�culty of installation and amount of changes required
in legacy applications.

The grid and the cloud computing infrastructure were compared in de-
tail in Chapter 5. This Chapter discussed their various aspects, ranging from
de�nitions, business, computing and data models, through virtualization, us-
ability, programming and security models to standarization and typical us-
ages. The grid and the cloud infrastructure architectures were also described
and compared.

Chapter 9 presented the performance results based on the execution of
the ISR2D multiscale application on both grid and cloud distributed infras-
tructures using various setups. The tests performed showed that the average

82

execution time was about 5% longer on the cloud infrastructure. On the
other hand, the submission and execution times are much more dependent
on instantaneous load of the execution nodes.

Chapters 7 and 8 discussed MUST tool architectures with the usage of
both grid and cloud environments. Implementation details relating to ac-
cessing both environments were also presented, as well as the possibilities
of expansion, including adding support for new environments. Appendix B
shows various examplary usages of the MUST tool on both the grid and the
cloud infrastructures.

83

84

List of Figures

1 The same model shown as a single multi-scale model and de-
composed to the set of single-scale models (based on [1]). . . . 19

2 A Scale Separation Map depicting the dependencies between
single scale models forming the simulation of In-Stent Resteno-
sis (based on [6, 5]). 21

3 A Scale Separation Map depicting the single scale models used
to simulate water �ow (based on [1]). 22

4 Range of scales modeled in the fusion multiscale application. . 24
5 SBML �le fragment example. 28
6 CellML �le fragment example. 29
7 An example Coupling Diagram showing ISR (described in Sec-

tion 2.3) application (based on [1]). 30
8 CxA �le fragment example. 31
9 AMUSE architecture overview (based on [18]). 35
10 MCT usage in Community Climate System Model (CCSM). . 36
11 A MUSCLE environment example with a CxA �le fragment

describing it. 38
12 Grid and Cloud architectures comparison (based on [26]). . . . 47
13 GridSpace architecture overview (based on [44]). 50
14 Use case diagram. 57
15 Layered architecture overview. 58
16 Grid architecture overview. 59
17 Course of action on grid infrastructure. 60
18 Sequence diagram. 62
19 Cloud architecture overview. 63
20 Course of action on cloud infrastructure. 65
21 Sequence diagram. 66
22 MUST class diagram. 70
23 ISR2D computing kernels cooperation. 75

List of Tables

1 Coupling libraries comparison. 39
2 Grid and Cloud comparison (based on [26, 27]) 47
3 ISR2D�minimum, average and maximum execution times and

their standard deviations in di�erent setups. 78

85

86

References

[1] Mapper Project, http://www.mapper-project.eu/

[2] Pawe l Pierzcha la, Multiscale applications in the GridSpace virtual labo-
ratory. Krak�ow, Poland, in preparation.

[3] Katarzyna Rycerz and Marian Bubak Building and Running Collabora-
tive Distributed Multiscale Applications, in: W. Dubitzky, K. Kurowsky,
B. Schott (Eds), Chapter 6, Large Scale Computing, J. Wiley and Sons,
2012.

[4] Mission of Coast � complex automata. http://www.

complex-automata.org/

[5] Peter M. A. Sloot, Alfons G. Hoekstra. Multi-scale modelling in compu-
tational biomedicine. Brie�ngs in Bioinformatics, 2010: 142-152

[6] Evans DJW, Lawford PV, Gunn J, et al. The application of multiscale
modelling to the process of development and prevention of stenosis in a
stented coronary artery. PhilTrans R Soc A 2008;366:3343�60

[7] Joris Borgdor�, Carles Bona-Casas, Mariusz Mamonski, Krzysztof
Kurowski, Tomasz Piontek, Bartosz Bosak, Katarzyna Rycerz, Eryk
Ciepiela, Tomasz Gubala, Daniel Harezlak, Marian Bubak, Eric Lorenz,
Alfons G. Hoekstra A distributed multiscale computation of a tightly cou-
pled model using the Multiscale Modeling Language. International Con-
ference on Computational Science, ICCS 2012

[8] NucSys, Marie Curie Research Training Program http://www.uku.fi/

nucsys/

[9] Litrico X, Fromion V. Modeling and Control of Hydrosystems. Springer,
2009.

[10] C. Korner and M. Thies and T. Hofmann and N. Thurey and U. Rude.
Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming.
J. Stat. Phys. 121:179 (2005).

[11] http://www.iter.org/

[12] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,
and the rest of the SBML Forum, The Systems Biology Markup Language
(SBML): A Medium for Representation and Exchange of Biochemical
Network Models, Bioinformatics, 9(4):524�531, 2003.

87

http://www.mapper-project.eu/
http://www.complex-automata.org/
http://www.complex-automata.org/
http://www.uku.fi/nucsys/
http://www.uku.fi/nucsys/
http://www.iter.org/

[13] A. Cuellar, P. Nielsen, M. Halstead, D. Bullivant, D. Nickerson, W.
Hedley, M. Nelson, C. Lloyd, CellML 1.1 Speci�cation, http://www.
cellml.org/specifications/cellml_1.1, 2003.

[14] J. L. Falcone, B. Chopard, A. Hoekstra MML: towards a Multiscale
Modeling Language, Procedia Computer Science 00 (2010) 1�8, 2010.

[15] J. Borgdor�, J. L. Falcone, E. Lorenz, C. Bona-Casas, B. Chopard, and
A. G. Hoekstra 2011a. Foundations of Distributed Multiscale Computing:
Formalization, Speci�cation, Analysis and Execution. Journal of Parallel
and Distributed Computing, submitted, 1�31.

[16] J. Borgdor�, J. L. Falcone, E. Lorenz, B. Chopard, and A. G. Hoek-
stra 2011b. A principled approach to distributed multiscale computing,
from formalization to execution. In Proceedings of the 7th IEEE Inter-
national Conference on e-Science. IEEE Computer Society Press, Stock-
holm, Sweden.

[17] A. G. Hoekstra, B. Chopard, P. Lawford, R. Hose, M. Krafczyk, and J.
Bernsdorf Introducing complex automata for modelling multi-scale com-
plex systems. In Proceedings of European Complex Systems Conference.
European Complex Systems Society, Oxford, UK, 2006.

[18] AMUSE project, http://amusecode.org/

[19] Larson, Jacob, Ong The Model Coupling Toolkit: A New Fortran90
Toolkit for Building Multiphysics Parallel Coupled Models., 2005: Int.
J. High Perf. Comp. App.,19(3), 277-292.

[20] Jacob, Larson, Ong MxN Communication and Parallel Interpolation in
CCSM3 Using the Model Coupling Toolkit. 2005: Int. J. High Perf.
Comp. App.,19(3), 293-307.

[21] Multiscale Coupling Library and Environment (MUSCLE), http://

muscle.berlios.de/

[22] Java Agent DEvelopment Framework (JADE), http://jade.tilab.
com/

[23] I. Foster, C. Kesselman The Grid: Blueprint for a New Computing In-
frastructure, Morgan-Kaufman, 1999.

[24] I. Foster What is the Grid? A Three Point Checklist., GRIDToday, July
20, 2002.

88

http://www.cellml.org/specifications/cellml_1.1
http://www.cellml.org/specifications/cellml_1.1
http://amusecode.org/
http://muscle.berlios.de/
http://muscle.berlios.de/
http://jade.tilab.com/
http://jade.tilab.com/

[25] Vaidy Sunderam, Programming Metasystems http://www.cyf-kr.

edu.pl/crossgrid/Seminars-INP/Sunderam-05Sep03.ppt

[26] Ian T. Foster, Yong Zhao, Ioan Raicu, Shiyong Lu. Cloud Computing
and Grid Computing 360-Degree Compared. CoRR, 2009.

[27] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, Maik Lindner,
A break in the clouds: towards a cloud de�nition, ACM SIGCOMM
Computer Communication Review, v.39 n.1, January 2009.

[28] Google App Engine http://code.google.com/appengine/

[29] Google Docs http://docs.google.com/

[30] Jeremy Geelan, Twenty one experts de�ne cloud computing. Virtual-
ization, August 2008. Electronic Magazine, http://virtualization.
sys-con.com/node/612375

[31] Albeaus Bayucan, Robert L. Henderson, James Patton Jones, Casimir
Lesiak, Bhroam Mann, Tom Proett Portable Batch System Exter-
nal Reference Speci�cation http://teal.gmu.edu/lucite/manuals/

PBSPro5.0/pbs_ers.pdf, 2000

[32] Albeaus Bayucan Grid-enabled PBS: the PBS-Globus Interface, Globus
retreat 2000, Pittsburgh, PA, August 2000 http://www.pstoolkit.

org/Documentation/globus_PBS-abstract.pdf

[33] gLite�Lightweight Middleware for Grid Computing http://glite.

cern.ch/

[34] UNICORE (Uniform Interface to Computing Resources) http://www.
unicore.eu/

[35] QosCosGrid�Distributed Computing Middleware http://www.

qoscosgrid.org/trac/qcg

[36] Swift parallel scripting language http://www.ci.uchicago.edu/

swift/main/

[37] The Kepler Project https://kepler-project.org/

[38] Taverna Work�ow Management System http://www.taverna.org.uk/

[39] Triana�The Open Source Problem Solving Environment http://www.
trianacode.org/

89

http://www.cyf-kr.edu.pl/crossgrid/Seminars-INP/Sunderam-05Sep03.ppt
http://www.cyf-kr.edu.pl/crossgrid/Seminars-INP/Sunderam-05Sep03.ppt
http://code.google.com/appengine/
http://docs.google.com/
http://virtualization.sys-con.com/node/612375
http://virtualization.sys-con.com/node/612375
http://teal.gmu.edu/lucite/manuals/PBSPro5.0/pbs_ers.pdf
http://teal.gmu.edu/lucite/manuals/PBSPro5.0/pbs_ers.pdf
http://www.pstoolkit.org/Documentation/globus_PBS-abstract.pdf
http://www.pstoolkit.org/Documentation/globus_PBS-abstract.pdf
http://glite.cern.ch/
http://glite.cern.ch/
http://www.unicore.eu/
http://www.unicore.eu/
http://www.qoscosgrid.org/trac/qcg
http://www.qoscosgrid.org/trac/qcg
http://www.ci.uchicago.edu/swift/main/
http://www.ci.uchicago.edu/swift/main/
https://kepler-project.org/
http://www.taverna.org.uk/
http://www.trianacode.org/
http://www.trianacode.org/

[40] myExperiment Virtual Research Environment http://www.

myexperiment.org/

[41] Pegasus Work�ow Management System http://pegasus.isi.edu/

[42] Oracle Grid Engine http://www.oracle.com/us/products/tools/

oracle-grid-engine-075549.html

[43] Platform Load Sharing Facility http://www.platform.com/

workload-management/high-performance-computing/lp

[44] Eryk Ciepiela, Daniel Hare�
zlak, Joanna Kocot, Tomasz Barty�nski,
Marek Kasztelnik, Piotr Nowakowski, Tomasz Guba la, Maciej Malawski,
Marian Bubak, Exploratory Programming in the Virtual Laboratory.
http://www.proceedings2010.imcsit.org/pliks/183.pdf, 2010

[45] Amazon Elastic Compute Cloud http://aws.amazon.com/ec2/

[46] Amazon Simple Storage Service http://aws.amazon.com/s3/

[47] Amazon Elastic Block Storage http://aws.amazon.com/ebs/

[48] Amazon Public Data Sets http://aws.amazon.com/publicdatasets/

[49] Amazon Simple Queue Service http://aws.amazon.com/sqs/

[50] Right Scale http://rubyforge.org/projects/rightscale

[51] K. Rycerz, M. Nowak, P. Pierzchala, M. Bubak, E. Ciepiela and D.
Harezlak, Comparision of Cloud and Local HPC approach for MUSCLE-
based Multiscale Simulations. In Proceedings of The Seventh IEEE In-
ternational Conference on e-Science Workshops, Stockholm, Sweden, 5-8
December 2011. IEEE Computer Society, Washington, DC, USA, 81-88
(2011).

90

http://www.myexperiment.org/
http://www.myexperiment.org/
http://pegasus.isi.edu/
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.platform.com/workload-management/high-performance-computing/lp
http://www.platform.com/workload-management/high-performance-computing/lp
http://www.proceedings2010.imcsit.org/pliks/183.pdf
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/ebs/
http://aws.amazon.com/publicdatasets/
http://aws.amazon.com/sqs/
http://rubyforge.org/projects/rightscale

A Glossary

AMI�Amazon Machine Image�a snapshot of the operating system which
can be started as a virtual machine using the Amazon Elastic Computing
Cloud.

AMUSE�Astrophysical Multipurpose Software Environment�a framework
for large-scale simulations of stellar systems.

AWS�Amazon Web Services�a platform providing computing resources,
storage, messaging services, etc. through the web services interface.

CxA�the Complex Automata�a theory used to model complex multiscale
systems based on a set of connected cellular automata and agent-based mod-
els. The CxA theory is used by the MUSCLE environment as the base for a
�le format which describes the connection between computing kernels.

EBS�Elastic Block Storage�Amazon web services-based storage. It pro-
vides storage volumes which can be used with running virtual machine in-
stances. Such volumes may contain databases, �le systems or raw block level
storage.

EC2�Elastic Computing Cloud�the core Amazon web service providing
scalable computing capabilities.

GridSpace�a high level framework facilitating the usage of Grid-based re-
sources. It allows development, sharing and execution of virtual experiments.

GridSpace experiment�a set of scripts forming a logical experiment which
can be executed using the GridSpace virtual laboratory.

ISR�In-stent restenosis�an example physiological multiscale problem. The
ISR application is used for MUST's performance testing.

Kernel�a single scale simulation wrapped into a controller agent, a part of
the MUSCLE framework simulation.

MUST�a user support tool proposed in this Thesis. It allows execution of
MUSCLE-based multiscale applications in distributed environments.

MCT�Model Coupling Toolkit�a low level library used for building parallel

91

coupled models.

MML�MultiScale Modeling Language�a concept language which may be
used to describe multiscale applications. It is designed to describe both single
scale models and whole multi model applications, including the cooperation
(data �ow) between single scale models.

MUSCLE�Multiscale Coupling Library and Environment�a framework for
building and running multiscale applications. MUSCLE allows running sim-
ulations based on the CxA theory.

Plumber�a core kernel of the MUSCLE-based multiscale simulation. It
coordinates the communication between single scale simulations forming a
multiscale application.

S3�Simple Storage Service�Amazon web service providing storage services.
The data stored may be public or private and is organized into logical buckets.

S3 bucket�a logical set of data accessible by Amazon S3 web services.
Buckets may be created through the web services API. Data (�les) may be
uploaded to and downloaded from buckets.

SQS�Simple Queue Service�an Amazon web services-based distributed queue
messaging service. SQS allows to create, read and delete messages. Messages
may be used by the systems created in various technologies, running on var-
ious networks and not even running at the same time.

Virtual machine instance�a running virtual machine started by means
of Amazon EC2. Virtual machine instances may be controlled using SOAP
API and accessed via SSH.

92

B Examples

This Appendix presents various examples of the usage of MUST. Section B.1
presents a complete exemplary GridSpace experiment. Section B.2 describes
a MUST command line usage with examples. A short installation guide is
included in Section B.3.

B.1 Example GridSpace experiment

An example of a GridSpace experiment is shown below. The MUST tool is in-
stalled as an interpreter in the GridSpace virtual laboratory. The interpreter
con�guration is included in the <interpreter> section of the experiment.
The experiment also includes the whole CxA con�guration (in the <code>
section) which is passed as a standard input to the MUST tool.

<?xml version="1.0" encoding="UTF-8"?>

<experiment>

<serializerVersion>0.7</serializerVersion>

<metadata>

<name></name>

<author>plgmarcnowa</author>

<description></description>

<manual></manual>

<creationDate>2011-02-09</creationDate>

<comments/>

</metadata>

<interpreters>

<interpreter cmd="source /etc/profile; module add intel;

module add ruby/1.8.7-p249.sl4;

exec ruby /people/user/pbs_drb/sender.rb"

interactive="false" name="Muscle" prompt1="" prompt2="">

<envvar name="GEM_PATH"

value="/people/user/gems:/usr/lib/ruby/gems/1.8/"/>

<envvar name="JAVA_HOME" value="/usr/lib/jvm/java-1.6.0"/>

<envvar name="CLASSPATH"

value="/people/user/lib/jade/lib/jade.jar:.:

/people/user/lib/jsr-275-1.0-beta-2.jar:

/people/user/lib/colt-1.0.3.jar:

/people/user/lib/xstream-1.2.jar:

/people/user/muscle/build/muscle.jar"/>

<envvar name="PATH"

value="$PATH:/people/user/gems/bin:/people/user/bin"/>

<envvar name="RUBYLIB"

value="/people/user/pbs_drb:/people/user/gems/lib:."/>

93

<envvar name="GEM_HOME" value="/people/user/gems"/>

<envvar name="MUSCLE_HOME" value="/people/user/muscle"/>

</interpreter>

</interpreters>

<snippet id="1" interpreterName="Muscle">

<code><![CDATA[

===

ISR_CXA_TEMPLATE: template for

configuration file for a MUSCLE CxA

A Caiazzo, version 14.05.09

NOTE: to be used as basic template only.

copy and modify for personal tests.

==

configuration file for a MUSCLE CxA

abort "to be used with the MUSCLE bootstrap utility" if __FILE__ == $0

add build for this cxa to system paths (i.e. CLASSPATH, LD_LIBRARY_PATH)

m = Muscle.LAST

m.add_classpath "/people/user/isr2d/build"

m.add_libpath "/people/user/isr2d/build"

configure cxa properties

cxa = Cxa.LAST

#

ic file locations

cxa.env["flow_para_path"] =

"/people/user/isr2d/kernel/flow3d/param/BF_Re=120_dx=1e-2_150_148/"

cxa.env["ic_stage3_path"] = File.dirname(__FILE__)+"/"

#

bf parameters

cxa.env["max_timesteps"] = 3110400*2

cxa.env["bf_max_iter"] = 100

cxa.env["coarsest_dt"] = 1

cxa.env["finest_dt"] = 1

cxa.env["cxa_path"] = File.dirname(__FILE__)

cxa domain

cxa.env["length[mm]"] = 1.5

cxa.env["lumen_width[mm]"] = 1.0

cxa.env["tunica_width[mm]"] = 0.12

cxa.env["total_width[mm]"] = 1.24

#

discretization

cxa.env["flowdt[s]"] = 0.0001

cxa.env["flowdx[mm]"] = 0.01

cxa.env["dd_dx[mm]"] = 0.01

94

cxa.env["xmin[mm]"] = 0.0

cxa.env["ymin[mm]"] = -0.62

cxa.env["zmin[mm]"] = 0.0

bounding box

cxa.env["xmin_bb[mm]"] = 0.0

cxa.env["ymin_bb[mm]"] = -0.75

cxa.env["zmin_bb[mm]"] = 0.0

cxa.env["width_bb[mm]"] = 1.5

#

cell properties

cxa.env["smc_mean_rad[mm]"] = 0.0151934

cxa.env["smc_sigm_rad[mm]"] = 0.000

cxa.env["ec_mean_rad[mm]"] = 0.00426935

cxa.env["ec_sigm_rad[mm]"] = 0.000

#

strut properties

cxa.env["no_of_struts"] = 4

cxa.env["strut_side[mm]"] = 0.18

test_hannan -- changing deployment depths

cxa.env["max_deploy[mm]"] = 0.09

#

physical properties

cxa.env["kin_viscosity[m2/s]"] = 4E-6

cxa.env["U_max[m/s]"] = 0.121

cxa.env["rho0[kg/m3]"] = 1000

#

#

smc model properties

#

1 for hexagonal packing of smcs, 0 for "realistic" distributions

cxa.env["ic_smc_hex"] = 1

fixed run time of physical solver, internal units

cxa.env["solver_fixed_run_time"] = 2000

relative hoop stiffness in compressive regime

cxa.env["compressive_hoop_stiffness"] = 1.0

width of png image produced

cxa.env["png_width[px]"] = 800

strut representation: boundary_element or obstacle

cxa.env["strut_rep"] = "obstacle"

biology

threshold (hoop) strain for smc apoptosis/necrosis

cxa.env["smc_max_strain"] = 1.0

threshold stress for smc apoptosis/necrosis

cxa.env["smc_max_stress"] = 1.0

threshold (longitudinal) strain for iel breaking

cxa.env["iel_max_l_strain"] = 0.05

threshold (hoop) strain for iel breaking

95

cxa.env["iel_max_h_strain"] = 0.05

threshold stress for iel breaking

cxa.env["iel_max_stress"] = 1.0

drug concentration threshold for smc proliferation

cxa.env["smc_drug_conc_thresholdL"] = 1.0

cxa.env["smc_drug_conc_thresholdH"] = 1.0

cxa.env["smc_OSI_thresholdL"] = 0.45

cxa.env["smc_OSI_thresholdH"] = 0.5

wss_max threshold for smc proliferation

cxa.env["smc_wss_thresholdL"] = 2.76

cxa.env["smc_wss_thresholdH"] = 3

cxa.env["ci_threshold_count"] = 4

cxa.env["ci_weight_smc"] = 1

cxa.env["ci_weight_iel"] = 3

cxa.env["ci_weight_obstacle"] = 1

cxa.env["ci_range_factor"] = 1.1

cxa.env["adventitia_width[mm]"] = 0.00

parameters used by equilibration code

maximal number of iterations without radial force; set to 1

cxa.env["equilibrate_max_iter_1"] = 10

png plotting interval

cxa.env["equilibrate_png_iter"] = 1

quantity to plot

cxa.env["equilibrate_png_quantity"] = "stress"

cxa.env["equilibrate_png_min_value"] = 0.0

cxa.env["equilibrate_png_max_value"] = 0.01

parameters used by stent deployment code

number of iterations to resolve deployment

cxa.env["deploy_max_iter_1"] = 150

number of iterations after deployment

cxa.env["deploy_max_iter_2"] = 1

png plotting interval

cxa.env["deploy_png_iter"] = 1

quantity to plot

cxa.env["deploy_png_quantity"] = "stress"

cxa.env["deploy_png_min_value"] = 0.0

cxa.env["deploy_png_max_value"] = 0.01

declare kernels

cxa.add_kernel('ic', 'kernel.ICgenerator.ICgenerator')

cxa.add_kernel('bf2smc', 'cxa.cxa3d.bf2smc.BFPulsBoundary2SMCStress')

cxa.add_kernel('bf', 'kernel.flow3d.FlowTestController')

cxa.add_kernel('smc', 'kernel.smc2d.SMCController')

cxa.add_kernel('dd', 'kernel.DrugDiffusion.DiffusionController')

cxa.add_kernel('dd2smc', 'cxa.cxa3d.dd2smc.DrugDiffusion2SMCController')

cxa.add_kernel('smc2bf', 'cxa.cxa3d.smc2bf.ObsArray2IncrementalLists3D')

96

configure connection scheme

cs = cxa.cs

cs.attach('smc2bf' => 'bf') {

tie('StaticSolid', 'BFObsExit')

tie('NewSolid', 'BFincSolidExit')

tie('NewFluid', 'BFincFluidExit')

}

cs.attach('smc' => 'smc2bf') {

tie('CellPositionsBF', 'ObsArrayExit',

Conduit.new(

"muscle.core.conduit.AutomaticConduit",

["cxa.cxa3d.smc2bf.Cell2ObsFilter3D", "timeoffset_1"]))

}

cs.attach('bf' => 'bf2smc') {

tie('BFCoordEntrance', 'FlowBdNodesExit')

tie('BFLinkEntrance', 'FlowBdLinksExit')

tie('BFPressEntrance', 'FlowPressureExit')

tie('BFShearEntrance', 'FlowStressExit')

tie('BFOsiEntrance', 'FlowOsiExit')

tie('BFMaxShearEntrance', 'FlowMaxShearStressExit')

tie('BFAbsShearEntrance', 'FlowAbsShearStressExit')

}

cs.attach('smc' => 'bf2smc') {

tie('CellPositionsBF2SMC', 'CellPositionsExit')

}

cs.attach('ic' => 'smc') {

tie('InitialSMCList')

tie('InitialECList')

}

cs.attach('bf2smc' => 'smc') {

tie('CellOSIEntrance', 'CellOSI')

tie('CellMaxStressEntrance', 'CellMaxStress')

}

cs.attach('dd2smc' => 'smc') {

tie('DrugConcentrationCells', 'CellDrugConcentration')

}

cs.attach('smc' => 'dd') {

97

tie('CellPositionsDD', 'NodeTypes',

Conduit.new(

"muscle.core.conduit.AutomaticConduit",

["cxa.cxa3d.smc2dd.Cells2NodesTypeFilter3D",

"timeoffset_1"]))

}

cs.attach('dd' => 'dd2smc') {

tie('LatticeCoordinates')

tie('LatticeConcentration', 'DrugConcentrationLattice')

}

cs.attach('smc' => 'dd2smc') {

tie('CellPositionsDD2SMC', 'CellPositions')

}

$KERNELS_GROUPS = [["ic","smc"],["bf2smc","bf","smc2bf"],["dd","dd2smc"]]

]]></code>

</snippet>

</experiment>

The experiment launches an in-stent restenosis (Section 2.3) multiscale
application in the grid environment. The MUSCLE kernels are launched in
three groups in this particular example. The line responsible for grouping
the kernels is:

$KERNELS_GROUPS = [["ic","smc"],["bf2smc","bf","smc2bf"],["dd","dd2smc"]]

A description of the graphical tool which allows kernel grouping and the performance
results depending on di�erent kernel groupings may be found in Pawe l Pierzcha la's Mas-
ter's Thesis[2].

B.2 Example usage

MUST can be run as a command line tool. These are the arguments which may be passed
to the command line version:

• �mode�the mode in which the program will be run. It can be either pbs or cloud.

• �results�the path where the results will be stored. This folder will be sent to the
S3 bucket when using the cloud mode.

• �sandbox�the sandbox folder which will be sent to each EC2 instance and un-
compressed in the path where the tool will be executed (may only be used in the
cloud mode).

• �port�the port on which TaskManager's DRb server will listen when using the pbs
mode.

98

• �cxa�the temporary path where CxA will be saved (MUSCLE expects CxA as an
input �le, but MUST accepts CxA con�guration as a standard input to cooperate
with the GridSpace virtual laboratory, so the input is saved to a temporary �le in
order to cooperate with the MUSCLE environment).

• �endline�MUST will terminate all running working nodes or EC2 instances after
receiving this output line. The argument may be used for testing and debugging
purposes.

• �no-submission�the PBS job will not be submitted or EC2 instances will not be
started. The argument may be used for testing and debugging purposes.

An example usage for the cloud mode could be (assuming conf.cxa.rb is a valid CxA
con�guration �le):

$ruby sender.rb --mode cloud --sandbox Sandbox --results Res < conf.cxa.rb

An example usage for the pbs mode could be:

$ruby sender.rb --mode pbs --results Res --port 12345 < conf.cxa.rb

Assuming that we would like to stop the ISR2D application after the 150th iteration
for testing or performance measuring purposes, this is the line which could be used:

$ruby sender.rb --endline "iter= 150" --mode cloud < conf.cxa.rb

B.3 Installation guide

This Section lists the MUST prerequisites and shows exemplary MUST con�gurations for
both pbs and cloud modes (described in Section B.2). The MUST source code may be
downloaded from the online GitHub repository7.

B.3.1 Prerequisites

The following prerequisites need to be installed in order to start MUST. The versions used
for tests are listed in the brackets.

• Ruby (1.8.7).

7MUST GitHub repository�https://github.com/wrozka/mapper_sender

99

https://github.com/wrozka/mapper_sender

• rubygems (1.3.5). The following Ruby gems need to be installed:

� right_aws (2.1.0),

� json (1.5.1),

� pbs_gem8.

• Java (1.6.0).

• EC2 API Tools (1.4.4.1).

• MUSCLE (MUSCLE_2010-01-11_13-51-27)9.

MUSCLE needs to be accessible with the muscle command. An example output of
the muscle �version command is shown below:

$muscle --version

This is the Multiscale Coupling Library and Environment (MUSCLE) from

2010-01-11_13-51-27 running in 64-bit mode, native library available

(built at Oct 23 2010 16:27:31, assertions : active, exceptions : active,

_DEBUG : not defined, DEBUG : not defined, NDEBUG : not defined)

B.3.2 Access machine and nodes con�guration

The following environmental variables need to be set in order to run MUST.

EC2_HOME=$HOME/ec2-api-tools/

PATH=$PATH:$HOME/gems/bin:$HOME/ant/bin:$HOME/bin:$EC2_HOME/bin

JAVA_HOME=/usr/lib/jvm/java-1.6.0

MUSCLE_HOME=$HOME/muscle

GS_PBS_SERVER=batch.grid.cyf-kr.edu.pl

#line broken for clarity

#some of the items in the classpath are required by ISR2D application

CLASSPATH=$CLASSPATH:.:

$HOME/lib/jade/lib/jade.jar:

$HOME/lib/jsr-275-1.0-beta-2.jar:

$HOME/lib/colt-1.0.3.jar:

$HOME/lib/xstream-1.2.jar:

$HOME/muscle/build/muscle.jar

ACCESS_KEY_ID={AWS access key ID}

ACCESS_KEY={AWS access key}

AMI_ID=ami-7f4c8f16

8A gem developed as a part of the GridSpace virtual laboratory.
9The latest MUSCLE version may be downloaded from http://muscle.berlios.de/

100

http://muscle.berlios.de/

After installing the prerequisites and setting up environmental variables on both access
machine and computing nodes, MUST can be run in the pbs mode.

B.3.3 EC2 instance con�guration

To be able to start the AWS Cloud version of MUST, the following environmental variables
must be set in the running instance.

JAVA_HOME=/usr/lib/jvm/java-6-openjdk

#line broken for clarity

#line required only by ISR2D application

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:

/opt/intel/lib/intel64/:

/opt/intel/compilerpro-12.0.2.137/compiler/lib/intel64/

MUSCLE_HOME=$HOME/muscle

PATH=$PATH:$HOME/gems/bin:$HOME/ant/bin:$HOME/bin

PWD=$HOME/gems/bin

CLASSPATH=$CLASSPATH:*

ACCESS_KEY_ID={AWS access key ID}

ACCESS_KEY={AWS access key}

The following MUST startup lines need to be included in the startup scripts (e.g. in
the /etc/rc.local �le).

cd $HOME/mapper_sender >> $HOME/log 2>&1

ruby cloud_slave.rb >> $HOME/log 2>&1

The example above will work, assuming that the MUST �les have been put in the
$HOME/mapper_sender directory.

An example AMI image (id ami-7f4c8f16) may be used as a starting point for building
a customized AMI. The example AMI image has MUSCLE environment, the MUST tool
and the ISR2D example application con�gured.

B.4 Summary

This Appendix showed various examples of the usage of MUST. Section B.1 included a
complete GridSpace experiment with comments. The experiment may be used for launch-
ing the ISR2D application. Section B.2 showed various examples of command line usage
and described the possible command line options. Section B.3 was a short installation
guide. It included all the MUST prerequisites and showed exemplary MUST con�gura-
tions in both grid and cloud environments.

101

102

C Publication�Comparison of Cloud and Lo-

cal HPC approach for MUSCLE-based Mul-

tiscale Simulations

The Comparison of Cloud and Local HPC approach for MUSCLE-based Multiscale Sim-
ulations paper (by K. Rycerz and co-authors M. Nowak, P. Pierzchala, M. Bubak, E.
Ciepiela and D. Harezlak)[51] was submitted to the Distributed Multiscale Computing
2011 conference10. The article was presented by K. Rycerz on the DMC 2011 conference.
The whole article is presented below.

10http://www.computationalscience.nl/dmc2011/

103

Comparison of Cloud and Local HPC approach for
MUSCLE-based Multiscale Simulations

Katarzyna Rycerz∗‡, Marcin Nowak∗, Paweł Pierzchała∗, Marian Bubak∗†, Eryk Ciepiela‡ and Daniel Harȩżlak‡
∗AGH University of Science and Technology

Instutute of Computer Science
al. Mickiewicza 30,30-059 Krakow, Poland

Email: kzajac|bubak@agh.edu.pl and marcin.k.nowak|pawelpierzchala@gmail.com
† University of Amsterdam,

Institute for Informatics, Science Park 904,
1098XH Amsterdam, The Netherlands.

‡ AGH University of Science and Technology
Academic Computer Centre – CYFRONET,

Nawojki 11,30-950 Kraków, Poland
Email: e.ciepiela|d.harezlak@cyfronet.krakow.pl

Abstract—In this paper we present and compare a support
for setting up and execution of multiscale applications in the
two types of infrastructures: local HPC cluster and Amazon
AWS cloud solutions. We focus on applications based on the
MUSCLE framework, where distributed single scale modules
running concurrently form one multiscale application. We also
integrate presented solution with GridSpace virtual laboratory
that enables users to develop and execute virtual experiments on
the underlying computational and storage resources through its
website based interface. Last but not least, we present a design
of a user friendly visual tool supporting application distribution.

I. I NTRODUCTION

Multiscale modeling is one of the most significant chal-
lenges which science faces today. There is a lot of ongoing
research in supporting composition of multiscale simulations
from single scale models on various levels: from high level
description languages [1], through dedicated environments
[2], [3], [4] to the efforts of exploiting European Grid e-
Infrastructures such as Euforia [5], MAPPER1 or the Urban-
Flood.eu [6] projects.

In this paper we present a support for programming and
execution of MUSCLE-based multiscale applications in the
variety types of infrastructures – namely we comparatively
evaluate the performance of local HPC cluster approach with
cloud-based solutions (i.e. performance of their resourceman-
agement mechanism). Recently, there is a lot of ongoing effort
in fulfilling high performance computational requirements
on cloud resources, which general advantage over classical
clusters is ad-hoc provisioning (instead of using long queues
in batch queue systems) and pay-as-you-go pricing (instead
of large investment in dedicated, purpose-built hardware). The
goal of this work was to use some of these solutions to
build a support for multiscale applications and compare it
with a classical HPC. There are some other affords in this

1http://www.mapper-project.eu

direction - such as VPH-Share2 project that aims at using
clouds for multiscale simulations from Virtual Physiological
Human research area. However, up to our best knowledge,
there is no any particular mature solution yet.

We investigate and integrate solutions from: virtual ex-
periment frameworks, such as the GridSpace Platform [7]3,
tools supporting multiscale computing such as MUSCLE [2]4

and Cloud and HPC infrastructures. Additionally, we present
a design of a user friendly interface, suitable for scientists
working on multiscale problems (computational biologists,
physicists) without computer science background.

The paper is organized as follows: In Section II we present
background of our work, in Section III we describe character-
istic and requirements for chosen MUSCLE-based multiscale
applications, in Section IV we outline overall architecture of
our environment. In the next two Sections we present detailsof
our solution: in Section V we describe Kernel Graph Editor - a
visual tool aiding a user in distribution of application modules
(kernels) and in Section V we show details of supporting HPC
cluster and Cloud execution. The use case of the example
multiscale medical application is presented in Section VIIand
the preliminary results are shown in Section VIII. Conclusion
and future work can be found in Section IX.

II. BACKGROUND

Multiscale simulations are of the great importance for a
complex system modeling. Examples of such simulations in-
clude e.g. blood flow simulations (assisting in the treatment of
in-stent restenosis) [8], solid tumor models [9], stellar system
simulations [4] or virtual reactor [10]. The requirements of
such applications are addressed by numerous partial solutions.

MML [1] developed in the MAPPER project is the language
for description of multiscale application consisting of different

2http://uva.computationalscience.nl/research/projects/vph-share
3http://dice.cyfronet.pl/gridspace/
4http://muscle.berlios.de

singe-scale modules. The Model Coupling Toolkit (MCT) [3]
is a tool capable of simplifying construction of parallel coupled
models that applies a message passing (MPI) style of commu-
nication between simulation models and it is oriented towards
domain data decomposition. The Astrophysical Multi-Scale
Environment (AMUSE) [11] is a software environment for
astrophysical applications where different simulation models
of stars systems are incorporated into a single framework
using scripting approach. The Multiscale Coupling Libraryand
Environment (MUSCLE)[2] provides a software framework
for constructing multiscale application from so-called single
scale kernels connected by uni-directional conduits. MUSCLE
has its roots in the complex automata theory [12], but can
be used for multiscale applications in general. Because it is
already designed for distributed execution of kernels, it has
been chosen as a basic tool for applications supported in our
solution. In the future, we also plan to extend our solution also
to other, not MUSCLE-based, applications.

We extended the capabilities of the GridSpace (GS) platform
developed as a basis for the Virtual Laboratory in the ViroLab
project5 and currently further developed in MAPPER project.
GS is a framework enabling researchers to conduct virtual
experiments on Grid-based resources and HPC infrastructures.
Additionally, the preliminary experiments using GridSpace
with cloud computing have been described in [13]. An ex-
perimental environment supporting building and executionof
multiscale applications consisting of HLA-based components
in the Grid environment can be found in [14].

In this paper we present the further results towards building
a support for multiscale simulations running on Clouds in a
GridSpace environment.

III. SUPPORTEDMULTISCALE APPLICATIONS

CHARACTERISTIC AND REQUIREMENTS

Multiscale applications implement models of multiscale
processes [15], [16]. We focus on such multiscale applications
that can be described as a set of connected single scale
modules i.e. modules that implement models of single scale
processes. Therefore, a typical multiscale application consists
of:

• software modules simulating certain phenomena in cer-
tain time or space scale (scaleful); usually this mod-
ules are computationally intensive, could require HPC
resources, often (but not always) are implemented as
parallel programs,

• software modules that convert data from one scaleful
module to another; usually these modules do not have de-
manding computational requirements; however, to avoid
additional communication, they often required to be exe-
cuted ”close” to the scaleful modules they are connecting;
they can even be implemented in the same process as one
of the scaleful modules.

In this paper we focus on peer to peer type of computa-
tion where all application modules are executed concurrently

5http://www.virolab.org

kernel 1

cs.attach(kernel1 => kernel2) {

 tie(entrance, exit)

}

CxA file

kernel 2

plumber

muscle

Fig. 1: Example MUSCLE application. Entrance of the ker-
nel 1 is connected with exit of kernel 2.

and exchange data in usually asynchronous fashion; exam-
ple is part of MAPPER In-stent Restenosis application [8],
Canals [17] and Fusion [5] applications; during the course of
execution, applications often pass many synchronization points
(the number can be static or dynamic); therefore, this type
often requires mechanism of efficient communication.

As a supporting communication environment we have cho-
sen MUSCLE communication library that connects tightly
coupled simulation modules (MUSCLE kernels). The library
allows to concurrently run all modules of the simulation
that communicate directly using message passing paradigm.
MUSCLE API is specifically designed for Complex Automata
(CxA) simulation model and allows a user to specify con-
nection ports (called Exits and Entrances). The MUSCLE
communication is based on actor-based concurrency model i.e.
asynchronous sending, synchronous receiving. Exits and En-
trances are connected using external configuration mechanism
(implemented as ruby script called CxA file) for specifying
connections between modules and their parameters. The ex-
ample architecture of MUSCLE application is shown in the
Fig.1. The two kernels are executed in Muscle environment
and are managed by so-called plumber that assures that all
kernels are properly started and joined.

Current MUSCLE implementation is using Java Agent
DEvelopment Framework (JADE) framework6 Kernel commu-
nication is performed at JADE agents level, which uses JICP
protocol based on TCPI/IP.

IV. GENERAL ARCHITECTURE OFPROPOSED

ENVIRONMENT

The general architecture of the solution is shown in the
Fig.2 In our research we have combined solutions from:
the GridSpace Experiment Workbench, tools supporting mul-
tiscale computing such as MUSCLE and Cloud and HPC
infrastructures. The GridSpace Experiment Workbench is a
Web 2.0-based tool supporting joint development and ex-
ecution of virtual experiments by groups of collaborating

6http://jade.tilab.com/

Browser

Kernel

Graph

Editor

GridSpace

Experiment

Workbench

Experiment

Host

Cluster Nodes

Amazon AWS

Cloud

Fig. 2: General Architecture of Proposed Environment

scientists. GridSpace experiments consist of scripts which can
be expressed in a number of popular languages, including
Ruby, Python and Perl as well as domain specific languages.
The framework supplies a repository of gems enabling scripts
to interface various resources (e.g external Web Applications,
local resource management queues, etc.)

For the purpose of this paper, we have extended GridSpace
Environment by adding support for experiments consisting
also of CxA connection specification. This was done by
designing and implementing additional set of CxA interpreters
(different for each infrastructure), launched from GS Work-
bench. We have also built graphical editor showing con-
nections between MUSCLE kernels and supporting grouping
them for execution purposes (called Kernel Graph Editor) that
is accessible from GridSpace as external Web Application.
After the connections between MUSCLE kernels are specified,
the actual application is executed on a chosen infrastructure
(local HPC cluster or AWS Amazon cloud7) dependent on
chosen interpreter. Thanks to user friendly design of GS
Experiment Workbench switching between interpreters (and
therefore choosing the infrastructure) is very easy and does
not require any changes from MUSCLE application developer.
The support for both types of infrastructures is described in
more detail in the next section.

The detailed use case of the proposed environment is as
follows:

1) User logs to chosen access machine (called Experiment
Host) using GridSpace Experiment Workbench. The
actual connection is done using ssh mechanism.

2) User creates or loads (from Experiment Host) CxA
connection scheme to the GS Experiment Workbench.
The scheme describes how to join MUSCLE kernels
(that are available on the Experiment Host as software

7http://aws.amazon.com

packages). A Simple example of such scheme is shown
in the Fig.3.

3) CxA scheme is parsed and sent to Kernel Graph Editor
that displays connections.

4) Gridspace prompts user with the Kernel Graph Editor,
which aids the user in joining kernels in groups that
should be executed at the same host.

5) Depending on user preference the application is per-
formed on HPC Cluster or AWS Amazon Cloud.

V. K ERNEL GRAPH EDITOR

Grouping is needed to achieve good performance by reduc-
ing the volume of network communication between compu-
tational and converter type kernels (see Section III). Kernel
Graph Editor is an external web application that enables
graphical modification of application structure.

Once CxA script is created in GS Experiment Workbench,
it is parsed and application connection scheme is sent to
Kernel Graph Editor. The editor processes the message and
renders it inside user web browser using GridSpace gem called
Webgui. Once a user decides about final connection scheme
and grouping of kernels, the final scheme is sent back to the
GridSpace CxA Interpreter for execution. The communication
between Kernel Graph Editor and GridSpace CxA interpreter
is done using simple POST of HTTP protocol. The application
structure and information about kernel groups are described
in JavaScript Object Notation (JSON) format. The Kernel

Kernel

Graph

Editor

GridSpace

CxA

Interpreter

User

connections

groups WebGui

(JSON over

HTTP POST)

Fig. 3: Loading of CxA connection scheme in the Kernel
Graph Editor

Graph Editor server is implemented in Ruby using the Sinatra
framework8. The client is written in JavaScript with the use
of library InfoVis9.

VI. A PPLICATIONSDISTRIBUTION SUPPORT IN

DIFFERENT INFRASTRUCTURES

After preparation of MUSCLE application as described
in Section IV, it is executed on the chosen infrastructure.
As described in Section III, MUSCLE application is a peer
to peer type of computation where all kernels are executed
concurrently. The execution is controlled by a plumber that
once started, registers all kernels, connect them according to
the CxA schema and initiates execution.

When using plain legacy MUSCLE software, plumber and
groups of computational kernels are started manually on dif-
ferent computing nodes (each kernel group needs information

8http://www.sinatrarb.com/
9http://thejit.org/

Experiment Host

Task

Manager

DRb

Allocated

PBS Node

Task

Allocated

PBS Node

muscle

Allocated

PBS Node

Task

k k p

k - kernel

p - plumber

Task

k k

(a) local HPC cluster.

Experiment Host

Task

Manager

Amazon

Instance

Task

Amazon

Instance

muscle

Amazon

Instance

Task

k k p

k - kernel

p - plumber

Task

k k

Amazon SQS

Amazon

S3

(b) Amazon AWS Cloud.

Fig. 4: Setting up MUSCLE application on various infrastructures

about plumber localization). To automatically control running
such an application in a distributed environment we decided
to apply a general Master - Slave architecture. Master is
responsible for distributing computational tasks (plumber or
group of kernels for one node), synchronization and standard
output/error gathering. Slaves asks Master for a job to execute
and then redirect its standard output and error streams. Once
started by Slaves, actual kernels communicate with each other
using MUSCLE. This scheme is generally used for both types
of infrastructures (local HPC and Cloud) described in this
paper. The detailed solutions differ with the chosen technology
(used according to actual infrastructure) as described in the
next subsections and shown in the Fig.4.

Usually, apart from sending control messages to the out-
put/error streams, scientific applications produce quite alot of
data that are stored in files. This type of output is also treated
differently regarding if the computation took place on a host
with local or remote file system. The details are described in
the next two subsections.

A. Local HPC solution - distributed Ruby and PBS queue
system

In case of local HPC solution we have chosen Portable
Batch System (PBS) local management system for allocating
resources and Distributed Ruby (DRb) for communication
between master and slaves. This communication requires a
number of short control messages as the actual connection
between kernels is done using MUSCLE mechanisms and
main simulation output is saved in the files. The detailed
architecture of our solution is shown in the Fig.4(a). Master
algorithm is as follows:

1) Proper number of nodes is allocated through PBS. This
is done as one singe allocation (by using pbsdsh tool).

2) The TaskManager is started.
3) On each of the assigned nodes a Task process (Slave) is

started (via pbsdsh tool) that connects to TaskManager
using DRb.

4) As asked by a Task, TaskManager sends request to start
the plumber

5) As asked by a Task, TaskManager sends requests to start
appropriate group of kernels

6) TaskManager prints the received Task’s output to the
screen.

Slave algorithm is as follows:

1) Task connects to Task Manager using DRb and asks it
for a job description

2) Task receives a job description (request for staring a
plumber or the kernels in a single group)

3) Task redirects the output and error streams to the Task
Manager

In a case of local HPC resources the computational nodes
share filesystem with the Experiment Host, so the output files
are seen immediately by File Browser which is a standard part
of GS Experiment Workbench.

B. Amazon AWS cloud solution

In case of Amazon AWS cloud infrastructure we have
used standard mechanisms for launching virtual instances
(one instance for one group of kernels). The images used by
instances were based on a preconfigured Amazon Machine
Image (AMI) with added MUSCLE installation. For communi-
cation between Master and Slave we have used Amazon SQS10

queues. The detailed architecture of our solution is shown in
the Fig.4(b). Master (Task Manager) algorithm is as follows:

10http://aws.amazon.com/sqs/

1) Amazon SQS queues (one for control messages and one
for output and error streams) are created

2) messages to start the plumber and kernels are sent to the
control SQS queue.

3) CxA file and Input sandbox with kernels input and
implementation are sent to Amazon S3 storage11

4) Proper number of virtual instances are started through
Amazon EC2 Ruby API. On each virtual machine the
Task process is started automatically after the booting.

5) the received (by SQS queues) output and error messages
are printed to the screen.

Slave (Task) algorithm is as follows:

1) Tasks fetches the input sandbox from S3 and unpacks
it.

2) Task connects to Task Manager using control SQS
queue. The first Task fetches job description (request
for staring a plumber and group of kernels). The other
Tasks wait if there are no messages.

3) The Task that fetched the job description starts the
plumber and distributes rest of jobs (name of kernels
in each group) to the other Tasks using SQS control
queue.

4) Each Task sends the output and error streams to the Task
Manager using appropriate SQS queue

5) After the job executes, the files with simulation output
are sent to S3.

This scenario assumes that the kernel implementation is
lightweight and portable (e.g. in form of simple java jars).If
some of the kernels needed more sophisticated dependencies
(e.g native libraries), it would require to prepare AMI accord-
ingly before the execution. This process is, however; often
more convenient as a user has a full access to virtual instance,
in comparison to local cluster resources, when he has to ask
administrator for additional installation of packages.

As the computational nodes do not share filesystem with
the GS2 user access machine (Experiment Host), the output
files have to be fetched from Amazon S3 storage to be seen
by GridSpace File Browser.

VII. U SE CASE - INSTENT RESTENOSIS

As an example of multiscale application we have used the
Instent Restenosis Application (ISR) [8] that simulates treating
of recurrent stenosis of artery after surgical correction.We
have used 2D version of the simulation. More information
about the application can be found in [18]. As shown in
Fig. 5 the application consists of three modules of different
time scale: simulation of blood flow (BF), simulation of
muscle cells (SMC), and drug diffusion (DD). The application
includes also scale-less transformation modules connecting
ones which feature a scale (scaleful) and initial condition
module. All modules are implemented as MUSCLE kernels.
The BF, SMC and DD modules are synchronized and perform
around 1700 iterations in total (around 70 hours wallclock
time). They exchange about 10MB data during each iteration.

11http://aws.amazon.com/s3/

BF

time:microscale

SMC

time:macroscale

IC

scaleless

DD

time:mesoscale

SMC2BF

scaleless BF2SMC

scaleless

DD2SMC

scaleless

Fig. 5: Simulation of In-stent restenosis - 2D version.

The example screenshot of the kernel graph editor showing
connections for in-stent restenosis application is shown in the
Fig.6.

VIII. L OCAL HPC VS CLOUD - PERFORMANCERESULTS

To compare local HPC and Cloud approach we have per-
formed preliminary tests of ISR application. As the total
execution time of the application is very long (3 days for 1700
iterations), we present tests for a partial execution (for 15 and
150 number of iterations). The demo of running the application
from GridSpace is available online12.

The local HPC cluster used was the HP Cluster Platform
3000 BL 2x220, connected with Infiniband hosted at ACC
Cyfronet, Krakow. The machine is number 81 on the June
2011 Top 500 list. When using Cloud we compared following
types of instances (please note that One EC2 Compute Unit
provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor):

• High-CPU Extra Large (m1.xlarge) Instances with 7 GB
of memory, 20 EC2 Compute Units (8 virtual cores
with 2.5 EC2 Compute Units each), 1690 GB of local
instance storage, 64-bit platform. Benchmark results of
network parameters between Amazon instances can be
found in [19]

• Cluster Compute Quadruple Extra Large (m2.4xlarge)
Instances 23 GB memory, 33.5 EC2 Compute Units, 1690
GB of local instance storage, 64-bit platform, 10 Gigabit
Ethernet.

In case of the local HPC cluster thesetting up phase
included waiting in a PBS queue and dispatching tasks us-
ing DRb as described in Section VI-A, theexecution phase

12http://www.youtube.com/watch?v=3S9-kljyXIw

Fig. 6: Screenshot of Kernel Graph Editor for Instent Restenosis 2D application

TABLE I: Setting up and execution times of sample MUSCLE application on Local HPC Cluster and AWS Amazon Cloud -
comparison

ISR 2D 15 iterations
Infrastructure Setting up Execution Sending Output Total

min - max (sec) avg (sec) σ min - max (sec)
Local

HPC Cluster 6 - 363 190 16 N/A 196 - 553
avg(sec) σ avg (sec) σ avg(sec) σ avg(sec) σ

AWS Cloud
m1.xlarge 81 6 250 20 100 10 430 20
m2.4xlarge 80 10 187 3 130 20 400 20

ISR 2D 150 iterations
Infrastructure Setting up Execution Sending Output Total

min - max (sec) Avr (sec) σ min - max (sec)
Local

HPC Cluster 6 - 363 1500 130 N/A 1506 - 1863
avg(sec) σ avg (sec) σ avg(sec) σ avg(sec) σ

AWS Cloud
m1.xlarge 72 4 2068 15 120 20 2260 30
m2.4xlarge 74 4 1526 4 110 60 1710 60

included actual application execution (including MUSCLE
environment start-up).

In case of the AWS Cloudsetting up phase included all steps
required to set up the application as described in Section VI-B:
creation of SQS queues, sending input sandbox to S3, booting
instances, dispatching Tasks by SQS queue and fetching input
sandbox by Tasks. Additionally, we separately included time
of sending output to S3 for permanent storage (this step is
not necessary in local cluster case with the shared filesystem).

The amount of output is around 1MB (for 15 iterations) and
3MB (for 150 iterations).

As mentioned before, in ISR application the amount of
communication between legacy MUSCLE kernels was 10MB
per iteration. During actual execution the amount of commu-
nication between TaskManager and Tasks is much lower and
includes transferring single lines of diagnostic output oforder
of kilobytes (information about iteration number etc.)

As can be seen in the Tab.I, the results show that using

cloud resources is more predictable. For most of results, we
show average (avg) from 10 application runs andσ indicates
standard deviation. PBS queue waiting time depended on
frequency of scheduler execution and of a number of waiting
jobs of other users and vary significantly from one run to
the other, therefore we present only maximum and minimum
values. The time of setting the application up on the cloud
is more stable and is much lower that actual application
execution. The the application execution time is comparable
on both infrastructures, especially when using Quadruple Extra
Large instances dedicated for HPC applications.

IX. SUMMARY AND FUTURE WORK

In this paper we presented and compared the two approaches
for using computing infrastructure for MUSCLE-based multi-
scale applications: local HPC cluster and Amazon AWS Cloud.
Both types of infrastructures were integrated with GridSpace
Experiment Workbench. Additionally, we have introduced vi-
sual Kernel Graph Editor for setting up connection scheme of
multiscale application based on MUSCLE and CxA approach.

The preliminary results have shown that setting up multi-
scale application in a Cloud environment is comparable to its
submission on a classical PBS-based HPC cluster. The detailed
comparison was summarized in Tab.II.

TABLE II: Local HPC Cluster and AWS Amazon Cloud -
comparison summary

Local HPC Cloud
requires hardware investment pay for what you use
shared and persistent file systemfile system is not persistent, re-

quires additional time to stage
data in and out from/to external
storage (e.g. S3)

often requires contact with ad-
ministrator for additional instal-
lation of packages

a user has administrative access
to a virtual instance

variable PBS waiting time de-
pending on number of other
users’ jobs

constant and predictable virtual
instances booting time

using DRb requires setting up
point to point socket connec-
tions, hosts and ports have to be
explicitly known

using SQS more convenient:
high level API to shared mes-
sage queue, communicating en-
tities are not visible to each
other.

In a future we plan to perform more sophisticated tests
with different number of kernels and different type of Amazon
instances, we also plan to test the presented solution on other
cloud stacks (e.g. Eucalyptus on FutureGrid resources13).
Additionally, we plan to build a multiscale application skele-
ton framework for creating various parametrized MUSCLE
application skeletons for further testing.

ACKNOWLEDGMENT

The authors wish to thank Alfons Hoekstra, Joris Borgdorff
and Eric Lorenz from UvA for discussions on ISR2D, CxA
and MUSCLE and our colleagues from DICE team for input
concerning GridSpace, especially Maciej Malawski and Jan

13https://portal.futuregrid.org/

Meizner for discussions about cloud computing. The research
presented in this paper was partially supported by MAPPER
project – grant agreement no 261507, 7FP UE and the AGH
grant 15.11.120.090 Access to the Amazon EC2 cloud was
supported by an AWS in Education grant.

REFERENCES

[1] J.-L. Falcone, B. Chopard, and A. Hoekstra, “MML: towards a
Multiscale Modeling Language,”Procedia Computer Science, vol. 1,
no. 1, pp. 819 – 826, 2010, ICCS 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050910000906

[2] J. Hegewald, M. Krafczyk, J. Tölkeet al., “An Agent-Based Coupling
Platform for Complex Automata,” inICCS ’08: Proceedings of the 8th
International Conference on Computational Science, Part II. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 227–233.

[3] J. Larson, R. Jacob, and E. Ong, “The Model Coupling Toolkit: A New
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models,”
Int. J. High Perform. Comput. Appl., vol. 19, no. 3, pp. 277–292, 2005.

[4] S. Portegies Zwart, S. Mcmillan, S. Harfstet al., “A Multiphysics and
Multiscale Software Environment for Modeling Astrophysical Systems,”
New Astronomy, vol. 14, no. 4, pp. 369–378, May 2009.

[5] B. Guillerminet, I. C. Plasencia, M. Haefeleet al., “High
Performance Computing tools for the Integrated Tokamak
Modelling project,” Fusion Engineering and Design, vol. 85,
no. 3-4, pp. 388 – 393, 2010, Proceedings of the 7th
IAEA Technical Meeting on Control, Data Acquisition, and
Remote Participation for Fusion Research. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0920379610000049

[6] B. Balis, M. Kasztelnik, M. Bubaket al., “The urbanflood common
information space for early warning systems,”Procedia CS, vol. 4, pp.
96–105, 2011.

[7] E. Ciepiela, D. Harezlak, J. Kocotet al., “Exploratory programming in
the virtual laboratory,” inProceedings of the International Multiconfer-
ence on Computer Science and Information Technology, Wisla, Poland,
2010, pp. 621–628.

[8] A. Caiazzo, D. Evans, J.-L. Falconeet al., “Towards a Complex
Automata Multiscale Model of In-Stent Restenosis,” inComputational
Science ICCS 2009, ser. Lecture Notes in Computer Science, G. Allen,
J. Nabrzyski, E. Seidel, G. van Albada, J. Dongarra, and P. Sloot, Eds.
Springer Berlin / Heidelberg, 2009, vol. 5544, pp. 705–714.

[9] S. Hirsch, D. Szczerba, B. Lloydet al., “A Mechano-Chemical Model
of a Solid Tumor for Therapy Outcome Predictions,” inICCS ’09:
Proceedings of the 9th International Conference on Computational
Science. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 715–724.

[10] V. V. Krzhizhanovskaya, “Simulation of multiphysics multiscale sys-
tems, 7th international workshop,”Procedia CS, vol. 1, no. 1, pp. 603–
605, 2010.

[11] S. Portegies Zwart, S. Mcmillan, B. O. Nualláinet al., “A Multiphysics
and Multiscale Software Environment for Modeling Astrophysical Sys-
tems,” in ICCS ’08: Proceedings of the 8th international conference on
Computational Science, Part II. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 207–216.

[12] A. Hoekstra, E. Lorenz, J.-L. Falconeet al., “Toward a Complex
Automata Formalism for Multi-Scale Modeling,”International Journal
for Multiscale Computational Engineering, vol. 5, no. 6, pp. 491–502,
2007.

[13] M. Malawski, J. Meizner, M. Bubaket al., “Component Approach
to Computational Applications on Clouds,”Procedia Computer
Science, vol. 4, pp. 432–441, May 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.procs.2011.04.045

[14] K. Rycerz and M. Bubak, “Building and Running Collaborative Dis-
tributed Multiscale Applications,” inLarge-Scale Computing Techniques
for Complex System Simulations Wiley Series on Parallel and Distributed
Computing, W. Dubitzky, K. Kurowski, and B. Schott, Eds. John Wiley
& Sons, 2011, vol. 1, ch. 6, pp. 111–130.

[15] A. Hoekstra, J. Kroc, and P. Sloot, Eds.,Simulating Complex Systems
by Cellular Automata, ser. Understanding Complex Systems. Springer,
2010. [Online]. Available: http://springer.com/978-3-642-12202-6

[16] E. Weinan, B. Engquist, X. Liet al., “Heterogeneous Multiscale
Methods: A Review,” Communications in Computational Physics,
vol. 2, no. 3, pp. 367–450, Jun. 2007. [Online]. Available:
http://www.global-sci.com/openaccess/v2367.pdf

[17] P. van Thang, B. Chopard, L. Lefèvreet al., “Study of the
1D lattice Boltzmann shallow water equation and its coupling
to build a canal network,”Journal of Computational Physics, vol.
229, no. 19, pp. 7373–7400, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.jcp.2010.06.022

[18] E. Lorenz, “Multi-scale simulations with complex automata:
in-stent restenosis and suspension flow,” Ph.D. dissertation,
Universiteit van Amsterdam, November 2010. [Online]. Available:
http://dare.uva.nl/en/record/358709

[19] T. Ristenpart, E. Tromer, H. Shachamet al., “Hey, you,
get off of my cloud: exploring information leakage in third-
party compute clouds,” inProceedings of the 16th ACM conference
on Computer and communications security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 199–212. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653687

	Contents
	Introduction
	Problem outline
	Goals and scope
	Organization of this Thesis
	Contribution of other authors

	Multiscale applications
	Introduction
	Requirements
	Examples
	Summary

	Model description languages
	SBML and CellML
	MML and CxA
	Comparison
	Summary

	Coupling libraries
	AMUSE
	MCT
	MUSCLE
	Comparison
	Summary

	Infrastructures
	Grid
	Cloud
	Comparison
	Summary

	Accessing infrastructures
	Local resources—Portable Batch System
	Grid resources—GridSpace
	Cloud resources—Amazon Web Services
	Elastic Compute Cloud
	Simple Storage Service
	Elastic Block Storage
	Simple Queue Service

	Summary

	MUST User Support Tool
	Concept of MUST
	Requirements
	Use cases
	Architecture
	MUST Architecture—Grid
	MUST Architecture—Cloud

	Summary

	Implementation details
	MUST implementation
	Expansion possibilities
	Tools used
	Summary

	Case study
	ISR2D performance results
	Performance results interpretation
	Summary

	Summary
	MUST User Support Tool
	Grid and cloud comparison

	List of Figures
	List of Tables
	References
	Appendices
	Glossary
	Examples
	Example GridSpace experiment
	Example usage
	Installation guide
	Prerequisites
	Access machine and nodes configuration
	EC2 instance configuration

	Summary

	Publication—Comparison of Cloud and Local HPC approach for MUSCLE-based Multiscale Simulations

