GridSpace Engine of the ViroLab Virtual
Laboratory

Eryk Ciepiela', Joanna Kocot', Tomasz Gubala''® Maciej Malawski', Marek
Kasztelnik!, Marian Bubak'-?

1 Academic Computer Center CYFRONET, ul. Nawojki 11, 30-950 Krakéw, Poland
2 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Krakéw, Poland
3 Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands

Abstract

GridSpace Engine is the central operational unit of the ViroLab Virtual
Laboratory. This specific runtime environment enables access to com-
putational and data resources by coordinating execution of experiments
written in the Ruby programming language extended with virtual lab-
oratory capabilities. Experiments harness published and semantically
described services which constitute a GridSpace. The GridSpace Engine
is a reliable service acting as an entry point to the Virtual Laboratory,
its execution capabilities and a facade for specialized services such as
Data Access Service. Moreover, owing to the provided dedicated li-
braries, the GridSpace Engine supports interactive execution and run-
time monitoring of experiments. Furthermore, the GridSpace Engine
is capable of retrieving experiment source not only from file systems
but also from multiple Application Repositories accessed by dedicated
adapters. Currently, our repository is based on the Subversion source
code management and version control system. The GridSpace Engine
is also responsible for storing obtained experimental results in the Lab-
oratory Data Base.

Keywords: e-Science, virtual laboratory, grid resources coordination,
experiment repository.

1 Introduction

Nowadays, virtual laboratories attract attention of scientists needing compu-
tational power and specialized software in order to process and analyze existing
huge data sets, particularly in the field of bioinformatics. Moreover, such lab-
oratories may successfully support specialists from a vast range of domains in
making decision [1]. The aim of ViroLab [6] Virtual Laboratory [4, 5] is to pro-
vide high-quality environment dedicated to create, develop, manage, and run
in-silico experiments in the domain of virology.

The role of GridSpace Engine within Virtual Laboratory is to provide exper-
iment execution capabilities, so it can be considered an experiment execution
engine or experiment enactment engine. The idea behind the GridSpace engine
is to separate the wide range of client tools assisting experiment planning [8]
from the engine that actually enacts the experiments. Even more significant

is that this distinction enables the GridSpace Engine to be a shared, reliable
and efficient service independent of end-user machines, and as such dedicated to
perform time-consuming experiments making use of grid resources. Such an ap-
proach delivers the experiment execution engine as a facility for dispersed groups
of (possibly mobile) users who employ computationally intensive experiments in
their research. For them, the GridSpace Engine constitutes a remote and stable
entry point to the ViroLab Virtual Laboratory.

2 State of the art

Existing virtual laboratory solutions differ in the means of expressing exper-
iments which in turn determines the way the experiment is enacted.

Projects like Kepler [10], myGrid Taverna [11] or Triana [12] use workflows
to model experiments e.g. through Modeling Markup Language (MoML) used
in Kepler. Therefore, their enactment engines are provided with declarative
description which has to be done without explicitly specifying how to do this,
and such a description is often assembled using graphical tools. An alternative
approach, also undertaken in the ViroLab Virtual Laboratory, is to use scripts
in order to express experiments in a more imperative manner. In this approach
evaluation of experiments is performed by script interpreters such as Matlab in
the case of Geodise [13] project.

The other major issue is how to run such an execution engine on grid re-
sources. Since GridSpace Engine is required to support interactive experiments,
data streaming and monitoring of running experiments a suitable middleware
technology has to be employed. Globus Toolkit [14] enables stateful WSRF
services, as well as job management services, but the drawbacks are the large
overhead of the whole toolkit and limited support for interactivity. Component
frameworks such as MOCCA [15] can also be used for dynamic deployment of
experiment on Grid resources.

3 Structure and functionality of GridSpace Engine

The goal of the GridSpace Engine is to combine capabilities of accessing
computational and data resources, of interacting with experiment executor, and
of evaluation of a “glue code” of experiment script. The experiment code, here-
inafter called experiment plan, is entirely written in Ruby [16], and the capa-
bilities offered by Virtual Laboratory are provided through specialized libraries
written in this language. In this approach, the whole functionality and utilities
of Virtual Laboratory are exposed to experiment developer and used from the
level of experiment plan.

Since the GridSpace Engine uses the JRuby [17] implementation, pure Ruby
code can access the Java programming language classes and vice versa. There-
fore, some Virtual Laboratory-specific libraries are developed in Java, and can be
seamlessly called form within the Ruby wrapping library. This brings into action

S & &

Experimen ViroLab Portal Custom
Planning GSEngine
Environment luation Requests Client

GridSpace Engine

Experiment Experiment Experiment
Execution Execution Execution

Experiment
Repository

N

q

Data Services

Computational Services

Fig. 1: GridSpace Engine placed in an environment of ViroLab Virtual Labora-
tory.

a vast range of Java-based libraries and utilities which can be easily incorporated
in the execution engine.

The most essential libraries incorporated in the GridSpace Engine are re-
sponsible for access to grid resources. The Grid Operation Invoker (GOI) [2, 3]
provides a library to invoke grid operations from Ruby code. Data Access Client
(DAC), in turn, is a Ruby client for accessing Data Access Service [7] that inte-
grates all data sources available in the Virtual Laboratory.

Besides these two, a user data input library is provided to enable experiments
to interactively request the input from the user, which is especially desired in the
case of decision support experiments. Furthermore, dealing with the outcome
of experiments demands some means of streaming output of experiments and a
library for sending results back to the user, with rendering modules on the client
side.

The GridSpace Engine, including the JRuby interpreter, is accessed via API
and can be called from any Java application. In particular, considering the
Virtual Laboratory, it is used by specialized tools such as the Experiment Plan-
ning Environment [8] dedicated for experiments developers, and the Experiment
Management Interface [8], which allowing experiment launching via the ViroLab
Portal. Aside of these robust and complex tools, the GridSpace Engine comes
along with a simple client in a the form of command line tool.

To keep the GridSpace Engine operable in the environment of Virtual Lab-
oratory, and also to keep it generic there are a number of ways of providing the
experiment plan to the engine. First of all, there is a way of programmatically
passing the experiment plan via an API. However, to facilitate retrieving exper-
iment plans from Experiment Repository a dedicated module called GridSpace

Application IiEpository

N

Application Submission [3] Application Resolving
Evaluation
Reguest

[2] Application Evaluation Request

Application

[4b] Data Streaming

GSEngine

% [E] Application Evaluation Response [4a] Application
GSEngine Client Evaluation

Fig. 2: A common scenario of using GridSpace Engine to execute experiement
plans stored in the Experiment Repository.

Engine Application Repository Client is introduced. It enables plugging of clients
for different implementations of Experiment Repositories.

GridSpace Engine placement within the Virtual Laboratory including special-
ized tools, laboratory resources and Experiment Repository is shown in Fig. 1.

A significant part of the functionality of the GridSpace Engine is to manage
the session of the experiment execution. In this aspect, the engine preserves
the scope of the user context (including security credentials) enabling Single
Sign On (SSO) access to grid objects, as well as experiment execution context
indispensable e.g. for the monitoring and provenance events correlation. The in-
teractions between building blocks of the Virtual Laboratory which are involved
in a common usage scenario of experiment execution are depicted in Fig. 2.

The GridSpace Engine is also intended to carry out on-line monitoring of
experiment course including invocation of grid operations, access to data, current
status of experiment plan execution, logging messages etc. These data are to
be provided both to client tools requesting and tracing execution and to the
monitoring infrastructure. Thereafter, historical information can be used to
further optimize execution through choosing the most efficient grid objects by
the GridSpace Application Optimizer (GrAppO) [9].

4 Implementation status

The current status of work (as of the end of September 2007) covers the
first stable version of the GridSpace Engine implementation embeddable in a
Java Virtual Machine of a client tool. Moreover, a command line tool is pro-
vided allowing users to evaluate experiments locally on their own machines. This

version of the engine was successfully integrated with Experiment Planning En-
vironment and with a prototype of ViroLab Portal. Furthermore, GridSpace
Engine already cooperates with SVN-based [18] implementation of Experiment
Repository owing to a dedicated Application Repository Client adapter.

The GOI and DAC libraries are developed externally and independently, and
have been also integrated with the engine. The libraries for handling user data
input and result management are on the very early stages of their development
roadmaps with only simple prototypes existing for feasibility studies. Monitoring
features are not supported yet.

5 Summary and future work

GridSpace Engine considered as an experiment enactment service combines
capabilities of Virtual Laboratory building blocks such as Grid Operation In-
voker, Data Access Client, Experiment Repository and a number of dedicated
libraries. The concept, design and prototype were verified by several fully func-
tional applications that make use of computational resources, data resources and
user data input library. The experiments include a Genotype to drug ranking
application, supporting decision making by medical doctors who choose the most
suitable drug to apply in HIV treatment.

The next step in the scope of this work will be to develop GridSpace En-
gine server remotely accessible through a interoperable protocol developed for
clients written in diverse technologies. Future plans also include enrichment of
GridSpace Engine with robust libraries for user data input and experiment re-
sult management. It is planned as well to enable online monitoring of running
experiments along with integration with monitoring infrastructure of the Virtual
Laboratory.

Acknowledgements. This work was supported by the EU Virolab project IST-
027446 with related Polish grant SPUB-M and the Foundation for Polish Sci-
ence.

References

1. Peter M.A. Sloot, Ilkay Altintas, Marian Bubak, Charles A. Boucher: From
Molecule to Man: Decision Support in Individualized E-Health IEEE Computer
Society,vol 39, no.11, pp. 40-46, Nov., 2006

2. Tomasz Bartynski, Marian Bubak, Tomasz Gubala, Maciej Malawski: Universal
Grid Client: Grid Operation Invoker Proceedings of International Conference of
Parallel Processing and Applied Mathematics (PPAM’07), Gdansk, September
2007, LNCS (to appear)

3. Tomasz Bartynski, Maciej Malawski, Marian Bubak: Invocation of Grid Opera-
tions in the ViroLab Virtual Laboratory In Proceedings of Cracow Grid Workshop
2007, this volume.

4. ViroLab Virtual Laboratory, http://virolab.cyfronet.pl

10.

11.
12.
13.

14.
15.

16.
17.

18.

Tomasz Gubala, Bartosz Balis, Maciej Malawski, Marek Kasztelnik, Piotr
Nowakowski, Matthias Assel, Daniel Harezlak, Tomasz Bartynski, Joanna Ko-
cot, Eryk Ciepiela, Dariusz Krol, Jakub Wach, Michal Pelczar, Wlodzimierz Fu-
nika, Marian Bubak: ViroLab Virtual Laboratory In Proceedings of Cracow Grid
Workshop 2007, this volume.

ViroLab - EU IST STREP Project 027446, http://www.virolab.org

Matthias Assel, Bettina Krammer, and Aenne Loehden: Data Access and Vir-
tualization within ViroLab In Proceedings of Cracow Grid Workshop 2007, this
volume.

Wlodzimierz Funika, Daniel Harezlak, Dariusz Krol, Piotr Pegiel and Marian
Bubak: User Interfaces of the Virolab Virtual Laboratory In Proceedings of Cra-
cow Grid Workshop 2007, this volume.

Maciej Malawski, Joanna Kocot, Eryk Ciepiela, Marian Bubak: Optimization
of Application Execution in the ViroLab Virtual Laboratory In Proceedings of
Cracow Grid Workshop 2007, this volume.

Ilkay Altintas, Efrat Jaeger, Kai Lin, Bertram Ludaescher, and Ashraf Memon.
A web service composition and deployment framework for scientific workflows.
ICWS, 0:814, 2004.

R. Stevens et.al. Exploring williams-beuren syndrome using mygrid. Bioinfor-
matics, 1(20):303-310, 2004.

Tan Taylor, Matthew Shields, Jan Wang, and Andrew Harrison: Visual grid work-
flow in Triana. Journal of Grid Computing, 3(3-4):153-169, September 2005.
Geodise project homepage http://www.geodise.org

The Globus Toolkit homepage, http://www.globus.org/toolkit/

M. Malawski, D. Kurzyniec, and V. Sunderam: MOCCA - towards a distributed
CCA framework for metacomputing In Proceedings of 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Joint Workshop on
High-Performance Grid Computing and High-Level Parallel Programming Mod-
els - HIPS-HPGC, April 4-8, 2005, Denver, Colorado, USA, page 174a. IEEE
Computer Society Press, 2005.

Ruby programming language home page http://www.ruby-lang.org/

JRuby - Java powered Ruby implementation home page
http://jruby.codehaus.org/

Subversion version control system home page http://subversion.tigris.org/

