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Abstract

Nowdays, hardly any science can be done without a computing infrastructure, and cloud

systems are regarded by the scientific community as a potential source of low-cost com-

puting resources that can be provisioned on-demand according to pay-per-use model.

Running scientific applications on the cloud imposes the monetary cost of the computa-

tion that should be subject to optimization as the funding is usually limited.

We address the problem of resource allocation on multiple cloud platforms formulated

as a mixed integer non-linear programming problem (MINLP). We optimize scheduling

of bag of tasks applications and workflows under the deadline constraint. The optimiza-

tion models implemented in AMPL modeling language allow us to apply leading solvers

such as Cbc and CPLEX. We assume multiple IaaS clouds with heterogenous VM in-

stances, with limited number of instances per cloud and hourly billing. Our objective,

the total cost, includes computation cost as well as data transfer charges which may have

significant contribution to the total cost.

The results illustrate typical problems when making decisions on deployment planning

on clouds and how they can be addressed using optimization techniques. We indicate

how optimization of resource allocation may be used by end-users to minimize their costs

or by resellers for a profit.
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Chapter 1

Introduction

This chapter presents the general idea of this work. Section 1.1 describes the motivation

for optimization of resource allocation on the cloud. Section 1.2 discusses the model

of scientific applications. Section 1.3 describes cloud business models and services that

are used to deploy applications. Section 1.4 states the goals of the thesis. Section 1.4

enumerates challenges to be overcame.

1.1 Motivation

Planning and scheduling activities have been present in people’s life ever since first

civilization was built. It usually was related to travel planning or construction planning.

Ancient Romans needed to take care on where aqueducts should be build depending on

the demand and how much material should be used. Every craftsman needed to optimize

how much material will he use to create his product. Later on, this became even more

important during the Industrial Revolution.

Nowadays, science requires processing of large amounts of data and use of hosted services

for compute-intensive tasks [1]. Cloud services are used not only to provide resources, but

also for hosting scientific datasets, as in the case of AWS public datasets [2]. Scientific

applications that run on these clouds have often the structure of workflows or workflow

ensembles that are groups of inter-related workflows [3]. Infrastructure as a Service (IaaS)

cloud providers offer services where virtual machine instances differ by performance and

price [4]. Planning scientific experiments requires optimization decisions that take into

account both execution time and cost.

This thesis illustrates typical problems when making decisions on resource allocation for

scientific applications on IaaS clouds and how they can be addressed using optimization

1



Chapter 1. Introduction 2

techniques. In contrast to already well established computing and storage resources

(clusters, grids) for the research community, clouds in the form IaaS platforms (pioneered

by Amazon EC2) provide on-demand resource provisioning with a pay-per-use model.

These capabilities together with the benefits introduced by virtualization, make clouds

attractive to the scientific community [5]. As a result, multiple deployment scenarios

differing in costs and performance, coupled together with new provisioning models offered

by clouds make the problem of resource allocation and capacity planning for scientific

applications a challenge.

1.2 Scientific applications

Scientific computing covers a wide range of fields including biology, chemistry, physics,

economics, engineering, finance, geophysics, linguistics, mathematics, and mechanics.

Applications used in that sciences are often distributed, so that application may run a

numbers of magnitude faster than sequential one. This is crucial in some fields such as

weather forecasting or financial modeling to get results as fast as possible.

Scientific applications usually may be put to one of the following groups:

• workflows,

• bag of tasks,

• map-reduce applications,

• sequential batches,

• High Performance Computing applications.

In this thesis we will focus on resource allocation for workflows and bag of tasks appli-

cations.

1.2.1 Workflows

Scientific workflow is concerned with the automation of scientific processes in which tasks

are structured based on their control and data dependencies [6]. Workflow application

is composed by connecting multiple scientific tasks to their dependencies. Workflow

structure indicates the temporal relationship between the tasks. In general, a workflow

can be represented as a Directed Acyclic Graph (DAG) or a non-DAG. Figure 1.1 shows

example Montage workflow that is used to create mosaics of the sky.
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Figure 2. Montage workflow

to each image to obtain a good global fit is determined by
the mBgModel job. The background correction is applied
to each individual image by the mBackground jobs. The
mConcatFit and mBgModel jobs are individually data ag-
gregation and data partitioning jobs respectively. However,
together they can also be considered as a data redistribution
point. Note that there is not a lot of data being partitioned in
this case. Rather, the same background correction is applied
to all images. The mImgTbl job aggregates metadata from
all the images and creates a table that may be used by other
jobs in the workflow. As such, it represents a simple data
aggregation step. The mAdd job co-adds all the reprojected
images to generate the final mosaic in FITS format as well
as an area image that may be used in further computation.
The mAdd job is the most computationally intensive job in
the workflow. The size of the FITS image is reduced by the
mShrink job by averaging blocks of pixels. The shrunken
image is then converted to JPEG format by the mJPEG job.

In Table 1, we provide the runtimes from an execution of
a 1.0 degreeMontage workflow on the Grid. We provide the
total sizes (i.e. the sum of the sizes of all files) of inputs and
outputs consumed and generated by each job. Note that the
same input data item may be consumed by multiple jobs.

4.2. CyberShake

In Figure 3, we show a small CyberShake-like work-
flow. The workflow, while relatively simple in structure,
can be used to perform significant amounts of computation
on extremely large datasets. Strain Green Tensor (SGT)
data generated from finite simulations are maintained in
the form of large “master” SGT files for x and y dimen-
sions. Such master SGT data is generated for a number of
sites, each of which represent the impact of an earthquake
hazard as measured at a given location. The ExtractSGT
jobs in the workflow extract the SGTs pertaining to a given
〈source, rupture〉 pair from the master SGT files for the
site. ExtractSGT jobs may therefore be considered as data
partitioning jobs. Synthetic seismograms are generated for
each variation of the 〈source, rupture〉 pair by the Seismo-
gramSynthesis jobs. Peak intensity values, in particular the
spectral acceleration, are calculated by the PeakValueCal-
cOkaya jobs for each synthetic seismogram. The resulting
synthetic seismograms are collected and compressed by the
ZipSeismograms and ZipPeakSA jobs to be staged out and
archived. These jobs may be considered as simple data ag-
gregation jobs, although they are not followed by further
processing.

Of the computational jobs, seismogram synthesis jobs

Figure 1.1: Montage – example workflow [7]

Workflow is built of four base control structures: sequence, parallelism, choice and loop

(only for non-DAGs). Sequence represents an ordered series of task with one starting

after the previous task has completed. Parallelism represents tasks that are performed

concurrently, rather than serially. The choice structure allows to run selected portion of

the workflow if certain conditions are met. The iteration structure lets certain block of

tasks to be repeated. Consecutive stages of workflow often represent work of scientist –

data gathering, preprocessing, processing and results aggregation.

In terms of scientific computing we will be rather interested in data flow in workflow.

It is then composed of the following structures (Figure 1.2): process, pipeline, data

distribution, data aggregation and data redistribution.

Scientific workflows are usually run on shared infrastructure as clusters, grids or clouds.

It requires to carefully plan and schedule computation to efficiently use given infrastruc-

ture. As the workflows are getting bigger and more complex it is nearly impossible to

do it manually. Specifically, scheduling workflow applications in a distributed system is

an NP-complete problem [8]. Example workflow scheduling algorithms are presented in

Chapter 2.

There exists multiple workflow systems that assist scientists to create and deploy their

workflow. Popular ones are Pegasus [9] and Taverna [10]. They provide tools to model

workflow either in code or via GUI application. Then one is able to generate workflow
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Figure 1. Basic workflow structures

However, in this paper our discussion is restricted to a study
of how data partitioning and aggregation impacts the overall
structure and execution of scientific workflows.

The simplest structure is the process structure that oper-
ates on some input data to produce an output. Several such
data processing jobs can be combined sequentially to pro-
duce the pipeline structure. This structure can be found in
several workflows and therefore, we describe it as a unique
structure. In this case, each job in the pipeline operates on
the output of the previous stage and the output produced is
fed as input to the next stage in the pipeline. Data distri-

bution jobs serve two purposes: they may either produce
output data that are consumed by multiple jobs or they may
operate on large datasets and divide or “chunk” them into
smaller subsets to be processed by other jobs in the work-
flow. Since the latter usage is quite common, we also refer
to it as data partitioning in the rest of this paper. If the parti-
tioning involves computation in addition to creating smaller
chunks of data, data partitioning jobs may consume a lot of
time on the compute resource. However, partitioning leads
to increased parallelism in the later stages of the workflow,
and indeed this is the main reason for partitioning the data.
Data aggregation jobs aggregate and process the outputs of
several individual jobs and generate a combined data prod-
uct. As data aggregation jobs operate on several individual
data items, they can potentially consume a lot of time on
compute resources. Additionally, such jobs may represent a
reduction in the parallelism of the workflow. In some cases,
data aggregated from a previous stage are redistributed to
multiple jobs in a following stage. Even though data re-
distribution jobs represent a potential bottleneck, the paral-
lelism is once again increased in future stages. Such data
redistribution jobs can be found in several scientific work-
flows and represent a synchronization point from the data
processing perspective.

4. Characterization of example workflows

In this section, we provide characterizations of each of
the workflows mentioned in Section 2 and describe how
jobs in each workflow relate to the simple workflow struc-
tures described in Section 3. Scientific workflows executed
on the Grid are quite large in some cases. To better depict
individual jobs and their relationships, we visualize each
workflow type using smaller synthetic workflows generated
using our workflow generator. However, note that the exe-
cution times and data sizes we refer to in this section are ob-
tained from actual executions of the workflows on the Grid.

4.1. Montage

In Figure 2, we show a relatively small (20 node)
Montage-like workflow generated by the workflow gener-
ator. The number of inputs processed by the workflow may
increase over time as more images of a particular region of
the sky are available. As such, the structure of the workflow
changes to accommodate the increase in the number of in-
puts, which also translates to an increase in the number of
computational jobs.

The number of mProjectPP jobs (which re-project the
input image) is equal to the number of input FITS images
processed. The outputs are the reprojected image and an
“area” image that consists of the fraction of the image that
belongs in the final mosaic. These are then processed to-
gether in subsequent steps. An mDiffFit job computes a
difference for each pair of overlapping images. The num-
ber of mDiffFit jobs in the workflow therefore depends on
how the input images overlap. The difference images are
then fitted using a least squares algorithm by the mConcat-
Fit job. The mConcatFit job fits the description of a data
aggregation job, introduced in Section 3, and is also a com-
putationally intensive job. Next, a correction to be applied

Figure 1.2: Data flow structures in Workflows [7]

execution plan on certain (e.g. grid) architecture. Workflow systems differ in supported

workflow types (DAG or non-DAG), workflow scheduling policies and algorithms, fault

tolerance, and supported infrastructure. The good overview on workflow systems taxon-

omy is given in [11].

1.2.2 Bag of tasks

Bag of tasks applications represent group of independent tasks that may be processed

sequentially or in parallel. There are no dependencies between tasks. A large parameter

sweep is good example of such problem. The map stage of map-reduce (see Figure 1.3)

application can be also considered as a bag of tasks. Additionally, many workflows

include stages of a high number parallel tasks. Such examples can be found e.g. in typical

scientific workflows executed using Pegasus Workflow Management system, where e.g.

CyberShake or LIGO workflows have a parallel stage of nearly homogeneous tasks [7].

Other examples are Wien2K and ASTRO workflows that consist of iteratively executed

parallel stages comprising homogeneous tasks [12]. Due to the high number of parallel

branches, these stages accumulate the most significant computing time of the whole

application, so optimization of the execution of this stage is crucial.

1.3 Introduction to Cloud Computing

Cloud computing became de facto standard of delivering computing resources adopted

both by commercial and scientific communities. Nowadays, hardly any science can be

performed without computational science and cloud systems are regarded by the scientific

community as a potentially attractive source of low-cost computing resources as they can

be provisioned on-demand according to pay-per-use model.
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(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 139

Figure 1.3: Map-reduce execution overview[13]

There are multiple definitions of the cloud computing. The term is frequently used for

marketing of hosted services or applications running in client-server model. As defined

by US National Institute of Standards and Technology (NIST) [14], cloud computing

is “a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction”.

1.3.1 Service models

We may categorize cloud services in terms of service model that give different level of

control and responsibilities to user and service provider:

Software as a Service (SaaS). The capability provided to the user is to use appli-

cations deployed by provider running on a cloud infrastructure. The applications

are usually available by web-browser based interface or program interface. The

underlying cloud infrastructure including network, servers, operating system and

application are managed by service provider. Popular SaaS applications include

Gmail, Evernote and Salesforce.

Platform as a Service (PaaS). The capability provided to the user is to deploy his

own applications created using programming languages, libraries, services and tools

provided by the provider. The consumer does not manage underlying cloud infras-

tructure including network, servers, operating systems, runtime environment, but

has control over the deployed application and configuration settings for cloud envi-

ronment. Example platforms include Heroku, Google App Engine and Nodejitsu.
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Infrastructure as a Service (IaaS). The capability provided to the user is to pro-

vision processing, storage, networks and other fundamental computing resources

where the consumer is able to deploy and run arbitrary software. The consumer

does not manage the underlying hardware infrastructure, but has control over op-

erating system, storage, deployed applications and has possibly limited control

over networking (i.e. hosts firewall). Example platforms include Amazon EC2 and

Rackspace.

1.3.2 Deployment models

Depending on who manages cloud infrastructure we may distinguish the following mod-

els:

Private Cloud. The cloud resources are provisioned for exclusive use by a single orga-

nization.

Community Cloud. The cloud resources are provisioned for exclusive use by specific

community of consumers from organization that have shared concerns. The concept

is similar to scientific grid systems.

Public Cloud. The cloud resources are provisioned for open use by the general public.

Hybrid Cloud. The cloud infrastructure is composed of two or more distinct cloud

providers that remain unique entities, but are bound together by technology that

enables data and application portability. This technique is used for cloud bursting

and offloading peak load to public cloud while using private resources when off-peak

times.

1.3.3 IaaS compute cloud

Usually IaaS clouds provide three types of resources that are provisioned with a pay-per-

use model:

Computing. Provided as virtual machine (VM) instances. Multiple instance types are

available that differ with CPU power, RAM memory and additional hardware (i.e.

GPU units). VMs are usually billed for instance running time (wall clock time,

not CPU time) usually rounded up to full hours.

Storage. Provided as virtualized disk drives for virtual machines (i.e. Amazon’s EBS)

or as object store available as external service (i.e. Amazon’s S3). User is usually
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billed for persisting data per GiB1 per month. Additional charges may also apply

(i.e. per IO transaction).

Networking. Provides connectivity between VMs, storages and the Internet. User

is billed for the data transferred of the cloud, while incoming data and transfer

inside specific cloud usually remains free. Networking is provided in bundle with

computing and storage, not as a separate service.

1.4 Problem statement

In this thesis we will focus on optimization of resource allocation of bag of tasks and

workflow applications on the hybrid cloud platforms. Planning scientific experiments

requires optimization decisions that take into account both execution time and cost, as

well as other constraints. Specifically, we address the cost optimization problem of large-

scale applications running on multiple heterogeneous clouds, under deadline constraint

and for various limits on numbers of instances imposed by cloud providers. The approach

to solve this problems is using mathematical modeling with AMPL and mixed integer

programming.

1.5 Goals of the thesis

The major goal of this thesis is the theoretical and practical investigation of optimiza-

tion of resource allocation on the cloud by using integer linear programming tools and

methods. The goal will be accomplished by:

• study of existing works on workflow scheduling and resource allocation on the

cloud,

• defining application and infrastructure model,

• formulating integer linear problem for bag of tasks applications and workflows,

• implementing optimization model in AMPL,

• evaluating optimization results, performance and stability,

• answering if ILP is suitable method to solve the problem.
1Gibibyte = 230 bytes
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The goals are addressed in the following chapters. In Chapter 2 we explore existing work

on scientific application scheduling. Chapter 3 gives a quick tutorial on mathematical

programming. In Chapters 4 and 5 we go through defining infrastructure and application

models that will be then implemented and evaluated. In Chapter 6 we answer if ILP is

suitable approach for resource allocation on the cloud.

1.6 Summary

In this chapter we discussed the motivation an goals of this work. We given a brief

overview on scientific applications focusing on bag of tasks applications and workflows.

We also introduced cloud computing. We will dive deeper into the IaaS cloud character-

istics in Section 4.2.



Chapter 2

State of the art review

Cloud computing is widely adopted standard for deploying web applications. Cloud users

are charged on pay as you go basis that enables for cost and service quality optimization

by dynamic application scaling. Traditionally, in parallel and distributed systems like

clusters and grids, workflow scheduling has been aimed to optimize the makespan or

the time of completing all tasks [15]. However, in context of cloud computing, the

user needs to take care not only about makespan, but also about the financial cost of

deploying application. Therefore, resource allocation on the cloud becomes a multi-

objective optimization problem where no single optimal solution exists.

The problem of resource provisioning in IaaS clouds has been recently addressed in [16,

17] and [18]. They typically consider unpredictable dynamic workloads and optimize

the objectives such as cost, runtime or utility function by autoscaling the resource pool

at runtime. In [16] they address semi-online resource provisioning for processing tasks

with dynamic cloud pricing where users bid for the resources (e.g. Amazon EC2 Spot

Instances). On the other hand in [17] they consider workload offloading to the cloud from

grid resources under deadline or budget constraint. In [18] they evaluate utility-based

policy and reactive policies for dynamic resource provisioning. These approaches, how-

ever, do not address the problem of data transfer time and cost, which are an important

factor when deploying scientific applications.

Automatic cloud scaling and provisioning is often delivered as a cloud service i.e. Amazon

Auto Scaling1. Policy or rule based services are primarily designed to scale web applica-

tions [18] or bag of tasks applications (e.g. [17, 19]). They take input from monitoring

systems and perform scaling-up or scaling-down depending on data from monitoring sys-

tem. This approach is reasonable for applications with dynamic, unpredictable load as
1http://aws.amazon.com/autoscaling/

9
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it allows to keep number of instances low, but high enough to provide certain service

quality e.g. ensure acceptable request processing time.

The work presented in this thesis is related to heuristic algorithms for workflow schedul-

ing on IaaS clouds, such as the ones described in [20–23]. In [20] the model assumes that

infrastructure is provided by only one provider. In contrast, this work presents optimiza-

tion on hybrid, multi-provider cloud. Infrastructure model considered differs in that we

assume multiple heterogeneous clouds with object storage attached to them, instead of

individual machines with peer-to-peer data transfers between them. Instead of schedul-

ing each task individually, this approach proposes a global optimization of placement of

workflow tasks and data.

Integer programming approach has been applied to the optimization of service selection

for activities of QoS aware grid workflows [24]. On the other hand, in model presented

in this thesis assumes the IaaS cloud infrastructure, while the objective function takes

into account costs and delays of data transfers associated with the tasks.

The cost minimization problem on clouds addressed in [25] uses a different model from

ours. We impose a deadline constraint and assume that the number of instances available

from providers may be limited. To satisfy these constraints, the planner has to choose

resources from multiple providers. Our model also assumes that VM instances are billed

per hour of usage.

The model presented in [26] also uses AMPL/CPLEX as solving platform and they define

model for deadline-constrained workflow cost optimization. However, their approach

does not address the problem of data transfer time and cost. Furthermore, they do not

consider that number of instances on the cloud is usually limited.

Pipelined workflows consisting of stages are addressed in [27], where the processing model

is a data flow and multiple instances of the same workflow are executed on the same set

of cloud resources. The goal of this work is cost optimization instead of meeting the QoS

constraints.

The deadline-constrained cost optimization of scientific workloads on heterogeneous IaaS

described in [28] addresses multiple providers and data transfers between them, where

the application is a bag of tasks.

2.1 Summary

None of the solutions presented in this chapter solves the problem we stated in Chapter 1.

They solve other problems such as scheduling on only one cloud platform, or they are
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missing important parts of cost estimation (e.g. data transfer cost). So that, the problem

of resource allocation on hybrid cloud platforms is still open.





Chapter 3

Mathematical programming using

AMPL

In Section 3.1 we present an overview of mathematical programming and we give problem

classification in Section 3.2. In Section 3.3 AMPL and other tools for mathematical

programming are introduced. Then in Section 3.4 we formulate example models: linear

Whiskas Cat Food Problem and integer shift work scheduling. These problems are not

exactly from scientific computing domain, but they present typical modelling challenges.

3.1 Mathematical Programming

Nowdays, the term programming [29] means writing software, but in 1940s this word was

used to describe planning and scheduling activities. It appeared then that restrictions in

the planning or scheduling problem may be represented mathematically using equalities

and inequalities. The solution satysfying all these constraints is considered as acceptable

plan or schedule. Mathematical programming enables us to formally define optimization

problem: it’s variables, objective and constraints.

Defining the problem is not an easy task. If there are too few constraints, the space of

possible solutions is too big. On the other hand, too many constraints can rule desirable

solutions out. In the worst case there are no solutions at all. The success of programming

relies on key insight into the optimized domain and modelling techniques to find a way

round the possible difficulty.

In addition to the constraints, one can define the objective — function of the variables

that makes it possible to compare solutions and select the best one. It doesn’t matter

13



Chapter 3. Mathematical programming using AMPL 14

how many solutions satisfy the constraints — we are interested in the one that minimizes

or maximizes the objective.

In development of optimization model it is very important to classify the problem, so

we can select the most suitable way of solving it. If constraints and objectives are linear

combinations of the variables then the model is called linear program and the process of

modelling and solving is called linear programming. This class of optimization problems

is particurarly important becasue a lot of real world optimization problems may be

represented in such way. Additionally, there exists a lot of theory and algorithms to

solve such problems in fast, deterministic way even if they have thousands of variables.

The ideas of linear programming are also important for analyzing and solving problems

that are non-linear.

All useful methods of mathematical programming involve using computers. The first

computional method of solving optimization problems, the simplex algorithm [30], was

introduced by George Dantzig and was subject to several improvements over the decades.

3.2 Problem classification

In spite of the broad applications of linear programming, the linearity assumption is

too unrealistic to be applied to many of real problems. If instead smooth non-linear

functions of the variables are used in constraints and objectives we call the program as

non-linear program. Solving such problems is much harder, but not impossible.

There is also another class of problems called integer programming that assumes that

variables are integer and in general it is much harder than previous. Fortuanetly, compu-

tational power of computers is still increasing and there are efficient algorithms to deal

with them.

The optimization problems may be categorized in the following groups:

Linear programming (LP) Objective and constraints in this class are linear func-

tions. Problems in this groups are usually solved by using simplex, interior or

barrier method.

Quadratic programming (QP) Convex or concave objective and linear constraints.

Solved by simplex-type or interior-type method.

Non-linear programming (NLP) Continuous, but not all-linear objective and con-

straints. May be solved by several methods including gradient, quasi-newton, aug-

mented lagrangian and interior-point. Unless special conditions are met, solution
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found is possibly optimal over only some local neighbourhood. If objective is con-

vex (if minimized) or concave (if maximized) and constraints define a convex region

it is guaranteed that optimum found is optimal over the entire feasible region.

Mixed-integer programming (MIP) Linear objective and constraints, some or all

of variables are integer-valued. Solved by branch-and-bound approach that uses a

linear solver to solve subproblems.

Mixed-integer non-linear programming (MINLP) Non-linear objective and con-

straints, some or all of variables are integer-valued. Solved by branch-and-bound

approach that uses a non-linear solver to solve subproblems.

Constraint programming (CP) In that case, no assumptions can be made on the

constraints or the objective. This class is the hardest to solve, as no heuristics can

be used. Example problem of this class is boolean satisfiability problem (SAT). Of-

ten the problem is simplified to find the feasible solution without any optimization.

3.3 AMPL: A Mathematical Programming Language

To successfully solve optimization problem one needs to do a sequence of multiple tasks

as follows:

1. Formulate an abstract model: define variables, constraints and objective.

2. Collect the data for a specific problem instance.

3. Generate instance-specific variables, constraints and objective.

4. Solve the problem by running a program called solver that implements algorithm

that finds optimal solution.

5. Analyze the results.

6. Refine the model and the data as necessary, and repeat.

Unfortunately, usually people use different form of representing the data than algorithms

do. This makes formulation and generation phases complex as modeler would like to

express constraints in human-readable language e.g. mathematical notation, and solvers

require to provide multiple matrices as input. We need to transform modeler’s form to

algorithm’s form. Doing it manually is time consuming and erron-prone task.

To automate this task matrix generators were created for specific models. Although they

successfully automate matrix generation they are hard to code, debug and maintain.
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Modeler needs to be both mathematician and programmer. The other way to solve that

problem is to use mathematical modeling language. Several languages (i.e. AMPL [31],

Gams [32], PuLP [33], OscaR [34]) were created over the decades.

By using modeling language, modeler may express in comfortable way also designed to

serve as input for the computer. Then matrix generation may be fully automated with-

out intermediate state of computer programming, thus mathematical programming be-

comes cheaper and more reliable. Benefits of formulating in modeling languages become

particularly advantageous for models being developed and subject to change. Addition-

ally, modeling language translator may introduce optimizations to generated problem

instance.

AMPL is an algebraic mathematical modeling language that resembles traditional math-

ematical notation to describe variables, objectives and constraints. Code in AMPL will

be familiar for anybody that studied basic algebra or calculus, so that he or she doesn’t

need to be programmer (in present meaning). Algebraic modeling languages allow to

express a wide range of optimization problems: linear, nonlinear and integer.

3.3.1 Available solvers

As soon as model is formulated and matrices generated, we may proceed with solving

the specific instance of our problem. To do that we will need solver – a program that

implements one of solving algorithms. There is wide range of existing solvers available,

both open-source (i.e. Cbc [35]) and commercial (i.e. CPLEX [36]) ones that differ

with the problem classes they target. Full list of available solvers is published at AMPL

website [37].

Usually solvers provide multiple options that let us tune them for the specific application.

One may enable or disable certain features of the solver, i.e. for Bonmin [38] solver we

may choose branching algorithm or configure it to use heuristics.

3.4 Example – Whiskas Cat Food Problem

To get some practice with modeling, we will describe a typical linear programming prob-

lem on the example of Whiskas Cat Food problem. This is typical planning problem

that may be found in many textbooks [30]. The company producing the food wants to

produce it as cheaply as possible while ensuring they meet the stated nutritional analysis

requirements stated on the cans.
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Ingredient Price per gram
Chicken $ 0.013
Beef $ 0.008
Mutton $ 0.010
Rice $ 0.002
Wheat $ 0.005
Gel $ 0.001

Table 3.1: Cat food ingredient’s pricing.

Protein Fat Fibre Salt
Chicken 0.100 0.080 0.001 0.002
Beef 0.200 0.100 0.005 0.005
Mutton 0.150 0.110 0.003 0.007
Rice 0.000 0.010 0.100 0.002
Wheat bran 0.040 0.010 0.150 0.008
Gel – – – –

Table 3.2: Ingredient contribution to the final product in grams per gram of ingredi-
ent.

Minimum % Crude Protein 8.0
Minimum % Crude Fat 6.0
Maximum % Crude Fibre 2.0
Maximum % Salt 0.4

Table 3.3: Cat food nutritional analysis.

Main ingredients of the cat food used are chicken, beef, mutton, rice wheat and gel. The

prices for the ingredients are presented in Table 3.1, while ingredient contribution to the

total weight of protein, fat, fibre and salt in the final product are give in Table 3.2 and

nutritional requirements are presented in Table 3.3. Given that data we may proceed

with model formulation.

3.4.1 Problem formulation

In this particular problem data defines the following data sets:

• I = {chicken, beef,mutton, rice,wheat, gel} – defines possible ingredients,

• C = {protein, fat, fibre, salt} – defines components of nutrition.

We have also some numbers that describe members of sets;

• pi – price of given ingredient i in $ per gram
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• ci, c – contribution of ingredient i to component of nutrition c in grams per gram

of ingredient.

Identify the decision variables First of all we need to identify decision variables.

For the Whiskas Cat Food Problem the decisions are the amounts of each ingredient we

put in the can. Formally we could write this as:

xi = amount (g) of ingredient i in a can of cat food (3.1)

Formulate the Objective Function The objective for this problem is to minimize

the total cost of ingredients per fan of cat food. We know the cost per gram of each

ingredient and the amount is to be found.

min
∑

i∈I
pixi (3.2)

Formulate the constraints The constraints for the Whiskas Cat Food are:

1. The sum of the amounts must make up the whole can (i.e. 100 g).

2. The stated nutritional analysis requirements are met.

First of the constraints can is:

∑

i∈I
xi = 100 (3.3)

The latter can be written as follows:
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Component of nutrition Lower bound Upper bound
Protein 8.0 –
Fat 6.0 –
Fibre 2.0 –
Salt – 0.4

Table 3.4: Bounds for contribution of component of nutrition in percent.

∑

i∈I
ci,proteinxi ≥ 8.0 (3.4)

∑

i∈I
ci,fatxi ≥ 6.0 (3.5)

∑

i∈I
ci,fibrexi ≥ 2.0 (3.6)

∑

i∈I
ci,saltxi ≤ 0.4 (3.7)

(3.8)

or in more general way, we may define lower and upper bounds for each component of

nutrition as Lc and Uc, the values are presented in Table 3.4. Then the constraint will

be written as

∀
c∈C

Lc ≤
∑

i∈I
ci,cxi ≤ Uc (3.9)

(3.10)

We have formulated general problem using mathematical notation. Now we will proceed

with model formulation using AMPL.

3.4.2 Problem formulation using AMPL

AMPL enables us to separate model definition and instance specific data. Usually we

create three files: model, data and calling script. In the model file we define abstract

optimization model: sets and parameters, objective and constraints. Then in data file

we populate the sets and parameters with the numbers for the particular instance of the

problem. Both model and data files are loaded from calling script that may do some pre

or post processing.
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Model formulation First of all, we should define the sets for the ingredients and

components of nutrition. We create file called whiskas.mod that will contain abstract

model of optimization: sets, parameters, constraints and objective.

set INGREDIENTS;

set COMPONENTS;

Using sets we can define the decision variables

var Amount {INGREDIENTS} >= 0;

and parameters for the costs, components of nutrition contribution, restrictions and can

size.

param Cost {INGREDIENTS} >= 0;

param Contribution {INGREDIENTS , COMPONENTS} >= 0;

param Lower {COMPONENTS} default -Infinity;

param Upper {c in COMPONENTS} >= Lower[c], default Infinity;

param CanSize >= 0;

and the objective function

minimize TotalCost : sum {i in INGREDIENTS} Cost[i] * Amount[i];

Note that, for the bounds that are not set, we assume ±Infinity. Additionally, we define

that Cost and Contribution parameters should be non negative – AMPL provides also

validation of parameter data.

Finally, we may define constraints

subject to MeetRequirements {c in COMPONENTS }:

Lower[c] <= sum {i in INGREDIENTS} Contribution[i, c] * Amount[i] <= Upper[c];

subject to FullCan:

sum {i in INGREDIENTS} Amount[i] = CanSize;

Providing data Now we can provide the model with the data. To do this we create

the file whiskas.dat.

First of all we need to provide sets we defined in previous paragraph.

set INGREDIENTS := CHICKEN BEEF MUTTON RICE WHEAT GEL;

set COMPONENTS := PROTEIN FAT FIBRE SALT;

Then we populate parameters with the data.
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param Cost :=

CHICKEN 0.013

BEEF 0.008

MUTTON 0.010

RICE 0.002

WHEAT 0.005

GEL 0.001

;

param Lower :=

PROTEIN 8.0

FAT 6.0

;

param Upper :=

FIBRE 2.0

SALT 0.4

;

param CanSize := 100;

param Contribution :

PROTEIN FAT FIBRE SALT :=

CHICKEN 0.100 0.080 0.001 0.002

BEEF 0.200 0.100 0.005 0.005

MUTTON 0.150 0.110 0.003 0.007

RICE 0.000 0.010 0.100 0.002

WHEAT 0.040 0.010 0.150 0.008

GEL 0.0 0.0 0.0 0.0

;

Running AMPL Now we are ready to solve the model we formulated with AMPL.

To do that, we create file called whiskas.run.

First of all we should reset AMPL environment in case that specific AMPL instance was

solving other model before. We can do it with command reset. Then we load model

using command model that takes model file name as an argument. Next, we load data

file using command data. We also need to tell AMPL which solver we would like to be

used. In our case we will use CPLEX (option solver cplex). Finally, we call solver

and present results. The full file will look like as follows.

reset;

model whiskas.mod;

data whiskas.dat;

option solver cplex;

solve;
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display Amount;

Now we may run run AMPL and see if the model is working and if so, what is the optimal

solution.

% ampl whiskas.run

CPLEX 12.4.0.1: optimal solution; objective 0.52

2 dual simplex iterations (0 in phase I)

Amount [*] :=

BEEF 60

CHICKEN 0

GEL 40

MUTTON 0

RICE 0

WHEAT 0

;

In that case, it appears that it is cheapest to use beef and fill the rest of the can with

gel.

3.5 Example – Shift Scheduling

In this section, we will formulate AMPL model for shift scheduling problem [31]. The

factory is working in three shift work schedule, operating six days a week from Monday to

Saturday. On Saturday there’s no third shift as it would overlap with Sunday. There’s a

certain number of workers required for each shift: more workers are required during first

shift and less during the others. Due to work time regulations not all shift combinations of

5 day working week are possible – in fact that there are only 126 shift schedules possible.

The crew wages depend on the chosen schedule. We also want to limit number of different

schedules used, so workers may work in teams during planned week. The problem is to

minimize the cost of running factory while meeting all regulatory constraints. This is

the example of integer linear programming (ILP) problem, as only the integer solutions

are valid.

In this solution, we won’t schedule individual persons, but groups of them. We will use

similar approach in models presented in Chapter 4 and Chapter 5.

3.5.1 Problem formulation

This particular problem defines the following sets:

• S – set of shifts,
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• W – set of acceptable schedules.

We have also some numbers that describe work planning;

• pw – pay rate at schedule w,

• rs – number of staff required at shift s,

• nmin – minimal number of workers on any schedule.

Identify the decision variables We need to decide if given schedule will be used and

if so, how many workers should follow it. Formally we could write this as:

uw = binary, 1 iif schedule w should be used, otherwise 0; (3.11)

nw = integer, how many workers should use schedule w. (3.12)

Formulate the Objective Function The objective for this problem is to minimize

the total cost of running factory.

min
∑

w∈W
pwnw (3.13)

Formulate the constraints The constraints are:

1. The stated minimal number of workers on each shift is met.

2. Each schedule, if used at all, is used by minimal number of workers.

First of the constraints is:

∀
s∈S

∑

w∈W :s∈Ww

nw ≥ rs (3.14)

The second can be written as follows:
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∀
w∈W

nminuw ≤ nw (3.15)

∀
w∈W

nw ≤
(
max
s∈Ww

rs

)
uw (3.16)

We have formulated general problem using mathematical notation. Now we will proceed

with model problem formulation using AMPL.

3.5.2 Problem formulation using AMPL

After we formulated the abstract model we implement it in AMPL by following the same

procedure as in previous section.

Model formulation First of all, we should define the sets and parameters in model

file.

set SHIFTS;

param Nsched;

set SCHEDS = 1.. Nsched;

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;

param required {SHIFTS} >= 0;

param least_assign >= 0;

Using sets we can define the decision variables

var Work {SCHEDS} >= 0 integer;

var Use {SCHEDS} >= 0 binary;

and the objective function

minimize Total_Cost: sum {j in SCHEDS} rate[j] * Work[j];

Finally, we may define constraints

subject to Shift_Needs {i in SHIFTS }:

sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j] >= required[i];

subject to Least_Use1 {j in SCHEDS }:

least_assign * Use[j] <= Work[j];

subject to Least_Use2 {j in SCHEDS }:

Work[j] <= (max {i in SHIFT_LIST[j]} required[i]) * Use[j];
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Providing data Now we can provide the model with the data. We provide the data

we defined in previous paragraph.

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1

Mon2 Tue2 Wed2 Thu2 Fri2 Sat2

Mon3 Tue3 Wed3 Thu3 Fri3 ;

param rate default 1 ;

param required := Mon1 100 Mon2 78 Mon3 52

Tue1 100 Tue2 78 Tue3 52

Wed1 100 Wed2 78 Wed3 52

Thu1 100 Thu2 78 Thu3 52

Fri1 100 Fri2 78 Fri3 52

Sat1 100 Sat2 78 ;

param least_assign := 5;

param Nsched := 126 ;

set SHIFT_LIST[ 1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;

set SHIFT_LIST[ 2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;

........

set SHIFT_LIST [126] := Tue2 Wed2 Thu2 Fri2 Sat2 ;

Running AMPL
reset;

option omit_zero_rows 1;

model whiskas.mod;

data whiskas.dat;

option solver cplex;

solve;

display Work;

display Total_Cost;

Now we are ready to run the model and get the results.

% ampl sched.run

CPLEX 12.4.0.1: optimal integer solution; objective 266

136 MIP simplex iterations

23 branch -and -bound nodes

Work [*] :=

3 7

6 28

16 8

18 8

20 12

29 7

37 21

61 5

66 5

78 24



Chapter 3. Mathematical programming using AMPL 26

82 28

91 12

100 8

102 6

112 28

118 24

122 30

126 5

;

Total_Cost = 266

Given that data we may assign schedules to the specific workers.

3.6 Summary

This chapter presented basics of mathematical optimization. We discussed briefly his-

tory of optimization, classification of optimization problems and introduced tools for

mathematical optimization using computers. We also shown the example optimization

problems and how they can be solved using AMPL.
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Bag of tasks optimization

In this chapter we discuss optimization of scientific applications that may be represented

as bag of uniform tasks. The chapter is organized as follows: after defining application

model in Section 4.1 and infrastructure model in Section 4.2, we formulate the problem

using AMPL by specifying the variables, parameters, constraints and optimization goals

in 4.3. Section 4.4 presents the results obtained by applying the model to the scenarios

involving multiple public and private clouds, overlapping computation and data transfers,

and identifying special cases. Section 4.5 provides a sensitivity analysis of the model and

show how such analysis can be useful for potential users or computing service resellers.

Section 4.6 shows estimation on how the model behaves if the task sizes are not uniform

and change dynamically.

4.1 Application model

The goal of this optimization model is to minimize the cost of processing a given number

of tasks on a hybrid cloud platform, as discussed in Section. 4.2. We assume that tasks

are independent from each other, but they have identical computational cost and require

a constant amount of data transfer.

We assume that for each task a certain amount of input data needs to be downloaded,

and after it finishes, the output results need to be stored. In the case of data-intensive

tasks, the transfers may contribute a significant amount of total task run time.

The assumption of homogeneous tasks can be justified by the reason that there are many

examples of scientific applications (e.g. scientific workflows or large parameter sweeps)

that include a stage of a high number of parallel nearly identical tasks. Such exam-

ples can be found e.g. in typical scientific workflows executed using Pegasus Workflow

27
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Management system, where e.g. CyberShake or LIGO workflows have a parallel stage of

nearly homogeneous tasks [7]. Other examples are Wien2K and ASTRO workflows that

consist of iteratively executed parallel stages comprising homogeneous tasks [12]. Due

to the high number of parallel branches, these stages accumulate the most significant

computing time of the whole application, so optimization of the execution of this stage is

crucial. Moreover, if the tasks are not ideally homogeneous, it is possible to approximate

them using a uniform set of tasks with the mean computational cost and data sizes of

the application tasks. Of course, in real execution the actual task performance may vary,

so the solution obtained using our optimization method becomes only approximate of

the best allocation, and the actual cost may be higher and deadline may be exceeded. In

order to estimate the quality of this approximation, we evaluate the impact of dynamic

task runtime and and non-uniform tasks in section 4.6.

4.2 Infrastructure model

Three types of cloud services are required to run scientific application on the cloud: vir-

tual machines, storage and networking. Amazon S3 and Rackspace Cloud Files are good

examples of storage providers, while Amazon EC2, Rackspace, GoGrid and ElasticHosts

represent computational services. In addition, the optimization model proposed in this

thesis includes a private cloud running on own hardware. Each cloud provider offers

multiple types of virtual machine instances with different performance and price.

For each provider the number of running virtual machines may be limited. This is mainly

the case for private clouds that have a limited capacity, but also the public clouds often

impose limits on the number of virtual machines. E.g. Amazon EC2 allows maximum

of 20 instances and requires to request a special permission to increase that limit [39].

Most of cloud providers charge their users for each running virtual machine on an hourly

basis. Some providers charge in 5-minute (i.e. CloudSigma) or 1-minute cycles (i.e.

Google Compute Engine), but it is not widespread practice yet. Additionally, users are

charged for remote data transfer while local transfer inside provider’s cloud is usually

free. These two aspects of pricing policies may have a significant impact on the cost of

completing a scientific task.

Cloud services are characterized by their pricing and performance. Instance types are

described by price per hour, relative performance and data transfer cost as presented in

Table 4.1. To assess the relative performance of clouds it is possible to run application-

specific benchmarks on all of them, or to use publicly available cloud benchmarking
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Instance type Price per hour Instance performance in CCU
Amazon Web Services (AWS) [US East]

m2.4xlarge $2.400 27.25
m2.2xlarge $1.200 14.89
linux.c1.xlarge $0.680 8.78
m2.xlarge $0.500 7.05
m1.xlarge $0.680 5.15
m1.large $0.340 4.08
c1.medium $0.170 3.43
m1.small $0.085 0.92

Rackspace Cloud [Dallas]
rs-16gb $0.960 4.95
rs-2gb $0.120 4.94
rs-1gb $0.060 4.93
rs-4gb $0.240 4.90

GoGrid [CA, US]
gg-8gb $1.520 23.2
gg-4gb $0.760 9.28
gg-2gb $0.380 4.87
gg-1gb $0.190 4.42

ElasticHosts [UK]
eh-8gb-20gh $0.654 9.98
eh-4gb-8gh $0.326 5.54
eh-2gb-4gh $0.164 4.75
eh-1gb-2gh $0.082 4.30

Hypothetical instance of private cloud
private $0.000 1.00

Table 4.1: Example pricing and performance of cloud instances.

services, such as CloudHarmony [40]. CloudHarmony defines performance of cloud in-

stances in the units named CloudHarmony Compute Units (CCU) as similar to Amazon

EC2 Compute Unit (ECU), which are approximately equivalent to CPU capacity of a

1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. Storage platforms include fees for

data transfer.

4.3 Problem formulation

To perform optimization of the total cost, Mixed Integer Non-Linear Problem (MINLP)

is formulated and implemented in A Mathematical Programming Language (AMPL) [31].

As we shown in Chapter 3, AMPL requires to specify input data sets and variables to

define the search space, as well as constraints and objective function to be optimized.
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4.3.1 Input data

The formulation requires the following input sets, which represent the cloud infrastruc-

ture model:

• S = {s3, cloudfiles} – defines available cloud storage sites,

• P = {amazon, rackspace, . . . } – defines possible computing cloud providers,

• I = {m1.small, . . . , gg.1gb, . . . } – defines instance types,

• PIp ⊂ I – instances that belong to provider Pp,

• LSs ⊂ P – compute cloud providers that are local to storage platform Ss.

Each instance type Ii is described by the following parameters:

• pIi – fee in $ for running instance Ii for one hour,

• ccui – performance of instance in CloudHarmony Compute Units (CCU),

• pIouti and pIini – price for non-local data transfer to and from the instance, in $ per

MiB.

Storage sites are characterized by:

• pSouts and pSins characterize price in $ per MiB for non local data transfer.

Additionally, we need to provide data transfer rates in MiB per second between storage

and instances by defining function ri,s > 0 .

We assume that the computation time of a task is known and constant, this also applies

to input and output data size. We also assume that tasks are atomic (non divisible).

Computation is characterized by the following parameters:

• Atot – number of tasks,

• tx – execution time in hours of one task on 1 CCU machine,

• din and dout – data size for input and output of one task in MiB,

• pR – price per request for queuing service,

• tD – total time for completing all tasks in hours (deadline).
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4.3.2 Auxiliary parameters

The formulation of the problem requires a set of precomputed parameters which are

derived from the main input parameters of the model. The relevant parameters include:

tneti,s =
din + dout

ri,s · 3600
(4.1)

tui,s =
tx

ccui
+ tneti,s (4.2)

cti,s = (dout · (pIouti + pSins ) + din · (pSouts + pIini )) (4.3)

adi,s = b
tD

tui,s
c (4.4)

tqi,s = dtui,se (4.5)

aqi,s = b
tqi,s
tui,s
c (4.6)

tdi,s = db
tD

tui,s
c · tui,se (4.7)

• tneti,s – transfer time: time for data transfer between Ii and Ss,

• tui,s – unit time: time for processing a task on instance Ii using storage Ss that

includes computing and data transfer time (in hours),

• cti,s – cost of data transfer between instance Ii and storage Ss,

• adi,s – number of tasks that can be done on one instance Ii when using storage Ss

running for tD hours,

• tqi,s – time quantum: minimal increase of instance running time that is sufficient to

increase the number of processed tasks, rounded up to full hour,

• aqi,s – number of tasks that can be done in tqi,s hours,

• tdi,s – instance deadline: number of hours that can be effectively used for computa-

tion.

4.3.3 Variables

Variables that will be optimized and define the solution space are listed below:

• Ni – number of instances of type Ii to be deployed,

• Ai – number of tasks to be processed on instances of type Ii,
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Figure 4.1: Task scheduling policy

• Ds – 1 iif Ss is used, otherwise 0; only one storage may be used,

• Ri – number of remainder (tail) hours for instance Ii,

• Hi – 1 iif Ri 6= 0, otherwise 0.

Fig. 4.1 illustrates how the tasks are assigned to multiple running instances. The tasks

are atomic and there is no checkpointing or preemption. Even though all the tasks have

the same computational cost, their total processing time depends on performance of the

VM type and data transfer rate. Moreover, the users are charged for the runtime of

each VM rounded up to full hours. In our model the tasks are assigned to the instances

in the following way. First, in the process of optimization Ai tasks are assigned to the

instance Ii. This gives Ni instances of type Ii running for tdi,s hours. Remaining tasks

are assigned to an additional instance running for Ri hours. We will refer to them as

tail hours.

In order to enforce provider’s instance limit, Hi is introduced which indicates if Ii has

any tail hours. E.g. in Fig. 4.1 instances of type 1 have 3 tail hours, and instances of

type 2 have no tail hours.

4.3.4 Formulation of constraints and objectives

Cost of running a single task which includes the cost of VM instance time required for

data transfer and task computing time, together with data transfer costs and request

cost, can be described as:
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(
tnet + tu

)
· pI+

din ·
(
pSout + pIin

)
+

dout ·
(
pIout + pSin

)
+

pR

The objective function represents the total cost of running multiple tasks of the appli-

cation on the cloud infrastructure and it is defined as:

minimize
total cost

∑

i∈I
((
∑

s∈S
Ds · tdi,s ·Ni +Ri) · pIi +Ai · (pR +

∑

s∈S
Ds · cti,s)) (4.8)

subject to the constraints:

∀
i∈I

Ai ∈ Z ∧ 0 ≤ Ai ≤ Atot (4.9)

∀
s∈S

Ds ∈ {0, 1} (4.10)

∀
i∈I

Ni ∈ Z ∧ 0 ≤ Ni ≤ nImax
i (4.11)

∀
i∈I

Ri ∈ Z ∧ 0 ≤ Ri ≤ tD − 1 (4.12)

∀
i∈I

Hi ∈ {0, 1} (4.13)

∀
i∈I

Ai ≥
∑

s∈S
(Ni · adi,s) ·Ds (4.14)

∀
i∈I

Ai ≤
∑

s∈S
(Ni · adi,s +max(adi,s − 1, 0)) ·Ds (4.15)

∀
i∈I

Ri ≥
∑

s∈S
(Ai −Ni · adi,s) · tui,s ·Ds (4.16)

∀
i∈I

Ri ≤
∑

s∈S
(Ai −Ni · adi,s + aqi,s) · tui,s ·Ds (4.17)

∑

i∈I
Ai = Atot (4.18)

∑

s∈S
Ds = 1 (4.19)

∀
i∈I

Hi ≤ Ri ≤ max(tD − 1, 0) ·Hi (4.20)

∀
p∈P

∑

i∈PIp

(Hi +Ni) ≤ nPmax
p (4.21)
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Interpretation of the constraints is the following:

• (4.9) to (4.13) define weak constraints for a solution, i.e. they are to ensure that

the required variables have the appropriate integer or binary values,

• (4.14) and (4.15) ensure that number of instances is adequate to number of assigned

tasks; for chosen storage Ds

Ni · adi,s ≤ Ai ≤ Ni · adi,s +max
(
adi,s − 1, 0

)

where the lower bound is given by full allocation of Ni machines and the upper

bound includes a fully allocated tail machine,

• (4.16) and (4.17) ensure that number of tail hours is adequate to number of re-

maining tasks, implement Ri =
⌈(

Ai −Ni · adi,s
)
· tuis
⌉
,

• (4.18) ensures that all tasks are processed,

• (4.19) ensures that only one storage site is selected,

• (4.20) ensures that Ri has proper value, implements Hi =

{
1, Ri > 0

0, Ri = 0
,

• (4.21) enforces providers’ instance limits.

4.3.5 Solver choice

Defining the problem in AMPL enables to choose among a wide range of solvers that

can be used as backend. The problem itself is MINLP, but can be reduced to Integer

Linear Programming (ILP) problem. The nonlinear part of problem comes from storage

choice, so by fixing storage provider and running optimization procedure for each storage

separately the optimal solution is found.

Initially Bonmin [41] solver was used, but after the model was fully implemented and

subject to more tests, it appeared that CBC [35] solver performs better with default

options. This results from the fact that Bonmin is a solver designed to solve MINLP

problems and uses various heuristics, while CBC uses a branch and bound algorithm

tuned for ILP. As the problem is linear and convex, CBC finds global optimum. The

model was optimized so that it should give acceptable results in ∼0.10 seconds 1.
1As measured on quad-core Intel i5 machine.
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4.4 Experiments and results

To evaluate the model, we first run the optimization process for two scenarios with a

private cloud and (1) infinite public clouds (Section 4.4.1) and (2) finite public clouds

(Section 4.4.2). We also evaluated the effect of possible overlapping of computations and

data transfers in Section 4.4.3. When testing the model under various input parameters,

we identified interesting special cases described in Section 4.4.4. Finally, we discuss a

sensitivity analysis, its implications and potential usage in Section 4.5.

Data intensive tasks that require relatively large amount of data for short computing

time (we assumed 512 MiB of input and 512 MiB of output) and compute intensive

tasks that require relatively small amount of data (we assumed 0.25 MiB of input and

0.25 MiB of output). Each case consists of 20,000 tasks, each of them requires 0.1

hour of computing time on a VM with performance of 1 CCU. Two scenarios with

infinite and finite public clouds were considered, where as the costs and performance of

public clouds we used the data from CloudHarmony benchmarks. This dataset gives the

data of 4 compute cloud providers (Amazon EC2, Rackspace, ElasticHosts and GoGrid)

and 2 storage providers (Amazon S3 and Rackspace Cloud Files), giving the instance

prices between $0.06 and $2.40 per hour and performance between 0.92 and 27.4 CCU

(see Table 4.1). The pricing model assumes that the private cloud instances have the

performance of 1 CCU and $0 cost. For each scenario the deadline parameter ranges

between 5 and 100 hours. Since only two storage providers (S3 and Cloud Files) were

considered, the solver is run separately for these two parameters.

4.4.1 Private + infinite public clouds

This scenario assumes that the private cloud can run a maximum of 10 instances, while

the public clouds have unlimited capacity. The results for tasks that require small amount

of data are shown in Fig. 4.2. As the deadline is extended, the total cost linearly drops

as expected. As many tasks as possible are run on the private cloud, and for all the

remaining tasks the instance type with best price to performance ratio is selected.

This situation changes as data size grows (Fig. 4.3) – for data intensive tasks the total

cost is nearly constant as all the work is done on a public cloud. This results from the

fact that data transfer cost to and from the private cloud is higher than the cost of

running instances on public cloud. In our case it turns out that the lowest cost can be

achieved when using Cloud Files storage from Rackspace, since in our dataset the best

instance type in terms of price to performance was available at Rackspace.
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4.4.2 Private + finite public clouds

If assumption that public clouds are limited is made, situation is not so straightforward

(See Fig. 4.4 and 4.5). For relatively long deadlines, a single cloud platform for both

VMs and storage can be used, which means that the data transfer is free. As the deadline

shortens we first observe a linear cost increase. At the point when the selected cloud

platform reaches its VM limit, additional clouds need to be used, so we need to begin

paying for the data transfer. Therefore the cost begins to increase more rapidly.

This effect is very significant in the case of data intensive tasks (Fig. 4.5) as the cost

growth may become very steep. For example, in our tests the task processing cost in

28 hours was $157.39, in 30 hours it was $131.14 and in 34 hours it was only $30.26.

For longer deadlines there was no further decrease. We can also observe that for longer

deadlines the Cloud Files storage provider is less expensive for the same reason as it
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was in Fig. 4.3. Shorter deadlines, however, require to run more powerful instances from

other clouds (Amazon EC2), thus it becomes more economical to use its local S3 storage.

4.4.3 Overlapping computation and data transfers

In the model we assumed that computation and data transfers are not overlapping.

To achieve parallelism of these two processes, the model needs to be modified in the

following way. The total task computation time is maximum of task execution and data

transfer time. Additionally, input for the first task and output of the last task must be

transferred sequentially. Equations 4.2, 4.4 and 4.7 are updated for this case as follows:
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tui,s = max(
tx

ccui
, tneti,s ) (4.22)

adi,s = b
(tD − tneti,s )

tui,s
c (4.23)

tdi,s = db
(tD − tneti,s )

tui,s
c · tui,se (4.24)

Fig. 4.6 shows results for the same experiment as in Section 4.4.2 and Fig. 4.5, but with

computing and transfers overlapping. Overlapping reduces total cost as time required for

task processing is significantly lower. This is especially true for shorter deadlines when

multiple clouds are used, as transfer rates are lower between different clouds comparing

to one provider infrastructure.

4.4.4 Identifying special cases

Running a test case with very large tasks which cannot be completed within one hour

on largest available instance revealed an interesting model behavior. Results are shown

on Fig. 4.7. Local minima may occur for certain deadlines thus cost does not increase

monotonically with decrease of deadline. This is a consequence of our task scheduling

policy, as explained in Section 4.3.3. In the case of large tasks, the schedule for deadline

of 9 hours as seen in Fig. 4.8a costs less than for deadline of 10 hours as in Fig. 4.8b. In

the first case the total number of VM-hours of the gg-8mb instance is equal to 56, but in

the case of deadline of 10 hours the total number is 58, which results in higher cost. This

is the result of the policy, which tries to keep VMs running time as close to the deadline
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as possible. Such policy is based on general observation, that for a given budget it is

usually more economical to start less VMs for longer time than to start more VMs for

shorter time. However, there are rare cases when such policy may lead to non-optimal

solutions. It should be noted, that the solution of the model returned by the solver in

this case is optimal, but it is the model itself that does not allow to find the minimum

cost.

Moreover, for longer deadlines the cost is a step function – e.g. the cost for deadline of

18 hours is the same as for 14 hours. These two observations suggest that the model

could be modified in such a way that the deadline is also a variable with upper bound

constraint. Similar result can be achieved in a simple way by solving the current model

for multiple deadlines in the neighborhood of the desired deadline and by selecting the

best solution.

4.5 Sensitivity analysis

In order to better assess how the model behaves in response to the changing constraints

and for varying input parameters, I performed a sensitivity analysis by sampling a large

parameter space. Fig. 4.9 shows the solutions obtained for deadlines ranging from 2 to

40 hours and for input and output data sizes ranging from 0 to 256 MiB. As it can be

seen in the plot, for all data sizes the cost increases monotonically with the decrease of

the deadline, which confirms that no anomalies are observed. The same data can be also

observed as animated plot available as on-line supplement2.

Fig. 4.10 presents these results from a perspective where each curve shows how the cost

depends on data size for varying deadlines.
2See also http://youtu.be/FWjgMwLdZW4

http://youtu.be/FWjgMwLdZW4
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Figure 4.8: Task schedule for the identified special case

One of the questions that our model can help answer is how the changes in cost are sensi-

tive to the changes of deadline. Fig. 4.11 shows the cost function as well as corresponding

elasticity, which is computed as: Ef(x) = x
f(x)f

′(x), where in this case f is cost and x

is deadline. Elasticity gives the information on what is the percentage change of cost in

response to the percentage change of deadline. The function has negative values, since

the cost decreases with the increase of deadline. It is interesting to see in which ranges

the elasticity has larger absolute value, which corresponds to more steep cost function.

Here we can see that the elasticity grows for short deadlines and close to the deadline of

25 hours, which is the point where the solution cannot use only the VM instances from

most cost-effective clouds and requires more expensive ones to meet the deadline.

Identifying such ranges with high absolute value of elasticity is important for potential

users of the cloud system, including researchers (end users) or resellers (brokers). The

end user can for example observe that changing the deadline from 40 to 30 hours or

even from 20 to 10 hours will not incur much additional cost. However, changing the

deadline from 30 to 20 hours is very costly, so it should be avoided. On the other hand,

the situation looks different from the perspective of a reseller, who buys cloud resources

from providers and offers them to end-users in order to make profit. The reseller can for
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Figure 4.9: Optimal cost for a wide range of deadline constraints and data sizes.
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example offer to compute the given set of tasks in 20 hours for $150 with minimal profit,

but it can also offer to complete the same set of tasks in 30 hours for $50. Such price

can seem attractive to the end user who pays 1/3 of the price for increasing the deadline

by 50%, but it is in fact very beneficial for the reseller, whose profit reaches 100%. Such

cost analysis is an important aspect of planning large computing experiments on cloud

infrastructures.

4.6 Impact of dynamic environment

As stated in section 4.1, we assume that execution time, transfer rate and data access

time for all the tasks are constant. However, in real environments the actual runtime

of tasks will vary. The goal of the following simulation experiment was to estimate the
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Figure 4.11: Sensitivity of costs in response to changes in deadline

impact of this runtime variation on the quality of results obtained using our optimization

model.

For all the task assignment solutions presented in Fig. 4.9 we add runtime variations to

the task runtimes in the following way. For each task we generate a random error in the

range from −v to v using uniform distribution, where v is the runtime variation range.

We tested values of v = 10%, 20%, 30%, 40%, 50%. Such modified task runtimes are then

used to calculate the actual runtime and cost of VM. Due to variation of task runtimes,

it is possible that some computations may not finish before the deadline (time overrun)

and that the cost of additional VM-hours may need to be paid (cost overrun).

We assume that task size variations include also variations of data transfer time. We

don’t take into account variations of data transfer costs, since the transfer costs for each

task depend linearly on data size, so the aggregated impact of positive and negative

variations cancels to nearly 0.
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Figure 4.12: Impact of runtime variation on cost overrun as a function of deadline.
Results obtained for random variation of task runtime in the range from −10% to +10%

(top) and from −50% to +50% (bottom).

Fig. 4.12 shows the cost overrun with 10% and 50% of runtime variation range. The box-

plots for each deadline represent averaged results for the data sizes from 0 to 256 MiB

as in Fig. 4.9, with box boundaries at quartiles and whiskers at maximum and minimum

values. We observe that the highest overruns are for the shortest deadlines, which results

from the fact that when each VM instance runs only for a few hours, then the additional

hour will incur relatively high additional cost. On the other hand, for longer deadlines the

cost of additional VM-hour becomes less significant. We also observe that the aggregated

impact of positive and negative variations in task execution time may cancel to nearly 0

and in some cases the cost overrun may be negative.

In a similar way Fig. 4.13 shows the deadline overrun in the presence of runtime varia-

tions. We can observe that the deadline overrun is much smaller than cost overrun. This

means that the actual finish time of all tasks is not significantly affected by the runtime

variation, due to the cancellation effect. We observe that even for high variations in the

range from −50% to 50% the actual runtime rarely exceeds the deadline by more than

10%. This overrun can be thus easily compensated by solving the optimization problem

with a respectively shorter deadline giving a safety margin in the case of expected high

variations of actual task runtimes. Similar estimation is also possible in the case when
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Figure 4.13: Impact of runtime variation on deadline overrun as a function of deadline.
Results obtained for random variation of task runtime in the range from −10% to 10%

(top) and from −50% to +50% (bottom).

the application consists of many tasks of similar size which distribution in known in

advance.

4.7 Summary

In this chapter we discussed bag of tasks applications model and cloud infrastructure

characteristics. This led us to formulating AMPL model for optimizing cost of running

bag of tasks applications. The model was later evaluated in terms of optimization runtime

and sensitivity. The results show that the total cost grows slowly for long deadlines, since

it is possible to use free resources from a private cloud. However, for short deadlines

it is necessary to use the instances from public clouds, starting from the ones with

best price/performance ratio. The shorter the deadlines, the more costly instance types

have to be added, thus the cost grows more rapidly. Moreover, our results can be also

useful for multi-objective optimization. In such a case, it would be possible to run the

optimization algorithm in a certain neighborhood of the desired deadline and select the

best solution using a specified cost/time trade-off. Alternatively, multiple solutions as

in Fig. 4.5, 4.9 or 4.10 may be corollary acceptable solution.
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Workflow optimization

In this chapter we discuss optimization of scientific applications that may be represented

as workflows. In Section 5.1 we discuss the details of scientific workflows. Then in

Section 5.2 we formulate optimization problem using AMPL by defining the data, vari-

ables, constraints and the objective. Finally, in we evaluate in Section 5.3 by scheduling

example workflows from Workflow Generator Gallery.

5.1 Application model

As described in Section 1.2.1, a scientific workflow describes the dependencies between

tasks and in most cases may be represented as directed acyclic graph (DAG), where

nodes represent tasks and edges represent task dependencies.

There are different approaches to optimize workflow scheduling (see Chapter 2). Math-

ematical programming allows to describe the model mathematically and use a set of

available optimization solvers. On the other hand, an attempt to apply this method to

the general problem of scheduling large-scale workflows on heterogeneous cloud resources

would be impractical due to the problem complexity, therefore simplified models need to

be analyzed. Optimization models can be simplified in several ways. We may simplify

application model, infrastructure model or make certain assumptions on the schedule.

In this model we assume that workflow is represented as a DAG. We also assume that

a workflow is divided into several levels (layers) that can be executed sequentially and

tasks within one level do not depend on each other (see Fig. 5.1). Each layer represents

a bag of tasks that can be partitioned in several groups (e.g. application A, application

B, etc.) that share computational cost and input/output size. We assume that only one

task group is executed on a specific cloud instance (VM). This forbids instance sharing

45
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Layer 1 A

Layer 2 B B B C

Layer 3 D

Layer 4 E

Layer 5 F

Figure 5.1: Example application structure

between multiple layers, which means that each application needs its own specific VM

template with a preconfigured environment.

In this model we will use the same infrastructure model as presented in Section 4.2.

5.2 Problem formulation using AMPL

Similarly to the model presented in Chapter 4 we will formulate and implement the

model in AMPL.

5.2.1 Input data

The formulation requires the following input sets, which represent the infrastructure

model, in a similar way as we approached the problem in Chapter 4:

• S = {s3, cloudfiles} – defines available cloud storage sites,

• P = {amazon, rackspace, . . . } – defines possible computing cloud providers,

• I = {m1.small, . . . , gg.1gb, . . . } – defines instance types,

• PIp ⊂ I – instances that belong to provider Pp,

• LSs ⊂ P – compute cloud providers that are local to storage platform Ss.

Each instance type Ii is described by the following parameters:
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• pIi – fee in $ for running instance Ii for one hour,

• ccui – performance of instance in CloudHarmony Compute Units (CCU),

• pIouti and pIini – price for non-local data transfer to and from the instance, in $ per

MiB (1 MiB = 1024 ∗ 1024 Bytes)

Storage sites are characterized by:

• pSouts and pSins characterize price in $ per MiB for non local data transfer.

Additionally we need to provide data transfer rates in MiB per second between storage

and instances by defining function ri,s > 0 .

Our application model is different from the one in Chapter 4 because it groups tasks into

layers:

• L – set of layers,

• G – set of tasks groups,

• Gl – set of tasks groups belonging to layer l,

• Atot
t – number of tasks in group t,

• txt – execution time in hours of a single task of group t on 1 CCU machine,

• dint and doutt – data size for input and output of one task t in MiB,

• pR – price per request for queuing service, such as Amazon SQS, required to execute

a single task,

• tD – total time for completing workflow (deadline).

5.2.2 Auxiliary parameters

A set of precomputed parameters which are derived from the main input parameters of

the model includes:

tneti,s =
din + dout

ri,s · 3600
(5.1)

tui,s =
tx

ccui
+ tneti,s (5.2)

cTi,s = (dout · (pIouti + pSins )

+ din · (pSouts + pIini ))
(5.3)

(5.4)
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• tneti,s – transfer time: time for data transfer between Ii and Ss,

• tui,s – unit time: time for processing a task on instance Ii using storage Ss that

includes computing and data transfer time (in hours),

• cTi,s – cost of data transfer between instance Ii and storage Ss,

• Iidxi – set of possible instance Ii indexes (from 0 to nImax
i − 1).

5.2.3 Variables

Variables that will be optimized and define the solution space are:

• At,i,x – binary, 1 iif (if and only if) instance Ii with index x is launched to process

task group Gt, otherwise 0;

• Ht,i,x – integer, for how many hours is instance launched;

• Tt,i,x – integer, how many tasks of Gt are processed on that instance,

• Dt
l – actual computation time for Ll,

• Dl – integer, maximal number of hours that instances are allowed to run in Ll.

5.2.4 Formulation of objectives

Cost of running one task including instance and transfer cost is:

(
tnet + tu

)
· pI + din ·

(
pSout + pIin

)
+ dout ·

(
pIout + pSin

)
+ pR (5.5)

while the objective function represents the total cost of running multiple tasks of the

application on the cloud infrastructure is defined as:

minimize
total cost

∑

t∈G,i∈I,x∈Iidxi

((pIi ∗Ht,i,x + pR + cTi,s) ∗ Tt,i,x) (5.6)
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subject to the constraints:

∑

l∈L
Dl ≤ tD (5.7)

∀
l∈L

Dt
l ≤ Dl ≤ Dt

l + 1 (5.8)

∀
t∈G,i∈I,x∈Iidxi

At,i,x ≤ Ht,i,x ≤ At,i,x · tD (5.9)

∀
t∈G,i∈I,x∈Iidxi

At,i,x ≤ Tt,i,xAt,i,x ·Atot
t (5.10)

∀
t∈G,i∈I,x∈Iidxi

Ht,i,x ≤ Dl (5.11)

∀
l∈L,t∈Gl,i∈I,x∈Iidxi

Tt,i,x · tut,i,s ≤ Dt
l (5.12)

∀
t∈G,i∈I,x∈Iidxi

Tt,i,x · tut,i,s ≤ Ht,i,xTt,i,x · tut,i,s + 1 (5.13)

(5.14)

∀
t∈G

∑

i∈I,x∈Iidxi

Tt,i,x = Atot
t (5.15)

∀
t∈G,i∈I,x∈{1..(nImax

i −1)}
Ht,i,x ≤ Ht,i,x−1 (5.16)

∀
t∈G,i∈I,x∈{1..(nImax

i −1)}
At,i,x ≤ At,i,x−1 (5.17)

∀
t∈G,i∈I,x∈{1..(nImax

i −1)}
Tt,i,x ≤ Tt,i,x−1 (5.18)

∀
l∈L,p∈P

∑

i∈PIp,t∈Gl,x∈Iidxi

At,i,x ≤ nPmax
p (5.19)

Interpretation of the constraints is the following:

• (5.7) ensures that workflow finishes in given deadline,

• (5.8) fix that D = dDte,

• (5.9) ensure that H may be allocated only iif A is 1,

• (5.10) ensure that T may be allocated only iif A is 1,

• (5.11) enforces layer deadline on instances runtime,

• (5.12) enforces layer finishes work in Dt,

• (5.13) adjust H respectively to T in order to make sure that all the instances run

for enough time to process all tasks allocated to them we require,

• (5.15) ensures that all tasks are processed,
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• (5.16 to 5.18) reject symmetric solutions,

• (5.19) enforces instance limits per cloud.

To keep this model in MIP class we had to take different approach than in previous

model, and schedule each virtual machine instance separately. The drawback of this

approach is that we need to increase the number of decision variables. The search space

is also divided by storage provider. Additionally, the deadline becomes a variable with

upper bound as it may happen that shorter deadline may actually give a cheaper solution

(see Fig. 5.3 and its discussion).

5.3 Evaluation

To evaluate our model on realistic data, we use CloudHarmony [40] benchmarks to pa-

rameterize the infrastructure model, and we use the Workflow Generator Gallery work-

flows [7] as test applications.

In the infrastructure model we assumed that we have 4 public cloud providers (Amazon

EC2, RackSpace, GoGrid and ElasticHosts) and a private cloud with 0 cost. The infras-

tructure has two object storage services, S3 that is local to EC2 and CloudFiles that is

local to RackSpace, so data transfers between local compute and storage are free.

We tested our model with all application types from the gallery: Montage, CyberShake,

Epigenomics, LIGO and SIPHT for all available workflow sizes (from 50 to 1000 tasks

per workflows, up to 5000 tasks in the case of SIPHT workflow). We varied the deadline

from 1 to 30 hours with 1-hour increment. We solve the problem for two cases, depending

on whether the data is stored on Amazon S3 or on RackSpace CloudFiles.

Fig. 5.2 shows the example results obtained for the Epigenomics application and work-

flows of two sizes (400 and 500 tasks). For longer deadlines the private cloud instances
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Figure 5.2: Result of the optimization procedure for the Epigenomics application.



Chapter 5. Workflow optimization 51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20

R
un

tim
e/

tim
e 

lim
it 

ra
tio

Time limit (hours)

Amazon S3
Rackspace Cloud Files

Figure 5.3: Ratio of actual completion time to deadline for Epigenomics workflow
with 500 tasks.

and the cheapest RackSpace instances are used so the cost is low when using CloudFiles.

For shorter deadlines the cost grows rapidly, since we reach the limit of 15 instances

per cloud and additional instances must be spawned on a different provider, making the

transfer costs higher. This effect is amplified in Fig. 5.2b, which differs from Fig. 5.2a

not only by the number of tasks but also by the data size of one layer. This means that

the transfer costs are growing more rapidly, so it becomes more economical to store the

data on Amazon EC2 that provides more powerful instances required for short deadlines.

One interesting feature of our model is that for longer deadlines it can find the cost-

optimal solutions that have shorter workflow completion time than the requested dead-

line. This effect can be observed in Fig. 5.3 and is caused by the fact that for long

deadlines the simple solution is to run the application on a set of the least expensive

machines.

Figures 5.4 to 5.7 show results obtained for other workflows. These workflows are rel-

atively small and even for short deadlines our model is able to schedule tasks to be

executed in a very short time on cheapest instances on a single cloud, this results in flat

characteristics.

To investigate how the model behaves for workflows with the same structure, but with

much longer run times of tasks, we run the optimization for Montage workflow with

tasks 1000× longer. This corresponds to the scenario where tasks are in the order of

hours instead of seconds. The sample results in Fig. 5.8 show how the cost increases

much steeply with shorter deadlines, illustrating the trade-off between time and cost.

The difference between Figs. 5.6f and 5.8 illustrates that the model is more useful for

workflows when tasks are of granularity that is similar to the granularity of the (hourly)

billing cycle of cloud providers.
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The run time of the optimization algorithm for workflows with up to 1000 tasks ranges

from few seconds up to 4 minutes using the CPLEX [36] solver running on a server with

4 16-core 2.3 GHz AMD Opteron processors (model 6276), with a limit set to 32 cores.

Fig. 5.9a shows that the time becomes much higher for shorter deadlines and increases for

very long deadlines. This is correlated with size of search space: the longer the deadline,

the search space is larger, while for shorter deadlines the problem has a very small set

of acceptable solutions. The problem becomes more severe for bigger and more complex

workflows like SIPHT as optimization time becomes very high (Fig. 5.9b).

5.4 Summary

In this chapter, we presented a cost optimization model for scientific workflows executing

on multiple heterogeneous clouds. The model, formulated in AMPL, allows us to find

the optimal assignment of workflow tasks, grouped into layers, to cloud instances. The

model was tested on a set of benchmark workflows and we observed that it gives useful

solutions in a reasonable amount of computing time. By solving the model for multiple

deadlines, we can produce trade-off plots, showing how the cost depends on the deadline.

Such plots are a step towards a scientific cloud workflow calculator, supporting resource

management decisions for both end-users and workflow-as-a-service providers.
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Figure 5.4: Optimal cost found by the model for CyberShake workflow.
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Figure 5.5: Optimal cost found by the model for LIGO workflow.



Chapter 5. Workflow optimization 55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

Amazon S3
Rackspace Cloud Files

Optimal

(a) 50 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(b) 100 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(c) 200 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )
Time limit (hours)

(d) 300 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(e) 400 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(f) 500 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(g) 700 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(h) 800 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(i) 900 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
os

t (
$ 

 )

Time limit (hours)

(j) 1000 tasks

Figure 5.6: Optimal cost found by the model for Montage workflow.
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Figure 5.7: Optimal cost found by the model for SIPHT workflow.
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Figure 5.9: Solver execution wall time.





Chapter 6

Conclusions and future work

6.1 Conclusions

The results presented in this thesis illustrate typical problems when making decisions

on deployment planning on clouds and how they can be addressed using optimization

techniques. The major goal of this thesis was the theoretical and practical investigation

of optimization of resource allocation on the cloud by using integer linear programming

tools and methods. To realize this goal, it required an analysis of cloud computing model,

existing workflow scheduling and resource allocation algorithms, as well as mathematical

programming – that were presented in first three chapters.

To practically evaluate integer linear programming approach to the problem, we de-

fined application model of bag of tasks applications and workflows. We also defined

the infrastructure model of multiple heterogenous clouds, including private and public

ones. The optimization model takes into account the cost of compute instances and data

transfer that proved to have significant contribution to the total. The mixed integer

nonlinear optimization models were then implemented in AMPL modeling language and

optimized with Cbc and CPLEX solvers. The models were evaluated in terms of results,

performance and solution stability by performing a parameter sweep and analyzing the

results.

We conclude that the integer linear programming proved to be a useful approach for

resource allocation for scientific computing. The AMPL appeared to be friendly tool to

perform such optimization.

59
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6.2 Future work

As a future work we intend to perform experiments on real cloud infrastructure by using

real applications and data sets. That would allow us to better understand cloud in-

frastructure deployment issues and see how dynamic environment affects offline resource

allocation.

Furthermore, the infrastructure model should be extended to better reflect cloud in-

frastructure caveats and new cloud features such as the shorter billing cycle introduced

by Cloud-Sigma or Google Compute Engine. Additional cloud services should be also

considered, as they may be also used by scientific applications

Additionally, the mathematical programming approach could be applied as a subproblem

solving method for other heuristic algorithms, e.g. for on-line scheduling. For that, we

should investigate multi-stage optimization algorithms.

Last, but not least, the performance of workflow optimization model may be subject to

improvements by simplifying application or infrastructure model or by applying other

modeling techniques.



Appendix A

Source Code

Source code of the models and corresponding scripts used to generate graphs are available

at public GitHub repository kfigiela/msc-thesis.

Requirements

• AMPL (version 20120804)

• CPLEX (version 12.4.0.1)

• CBC (version 2.7)

• Bonmin (version 1.5)

• Ruby (version 1.9.3)

• Bash (version 3.2)

Repository layout

• thesis – sources of the thesis,

• bag-of-tasks – sources of the bag of tasks model with corresponding helper scripts,

• workflows – sources of the workflows model with corresponding helper scripts.
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a b s t r a c t

We address the problem of task planning on multiple clouds formulated as a mixed integer nonlinear
programming problem (MINLP). Its specification with AMPL modeling language allows us to apply
solvers such as Bonmin and Cbc. Our model assumes multiple heterogeneous compute and storage cloud
providers, such as Amazon, Rackspace, GoGrid, ElasticHosts and a private cloud, parameterized by costs
andperformance, including constraints onmaximumnumber of resources at each cloud. The optimization
objective is the total cost, under deadline constraint. We compute the relation between deadline and
cost for a sample set of data- and compute-intensive tasks, representing bioinformatics experiments. Our
results illustrate typical problems when making decisions on deployment planning on clouds and how
they can be addressed using optimization techniques.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In contrast to already well established computing and storage
resources (clusters, grids) for the research community, clouds in
the form of infrastructure-as-a-service (IaaS) platforms (pioneered
by Amazon EC2) provide on-demand resource provisioning
with a pay-per-use model. These capabilities together with the
benefits introduced by virtualization, make clouds attractive to
the scientific community [1]. In addition to public clouds such
as Amazon EC2 or Rackspace, private and community cloud
installations have been deployed for the purpose of scientific
projects, e.g. FutureGrid1 or campus-based private cloud at Notre
Dame.2 As a result, multiple deployment scenarios differing in
costs and performance, coupled together with new provisioning
models offered by clouds make the problem of resource allocation
and capacity planning for scientific applications a challenge.

The motivation for this research comes from our previous
work [2,3], in which we run experiments with compute-intensive
bioinformatics application on a hybrid cloud consisting of Amazon
EC2 and a private cloud. The application is composed of a set
of components (deployed as virtual machines) that communicate

∗ Corresponding author at: AGH University of Science and Technology, Depart-
ment of Computer Science, Mickiewicza 30, 30-059 Kraków, Poland. Tel.: +48 12
3283353.

E-mail addresses: malawski@agh.edu.pl (M. Malawski), naber@nd.edu
(J. Nabrzyski).
1 http://futuregrid.org.
2 http://www.cse.nd.edu/~ccl/operations/opennebula/.

using a queue (Amazon SQS) and process data that is stored on
a cloud storage (Amazon S3). The results of these experiments
indicate that clouds do not introduce significant delays in terms of
virtualization overhead and deployment times. However, multiple
options for placement of application components and input/output
data, which differ in their performance and costs, lead to non-
trivial resource allocation decisions. For example, when data is
stored on the public cloud, the data transfer costs between storage
and a private cloud may become large enough to make it more
economical to pay for compute resources from the public cloud
than to transfer the data to a private cloud where computing is
cheaper.

In this paper, we address the resource allocation problem
by applying the optimization techniques using AMPL modeling
language [4], which provides access to a wide range of ready to use
solvers. Our model assumes multiple heterogeneous compute and
storage cloud providers, such as Amazon, Rackspace, ElasticHosts
and a private cloud, parameterized by costs and performance. We
also assume that the number of resources of a given type in each
cloud may be limited, which is often the case not only for private
clouds, but also for larger commercial ones. The optimization
objective is the total cost, under deadline constraint. To illustrate
how these optimization tools can be useful for planning decisions,
we analyze the relations between deadline and cost for different
task and data sizes, which are close to our experiments with
bioinformatics applications.

The main contributions of the paper are the following:
– We formulate the problem of minimization of cost of running

computational application on hybrid cloud infrastructure as
a mixed integer nonlinear programming problem and its
specification with AMPL modeling language.

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2013.01.004
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– We evaluate the model on scenarios involving limited and
unlimited public and private cloud resources, for compute-
intensive and data-intensive tasks, and for a wide range of
deadline parameters.

– We discuss the results and lessons learned from the model and
its evaluation.

The paper is organized as follows: after discussing the related
work in Section 2, we introduce the details and assumptions of
our application and infrastructure model in Section 3. Then, in
Section 4 we formulate the problem using AMPL by specifying
the variables, parameters, constraints and optimization goals.
Section 5 presents the results we obtained by applying the model
to the scenarios involving multiple public and private clouds,
overlapping computation and data transfers, and identifying
special cases. In Section 6 we provide a sensitivity analysis of our
model and show how such analysis can be useful for potential
users or computing service resellers. In Section 7 we estimate
how our model behaves if the task sizes are not uniform and
change dynamically. The conclusions and future work are given in
Section 8.

2. Related work

The problem of resource provisioning in IaaS clouds has been
recently addressed in [5,6]. They typically consider unpredictable
dynamic workloads and optimize the objectives such as cost,
runtime or utility function by autoscaling the resource pool at
runtime. These approaches, however, do not address the problem
of data transfer time and cost, which we consider an important
factor.

Integer programming approach has been applied to the
optimization of service selection for activities of QoS aware grid
workflows [7]. On the other hand, in our model we assume the
IaaS cloud infrastructure, while the objective function takes into
account costs and delays of data transfers associatedwith the tasks.

The cost minimization problem on clouds addressed in [8] uses
a different model from ours. We impose a deadline constraint and
assume that the number of instances available from providers may
be limited. To satisfy these constraints, the planner has to choose
resources from multiple providers. Our model also assumes that
VM instances are billed per hour of usage.

3. Model

3.1. Application model

The goal of this research is to minimize the cost of processing
a given number of tasks on a hybrid cloud platform, as illustrated
in Fig. 1. We assume that tasks are independent from each other,
but they have identical computational cost and require a constant
amount of data transfer.

The assumption of homogeneous tasks can be justified by the
reason that there are many examples of scientific applications
(e.g. scientific workflows or large parameter sweeps) that include
a stage of a high number of parallel nearly identical tasks.
Such examples can be found e.g. in typical scientific workflows
executed using Pegasus Workflow Management system, where
e.g. CyberShake or LIGO workflows have a parallel stage of nearly
homogeneous tasks [9]. Other examples are Wien2K and ASTRO
workflows that consist of iteratively executed parallel stages
comprising homogeneous tasks [10]. Due to the high number of
parallel branches, these stages accumulate the most significant
computing time of the whole application, so optimization of the
execution of this stage is crucial. Moreover, if the tasks are not
ideally homogeneous, it is possible to approximate them using a
uniform set of tasks with the mean computational cost and data

Fig. 1. The model of application and infrastructure.

sizes of the application tasks. Of course, in real execution the
actual task performance may vary, so the solution obtained using
our optimization method becomes only approximate of the best
allocation, and the actual cost may be higher and deadline may be
exceeded. In order to estimate the quality of this approximation,
we evaluate the impact of dynamic task runtime and non-uniform
tasks in Section 7.

We assume that for each task a certain amount of input data
needs to be downloaded, and after it finishes, the output results
need to be stored. In the case of data-intensive tasks, the transfers
may contribute a significant amount of total task runtime.

3.2. Infrastructure model

Two types of cloud services are required to complete tasks: stor-
age and virtualmachines. Amazon S3 andRackspace Cloud Files are
considered as examples of storage providers, while Amazon EC2,
Rackspace, GoGrid and ElasticHosts represent computational ser-
vices. In addition, the model includes a private cloud running on
own hardware. Each cloud provider offers multiple types of virtual
machine instances with different performance and price.

For each provider the number of running virtual machines may
be limited. This is mainly the case for private clouds that have a
limited capacity, but also the public clouds often impose limits on
the number of virtualmachines. E.g. Amazon EC2 allowsmaximum
of 20 instances and requires to request a special permission to
increase that limit.

Cloud providers charge their users for each running virtual
machine on an hourly basis. Additionally, users are charged for
remote data transfer while local transfer inside provider’s cloud
is usually free. These two aspects of pricing policies may have a
significant impact on the cost of completing a computational task.

Cloud services are characterized by their pricing and perfor-
mance. Instance types are described by price per hour, relative per-
formance and data transfer cost. To assess the relative performance
of clouds it is possible to run application-specific benchmarks on all
of them, or to use publicly available cloud benchmarking services,
such as CloudHarmony.3 CloudHarmony defines performance of
cloud instances in the units named CloudHarmony Compute Units
(CCU) as similar to Amazon EC2 Compute Unit (ECU), which are
approximately equivalent to CPU capacity of a 1.0–1.2 GHz 2007
Opteron or 2007Xeon processor. Storage platforms include fees for

3 http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-
cloud.html.
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data transfer. Additionally, a constant fee per task may be present,
e.g. price per request for a queuing service.4

Our model includes all the restrictions that were mentioned
above.

4. Problem formulation using AMPL

To perform optimization of the total cost, Mixed Integer
Non-Linear Problem (MINLP) is formulated and implemented
in A Mathematical Programming Language (AMPL) [4]. AMPL
requires to specify input data sets and variables to define the
search space, as well as constraints and objective function to be
optimized.

4.1. Input data

The formulation requires the following input sets, which
represent the cloud infrastructure model:

– S = {s3, cloudfiles} – defines available cloud storage sites,
– P = {amazon, rackspace, . . . , c} – defines possible computing

cloud providers,
– I = {m1.small, . . . , gg.1gb, . . . , c} – defines instance types,
– PIp ⊂ I – instances that belong to provider Pp,
– LSs ⊂ P – compute cloud providers that are local to storage

platform Ss.

Each instance type Ii is described by the following parameters:

– pIi – fee in $ for running instance Ii for one hour,
– ccui –performance of instance in CloudHarmonyComputeUnits

(CCU),
– pIouti and pIini – price for non-local data transfer to and from the

instance, in $ per MiB.

Storage sites are characterized by:

– pSouts and pSins characterize price in $ per MiB for non local data
transfer.

Additionally we need to provide data transfer rates in MiB
per second between storage and instances by defining function
ri,s > 0.

We assume that the computation time of a task is known
and constant, this also applies to input and output data size. We
also assume that tasks are atomic (non divisible). Computation is
characterized by the following parameters:

– Atot – count of tasks,
– tx – execution time in hours of one task on 1 CCU machine,
– din and dout – data size for input and output of one task in MiB,
– pR – price per request for queuing service,
– tD – total time for completing all tasks in hours (deadline).

4.2. Auxiliary parameters

The formulation of the problem requires a set of precomputed
parameters which are derived from the main input parameters of
the model. The relevant parameters include:

tneti,s =
din + dout

ri,s · 3600
(1)

tui,s =
tx

ccui
+ tneti,s (2)

cti,s =

dout · (pIouti + pSins ) + din · (pSouts + pIini )


(3)

4 e.g. Amazon SQS.

Fig. 2. Task scheduling policy.

adi,s =


tD

tui,s


(4)

tqi,s =

tui,s


(5)

aqi,s =


tqi,s
tui,s


(6)

tdi,s =


tD

tui,s


· tui,s


(7)

– tneti,s – transfer time: time for data transfer between Ii and Ss,
– tui,s – unit time: time for processing a task on instance Ii using

storage Ss that includes computing and data transfer time (in
hours),

– cti,s – cost of data transfer between instance Ii and storage Ss,
– adi,s – number of tasks that can be done on one instance Ii when

using storage Ss running for tD hours,
– tqi,s – time quantum: minimal increase of instance running time

that is sufficient to increase the number of processed tasks,
rounded up to full hour,

– aqi,s – number of tasks that can be done in tqi,s hours,
– tdi,s – instance deadline: number of hours that can be effectively

used for computation.

4.3. Variables

Variables that will be optimized and define the solution space
are listed below:

– Ni – number of instances of type Ii to be deployed,
– Ai – number of tasks to be processed on instances of type Ii,
– Ds – 1 iif Ss is used, otherwise 0; only one storage may be used,
– Ri – number of remainder (tail) hours for instance Ii,
– Hi – 1 iif Ri ≠ 0, otherwise 0.

Fig. 2 illustrates how the tasks are assigned to multiple running
instances. The tasks are atomic and there is no checkpointing
or preemption. Even though all the tasks have the same
computational cost, their total processing time depends on
performance of the VM type and data transfer rate. Moreover, the
users are charged for the runtime of each VM rounded up to full
hours. In our model the tasks are assigned to the instances in
the following way. First, in the process of optimization Ai tasks
are assigned to the instance Ii. This gives Ni instances of type Ii
running for tdi,s hours. Remaining tasks are assigned to an additional
instance running for Ri hours. We will refer to them as tail hours.
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In order to enforce provider’s instance limit, Hi is introduced
which indicates if Ii has any tail hours. E.g. in Fig. 2 instances of
type 1 have 3 tail hours, and instances of type 2 have no tail hours.

4.4. Formulation of objectives

Cost of running a single task which includes the cost of VM
instance time required for data transfer and task computing time,
togetherwith data transfer costs and request cost, can be described
as:
tnet + tu


· pI + din ·


pSout + pIin


+ dout ·


pIout + pSin


+ pR.

The objective function represents the total cost of running
multiple tasks of the application on the cloud infrastructure and
it is defined as:

minimize
total cost


i∈I


s∈S

Ds · tdi,s · Ni + Ri


· pIi

+ Ai ·


pR +


s∈S

Ds · cti,s


(8)

subject to the constraints:

∀i∈I Ai ∈ Z ∧ 0 ≤ Ai ≤ Atot (9)
∀s∈S Ds ∈ {0, 1} (10)

∀i∈I Ni ∈ Z ∧ 0 ≤ Ni ≤ nImax
i (11)

∀i∈I Ri ∈ Z ∧ 0 ≤ Ri ≤ tD − 1 (12)
∀i∈I Hi ∈ {0, 1} (13)

∀i∈I Ai ≥


s∈S


Ni · adi,s


· Ds (14)

∀i∈I Ai ≤


s∈S


Ni · adi,s + max(adi,s − 1, 0)


· Ds (15)

∀i∈I Ri ≥


s∈S


Ai − Ni · adi,s


· tui,s · Ds (16)

∀i∈I Ri ≤


s∈S


Ai − Ni · adi,s + aqi,s


· tui,s · Ds (17)

i∈I

Ai = Atot (18)
s∈S

Ds = 1 (19)

∀i∈I Hi ≤ Ri ≤ max

tD − 1, 0


· Hi (20)

∀p∈P


i∈PIp

(Hi + Ni) ≤ nPmax
p . (21)

Interpretation of the constraints is the following:

– Eqs. (9)–(13) define weak constraints for a solution, i.e. they
are to ensure that the required variables have the appropriate
integer or binary values,

– Eqs. (14) and (15) ensure that number of instances is adequate
to number of assigned tasks; for chosen storage Ds

Ni · adi,s ≤ Ai ≤ Ni · adi,s + max

adi,s − 1, 0


where the lower bound is given by full allocation ofNi machines
and the upper bound includes a fully allocated tail machine,

– Eqs. (16) and (17) ensure that number of tail hours is adequate
to number of remaining tasks, implement Ri = ⌈


Ai − Ni · adi,s


·

tuis⌉,
– Eq. (18) ensures that all tasks are processed,
– Eq. (19) ensures that only one storage site is selected,

– Eq. (20) ensures that Ri has proper value, implements

Hi =


1 Ri > 0
0 Ri = 0 .

– Eq. (21) enforces providers’ instance limits.

Defining the problem in AMPL enables to choose among a wide
range of solvers that can be used as backend. The problem itself
is MINLP, but can be reduced to Integer Linear Programming (ILP)
problem. The nonlinear part of problemcomes fromstorage choice,
so by fixing storage provider and running optimization procedure
for each storage separately the optimal solution is found.

Initially we used Bonmin [11] solver, but after the model was
fully implemented and subject to more tests, it appeared that
CBC [12] solver performs better with default options. This results
from the fact that Bonmin is a solver designed to solve MINLP
problems and uses various heuristics, while CBC uses a branch and
bound algorithm tuned for ILP. As the problem is linear and convex,
CBC finds global optimum.

The model was optimized so that it should give acceptable
results in ∼ 0.10 s.5

5. Results

To evaluate ourmodel, we first run the optimization process for
two scenarios with a private cloud and (1) infinite public clouds
(Section 5.1) and (2) finite public clouds (Section 5.2). We also
evaluated the effect of possible overlapping of computations and
data transfers (Section 5.3). When testing the model under various
input parameters, we identified interesting special cases, which
are described in Section 5.4. Finally, we performed a sensitivity
analysis and discussed its implications and potential usage in
Section 6.

We evaluated the model for two types of tasks — data intensive
tasks that require relatively large amount of data for short
computing time (we assumed 512 MiB of input and 512 MiB of
output) and compute intensive tasks that require relatively small
amount of data (we assumed 0.25 MiB of input and 0.25 MiB of
output). Each case consists of 20,000 tasks, each of them requires
0.1 h of computing time on a VM with performance of 1 CCU. Two
scenarios with infinite and finite public clouds were considered,
where as the costs and performance of public clouds we used
the data from CloudHarmony benchmarks. This dataset gives
the data of 4 compute cloud providers (Amazon EC2, Rackspace,
ElasticHosts and GoGrid) and 2 storage providers (Amazon S3 and
Rackspace Cloud Files), giving the instance prices between $0.06
and $2.40 per hour and performance between 0.92 and 27.4 CCU.
We assumed that the private cloud instances have the performance
of 1 CCU and $0 cost. For each scenario we varied the deadline
parameter between 5 and 100 h. Since we considered only two
storage providers (S3 and Cloud Files), we run the solver separately
for these two parameters.

5.1. Private + infinite public clouds

In this scenario we assumed that the private cloud can run a
maximum of 10 instances, while the public clouds have unlimited
capacity. The results for tasks that require small amount of data are
shown in Fig. 3. As the deadline is extended, the total cost linearly
drops as expected. Asmany tasks as possible are run on the private
cloud, and for all the remaining tasks the instance type with best
price to performance ratio is selected.

5 As measured on quad-core Intel i5 machine.
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Fig. 3. Small data processed on infinite public cloud.

Fig. 4. Large data processed on infinite public cloud.

This situation changes as data size grows (Fig. 4) – for data
intensive tasks the total cost is nearly constant as all the work
is done on a public cloud. This results from the fact that data
transfer cost to and from the private cloud is higher than the cost of
running instances on public cloud. In our case it turns out that the
lowest cost can be achieved when using Cloud Files storage from
Rackspace, since in our dataset the best instance type in terms of
price to performance was available at Rackspace.

5.2. Private + finite public clouds

If assumption that public clouds are limited is made, situation
is not so straightforward (See Figs. 5 and 6). For relatively long
deadlines, a single cloud platform for both VMs and storage can
be used, whichmeans that the data transfer is free. As the deadline
shortens we first observe a linear cost increase. At the point when
the selected cloud platform reaches its VM limit, additional clouds
need to be used, so we need to begin paying for the data transfer.
Therefore the cost begins to increase more rapidly.

This effect is very significant in the case of data intensive tasks
(Fig. 6) as the cost growth may become very steep. For example, in
our tests the task processing cost in 28 h was $157.39, in 30 h it
was $131.14 and in 34 h it was only $30.26. For longer deadlines
there was no further decrease. We can also observe that for longer
deadlines the Cloud Files storage provider is less expensive for the
same reason as it was in Fig. 4. Shorter deadlines, however, require
to run more powerful instances from other clouds (Amazon EC2),
thus it becomes more economical to use its local S3 storage.

5.3. Overlapping computation and data transfers

In our model we assume that computation and data transfers
are not overlapping. To achieve parallelism of these two processes,

Fig. 5. Small data processed on finite public cloud.

Fig. 6. Large data processed on finite public cloud.

the model needs to be modified in the following way. We assumed
that the total task computation time ismaximum of task execution
and data transfer time. Additionally, input for the first task and
output of the last task must be transferred sequentially. Eqs. (2),
(4) and (7) are updated for this case as follows:

tui,s = max


tx

ccui
, tneti,s


(22)

adi,s =


tD − tneti,s


tui,s


(23)

tdi,s =


tD − tneti,s


tui,s


· tui,s


. (24)

Fig. 7 shows results for the same experiment as in Section 5.2
and Fig. 6, but with computing and transfers overlapping.
Overlapping reduces total cost as time required for task processing
is significantly lower. This is especially true for shorter deadlines
whenmultiple clouds are used, as transfer rates are lower between
different clouds comparing to one provider infrastructure.

5.4. Identifying special cases

Running a test case with very large tasks which cannot be
completed within one hour on largest available instance revealed
an interesting model behavior. Results are shown on Fig. 8. Local
minimamay occur for certain deadlines thus cost does not increase
monotonically with decrease of deadline. This is a consequence of
our task scheduling policy, as explained in Section 4.3. In the case
of large tasks, the schedule for deadline of 9 h as seen in Fig. 9(a)
costs less than for deadline of 10 h as in Fig. 9(b). In the first case
the total number of VM-hours of the gg-8mb instance is equal to

Appendix B. Publications – FGCS article 69



M. Malawski et al. / Future Generation Computer Systems 29 (2013) 1786–1794 1791

Fig. 7. Large data processed on finite public cloud with overlapping computation
and data transfer.

Fig. 8. Special case with local minimum for deadline 9.

56, but in the case of deadline = 10 h the total number is 58, which
results in higher cost. This is the result of the policy, which tries to
keep VMs running time as close to the deadline as possible. Such
policy is based on general observation, that for a given budget it
is usually more economical to start less VMs for longer time than
to start more VMs for shorter time. However, there are rare cases
when such policy may lead to non-optimal solutions. It should be
noted, that the solution of the model returned by the solver in this
case is optimal, but it is the model itself that does not allow to find
the minimum cost.

Moreover, for longer deadlines the cost is a step function –
e.g. the cost for deadline = 18 h is the same as for 14 h. These
two observations suggest that themodel could bemodified in such
a way that the deadline is also a variable with upper bound con-
straint. Similar result can be achieved in a simple way by solving
the current model for multiple deadlines in the neighborhood of
the desired deadline and by selecting the best solution.

6. Sensitivity analysis

In order to better assess how our model behaves in response
to the changing constraints and for varying input parameters, we
performed a sensitivity analysis by sampling a large parameter
space. Fig. 10 shows the solutions obtained for deadlines ranging
from 2 to 40 h and for input and output data sizes ranging
from 0 to 256 MiB. As it can be seen in the plot, for all data
sizes the cost increases monotonically with the decrease of the
deadline, which confirms that no anomalies are observed. The
same data can be also observed as animated plot available at
http://dx.doi.org/10.1016/j.future.2013.01.0046.

6 See also http://youtu.be/FWjgMwLdZW4.

Fig. 11 presents these results from a perspective where each
curve shows how the cost depends on data size for varying
deadlines.

One of the questions that our model can help answer is how
the changes in cost are sensitive to the changes of deadline. Fig. 12
shows the cost function as well as corresponding elasticity, which
is computed as: Ef (x) =

x
f (x) f

′(x), where in this case f is cost
and x is deadline. Elasticity gives the information on what is the
percentage change of cost in response to the percentage change of
deadline. The function has negative values, since the cost decreases
with the increase of deadline. It is interesting to see inwhich ranges
the elasticity has larger absolute value, which corresponds tomore
steep cost function. Here we can see that the elasticity grows for
short deadlines and close to the deadline of 25 h, which is the point
where the solution cannot use only the VM instances from most
cost-effective clouds and requiresmore expensive ones tomeet the
deadline.

Identifying such ranges with high absolute value of elasticity
is important for potential users of the cloud system, including
researchers (end users) or resellers (brokers). The end user can for
example observe that changing the deadline from 40 to 30 h or
even from 20 to 10 hwill not incurmuch additional cost. However,
changing the deadline from 30 to 20 h is very costly, so it should be
avoided. On the other hand, the situation looks different from the
perspective of a reseller, who buys cloud resources from providers
and offers them to end-users in order to make profit. The reseller
can for example offer to compute the given set of tasks in 20 h for
$150withminimal profit, but it can also offer to complete the same
set of tasks in 30 h for $50. Such price can seemattractive to the end
user who pays 1/3 of the price for increasing the deadline by 50%,
but it is in fact very beneficial for the reseller, whose profit reaches
100%. Such cost analysis is an important aspect of planning large
computing experiments on cloud infrastructures.

7. Impact of dynamic environment

As stated in Section 3, we assume that execution time, transfer
rate and data access time for all the tasks are constant. However, in
real environments the actual runtime of tasks will vary. The goal of
the following simulation experimentwas to estimate the impact of
this runtime variation on the quality of results obtained using our
optimization model.

For all the task assignment solutions presented in Fig. 10 we
add runtime variations to the task runtimes in the following way.
For each taskwe generate a randomerror in the range from−v to v
using uniform distribution, where v is the runtime variation range.
We tested values of v = 10%, 20%, 30%, 40%, 50%. Such modified
task runtimes are then used to calculate the actual runtime and
cost of VM. Due to variation of task runtimes, it is possible that
some computations may not finish before the deadline (time
overrun) and that the cost of additional VM-hours may need to be
paid (cost overrun).

We assume that task size variations include also variations of
data transfer time. We do not take into account variations of data
transfer costs, since the transfer costs for each task depend linearly
on data size, so the aggregated impact of positive and negative
variations cancels to nearly 0.

Fig. 13 shows the cost overrun with 10% and 50% of runtime
variation range. The boxplots for each deadline represent averaged
results for the data sizes from 0 to 256 MiB as in Fig. 10,
with box boundaries at quartiles and whiskers at maximum and
minimum values. We observe that the highest overruns are for
the shortest deadlines, which results from the fact that when
each VM instance runs only for a few hours, then the additional
hour will incur relatively high additional cost. On the other hand,
for longer deadlines the cost of additional VM-hour becomes less
significant. We also observe that the aggregated impact of positive
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(a) Deadline = 9 h. (b) Deadline = 10 h.

Fig. 9. Task schedule for the identified special case.
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Fig. 10. Optimal cost for a wide range of deadline constraints and data sizes.

Fig. 11. Cost as a function of data size for different deadlines.

and negative variations in task execution timemay cancel to nearly
0 and in some cases the cost overrun may be negative.

In a similar way Fig. 14 shows the deadline overrun in the
presence of runtime variations. We can observe that the deadline
overrun is much smaller than cost overrun. This means that the
actual finish time of all tasks is not significantly affected by the
runtime variation, due to the cancellation effect. We observe
that even for high variations in the range from −50% to 50%
the actual runtime rarely exceeds the deadline by more than
10%. This overrun can be thus easily compensated by solving
the optimization problem with a respectively shorter deadline
giving a safety margin in the case of expected high variations of
actual task runtimes. Similar estimation is also possible in the case
when the application consists of many tasks of similar size which
distribution in known in advance.

8. Conclusions and future work

The results presented in this paper illustrate typical problems
when making decisions on deployment planning on clouds and
how they can be addressed using optimization techniques. We
have shown how themixed integer nonlinear programming can be
applied to model and solve the problem of resource allocation on
multiple heterogeneous clouds, including private and public ones,
and taking into account the cost of compute instances and data
transfers.

Our results show that the total cost grows slowly for long
deadlines, since it is possible to use free resources from a private
cloud. However, for short deadlines it is necessary to use the
instances from public clouds, starting from the ones with best
price/performance ratio. The shorter the deadlines, themore costly

(a) Cost as a function of deadline. (b) Elasticity of cost versus deadline.

Fig. 12. Sensitivity of costs in response to changes in deadline.
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Fig. 13. Impact of runtime variation on cost overrun as a function of deadline.
Results obtained for random variation of task runtime in the range from −10% to
+10% (top) and from −50% to +50% (bottom).

Fig. 14. Impact of runtime variation on deadline overrun as a function of deadline.
Results obtained for random variation of task runtime in the range from −10% to
10% (top) and from −50% to +50% (bottom).

instance types have to be added, thus the cost grows more
rapidly.Moreover, our results can be also useful formulti-objective
optimization. In such a case, it would be possible to run the
optimization algorithm in a certain neighborhood of the desired
deadline and select the best solution using a specified cost/time
trade-off. Alternatively, multiple solutions as in Figs. 6 and 10 or 11
may be presented to the users allowing them to select the most
acceptable solution. Ourmodel can be also used as an approximate
method to solve the problems where tasks sizes are not ideally
uniform, but can differ within a limited range.

Optimal task allocation in hybrid cloud environment is not a
trivial problem as one needs to know the estimates of computa-
tional cost of tasks in advance. If such data are available, it is possi-
ble to use tools such as AMPL. This approach may be successful as
long as one is able to formulate the optimization model and select
a suitable solver. These tasks are not straightforward though, since
small change in model may move problem from one class to an-
other (e.g. from mixed integer to MINLP) requiring to find another
solver. Optimal specification of the model is also important as the
same problem may be formulated in various ways, each of which
may differ considerably in performance.

In future work we plan to experiment with variations of
the model to represent other classes of applications, such as
scientific workflows [1] that often consist of multiple stages, each
characterized by different data and compute requirements.
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Abstract. This paper introduces a cost optimization model for scien-
tific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We
assume multiple IaaS clouds with heterogeneous VM instances, with lim-
ited number of instances per cloud and hourly billing. Input and output
data are stored on a Cloud Object Store such as Amazon S3. Applica-
tions are scientific workflows modeled as DAGs as in the Pegasus Work-
flow Management System. We assume that tasks in the workflows are
grouped into levels of identical tasks. Our model is specified in AMPL
modeling language and allows to minimize the cost of workflow execu-
tion under deadline constraints. We present results obtained using our
model and the benchmark workflows representing real scientific applica-
tions such as Montage, Epigenomics, LIGO. We indicate how this model
can be used for scenarios that require resource planning for scientific
workflows and their ensembles.

Key words: AMPL Optimization; cloud computing; scientific workflows

1 Introduction

Nowadays, science requires processing of large amounts of data and use of hosted
services for compute-intensive tasks [1]. Cloud services are used not only to
provide resources, but also for hosting scientific datasets, as in the case of AWS
public datasets [2]. Scientific applications that run on these clouds have often
the structure of workflows or workflow ensembles that are groups of inter-related
workflows [3]. Infrastructure as a Service (IaaS) cloud providers offer services
where virtual machine instances differ by performance and price [4]. Planning
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scientific experiments requires optimization decisions that take into account both
execution time and cost.

Research presented in this paper can be seen as a step towards developing a cloud
resource calculator for scientific applications in the hosted science model [1].
Specifically, we address the cost optimization problem of large-scale scientific
workflows running on multiple heterogeneous clouds, using mathematical mod-
eling with AMPL [5] and mixed integer programming. This approach allows
to describe the model mathematically and use a set of available optimization
solvers. On the other hand, an attempt to apply this method to the general
problem of scheduling large-scale workflows on heterogeneous cloud resources
would be impractical due to the problem complexity, therefore simplified models
need to be analyzed. In our previous work [6], we used a similar technique to
solve the problem where the application consists of tasks that are either identical
or vary in size within a small range. As observed in [7] and [8], large-scale sci-
entific workflows often consist of multiple parallel stages or levels, each of which
has a structure of bag of tasks, i.e. the tasks in each level are similar. In the case
of large workflows, when the number of tasks in the level is high, it becomes
more practical to optimize the execution of the whole level instead of looking
at each task individually, as many scheduling algorithms do [9]. Therefore, in
this paper, we extend our model to deal with applications that are workflows
represented as DAGs consisting of levels or layers of uniform tasks.

After outlining the related work in Section 2, we introduce the application and
infrastructure model in Section 3. In Section 4 we provide the problem formu-
lation in AMPL. Section 5 describes the evaluation of our model on a set of
benchmark workflows, while Section 6 gives conclusions and future work.

2 Related work

Our work is related to heuristic algorithms for workflow scheduling on IaaS
clouds, such as the ones described in [10,9,11,12]. Our infrastructure model differs
in that we assume multiple heterogeneous clouds with object storage attached to
them, instead of individual machines with peer-to-peer data transfers between
them. Instead of scheduling each task individually, our approach proposes a
global optimization of placement of workflow tasks and data.

The deadline-constrained cost optimization of scientific workloads on hetero-
geneous IaaS described in [13] addresses multiple providers and data transfers
between them, where the application is a bag of tasks. The global cost minimiza-
tion problem on clouds addressed in [14] focuses on data transfer costs and does
not address workflows. Other approaches presented in [15] and [16] consider un-
predictable dynamic workloads on IaaS clouds and optimize the objectives such
as cost, runtime or utility function by autoscaling the resource pool at runtime.
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Pipelined workflows consisting of stages are addressed in [17], where the pro-
cessing model is a data flow and multitple instances of the same workflow are
executed on the same set of cloud resources. Our work is different in that our
goal is cost optimization instead of meeting the QoS constraints.

3 Application and infrastructure model

Layer 1 A

Layer 2 B B B C

Layer 3 D

Layer 4 E

Layer 5 F

Fig. 1: Example application structure

We assume that a workflow is divided
into several levels (layers) that can be
executed sequentially and tasks within
one level do not depend on each other
(see Fig. 1). Each layer represents a
bag of tasks that can be partitioned
in several groups (e.g. application A,
application B, etc.) that share com-
putational cost and input/output size.
We assume that only one task group is
executed on a specific cloud instance
(VM). This forbids instance sharing
between multiple layers, which means
that each application needs its own
specific VM template with a precon-
figured environment.

Similarly as in [6], we assume multi-
ple heterogeneous cloud IaaS infras-
tructures such as Amazon EC2, RackSpace or ElasticHosts. Clouds have hetero-
geneous VM instance types, with limits on the number of instances per cloud, e.g.
20 for EC2, 15 for RackSpace, etc. Input and output data are stored on Cloud
Object Store such as Amazon S3 or RackSpace CloudFiles. In our model, all
VM instances are billed per hour of usage, and there are fees for data transfers.
In the model we can also have a private cloud where costs are set to 0.

4 Problem formulation using AMPL

To perform optimization of the total cost, Mixed Integer Problem (MIP) is for-
mulated and implemented in A Mathematical Programming Language (AMPL) [5].
AMPL requires us to specify input data sets and variables to define the search
space, as well as constraints and objective function to be optimized.

Input data The formulation requires the following input sets, which represent
the infrastructure model, in a similar way as we approached the problem in [6]:
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– S = {s3, cloudfiles} – defines available cloud storage sites,
– P = {amazon, rackspace, . . . } – defines possible computing cloud providers,
– I = {m1.small, . . . , gg.1gb, . . . } – defines instance types,
– PIp ⊂ I – instances that belong to provider Pp,
– LSs ⊂ P – compute cloud providers that are local to storage platform Ss.

Each instance type Ii is described by the following parameters:

– pIi – fee in $ for running instance Ii for one hour,
– ccui – performance of instance in CloudHarmony Compute Units (CCU),
– pIouti and pIini – price for non-local data transfer to and from the instance,

in $ per MiB (1 MiB = 1024 ∗ 1024 Bytes)

Storage sites are characterized by:

– pSout
s and pSin

s characterize price in $ per MiB for non local data transfer.

Additionally we need to provide data transfer rates in MiB per second between
storage and instances by defining function ri,s > 0 .

Our application model is different from the one in [6] because it groups tasks
into layers:

– L – set of layers,
– G – set of tasks groups,
– Gl – set of tasks groups belonging to layer l,
– Atot

t – number of tasks in group t,
– txt – execution time in hours of a single task of group t on 1 CCU machine,
– dint and doutt – data size for input and output of one task t in MiB,
– pR – price per request for queuing service, such as Amazon SQS, required

to execute a single task,
– tD – total time for completing workflow (deadline).

Auxiliary parameters A set of precomputed parameters which are derived from
the main input parameters of the model includes:

– tneti,s = din+dout

ri,s·3600 – transfer time: time for data transfer between Ii and Ss,

– tui,s = tx

ccui
+ tneti,s – unit time: time for processing a task on instance Ii using

storage Ss that includes computing and data transfer time (in hours),
– cTi,s = (dout · (pIouti + pSin

s ) + din · (pSout
s + pIini )) – cost of data transfer

between instance Ii and storage Ss,
– Iidxi – set of possible instance Ii indexes (from 0 to nImax

i − 1).
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Variables Variables that will be optimized and define the solution space are:

– At,i,x – binary, 1 iif (if and only if) instance Ii with index x is launched to
process task group Gt, otherwise 0;

– Ht,i,x – integer, for how many hours is instance launched;
– Tt,i,x – integer, how many tasks of Gt are processed on that instance,
– Dt

l – actual computation time for Ll,
– Dl – integer, maximal number of hours that instances are allowed to run in

Ll.

Formulation of objectives Cost of running one task including instance and trans-
fer cost is:

(
tnet + tu

)
· pI + din ·

(
pSout + pIin

)
+ dout ·

(
pIout + pSin

)
+ pR, (1)

while the objective function represents the total cost of running multiple tasks
of the application on the cloud infrastructure is defined as:

minimize
total cost

∑

t∈G,i∈I,x∈Iidx
i

((pIi ∗Ht,i,x + pR + cTi,s) ∗ Tt,i,x),
(2)

subject to the constraints:

1.
∑

l∈L Dl ≤ tD ensures that workflow finishes in the given deadline,
2. to fix that D = dDte we require that: ∀l∈LDt

l ≤ Dl ≤ Dt
l + 1,

3. ∀t∈G,i∈I,x∈Iidx
i

At,i,x ≤ Ht,i,x ≤ At,i,x · tD ensures that H may be allocated
only iif A is 1,

4. ∀t∈G,i∈I,x∈Iidx
i

At,i,x ≤ Tt,i,xAt,i,x ·Atot
t ensures that T may be allocated only

iif A is 1,
5. ∀t∈G,i∈I,x∈Iidx

i
Ht,i,x ≤ Dl enforces layer deadline on instances runtime,

6. ∀l∈L,t∈Gl,i∈I,x∈Iidx
i

Tt,i,x · tut,i,s ≤ Dt
l enforces that a layer finishes work in Dt,

7. to make sure that all the instances run for enough time to process all tasks
allocated to them we require: ∀t∈G,i∈I,x∈Iidx

i
Tt,i,x ·tut,i,s ≤ Ht,i,xTt,i,x ·tut,i,s+1,

wich adjusts H respectively to T ,
8. ∀t∈G

∑
i∈I,x∈Iidx

i
Tt,i,x = Atot

t ensures that all tasks are processed,

9. To reject symmetric solutions, we add three constraints:
(a) ∀t∈G,i∈I,x∈{1..(nImax

i −1)}Ht,i,x ≤ Ht,i,x−1,

(b) ∀t∈G,i∈I,x∈{1..(nImax
i −1)}At,i,x ≤ At,i,x−1, and:

(c) ∀t∈G,i∈I,x∈{1..(nImax
i −1)}Tt,i,x ≤ Tt,i,x−1.
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10. ∀l∈L,p∈P
∑

i∈PIp,t∈Gl,x∈Iidx
i

At,i,x ≤ nPmax
p enforces instance limits per cloud.

To keep this model in MIP class we had to take different approach than in previ-
ous model, and schedule each virtual machine instance separately. The drawback
of this approach is that we need to increase the number of decision variables.
We also divided search space by storage provider. Additionally, the deadline be-
comes a variable with upper bound as it may happen that shorter deadline may
actually give a cheaper solution (see Fig. 3 and its discussion).

5 Evaluation

To evaluate our model on realistic data, we use CloudHarmony [18] benchmarks
to parameterize the infrastructure model, and we use the Workflow Generator
Gallery workflows [7] as test applications.

In the infrastructure model we assumed that we have 4 public cloud providers
(Amazon EC2, RackSpace, GoGrid and ElasticHosts) and a private cloud with
0 cost. The infrastructure has two object storage services, S3 that is local to
EC2 and CloudFiles that is local to RackSpace, so data transfers between local
compute and storage are free.

We tested our model with all application types from the gallery: Montage, Cy-
berShake, Epigenomics, LIGO and SIPHT for all available workflow sizes (from
50 to 1000 tasks per workflows, up to 5000 tasks in the case of SIPHT workflow).
We varied the deadline from 1 to 30 hours with 1-hour increment. We solve the
problem for two cases, depending on whether the data is stored on Amazon S3
or on RackSpace CloudFiles.
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Fig. 2: Result of the optimization procedure for the Epigenomics application.
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Fig. 3: Ratio of actual completion time to deadline for Epigenomics workflow
with 500 tasks.

Fig 2 shows the example results obtained for the Epigenomics application and
workflows of two sizes (400 and 500 tasks). For longer deadlines the private cloud
instances and the cheapest RackSpace instances are used so the cost is low when
using CloudFiles. For shorter deadlines the cost grows rapidly, since we reach
the limit of 15 instances per cloud and additional instances must be spawned on
a different provider, making the transfer costs higher. This effect is amplified in
Fig. 2b, which differs from Fig. 2a not only by the number of tasks but also by
the data size of one layer. This means that the transfer costs are growing more
rapidly, so it becomes more economical to store the data on Amazon EC2 that
provides more powerful instances required for short deadlines.

One interesting feature of our model is that for longer deadlines it can find
the cost-optimal solutions that have shorter workflow completion time than the
requested deadline. This effect can be observed in Fig. 3 and is caused by the
fact that for long deadlines the simple solution is to run the application on a set
of the least expensive machines.

Figures 4a to 4d show results obtained for other workflows. These workflows are
relatively small and even for short deadlines our model is able to schedule tasks
to be executed in a very short time on cheapest instances on a single cloud, this
results in flat characteristics.

To investigate how the model behaves for workflows with the same structure,
but with much longer run times of tasks, we run the optimization for Montage
workflow with tasks 1000× longer. This corresponds to the scenario where tasks
are in the order of hours instead of seconds. The sample results in Fig. 5 show how
the cost increases much steeply with shorter deadlines, illustrating the trade-off
between time and cost. The difference between Figs. 4c and 5 illustrates that the
model is more useful for workflows when tasks are of granularity that is similar
to the granularity of the (hourly) billing cycle of cloud providers.

The run time of the optimization algorithm for workflows with up to 1000 tasks
ranges from few seconds up to 4 minutes using the CPLEX [19] solver running
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(a) CyberShake, 500 tasks
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(b) LIGO, 500 tasks
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(d) SIPHT, 5000 tasks

Fig. 4: Optimal cost found by the model for different application.

on a server with 4 16-core 2.3 GHz AMD Opteron processors (model 6276), with
a limit set to 32 cores. Fig. 6a shows that the time becomes much higher for
shorter deadlines and increases for very long deadlines. This is correlated with
size of search space: the longer the deadline, the search space is larger, while
for shorter deadlines the problem has a very small set of acceptable solutions.
The problem becomes more severe for bigger and more complex workflows like
SIPHT as optimization time becomes very high (Fig. 6b).

6 Conclusions and future work

In this paper, we presented a cost optimization model for scientific workflows
executing on multiple heterogeneous clouds. The model, formulated in AMPL,
allows us to find the optimal assignment of workflow tasks, grouped into layers,
to cloud instances. We tested our model on a set of benchmark workflows and
we observed that it gives useful solutions in a reasonable amount of computing
time. By solving the model for multiple deadlines, we can produce trade-off
plots, showing how the cost depends on the deadline. We believe that such plots
are a step towards a scientific cloud workflow calculator, supporting resource
management decisions for both end-users and workflow-as-a-service providers.
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Fig. 5: Optimal cost obtained by the model for Montage 500 workflow with tasks
runtimes artificailly multiplied by 1000.
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Fig. 6: Solver execution wall time.

In future work we plan to apply this model to the problem of provisioning cloud
resources for workflow ensembles [3], where the optimization of cost can drive
the workflow admission decisions. We also plan to refine the model to better
support smaller workflows by reusing instances between layers, to fine-tune the
model, and to test different solver configurations to reduce the computing time.

Acknowledgement This research was partially supported by the EC ICT VPH-
Share Project (contract 269978) and the KI AGH grant.

References

1. Deelman, E., Juve, G., Malawski, M., Nabrzyski, J.: Hosted science: Managing
computational workflows in the cloud. Parallel Processing Letters (2013)

2. AWS: AWS public datasets http://aws.amazon.com/publicdatasets/ (2013)

3. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained
provisioning for scientific workflow ensembles in IaaS clouds. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. SC ’12, IEEE Computer Society Press (2012)

Appendix B. Publications – PPAM article 83



4. Bubak, M., Kasztelnik, M., Malawski, M., Meizner, J., Nowakowski, P., Varma,
S.: Evaluation of cloud providers for VPH applications. In: CCGrid2013 - 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
(May 2013)

5. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Math-
ematical Programming. Duxbury Press (2002)

6. Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computational
applications on hybrid cloud infrastructures. Future Generation Computer Systems
(January 2013)

7. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Charac-
terization of scientific workflows. In: Workflows in Support of Large-Scale Science,
2008. WORKS 2008. Third Workshop on, IEEE (November 2008) 1–10

8. Duan, R., Prodan, R., Li, X.: A sequential cooperative game theoretic approach to
Storage-Aware scheduling of multiple Large-Scale workflow applications in grids.
In: Grid Computing (GRID), 2012 ACM/IEEE 13th International Conference on,
IEEE (2012) 31–39

9. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis. SC ’11, New
York, NY, USA, ACM (2011)

10. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Generation
Computer Systems 29(1) (2013) 158 – 169

11. Barrionuevo, J.J.D., Fard, H.M., Prodan, R.: Moheft: A multi-objective list-based
method for workflow scheduling. In: 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings, CloudCom 2012, Taipei, Taiwan,
December 3-6, 2012. (2012) 185–192

12. Bittencourt, L.F., Madeira, E.R.M.: Hcoc: a cost optimization algorithm for work-
flow scheduling in hybrid clouds. J. Internet Services and Applications 2(3) (2011)
207–227

13. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Online cost-efficient schedul-
ing of deadline-constrained workloads on hybrid clouds. Future Generation Com-
puter Systems 29(4) (2013) 973 – 985

14. Pandey, S., Barker, A., Gupta, K.K., Buyya, R.: Minimizing Execution Costs when
Using Globally Distributed Cloud Services. In: 24th IEEE International Conference
on Advanced Information Networking and Applications, IEEE Computer Society
(2010) 222–229

15. Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeoffs
between profit and customer satisfaction for service provisioning in the cloud. In:
Proceedings of the 20th international symposium on High performance distributed
computing. HPDC ’11, New York, NY, USA, ACM (2011) 229–238

16. Kim, H., el-Khamra, Y., Rodero, I., Jha, S., Parashar, M.: Autonomic management
of application workflows on hybrid computing infrastructure. Sci. Program. 19
(April 2011) 75–89

17. Tolosana-Calasanz, R., Banares, J.A., Pham, C., Rana, O.F.: Enforcing qos in
scientific workflow systems enacted over cloud infrastructures. Journal of Computer
and System Sciences 78(5) (2012) 1300 – 1315

18. CloudHarmony: Cloud benchmarks http://blog.cloudharmony.com/2010/05/

what-is-ecu-cpu-benchmarking-in-cloud.html (2011)
19. IBM: Cplex solver http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/ (2013)

Appendix B. Publications – PPAM article 84



Bibliography

[1] Ewa Deelman, Gideon Juve, Maciej Malawski, and Jarek Nabrzyski. Hosted science:

Managing computational workflows in the cloud. Parallel Processing Letters, 2013.

ISSN 0129-6264.

[2] AWS. AWS public datasets http://aws.amazon.com/publicdatasets/, 2013.

[3] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost- and

deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds. In

Proceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, SC ’12. IEEE Computer Society Press, 2012. ISBN

978-1-4673-0804-5. URL http://portal.acm.org/citation.cfm?id=2389026.

[4] Marian Bubak, Marek Kasztelnik, Maciej Malawski, Jan Meizner, Piotr

Nowakowski, and Susheel Varma. Evaluation of cloud providers for VPH appli-

cations. In CCGrid2013 - 13th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 2013.

[5] Ewa Deelman. Grids and clouds: Making workflow applications work in heteroge-

neous distributed environments. International Journal of High Performance Com-

puting Applications, 24(3):284–298, August 2010. doi: 10.1177/1094342009356432.

[6] Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields. Workflows

for e-Science: Scientific Workflows for Grids. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006. ISBN 1846285194.

[7] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, Mei-Hui Su, and K. Vahi.

Characterization of scientific workflows. In Workflows in Support of Large-Scale

Science, 2008. WORKS 2008. Third Workshop on, pages 1–10. IEEE, Novem-

ber 2008. ISBN 978-1-4244-2827-4. doi: 10.1109/WORKS.2008.4723958. URL

http://dx.doi.org/10.1109/WORKS.2008.4723958.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1979. ISBN 0716710447.

85

http://aws.amazon.com/publicdatasets/
http://portal.acm.org/citation.cfm?id=2389026
http://dx.doi.org/10.1109/WORKS.2008.4723958


Bibliography 86

[9] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kessel-

man, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anastasia

Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for mapping

complex scientific workflows onto distributed systems. Sci. Program., 13(3):219–237,

July 2005. ISSN 1058-9244. URL http://dl.acm.org/citation.cfm?id=1239649.

1239653.

[10] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Aleksandra Nenadic,

Ian Dunlop, Alan Williams, Thomas Oinn, and Carole Goble. Taverna, reloaded.

In M. Gertz, T. Hey, and B. Ludaescher, editors, SSDBM 2010, Heidelberg,

Germany, June 2010. URL http://www.taverna.org.uk/pages/wp-content/

uploads/2010/04/T2Architecture.pdf.

[11] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for grid

computing. SIGMOD Rec., 34(3):44–49, September 2005. ISSN 0163-5808. doi:

10.1145/1084805.1084814. URL http://doi.acm.org/10.1145/1084805.1084814.

[12] Rubing Duan, R. Prodan, and Xiaorong Li. A sequential cooperative game the-

oretic approach to Storage-Aware scheduling of multiple Large-Scale workflow ap-

plications in grids. In Grid Computing (GRID), 2012 ACM/IEEE 13th Interna-

tional Conference on, pages 31–39. IEEE, 2012. ISBN 978-1-4673-2901-9. doi:

10.1109/Grid.2012.14. URL http://dx.doi.org/10.1109/Grid.2012.14.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi:

10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/1327452.1327492.

[14] Peter Mell and Timothy Grance. The nist definition of cloud computing. NIST Spe-

cial Publication 800-145. URL http://csrc.nist.gov/publications/nistpubs/

800-145/SP800-145.pdf.

[15] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-

complexity task scheduling for heterogeneous computing. Parallel and Distributed

Systems, IEEE Transactions on, 13(3):260–274, 2002. ISSN 1045-9219. doi:

10.1109/71.993206.

[16] Junliang Chen, Chen Wang, Bing Bing Zhou, Lei Sun, Young Choon Lee, and

Albert Y. Zomaya. Tradeoffs between profit and customer satisfaction for service

provisioning in the cloud. In Proceedings of the 20th international symposium on

High performance distributed computing, HPDC ’11, pages 229–238, New York, NY,

USA, 2011. ACM. ISBN 978-1-4503-0552-5.

http://dl.acm.org/citation.cfm?id=1239649.1239653
http://dl.acm.org/citation.cfm?id=1239649.1239653
http://www.taverna.org.uk/pages/wp-content/uploads/2010/04/T2Architecture.pdf
http://www.taverna.org.uk/pages/wp-content/uploads/2010/04/T2Architecture.pdf
http://doi.acm.org/10.1145/1084805.1084814
http://dx.doi.org/10.1109/Grid.2012.14
http://doi.acm.org/10.1145/1327452.1327492
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf


Bibliography 87

[17] Hyunjoo Kim, Yaakoub el-Khamra, Ivan Rodero, Shantenu Jha, and Manish

Parashar. Autonomic management of application workflows on hybrid computing

infrastructure. Sci. Program., 19:75–89, April 2011. ISSN 1058-9244.

[18] M. Mazzucco, M. Vasar, and M. Dumas. Squeezing out the cloud via profit-

maximizing resource allocation policies. In Modeling, Analysis Simulation of Com-

puter and Telecommunication Systems (MASCOTS), 2012 IEEE 20th International

Symposium on, pages 19–28, 2012. doi: 10.1109/MASCOTS.2012.13.

[19] P. Marshall, K. Keahey, and T. Freeman. Elastic site: Using clouds to elasti-

cally extend site resources. In Cluster, Cloud and Grid Computing (CCGrid),

2010 10th IEEE/ACM International Conference on, pages 43–52, 2010. doi:

10.1109/CCGRID.2010.80.

[20] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H.J. Epema. Deadline-

constrained workflow scheduling algorithms for infrastructure as a service clouds.

Future Generation Computer Systems, 29(1):158 – 169, 2013. ISSN 0167-

739X. doi: 10.1016/j.future.2012.05.004. URL http://www.sciencedirect.com/

science/article/pii/S0167739X12001008.

[21] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet ap-

plication deadlines in cloud workflows. In Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analy-

sis, SC ’11, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0771-0. doi:

10.1145/2063384.2063449. URL http://dx.doi.org/10.1145/2063384.2063449.

[22] Juan Jose Durillo Barrionuevo, Hamid Mohammadi Fard, and Radu Prodan. Mo-

heft: A multi-objective list-based method for workflow scheduling. In 4th IEEE

International Conference on Cloud Computing Technology and Science Proceedings,

CloudCom 2012, Taipei, Taiwan, December 3-6, 2012, pages 185–192, 2012.

[23] Luiz Fernando Bittencourt and Edmundo Roberto Mauro Madeira. Hcoc: a cost

optimization algorithm for workflow scheduling in hybrid clouds. J. Internet Services

and Applications, 2(3):207–227, 2011.

[24] Ivona Brandic, Sabri Pllana, and Siegfried Benkner. Specification, planning, and ex-

ecution of qos-aware grid workflows within the amadeus environment. Concurrency

and Computation: Practice and Experience, 20(4):331–345, 2008. ISSN 1532-0634.

doi: 10.1002/cpe.1215.

[25] Suraj Pandey, Adam Barker, Kapil Kumar Gupta, and Rajkumar Buyya. Mini-

mizing Execution Costs when Using Globally Distributed Cloud Services. In 24th

http://www.sciencedirect.com/science/article/pii/S0167739X12001008
http://www.sciencedirect.com/science/article/pii/S0167739X12001008
http://dx.doi.org/10.1145/2063384.2063449


Bibliography 88

IEEE International Conference on Advanced Information Networking and Applica-

tions, pages 222–229. IEEE Computer Society, 2010.

[26] T.A.L. Genez, L.F. Bittencourt, and E. R M Madeira. Workflow scheduling for

saas / paas cloud providers considering two sla levels. In Network Operations and

Management Symposium (NOMS), 2012 IEEE, pages 906–912, 2012. doi: 10.1109/

NOMS.2012.6212007.

[27] Enforcing qos in scientific workflow systems enacted over cloud infrastructures. Jour-

nal of Computer and System Sciences, 78(5):1300 – 1315, 2012. ISSN 0022-0000.

[28] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Online cost-

efficient scheduling of deadline-constrained workloads on hybrid clouds. Future Gen-

eration Computer Systems, 29(4):973 – 985, 2013. ISSN 0167-739X. doi: 10.1016/

j.future.2012.12.012. URL http://www.sciencedirect.com/science/article/

pii/S0167739X12002324.

[29] "programming". Oxford Dictionaries. Oxford University Press. URL http://

oxforddictionaries.com/definition/english/programming.

[30] George Dantzig. Linear Programming and Extensions. Princeton University Press,

August 1998. ISBN 0691059136. URL http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20&path=ASIN/0691059136.

[31] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Lan-

guage for Mathematical Programming. Duxbury Press, 2002.

[32] General Algebraic Modeling System (GAMS). URL http://www.gams.com.

[33] PuLP: an LP modeler written in Python. URL https://projects.coin-or.org/

PuLP.

[34] OscaR: Operational Research in Scala. URL https://bitbucket.org/oscarlib/

oscar/wiki/Home.

[35] John Forrest. Cbc (coin-or branch and cut) open-source mixed integer programming

solver, 2012. URL https://projects.coin-or.org/Cbc.

[36] IBM. Cplex solver, 2013. URL http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/.

[37] Solvers that Work with AMPL. URL http://www.ampl.com/solvers.html.

[38] Bonmin (Basic Open-source Mixed INteger programming). URL http://projects.

coin-or.org/Bonmin.

http://www.sciencedirect.com/science/article/pii/S0167739X12002324
http://www.sciencedirect.com/science/article/pii/S0167739X12002324
http://oxforddictionaries.com/definition/english/programming
http://oxforddictionaries.com/definition/english/programming
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691059136
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691059136
http://www.gams.com
https://projects.coin-or.org/PuLP
https://projects.coin-or.org/PuLP
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://projects.coin-or.org/Cbc
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ampl.com/solvers.html
http://projects.coin-or.org/Bonmin
http://projects.coin-or.org/Bonmin


Bibliography 89

[39] Amazon EC2 FAQ. URL http://aws.amazon.com/ec2/faqs/#How_many_

instances_can_I_run_in_Amazon_EC2.

[40] CloudHarmony. Cloud benchmarks http://blog.cloudharmony.com/2010/05/

what-is-ecu-cpu-benchmarking-in-cloud.html, 2011. URL http://blog.

cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html.

[41] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols, Ignacio E.

Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, François Margot, and Nicolas

Sawaya. An algorithmic framework for convex mixed integer nonlinear programs.

Discrete Optimization, 5(2):186–204, May 2008. ISSN 15725286. doi: 10.1016/j.

disopt.2006.10.011.

http://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
http://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Scientific applications
	1.2.1 Workflows
	1.2.2 Bag of tasks

	1.3 Introduction to Cloud Computing
	1.3.1 Service models
	1.3.2 Deployment models
	1.3.3 IaaS compute cloud

	1.4 Problem statement
	1.5 Goals of the thesis
	1.6 Summary

	2 State of the art review
	2.1 Summary

	3 Mathematical programming using AMPL
	3.1 Mathematical Programming
	3.2 Problem classification
	3.3 AMPL: A Mathematical Programming Language
	3.3.1 Available solvers

	3.4 Example – Whiskas Cat Food Problem
	3.4.1 Problem formulation
	3.4.2 Problem formulation using AMPL

	3.5 Example – Shift Scheduling
	3.5.1 Problem formulation
	3.5.2 Problem formulation using AMPL

	3.6 Summary

	4 Bag of tasks optimization
	4.1 Application model
	4.2 Infrastructure model
	4.3 Problem formulation
	4.3.1 Input data
	4.3.2 Auxiliary parameters
	4.3.3 Variables
	4.3.4 Formulation of constraints and objectives
	4.3.5 Solver choice

	4.4 Experiments and results
	4.4.1 Private + infinite public clouds
	4.4.2 Private + finite public clouds
	4.4.3 Overlapping computation and data transfers
	4.4.4 Identifying special cases

	4.5 Sensitivity analysis
	4.6 Impact of dynamic environment
	4.7 Summary

	5 Workflow optimization
	5.1 Application model
	5.2 Problem formulation using AMPL
	5.2.1 Input data
	5.2.2 Auxiliary parameters
	5.2.3 Variables
	5.2.4 Formulation of objectives

	5.3 Evaluation
	5.4 Summary

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	A Source Code
	B Publications
	Bibliography

