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AGH University of Science and Technology

in Kraków

Faculty of Electrical Engineering, Automatics, Computer Science
and Electronics

Institute of Computer Science

Tomasz Bartyński
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Abstract

This thesis presents a novel approach to development of grid applications which
address the issue of solving highly complicated scientific problems which may
require great amount of computational power or storage as well as gathering and
combining results of various programs executed in distributed environment. An
experiment may contain application logic, which can not be easily expressed in
currently available tools.

This work is focused on finding an appropriate model of grid programming
that would allow fast and easy development of high level application, which are
able to take advantage of grids, with no limits in expression of experiment logic.
Our solution is based on a client-side interface to grid environment which can
be accessed within modern scripting language. This approach facilitates reusing
existing software, which is already published, as well as harnessing the computation
power of a grid environment.

This thesis is organized as follows: First, we provide the background on the grid
environment and obstacles associated with using it, which is the motivation for this
work. Next, similar solutions are analyzed. Then our approach, which is based on
accessing the grid from within a scripting language, is introduced. It is followed
by the design and description of the implementation of the Grid Operation Invoker
system. Finally we present the results of appling our tool to develop high-level grid
applications.

Key words

high level grid programming, grid middleware, uniform interface to the grid envi-
ronment, remote operation invocation, JRuby, object-oriented scripting language

1



Acknowledgments

First of all, I would like to express my gratitude to my supervisor, dr. Marian
Bubak, for guidance, patience and invaluable advices. I would like to sincerely thank
Maciej Malawski and Tomasz GubaÃla for their support in design of the system and
implementation counsels.The author also wishes to acknowledge contributions from
his colleagues from ACC Cyfronet AGH, including Joanna Kocot, Eryk Ciepiela,
Marek Kasztelnik, Piotr Nowakowski and Daniel Harȩżlak. Finally I would like
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Chapter 1

Introduction

This chapter presents the motivation and objectives of this thesis and defines the
problem that we try to solve. It starts with a short description of a grid environment
which is followed with introduction of the concept of accessing remote resources from
a scripting language. Next, difficulties in using and accessing grids are explained.
Finally, we list the work that is required to solve the problem.

1.1. The Grid Environment

Nowadays, researchers from plethora of domains of exact and natural science in-
vestigate highly complicated problems. Some of them already take advantage of the
in-silico experiments. Such studies gained the approval of the scientific community,
constitute a significant part of modern research and will become even more attractive
for scientist [2]. In-silico experiments may require large amounts of computational
power or storage. Additionally, they often involve complex and specialized software
tools. It is essential to reuse the existing software, because creating new software
from a scratch is highly expensive and time consuming process. Moreover, utilizing
proven libraries and tools increase reliability and efficacy of an application. Fi-
nally, collaboration between experts from a diversity of domains can be crucial for
a successful work. All these factors moved the computation from local machines to
a distributed environment and produced an abundance of challenges for computer
scientists.

Grid technologies originated to satisfy these requirements [3]. They allow re-
source aggregation and virtualization, in order to deliver greater computational
power and storage to endusers. Besides that, grid middleware technologies facil-
itate publishing and reusing software. A wide range of middleware technologies
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1.2. Accessing grids from a scripting language

were developed, among which the most accepted are job oriented middlewares, Web
Service (WS) [4], stateful services (WSRF) [5] or component-based middlewares,
each enabling different interaction and programming models. Needless to say, any
of them is suitable for all users, due to their vast variety of requirements. Usually,
middleware technologies employ different communication protocols, what prevents
interoperability among them. Furthermore, some of them request credentials in
a specific format. It gets even more complicated, because the grid environment is
heterogeneous and dynamic. Resources are distributed all over the world in a variety
of independent administrative domains. Resource pool may change and the load of
each machine is fluctuating.

As a consequence, grid usage is difficult from enduser’s point of view, as well
as for a developer implementing experiments. Currently, there are lots of efforts in
providing more user friendly access to grids, for instance through a portal. Besides
that, multitude of work is ongoing to produce efficient tools facilitating experiment
development. Most of such projets are based on workflow engines, which we believe
is not a good solution, if the experiment contains a more elaborated application logic
or algorithm. In our opinion there is a necessity for a mechanism that will allow
fast and easy development of high level applications accessing grid resources.

1.2. Accessing grids from a scripting language

In our opinion, it is crucial that developing and running high-level grid appli-
cations is as easy as creating software that is run locally. Application developers
should be focused only on the problem and the solution. It is important to enable
them to use best practices and patterns in the application development, for instance
the object-oriented programming paradigm. They should be able to use objects
representing remote software in the same manner as ordinary objects, instead of be-
ing concerned about the obstacles associated with invocations of remote operations.
Ideally, developer should only request for functionality, by selecting an appropriate
class, rather than interfacing directly remote software in the source code. The
process of finding remote realization of desired functionality, which fits best user’s
needs, ought to be automated and transparent for the developer.

Modern scripting languages are an interesting alternative for compiled languages.
Due to interpretation line-by-line and being untyped, they are especially suitable
for fast prototyping and developing high-level applications adapting to the dynamic
grid environment at run-time. Languages, such as Ruby [6], Perl [7], Python [8], are
broadly accepted in the world of computer science and proved their usability in the
area of developing universal applications. These languages have dedicated reliable
interpreters for all platforms, good support for them is provided both on the Web
and in numerous publications. Besides that, they support object-oriented paradigm
and thus allow creating complicated, yet well structured and clear projects.

We are strongly convinced that the solution addressed at the defined problem
should be based on a modern, object-oriented, scripting language, which ought to
be extended with the capability to access the grid environment. It is required from
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1.2. Accessing grids from a scripting language

it to allow use of the computational resources in a coherent and transparent manner
from the developer’s point of view. Such approach combines the advantages of
enabling fast development of high-level application and harnessing the potential of
grids. Fig. 1.1 illustrates the idea of a script being a high-level grid application.

Figure 1.1. Overview of the concept of a script being a high-level grid application utilizing
various middleware technologies.

13



1.3. Description of the problem

1.3. Description of the problem

1.3.1. Difficulties in accessing grid resources

Capabilities of geographically dispersed, heterogeneous computational and
storage resources are delivered to endusers using, in most cases, one of the wide
range of middleware suites. A set of services is installed on the resources in order
to make them accessible for each other and for endusers. Installed middleware
implies the way how resources are being accessed. Each technology provides access
to computation in its specific manner. Web Service, WSRF and component-based
middleware suites, like MOCCA [9], provide access through client-side software,
which needs to be developed by the user, while other provide client programs
to submit jobs, User Interface (UI) for LCG [10] and gLite [11] or a Java based
Unicore [12] client. In the latter case users need to execute few commands to submit
a job and retrieve results after completion of the job. Their attention is required to
watch job status during execution. In the former case lots of developers’ effort is
spent only on accessing the resource instead of solving the problem. Further more,
grid users need to gather information about service availability and load in order to
select the resource that best fits their requirements.

Interoperability among middleware technologies is prevented due to numerous
reasons. First of all, different communication protocols are used, for example Web
Service and WSRF use SOAP [13], while MOCCA employs RMIX [14], which is an
extension of the RMI protocol. Next, different security mechanisms and credentials
are used. Usually, every middleware suite requires a specific set of libraries or tools,
which can be large in size and non trivial to install. Finally, inputs and results
are in various forms and formats (files, objects, XML [15] documents), therefore
passing results as arguments between middlewares without transforming them is
not possible.

Besides described obstacles many middleware suites are under active develop-
ment and theirs Application Programmer Interfaces (APIs) are not stable. Some of
existing suites did not, and will not, achieve production status.

Nowadays creating and running applications accessing grids are time consuming
and hard. It requires good understanding of underlying middleware suite because
lots of low-level programming or usage of dedicated tools are required. What is more,
any of existing upper level system (please refer to section 3.1 for a brief discussion
on existing solutions) provides convenient access to many technologies, nor allows
interoperability. These facts motivate us to conduct research in the scope of unifying
the interface for accessing grid resources, and to develop a prototype as well.
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1.3.2. External information dependency

Every automated system capable of accessing the dynamic grid environment
requires both, static and dynamic information about it. The static data includes:
• a list of resources and theirs unique identifications,
• endpoint addresses (of services, components or UI machines),
• operation signatures (inputs, outputs, data formats etc.),
• a list of operations that is provided by each computing resource,
• technology/protocol specific data (for instance: component based middleware

suites require the following data: class of the component, component port, code-
base etc.; Web Services the type of service (RPC or document), location of the
wsdl; jobs need to be described in JDL or AJO).

The dynamic information provides data about:
• failures,
• resource availability,
• load of the machines.

1.3.3. Dependency on external components

Information about the resources needs to be stored and delivered on demand.
Record of static data can be kept by a simple class with hard-coded information
if the amount of data is small in size and it will be used locally. In other case,
registry should be a standalone and independent system providing remote access
to static data. Dynamic data about computing resource availability or load needs
to be collected periodically and updated in the registry. Such data allows selecting
the resource that meets best users needs in terms of computation speed, accuracy
or other requirements. Such selection should be made automatically without user
attention. Local optimizer can use one of the simplest algorithms, such as random
or round-robin, however if quality of the selection is important, more complicated
algorithms should be employed and an external optimizer should be used.

1.4. Objectives of the thesis

The main objective of this thesis is to develop a computer system providing
uniform access to application elements which are distributed as components, web
services, etc. on clusters and grid systems within a scripting language. The system
will allow taking advantages of programming features offered by various middleware
suites and emulate some of them. This will involve:
• state-of-the-art in the existing middleware technologies, programming models

and high-level solutions in order to choose the most useful middleware suites
and programming models, as well as to reuse valuable ideas and software,

• in-depth analysis of functional and non-functional requirements for the system,
• detailed design of the system (architecture, data flow and implementation tech-

nology),
• development of prototype and adding successively support for more technologies,
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• validation of the system, performance testing and discovering the bottlenecks of
the system and adding optimization if required,

• listing possibilities of enhancing the system in the future,
• providing documentation on how to install and use the system.
This thesis is structured with regard to these objectives and consists of the following
chapters:
1. Introduction that provides background on the grid environment and discusses

the concept of accessing grids from a scripting language,
2. Overview of programming models and middleware technologies that

povides a bief overview of leading middleware technologies and their program-
ming properties,

3. Systems for building grid applications which analizes high-level systems
providing access to grids and discusses their advantages and drawbacks,

4. Vision of a Grid Operation Invoker that introduces abstraction over grids
and illustrates the scripting approach to building grid applications,

5. Analysis phase of the Grid Operation Invoker that collects all use cases
and requirements of a system realizing concepts from the previous chapter,

6. Design and implementation of the Grid Operation Invoker that provides
description of the architecture, principle of operation and implementation of the
GOI system,

7. Validation of the Grid Operation Invoker which confronts implemented
system with requirements,

8. Grid applications using the Grid Operation Invoker that presents real-life
applications utilizing the GOI library,

9. Summary and Future Work that summarizes the thesis and describes possible
evolution of the GOI system.

The thesis inludes also the following appendices Installation guide, Grid Oper-
ation Invoker API, Implementing technology adapters, Technology infor-
mation stored in Registry and Publications.



Chapter 2

Overview of programming models and
middleware technologies

This chapter gives a brief overview of programming properties and middleware
suites. Programming models and interaction modes are discussed in context of var-
ious middleware technologies.

2.1. Basic properties of programming models

Many programming models, paradigms and concepts have evolved during past
years in the area of distributed computing. Various middleware suites provide
distinct programming features. First of all, middleware technology can support
object-oriented paradigm. In such a case, developer implements an object-oriented
application and create an object that represents a remote software entity and pro-
vides its functionality as methods. Besides that, developer of the high-level grid
application is enabled to interact with remote software in either stateless manner,
in which case the state is not preserved on the server-side, or in stateful man-
ner. Moreover, operations can be invoked in a synchronous, blocking way, or in
an asynchronous manner. The latter allows concurrent execution of more than one
operation, thus augments the efficiency of a program, which can be run on many
distributed resources simultaneously. Another distinction can be made based on
the criteria whether the software being published is a fully functional, independent
and self-sufficient entity or is a set of units with defined interfaces and dependencies
that can be composed into various applications. The last feature, that is taken into
account in this work, is the share mode, which enables to decide if a software entity
can be either public or private. Public one is visible for other users and can be used
by them, while a private one is visible and accessible only by its owner.
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We are strongly convinced that experienced developers should be provided with
a uniform API to access the resources, however programming properties should be
exposed to them. Skillful use of them can result in a high-level applications of better
quality in terms of efficacy and security.

2.2. Middleware

Grid middleware is a software that provides abstraction over heterogeneous and
distributed resources. It allows interoperability among diverse platforms as well
as among machines coming from different vendors. Middleware packages usually
consist of a set of enabling services and can be viewed as a virtualization layer
between operating system of each resource and application. Middleware facilitates
building distributed applications by providing mechanism for multiple processes to
interact with one another across the network.

Middleware packages vary in type. Job-oriented infrastructures are complex
systems among whose resources coordinating nodes and working nodes are dis-
tinguishable. The former have a set of services installed that are responsible for
managing the resource pool, which includes gathering and publishing some dynamic
information, scheduling and brokering. The actual computation is performed on one
or more machines from the worker node pool. Modern technologies, such as Web
Services, WSRF or component-based technologies, use containers installed on every
machine that constitutes a distributed environment for applications. Every resource
that has a container provides computational power to endusers. There is no need
for a central manager (or broker), which is necessary in a job-oriented middlewares.

2.2.1. Service-oriented middleware

Web Service

Following the definition by the W3C [4]:”A Web service is a software system
designed to support interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP messages, typically conveyed using HTTP with an XML serializa-
tion in conjunction with other Web-related standards.”

This technology gained acceptance among industry and academic communities.
SOAP [13] proving a RPC semantics, combined with XML [15] allow language and
platform independence. WSDL [16] provides a standardized mechanism for describ-
ing interfaces of services, thus facilitates service discovery and matchmaking. Web
Service technology allows stateless, synchronous interaction. Numerous frameworks
and libraries have been created to support publishing software as a service in pro-
gramming languages, such as Java, C, Perl, Python or Ruby.

All mentioned features makes this technology highly-usable for development of
high-level grid applications, therefore the WS middleware is in scope of our interest.
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Web Services Resource Framework

WSRF [5] is a set of specifications defining a generic and open framework for
modeling and accessing stateful resources using Web services. State of such a re-
source, called WS-Resource, is modeled by a XML based Resource Properties docu-
ment, which is referenced in the WSDL. WS-Addressing endpoint reference (EPR)
contains both address of the service and identifier of the resource. All specifications
of the WSRF can be found on the OASIS web page devoted to this standard [5].

This technology is not as accepted as Web Service, though there are many im-
plementations of this standard. The most popular are the Globus Toolkit 4 [17],
providing Java and C WS-cores, and Apache WSRF [18] providing a Java imple-
mentation. Besides these, there are WSRF::Lite [19] for Perl, pyGridWare [20] for
Python and WSRF.NET [21] for .NET.

WSRF is significant from our point of view, because it introduces the idea of
stateful interaction with Web services.

2.2.2. Component-based middleware

Alternative for service-oriented middleware suites are component-based tech-
nologies. The foundation of such an approach is ”composition of applications from
software units with specified interfaces and dependencies. The components can be
deployed independently and can be composed by a third party” [22].

GridCCM

The GridCCM [23] is an attempt to adapt CORBA Component Model (CCM) for
scientific applications by providing efficient implementation of CORBA and parallel
extensions, for instance, support for MxN component interactions. Deployment of
component applications on grids, including planning and execution phases, is done
by means of the ADAGE tool.

ProActive/Fractal

The ProActive [24] introduces approach to building component frameworks based
on active objects. It is a Java distributed component framework for parallel appli-
cation that can be executed within multi-core processors, distributed on Local Area
Network (LAN), on clusters and data centers, on intranet and Internet grids. It is
based on the Fractal [25] component model, which allows hierarchical component
composition.

H2O plus MOCCA

MOCCA [9, 26] combined with H2O is in our opinion a very interesting
component-based middleware suite. MOCCA is a component framework compliant
with the CCA [27], which adapt the component model to high-performance scientific
computations. MOCCA Light, which a Java implementation of MOCCA, is built
on top of the H2O [28, 29] platform, which provides lightweight containers called
kernels. What is distinguishable in this solution is the separation of the resource
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provider and service provider roles, because authorized users are allowed to deploy
and run their code as pluglets within containers running on resources provided by
third parties. Each pluglet is being executed in a separate environment, thus security
is ensured, and communicate with other pluglets via RMIX protocol, which extends
standard RMI protocol.

We consider such an approach as attractive from the point of view of grid user.
The ability to deploy components at run-time on third party resources only by
providing URL of the code base seems to be a very significant feature from the
high-level application developer perspective. What is more, components enable to
interact in a stateless and a stateful manner, as well as allow creating private entities.

2.2.3. Job-oriented middleware

Although the trend in grid computing is towards a service oriented architecture
or component-based middleware suites, job-oriented software is still very common
in high-throughput computing. Batch processing systems are the most proven and
reliable technologies that are deployed on the world’s largest infrastructures, such
as EGEE [30] or DEISA [31].

LCG

Large Hadron Collider Computing Grid (LCG) [10] is a system for building grids.
It is based on a Globus Toolkit 2.4 and a Condor-G. It consists of a set of components
that have well defined functionality:
• Workload Management System (WMS) is responsible for matching jobs require-

ments to the available resources, scheduling the job on an appropriate computing
element, checking the job status and retrieving output files;

• Data Management System (DMS) provides file management functionality;
• Information System (IS) gathers and publishes various information on resources;
• Authorization and Authentication System;
• Accounting System;
• Various monitoring and installation services.
LCG provides access to the world’s largest grid production status infrastructure-
EGEE, therefore it is well tested and documented. On the client-side, command-line
software, EDG User Interface, is used, which provides commands for job submission
and management and as well as for data manipulations. This solution, however is
difficult to install on a client machine. Usually there are dedicated machines with
the UI software installed and user logs to this machine to submit jobs. Moreover,
LCG does not follow modern trends in distributed computing.

gLite

gLite [11] is superseding LCG at EGEE infrastructure. It is based on the LCG 2.7
but it is a more lightweight middleware package and it is more Web Service-centered.
gLite has two layers:
• High-Level Grid Services, which is is not mandatory, allows users to build com-

puting infrastructures;
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• Foundation Grid Middleware mupagest be installed on the infrastructure
(EGEE) to provide complete and robust middleware.
Being deployed on EGEE infrastructure and reusing reliable components of LCG

middleware are advantages of the gLite. It is guarantied that it will be supported
in future and its quality will improve. On the other hand, gLite is a hybrid. It is
evolving towards service-based technologies, but it depends on the LCG components.
gLite also requires an user interface to be installed on a client machine, therefore it
is not as light-weight as it was supposed to be.

UNICORE

UNICORE [12] stands for Uniform Interface to Computing Resources. It pro-
vides access to distributed, heterogeneous resources in a secure, convenient and
uniform way via a user-friendly graphical interface. This middleware consists of:
• End-user interface which is a Java program enabling user to create and monitor

jobs, handling complex workflows and managing files and certificates. It has a a
user-friendly graphical user interface.

• Server Tier including gateways, which are single points of entry to a Unicore site,
and Network Job Supervisors(NJS), which virtualizes heterogeneous resources,
such as a single supercomputer or Linux cluster, by representing them as vir-
tual sites. NJS maps the abstract job onto a target system (incarnation) using
system-specific data, stored in the Incarnation Data Base (IDB).

• Target System Interface (TSI), which is a stateless daemon running on the
target system that provides implementation of the interface to the underlying
resource.

Client program communicates with gateway using SSL sockets. Jobs are rep-
resented using Abstract Job Object (AJO), which is a system-independent job de-
scription. UNICORE is a mature technology, which is deployed on DEISA. Its main
drawback is the fact that there isn’t any interface providing RPC semantics for
executing operations on grids.

GridSAM

GridSAM [32] is an open-source project that introduce the concept of providing
job submission and monitoring functionality through a Web Service. It has a mod-
ular architecture, therefore the system can interface a wide range of Distributed Re-
source Managers (DRM) and can be extended with plugins for job submission and file
transfer by third parties. Standardized language JSDL, defined by the Global Grid
Forum, is used to describe jobs. The Web Service API of GridSAM can be embedded
into grid applications, thus usage of distributed resources in an object-oriented man-
ner is enabled, which is a step forward in development of high-level grid applications.
GridSAM however, provides access only to job-oriented technologies.
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Witty Services

Witty Services (WTS) [33] enables to manage jobs through a Web Service. It
is based on an extension of the popular Web Service framework - Apache Axis -
build in accordance with the KISS(Keep It Simple, Stupid) principle. It enriches
it with the capability of keeping the state of the resource. WTS contains both
the server-side Java package and the client side software available for Java and C#
developers. The unquestionable advantage of this solution is its simplicity compared
to WSRF frameworks.

2.3. Programming properties provided by each middleware
technology

Having analyzed most accepted middleware technologies, their features and ad-
vantages, we distinguished qualities facilitating development of high-level grid ap-
plications. Programming properties, that we have found the most significant are
listed below:
• support for object-oriented programming paradigm,
• composability into larger applications,
• stateless and/or stateful interaction mode,
• ability to execute operations concurrently,
• synchronous and/or asynchronous invocation of operations,
• ability to choose public or private sharing mode.

These properties and selected middleware suites providing them are presented as
a technology/property matrix in table 2.3. One can observe that properties which
need to be added by our system are the asynchronous invocation of operations for
service-oriented and component-based technologies and support for object-oriented
paradigm for batch processing suites.
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Chapter 3

Systems for building grid applications

In this chapter we discuss high-level systems that enable to build and execute ap-
plications, which can be expressed either as workflows or in programming languages,
that access the grid environment. We focus on those aspects that we found relevant
for our system. We discuss advantages and drawbacks of each solution and finally,
we present conclusions.

3.1. High-level systems for accessing grid resources

In this chapter we focus on solutions that allows building grid applications using
abstraction over middleware technologies mentioned in Chapter 2 and executing
them. High-level systems should hide the complexity of the grid environment and
internals of invoking operations on distributed computational resources. These sys-
tems providing access to the grid environment can be classified in two groups, based
on an approach taken to expressing an application. These groups are:
1. workflow-based systems;
2. libraries, frameworks or other extensions enabling to use grid resources within

programming languages.
The former group includes Kepler, Triana an K-Wf Grid while GAT/SAGA,
GEODISE, NetSolve/GridSolve and WSIF are members of the latter.

3.2. Workflow-based systems

Workflow is a sequence of steps that are executed in order to achieve some
processing intents. Every step represents one operation that does some processing
on its inputs to produce an output. Developers create applications using graphical
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tools that enables to build workflows of blocks, which represent processing, and
connections between these blocks, which repersents flow of data and control.

3.2.1. Kepler

This open-source project provides [34] a platform for constructing and execut-
ing scientific workflows. It enables to use the ”drag and drop” method to build
workflows, which are expressed in a MoML language (Modeling Markup Language).
Kepler features actor-oriented approach. An actor is a single step in a wokflow. It
represent one operation that is performed on its inputs to produce output. Actors
can access Web and Grid Services, Globus Grid Jobs or use GridFTP operations.
They are connected with one another by ports, that either produce or consume some
data. Additional relations can be defined to direct the output port to many actors.
Workflow execution is controlled by a Director, which enables a particular model
of computation to be used. Kepler platform supports nested workflows (a workflow
can be an actor).

This project introduces interesting concepts, for instance nested workflows, ease
of expressing experiments and support for more than one middleware technology.
In addition, this platform can be extended by adding new actors.

3.2.2. Triana

Triana [35] is a problem solving environment with a similar approach as Kepler.
It provides an intuitive user-friendly tool for constructing workflows and an execu-
tion engine. It allows combining local operations, Web Services and grid jobs in a
single workflow, as well as supports dynamic Web Services discovery and invoca-
tion. Besides that it can submit jobs (Globus, Gridlab) using GAT and supports
P2PS services. This solution has limitations of every workflow-based system (see
Section 3.4).

3.2.3. K-Wf Grid

Knowledge-based Workflow System for Grid Applications [36] (K-Wf) enables
to construct workflows in an abstract manner and execute them in the grid envi-
ronment. It facilitates composing workflows by means of ontology-based semantic
reasoning. Besides that, it enables users to monitor the performance, analyze the
resulting monitoring information and finally to reuse the joined knowledge of all
participants in a collaborative way in order to efficiently construct workflows for
new grid applications.

The most interesting feature of this system, from our point of view, is the multiple
level of abstraction of describing the workflow. Users can express theirs request
in a formal manner. These descriptions are used to automatically build abstract
workflows. There may exist a wide range of service candidates capable to perform
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the requested computations. Among them, the optimal services are selected and
resources allocated. This process is depicted in Fig. 3.1 1.

Figure 3.1. Building and executing workflows in K-Wf Grid: 1. Defining a request in a
formal manner. 2. Composing an abstract workflow. 3. Search for matching services. 4.

Optimization of selection. 5. Allocation of resources.

3.3. Libraries and framework enabling to access grid
resources

There are many libraries and frameworks trying to facilitate access to hetero-
geneous grid resources. They introduce various approaches and provide different
features. This section briefly discusses the most interesting ones.

3.3.1. GAT/SAGA

Grid Application Toolkit [37] is an attempt to solve the ”many Grids, little
applications” problem. It provides a simple,invariant and language-neutral API for
accessing grid resources from high-level grid applications, portals or other systems.
Operations included in the API include basic use cases, such as file manipulations,

1 Image from http://www.kwfgrid.eu

27



3.3. Libraries and framework enabling to access grid resources

monitoring and events, managing resources and jobs, information exchange. More-
over, GAT allows error handling and ensures security. GAT objectives are simplify-
ing grid applications, enabling code reusability, making the code more concise and
facilitating software maintenance. Further more, GAT makes applications less vul-
nerable to changes in middleware suites. This toolkit consists of the API, adaptors
dedicated for specific infrastructure that implement the API, and an engine that
selects an appropriate adaptor at runtime and provides error tracing and fallback
mechanisms. Fig. 3.2 2 present GAT as a part of high-level system (GridLab).

Figure 3.2. Grid Application Toolkit inside the GridLab. GAT provides an API for ap-
plications and portal as well as its implementations to underlying grid technologies as

adaptors.

GAT library is available for the following programming languages: Java, C,
C++ and Python. The toolkit is currently evolving into a Simple API for Grid
Applications.

What is valuable from our point of view, is the concept of providing invariant,
simple API for accessing grid resources and the idea of adaptors dedicated for a
specific middleware technology that can can be switched during execution of appli-
cation. Although GAT presents a good approach to the problem, it does not adapt to
dynamic grid environment automatically at runtime. Further more, we are strongly
convinced that there is a need for a more high-level solution that would enable to
use services, jobs or components within applications in an object-oriented-style.

2 Image from http://www.gridlab.org/WorkPackages/wp-1/
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3.3.2. GEODISE

This project introduces a very interesting concept of accessing grid resources
within a scripting language. Such an approach enables to use a set of control struc-
tures, thus facilitating expressing experiment logic. A set of computational toolboxes
is provided that allows interfacing Condor and Globus, managing proxy certificates,
job submission and file transfers. GEODISE includes toolboxes for Jythoon and
Matlab. System architecture illustrated in Fig. 3.33.

Figure 3.3. : upper-level components and services facilitating experiment development
and scripting language accessing grid resources.

GEODISE is a very attractive solution but it has disadvantages that prevents
it from being accepted and used in scientific communities. For example, it uses a
commercial software like Matlab, Microsoft .NET or IBM WebSphere.

3.3.3. NetSolve/GridSolve

NetSolve/GridSolve [38] is a RPC-based client/agent/server system that provides
users with a remote, uniform and efficient mechanism to access both hardware and
software components. NetSolve is built upon standard Internet protocols such as
TCP/IP. The process of accessing remote resources is transparent for the user. The
client library, included in the user application, contacts the agent for a list of capable
servers. Subsequently, it contacts a selected server and sends input parameters. The
server executes the appropriate service and returns an output or an error status to

3 Image from http://www.geodise.org/files/slides posters/workflow COX geodise 4Dec2003 p
ublic.ppt
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a client. Fig. 3.4 4 illustrates the system architecture. Significant contribution

Figure 3.4. NetSolve/GridSolve overview. The system consists of three major components:
client, agent and computational resources(servers).

of this project is the idea of dividing the system into three layers (client, agent
and workers), that allows automated selection and transparent access to resources.
This system, however, has some disadvantages. A dedicated machine for an agent is
required. Moreover, developer can not access multiple technologies, nor use different
programming models.

3.3.4. Web Service Invocation Framework

Web Service Invocation Framework (WSIF) [39] is an Apache project that is
based on the concept of separating the API and the communication protocol. It
provides a Java API for invoking services regardless of the way how they were
published or their locations, provided that they are described by a WSDL. Instead
of using the SOAP protocol, developers interact with an abstract representations of
services through their WSDL descriptions, thus use the same programming model
for all services. This framework inspects service meta-data and on this basis allows
stubless or completely dynamic invocation of a service. Moreover, WSIF enables
to select the binding of a service at runtime and update the implementations of a
binding.

This framework provides additional binding extensions that allows describing
Enterprise Java Beans (EJB), local Java classes, software accessible using Java Con-
nector architecture and applications using Java Message Service (JMS) with WSDL
documents. Thus all these technologies and programming models are normalized in
terms of descriptions and can be used in a uniform manner. We believe, that such

4 Image from Users’ Guide to NetSolve V2.0
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a feature is extremely-recommended in development of grid applications. Despite
of many advantages and interesting concepts, this framework is not suitable for
solution of the problem defined in Section 1.3.1, because it is more business-centric,
it does not select the optimal computing resource nor support loadbalancing. Fi-
nally, WSIF project is focused on Web Services and Java technologies and does not
support scientific computing or jobs.

3.4. Conclusions

Scientific communities should be able access the grid environment in a more
user-friendly manner. Complicated problems can be solved by applications using
computational power supplied by grids. Developers of such applications, should not
be troubled with interfacing heterogeneous and dynamic environment, the process
of finding and selecting appropriate resources should be transparent for them. In
addition, they should be able to take advantage of their skills as well as of pro-
gramming properties, which were described in section 2.1 and are offered by various
middleware suites.

In spite of advantages of workflow systems, these projects have some limitations,
which are present in all solutions. Due to limitations of control structures, build-
ing a workflow is not a natural way of expressing application logic, therefore more
complex experiments are difficult to define. Moreover, experiment developers are
limited because they can use functionality that is registered in the system. Every
operation, even a trivial one, like changing data format, is executed as a single
step of workflow. Developers can not use any of their own local code, nor external
services. Due to these limitations, experiment developers are not able to prototype
experiments. Workflow-based systems can not be extended easily because it involves
administration effort.

We have analyzed existing solutions that enable to develop and execute appli-
cations accessing the grid environment. We have pointed out which concepts and
approaches are profitable and listed deficiencies of discussed projects with regard
to the problem defined in Chapter 1. Furthermore, we have compared systems for
building grid applications (see Table 3.4) in terms of:
• supported middleware,
• supported programming languages,
• support for automatic resource selection,
• capability of combining local and remote computations,
• extendability (ability to use external computing resources and ease of adding

support for new middleware technology),
• server requirement (Is a dedicated machine running one or more daemon pro-

cesses or services required?),
• support for programming paradigms,
• abstraction level,
• license (Can a system be used free of charge? Is source code published and can

it be reused?).
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3.4. Conclusions

Conclusion stemming from the analysis in the field of high-level grid program-
ming is that none of the existing systems, frameworks or a set of libraries meets
all requirements. Despite of that fact, reviewing existing solutions provided inspi-
ration for defining our approach and collecting requirements as well as constituted
an anchor point for our work.
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3.4. Conclusions
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Chapter 4

Vision of a Grid Operation Invoker

This chapter introduces our solution of the problem. First, we define a novel
virtualization layer over grid environemts. Subsequently, a vision of a system pro-
viding uniform interface to grid resources within a scripting language is presented.
Finally, we point out advantages of our approach over similar systems.

4.1. Abstraction over the grid environment

Development and running high-level applications on grids is still very difficult
and demanding, due to heterogeneity and dynamic nature of the environment. More-
over, to meet requirements of various groups of users an abundance of middleware
packages have been developed that, in most cases, are not able to interoperate. We
believe that developers of an application should only be focused on the essence of
the problem they are solving rather than being concerned with selecting resources
and interfacing them in theirs specific protocols and hence another layer of virtual-
ization in required. Due to this fact we introduce Grid Object, Grid Operation, Grid
Object Class, Grid Object Implementation and Grid Object Instance concepts that
allows uniform and abstract description of resources that may use a wide range of
middleware suites. The hierarchy of abstraction is depicted in Fig. 4.1.

Grid Operation is a computational ability provided by a software entity deployed
on a grid, which is accessed remotely. Every operation is described by a signature,
which defines inputs and outputs. Grid Object Class is a set of remote software
entities that provide exactly the same set of Grid Operations. All members of
such a class are identical from the developer’s point of view in terms of provided
functionality, but may differ in technological aspects. Grid Object Implementation
constitute a subset of Grid Object Class, it includes all entities from a class that are
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4.1. Abstraction over the grid environment

published using one middleware technology, for instance Web Service or components.
Implementation realizes (implements) all Grid Operations of a Grid Object Class.
On this level of abstraction middleware technology is defined albeit the address of the
software entity remains unspecified. This leads us to Grid Objects Instance, which
is a running or ready to be run software entity that has its unique address thus can
be accessed through the network. Grid Object is a client side representative for an
instance. It is created using the API provided by our system and enables developer
to invoke Grid Operations in the same manner as methods on ordinary objects.

These concepts of Grid Operation, Grid Object and Grid Object Class correspond
respectively to a method, an object and a class concepts in the object-oriented pro-
gramming.
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Figure 4.1. Three layers of abstraction over the grid environment: 1. Abstract layer,
which contains Grid Object Classes defined by the set of operations they provide; 2.
Implementations layer gathering entities that implement the functionality of a specific
Grid Object Class and are categorized on the basis of the used middleware technology; 3.
Instances layer collects Grid Object Instances, which are running or ready to be run on

user’s demand implementations.
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4.2. Development of grid applications

In spite of the abstraction over the grid, programming properties of Grid Ob-
ject Instances should be exposed to developers to enable them to implement more
efficient applications.

4.2. Development of grid applications

Developer should be able to work both on the highest and lowest levels of ab-
straction. In the former case, only the required functionality should be specified by
giving the name of the Grid Object Class. Finding an appropriate instance capable
to perform the computation and selecting the optimal computing resource should
be done automatically and be a transparent process for the user. In the latter
case, developer should either provide an unique identification of the resources or
technology information describing the instance.

We believe that using grids from within a scripting language should be as simple
and concise as the example code presented in Fig. 4.2. Developer should only require
one factory class in a script, that will provide a uniform interface for creating Grid
Objects. After creating such an object, it should be used in an ordinary manner.
Our main objective is to allow development of high-level applications in such a way.
A Grid Operation Invoker (GOI) is a universal grid client that is, in our opinion, a

require ’cyfronet/gridspace/goi/core/g_obj’

classifier = GObj.create(’weka.OneRuleClassifier’)

classification = classifier.classify(data)

Figure 4.2. Invoking an operation on a grid from a script using Grid Operation Invoker
API.

solution of the problem defined in Chapter 1. It is a light-weight, client-side library
that allows uniform and transparent usage of Grid Object Instances within a script.
A simple, yet fully functional, API is provided to create representatives on both levels
of abstraction. Developers can use Grid Objects within the script in the same manner
as ordinary objects, regardless of the instance’s underlying middleware technology.
The system can choose the instance to be used and take over the communication
with it, thus endusers avoid obstacles associated with finding the optimal computing
resource and interfacing it in its specific protocol. This effort is moved from users
to our software system.

4.3. New features provided by the Grid Operation Invoker

In our opinion our system is significantly different from similar solutions (see
Chapter 3). We believe that our approach has many advantages, among which the
most important are:
• using a scripting language allows full expressiveness in terms of application logic

combined with easy to grasp language syntax and clear and concise code;
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• our system is light-weight: its size is small, it does not introduce any depen-
dencies except Java Virtual Machine and a script interpreter, it does not start
any server or daemon processes and it can be used on every modern personal
computer;

• ease of customization to individual needs, ability to cooperate with a diversity
of registries, optimizers or to operate as a standalone system

• client-side system – does not require any external infrastructure or administra-
tion;

• ease of installation;
• based on reliable technologies and standardized protocols;
• open source licensee;
• ability to extend the system to support emerging middleware suites;
• universal tool that can be applied for solving problems in a variety of domains;
• can be used as a backend for execution engines.

4.4. Summary

In this chapter we have presented the concept of Grid Object abstraction over the
grid. It enables to describe resources on various level of abstraction. On the highest
level, we define only the provided functionality. On the implementation level we add
information about the used middleware technology. Finally, on the lowest level we
provide full data that enable to invoke remote operations. Subsequently, we have
introduced the Grid Operation Invoker, which realizes the concept of three-level
abstraction and provides uniform and transparent access to grid resources. Finally,
we have listed advantages of our system.



Chapter 5

Analysis phase of the Grid Operation
Invoker

Having reviewed middleware suites and high-level systems we now present the
analysis of the Grid Operation Invoker system. We start with an overview of the
system, which we follow with use cases description. Finally, we list system require-
ments divided into functional and nonfunctional ones.

5.1. Overview of the Grid Operation Invoker system

The Grid Operation Invoker main objective is to facilitate developing and run-
ning high-level applications accessing grid resources. Creating such high-level appli-
cations should be as easy as implementing software that is executed locally. More-
over, running high-level applications should not differ from executing ordinary ap-
plications. The system should allow uniform and transparent access to the grid
environment from within a scripting language. It should be able to delegate exe-
cution of a Grid Operation to a specific, optimal, selected at run-time Grid Object
Instance using communication protocol specif for the instance. The GOI system
should support all leading middleware suites and be easily extendable.

The system should be implemented as a client-side, light-weight library for a
scripting language, extending it with the capability of interfacing the grid environ-
ment. The scripting language being enhanced should be broadly accepted and well
documented. It should be easy to grasp, powerful object-oriented language with a
clear and concise syntax. The GOI system should be easy to install and customize
for endusers. The idea of the Grid Operation Invoker system is depicted in the
Fig. 5.1.
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5.1. Overview of the Grid Operation Invoker system

Figure 5.1. Overview of the Grid Operation system.

The optimizer and the registry presented in Fig. 5.1 are out of the scope of
this work, nevertheless the GOI system should be able to cooperate with various
external optimizers and registries. Furthermore, the system should provide simple
local implementations of a registry and an optimizer. The need for an optimizer and
for a registry have been identified in Section 1.3.3 and is also discussed in Section 5.4.

There are two kinds of users of our system: developers of high-level applications
and scientists using these applications to conduct research. The former group is
provided with a simple and uniform API enabling them to use grid resources in a
coherent and transparent way. They can use abstraction over the grid, which we have
introduced in Section 4.1. Developers should be able to create Grid Objects, which
represent remote software entities, and use them in the same manner as ordinary
objects. They should be able to specify the requested functionality by providing
the Grid Object Class, or choose a specific Grid Object Instance.Therefore, they can
focus on solving the problem rather then being overwhelmed by obstacles associated
with accessing remote resources. Besides that, developers should be aware of the
programming properties of underlying middleware technologies (see Section 2.1) in
order to take advantage of their programming skills. Scientists can easily execute
experiments that automatically and seamlessly adapts to the dynamic grid environ-
ment, because optimal resources are selected during run-time.
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5.2. Use cases of the Grid Operation Invoker system

5.2. Use cases of the Grid Operation Invoker system

In order to define the exact functionality of the Grid Operation Invoker we de-
scribe use cases of the system. In Section 5.1 two kinds of users have been identified:
developers of a high-level grid application and a scientists who execute the applica-
tion (experiment) to produce results for their research. We present use cases with
regard to this classification of users. We provide UML use case diagrams for each
use case and discuss them in more details.

5.2.1. Development of a high-level grid application

Developers need to solve a highly-complicated scientific problem. In order to
achieve this goal, they need to use functionality, computational power and stor-
age provided by distributed and heterogeneous resources of the grid environment.
Developers should focus on the problem and be able to access the dynamic grid
environment in a uniform and transparent manner. The most natural and accepted
approach is to use an object-oriented programming techniques and to use Grid Ob-
jects (see Section 4.1) representing remote software entities (Grid Object Instances).
Fig. 5.3 illustrates developing with the GOI library.

Initially, developers needs to include the GObj class providing uniform interface
for creating Grid Objects(see line 1 of Fig. 5.2).

1 require ’cyfronet/gridspace/goi/core/g_obj’

2

3 classifier1 = GObj.create(’weka.OneRuleClassifier’)

4 classifier2 = GObj.create_instance(7)

5 classifier3 = Resource.new(techInfo)

Figure 5.2. Development of grid application using the GOI library. Lines: 1.) Including
the GObj class. 3.) Creating a Grid Object of a given Grid Object Class. 4.) Create a
Grid Object for a specific Grid Object Instance. 5.) Create a Grid Object using low-level

API of Resource class.

From now on, developers can use a simple API provided by the GOI library
enabling them to create Grid Objects in three ways:
1. Specify only the required functionality by providing the name of the Grid Object

Class. This is the most abstract method of creating a Grid Object. This case is
illustrated by line 3 in Fig. 5.2.

2. Select a specific instance by providing a unique identifier of an instance. This
assumes that the developer is absolutely sure that the identifier points to the
instance that he/she wishes to use. This case is presented by line 4 in Fig. 5.2.

3. Use low level API. In such a case, developer needs to require an appropriate
resource class, which is used to interface the Grid Object Instance in its specific
protocol, and to provide technology specific data(for more information on tech-
nology information please refer to the Appendix D). This case is shown by the
line 5 in Fig. 5.2.
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5.2. Use cases of the Grid Operation Invoker system

Having created a Grid Object developers can use it in the same manner as or-
dinary objects. Invocations of Grid Operations will be delegated to Grid Object
Instances during the run-time seamlessly. Developers can implement the applica-
tion logic using full capabilities of the modern object-oriented scripting language.

Developer

Develop a
high level

grid application

Use Grid
Objects

< < i n c l u d e > >

Create a
Grid Object

< < i n c l u d e > >

Create a Grid
Object using
low-level API

Create a Grid
Object of a
given Grid

Object Class

Create a Grid
Object for a
specific Grid

Object Instance

Figure 5.3. Use case diagram 1: Developer implements a high-level grid application.
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5.2. Use cases of the Grid Operation Invoker system

5.2.2. Executing a high-level grid application

Once a grid application is developed, scientist can use it to conduct their re-
search. They can execute these applications likewise normal scripts. The process
of invocations of Grid Operations is absolutely transparent from the user’s point
of view. During the run-time, Grid Object Instances are selected automatically or
are given explicit in the script. In both cases user is not concerned with finding,
selecting and interfacing directly grid resources. During an execution of a script,
Grid Operations can be invoked either in stateless or stateful manner. Moreover
synchronous or asynchronous calls can be used. These decision are made by the
developer while implementing an application. Besides that, running application can
manage components (see Section 2.2.2). Components can be deployed and then
they can be, but do not have to be destroyed. Furthermore, previously deployed
components can be destroyed.

Scientist

Execute
exper iment

Invoke stateful
Grid Operations

Invoke stateless
Grid Operations

< < i n c l u d e > >< < i n c l u d e > >

Invoke asynchronous
Grid Operations

Invoke synchronous
Grid Operations

Manage
components

< < i n c l u d e > > < < i n c l u d e > >

< < i n c l u d e > >

Figure 5.4. Use case diagram 2: Scientist executes an experiment (a high-level grid appli-
cation).
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5.3. Requirements

5.3. Requirements

In this section we gather all requirements for the Grid Operation Invoker system
based on overview of the GOI system (Section 5.1) and discussion on use cases
(Section 5.2). We divide them into functional and nonfunctional ones.

5.3.1. Functional requirements

Here we describe functional aspects of the Grid Operation Invoker system. We
define and list functional requirements:
1. Enable coherent and transparent usage of grid resources. In order to harness the

grid environment a standardized interface for executing operations over the grid is
needed. Moreover, the process of finding optimal resources and interfacing them
in their specific protocols should be transparent for the application developer
and enduser who executes the experiment.

2. Provide an API enabling to work both on high and low level of abstraction.
Developer should be not only able to work on the Grid Object Class level of
abstraction, but also should be able to choose a specific instance, due to software
quality, reliability factors or accounting issues.

3. Provide a full set of control structures. Our system should allow full expressive-
ness in terms of application logic.

4. Add programming features (see Section 2.1) such as asynchronous call, concur-
rent execution or support for the object-oriented programming. These features
facilitate development of efficient applications and enable developers to employ
theirs programming skills.

5. Handle required data conversions between various technologies. Neither develop-
ers, nor experiment users should be concerned about diverse data formats used
by underlying middleware technologies. If a conversion is required it should be
done automatically and seamlessly by the system.

6. Facilitate experiment reuse and support nested experiments, because highly com-
plicated problems may require decomposition into smaller parts. This can be
achieved by supporting object-oriented paradigm.

5.3.2. Nonfunctional requirements

In this part of the thesis, we focus on nonfunctional qualities of the Grid Oper-
ation Invoker. The nonfunctional requirements of the system are as follows:
1. The system should be based on a proven and reliable technologies and standard-

ized protocols.
2. The GOI should be a light-weight, client-side library.
3. Experiment notation should be based on a common scripting language with clear

and concise code. The language combined with our library should be easy to
grasp and use.

4. The system should provide a convenient mechanism for adding support for emerg-
ing middleware technologies.
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5.4. Dependencies

5. The distribution of the system should be a single package that is easy to in-
stall even for a user with little computer skills. The system should be platform
independent.

6. The Grid Operation Invoker should be able to work as a standalone system.
7. The system should be customizeable to use various external optimizers and reg-

istries.
8. The implemented system should be a general use solution rather than being a

domain specific one.
9. Ability to serve as a backend for a diversity of upper level systems.

5.4. Dependencies

The Grid Operation Invoker requires two components:
1. an optimizer that can select the optimal Grid Object Instance and return a its

unique identifier,
2. a registry that stores technology information (see Appendix D) about instances

and can provide this information for an instance selected by the optimizer.
Our system can work as a standalone system and use simple local implementations
of optimizer and registry, although it is adviced to use external optimizer and reg-
istry. In the latter case, the system would become more scalable and enable to
build communities of scientists and share services and resources. We have defined
interfaces that needs to be implemented by an optimizer and a registry in order to
serve for the Grid Operation Invoker.

The system main objective is to provide access to grid resources, therefore it
depends on the underlying middleware technologies it supports. The technologies
we intend to support are as follows:
• Web Service,
• WSRF,
• WTS,
• LCG (EGEE),
• MOCCA.

5.5. Summary

In this chapter we have presented the analysis phase of the Grid Operation
Invoker. We have provided overview of the system, discussed use cases, collected
requirements and presented system dependencies. Generally speaking, the Grid
Operation Invoker should be a client-side, light-weight library that extends the
scripting language with capability of interfacing the grid environment in a uniform
and transparent manner. The system should use an external optimizer that can
select an optimal Grid Object Instance and a registry that can provide technology
information about selected instance.
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Chapter 6

Design and implementation of the Grid
Operation Invoker

This chapter describes the design and implementation of the Grid Operation
Invoker. First, we chose the implementation technology, which has implications on
the whole design. Subsequently, we introduce the architecture and proceed with GOI
algorithm. Next, we provide a more detailed explanation of the system structure
by describing packages, interfaces and classes. Subsequently, we provide sequence
diagrams that present system use cases. Finally, we discuss provided and required
interfaces of the system.

6.1. Implementation technology

We decided to invert the classic order of stages of the design process and to
choose the implementation technology at the beginning. Capabilities of the selected
technology have significant impact on the design and implementation of the system.
In Section 4.2, we stated that our system is a library enhancing the scripting lan-
guage with ability to access grid resources, therefore we narrowed the diversity of
considered technologies to the most accepted scripting languages which, in our opin-
ion, are Ruby, Perl and Python. Criterion that we have applied to these languages
are the following:
• Ease of use. Is the syntax of the language clear and the code concise? Is it a

high-level language?
• Support for the object-oriented paradigm. Does the language allow using

object-oriented programming techniques?
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6.2. Structure of the Grid Operation Invoker

• Support for distributed computing. Does the language allow distributed
computing? Does it provide native support for any of middleware technologies
that are in scope of our interest?

• Metaprogramming. Does the language enable to dynamically generate and
then execute source code?

• Documentation. Is the language well documented? Are there additional ma-
terials on the Web and publication on it?

• Platform independence. Do interpreters for all platforms exist? Is the code
portable?

• Language popularity. Is the language broadly accepted? Does it gain
popularity? Is it evolving and will it be supported in future?

Having analyzed these requirements we have found the Ruby language to be the
best choice. It is a modern, object-oriented and powerful programming language
with easy to understand code. Ruby is a mature solution with a wide range of
multipurpose libraries available and built-in support for Web Service technology.
A multitude of publications for developers is available. Ruby is a dynamic, in-
terpreted language and allows metaprogramming. It has a Java implementation,
JRuby, therefore it is platform independent. What is even more significant from our
point of view, is the fact that JRuby enables to use Java objects within the script,
thus Java client-side libraries for accessing middleware suites can be reused.

Ruby supports object-oriented programming, albeit it is not a typed language.
It uses the duck typing paradigm (see Chapter 23 of [40]). While interpreting the
script the interpreter make sure that an object responds to a given method, not if the
type (class) of the object is appropriate. In spite of this fact, we use UML diagrams
in the following sections of this chapter to express various aspects of system design.

6.2. Structure of the Grid Operation Invoker

The architecture of the Grid Operation Invoker is a result not only of the
state-of-the-art study in fields of middleware suites and high-level systems (see Chap-
ters 2 and 3), but also reflects our approach to the problem (see Chapter 4) as well
as the analysis phase (see Chapter 5). Fig. 6.1 1 presents the architecture of the
Grid Operation Invoker.

The GOI system has modular architecture. It is built of components with
well-defined interfaces to allow reusability and interoperability with external sys-
tems. The main component provides the high-level GObj interface for creating Grid
Objects. Optimizer Client is used to delegate the query for an optimal Grid Object
Instance to the actual Optimizer. The Registry Client has a very similar role. It
delegates the queries to a Registry that provides technology information about Grid
Object Instances. Optimizer Client and Registry Client can be replaced by another
components that provide the same interfaces but can use different Optimizers and

1 Image from [41]

48



6.3. Algorithm of the Grid Operation Invoker

Figure 6.1. Grid Operation Invoker architecture.

Registries, thus the Grid Operation Invoker can be customized and cooperate with
a wide range of externals components. For more detailed information on the GOI
customization please refer to Section A.5. Adapters are used to produce Grid Objects
capable to interface various middleware suites in their specific protocols. There is
one dedicated adapter for each supported technology.

6.3. Algorithm of the Grid Operation Invoker

The support for multiple middleware technologies and the ability to select the
Grid Object Instance at a run-time is based on the concept of adapters. An adapter
is dedicated for a specific middleware technology and is loaded at a runtime. The
names of the adapters are generated at runtime on the basis of technology informa-
tion for an instance, thus the system can be easily extended to support emerging
technologies just by placing an adapter files in the appropriate directory. For infor-
mation regarding extending the GOI system please refer to Appendix C.

There can be distinguished two phases in the operation of the Grid Operation
Invoker. The first one is the process of creating a Grid Object and the second one
is invocation of remote operations. The former phase is depicted in Fig. 6.2.

The process of creating a Grid Object is divided into three stages:
1. Querying an optimizer for an optimal Grid Object Instance of a given Grid Object

Class. The selection of the optimal instance is performed either in a simple local
optimizer or is external to the GOI system.

2. Querying a Registry for a technical information for a given Grid Object In-
stance, determining the adapter class for the selected instance and loading needed
adapter if it was not loaded earlier. Again, the Registry can be either a simple
local implementation or a standalone external system.

3. Producing a Grid Object using a dedicated adapter.

As stated in Section 5.2.1, developers can create Grid Objects in three ways.

49



6.3. Algorithm of the Grid Operation Invoker

If the most high-level approach is taken and the name of the Grid Object Class is
provided as a parameter, all three stages described above are involved. If developers
choose an Grid Object Instance they wish to use, they must provide the identifier
of the instance, therefore the first stage is omitted. In case of using low-level API,
developers provide technology information and only the last stage is executed.

The second phase of the GOI operation is using Grid Objects within the script to
invoke Grid Operations. From the developer’s point of view, Grid Object is used in
an ordinary manner, nevertheless invocations of remote operation are transparently
delegates to Grid Object Instances and results are returned. If any data conversions
are required, they are done automatically without user attention.

Figure 6.2. Grid Operation Invoker activity diagram for the process of creating a Grid
Object using an external Optimizer and an external Registry. Stage 1: Querying an Opti-
mizer for an optimal Grid Object Instance of a given Grid Object Class. Stage 2: Querying
a Registry for technology information for a given Grid Object Instance, determining the
adapter class and loading a dedicated adapter. Stage 3: Creating a Grid Object using a

dedicated adapter.
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6.4. Detailed design of the Grid Operation Invoker system

In Section 6.2 we have provided an overview of the system by describing GOI
architecture. In this section we describe the structure of the system with more
details. Fig. 6.3 presents main packages, classes of the system and relations between
them. The system is divided into four packages: core, adapters, utils and exceptions.
The first package provides the main functionality of the system. It implements the
GOI algorithm described in Section 6.3. The adapters package contains classes that
are dedicated to specific middleware packages and are responsible for interfacing
Grid Object Instances in their specific protocols. Next package includes all additional
utilities classes that are required by the system. The last package is not presented
on the class diagram, nor discussed in Subsection 6.4.1, because it contains only
exception classes and as such does not help to understand the structure of the Grid
Operation Invoker.

6.4.1. Description of the Grid Operation Invoker packages

The core package consists of:
• GObj class. It is an abstract factory that provides high-level API for creating

Grid Objects. It implements two class methods create and create instance that
return the same result (for information on class methods in Ruby please refer
to Chapter 3 of [40]). The former method enables developers to produce Grid
Objects of a given Grid Object Class, which name is passed as a string value. The
latter method accepts a long integer that is a unique identification of the Grid
Object Instance, thus allows producing representative for a given instance. GObj
is the main class of the system and if developers do not wish to use low-level
API, it is the only class that needs to be required. This class uses Registry
and Optimizer Client classes to query for an optimal instance and technology
information of an instance. Due to being an abstract factory, this class does not
produce Grid Objects directly, but it loads appropriate dedicated adapter and
delegates the creation of representative to it.

• Constants class. This class contains all constants that are used by the system.
These constants can have fixed values assigned or be evaluated at a runtime.
For instance, this class parametrizes the GObj class, it specifies the names of
Optimizer and Registry Client classes that are used. For more information on
constants used in the GOI system please refer to Section A.5.

• OptimizerClient and RegistryClient are analogous classes. The former is respon-
sible for delegating queries for an optimal instance of a given Grid Object Class. It
must provide the find optimal instance method which accepts a name of the class
as a string and return a unique identifier of the instance. The latter interfaces the
registry. It delegates the query for technology information to a registry. These
classes are responsible for any data conversions that are necessary between the
GOI data format and formats used by optimizers and registries. These classes
can be replaced and thus different optimizers and registries can be used by the
GOI system.

51



6.4. Detailed design of the Grid Operation Invoker system

F
ig

ur
e

6.
3.

G
ri

d
O

pe
ra

ti
on

In
vo

ke
r

cl
as

s
di

ag
ra

m
.

52



6.4. Detailed design of the Grid Operation Invoker system

The adapters package includes the following classes:
• AdapterInterface. It defines the interface of the class that is responsible for

producing Grid Objects of one specific Grid Object Implementation (instances
remotely exposed by one specific middleware technology). Realizations of this
class are loaded at a runtime by the GObj class.

• GridResource. This class is an abstract class that represents a generic com-
putational resource of the grid environment. It can not be instantiated and
used within the script, since it can not represent a Grid Object Instance of any
middleware technology.

• Realizations of AdapterInterface. These class, each dedicated for one specific
middleware technology, are capable of producing a Grid Object for one middle-
ware technology.

• Classes that extend the GridResource class and are specific for one middleware
technology. These classes are proxies, that provides the functionality of remote
software within the script.

We have implemented adapters for the following middleware suites:
• Web Services,
• WSRF,
• MOCCA,
• LCG,
• Witty Services.

These adapters enables to use a diversity of middleware packages in a uniform
manner. An experiment at a run-time may adapt to the dynamic environment and
every time it is executed it can use optimal Grid Object Instances selected at a
run-time by an Optimizer.
Web Service
An adapter for this technology is based on the Ruby built-in support for this
technology. It produces Grid Objects of WsResource class. Web Service is an
accepted standard, although there may be some differences between services
providing the same functionality. First of all a service may, but do not have to be,
described by a WSDL. Next, it can use either a RPC or DOCUMENT binding style.
The former binding accepts a list of arguments, while the latter accepts a data in a
structure defined in the WSDL of the service. Such a structure is generated by the
WsResource at a runtime, thus services using various styles are used in a coherent
manner. Moreover, services that do not have a WSDL are also supported.
WSRF
An adapter for this techology is based on the Globus 4 Java implementation of the
WSRF specification. Required Java classes and stubs are included at a runtime.
WsrfResource object encapsulates a Java proxy object that enables to invoke
operations on stateful services. Both the single resource and multiple resource
services are supported.
MOCCA
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Support for this component framework is achieved by reusing its Java client-side
library. MoccaResource class enables also to create and destroy components,
as well as manage their connections. While invoking a method of a MOCCA
component there are some additional information required, for instance the name
of the component’s port that is used. All necessary information is extracted
from technology information and added to a call of MOCCA component method
automatically by the Grid Object of MoccaResource class.
LCG
EDG User Interface command line executables are wrapped by a Ruby class and
used through it to submit and manage jobs. When a Grid Operation is invoked
on an LCG Grid Object Instance, a JDL file is generated and a job is submitted.
Then the status of the job is periodically check. The output files or error file are
downloaded when the job is finished.
Witty Services (WTS)
An adapter for his technology reuses a Java client-side library. Grid Object of
WtsResource class use technology information to generate a specification, which
determines if the inputs and outputs are transferred as files or bytes. Once
a specification is ready, a job can be submitted and upon completion results
downloaded.
LCG and WTS technologies are job-oriented middleware packages. They enable to
access software that does not provide any remote API and does not support RPC
operation invocations. Such applications, exposed via job-oriented technologies,
require specific data conversions (from Ruby objects to files and vice versa). For
these reasons additional wrapper classes, which are dedicated for one specific
application, are used. These classes are stored as a part of technology information
describing Grid Object Instance. Wrappers deliver the functionality of jobs in a
object-oriented style and are used to produce Grid Objects.

The utils package consists of:
• Future class. It is used to add asynchronous invocations of synchronous methods.

Asynchronous call does not block until the result is ready, but return a promise
(future variable) for the actual data. Interpretation of the script will be blocked
only when the actual data is needed but is not ready yet. Future variables enable
to develop more efficient experiments and allow concurrency.

• lcg package that consists of EdgUIWrapper and JobSpec classes. The former class
wraps the EDG UI commands, while the latter enables to create a description
of a job, which is then used to generate a JDL file.

• wts package that contains WtsSpec class. This specification determines how the
inputs and outputs are transferred, which server is used etc.

The utils.lcg and utils.wts packages are used by developers who implement wrap-
per classes for applications that access Grid Object Instances published through
job-oriented technologies. For more information on implementing wrapper classes
please refer to Section C.2.1. Developers of experiments are provided with higher
abstraction, although can use these low-level packages.
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6.5. Patterns used in the design of the Grid Operation
Invoker

In the design of the Grid Operation Invoker system we used the following design
patterns (all design patterns are from [42]):
• Abstract Factory for GObj class,
• Adaptor for adapter classes,
• Proxy for resource classes.

Using these best practices facilitated the design of the GOI system as well as
improved the quality of the software.

6.6. Sequence diagrams

In Section 5.2 we have defined Grid Operation Invoker use cases, which can be
divided into two phases: development and execution of experiments. In the former
one, the GOI API is used by developers to implement experiments. The latter
phase is the one in which the system works. During script interpretation the Grid
Operation Invoker creates Grid Objects and handles invocations of Grid Operations.
This section explains the data and steering flow for most of use cases defined in
Section 5.2. This includes:
• creating a Grid Object for a given Grid Object Class (see Subsection 6.6.1),
• creating a Grid Object for a specific Grid Object Instance (see Subsection 6.6.2),
• invoking a synchronous Grid Operation (see Subsection 6.6.3),
• invoking an asynchronous Grid Operation (see Subsection 6.6.3).
Usage of low-level API to create a Grid Object is not depicted on a separate sequence
diagram because it involves calling only the constructor of the appropriate resource
class and is presented as a step number 11 in Fig. 6.4. Managing components use
case (see Fig. 5.4) is not discussed, because it involves interaction with Grid Object
of MoccaResource class, which is not different from invoking Grid Operations. Grid
Object for MOCCA resource expose component management functionality provided
by the Java client-side library. Moreover, this use case is specific for MOCCA
framework and does not help to understand the Grid Operation Invoker system.
Invoking a stateless and a stateful operation are not distinguished, due to the Grid
Operation Invoker working the same for these two situations. It is the responsibility
of a developer to be aware of the interaction mode.

6.6.1. Creating a Grid Object of a given Grid Object Class

Sequence diagram presented in Fig. 6.4 illustrates the process of creating a Grid
Object for a given Grid Object Class. This process involves all three stages of the
GOI algorithm (see Section 6.3).

Description of steps:
1. create class method of GObj is used to request creation of a Grid Object for a

Grid Object Class which name is passed as a String argument.

55



6.6. Sequence diagrams

2. An OptimizerClient is queried for an optimal Grid Object Instance for a given
Grid Object Class.

3. The query is delegated by the OptimizerClient to an Optimizer.
4. An identifier of an optimal instance is returned to the OptimizerClient.
5. The identifier is forwarded to the create method body.
6. A RegistryClient is queried for technology information describing the optimal

Grid Object Instance.
7. The query is delegated to a Registry.
8. Technology information for the optimal instance is returned to the RegistryClient.
9. Technology information is forwarded to the create method body.
10. On the basis of the technology information a dedicated adapter is determined

and loaded. Technology adapter is requested to create a Grid Object for the
Grid Object Instance described with the technology information.

11. A Grid Object of an appropriate resource class is created.
12. The Grid Object is returned to the create method body.
13. The create method is finished and the Grid Object is returned.

Figure 6.4. Sequence diagram 1: Creating a Grid Object of a given Grid Object Class.

6.6.2. Creating a Grid Object for a given Grid Object Instance

The process of creating a Grid Object for a given Grid Object Instance is similar
to the one described in Section 6.6.1. In this case, a developer provides a unique
identifier of the Grid Object Instance, therefore Optimizer is not used. The rest of
the process is analogous to one described in Section 6.6.1. Fig. 6.6.2 shows the steps
involved in this scenario.
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Description of steps:
1. create instance class method of GObj is used to request creation of a Grid Object

for a Grid Object Instance which identifier is passed as an argument.
2. Steps 2-9 are analogous to steps 6-13 described in Section 6.6.1, and therefore

are not explained here.

Figure 6.5. Sequence diagram 2: Creating a Grid Object for a given Grid Object Instance.

6.6.3. Invoking a synchronous and an asynchronous Grid Operation

Using Grid Objects in a source code of the experiment is identical to using
ordinary Ruby objects, albeit the actual computation requested by calling a Grid
Operation is performed on a remote machine. Developers can invoke operations in
a synchronous or asynchronous mode. In the latter case, they have to remember
that the nonblocking call returns a future variable and that they have to extract the
actual result from it. Using asynchronous call is suitable for experiments that require
to perform several pieces of computations that in an ideal case are independent (op-
erate on disjunctive data and are executed on different machines). Fig. 6.6 presents
synchronous invocation of a Grid Operation (steps 1-4) and an asynchronous one
(steps 5-13).

Description of steps:
1. A Grid Operation is called on a Grid Object in an ordinary manner using RPC

semantics.
2. The request is delegated by the Grid Object of an appropriate resource class

to a Grid Object Instance. This is done in a protocol specific for the instance,
data conversions and adding information required for invoking operation on the
specific instance are added automatically.
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Figure 6.6. Sequence diagram 3: Invoking Grid Operations on a Grid Object in a syn-
chronous and asynchronous manner.

3. The computation is performed by the Grid Object Instance on a remote machine
and the result is returned in the instance specific protocol.

4. The result is converted to Ruby format and returned by the Grid Object.

5. A Grid Operation is called on a Grid Object in an ordinary manner using RPC
semantics, the name of the operation is preceded with prefix async . This informs
the GOI library that this operation is invoked in an asynchronous mode.
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6. A future variable is created. It receives a reference to the Grid Object, the name
of the method and operation arguments as the parameters for the constructor.

7. The future variable is returned, but the actual result is not ready yet. The
interpretation may continue.

8. The future variable call a synchronous Grid Operation on a Grid Object using
the reference, operation name and arguments passed to the constructor.

9. The request is delegated to the Grid Object Instance (see step 2).
10. Result of the computation is returned to the Grid Object (see step 3).
11. Result is converted to the Ruby format and returned to future variable (compare

to step 4).
12. The get result blocking method is called on the future variable to extract the

result (if this is called before the result is ready the interpreter waits for the
synchronous call of the Grid Operation to complete).

13. The result is returned.

6.7. Interfaces provided by the Grid Operation Invoker

To preserve ease of use, the main functionality of the system, which is the ability
to create Grid Objects, is delivered by a simple application programming interface.
The high-level API is provided by a single class named GObj. It is the only class that
the developer needs to use in a grid application and allows creating Grid Objects
either by providing a name of a Grid Object Class or an identification of a Grid
Object Instance.

Besides that, developers can use low-level API provided by the resource classes
(WsResource, MoccaResource, WtsResource, LcgResource). They load a resource
class and create a Grid Object directly by invoking resource constructor method
and providing technology information. In case of MOCCA technology, resource
class enables developer to manage components (create, destroy, connect ports etc.)
in order to build an application of several component instances. The low-level API
allows prototyping and testing Grid Object Instances that are not registered yet.

A detailed description of the Grid Operation Invoker API is given in Appendix B.

6.8. Interfaces required by the Grid Operation Invoker

Dependencies of the Grid Operation Invoker have been identified in Section 1.3.3.
System requires an optimizer, which finds an optimal Grid Object Instance, and a
registry, which stores technology information about instances. These needs can be
satisfied by simple local implementations, however it is recommended to use external
systems that employ better algorithms and use a data base in order to achieve better
performance and scalability of the solution. The GOI system uses an Optimizer-
Client and a RegistryClient that are responsible for interfacing an optimizer and a
registry. Therefore our system does not require an optimizer or a registry to provide
GOI specific interfaces, but only client classes for an optimizer and a registry. It is
necessary that:

59



1. an optimizer client implements a method find optimal instance that accepts a
Grid Object Class name and returns an identifier of the instance that can be
used to query a registry;

2. a registry client implements a method get technology info that accepts an iden-
tifier returned by the optimizer client and return a Ruby Hash containing tech-
nology information about the Grid Object Instance pointed by the identifier.

Every client is dedicated to work with a specific optimizer or registry. The Grid
Operation Invoker can be easily customized to use another clients that interface
another optimizer and registry (see Appendix A.5).

Due to JRuby being an implementation technology, optimizers and registries
might be implemented in Ruby, Java or be any remote software published with a
technology supported by GOI (Web Service or MOCCA, job-oriented middleware
technologies are not suitable for this purpose).

6.9. Summary

In this chapter we have presented the design of the Grid Operation Invoker. We
have chosen to implement our system in the JRuby language. It is based on the
broadly accepted Ruby scripting language and enables to use Java objects within
the script. The GOI system has a modular architecture that allows customization
and extendability. It queries an optimizer for an optimal Grid Object Instance, then
retrieves technology information from a registry and loads an adapter dedicated for
the instance. The adapter produces a Grid Object. Our solution enables to create
Grid Objects either by providing a Grid Object Class, providing an identifier of an
instance or using low-level API. Grid Objects can be used as an ordinary Ruby
objects, albeit the computation is performed remotely. Developer can use stateless
or stateful interaction mode and invoke operations synchronously or asynchronously.
The system exposes its functionality by its main class, which is the GObj, and by
the resource classes. The Grid Operation Invoker depends on an optimizer and a
registry. It uses clients dedicated for these components, therefore can be customized
to use various optimizers and registries.



Chapter 7

Validation of the Grid Operation Invoker

In this chapter we present the validation of the Grid Operation Invoker. First,
we describe the main achievement of the thesis, which is providing uniform access to
computational resources of the grid environment within a scripting language. Next,
we depict provided functionality and system properties with regard to requirement
defined during the analysis phase. Subsequently, we define testing approach, describe
used testbed and list tests of the system. Finally, we discuss optimization issues and
summarize this chapter.

7.1. Accessing Grid Object Instances published with
diverse middleware technologies

Main objective of this thesis is to allow accessing the grid environment within
a scripting language (see Section 1.2). In order to achieve this goal, we had to
overcome the problem of using multiple middleware packages in a uniform manner
(see Section 1.3.1). Our solution of the problem defined in Section 1.3 is based on
the Grid Object abstraction defined in Section 4.1 and the idea of accessing the grid
environment on multiple levels of abstraction in a uniform manner (see Section 4.2).

We have designed and implemented the Grid Operation Invoker system that
supports the abstraction over the grid environment and enables to create and use
Grid Object Instances using multiple middleware packages. It facilitates developing
high-level applications, because it allows to access the grid environment as easy as
in the code snippet presented in Fig. 4.2.
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7.2. Provided functionality

During the analysis phase, we have identified use cases of the system (see Sec-
tion 5.2). Grid Operation Invoker supports all these use cases, which can be sum-
marized as follows:
• creating a Grid Object for a given Grid Object Class ;
• creating a Grid Object for a given Grid Object Instance by providing its unique

identifier;
• creating a Grid Object using low-level API;
• using Grid Objects in an ordinary manner;
• invoking stateless, stateful, synchronous and asynchronous Grid Operations ;
• Manage components (create, destroy, connect and disconnect them).
The Grid Operation Invoker supports all these use cases. It enhances the JRuby
scripting language with the ability of accessing heterogeneous computational re-
sources in a coherent manner, thus facilitates developing high-level object-oriented
grid applications. Extending a broadly accepted and powerfull scripting language
allows fast development of concise, easy to understand and portable source code that
may include application logic. The API provided by the system (see Appendix B)
enables to work both on high-level of abstraction and to have full control if needed.
Interfacing various middleware technologies during execution of the script is abso-
lutely transparent from the enduser’s point of view. At a runtime the system may
select optimal computational resources, interface them in their specific protocols
and make any necessary data conversions. The GOI library added asynchronous
calls to all technologies that it supports. In addition, it allows to use job-oriented
middleware packages in an object-oriented style.

7.3. Nonfunctional properties of Grid Operation Invoker

The GOI system satisfies the nonfunctional requirements defined in Section 5.3.2.
It is based on the most accepted technologies such as Java and Ruby scripting
language. It is able to interface Grid Object Instances published by Web Service,
MOCCA, WTS and LCG middleware suites using standardized communication pro-
tocols. Ruby notation is very clear and concise. Development of high-level applica-
tion is very easy (see example applications presented in Chapter 8). The GOI system
can be easily extended by providing additional adapter classes (see Appendix C).
This does not require any code modifications in the existing installation of the
system.

Our solution is a light-weight and easy to install system. Its size is small (the
size of the system depends on the client-side libraries required for middleware tech-
nologies). What is more the system does not start any system services, nor require
any incoming ports to be opened. The system can be used on any modern client
machine. Creating Grid Objects and handling invocations of Grid Operations are
neither computation, nor memory intensive. The Grid Operation Invoker is platform
independent client-side library. It can be downloaded as a JRuby library or as single
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package containing a JRuby interpreter packaged with the GOI library (for more
detailed information on GOI distributions please refer to Section A.3).

The GOI system is able to work as a standalone system. Besides that, it has well
defined provided interface and dependencies. It can be customized to cooperate with
a variety of external optimizers and registries. Presented solution enables to solve
problems from a wide range of domains (see data mining and virology applications
presented in Chapter 8). The Grid Operation Invoker has been applied as a core of
the runtime system of the ViroLab Virtual Laboratory [43], [44].

7.4. Tests

7.4.1. Testing approach

Tests of the Grid Operation Invoker systems involves testing support for every
single middleware package, testing programming properties added by the GOI sys-
tem (see Table 2.3) and implementing experiments employing Grid Object Instances
published with diverse middleware packages. For each middleware suites we have
checked if the following are possible:
1. creating a Grid Object for a Grid Object Instance exposed by this technology

using every possible way: specifying the Grid Object Class, providing an identifier
of the specific Grid Object Instance using this technology and using low-level API
of resource class;

2. invoking Grid Operations on a Grid Object likewise ordinary Ruby objects;
3. reporting errors specific for this technology.
Subsequently, we have tested asynchronous invocations of Grid Operations and using
job-oriented technologies in a object-oriented manner. Finally, in order to test inter-
operability among various middleware packages we have implemented experiments
solving real life problems that use more than one middleware suite (see Chapter 8).

7.4.2. Description of the testbed

Client machine

The Grid Operation Invoker is a client-side software. It was installed and tested
on the following machines:
• IBM Thinkpad T42 laptop (Intel(R) Pentium(R) M Processor @ 1.70GHz, 512

MB RAM) under Kubuntu 7.10 and Microsoft Windows XP Professional oper-
ating systems;

• desktop personal computer (AMD Athlon 3000+ processor, 512 MB RAM) under
Kubuntu 7.10 and Microsoft Windows XP Professional operating systems;

• server machine - virolab.cyfronet.pl (2 dual core Intel(R) Xeon(R) 5150 processors
@ 2.66GHz, 4 GB RAM) under Kubuntu 6.06.

Server machines

In order to test all technologies that are supported by the Grid Operation Invoker
system the following machines were used:
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• server machine - virolab.cyfronet.pl (2 dual core Intel(R) Xeon(R) 5150 processors
@ 2.66GHz, 4 GB RAM) under Kubuntu 6.06 was used to test Web Services
(Tomcat 5.5 container) and MOCCA framework (H2O 2.1 kernel);

• EGEE testbed accessed via a machine with EDG User Interface installed to test
LCG middleware package;

• server (virolab.med.kuleuven.be) with a Witty Service running;
• server (ws.virolab.org) with a native Ruby Web Service container.

Grid Operation Invoker configuration

While testing, the system was configured to use:
• the remote registry client registry client that delegates queries

to the remote Grid Resource Registry (Web Service endpoint:
http://virolab.cyfronet.pl:8080/grr-0.2.3/services/InvocationDataProvider);

• the scheduler client optimizer client that delegates queries to a Grid Application
Optimizer (local Java application).

7.4.3. Supported middleware technologies

We consider a technology supported if a Grid Object for an instance using this
middleware suite can be created and used in a uniform manner. To prove that a
middleware packages is supported we provide a code snippet that creates a Grid
Object and invoke a Grid Operation. All these snippets use high-level API, which
depends on lower-level API, therefore all three method for producing Grid Objects
(see Section 5.2.1) are tested. Below we list supported technologies and code snippets
testing them.
• Web Service1. Testing Web Service middleware is presented by lines 2-4 in

Fig. 7.1. Line: 2.) Creating a Grid Object 3.) Calling a Grid Operation that
returns given message 4.) Printing the result.

• WSRF Testing WSRF technology is illustrated by lines 7-9 in Fig. 7.1. Line: 7.)
Creating a Grid Object 8.) Calling a Grid Operation that adds 5 9.) Printing
the current value.

• MOCCA Testing MOCCA middleware is illustrated by lines 12-14 in Fig. 7.1.
Line: 12.) Creating a Grid Object 13.) Calling a Grid Operation that returns
given message 14.) Printing the result.

• Witty Services. Testing WTS middleware is depicted by lines 17-19 in Fig. 7.1.
Line: 17.) Creating a Grid Object 18.) Calling a Grid Operation that returns
the alignment for a given nucleotide sequence with respect to the given region
19.) Printing the result.

• LCG2. Testing LCG middleware is shown by lines 22-24 in Fig. 7.1. 22.) Creat-
ing a Grid Object 23.) Calling a Grid Operation that returns the output of ping

1 Presented code tests a service that uses a RPC binding style and is not described with a
WSDL, however services with a WSDL descriptions and those using DOCUMENT binding style
are supported as well.

2 Please note that scripts accessing the LCG suite must be executed on a machine with installed
EDG User Interface and a valid proxy certificate must exist.
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command sending 5 ECHO requests to a host given as parameter 24.) Printing
the result.

1 #Web Service

2 echo = GObj.create(’cyfronet.gridspace.test.EchoService’)

3 reflected = echo.echo(’Hear me roar!’)

4 puts ’Reflected message: ’ + reflected

5

6 #WSRF

7 math = GObj.create(’cyfronet.gridspace.test.Math’)

8 math.add(5)

9 puts math.getValueRP(GetValueRP.new())

10

11 #MOCCA

12 hello = GObj.create(cyfronet.gridspace.test.Hello)

13 msg = hello.echo(Works fine.)

14 puts Hello message: + msg

15

16 #WTS

17 alignTool = GObj.create(’regadb.RegaAlignment’)

18 alignment = alignTool.align(nt_seq, ’PRO’)

19 puts alignment

20

21 #LCG

22 ping = GObj.create(’cyfronet.gridspace.test.LcgPing’)

23 result = ping.ping(’virolab.cyfronet.pl’)

24 puts result

Figure 7.1. Testing GOI support for various middleware.

In order to make these code snippets runnable application the following line is
required at the beginning of the script:

require ’cyfronet/gridspace/goi/core/g_obj’

Moreover in the WTS test a nt seq variable must be defined.
As presented in code snippets (see Fig. 7.1) these four technologies are supported.

Grid Objects are created in a uniform manner and used within the script as ordinary
Ruby objects.

7.4.4. Testing added programming properties

The Grid Operation Invoker has added two programming properties:
1. asynchronous invocation of Grid Operations for all supported technologies;
2. support for object-oriented programming paradigms for job-oriented middleware

suites (WTS and LCG).
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First property has been tested by implementing an asynchronous version of the
Weka experiments (see Section 8). Results of the asynchronous version have been
compared to those produced by a synchronous application. The script execution has
been inspected to find out if the execution of the asynchronous script is suspended
only in case if the requested result is not ready yet. The speedup of application was
noticeable.

The second one does not require any testing. Grid Object Instances published by
the WTS and LCG job-oriented middleware packages are used in an object-oriented
manner (see code snippets testing support for WTS and LCG middleware suites in
Section 7.4.3)

7.5. Optimization issues

Choosing the optimal instance is done by an optimizer. GOI can use various
optimizers. Developers can choose instances directly by providing theirs identifiers.
Developers are aware of programming properties of instances, therefore can imple-
ment more efficient applications.

7.6. Summary

In this chapter we have described the validation of the implemented system. The
Grid Operation Invoker supports the Grid Object abstraction defined in Section 4.1
and realizes the concept of accessing the grid environment within a JRuby scripting
language (see Section 4.2). It supports all use cases defined in Section 5.2 and
satisfies both the functional and nonfunctional requirements (see Section 5.3). We
have defined criterion for a technology to be considered as supported: it must be
possible to create Grid Objects representing instances published by this technology
using uniform interface and these Grid Objects must be identical in usage as ordinary
objects. Subsequently, we proved that the Web Services, WSRF, MOCCA, WTS
and LCG packages are supported by the GOI system.



Chapter 8

Grid applications using the Grid
Operation Invoker

In this chapter we present two applications: the Weka data mining and the HIV
genotype to drug ranking system. We enumerate what computational resources,
which are published with diverse middleware, are used and prove that these resources
are accessed in a uniform manner using the GOI library. Finally, we provide con-
clusions stemming from development of these grid applications.

8.1. Weka data mining application

Weka [45] is a set of tools for data mining tasks that can be applied to scientific
problems in a variety of domains. It allows data pre-processing, classification, re-
gression, clustering, association rules, and visualization. Weka is a broadly accepted
software that is used both for educational purposes and research.

We have implemented a sample data mining applications using the Grid Opera-
tion Invoker to access remotely the functionality of the Weka library (see Fig. 8.1).
This application is based on an the example from [45]. It illustrates a typical data
mining use case and solves a so called The weather problem. A classifier employing
One-Rule (1-R) algorithm is used to predict whether certain conditions are suitable
for playing an unspecified game. The application involves the following steps:
• retrieving data in a Weka specific format,
• splitting the data into a training and testing data sets,
• training a One-Rule Classifier,
• classifying the testing data,
• evaluating the prediction quality.
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8.2. HIV genotype to drug ranking

require ’cyfronet/gridspace/goi/core/g_obj’

retriever = GObj.create(’cyfronet.gridspace.gem.WekaGem’)

A = retriever.loadDataFromDB(DATABASE, QUERY, USER, PASSWORD)

B = retriever.splitData(A, 20)

trainA = B.trainingData

testA = B.testingData

classifier = GObj.create(’cyfronet.gem.weka.OneRuleClassifier’)

attributeName = ’play’

classifier.train(trainA, attributeName)

prediction = classifier.classify(testA)

logger.info(’Predicted data:’ + prediction.to_s)

quality = retriever.compare(testA, prediction, attributeName)

puts (’Prediction quality:’ + quality.to_s)

Figure 8.1. Weka data mining application.

The Weka data mining application uses the following Grid Object Instances :
• The instance of cyfronet.gridspace.gem.weka.WekaGem Grid Object Class that

retrieves the data in the ARFF format [46], splits the data and evaluates predic-
tion quality. It is published using the Web Service middleware;

• The Instance of cyfronet.gridspace.gem.weka.OneRuleClassifier class that classi-
fies the data (it is necessary to train the classifier prior to classifying data). It is
published using the MOCCA middleware.

8.2. HIV genotype to drug ranking

This application has been developed within the ViroLab project [1] and it solves
a real life problem in the virology fields. It enables virologists to find the HIV
susceptibility for drugs based on the genotype of the virus. This application can be
used by a virologist to conduct research as well as to advise medical doctors how to
enhance and personalize a treatment for a HIV infected patient.

The process of interpreting HIV genotype to drug resistance consists of the fol-
lowing steps:
• aligning a HIV nucleotide sequence with respect to a reference strain,
• detecting subtype of the virus,
• finding mutations in an indicated region,
• using ViroLab Drug Ranking System to find out the drug resistance of the virus.
Fig. 8.2 presents the source code of the HIV genotype to drug ranking application.
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8.2. HIV genotype to drug ranking

This application uses the following Grid Object Instances :
• The instance of regadb.RegaAlignment Grid Object Class that aligns the nu-

cleotide sequence with a reference strain. It is published using the WTS middle-
ware.

• The instance of regadb.RegaHivSubtype class that determines the subtype of the
virus. It is published using the WTS middleware.

• The instance of org.virolab.DrugRankingSystem class that provides virus drug
resistance data. It is published using the Web Service middleware.

require ’cyfronet/gridspace/goi/core/g_obj’

region = "rt"

#this data in not complete!

ntSeq = (">55106 Tue Jun 05 19:56:52 PDT 2001. 1269 bases.\n

CCTCAGATCACTCTTTGGCAACGACCCMTCGTCACAATAAAGGTAGGGGG

......

TTATGACCCATCAAAAGAC")

regaDBMutationsTool = GObj.create(’regadb.RegaAlignment’)

mutations = regaDBMutationsTool.align(ntSeq, region.upcase)

regaDBSubtypingTool = GObj.create(’regadb.RegaHivSubtype’)

subtype = regaDBSubtypingTool.subtype(ntSeq)

mut = mutations.split(’,’).last.chop

drs = GObj.create(’org.virolab.DrugRankingSystem’)

puts drs.drs(’retrogram’, region, 100, mut)

Figure 8.2. HIV genotype to drug ranking.

The HIV genotype to drug ranking application illustrates an advantage of the
scripting approach to building grid applications. One can see that mutations re-
turned by the RegaDB Mutations Tool can not be directly passed as an input to
the Drug Ranking System. A very simple data conversion is required. It is not
a computationally intensive process therefor is done locally in a one line of code.
A combination of using remote computational resources with local processing and
application logic defined in a scripting programming language is in our opinion the
most flexible and suitable approach for building grid applications.
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8.3. Summary

We have implemented applications that deal with real life problems from two
scientific domains: data mining and virology. We have demonstrated how easy
building grid applications utilizing the Grid Operation Invoker library is. Each ap-
plication access in a uniform manner Grid Object Instances published with different
technology, thus interoperability among grid middleware is illustrated. Virology and
data mining applications proved that the Ruby language combined with the GOI
library constitutes a general purpose solution that allows building grid applications
for a wide range of scientific domains.



Chapter 9

Summary and future work

This chapter includes a summary of the work done in scope of providing uniform
interface to grid resources and plan for possible evolution of the Grid Operation
Invoker system in future.

9.1. Thesis summary

The objective of this work was to provide a uniform interface for accessing grid
resources within a scripting language. We have conducted the research in this scope
and developed a prototype implementation of the system. The work has been carried
with respect to the best practices in research and software engineering. The latest
but reliable technologies have been used.

We have analyzed the requirements for the system (see Chapter 5) and on this
basis we have designed the Grid Operation Invoker system and implemented (see
Chapter 6) an extendable Ruby library that enables to use computational resources
published with a variety of middleware technologies. The prototype implementation
satisfies both functional and nonfunctional requirements and supports Web Service,
MOCCA, Witty Services and EGEE jobs (see Chapter 7). Finally, we have devel-
oped grid applications using the GOI library.

The objectives of the thesis (see Section 1.4) have been achieved. The Grid Op-
eration Invoker system is operational, it is integrated with a remote Grid Resource
Registry [47] and a Grid Application Optimizer [48], and is used as a core of the
runtime system of the ViroLab Virtual Laboratory [43]. The GOI has been applied
to real life problems in fields of data mining and virology (see Chapter 8). This
proved that the GOI library facilitates implementation of object-oriented grid ap-
plications and illustrated interoperability among heterogeneous middleware. What
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9.2. Future work

is more, grid applications expressed in a Ruby scripting language enhanced with the
GOI library are concise and easy to understand. Grid applications combine local
processing with remote computation and can be easily executed on every modern
personal computer. The scripting approach appeared to be suitable for development
of high-level grid applications.

9.2. Future work

The work on the Grid Operation Invoker will be carried on. First of all, we will
work on enhancing adapters and add support for more middleware technologies.
WSRF adapter will be enhanced with ability to dynamically generate stubs for
stateful services. Next, we will work on adapters for AHE and Unicore in order to
provide access to computational resources of large European grid infrastructures.
At the same time we will integrate more Grid Object Instances and implement more
complex scripts.

Furthermore, we will consider providing introspection mechanisms that would
allow obtaining information usefull for developers. This data would include for
instance a list of Grid Operations and their semantic meanings. Introspection mech-
anism is especially important while working with dynamic scripting languages, like
Ruby, because these languages are untyped. Once this mechanism is enabled, devel-
opers will be able to develop and execute experiments interactively, thus will fully
exploit advantages of dynamic scripting language.

Another possible way of GOI evolution is integration with security mechanism.
The most promising candidate is the Shibboleth system [49]. It is a federated
Single-SignOn and attribute exchange framework that enables to authenticate to a
local identity provider and access resources of many providers. The Grid Operation
Invoker would include a required security token in invocations of Grid Operations
transparently.

The last idea on enhancing the GOI system is to integrate it with the monitoring
system. While executing a script the GOI library would log information regarding
scientists executing experiments, used Grid Object Instances, operation inputs and
produced results. Logs would be delivered to a monitoring system by remote appen-
ders. Gathered information would allow provenance as well as provide significant
data for an optimizer.
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Appendix A

Installation guide

This chapter covers in detail installation of the Grid Operation Invoker system
and all of its prerequisites on both the Linux and Windows platforms. Next, it
explains how to customize the system to use various registries and optimizers.

A.1. Prerequisites

The Grid Operation Invoker can be installed and run on any modern com-
puter using any operating system, provided that the machine has network con-
nectivity. The Grid Operation Invoker is implemented as a JRuby library, there-
fore an interpreter (standard distribution or the one included in the JRuby plus
GOIdistribution) must be installed and configured. JRuby interpeter can be down-
loaded free of charge from [50]. Since JRuby is a Java implementation of Ruby
interpreter it requires a Java Runtime Environment, which can be downloaded
from [51]. The Grid Operation Invoker software was implemented and tested using
the JRuby version 1.0 and JRE 1.6.0, thus these releases are strongly recommended.
Make sure that JAVA HOME and JRUBY HOME environment variables are set up
properly.

A.2. Dependencies

GOI uses some Java libraries that provide client side access to Grid Object
Instances in specific middleware technologies, such as MOCCA or WTS. Theses
libraries introduce some indirect dependencies to other jars. MOCCA relies on
the mocca light.jar library, which depends on the H2O jars and configuration
files. Witty Services requires a wts-client-java-0.9.jar to be used. Both, the
Grid Operation Invoker direct and indirect, jar dependencies are described in the
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A.3. Grid Operation Invoker distributions

Maven [52] Project Object Model files, which can be found at [53].

Besides client side libraries, the GOI system requires a grid certificate, EDG User
Interface installation with its executables in the $PATH environmental variable to
enable running jobs on the EGEE testbed. Before experiment is started user needs
to create his proxy certificate (by executing grid-proxy-init command and provide
the passphrase if requested). For more instructions on acquiring a grid certificate
and using LCG please refer to [54].

A.3. Grid Operation Invoker distributions

Grid Operation Invoker is an extension of the JRuby scripting language. There
are two types of distributions:
1. JRuby plus GOI, which includes interpreter and the GOI library with all

necessary Java libraries
2. GOI, which contains the GOI libraries only
Both distributions satisfy all dependencies except the EDG user interface, which
needs to be installed separately.

A.4. Installation

There are two different distributions so choose one of the them and follow the
instructions for it. First of all, make sure that all prerequisites are satisfied. Next,
choose the distribution type. If a JRuby interpreter has not been already installed
choose the interpreter enhanced with the GOI libraries(JRuby plus GOI). In case
JRuby is already installed choose the GOI distribution. To install the Grid Oper-
ation Invoker on a machine follow instructions for a suitable distribution.
Installation procedures were successfully tested on Kubunt 7.04 Linux, Kubuntu
Linux 7.10 and Windows XP Professional operating systems with JRE 1.6.0 in-
stalled.

A.4.1. Installing JRuby plus GOI

1. download distribution from [53] - if wget is available issue the following command
in a console:
• wget http://virolab.cyfronet.pl/ tomek/msc/software/jruby-1.0-plus-goi.tgz

on Linux
• wget http://virolab.cyfronet.pl/ tomek/msc/software/jruby-1.0-plus-goi.zip

on Windows
or use your favorite web browser to download the appropriate file

2. move downloaded file to the location where you wish to install the system
3. extract the archive

• execute tar xfv jruby-1.0-plus-goi.tgz on Linux
• open a context menu for the zip archive and choose to extract it

4. set JRUBY HOME variable
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• for Linux append the following line to the .bash profile in the home directory:
export JRUBY HOME=path-to-the-jruby-plus-goi

• for Windows open Start Menu -> Settings -> Control Panel, double click
System and choose Advanced tab, click Environment Variables, create a new
one called JRUBY HOME and assign a value that point to the installation
directory

5. restart the system to make sure new environment variable is used
6. delete the downloaded archive

A.4.2. Installing GOI

1. download goi.tgz from [53] - if wget is available issue the following command in
a console
• wget http://virolab.cyfronet.pl/ tomek/msc/software/goi.tgz on Linux
• wget http://virolab.cyfronet.pl/ tomek/msc/software/goi.zip on Windows
or use your favorite web browser

2. move downloaded file to JRUBY HOME
3. extract archive

• by typing in the console tar xfv goi.tgz on Linux
• by opening a context menu for the zip archive and choosing to extract it

A.4.3. Testing GOI

Change directory to the GOI installation and execute the following command in
the console jruby test/test suite all.rb. If this test is passed then you have success-
fully configured the Grid Operation Invoker system on your machine.

A.5. Customizing the Grid Operation Invoker

The Grid Operation Invoker has a modular architecture. The core part of the
system delegates the queries to registry and optimizer clients, thus by replacing
them, it is able to cooperate with a diversity of registries and optimizers. The
system is configured by the constants that are defined in the constants.rb file, which
is placed in the cyfronet/gridspace/goi/core directory. Table A.1 provides a full
listing of currently used constants.

In addition, more constants can be defined and used in the GOI source code.
Due to configuration file being a Ruby source, constants’ values can be expressions
evaluated at run-time.



A.5. Customizing the Grid Operation Invoker

Constant name Explanation
OPT CLIENT CLASS A name of the class that is responsible for

delegating queries to an optimizer and return-
ing results. This class will be required from
$JRUBY HOME/lib/ruby/1.8/cyfronet/gridspace/goi/
core/ directory.

REG CLIENT CLASS A name of the class that is responsible for delegating
queries to a registry and returning results. File contain-
ing this class will be searched in the same location as
optimizer client class.

GS GRR BASE URL An endpoint of the Grid Resource Registry.
GS GRAPPO URL An endpoint of the Grid Application Optimizer.

Table A.1. Constants customizing Grid Operation Invoker
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Appendix B

Grid Operation Invoker API

This chapter briefly explains the principle of operation and introduces the API
that Grid Operation Invoker exposes to the developer of the experiment. It explains
different levels of abstraction and provides suggestions which level should be used.

B.1. Principle of operation of the Grid Operation Invoker

GOI provides uniform interface to invoke operations on Grid Objects Instances,
that can be published using various middleware technologies, such as Web Services,
MOCCA components, jobs etc. To fulfill its responsibilities GOI performs the fol-
lowing activities while creating Grid Object representative:
• querying Optimizer for id of optimal Grid Object Instance of the class requested

in the script (experiment)
• querying Registry for technical information describing selected instance
• loading appropriate technology adapter, which creates Grid Object representa-

tive

Once created, Grid Object can be used just like any other JRuby object. The
burden associated with interfacing specific middleware is covered from the user. GOI
makes invoking remote operation identical to calling a method on a local object.

It is possible for developer to bypass listed steps if she/he wishes to use low level
API provided by adapters. There are three possible ways of GOI usage:
1. create Grid Object of a given class
2. create Grid Object for a given Grid Object Instance
3. create Grid Object using low level API by providing all necessary technical

information
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B.2. GObj API

Whichever manner is used, the returned object is always an object representative
of a piece of software deployed on a remote or local computational resource.

B.2. GObj API

First of all, developer must require necessary Ruby files. GObj class is the most
essential and in most cases, excluding the third scenario, it is the only class that
needs to be loaded explicitly in the experiment source code. To do so, developer
must include the following code:

require ’cyfronet/gridspace/goi/core/g_obj’

After that, creating Grid Object Instance Representatives using GObj class
methods: create and create instance is possible. The former method take the
name of the Grid Object Class as an argument. Such invocation performs all
three steps mentioned in section describing GOI principle of operation. For in-
stance, to create a representative for a Grid Object Instance of class named
cyfronet.gridspace.gem.EchoService the following code would be used:

echo1 = GObj.create(cyfronet.gridspace.gem.EchoService)

Now, let us do the same using the latter method, create instance, which takes id
the Grid Object Instance.

echo2 = GObj.create_instance(5)

In this case, querying Optimizer for an optimal instance is omitted, but developer
must be sure that the id of desired Grid Object Instance , which is stored in the
Registry, equals 5. Otherwise it is possible that later in experiment there will be an
attempt to invoke operation which is not provided by the Grid Object Instance and
an error will be raised.

B.3. Low level adapter API

Let us create the same object using the last option, the low level adapter API,
which requires much more effort. To begin, we must load the appropriate resource
class, in this tutorial we will create a representative for Web Service:

require ’cyfronet/gridspace/goi/adapters/ws_resource’

Next, the technical information is needed (see D). Below a Hash containing the full
information about Grid Object Instance is defined.

techInfo = {’instId’ => 5, ’name’ => ’instance1’,

’endpoint’ => ’http://virolab.cyfronet.pl:18080/’,

’type’ => ’WS’,’wsType’ => ’RPC’,

’method#0’ => ’echo’,’in#0#0’ => ’echoString’,

’out#0#0’ => ’echoReturn’,

’namespace’ => ’http://virolab.cyfronet.pl/echo’,

’codebase’ => ’url’}
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B.4. Choosing the appropriate API

Please remember, that technology information is specific for every middleware. Fi-
nally, let us create the resource representing the EchoService:

echo3 = WsResource.new(techInfo)

B.4. Choosing the appropriate API

As already proved in this appendix, using different APIs involves various levels of
knowledge and understanding of GOI. Although all methods for creating Grid Object
Instance representatives provide the same functionality and produce the same result,
they provide different non-functional capabilities. For instance, the create method
is the most convenient to use and the most universal, while the create instance can
be used to ensure that a specific instance will be used, because of accounting issues,
reliability or numerical quality of the software installed on a concrete node, etc. In
the end, the low level API can be used for testing new GEMs, before they will be
registered in GRR, as well as using external Grid Objects Instances.

B.5. Using Grid Object representatives

Variables echo1, echo12 and echo3 are representatives of the same Grid Object
Instance. They can be used identically, albeit they were produced using distinguish-
able methods. Moreover, invoking operation on a representative is analogical to
calling method on a ordinary JRuby object. Code snippet below compares usage of
representatives and ordinary JRuby object.

ordinary = String.new(’I am local object’)

l = ordinary.length

puts l

msg1 = echo1.echo(’I am easy to use!’)

puts msg1

msg2 = echo2.echo(’I am easy to use too!’)

puts msg2

msg3 =echo3.echo(’So am I!’)

puts msg3
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Appendix C

Implementation of technology adapters

This manual provides a step-by-step guide how to extend run-time capabilities of
the Grid Operation Invoker by adding support for new middleware technologies. It
explains in detail how to implement adapter, resource and wrapper classes.

C.1. Adding support for new technologies

Grid Operation Invoker supports leading Grid middleware technologies. Cur-
rently, its users can employ Web Services, MOCCA Grid components, EGEE jobs
(LCG) and WTS in experiments. Moreover, design and implementation of the
system make enriching the system with support for new technologies absolutely
undemanding. It requires only two things to be done:
1. implementing adapter and resource classes for new technology and placing them

in appropriate directory
2. preparing the registry to store technical information describing instances

published in new technology

All classes of Grid Operation Invoker can be implemented in JRuby, therefore they
can contain pure Ruby code, as well as include and use Java objects. If any Java
classes, other than those provided by Java Runtime Environment, are used, jar files
containing theses classes should be placed in $JRUBY HOME/lib/ directory.
For more information on Ruby language please refer to [40, 42].

C.2. Extending Grid Operation Invoker

Grid Operation Invoker support for various middleware technologies is based
on adapters concept. The system can be extended by adding adapter and
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resource classes for new technology. Adapter is a factory that is capa-
ble to produce representatives for all Grid Object Instances published in one
concrete middleware technology. Such representative should be an object
of a resource class, that extends GridResource class that can be found in
$JRUBY HOME/lib/ruby/1.8/cyfronet/gridspace/goi/adapters/ directory. Re-
source object is a proxy for Grid Object Instance that is able to interact with
instance in its specific protocol, however, from the experiment developer’s point of
view, resource objects act as any other JRuby object. Adapter class must expose
one class method, create instance, which takes Hash object containing technology
data and returns Grid Object Instance representative of TechnologyResource class.
Resource class must implement only one method, initialize taking Hash with tech-
nology information. This method semantics is very similar to Java constructor, it is
called after Ruby allocates memory for an objects and all arguments passed to new
are passed to initialize method that sets up object state. The first thing that needs
to be done in the body of this method is calling the initialize method of super class
(GridResource) with he following code:

def initialize(techInfo)

super(techInfo)

# method body

end

Next, TechnologyResource object must be made capable to handle invocations of
operations on Grid Object Instance. Developer is not limited in the way how to
achieve it, albeit it is strongly recommended to implement the method missing oper-
ation, which takes responsibility for delegating operation execution to Grid Object
Instance and returning result.
Code snippets below present the simplest adapter and resource classes that support
Web Service technology and explains what activities are performed.

require ’cyfronet/gridspace/goi/adapters/ws_resource.rb’

require ’java’

if !defined? JLogger

include_class(’org.apache.log4j.Logger’){|package,name| "J#{name}"}

end

class WsAdapter

@@logger = JLogger.getLogger(’goi.adapter.ws’)

def WsAdapter.create_instance(wsTechInfo)

@@logger.debug(’Using service ’ + wsTechInfo[’endpoint’])

gridObjectInstance = WsResource.new(wsTechInfo)

return gridObjectInstance

end

end

Lets inspect what is done in this adapter:
1. WsResource class is required
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2. Java support is enabled by requiring ’java’
3. log4j class is included if it not already defined
4. adapter class is defined

• class variable, @@logger is defined that is used to print debug information
and in future will be used to integrate GOI with monitoring infrastructure

• representative for Grid Object Instance is created and returned

require ’cyfronet/gridspace/goi/adapters/grid_resource’

require ’java’

if !defined? JLogger

include_class(’org.apache.log4j.Logger’){|package,name| "J#{name}"}

end

class WsResource < GridResource

attr_reader :soap

def initialize(techInfo)

super(techInfo)

# ...

end

def method_missing(methodSymbol, *args)

# ...

end

end

The code above:
1. requires GridResource class, enables Java usage and include log4j class
2. WsResource class is defined

• it extends GridResource
• defines local variable soap and create getter method for it
• defines initialize method (body of this method is not included)
• defines method missing that delegates operation invocations to Grid Object

Instance and returns result (body of this method is not included)
Source code of WsAdapter and WsResource classes can be

found in ws adapter.rb and ws resource.rb files placed in the
$JRUBY HOME/lib/ruby/1.8/cyfronet/gridspace/goi/adapters directory of the
distribution.

Since adapter class is required during run-time, adapters’ class names must obey
certain naming convention. Due to the fact, that Ruby requires files, which names
does not necessarily correspond to the name of class that is inside, naming convention
is also imposed on file names. The naming pattern is as follows:
1. Adapter class name is a concatenation of two words. Technology name, starting

with capital letter with all following letters in lower case, and ’Adapter’. For
instance, adapter for Web Services is named WsAdapter (it could be named
WebserviceAdapter as well, but WebServiceAdapter is not a valid name), adapter
for MOCCA is named MoccaAdapter.
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2. File name should reflect the name of the adapter class it contains according to the
Ruby convention, that is to use only lower case letters and underscore characters
(uppercase letter in class name must be replaced with underscore and lower case
letter). Files must have ’rb’ extension. File names for adapters mentioned above
are ws adapter.rb and mocca adapter.rb.
It is not obligatory to name TechnologyResource classes in accordance to the

mentioned naming convention, although it is profitable to name them analogically
to adapter classes. For instance classes of representatives for Web Services is named
WsResource and for MOCCA components is named MoccaResource, files containing
these classes are ws resource.rb and mocca resource.rb.

Files containing adapter and resource classes should be placed in
$JRUBY HOME/lib/ruby/1.8/cyfronet/gridspace/goi/adapters directory.
If any additional JRuby classes are used they should be placed in
$JRUBY HOME/lib/ruby/1.8/cyfronet/gridspace/goi/utils. These files should
be required within adapter and resource classes like this:

require ’cyfronet/gridspace/goi/utils/additional_class_name’

C.2.1. Wrappers

Witty Services and LCG (for EGEE testbed) adapters are based on the concept of
the Local Gem. It is impossible to map input parameters passed in the experiment
to files that are required for jobs automatically, and vice versa, to map output files to
results returned in the script by executed Grid Operation. The situation with WTS
service is analogical to jobs. Therefore technical information for these technologies
contains a JRuby class that is responsible for mapping input parameters and outputs.
Developers who wish to register a new Grid Object Implementation using WTS or
job technology is responsible for providing wrapper class. This section of manual is
intended for them.

Wrapper class is required to provide two methods for every Grid Operation of
Grid Object, named gridoperationname submit and gridoperationname get output.
The former is responsible for definition of WTS service that will be used or exe-
cutable that will be run on EGEE testbed, as well as inputs mapping. It takes the
input parameters that are passed to the representative of Grid Object Instance and
uses WtsSpec or JobSpec class. The latter, defines what exactly is returned as the
result of the Grid Operation invocation.

WTS wrapper

The submit method implementation must use WtsSpec class, which provides the
following API:
1. new method enables the developer of the wrapper to:

• Select the WTS service that will be used (first argument).
• Enter user name and password (defaults are username=public, pass-

word=public)
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• Choose the factory that will produce the WTS service endpoint (default is
http://virolab.med.kuleuven.be/wts/services/)

Only the first argument for the new method is compulsory.
2. setter methods for fileoutputs, fileinputs, byteoutputs, byteinputs fields that enable

developer to define if communication with the service is based either on files or
byte streams. It is obligatory to define both the inputs and the outputs of the
service representative.
The get output method takes the output of the WTS service and maps it to

the Grid Operation result returned inside the JRuby script. To illustrate how to
implement a wrapper let us focus on the RegaDB Alignment tool, which provides
the align operation. Below there is a wrapper class that is stored in the registry.

class RegaAlignment

def align_submit(ntSeq, protein)

wtsSpec = WtsSpec.new(’regadb-align’)

wtsSpec.byteinputs={’nt_sequences’ => ntSeq, ’region’ => protein}

wtsSpec.byteoutputs=[’aa_mutations’]

return wtsSpec

end

def align_get_output(output)

return output[’aa_mutations’]

end

end

In order to retrieve descriptions of RegaDB services an object of WtsMetaClient class
should be used. A list of services can be obtained by calling listServices method.
Next, more information about the service can be fetched using getServiceDescription
method. The JRuby code below lists WTS services and collects information on the
regadb-align service.

require ’java’

include_class(’net.sf.wts.client.meta.WtsMetaClient’)

meta_client = WtsMetaClient.new(

"http://virolab.med.kuleuven.be/wts/services/"

)

services = meta_client.listServices()

#puts services

jString = JString.new(

meta_client.getServiceDescription(’regadb-align’)

)

puts jString

Wrapper for a job
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C.2. Extending Grid Operation Invoker

Implementation of the submit method must utilize the JobSpec class that enables
developer to provide a description of the job. Later on, this description will be used
to generate a JDL file for the job. JobSpec provides:
• Setter methods for executable, stdoutput, stderr and arguments fields, that en-

ables developer to define the executable that will be run on the EGEE testbed,
standard output and error and arguments for the executable.

• add to input sandbox(input) method that adds one given input to the input sand-
box of the job.

• add to output sandbox(output) method, which adds one given output to the out-
put sandbox of the job.

• add property(key, value) method, which enables developer to add any property,
which is required in the JDL file of the job, with name key and given value.

The get output method takes the directory, where job output is stored, as a
string and returns the result of the Grid Operation. Below a simple wrapper for
ping execution on EGEE testbed is presented:

class LcgPing

def ping_submit(host)

jobSpec = JobSpec.new

jobSpec.executable=’/bin/ping’

jobSpec.arguments= ’-c 5 ’ + host

jobSpec.stdoutput=’sample.out’

jobSpec.stderr=’sample.err’

jobSpec.add_to_output_sandbox(’sample.out’)

jobSpec.add_to_output_sandbox(’sample.err’)

#jobSpec.add_to_input_sandbox(input)

return jobSpec

end

def ping_get_output(outputDir)

result = ’’

IO.foreach(outputDir + ’/sample.out’){|line|

result << line

}

return result

end

end

For more information on using EGEE testbed and JDL please refer to [55].
Wrappers naming convention Wrapper class name must be identical to

the name of the Grid Object (excluding the package name). For instance, the
name of a wrapping class for regadb.RegaAlignment is RegaAlignment and for
cyfronet.gridspace.gem.Namd is Namd.
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C.3. Extending a registry

C.3. Extending a registry

A registry is responsible for storing information about any accessible resources in
the ViroLab environment. What is more, it hides resources technologies complexity
from the user. That is why if new technology is added to the Grid Operation
Invoker, a registry has to be extended by adding support for this technology. Since
the GOI system is customizable (for information on customizing the GOI please
refer to A.5) and can cooperate with various registries, the registry that is being
used must support new technology.

In case of using the Local Registry, which has the technology information
hard-coded, only an extra entry is required. A Ruby Hash, describing the instance
published in new middleware technology, should be added to the collection of in-
stances. If the external registry, the Grid Resource Registry, is used, please refer to
the section Extending Grid Resource Registry of this online manual [56].
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Appendix D

Technology information stored in a
registry

In this chapter technology information describing Grid Object Instances in dis-
cussed. It’s structure and semantics is explained. These sections are usefull for
those who:
• implement adapter for a new technology
• wish to have in depth understanding of technical mechanisms of the Grid Oper-

ation Invoker system
• want to describe some external instances that will be used in an experiment or

will be registered
• develop new registry or registry client to be used by the Grid Operation Invoker.

D.1. Technology information semantics

Every Grid Object Instance is described by technology information in terms of
communication protocol it uses, exposed interface as well as inputs and outputs.
Thus the Grid Operation Invoker is able to determine and load the adapter
appropriate for the given instance and transparently invoke Grid Operations.

Various middleware technologies require distinct data, but there is a set of com-
mon information for all technologies. Table D.1 presents the technology information
which is shared by all technologies and which is specific for a concrete middleware.
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D.2. Data structure

Technology Key Meaning
instId unique identification of instance
name name of the instance
type name of the middleware technology
endpoint communication address if applicable or nil

Common codebase codebase URL
method#x operation of the instance, x is the number

of operation, x>=0
in#x#y input parameter y of operation x, y>=0
out#x#y output y of operation x, y>=0

Web Service wsType determines the type of Web Service: RPC
or DOCUMENT

namespace name space of the RPC Web Service
componentClassName the name of the MOCCA component class

MOCCA portClassName the name of the port class that is used to
interface the component

portName the name of the port that is used to inter-
face the component

LOCAL GEM
(WTS or

subtype determines the underlying technology:
WTS or LCG

LCG) script Ruby script that is responsible for map-
ping inputs and outputs of operations

Table D.1. Technology information: common and specific for a concrete technology

D.2. Data structure

Technology information used by the Grid Operation Invoker is a Ruby Hash,
which contains pairs of String type. Such solution is very flexible, therefore adding
support for new technology does not imply modification in the code of core part of
Grid Operation Invoker, nor in registry and scheduler clients.

The code snippet presented below provides a sample technology information
about the EchoService.

techInfo = {’instId’ -> ’5’, ’name’ -> ’instance1’,

’type’ -> ’WS’,

’endpoint’ -> ’http://virolab.cyfronet.pl:18080’,

’codebase’ -> ’http:/sample.com’,

’method#0’ -> ’echo’,

’in#0#0’ -> ’echoString’, ’out#0#0’ -> ’echoReturn’,

’wsType’ -> ’RPC’,

’namespace’ -> ’http://virolab.cyfronet.pl/echo’

}
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[36] Tomasz GubaÃla, Daniel Harȩżlak, Marian Bubak, and Maciej Malawski. Semantic

composition of scientific workflows based on the petri nets formalism. In E-SCIENCE
’06: Proceedings of the Second IEEE International Conference on e-Science and Grid
Computing, page 12, Washington, DC, USA, 2006. IEEE Computer Society.

[37] Grid Application Toolkit, 2004. http://www.gridlab.org/WorkPackages/wp-1/.
[38] NetSolve/GridSolve, 2006. http://icl.cs.utk.edu/netsolve/.
[39] Web Service Invocation Framework, 2006. http://ws.apache.org/wsif/.
[40] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby - The Pragmatic

Programmer’s Guide, Second Edition. The Pragmatic Programmers, 2004.
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