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Abstract 

The subject of this thesis is the monitoring of component-based 
applications, focusing on Common Component Architecture model with Java-
based CCA-compliant MOCCA framework, which is built over H2O 
distributed computing platform. Within the scope of this work the monitoring 
system called leMonAdE was developed that supports generally all Java-based 
application. In particular, it is targeted to Mocca framework by extending 
Mocca framework itself as well as Mocca application manager tool, namely 
Moccaccino, with monitoring capabilities. 

The results of this work comprise Java tools for dynamic bytecode 
instrumentation employing Aspect-Oriented Programming paradigm and 
monitoring facilities of Java Management Extensions. Mocca framework and 
Moccaccino Manager are enhanced with monitoring support by incorporating 
of aforementioned tools within them. Moreover, a prototype of a monitoring 
tool is provided as an Eclipse IDE plug-in for leMonAdE-enabled edition of 
Moccaccino manager. The performance tests have been carried out and proved 
the usability of the system. 

This thesis is organized in the following chapters: in Chapter 1 the 
rationales of this work are explained and the problem is stated. Chapter 2 
outlines the technologies addressed by this work and indicates a target platform 
for emerging system. Chapter 3 is devoted to problem analysis along with 
discussion of available solutions and current state of the art. In Chapter 4 the 
goals of this work are precisely specified and the general concept of a 
monitoring system is presented. Chapter 5 presents detailed design of an 
emerging system as well as implementation aspects. Chapter 6 gives an answer 
on how the system developed meets the performance requirements and 
estimates usability of a solution. Chapter 7 concludes the thesis and marks up 
future work directions. 

Keywords: Monitoring system, monitoring tools, instrumentation, 
components, component-based applications, Common Component Architecture 
Aspect-Oriented Programming, Mocca, Moccaccino, leMonAdE. 
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Chapter 1  
Motivation  
for a Monitoring System 

This chapter generally characterizes the problem and defines fundamental goal of 
this work. In sections below, the need for a monitoring system in distributed and 
especially in grid environments is shown. Further, it is said that a monitoring system is 
a foundation for advanced application development and management tools. Finally,  
a specific computation architecture model addressed, namely Common Component 
Architecture, is presented and a problem of this thesis is stated. 

Nowadays, a need for modern monitoring means arises. Monitoring has 
became a vital and, to a significant extent, critical part of distributed systems 
architectures, especially in grid computing. Execution of application in 
distributed environment which is usually geographically dispersed and takes 
hours to complete, remains feedbackless, unresponsive and impossible to 
supervise, unless the proper means of monitoring are provided. Application 
run that is distributed both in space and in time induces application managers‘ 
demand for a suitable equipment in order to seize and diagnose running 
applications. 

Application managers, in addition to application submission interface, 
have to be supported with after-submission management and monitoring tools 
as well. It becomes especially essential in the case of those application managers 
who are willing to access intermediary results or to check computation status. 
However, not only application executors cope with the issues of application 
monitoring. Application developers constitute the next considerable group that 
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needs monitoring assistance in the prototyping and testing stage. They would 
like to take advantage of monitoring support in order to introspect running 
code e.g. for verifying, debugging, compatibility testing, performance 
analyzing, profiling and optimizing purposes. 

Nevertheless, monitoring applicability actually exceeds beyond 
performance monitoring. Indeed, monitoring may enable incorporation into 
application of additional behavior performing variety of tasks reactively to 
monitoring events. Therefore, many of application orthogonal aspects  such as 
logging, billing, tracking, reporting etc may be implemented on the top of the 
monitoring systems. 

Monitoring constitutes indispensable foundation for autonomic 
computing [47]. In comparison with traditional systems, in autonomic self 
managing system administrator plays thoroughly altered role. Instead of 
controlling the system directly and manually, they define policies and rules 
according to which self-management process is operating. Monitoring events 
are passed towards to the self-management agent which process them and 
triggers actions of functional areas such as: self-configuration, self-healing, self-
optimization and self-protection. 

As long as it concerns distributed applications the motivation for a 
monitoring system is especially justified, because of a number of involved 
distributed processes that are to be under supervision. Transparent accessing 
and harnessing grid resources has to allow inspecting the state of these 
resources. Therefore, monitoring shall provide feedback information related to 
the resources employed and provide general information about the execution 
environment. In particular, it applies to component-based applications whose 
components are deployed into containers. As long as the containers provide 
computation and memory resources along with basic services they constitute a 
specific execution environment that is reasonable to monitor by application 
executors. On the other hand, container providers and site administrators are 
willing to inspect and measure utilization of the containers under their 
authority. 

Common Component Architecture (CCA) [1][17] model defines its own 
specific application structure involving architectural part such as components, 
ports and connections, which are supposed to be observed by interested parties 
such as  application managers. Furthermore, CCA-based application structure 
may alter during execution since this model enables dynamic assembling and 
disassembling of components. From a point of view of the application manager, 
application architecture dynamicity is significantly worth to monitor. 

This work addresses, in general, problem of a monitoring in distributed 
systems. Precisely, it focuses on applications complying component–based 
architectures. The general goal of this thesis is to provide a framework 
supporting component application with enabled monitoring capabilities. A 
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solution has to accomplish this goal by addressing specific target platform, 
specific component application framework along with some dedicated tools. 
Therefore, Chapter 2 introduces all technologies addressed by the emerging 
monitoring system and draws a technological background.  
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Chapter 2  
Technologies to Be Addressed  
by a Monitoring System 

This chapter explains how technological constraints affect a monitoring system 
and outlines a technological background of this thesis. The concrete implementation of 
component-based application paradigm is presented along with a target component 
framework that are addressed. Further subsections contained in this chapter discuss 
technologies and tools involved in a target platform that constitute a foundation for the 
emerging monitoring system, namely Java platform, H2O distributed application 
framework, Common Component Architecture, Mocca component application 
framework and Moccaccino component application manager. 

Implementation of monitoring depends heavily on operating system, 
software platform and application model. Since operating system manages 
hardware and software resources it has the authority to monitor their 
utilization as well as to provide static information and characteristics related to 
them. Moreover, operating systems define a term of process in order to enable 
acquisition and collection of the information related to a particular execution of 
a program. In fact, what information is provided depends on operating system. 
Nevertheless, as long as this information determines monitoring capabilities the 
operating system is fundamental. In general, infrastructure and application 
monitoring is determined by to what extent operating system supports 
resources and processes monitoring. 

Software platform is usually tailored to the operating system, unless such 
a platform is designed to be portable. Portability is the realization of 
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programmers' wish to use once written code everywhere. That implies 
independence from operating system and makes monitoring system specific 
rather to software platform than to a particular operating system. 
Interoperability of systems is an issue arising when dealing with distributed 
heterogeneous environment where compatibility of software platforms is 
required. Interoperability relies on standards and specifications that 
heterogeneous software is expected to comply with.  

As a matter of fact, application model affects monitoring with its features 
and qualities which are specific to a particular model. Monitoring shall fit in the 
model in order to give comprehensive view of  application in terms of applied 
model. 

The following subsections provide more detailed insight into addressed 
platform, employed middleware technologies and frameworks as well as  
introduces specifications and tools that constitute a basis for this work.  

2.1 Java Platform 

Java is a software platform which has gained extreme popularity at the 
turn of the century. However it is not expedient here to judge Java worthiness, 
abilities and limitations, undeniable is the fact that one of the crucial causes of 
its success is a portability. Thank to idea of JVM Java OS-independence was 
achieved. 

JVM is an open specification [33], which has several implementations 
(e.g. Sun’s Hot Spot [35]) till now. JVM specification is essential for compiler 
writers who wish to target the JVM and for programmers who want to 
implement a compatible virtual machine. While JVM knows nothing about the 
Java programming language itself, it knows a binary class file format called 
Java bytecode. The main part of JVM specification is therefore the definition of 
class file format, which is indeed platform and JVM vendor independent. 
Thanks to the intermediary code specification it is possible to programmatically 
reengineer such a code - as many libraries do in order to provide non-trivial 
functionality. Monitoring system which is discussed in this work relies on JVM 
specification, and precisely speaking, on the binary class file format definition. 

Exploiting its portability, Java has been a leader in proposing non-
commercial innovative techniques for implementing distributed systems. It is 
worth to mention at least its Remote Method Invocation [42], Enterprise Java 
Beans (EJB) [49] and JINI [50] that are widely and successfully used. Ten years 
of dynamic development of Java technology is nowadays intensified as Java 
Development Kit (JDK) versions 6 and 7 are announced by Sun to be released as 
open source in 2007 with the source code available under the GPL v2 license. 
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It is noteworthy that there is a significant distinction between JVM and 
Java programming language itself. While Java defines syntax, semantics and 
compilers producing valid bytecode in JVM class file format, JVM is intended 
solely to interpret any valid, not necessary produced by Java, class files. 

2.2 H2O 

H2O [2][24] is a Java-based middleware platform for building and 
deploying distributed applications. The main feature of this framework is that it 
decouples the service deployer and the container provider roles. It induces that 
H2O allows not merely container owners but any authorized third parties or 
clients themselves deploying services into a kernel. Containers called kernels, 
host services called pluglets, which are Java classes exposing remote interfaces. 
On the transport layer H2O employs RMIX [22], a multi-protocol RMI [42] 
extension which overlays transport protocols such as RMI and SOAP [51].  

2.3 Common Component Architecture 

Common Component Architecture (CCA) [17] is a component standard 
for High Performance Computing [1]. CCA provides standards necessary for 
component-level interoperability of components developed within different 
frameworks such as CORBA [52]. CCA is not a complex specification as it 
basically introduces the concepts of provides ports which are public interfaces 
that a component realizes and uses ports to declare dependencies to other 
components' provides ports required. Specific feature of this model is that the 
application architecture is not static, e.g. components, ports as well as 
connections may be both added and removed at the runtime. Therefore, such a 
model is particularly suitable for applications with dynamic architecture 
reorganization. 

2.4 Mocca 

Mocca [3] is a CCA compliant distributed component framework  based 
on H2O platform. Current version, namely Mocca_Light, is a pure-Java 
implementation of the CCA framework and allows building component 
applications on distributed resources available through H2O. Since Java-based 
H2O platform is generic and able to support generally all distribution models 
that rely on Remote Procedure Call (RPC) Mocca leverages it in order to 
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support CCA application written in Java. Mocca fully complies the CCA 
specification, therefore base classes of application architecture derives from 
standardized interface definitions. 

2.5 Moccaccino Manager 

In order to automate the process of deployment and management of 
Mocca applications, the concept of application manager was introduced. 
Moccaccino Manager was developed as a responsible for resource (H2O 
kernels) discovery, deployment planning, execution and management of a 
running application. 

In order to support multiple connection and automated dynamic 
configuration of component instances, Moccaccino enhances the CCA 
application model with port qualifiers and dedicated Configuration Port, 
respectively. Moreover, Moccaccino introduces specific XML-based 
Architecture Description Language [11], namely Architecture Description 
Language for Moccaccino (ADLM) [4], that follows the idea of qualitative 
component diagram. Such a diagram facilitates the quantitive parameterization of 
application. It introduces the terms of multiple connection and component 
instances group to denote a number of component instances with connections 
that follow the same pattern, instead of explicitly specifying each component 
instance and each connection instance individually.  

It was found reasonable to provide monitoring tools as the Moccaccino 
Manager extensions. Therefore, a complete integrated tool for launching and 
monitoring Mocca applications will be assembled. 

2.6 Summary 

This chapter gave a view of a technological background the emerging 
monitoring system should fit in. The work will be focused on Java-based 
components in Mocca framework deployed on H2O kernels. Given with that 
goal, more detailed analysis and review of relevant available solutions is to be 
carried out. This is what the subsequent chapter is devoted to. 
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Chapter 3  
State of the Art  
of the Monitoring Techniques 

In previous chapters the general goal of this work and the specific technological 
background were considered. The following chapter identifies and analyses the general 
challenges encountered when solving previously stated problem of this thesis.  
A reference monitoring system architecture is proposed that allows ordering and 
aligning of monitoring-related techniques of a current state of the art. Dedicated 
subsections discuss how relevant available solutions address the issues identified on 
each layer. 

Monitoring is quite a broad and divers area and as a term is ubiquitous 
in variety of specifications, frameworks and tools. Many efforts address 
application monitoring and, in fact, cover distinct concerns. This chapter is 
devoted to identify problem concerns and to discuss available solutions 
covering them. 

3.1 Problem Analysis 

It is reasonable to consider monitoring crosswise the layers of some 
reference monitoring system architecture in order to separate distinct concerns. 
The proposed here layering is intended to be as generic as it is possible and not 
bound to any specific programming paradigm. It is especially motivated as long 
as monitoring model faces the challenge of inter-technology handover. Since 
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some efforts such as GridSpace [21] attempt to engage heterogeneous 
middleware technologies, proprietary monitoring systems are to be aligned to 
some generic architecture. Given with a reference architecture all the solution 
aiming at monitoring discussed in this section may be aligned and positioned in 
order to classify them and compare with each other. 

In proposed reference architecture which is depicted in Figure 1, four 
layers are involved. First is the instrumentation layer which deals with an issue 
on how to extract, pull out or drag valuable information from running 
application processes. Further, the exposition layer is to provide means in order 
to make this information remotely accessible, from outside the target 
application process, restrictedly according to a given policy. Then the third one 
- access layer aims at on how to efficiently access monitoring information in 
usually distributed environment. Finally, the tool layer is intended to process 
collected monitoring information and serve the end user with functionality 
based on it in a convenient way. 

As it comes to instrumentation, it challenges the issues of hot-plugging 
into running applications, dynamic enabling and disabling, avoidance of 
intrusion into the application code, container and frameworks. Because of fact 
that monitoring may be oriented either to application low-level introspection or 
to high-level business logic monitoring, the latter implies an issue of 
instrumentation with enabled access to application runtime state (e.g. variables 
values). 

Besides runtime state, instrumentation has to be aware of a context 
which supplements monitoring information and is crucial for monitoring 
information usability. Identified context are: 

− Application context – associates monitoring data with a concrete 
application 

− Place context – associates monitoring data with an architectural part of the 
application placed somewhere in the environment  

− Time context – associates monitoring data with timestamp and/or with a 
sequence number 

 Moreover, instrumentation mustn't disrupt proper run of the 
application, hence it must be in accordance to some security constraints and 
policies. 

The fundamental responsibility of exposition layer is to provide remote 
access that enables interoperability. Therefore, it must comply well established 
standards and protocols. On this layer another security issues of unauthorized 
access and information confidentiality are encountered as well.  
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On the exposition layer monitoring data becomes remotely accessible. 
The aim of the subsequent layer - access layer, is to set up logical monitoring 
data bus in order to redistribute this data to the interested parties. Such a bus is 
to be adapted to support conversation modes like query-response mode and 
notification mode. On the access layer exposed monitoring information has to be 
effectively redistributed in usually distributed environment. This layer deals 
with the issues common for a domain of distributed systems such as: scalability, 
network throughput, communication latency, jitter and reliability. 

 

Figure 1. Monitoring system reference architecture proposed in this work. 

On each of the above defined layers, agile monitoring system has to be 
characterized by a good fitting in the software platform and an easiness of 
installation and employment. In particular, such a system is expected not to 
intrude the application development process and impose developers neither to 
fulfill memory-consuming outgrown library prerequisites nor to deeply 
derange the execution environment. Especially, adaptation of application in 
order to enable monitoring involving source code reengineering may be 
cumbersome, unwished or may affect application reusability. 

Especially, it is a principle of the component application model that 
components perform pure business logic in a container environment that 
provides them with the common services such as data access, transaction and 
connectivity services. Following this principle, monitoring should be 
transparent for component’s business logic and should be provided as the 
container feature. 

Moreover, widely applicable monitoring system should adhere to 
standards and specifications and fit well in the application model paradigms, 
however, without disrupting it. 
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3.2 Discussion of Available Solutions 

This subsection is to discuss available solutions of current state of the art, 
however it is not expected to give a comprehensive and holistic review of all 
available solutions. This discussion rather focuses on techniques that are 
relevant to the specific problem of this thesis and to technologies to  be 
addressed by the emerging monitoring system. In the sections below the 
approaches, generic models and concrete technologies are presented. The 
review is organized regarding to the layers of a proposed reference architecture 
of a monitoring system. 

3.2.1 Instrumentation Techniques 

Instrumentation techniques in Java world may be generally divided into 
two types: source code instrumentation and bytecode instrumentation. 

The source code instrumentation technique relies on developer who is 
expected to decorate the application code with monitoring-related code. In such 
an immature approach the monitoring information is emitted e.g. to a console, 
to a log or to other proprietary tailor-made monitor information collector. Some 
of the logging libraries, such as log4j [38] or Apache commons logging [53], 
became universally recognized and accepted as their idea is a standard even 
outside the Java technology. The strength of the aforementioned two is that 
they are generic and come along with a number of ready-to-use compatible 
tools and extensions. However, even state of the art logging libraries do not 
supports dynamically configurable monitoring and produce lines of logs that 
are inconvenient to process and analyze. 

Java Management Extensions (JMX) [31] incorporated in JDK was 
expected to equip Java with monitoring facilities. In fact, it gained a lot of 
popularity in enterprise systems [25], although it isn't suitable for wide range of 
distributed systems. Among its disadvantages is that it involves source code 
adaptation and imposes specific design patterns to be applied. JMX 
instrumentation layer assumes that monitorable classes must follow these 
patterns, and in exchange it offers whole monitoring infrastructure including 
monitoring agent - MBeanServer, API and remote access facilities. 

JMX instrumentation layer imposes some convention and design pattern 
that has to be applied on early design stage when the crucial design decisions 
have to be taken. Namely, system architecture has to involve dedicated 
monitorable classes called Managed Beans (MBeans). It implies that on 
subsequent development stages it involves disrupting code reengineering. No 
matter which of the following MBean type is applied such an instrumentation 
affects system architecture and code: 
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− Standard MBean – simplest to design and implement as management 
interface is described by method names, 

− Dynamic MBean – must realize DynamicMBean interface in order to 
expose management interface at runtime with generic methods like 
getAttribute, invokeMethod which introduce greater flexibility, 

− Model MBean – is a Dynamic MBean which is moreover self contained, 
self described and configurable at runtime, 

− Open MBean – Dynamic MBean which involves solely basic data types for 
universal manageability. 

Message-oriented monitoring systems may base on variety of Message-
Oriented Middleware (MOM) technologies. In order to standardize advanced 
MOMs for Java industry Java Message Service (JMS) API [30] was specified. It 
allowed keeping the standard by MOM service providers and client 
applications by decoupling client API and third parties’ implementations. 

The main and the most significant disadvantage common for all source 
code instrumentation techniques is that application logic is not separated from 
the orthogonal concern of monitoring making business logic code disturbed 
[46]. As it was investigated it requires source code reengineering, plenty of 
boiler-plate code and recompilation in order to modify monitoring aspect. 
Source code instrumentation results in a code that is much harder to maintain 
and enables merely static, poorly configurable monitoring.  Last, but not least, 
such instrumented application remains tightly-coupled with a one particular 
monitoring system with a direct dependencies to external libraries, which 
makes the software toughly reusable. 

Alternative way is proposed by bytecode instrumentation techniques. 
Since JVM specifies binary class file format - intermediate interpretable 
program representation, it is possible to carry out instrumentation upon it and 
to overcome source-code disabilities and defects. Actually, bytecode stands for 
JVM instruction that is interpreted within virtual machine, however, it is also a 
customary name for binary class file format. 

As long as JVM operates in fact on bytecode, no matter what 
programming language it originates from, such an instrumentation is specific 
rather to binary class file format than to Java language itself and may be applied 
also for applications not written in Java. 

Since bytecode instrumentation may be performed on various stages of 
the bytecode lifecycle, the following policies are to identify: 

− Compile-time bytecode instrumentation – a class file is instrumented 
before it is loaded into the JVM. It means that bytecode is transformed by 
dedicated tools before it is released. In a particular case instrumentation 
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may be carried out along with compilation of source code to bytecode. 
Hereby, the responsibility of instrumentation is cast to software 
development process. 

− Load-time bytecode instrumentation – a class files are released with no 
instrumentation and remains uninstrumented until they are loaded by 
JVMs. When class loader is requested to load particular class its bytecode 
is modified in the fly according to instrumentation request. This 
mechanism is suitable for one-time instrumentation, however 
instrumentation is not configurable at the application runtime. It causes 
performance overhead introduced by bytecode modification when loading 
classes. 

− Dynamic bytecode instrumentation – a class which is already loaded, and 
possibly even running, may be redefined. Classes can be modified 
multiple times and can be returned to their original state. The mechanism 
allows instrumentation which changes during the course of execution. It 
causes performance overhead  introduced by bytecode modifications at 
the runtime, although instrumentation may be dynamically enabled and 
disabled that allows performance management. 

There are a few libraries for Java bytecode engineering. Byte Code 
Engineering Library (BCEL) [15] is intended to analyze, manipulate and even 
create from scratch at run-time Java class bytecode.  Its approach is to provide 
an object representation of binary class file. 

ASM [12] library offers similar functionality as BCEL although with 
significantly smaller size and increased efficiency. It is especially suitable for 
dynamic bytecode redefinition [5] [45] in the fly at load time or even when a 
class have been already loaded thanks to java.lang.instrument API 
incorporated into JDK since version 5.0. The efficiency of ASM in bytecode 
redefinition is achieved by applying visitor design pattern [37]. The other 
utilized bytecode engineering libraries are SERP [43] and Javassist [26]. 

Bytecode engineering enables variety of non-trivial utilities. Along with 
reflection and dynamic class loading make Java more dynamic language, and 
allows generating JVM-compliant code even from non-Java source code. The 
notable example is scripting language such as Ruby [54] which is interpreted by 
pure-Java JRuby [55] interpreter using ASM. Moreover, aforementioned 
libraries are widely employed in many innovative and successful projects such 
as object-relational mapping framework Hibernate [56], Aspect-Oriented 
Programming frameworks, compilers, optimizers, code generators and analysis 
tools. Despite its advantages, bytecode instrumentation itself remains low-level 
and too cumbersome for a monitoring utility. 

Therefore, there are many efforts which are targeted to make both source 
code and bytecode engineering on higher level and in a more convenient way. 
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Abstract Syntax Tree (AST) concept is used in parsers as an intermediate 
between a parse tree and interpreter's internal representation of a program. An 
AST is derived from a parse tree by omitting syntax elements that do not affect 
the semantics of the program (e.g. pairs of parentheses are omitted since they 
actually affect AST structure rather than a program semantics itself). One of the 
most notable examples is the Eclipse IDE Java Development Tooling [28] which 
uses its own specific Document Object Model [6] for Java source code. AST 
nodes constitute join-points where instrumentation may take place. 

Standardized Intermediate Representation (SIR) [7] is intended to be an 
abstract representation for procedural and object-oriented programming 
languages. It supports Fortran95, Java, C and C++ and it can be generated from 
either source code or binaries. In latter mode representation involves: packages, 
classes, methods, invocations and a majority of loops. Representation in source 
code mode includes additionally all loops, conditionals, exception handling, 
critical sections and assignments. SIR is utilized by Monitoring 
Instrumentation Request language (MIR) [9] which is XML-based language for 
performance monitoring of applications. Using MIR, instrumentation tool may 
obtain SIR owing to SIR-request, then indicate join-points and finally submit 
instrumentation request. 

The alternative approach is introduced by Aspect-Oriented 
Programming (AOP) paradigm. AOP follows a principle of separation of 
concerns. Whilst functionality is encapsulated in programming language 
structures such as classes, procedures, methods etc, some cross-cutting concerns 
code is scattered throughout many structures. Therefore, AOP proposes a 
technique to handle cross-cutting and orthogonal concerns [46] such as logging, 
security, monitoring that are loosely-coupled with business logic itself. This 
technique enables injection of additional behavior code called advices which are 
launched in due course of application control flow. The assembly of advices 
that cover certain concern is called aspect that encloses in an individual module 
a particular cross-cutting concern. Usually AOP frameworks introduce 
dedicated Join-Points Models (JPM) which constitute a space of available join-
point, along with a pointcut expression language in order to facilitate selection 
of certain join-point subsets. In the case of Java aspect frameworks their JPMs 
and pointcut expression languages use terms of Java and OOP phenomena such 
as classes, methods, fields, inheritance, realization etc. 

AOP paradigm may be realized by weaving base source code or 
bytecode with aspects code, precisely, with the code of aspects’ advices. 
However, some implementations take advantage of a proxy design pattern, 
using a proxy objects that delegate method calls and wraps them with  some 
additional behavior.  

There is a number of AOP framework and among then a majority is 
addressed to Java, however there exists framework dedicated to e.g. C++ and 
C#. 
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AspectJ [13] offers extension of Java programming language enabling 
development of aspects together with the base business logic. Therefore, it 
introduces new language constructs such as aspects, inter-type declarations, 
pointcuts and advices along with its own specific Java compiler which weave 
source code of a base code with aspects code during compilation. 

Subsequent AOP tools such as JBoss AOP [27] and AspectWerkz [14] do 
not disturb programming language and they weave bytecodes of ordinary Java 
base code with ordinary Java aspect code. Instead of introducing dedicated 
constructs the existing ones are employed: such as annotations or XML-driven 
configuration. They both are able to weave code at the compilation time, at load 
time and even, when using Java 5.0 or higher, at the runtime. In contrary to 
above mentioned frameworks that utilize code weaving,  Spring AOP [45] 
takes advantage of proxy design pattern approach and do not support aspect 
deploying at the runtime. It does not rely on bytecode weaving and cannot be 
applied outside Spring Framework. 

AspectJ, AspectWerkz, JBoss AOP, and Spring AOP are the leading tools 
in terms of user adoption when taking into account feedback from an active 
user community as noted in [10]. Basing on insightful investigation and 
comparison of leading AOP tools made in [10] the most important features 
compilation may be collected as done in Table 1 and Table 2.  
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Features AspectJ AspectWerkz JBoss AOP Spring AOP 

Aspect 
declaration 

In code 
In annotations 
or XML 

In annotations 
or XML 

In XML 

Advice bodies In code Java method Java method Java method 

Pointcuts In code String value String value String value 

Configuration 

Dedicated 
.lst 
inclusion list 
file 

Dedicated 
aop.xml file 

Dedicated 
jboss-

aop.xml file 

Dedicated 
springconf

ig.xml file 

Invocation 
pointcuts 

{method, 
constructor, 
advice} x {call, 
execution} 

{method, 
constructor, 
advice} x {call, 
execution} 

{method, 
constructor, 
advice} x {call, 
execution} 

Method 
execution 
only 

Initialization 
pointcuts 

Class 
initialization, 
instance 
initialization, 
pre-
initialization 

Class 
initialization, 
instance 
initialization 

Instance 
initialization 

- 

Exception 
handling 
pointcuts 

Supported by 
dedicated 
operators 

Supported via 
advices 

Supported via 
advices 

Supported via 
advices 

Control flow 
pointcut 
expressions 

Supported by 
cflow and 
cflowbelow 
operators 

Supported by 
cflow and 
cflowbelow 
operators 

Supported by 
call stack 
operators 

Supported by 
cflow 
operator 

Table 1. Brief AOP tools comparison according to [10] (part 1). 
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Features AspectJ AspectWerkz JBoss AOP Spring AOP 

Containment 
pointcut 
expressions 

Supported by 
within and 
withincode 
operators 

Supported by 
within, 
withincode, 
has 
method/fie
ld operators 

Supported by 
within, 
withincode, 
has 
method/fie
ld operators 

- 

Special 
pointcut 
expression 
operators 

Conditionals - 
Dynamic 
cflow 
operator 

- 

Dynamic 
advice context 

Supported by 
this, 
target, 
args 
variables 
passed to 
advices 

Supported by 
this, 
target, 
args 
variables 
passed to 
advices 

Supported via 
reflective 
access 

Supported via 
reflective 
access 

Extensibility 
Thanks to 
abstract 
pointcuts 

By overriding, 
advice 
bindings 

By overriding, 
advice 
bindings 

By overriding, 
advice 
bindings 

Table 2. Brief AOP tools comparison according to [10] (part 2). 

Pointcut expression languages introduced by Aspect-Oriented 
Programming tools establish an alternative to Abstract Syntax Trees, as long as 
it provides a language to select subsets of join-points according to some 
programming language-specific rules.  A comparison of AOP-like and AST-like 
approaches which takes into consideration AspectWerkz and Standard 
Intermediate Representation, respectively, is contained in Table 3 and Table 4. 
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AST-like approach of  
Standard Intermediate Language 

AOP-like approach of 
AspectWerkz 

Deepened introspection into program –
to code regions level 

Coarse grained join-point space: 
before/after/around method calls or field 
access, exception caught etc. without 
descending to method bodies; follows the 
hermitic principle of Object-Oriented 
Programming - no access to the 
implementation of methods what induces 
abstraction layers 

No dynamic context – no access to 
runtime values 

Rich dynamic context – reference to target 
object, class members’ signature and call 
arguments 

Only individually and explicitly 
specified code region is instrumented 
at once 

Pointcuts expression languages are regular-
expression-based supporting terms of 
programming language such as inheritance, 
realization, encapsulation etc. 

Provides only static Abstract Syntax 
Tree of a program 

Besides syntax representation it provides 
also access to runtime values (dynamic 
context, aspect context) 

Standard supporting C, C++, Java, and 
Fortran 

Java-specific 

Supports only build built-in 
intelligence (e.g. metrics suite) 

Enables aspect intelligence - proprietary 
code (advice) is invoked reaching given join 
point 

Table 3. Comparison of AST-like and AOP-like instrumentation approaches basing on 
Standard Intermediate Language and AspectWerkz library, respectively (part 1). 
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AST-like approach of  
Standard Intermediate Language 

AOP-like approach of 
AspectWerkz 

Thread-relevant features No thread-relevant features 

Supports snapshots of current state of 
the process 

Aspects are stateful and may be monitored 
and traced 

Join points space is ordered with no 
relations 

Many join point relations introduced (e.g. 
inheritance, regular expression of method 
name, location in the code etc); allows 
finding join point matching to the given 
criteria 

Supporting code regions level not 
always feasible when given only with 
the binaries 

Bases only on bytecode 

Events are propagated through 
network and processed in monitoring 
tool-side 

Advices are locally executed in target 
process, events may be pre-processed locally 
according to some logic, generated events 
may be better grained 

Table 4. Comparison of AST-like and AOP-like instrumentation approaches basing on 
Standard Intermediate Language and AspectWerkz library, respectively (part 2). 

3.2.2 Exposition Techniques 

Exposition techniques, they may base on a number of approaches. One of 
them is Message-Oriented Middleware approach of JMS  [30] which involves 
third-party message service providers for message passing. Generally, JMS 
supports two message destination types: queues and topics, with corresponding 
message redistribution modes: producer-consumer and publisher-subscriber. 
The are lots of JMS implementation supporting variety of features such a 
message persistence, reliability, acknowledgments etc. 

Unlike MOM, JMX descends from remote object idea. JMX agent layer 
introduces MBeanServer in which MBeans are registered in order to make them 
remotely accessible. Remote processes may access MBeans’ features such as 
attributes, operations and notifications. The transport layer is separated from 
MBeanServer itself and is provided by JMX Distributed Services Layer.  
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A specific solution is provided by Java Platform Debugging 
Architecture (JPDA) [32] which is designed for debugging in development 
environments for desktop systems. It is a specification and, in the same time, a 
reference implementation of services that JVM must provide for debugging 
purposes. It allows remote debugger JVM to access debuggee JVM through Java 
Debug Wire Protocol and control the execution of application contained in 
debuggee machine in the classical debugger-like manner. Given with such a 
specification, tool developers are enabled to easily create portable and reusable 
debugger utilities. However, beyond debugging in development environments 
JPDA no longer seems to be suitable. 

Some other proprietary solutions may base on TCP/IP or UDP/IP 
protocols stack, that are widely supported in distributed environments fabric. 
The example to mention is dedicated log4j log appender using plain TCP 
sockets. Higher level protocols that define additionally interoperable message 
format such as SOAP [51] may be applied to. Also Web Services intended as a 
platform-independent Internet standard is nowadays focusing on specification 
of features supporting various message exchange modes such as WS-
Notification [57]. 

3.2.3 Access Techniques 

JMX Distributed Services Layer 

Over its agent layer JMX provides services for clients and management 
application to enable access and interaction with MBeanServers and the 
managed via MBean resources in the servers. Clients connect to MBeanServers 
thanks to: 

− Connectors – composed of a pair of client and server-side compatible 
communication endpoints. Client part provides a protocol-independent 
API to access the remote MBean Server. 

− Adapters – intended to creates a facade view of MBeanServer through a 
given protocols such as HTTP or SNMP, provides only server-side part. 

Using either connector or adapter, the client API enables manipulation 
over MBeanServer and registered MBeans. Moreover, MBean Proxy of a given 
MBean may be created on the client-side. Proxy propagates operations to 
perform to the corresponding MBean and in the same time MBean propagates 
notification to all of its proxies. 

Nonetheless, interoperability is a vital issue on JMX Distributed Services 
Layer. Therefore adapters relies on standardized protocols such as HTTP and 
SNMP. Since Web Services is widely accepted and adopted  standard, the 
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efforts are undertaken in order to standardize Web Services connector for JMX 
agents [58] in order to allow non-Java clients managing Java applications. 

JGroups [29] is a one of the libraries for multicast communication that 
especially puts emphasis on reliability. Thank to it, processes can set up 
ephemeral group across LANs or WANs, join groups, send messages to 
members and receive messages from members in the group. It doesn't 
necessarily mean that IP Multicast is used since JGroups feature is a flexible 
protocol stack. 

The monitoring bus endpoints may be arranged in more decentralized 
and complex topologies of peer-to-peer network. Such an architecture balances 
network load and prevents from network throughput bottlenecks. It also 
enables spontaneous establishment of a scope environment of peer groups. 
JXTA [34] specifies a set of open protocols that standardize the manner in 
which peers discover each other, self-organize into peer groups, advertise and 
discover network resources, communicate and monitor each other. 

3.3 Summary 

The analysis of a problem and introduction of the layers allowed 
identification and discussion about the more or less partial and relevant 
solutions. This section gave a view how the issues are addressed by current 
techniques, which of them are solved and which still remain unaddressed. 

Basing on a knowledge of the existing solutions the emerging system 
may utilize them in order to fulfill specific requirements. Moreover, system will 
focus on challenges that are poorly covered in the current status. 
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Chapter 4  
Concept of the leMonAdE 
Monitoring System 

In the present chapter the detailed goals of this thesis are specified. These goals 
are to be achieved with an emerging monitoring system, namely leMonAdE. The goals 
induce the requirements along with the general concept on how to fulfill them in a given 
technological background. The further subsections are devoted to the detailed 
description of the concept of leMonAdE monitoring system. 

A concept presented in this thesis addresses generally Java-based 
applications. Afterwards, upon instrumentation and exposition techniques 
foundation the concept is extended in order to support Mocca framework 
applications over grid fabric.  

The concept addresses requirements that determine practical usefulness  
and wide applicability of an emerging solution. Requirements bear in mind 
software engineering process that the concept has to fit in and efficiently 
improve. The requirements imposed are to ensure that emerging system will be 
as much as it is possible reusable and adaptable with other solutions and 
technologies. 
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4.1 Detailed goals 

The present section provides the enumeration of detailed goals that are 
to be addressed by a monitoring system. The goals are individually motivated 
and explained as follows: 

− Separation of business logic and monitoring concern. From the 
application development perspective the crucial is a requirement of no 
involvement of monitoring concern in course of application development. 
The fundamental intention of this work is to eliminate monitoring-related 
code disrupting the application business logic implementation. 

− Adherence to existing standards and specifications. The solution is 
expected to remain universal as long as it's possible, by adhering to 
specifications and standards. Since there exist instrumentation and 
exposition techniques which are said universal, that rely solely on general 
specifications, they may be successfully employed in whole Java world no 
matter what application model, framework or architecture is applied. 
Although access layer by definition strongly adheres to the architecture of 
application, tools layer may cover underlying application model owing to 
some well-specified interface between monitoring infrastructure and 
monitoring tool. Nonetheless, access layer being the one who is to be 
aware of actually employed application model has address to CCA model. 

− Introspective monitoring. The solution has to assist application developer 
and executor in low-level introspection monitoring while testing 
debugging, validating profiling applications. It has to be usable to monitor 
running application from the developer’s point of view. It is to monitor 
how application works in terms of programming model, language and 
paradigms. 

− Monitoring of high-level business logic. Nonetheless, monitoring has to 
provide means for high-level business logic monitoring. It has to enable 
developer to instrument application with some additional behavior that 
will expose monitoring and management valuable information. A custom 
monitoring intelligence is to be of the developer's choice and may be 
responsible for e.g. extraction of intermediary results or tracing the status 
of executed application. High-level business logic monitoring is to monitor 
how application works in terms of problem domain. 

− Dynamic instrumentation. Monitoring aspect should be dynamically 
pluggable at the runtime and easy to enable and disable repeatedly in 
order to do not constantly affect performance. It implies hot-plugging and 
hot-unplugging into running application. 
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− Agile adaptation. For a developer's convenience the emerging solution 
has to be well coordinated with existing techniques, and as much as its 
possible free of external dependencies. Then, the adaptation of target 
application code and development environment in order to enable 
monitoring will become effortless. 

− Monitored application model. Another issue to address is monitored 
application model based on CCA specification. A formal description 
model is necessary since application instrumentation specification has to 
refer to the application architecture. Application model has to constitute a 
space for place contexts denoting which architectural part of application the 
monitoring event is related to. 

− Minimizing overhead. The crucial factor that determines usability of a 
monitoring system is the overhead that is introduced. One of the method 
of minimization that was already mentioned is a dynamic instrumentation 
which makes monitoring pluggable so that overhead is introduced only 
when the monitoring is turned on. The emerging solution has to employ 
only efficient mechanisms. 

− Security. While designing monitoring system security issue has to be 
borne in mind. Although emerging solution is not expected to implement 
security concern, but rather to take into consideration plugging custom 
security modules into it on the design stage. 

4.2 The name of the system 

The emerging monitoring system was named leMonAdE that stands for 
Agile Monitoring Adherence Environment. The terms used in its name reflect 
concept along with characteristics expected from such a system: 

− Agile – not imposing application framework, well coordinated with 
existing technologies, (as much as it’s possible) free of external 
dependencies and effortlessly employable 

− Adherence – not requiring adaptation of target application code and easy 
to employment in the case of already existing applications, rather 
adherable than application-intrusive, adhered to standards and 
specifications 

− Environment – providing a monitoring utilities toolset. 
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4.3 Concept Overview 

Roughly explained, the concept consists of several ideas. Each idea 
addresses one of the layer of a reference monitoring system architecture. On 
instrumentation layer, in general, the Aspect-Oriented Programming paradigm 
are to be supported by dedicated custom class loader, namely Aspect-Oriented 
Class Loader (AOCL) that is presented in section 4.4. Instrumentation will rely 
on bytecode weaving of a base application code with a code of the aspects. Such 
the aspects are named Monitoring Aspects and are further discussed in section 
4.5. On the exposition layer, the Monitoring Aspects instances are to be 
monitoring-enabled entities instrumented as MBeans. Such the aspects 
registered in MBeanServer will expose the remote interfaces as it is described in 
details in section 4.6. The client stubs for accessing remote aspect MBeans are to 
be contained in Aspect-Oriented Class Loader Registry as explained in section 
4.7. Over the registry the monitoring tools may emerge that will support the 
aspect-based monitoring of an application as said in details in section 4.11.  

The concept may be adopted in Mocca framework and Moccaccino 
Manager and as shown in sections 4.8 and 4.10. In particular, it may take 
advantage of the idea of Architecture Description Language for Moccaccino 
which is presented in section 4.9. 

How the above described ideas map on architecture is shown in Figure 2. 
The subsequent sections present successively the ideas layer by layer. 

Monitored process

Aspect-
Oriented 

ClassLoader

Instrumentation Layer Exposition Layer

Aspect-
Oriented 

ClassLoader 
Registry

Access Layer

Monitoring
Tool

Tools Layer

Monitoring process

Running 
code

Monitoring 
Aspects

JMX 
Interfaces

 

Figure 2. The ideas involved in a monitoring system concept spread over the reference 
monitoring system architecture. 

4.4 Aspect-Oriented Class Loader 

This work is intended to fit well in Java platform, therefore it should be 
pluggable in the well-defined extension points that Java platform defines. One 
of them is as custom class loading policy [40]. Custom class loaders define the 
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manner in which JVM dynamically loads classes, and in the same time 
constitutes classes' namespace context.  

Thanks to custom class loader providing classes' bytecodes from 
arbitrary, even remote location may be achieved. Particularly, it may handle on 
demand loading of foreign bytecode that is to be woven with application base 
code. Moreover, as long as class loaders preserve class namespaces, bytecode 
transformation may be scoped to the classes loaded by particular classloader 
without interfering other classes. This introduces isolation, which is especially 
significant in the case of  middleware containers. Basing on one of the aspect 
frameworks, such a custom class loader may provide a functionality of aspect 
weaving and may enable convenient and easy to employ tools for aspect-
oriented programming. The concept of Aspect-Oriented Class Loader (AOCL) 
exceeds beyond monitoring targets, and may be utilized as a generic AOP 
utility, nevertheless, it is particularly suitable for monitoring use [8]. As long as 
Java object is given with a reference to a class loaded, it provides aspect object 
with the AOCL context information. If so application context and space context 
information may be contained in AOCL instance. By encapsulating all the 
instrumentation functionality within custom class loader, it is easy to adapt 
middleware containers by simply replacing appropriate class loader with 
AOCL or by extending class loader hierarchy by AOCL as shown in Figure 3. 

 

Figure 3. Middleware container adopted to support Aspect-Oriented Class Loader 
instrumentation features. 

Owing to bytecode instrumentation techniques AOCL-like 
instrumentation affects solely containers without reengineering of application 
source code. However, AOP frameworks are bound with their own Join-Point 
Model. This in fact puts restrictions for the foreign code to be inserted only in 
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defined join points, therefore, developer has to bear in mind the Join-Point 
Model while developing aspect code.  

4.5 Monitoring Aspects 

AOCL enables deployment of aspects of every kind, accomplishing 
unrestricted variety of functionalities and, in particular, monitoring. 

The monitoring aspect is a stateful entity that is not limited to emitting 
out notifications in a sensor-like manner. Since it is stateful it may contain some 
monitoring intelligence and may process interception according to some 
business logic. Such a monitoring aspect acts rather like a monitor, because it is 
able to provide information of higher level of abstraction, to handle queries and 
operation invocations. It may be as well containing some static context 
information that  are passed while instantiating to aspect instance, as well as 
dynamic context information that is programmatically accessible via variables 
within advice method bodies. 

In contrary to monitoring aspects the ordinary foreign code is acting like 
a sensor. It is a stateless behavior, not managed and devoid of dynamic context, 
therefore, is not able to enable non-trivial processing. It may solely forward 
interceptions by emitting out notifications. Moreover, it cannot handle queries 
and operation invocations. Comparison of sensor-like and monitor-like 
instrumentation is depicted in Figure 4. 

 

Figure 4. Comparison of sensor-like and monitor-like instrumentation.  
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4.6 JMX Interface 

In order to make aspects monitorable and manageable from remote 
location JMX technology is suitable and was successfully employed in several 
similar solutions [41]. 

The concept lies in making both AOCL and aspects manageable via JMX 
by making their classes MBeans. In a particular case of standard MBeans it 
imposes solely, besides reasonable, design pattern and naming convention of 
remote interfaces. Having MBeans registered in so-called MBeanServer, some of 
their features such as attributes, operations and notification are exposed. JMX 
clients may then connect MBeanServer and access features of registered 
MBeans. 

Which class’ attributes and operations are to be exposed depends on 
MBean type. In a basic standard MBean it is determined by a corresponding 
MBean remote interface, which name is imposed by a convention by adding 
MBean suffix to the MBean implementation class name. 

AOCL may expose management interface containing operations related 
to AOCL configuration, codebase locations, aspect deploying,  aspect 
destroying, setting context information etc. Moreover, it may expose some 
valuable information via MBean’s attributes. What is more, each aspect may 
expose its own arbitrary set of attributes and operation and may emit out 
notification of its choice towards the subscribers. 

MBeanServer ensures secure access from remote parties by supporting 
pluggable security management, that addresses issues of unauthorized access 
and information confidentiality. JMX is another well-defined extension point of 
JVM that fully relies on standard specifications. 

4.7 Aspect-Oriented Class Loader Registry 

Having MBeans registered in MBeanServer connected clients may 
request for MBean attributes, operations and notifications. Such a client may be 
ordinary JMX consoles as well as more elaborate tools, or custom clients built 
upon JMX API. 

Basing on this API AOCL's MBean client stub can be developed and 
considered as a monitor plugged to corresponding AOCL, namely AOCL 
Monitor. Such a monitor may provide access not only to AOCL itself, but as 
well to all the aspect deployed in a scope of given AOCL. 
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Since usually a number of AOCLs would be involved in application 
execution they has to be registered in one or more MBeanServers distributed in 
grid environment, each per one JVM. The application managers may then 
maintain dedicated registry providing AOCL Monitors, one per each AOCL. 
Regarding to AOCL specification, all that AOCL Registry needs is the 
MBeanServer address and AOCL's unique object name. Basing of such AOCL 
Registry monitoring tools have access to all registered AOCLs and aspects in 
their scope. 

4.8 Adaptation of Mocca Framework 

The aforementioned concepts may be applied e.g. to Mocca framework 
which will result in monitoring-enabled Mocca edition. However, it is worth to 
emphasize that they can be applied to other framework as well. Since this work 
is focused on component-based applications the Mocca framework will be 
addressed. The instrumentation of Mocca framework can be carried out as like 
in the case of any other Java-based framework by replacing appropriate class 
loader with AOCL. 

4.9 Architecture Description Language for 
Moccaccino 

Among Architecture Description Languages (ADLs) [11] for component-
based architectures ADL for Moccaccino (ADLM) [4] can be distinguishes as a 
language dedicated to CCA. ADLM introduces a concept of qualitative 
component diagram that focuses on component groups and their (possibly 
multiple) connections, rather than on individual component instances and 
actual connections multiplicity. It allows architecture modelers dealing with a 
higher level, concise, easy to refactor UML-like diagram instead of overgrown 
and inconvenient component instances' map (see: Figure 5). ADLM is a textual 
representation of Application Object Model which is the API incorporated into 
Moccaccino Manager for modeling application architecture programmatically. 
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Figure 5. Concise qualitative component diagram of ADLM (a) that is resolved to the plain 
component diagram (b). 

Sample component application architecture of Figure 5 may expressed in 
ADLM format  as shown in User Manual in Code Snippet 28. 

4.10 Extensions to Moccaccino Manager 

As mentioned earlier, application managers are obliged to maintain 
AOCL Registry. Therefore, each time they request instantiation of AOCL they 
have to add it in the registry. In the case of Moccaccino Manager, Application 
Handler is an entity responsible for handling running application component 
instances and may accept as well responsibility of AOCL Registry. 

Moreover, component deployment activity has to be changed as long as 
it has to take care of a proper configuration and initialization of AOCL. 
Component deployment request has to include the configuration of AOCL 
within which component instance would be deployed. The role of the AOCL 
configuration provider has to be fulfilled by dedicated Instrumentator module. 
From the one hand it has to take as an input instrumentation specification on 
the application level, from the other it has to return concrete configurations for 
AOCLs that correspond to component instances. Such a configuration should 
contain e.g. application and place context information. Application 
Instrumentation Specification for Moccaccino (AISM) may be expressed in an 
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XML-based format that refers to architectural parts of application as described 
in the ADLM document. 

4.11 Monitoring Tools 

Monitoring utilities toolkit will be provided as a set of ready-to-use 
generic aspects which could be deployed, managed and monitored by any of 
third party's JMX consoles. Moreover, more tailored JMX-based consoles will 
take advantage of AOCL Registry in order to enable simultaneous monitoring 
of all distributed AOCLs involved in application. Such aspects toolkit is 
intended to assist in introspection monitoring. 

Besides using ready-to-use generic aspects, developers are allowed 
extending them or even create from scratch custom aspects. Custom aspect 
provided by developer may realize monitoring functionality on higher level of 
abstraction. 
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Chapter 5  
Design and Implementation  
of the leMonAdE Monitoring 
System 

This chapter provides more insightful view in the monitoring system concepts 
and shows how this concepts were realized. The following subsections present an 
architecture of a system, detailed design and discuss implementation issues. This 
chapter is organized regarding to subprojects that has been carried out in scope of this 
work: leMonAdE AOCL which constitutes a core of the monitoring system, Mocca 
leMonAdE edition that incorporates monitoring capabilities into Mocca framework, 
Moccaccino leMonAdE edition that supports management of monitoring-enabled 
Mocca application and an Eclipse IDE plug-in that provides UI for monitoring-enabled 
Moccaccino manager. 

Since architecture, generally, follows proposed reference architecture, 
design is divided into four above described layers as it is depicted in Figure 6. 
Detailed design has been carried out separately for each layer. 
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Figure 6. Overall general architecture of the monitoring system. 

Therefore, design is divided into several subprojects: 

− leMonAdE AOCL – core subproject that provide full functionality of 
instrumentation, exposition and access layer to utilize in arbitrary Java-
based application model as it is not specific to any.  

− Mocca leMonAdE edition – Mocca framework adopted to support 
leMonAdE, introducing AOCL. 

− Moccaccino leMonAdE edition – Moccaccino Manager adequately 
modified in order to support Mocca leMonAdE  edition. 

− Moccaccino leMonAdE edition Eclipse plug-in – introduces UI to 
Moccaccino leMonAdE edition functionality in a form of Eclipse IDE plug-
in for Mocca application developers’ convenience. 

Dependency between above enumerated subprojects is that  both Mocca 
leMonAdE edition and Moccaccino leMonAdE edition uses leMonAdE AOCL 
libraries. Moreover, Moccaccino Manager obviously requires Mocca framework 
libraries while Eclipse plug-in relies on Moccaccino libraries. 

5.1 leMonAdE AOCL 

5.1.1 Instrumentation Layer 

Obviously, AspectOrientedClassLoader class is a subclass of 
java.lang.ClassLoader. The overridden method loadClass performs 
seeking class' bytecode in dynamically added locations such as remotely staged 
jar file or local file system path.  

Seeking of class bytecode is delegated to BytecodeProvider class 
which is composed into AspectOrientedClassLoader class. Currently, it 
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performs seeking in either local file system path or in arbitrary located jar file 
under given URL that is resolvable. 

What is crucial, class loaders are to be arranged hierarchically. It means 
that class' bytecode seeking must be first delegated to the parent. This prevents 
from loading the same class twice in distinct class loader what causes 
incompatibility of such loaded classes. 

As an aspect framework the AspectWerkz was chosen as the one best 
fitting in the requirements. It enables runtime bytecode weaving, provides 
comprehensive Join-Point Model along with powerful and straightforward 
pointcut expression language. What is more, it provides programming utilities 
that facilitate aspect development (e.g. annotations-driven development). It is 
constantly improved, well documented and successfully employed in several 
solutions. 

AOCL manages zero or more Aspect Deployment Scopes (ADS) which 
actually specify a subset of join-points which are pre-instrumented. They 
restrict join-point space since only pre-instrumented join-points are eligible for 
instrumentation, and therefore prevent from unwished instrumentation and 
injection of disrupting foreign code. 

The join-point subsets of ADSs are expressed in pointcut expression 
language and have to be specified before loading application classes in order to 
perform required pre-instrumentation of join-points while loading application 
bytecode. It is required to do so, as long as pre-instrumentation modifies class 
structure, which is not allowed by modern JVMs to redefine class structure after 
it is loaded. Nonetheless, aspects deployment doesn’t affect instrumented class 
structure and, therefore, it may be performed after the instrumented class is 
loaded. ADS constitutes moreover a logical context within which aspects are to 
be deployed. The role of ADS and its relation with aspects it graphically 
explained in Figure 7.  

 

Figure 7. Aspect Deployment Scopes (ADS) as ones that pre-instrument certain subsets of 
join-point (filled bars denote join-points pre-instrumented by ADSs). Aspects may 

instrument only join-points previously pre-instrumented by ADS that scopes given aspect 
(arrows denote instrumentation by concrete aspects). 
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ADS are designed to be either static, such that having a fixed pointcut 
expression specified before ADS deployment, or parameterized, such that having 
a parameterized pointcut expression specified, whereas the actual pointcut 
expression is resolved at the ADS deployment time, according to the parameter 
values provided. Above mentioned two are represented as distinct subclasses of 
AspectDeploymentScope class. ADS are deployable via AOCL methods. 
Static ADS definition include only a pointcut expression, while parameterized 
ADS are to be provided as a class or as a properly manifested jar file. Such a 
jar file is expected to has manifest file with attribute Aspect-Deployment-
Scope-Class-Name indicating what is a class implementing parameterized 
ADS. 

Deploying ADS requires ADS definition along with the name identifier 
of ADS, moreover, in the case of parameterized ADS it requires as well a 
complete set of parameters values. 
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Figure 8. Class diagram depicting relation between AOCL, BytecodeProvider, ADSs and 

generic aspect. 

Likewise ADS, aspects may be static and parameterized as well. 
Parameterized ADS supports parameterized aspects while static ADS – static 
aspects.  
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In the case of static aspects pointcut are to be either: 

− specified explicitly coded in aspect class annotations, or 

− specified explicitly as parameters passed to the aspect deploy request 

Parameterized aspects, in turn, have pointcuts resolved by ADS 
according to the parameter values: 

− specified implicitly with parameters passed to the aspect deploy request 
while actual pointcut is resolved by parameterized ADS 

Irrespectively, custom configuration parameters organized in key-value 
pairs can be passed to the aspect while deploying. Aspect deploy request is 
performed via ADS methods. 

When DeploymentScopeAwareAspect interface is realized by 
concrete aspect class the reference to encompassing ADS will be injected to its 
instances via setAspectDeploymentScope method call just after aspect 
instantiation. Given with such a reference to ADS aspect may access ADS 
functionality e.g. may undeploy itself. 

For developers’ convenience generic class such as 
UndeployableAspect is provided that realizes 
DeploymentScopeAwareAspect interface and thanks to it may access basic 
information about itself. Aspect developer may use its functionality by simply 
extending this class. 

Reconcilement of AOCL with AspectWerkz requires slight modification 
of AspectWerkz library. By default AspectWerkz instrumentation engine  reads 
configuration related to given class loader when it is requested to load a first 
class. The configuration is extracted from XML document located in well-
known location in local file system. This behavior is found not suitable for 
AOCL since AOCL is intended to be programmatically configurable and it  is to 
store its configuration itself instead avoiding awkward manipulating of local 
file. Furthermore it is reasonable to read configuration from AOCL instance not 
necessarily when first class loading occurs but in arbitrary moment of the 
developer’s choice. It especially applies to parameterized ADS classes which are 
to be loaded by AOCL before loading application classes and are not expected 
to be pre-instrumented. Therefore, the following modification are 
indispensable: 

− AspectWerkz instrumentation engine has to distinguish load class request 
handled by AOCL and other class loaders, 

− In the case of AOCL the configuration is to be read not from local file but 
from AOCL instance configuration, 
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− AOCL configuration has to be read in arbitrary moment of the developer’s 
choice called activation moment: before activation instrumentation engine 
is not supposed do perform any instrumentation, activation causes 
reading configuration and after that all subsequently classes to load are 
properly pre-instrumented according to configuration provided. 

5.1.2 Exposition Layer 

The architecture of exposition layer is shown in Figure 9. Nomenclature 
of JMX layers and reference monitoring architecture layers may cause some 
confusion, so in Figure 9 JMX layers and monitoring system architecture layers 
are clearly decoupled. 

 

Figure 9. Architecture of Exposition Layer with JMX layers depicted and interactions with 
neighbor monitoring system layers. 

Exposition layer in main part consists of JMX-enabled subclasses of 
instrumentation layer classes. Therefore derivatives such as 
JMXAspectOrientedClassLoader, 
JMXStaticAspectDeploymentScope, 
JMXParameterizedAspectDeploymentScope along with other helper class 
are present on this layer. Each of above listed classes are instrumented as 
standard MBeans, thus each of them has a corresponding MBean interface. 
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cd jmx

AbstractAspect

«interface»

AbstractAspectMBean

JMXAspectOrientedClassLoader
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JMXAspectOrientedClassLoaderMBean

JMXParameterizedAspectDeploymentScope

«interface»

JMXParameterizedAspectDeploymentScopeMBean

JMXStaticAspectDeploymentScope

«interface»

JMXStaticAspectDeploymentScopeMBean
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aocl::AspectOrientedClassLoader
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AspectDeploymentScope

aocl::StaticAspectDeploymentScope

 

Figure 10. Core classes of JMX-enabled AOCL (marked as colored) as derivatives of 
corresponding AOCL classes (marked as white). 

There is also provided 
JMXAspectOrientedClassLoaderConfiguration class (see: Figure 10) 
responsible for JMXAspectOrientedClassLoader initialization. 
Configuration may be specified via 
JMXAspectOrientedClassLoaderConfiguration methods or may be 
read form XML document such as presented in Code Snippet 1. 
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<?xml version="1.0" encoding="UTF-8"?> 

 

<jmxaocl name="myapp" domainName="org.foo.myapp"> 

 

 <jarUrl> 

  file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-app.jar 

 </jarUrl> 

 

 <staticADS name="staticADS" 

  pointcutExpression="execution(* java.lang.Runnable+.*(..))"> 

 

  <staticAspect name="staticAspect" 

   class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8" 

   jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar"> 

   <pointcut name="myPointcut" 

    expression="execution(* java.lang.Runnable+.*(..))" /> 

   <parameter name="author" value="me" /> 

   <parameter name="date" value="today" /> 

  </staticAspect> 

   

 </staticADS> 

 

 <parameterizedADS name="parameterizedADS" 

  class="ec.aocl.sample.scope.MethodTracerAspectDeploymentScope" 

  jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-

scope.jar"> 

  <pointcutParameter name="packageScope" 

   value="pl.edu.agh.lemonade.aocl.sample.app" /> 

 

  <parameterizedAspect name="parameterizedAspect" 

   class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect7" 

   jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar"> 

   <pointcutParameter name="callerMethodName" 

    value="void 
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()" /> 

   <pointcutParameter name="calleeMethodName" 

    value="void 

pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()" /> 

   <parameter name="author" value="me" /> 

   <parameter name="date" value="today" /> 

  </parameterizedAspect> 

 

 </parameterizedADS> 

 

</jmxaocl> 

Code Snippet 1. Sample XML-based document expressing configuration of 
JMXAspectOrientedClassLoader. 

Aspect developer is given with generic AbstractAspect class to 
extend. It provides basic functionality and exposes MBean interface of 
AbstractAspectMBean. Since AbstractAspect is a standard MBean is has 
to comply naming convention and specific inheritance pattern shown in Figure 
11: concrete aspects that extends AbstractAspect has to be provided with 
corresponding MBean interface that extends abstract aspect’s MBean interface. 
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Figure 11. Aspect inheritance according to standard MBean convention. 

5.1.3 Access Layer 

As noticed earlier on the application manager’s side AOCL Registry has 
to be maintained as long as it provides client stubs for AOCLs. Such a registry 
instances of AOCLDescriptor class, each per corresponding AOCL. 

AOCLDescriptor contains information such as AOCL configuration, 
AOCL MBean's object name and address of MBeanServer where AOCL is being 
registered. On the other hand, AOCLDescriptor acts like factory which creates 
on demand instances of AOCLMonitors. 

AOCLMonitor is a local handle which maintains connection to the 
corresponding remote AOCL. A logical tree structure that AOCLs, ADSs, and 
aspects are arranged to is reflected in monitors structure. Thus AOCLMonitors 
keep references to corresponding ADSMonitors which, in turn, keeps 
references to AspectMonitors (see: Figure 12). 
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Figure 12. Diagram of classes involved in AOCL Registry. 

5.2 Mocca leMonAdE Edition  

Adaptation of Mocca-enabled H2O container is realized merely by 
providing additional JVM arguments required by AspectWerkz library at H2O 
startup. Mocca itself, was altered solely  in 
mocca.srv.impl.MoccaComponentPlugletImpl class. The modification 
affects mainly initialization of component pluglet, so that AOCL configuration 
given as an initialization parameter is read and according to AOCL is then 
instantiated. Finally, AOCL is let to be the one to load component class. The 
extended class loader hierarchy is depicted on Figure 13. In this way, every 
component instance is associated with exactly one corresponding AOCL 
instance. 
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Figure 13. Inherited, added and modified items in Moccaccino Manager’s data flow (a). 
Extended class loader hierarchy within H2O/Mocca container (b). 

5.3 Moccaccino leMonAdE Edition 

In Figure 13 (a) all the inherited, added and modified items in 
Moccaccino Manager's data flow are depicted. New Instrumentator module is to 
make an Application Instrumentation Plan from XML-based AISM language, that 
is used by Deployer module while deploying application. The result of 
deployment is Application Handler that is enriched with AOCL Registry that 
contain records for each AOCL involved in application run. The classes 
involved in application instrumentation are depicted in Figure 14. 
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Figure 14.  Classes involved in application instrumentation within Moccaccino leMonAdE 
edition. 

AISM refers to component groups from ADLM and bind them with the 
AOCL configurations provided as it is presented on Figures Code Snippet 2 and 
Code Snippet 3. 

<component-group name="ping" component-class="Ping" weight="5"> 

  <connection usesPort="pongs" qualifier-attribs="length=2"  

   providesPort="PongPort" weight="5" shared="false"> 

    <component-group name="pongs" component-class="Pong" weight="5"> 

      <connection usesPort="zonks" qualifier-attribs="keys=one;two"  

       providesPort="ZonkPort" weight="5" shared="false"> 

        <component-group name="zonks" component-class="Zonk" weight="5"/> 

      </connection> 

    </component-group> 

  </connection> 

</component-group> 

Code Snippet 2. Sample application architecture expressed in ADLM. It represents three 
level tree-like structure of sub-workers. 
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<instrumentation userName="someone" password="secret"> 

  <componentGroupInstrumentation> 

     

    <componentGroup name="pongs" /> 

     

    <parameterizedADS>. . .</parameterizedADS> 

    <staticADS>. . .<staticADS> 

    <jarUrl>. . .</jarUrl> 

    <classpath>. . .</classpath> 

 

  </componentGroupInstrumentation> 

</instrumentation> 

Code Snippet 3. Sample application instrumentation expressed in AIS as it refers to the 
ADLM application architecture presented on Figure Code Snippet 2 in order to bind pongs 
component group with given AOCL configuration. The inessential AOCL configuration 

details are omitted. 

5.4 Tool Layer 

As a sample monitoring tool prototype the Eclipse plug-in for 
monitoring-enabled Moccaccino manager has been developed. It is actually 
based on Eclipse-JMX [20] adapted for management of distributed MBeans 
registered in multiple MBeanServers. 

As stated recently, access layer introduces AOCLRegistry that stores 
monitors associated with corresponding to AOCLs, ADSs and aspects. In UI 
layer these entities are easy to arrange in tree-like structure owing to 
AbstractMonitor class that is generalization of all above enumerated 
monitors as shown in Figure 15.  Each AbstractMonitor has 
MBeanServerConnection, object name, MBeanInfo, as well as parent and 
children monitors. Such a data structure fully enabled monitoring and is easy to 
apply in custom graphical JMX console. 
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Figure 15. AbstractMonitor data structure to apply in graphical JMX consoles dedicated to 

AOCL registry. 

Basing on AbstractMonitor structure and Eclipse-JMX console the 
Moccaccino leMonAdE edition Eclipse plug-in was developed. It is presented in 
Figure 16. 

 

Figure 16. Screenshot of a Moccaccino leMonAdE edition Eclipse plug-in in work. 
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5.5 Implementation summary 

The software developed in a scope of this work include four subprojects, 
all developed in pure Java programming language. Development process 
generated about 110 classes of 15 packages contained in 4 projects. The 
examples and sample application was developed as well. The main external 
technologies harnessed in the system was: 

− AspectWerkz AOP library 

− Java Management Extensions (JMX) 

Moreover, realization of concept imposed the slight modification of 
AspectWerkz library. The overall number of 15 of external libraries was used. 



Chapter 6: leMonAdE Monitoring System Performance Analysis 

- 57 - 

Chapter 6  
leMonAdE Monitoring System 
Performance Analysis 

This chapter gives answers on how the solution developed meets the performance 
requirements. The following subsections explain tests methodology, discuss the results 
obtained and estimates usability of a solution. 

The preliminary experiments with a prototype are intended to 
investigate the overhead introduced by leMonAdE instrumentation as 
compared to the source code instrumentation technique. The values to measure 
are the overhead introduced by AOCL itself, by bytecode instrumentation and 
by the notification emitted out. Moreover, not only instrumentation overhead is 
to be measured. Since dynamic aspect deployment is allowed only in pre-
instrumented (at class load time) join-points, the impact of such a pre-
instrumentation on bytecode performance has to be estimated. The detailed 
description of the test methodology is explained in section 6.1.  

The test application was a simple stand-alone Java application 
performing millions of simple numerical floating-point or integer 
computations. The computations were arranged either in loops nested in 
recursive calls or in recursive calls nested in loops, in order to investigate how 
stack dynamicity affects performance overhead. Section 6.2 is devoted to 
deepened insight into the test application. 

Performance test application along with performance test suites are 
incorporated into leMonAdE AOCL distribution so that developers can carry 
out tests out of a box in production environments on every platform. Moreover, 
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there are dedicated Ant targets provided in order to facilitate test suite 
executions. Further details on how the test suites are designed are covered by 
section 6.3. Sample runs of the test suites that has been carried out are described 
in section 6.4 and discussed in section 6.5. 

6.1 Test methodology 

The subsequent experiment runs were carried out according to the 
following scheme (also shown in Figure 17):  

− Test application with no instrumentation – base application (run I) 

− Test application with source code instrumentation 

− with instrumentation not involving JMX notifications emitted out 
(run II) 

− with instrumentation involving JMX notification emitted out (run III) 

− Test application with leMonAdE instrumentation 

− only with AOCL used as an application class loader (run IV) 

− with AOCL and pre-instrumentation of ADS (run V) 

− with AOCL, pre-instrumentation of ADS and instrumentation by an 
aspect (run VI) 

− with AOCL, pre-instrumentation of ADS and instrumentation by an 
aspect with JMX notification (run VII) 
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Figure 17. Test runs scheme. Separate runs of base test application (I), application with 
source code instrumentation (A: II, III), with leMonAdE instrumentation (B: IV, V, VI, VII). 
Separate runs for instrumentation with (III, VII) and without notifications (II, IV, V, VI) 

emitted out. 

Moreover, the test application is to perform variable number of 
computations in order to estimate linear approximation of overhead 
introduced. On the other hand, in order to find out whether and how stack 
dynamicity affects the overhead, the test application performs computations 
arranged in either: 

− loops nested in recursive calls or 

− recursive calls nested in loops 

What is more, in the test application interception overhead has to be 
compared to the time consumed by sample standard computations such as 
simple floating-point computation (e.g. sin(x)) or integer computation (e.g. 50!). 
Therefore, in the test application each call to the method performing one of the 
aforementioned computation are to be instrumented so that we have one 
interception per one computation such as sin(x) and 50!. 

Given with a test methodology a suitable test application is presented in 
the subsequent section. 



Chapter 6: leMonAdE Monitoring System Performance Analysis 

- 60 - 

6.2 Test application 

The test application is a stand-alone Java application that performs 
simple computation, but arranged in a specific way. As shown in Code Snippet 
4 the actual computation is performed in instrumentedMethod() body, 
while the rest of the methods just arrange computation either in loops nested in 
recursive calls or in recursive calls nested in loops. 

doIterationsWithinRecursion(recursionTimes, iterationTimes) { 

  if (recursionTimes > 0) { 

    for (i = 0; i < iterationTimes; i++) instrumentedCall(); 

    if (recursionTimes > 1)  

      doIterationsWithinRecursion(recursionTimes-1, iterationTimes); 

  } 

} 

doRecursionWithinIterations(iterationTimes, recursionTimes) { 

  for (i = 0; i < iterationTimes; i++) this.doRecursion(recurionTimes); 

} 

doRecursion(times) { 

  if (times > 0) instrumentedCall(); 

  if (times > 1) this.doRecursion(times - 1); 

} 

instrumentedMethod() { 

  simple-floating-point-or-integer-calculation; 

} 

Code Snippet 4. Test application pseudocode. Measured was a time consumed for calls 
doIterationsWithinRecursion() and doRecursionWithinIterations(). 

Since the instrumentedMethod() is to be instrumented, in a source 
code instrumentation case its body will look like in Code Snippet 5. 
Instrumentation involves counting of calls to instrumentedMethod() and 
(additionally in the case of test run III) sending notification about count 
attribute changed. 

instrumentedMethod() { 
  // instrumentation goes here 
  count++; 

 
  // notification is sent below 

  sendCountChangedNotification(count); 
 

  simple-floating-point-or-integer-calculation; 

} 

Code Snippet 5. Test application pseudocode of  method instrumentedMethod() with 

source code instrumentation that counts number of calls and sends JMX notification about 
count attribute changed. Test cases will measure instrumentation overhead with (run III) and 

without (run II) notifications sent. 

As stated above, in the instrumentedMethod() body some simple 
computation are performed, either: 
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− floating-point computation of sin(x) or 

− integer computation of 50! 

In the case of test run VI application is instrumented with an aspect 
shown in Code Snippet 6 that performs logically the same operations as source 
code instrumentation in the case of run II. 

Similarly, in the case of test run V the aspect used that is shown in Code 
Snippet 7 is logically equivalent to the source code instrumentation of run III 
that is presented in Code Snippet 5. 

@Aspect 

public class PerformanceTestAppAspect implements PerformanceTestAppAspectMBean, 

  DeploymentScopeAwareAspect { 

 private int count = 0; 

 

 @Around("execution(void 

pl.edu.agh.lemonade.aocl.sample.app.PerformanceTestApp.doSth())") 

 public Object monitor(StaticJoinPoint jp) throws Throwable { 

  this.count++; 

  return jp.proceed(); 

 } 

 

 public int getCount() { 

  return this.count; 

 } 

} 

Code Snippet 6. Aspect that instruments the sample application in the case of test run VI – 
without JMX notifications sent. 
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@Aspect 

public class PerformanceTestAppAspect2 extends NotificationBroadcasterSupport 

  implements PerformanceTestAppAspect2MBean, DeploymentScopeAwareAspect, 

  NotificationBroadcaster { 

 private int count = 0; 

 

 @Around("execution(void 

pl.edu.agh.lemonade.aocl.sample.app.PerformanceTestApp.doSth())") 

 public Object monitor(StaticJoinPoint jp) throws Throwable { 

  this.count++; 

  Notification not = new AttributeChangeNotification(this, this.count, 

    System.currentTimeMillis(), "", "count", "int", 

this.count - 1, 

    this.count); 

  this.sendNotification(not); 

  return jp.proceed(); 

 } 

 

 public int getCount() { 

  return this.count; 

 } 

} 

Code Snippet 7. Aspect that instruments the sample application in the case of test run VII – 
with JMX attribute changed notifications. 

In order to facilitate launching of the test application with accordance to 
the test methodology dedicated test suites were developed and are presented in 
the following section. 

6.3 Test suites 

The test suites are included in the leMonAdE distribution and follow the 
above assumed methodology. They organize test application runs as it is shown 
in pseudocode in Code Snippet 8. 

There are two complementary suites: 

− First, performing test run I where the base application is run, and test runs 
II-III where the application is run with source code instrumentation  

− Second, performing test runs IV-VII involving leMonAdE 
instrumentation. 

For both of the above mentioned two dedicated ant targets shown in 
Code Snippet 9 are included in build.xml file. 
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for each computation times in (9 000 000, 10 525 500, 12 250 000, 14 062 500, 
16 000 000) do 

  for each computation type in (sin(x), 50!) do 

    for each application run in (I, II, III, IV, V, VI, VII) do 

      for each computation stack characteristics in (iterations within recurion, 

recursion within iterations) do 
  run sample application(computation times, computation type, 

application run, computation stack characteristics) 

Code Snippet 8. Test suite pseudocode. 

<target name="ptest0" depends="jar"> 

  <java 

classname="pl.edu.agh.lemonade.aocl.sample.start.PerformanceTestSuiteNoAOCL" 

fork="true"> 

   <classpath location="${lemonade.aocl.jar.name}" /> 

   <classpath location="${lemonade.sample.app.jar.name}" /> 

  </java> 

 </target> 

 

 <target name="ptest1" depends="jar"> 

  <java 

classname="pl.edu.agh.lemonade.aocl.sample.start.PerformanceTestSuiteAOCL" 
fork="true"> 

   <classpath refid="lemonade.aocl.run.classpath" /> 

   <jvmarg value="-javaagent:${lemonade.aocl.jar.name}" /> 

   <jvmarg value="-Dcom.sun.management.jmxremote.port=1234" /> 

   <jvmarg value="-

Dcom.sun.management.jmxremote.authenticate=false" /> 

   <jvmarg value="-Dcom.sun.management.jmxremote.ssl=false" /> 

  </java> 

 </target> 

Code Snippet 9. The ant targets dedicated to launch performance test suites: ptest0 target 

dedicated to suit that cover test runs I-III, ptest1 target dedicated to suit that cover test runs 
IV-VII. 

The above described suites are ready to run evermore, in each and every 
environment. The following section provides sample results obtained in one of 
the tests that have been performed. 

6.4 Sample results 

This section is devoted to a test that was carried out with Java HotSpot 
Client VM (build 1.5.0_11-b03, mixed mode) on PC-class node: 

− Processor Intel Pentium M 1.73 GHz, 2MB cache 

− RAM 1GB 795 MHz 

Both complementary test suites were launched 5 times each, in order to 
obtain complete result set that was subsequently put into tables and plotted as 
presented in Figure 18. 
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Table 5. Time consumed by computations regarding to computation type, computation stack 
characteristics, number of computations and instrumentation, in seconds. 
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Figure 18. Sample test cases run results served in a form of charts: four  upper  charts plot 
results from each run (I-VI) for each computation type and stack characteristics, next four in 
below visualize the same results but are focused on runs that do not involve notifications (I-

II, IV-VII) for the readability reasons. 
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6.5 Analysis of results 

The results obtained in the previous section and collected in Table 5 gave 
a view of how leMonAdE affects performance of application. A difference 
between time consumed by instrumented application in runs II-VII and 
corresponding base application run I is considered as the overhead introduced 
by instrumentation. Given with results taken from Table 5 the differences were 
calculated and put into Table 6. 

 

Table 6. Overhead regarding to computation type, computation stack characteristics, number 
of computations and instrumentation, in seconds. 

Assuming that the overhead of each application run is linear with respect 
to computation times, the a and b factors of f(x)=ax+b relation were estimated 
and contained in Table 7. 

 

Table 7. Linear approximation of a dependency between number of computations and 
overhead introduced, factor a is measured in seconds per thousand computations, factor b is 

measured in seconds. 
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The result obtained may be concluded as follows: 

− In the case of instrumentation without notification the overhead 
introduced was expected to be independent of stack characteristics due to 
JVM feature of inliling of method calls introduced by aspects. It was 
confirmed by the measurement as can be seen in column 2 and 4 of Table 
7. 

− The overhead introduced by instrumentation was expected to be 
independent of the base application type due to fact that there is the same 
instrumentation in both cases. The accuracy of experiment does not allow 
to definitely confirm this expectation. 

− Pre-instrumentation overhead is very similar to the overhead of source 
code instrumentation (again, due to inlining). 

− Pre-instrumentation overhead varies between 0,002 and 0,05 microseconds 
per interception, and does not induce noticeable overhead to the 
application execution time. 

− Instrumentation with aspects induces overhead which is 2 orders of 
magnitude greater than in the case of source code instrumentation. 
Additional time is consumed by AspectWerkz library when the advice is 
executed since it involves instantiation of JoinPoint object, calling advice 
method, which in turn calls instrumented method using refection API.  

− In the case of aspect-based instrumentation with notifications the major 
part of overhead is introduced by JMX itself. 

− The overhead introduced by aspect-based instrumentation with 
notifications is about 1,5-3 times grater than in the corresponding case of 
source code instrumentation with notification. 

− Replacing ordinary class loader with AOCL induces negligible overhead 

− Instrumentation with aspects with notifications in the function of 
computation times manifests large fluctuations so linear approximation 
does not apply in the measured range. It is more reasonable to extract an 
average of about 1 microsecond per interception as an approximation of 
the overhead. It may be implied by JMX policy in delivering notifications 
(e.g. buffering). 

The results obtained proved that the pre-instrumentation overhead is 
insignificant and is optimized by JVM. In exchange the application is enabled to 
be dynamically instrumented with pluggable aspects. The overhead of simple 
instrumentation without notifications is 2 orders of magnitude greater than in 
the case of source code instrumentation, however does not require stopping 
application and recompilation as in the case of source code instrumentation. 



Chapter 6: leMonAdE Monitoring System Performance Analysis 

- 68 - 

Moreover, once deployed, aspect may be undeployed so it no longer causes the 
instrumentation overhead. Notification sent by aspect-based instrumentation 
causes overhead 1,5-2,5 times greater than in the case of source code 
instrumentation, although since aspect may store its state it is enabled to emit 
coarse-grained notifications, or since it is an MBean it may switch to the 
request-response on demand information exchange mode. 

It is also important to note that the overhead introduced by aspect 
instrumentation with notifications remains at the order of microseconds which 
become negligible after introducing network layer where latency is at the order 
of milliseconds. 

The test conducted can be regarded as the “worst case” since in the 
simple application all of operations were instrumented. In real life scenarios the 
ratio between instrumented code will be orders of magnitude lower resulting in 
significantly smaller overhead to the application execution time. 
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Chapter 7  
Summary and Future Work 

The main goal of this work which was development of a system for a 
monitoring of component-based application was successfully achieved. Since 
this thesis was set in some technological context it addressed Common 
Component Architecture, Java platform, H2O and Mocca frameworks and 
Moccaccino Manager tool. Nevertheless, a monitoring system turns out, in its 
major part, generic and applicable to the wider scope of  Java-based application. 

The monitoring system concept emerged from analysis of current state of 
the art. The ideas were addressing specific issues and were realized by 
employing suitable libraries and techniques available. Design and 
implementation managed to realize the concept. The system accomplished the 
requirements previously identified: 

− Separation of business logic and monitoring concern was achieved by 
taking advantage of AOP paradigm that is implemented by AspectWerkz 
library. As long as AspectWerkz employs bytecode instrumentation it 
overcomes inconvenience of source code instrumentation. 

− Adherence to existing standards and specifications was achieved by 
addressing standardized Java platform extension points such as custom 
class loaders support or JMX specification. The bytecode instrumentation 
relies on JVM specification. Also the component-based application model 
CCA which is addressed by this thesis is a standard specification.  

− Introspective monitoring is supported by aspect-based instrumentation 
that involves advices which are executed during application run in the 
places called join-points. Subsets of join points of the developer’s choice 
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may be selected using dedicated robust pointcut expression language that 
is tailored for Java programming language. 

− Monitoring of high-level business logic was enabled thanks to aspect-
based instrumentation. As long as aspects are plain Java objects and have 
access to the application state, they are stateful and may be programmed 
with some business logic that feeds monitoring tools with information at 
the higher level of abstraction. 

− Dynamic instrumentation was achieved by taking advantage Java 5.0 
capabilities of dynamic redefinition of bytecode at the runtime. 

− Agile adaptation of the applications to a monitoring system came true, 
since neither derangement of application source code nor recompilation is 
needed. The monitoring concert is encapsulated in external code of 
aspects, and the join-points are specified either within aspect code or are 
specified programmatically through AOCL API. 

− Monitored application model was developed. Moccaccino Manager  
defines its Architecture Description Language for Moccaccino that fully 
describes the architecture of a CCA-based application. 

− Minimizing overhead was achieved to some extent, as measured in 
performance tests. 

− Security, however not covered by this thesis actually was taken into 
consideration on the design stage of the monitoring system. 

The test carried out proved usability of a system developed. The 
leMonAdE monitoring system has provided robust and universal solution on 
instrumentation, exposition and access layers of a reference architecture of a 
monitoring system. 

As long as this work was not focused on providing efficient and scalable 
monitoring infrastructure, the integration with existing generic monitoring 
infrastructure such as Gemini [9] is scheduled for future work. Integration with 
an abstract data bus would make a solution complete and to significant extent 
universal.  

Future plans include also addressing security issue of authorized access 
to monitoring information basing on Shibboleth [44] solution. Especially, since 
all employed techniques are enabled to be secured by some security policy. 
Shibboleth’s decentralized security model seems to fit well in the distributed 
nature of a monitoring of component-based application. 

The continuous development direction of the leMonAdE monitoring 
system involves creating of monitoring aspects organized in toolkits that will 
support developers and deployers of Mocca application and any other Java-
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based applications. The toolkits may be dedicated to developers at the stage of 
testing, verifying and debugging of applications as well as monitoring of 
application deployed in runtime environment. 

Since applicability scope of the system developed enables it to apply to 
other Java-based application frameworks, another work left for future is to 
make frameworks such as Web Services and Web Services Resource Framework 
leMonAdE-enabled. leMonAdE monitoring system is to be applied in Virolab 
project as a system capable of monitoring Java-based middleware technologies 
supported by GridSpace [21] such as Mocca, Axis, XFire and WSRF. 
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Abbreviations 

(in alphabetical order) 

ADL – Architecture Description Language 

ADLM – Architecture Description Language for Moccaccino 

ADS – Aspect Deployment Scope 

AISM – Application Instrumentation Specification for Moccaccino 

AOCL – Aspect-Oriented Class Loader 

AOP – Aspect-Oriented Programming 

AST – Abstract Syntax Tree 

BCEL – Bytecode Engineering Library 

CCA – Common Component Architecture 

CORBA – Common Object Request Broker Architecture 

HTTP – Hypertext Transfer Protocol 

IDE – Integrated Development Environment 

JMS – Java Message Service 

JMX – Java Management Extensions 

JPDA – Java Platform Debugging Architecture 

JPM – Join-Point Model 

JVM –Java Virtual Machine 

LAN – Local Area Network 

leMonAdE – Agile Monitoring Adherence Environment 
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MBean – Managed Bean 

MIR – Monitoring Instrumentation Request 

MOM – Message-Oriented Middleware 

OOP – Object-Oriented Programming 

RMI – Remote Method Invocation 

RMIX – Remote Method Invocation Extensions 

RPC – Remote Procedure Call 

SIR – Standard Intermediate Representation 

SNMP – Simple Network Management Protocol 

SOAP – originally Simple Object Access Protocol, lately also Service-
Oriented Architecture Protocol  

TLA – Three Letter Acronym  

UML – Unified Modeling Language 

WAN – Wide Area Network 

XML – Extensible Markup Language 
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Appendix A. 
leMonAdE User Manual 

This manual is dedicated to users of the leMonAdE monitoring system, 
namely software architects and programmers that want to incorporate it in 
large systems as well as in simple Java-based applications. 

Sections in below are targeted to developers who are willing to take 
advantage of leMonAdE on whichever layer of a reference architecture of a 
monitoring system. This appendix is organized respectively to the leMonAdE 
layers and provides basis on how to employ it on each layer. The examples are 
presented and roughly explained. However, in order to get to the further details 
developers are supposed to refer to code documentation.  

Thanks to leMonAdE’s layered and modular architecture it is usable for 
variety of developers’ aims. The foreseen application areas covered in this 
manual are: 

− On instrumentation layer using Aspect-Oriented Class Loader  

− Dynamic deployment of bytecode 

− Aspect-Oriented Programming 

For Aspect-Oriented Class Loader manual please refer to the 
section Using Aspect-Oriented Class Loader. 

− On exposition layer using JMX-enabled Aspect-Oriented Class Loader 

− Dynamic Programming 

− Monitoring and management of desktop applications 

− Remote monitoring and management 

For JMX-enabled Aspect-Oriented Class Loader manual please 
refer to the section JMX-enabled Aspect-Oriented Class 
Loader. 
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− On access layer using Mocca and Moccaccino leMonAdE editions 

− Monitoring and management of distributed applications 

− Supervising multiple simultaneous applications 

For Mocca and Moccaccino leMonAdE editions manual please 
refer to the section Using Mocca/Moccaccino leMonAdE-
edition. 

Distribution 

Before starting to work with leMonAdE the distribution has to be 
downloaded. The project site containing distribution and documentation is 
located at: 

− http://gforge.cyfronet.pl/projects/lemonade 

The current development version is available and is contained in SVN 
repository. Project can be checked out through anonymous access with the 
following command: 

$ svn checkout https://gforge.cyfronet.pl/svn/lemonade 

Moreover, a web interface of this repository is available though: 

− http://gforge.cyfronet.pl/viewvc/?root=lemonade 

Using Aspect-Oriented Class Loader 

All the samples along with dedicated ant targets are incorporated into 
the distribution of leMonAdE AOCL. The package containing examples code is 
pl.edu.agh.lemonade.aocl.sample. Respective ant targets are included 
in build.xml script. 

For presentation convenience, all of the examples attend extremely 
simple base application. It involves only one class, namely 
pl.edu.agh.lemonade.aocl.sample.app.Clock which code is shown 
in Code Snippet 10. It merely prints current date aligned with some given offset 
each second. 
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public class Clock implements Runnable { 

 

 private long offset = 0; 

 

 private long lastDate = 0; 

 

 private int counter = 0; 

  

 public void runInternal(){ 

  this.printDate(); 

  this.counter++; 

  try { 

   Thread.sleep(1000); 

  } catch (InterruptedException e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public void run() { 

  while (true) { 

   this.runInternal(); 

  } 

 } 

 

 public void addHoursOffset(int hours) { 

  this.offset -= hours * 1000 * 60 * 60; 

 } 

 

 public long getTime() { 

  this.lastDate = System.currentTimeMillis(); 

  return this.lastDate - this.offset; 

 } 

 

 private void printDate() { 

  System.out.println(new Date(this.getTime())); 

 } 

  

 public static void main(String[] args) { 

  new Clock().run(); 

 } 

 

} 

Code Snippet 10. Simple base application that the further examples attend. 

The core of the instrumentation layer is 
pl.edu.agh.lemonade.aocl.AspectOrientedClassLoader class of 
leMonAdE AOCL project. It is also an entry point central class of 
instrumentation layer API. Following subsections are devoted to show the 
concrete examples involving AOCL and to present and explain its features. 
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Static Aspect Deployment Scope  

Suppose we want to monitor base application by counting one of its 
method executions. For some purpose we also like to prevent from execution 
when some condition is fulfilled. For the example simplicity, let’s assume, that 
every n-th execution is prevented. 

The sample aspect below (Code Snippet 11) accomplish such a task. It is 
a pure AspectWerkz-like aspect code. The annotation-driven development was 
applied, thus org.codehaus.aspectwerkz.annotation.Aspect and 
org.codehaus.aspectwerkz.annotation.Around annotations are 
present. Therefore, no external aspect configuration is needed. 

The aspect constructor takes special parameter of 
org.codehaus.aspectwerkz.AspectContext type however it is not 
necessary. Alternatively, the plain default constructor may be provided. 
AspectContext serves to pass some metadata information from 
AspectOrientedClassLoader that deploys aspects towards the aspect 
instance. In this example case the blockFrequency metadata object is passed. 
Moreover, it is supported to pass string key-value parameters to the aspect 
instance, e.g. aspect instance author. 

The actual monitoring logic lies in advice method decorated with 
Around annotation, which denotes that such a method is a wrapper of target 
method execution (for annotations details refer to AspectWerkz 
documentation). Advice checks whether the execution is allowed and either let 
it run or not. 
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@Aspect 

public class SampleAspect1 { 

 

 private final int param; 

 

 private final String author; 

 

 private int count = 0; 

 

 public SampleAspect1(AspectContext ctx) { 

  this.param = (Integer) ctx.getMetaData("blockFrequency"); 

  this.author = ctx.getParameter("author"); 

 } 

 

 @Around("execution(void 
pl.edu.agh.lemonade.aocl.sample.app.Clock.printDate())") 

 public Object monitor(StaticJoinPoint jp) throws Throwable { 

  this.count++; 

  System.out.println("before call #" + this.count + " by " + author); 

  if (count % param != 0) { 

   return jp.proceed(); 

  } else { 

   System.out.println("call blocked"); 

   return null; 

  } 

 } 

 

}  

Code Snippet 11. The sample aspect deployed onto base application that monitors method 
execution and prevents from unwished execution. 

Having base application code as well as with aspect code, the 
AspectOrientedClassLoader has to be employed in order to reconcile 
those two. 

The glue code (presented in Code Snippet 12) is responsible for 
instantiation of AOCL as a child of a given class loader (in most cases current 
class loader or system class loader) with a name and domain name provided. 
Then the locations of application code and aspect code (e.g. path to appropriate 
jar file or URL to jar file or local folder path) have to be added to AOCL. 
Since aspects exist in scope of Aspect Deployment Scope the proper has to be 
registered in AOCL. In this simple example we use static ADS named ds which 
pre-instruments all application class’ methods execution. The static ADS defines 
some abstract callback methods, which developer is obliged to implement. It is 
worth noting that one of them prepares AspectContext instance which is to 
be passed to the aspect constructor, therefore, we can pass object to the aspect 
instance. 

When all desired ADS are configured and added, AOCL has to be 
activated. From then on, every loaded class is pre-instrumented if it matches 
previously registered ADSs and new ADSs are no longer allowed to add. 
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Finally, the aspect itself may be deployed. If so, the string key-value 
parameters are specified, and along with aspect class name and aspect given 
name is passed as parameter of deployAspect method call. The last part of 
code is simply loading application main class by AOCL and calling its main 
method. 
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public class Sample1 { 

 

 public static void main(String[] args) throws Exception { 

 

  // AOCL instantiation with name MyAOCL and domain name org.foo 

  AspectOrientedClassLoader aocl = new AspectOrientedClassLoader( 

    ClassLoader.getSystemClassLoader(), "MyAOCL", 

"org.foo"); 

 

  // appending jar containing application code to the AOCL bytecode 

  // provider 

  aocl.addJar("./jar/lemonade-sample-app.jar"); 

 

  // appending jar containing aspect code to the AOCL bytecode provider 

  aocl.addJar("./jar/lemonade-sample-aspect.jar"); 

 

  // static ADS instantiation with a pre-instrumentation pointcut 

  // specified 

  AspectDeploymentScope ads = new StaticAspectDeploymentScope("ds", 

    "execution(* 

pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))") { 

 

   @Override 

   protected void prepareAspectDeploymentScope() { 

    // here the ADS preparation are to be performed 

    System.out.println("Preparing Aspect Deployment Scope"); 

   } 

 

   @Override 

   public void prepareAspectContext(AspectContext aspectContext) { 

    // here the aspect context is to be prepared 

    // aspect context will be passed as an aspect 

constructor 

    // parameter 

    System.out.println("Preparing Aspect Context"); 

 

    // aspect context metadata enable passing objects to the 

aspect 

    aspectContext.addMetaData("blockFrequency", 3); 

   } 

 

   @Override 

   protected void prepareAspect(Object aspectObj, 

     AspectContext aspectContext) { 

    // here the aspect is to be prepared after its 

instatiation 

    System.out.println("Preparing Aspect"); 

   } 

 

  }; 

 

  // all ADSs has to be added to the AOCL before its activation 

  aocl.addAspectDeploymentScope(ads); 

 

  // since AOCL is activated every loaded class is pre-intrumented if 

  // needed 

  aocl.activate(); 
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  // parameters may be passed to the aspect while deploying 

  Map<String, String> params = new HashMap<String, String>(); 

  params.put("author", "me"); 

 

  // deploying aspect with no pointcut definitions 

  // with above constructed params 

 

 ads.deployAspect("pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect1", 
"myAspect", 

    null, params); 

 

  // loading application main class and launching 

  Runnable clock = (Runnable) 
aocl.loadClass("pl.edu.agh.lemonade.aocl.sample.app.Clock") 

    .newInstance(); 

  new Thread(clock).start(); 

 } 

} 

Code Snippet 12.  Sample usage of AOCL with simple desktop application involving static 
ADS and static aspect. 

In order to run such a glue code it is indispensable to include external 
library dependencies in classpath.  The required jar files are: 

− ant-1.5.2.jar 

− asm-1.5.4-snapshot.jar 

− asm-attrs-1.5.4-snapshot.jar 

− asm-util-1.5.4-snapshot.jar 

− concurrent-1.3.1.jar 

− dom4j-1.4.jar 

− jarjar-0.3.jar 

− jrexx-1.1.1.jar 

− managementapi-jrockit81.jar 

− qdox-1.4.jar 

− trove-1.0.2.jar 

− tools.jar 

All the dependencies are inherited from AspectWerkz library. All of 
above listed files are delivered with distribution and are contained in its lib 
directory. The list of required libraries is also comprised in build.xml file as a 
lemonade.aocl.run.classpath classpath definition.  
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As long as AspectWerkz uses java.lang.instrument API in order to 
perform bytecode manipulation it provides its own instrumentation agent, that  
is introduced by –javaagent:path-to-lemonade-aocl.jar JVM option. 

Ant’s build.xml file contains dedicated targets for all the samples to 
run. In this sample such a target may look like: 

<target name="sample1" depends="jar"> 

  <java classname="pl.edu.agh.lemonade.aocl.sample.start.Sample1" 
fork="true"> 

   <classpath refid="lemonade.aocl.run.classpath" /> 

   <jvmarg value="-javaagent:${lemonade.aocl.jar.name}" /> 

  </java> 

 </target> 

Therefore, in order to run above discussed sample simply type: 

[lemonade-aocl-project-dir]$ ant sample1 

ADS-aware aspect with assignable pointcut definition 

The following example is similar to the previous one, although more 
robust since it take advantage of advanced AOCL features such as ADS-aware 
aspects and assignable pointcut definitions. The aspect code is slightly altered 
as it is depicted in Code Snippet 13. 

First, aspect realizes pl.edu.agh.lemonade.aocl 

.DeploymentScopeAwareAspect interface which contains sole method – 
setAspectDeploymentScope. This method is used to provide aspect 
instance with additional context information related to encompassing ADS. 
Every aspect that realizes such the interface has this method called just after 
aspect instantiation. Second, the pointcut definition is no longer hard-coded in 
Around annotation, instead the symbolic name is used. 
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@Aspect 

public class SampleAspect2 implements DeploymentScopeAwareAspect { 

 

 // skipped 

 

 @Around("pointcut") 

 public Object monitor(StaticJoinPoint jp) throws Throwable { 

  this.count++; 

  System.out.println("before call #" + this.count + " by " + author); 

  if (count % param != 0) { 

   return jp.proceed(); 

  } else { 

   System.out.println("call blocked"); 

   return null; 

  } 

 } 

 

// skipped 

 

 public void setAspectDeploymentScope(AspectDeploymentScope ads) { 

  this.ads = ads; 

  System.out.println("sample aspect is given with encompassing ADS: " 

    + this.ads.getName()); 

 } 

 

} 

Code Snippet 13. Static, ADS-aware aspect code with assignable pointcut definitions. The 
skipped parts are the same as in the previous example. 

Such an aspect has to be appropriately deployed by explicitly providing 
pointcut definition that will bind pointcut symbolic name pointcut with actual 
pointcut expression. The rest of code remains unchanged as shown in Code 
Snippet 14. 
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public class Sample2 { 

 

 public static void main(String[] args) throws Exception { 

 

  // skipped 

 

  aocl.activate(); 

 

  // pointcut expression may be defined at aspect deploy time 

  Map<String, String> pointcutDefs = new HashMap<String, String>(); 

  pointcutDefs.put("pointcut", 

    "execution(void 

pl.edu.agh.lemonade.aocl.sample.app.Clock.printDate())"); 

 

  // parameters may be passed to the aspect while deploying 

  Map<String, String> params = new HashMap<String, String>(); 

  params.put("author", "me"); 

 

  // deploying aspect with previously defined pointcut definitions 

  // and params 

 
 ads.deployAspect("pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect2", 

"myAspect", 

    pointcutDefs, params); 

 

  // skipped   

 } 

} 

Code Snippet 14. Sample usage of AOCL with simple desktop application involving static 
ADS and static ADS-aware aspect with assignable pointcut definition. 

The way the glue code presented in Code Snippet 14 is launched remains 
unchanged. You might use again dedicated ant target: 

[lemonade-aocl-project-dir]$ ant sample2 

Parameterized Aspect Deployment Scope 

Suppose we need a generic aspect which performs some well defined 
additional behavior with reference to abstract join-point, but we also want to 
avoid using explicitly pointcut expressions that may seem cumbersome and 
inconvenient to aspect developer or deployer.  Instead, we want to provide 
high-level parameters values, which will imply actual pointcut expression 
resolved at aspect deployment time. 

The practical example to consider may be tracing of method calls: we 
want to monitor each call from within some method (caller method) body to the 
other method (callee method) and let’s call it outer call. Moreover, we want to 
monitor other calls the callee method performs within its body and let’s call them 
internal calls if they call methods from the same package scope, or inner calls if 
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they call method from outside of such package scope. What is more we want to 
trace not only internal calls and inner calls but as well accessing fields within 
callee method body. Such an abstract aspect may look like the one presented in 
Code Snippet 15. 



Appendix A: leMonAdE User Manual 

- 91 - 

@Aspect 

public abstract class MethodTracerAspect implements MethodTracerAspectMBean, 

  DeploymentScopeAwareAspect { 

 

 private int depth = 0; 

 

 private String id; 

 

 protected final String packageScope; 

 

 protected final String calleeMethodName; 

 

 protected final String callerMethodName; 

 

 protected AspectDeploymentScope scope; 

 

 public MethodTracerAspect(AspectContext context) { 

  this.packageScope = context.getParameter("packageScope"); 

  this.calleeMethodName = context.getParameter("calleeMethodName"); 

  this.callerMethodName = context.getParameter("callerMethodName"); 

  this.id = context.getParameter("_id"); 

 } 

 

 @Around("outerCall") 

 public final Object outerCall(StaticJoinPoint jp) throws Throwable { 

  this.depth++; 

  this.beforeOuterCall(jp); 

  long time = System.currentTimeMillis(); 

  Object result = jp.proceed(); 

  time = System.currentTimeMillis() - time; 

  this.afterOuterCall(jp, time); 

  this.depth--; 

  return result; 

 } 

 

 @Around("innerCall") 

 public final Object innerCall(StaticJoinPoint jp) throws Throwable { 

  this.depth++; 

  this.beforeInnerCall(jp); 

  long time = System.currentTimeMillis(); 

  Object result = jp.proceed(); 

  time = System.currentTimeMillis() - time; 

  this.afterInnerCall(jp, time); 

  this.depth--; 

  return result; 

 } 

 

 @Around("internalCall") 

 public final Object internalCall(StaticJoinPoint jp) throws Throwable { 

  this.depth++; 

  this.beforeInternalCall(jp); 

  long time = System.currentTimeMillis(); 

  Object result = jp.proceed(); 

  time = System.currentTimeMillis() - time; 

  this.afterInternalCall(jp, time); 

  this.depth--; 

  return result; 
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 } 

 

 @Around("setting") 

 public final Object fieldSet(StaticJoinPoint jp) throws Throwable { 

  this.depth++; 

  this.beforeFieldSet(jp); 

  long time = System.currentTimeMillis(); 

  Object result = jp.proceed(); 

  time = System.currentTimeMillis() - time; 

  this.afterFieldSet(jp, time); 

  this.depth--; 

  return result; 

 } 

 

 @Around("getting") 

 public final Object fieldGet(StaticJoinPoint jp) throws Throwable { 

  this.depth++; 

  this.beforeFieldGet(jp); 

  long time = System.currentTimeMillis(); 

  Object result = jp.proceed(); 

  time = System.currentTimeMillis() - time; 

  this.afterFieldGet(jp, time); 

  this.depth--; 

  return result; 

 } 
 

 // skipped 

 

} 

Code Snippet 15. Abstract aspect performing method calls monitoring and accessing fields 
monitoring from within given method. 

The resolution of pointcut expression, that has to be bound with pointcut 
names at aspect deployment time, is delegated to parameterized ADS. Such an 
ADS is both to resolve ADS pointcut expression basing on ADS pointcut 
parameters and to resolve aspect pointcuts expressions basing on aspect 
pointcut parameters. The method responsible for the former is 
resolveADSPointcutExpression while for the latter – 
resolveAspectPointcutExpressions. The implementation of parameterized 
ADS dedicated to our sample is presented in Code Snippet 16. 
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public class MethodTracerAspectDeploymentScope extends 

  JMXParameterizedAspectDeploymentScope implements 

  MethodTracerAspectDeploymentScopeMBean { 

 

 /** 

  * Here the package name we wanted to monitor is stored 

  */ 

 private String packageScope; 

 

 /** 

  * @param name 

  *            arbitrary ADS name 

  * @param properties 

  *            properties that parameterize this ADS instance 

  * @throws RequiredParameterNotFoundException 

  */ 

 public MethodTracerAspectDeploymentScope(String name, Properties properties) 

   throws RequiredParameterNotFoundException { 

  super(name, properties); 

 

  // the only one parameter is the package name within which we want to 

  // monitor method calls 

  this.packageScope = properties.getProperty("packageScope"); 

 

  if (this.packageScope == null) { 

   // if some required parameter is not given the exception is 

raised 

   throw new RequiredParameterNotFoundException("packageScope"); 

  } 

 } 

 

 public String getPackageScope() { 

  return packageScope; 

 } 

 

 /* 

  * implementation of 

pl.edu.agh.lemonade.aocl.AspectDeploymentScope#resolveADSPointcutExpression() 

  */ 

 public String resolveADSPointcutExpression() { 

  // below it is resolved the pointcut expression of this ADS instance 

  // basing on given ADS parameters (the only one is packageScope) 

  return "(call(* " + this.packageScope + "..*(..)) && within(" 

    + this.packageScope + "..)) || " 

    + "(call(* ..*(..)) && !call(* " + this.packageScope 

    + "..*(..)) && within(" + this.packageScope + "..)) || " 

    + "(set(* " + this.packageScope + "..*) && within(" 

    + this.packageScope + "..)) || " + "(get(* " 

    + this.packageScope + "..*) && within(" + 

this.packageScope 

    + "..))"; 

 } 

 

 public String traceMethod(String aspectName, String callerMethodName, 

   String calleeMethodName, String aspectClassName) 

   throws ClassNotFoundException, 
RequiredParameterNotFoundException { 
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  // below aspect pointcut parameter are collected in a map 

  HashMap<String, String> pointcutParams = new HashMap<String, 
String>(); 

  pointcutParams.put("calleeMethodName", calleeMethodName); 

  pointcutParams.put("callerMethodName", callerMethodName); 

  pointcutParams.put("packageScope", this.packageScope); 

 

  // below the same parameters are passed as the ordinary string 

  // key-values 

  // pairs that are to be passed to the aspect instance 

  HashMap<String, String> parameters = new HashMap<String, String>(); 

  parameters.put("calleeMethodName", calleeMethodName); 

  parameters.put("callerMethodName", callerMethodName); 

 

  // this inherited method is responsible for such configured aspect 

  // deployment 

  return this.deployParameterizedAspect(aspectClassName, aspectName, 

    pointcutParams, parameters); 

 } 

 

 @Override 

 public void prepareAspectContext(AspectContext aspectContext) { 

 

 } 

 

 /*  

  * implementation of 
pl.edu.agh.lemonade.aocl.ParameterizedAspectDeploymentScope#resolveAspectPointcutE

xpressions(java.util.Map) 

  */ 

 @Override 

 protected Map<String, String> resolveAspectPointcutExpressions( 

   Map<String, String> pointcutParameters) 

   throws RequiredParameterNotFoundException { 

 

  // below the pointcut parameters are read... 

  String calleeMethodName = pointcutParameters.get("calleeMethodName"); 

  String callerMethodName = pointcutParameters.get("callerMethodName"); 

 

  if (callerMethodName == null) { 

   // if some required parameter is not given the exception is 

raised 

   throw new 

RequiredParameterNotFoundException("callerMethodName"); 

  } 

  if (calleeMethodName == null) { 

   // if some required parameter is not given the exception is 

raised 

   throw new 

RequiredParameterNotFoundException("calleeMethodName"); 

  } 

 

  // ... in order to resolve and return actual pointcut expressions 

  HashMap<String, String> pointcutDefs = new HashMap<String, String>(); 

  pointcutDefs.put("outerCall", "call(" + calleeMethodName 

    + ") &amp;&amp; withincode(" + callerMethodName + ")"); 

  pointcutDefs.put("innerCall", "call(* ..*(..)) &amp;&amp; !call(* " 

    + packageScope + "..*(..)) &amp;&amp; withincode(" 

    + calleeMethodName + ")"); 
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  pointcutDefs.put("internalCall", "call(* " + this.packageScope 

    + "..*(..)) &amp;&amp; withincode(" + calleeMethodName + 
")"); 

  pointcutDefs.put("setting", "set(* " + this.packageScope 

    + "..*) &amp;&amp; withincode(" + calleeMethodName + 

")"); 

  pointcutDefs.put("getting", "get(* " + this.packageScope 

    + "..*) &amp;&amp; withincode(" + calleeMethodName + 
")"); 

 

  return pointcutDefs; 

 } 

 

} 

Code Snippet 16. Parameterized ADS dedicated for the abstract aspect depicted in Code 
Snippet 15. 

What is needed now is a concrete aspect extending abstract aspect class 
that will actually perform monitoring logic. Suppose we want to count method 
call and overall time consumed by these calls. The code will look like in Code 
Snippet 17. 

public class SampleAspect3 extends MethodTracerAspect { 

 

 private int callCount = 0; 

 

 private long overallTimeConsumed = 0; 

 

 public SampleAspect3(AspectContext context) { 

  super(context); 

 } 

 

 @Override 

 protected void afterOuterCall(StaticJoinPoint jp, long time) { 

  super.afterOuterCall(jp, time); 

 

  // the counters has to be updated 

  this.callCount++; 

  this.overallTimeConsumed += time; 

 

  // a proper message has to be displayed 

  System.out.println("SampleAspect3: overall time consumed in " 

    + this.calleeMethodName + " in " + this.callCount 

    + " calls is " + this.overallTimeConsumed); 

 } 

 

} 

Code Snippet 17. Concrete aspect based on MethodTracerAspect (see:  Code Snippet 15) that 
counts given method calls and overall time consumed in such a method. 

Note that above presented concrete aspect is not bound with any 
particular method until it is deployed. Deployment is performed in a glue code 
presented in Code Snippet 18. 



Appendix A: leMonAdE User Manual 

- 96 - 

public class Sample3 { 

 

 public static void main(String[] args) throws Exception { 

 

  // AOCL instantiation with name MyAOCL and domain name org.foo 

  AspectOrientedClassLoader aocl = new AspectOrientedClassLoader( 

    ClassLoader.getSystemClassLoader(), "MyAOCL", 

"org.foo"); 

 

  // appending jar containing application code to the AOCL classpath 

  aocl.addJar("./jar/lemonade-sample-app.jar"); 

 

  // since our ADL is parameterized we need to prepare structure storing 

  // parameters values 

  Properties adsParameters = new Properties(); 

   

  // we want to pre-instrument all calls withing a given package 

  adsParameters 

    .put("packageScope", 
"pl.edu.agh.lemonade.aocl.sample.app"); 

 

  // instatinating parameterized ADS 

  MethodTracerAspectDeploymentScope methodTracerScope = new 
MethodTracerAspectDeploymentScope( 

    "methodTracerADS", adsParameters); 

 

  // all ADSs has to be added to the AOCL before its activation 

  aocl.addAspectDeploymentScope(methodTracerScope); 

 

  // since AOCL is activated every loaded class is pre-intrumented if 

  // needed 

  aocl.activate(); 

 

  // deploying aspect tracing calls within: 

  // public void pl.edu.agh.lemonade.aocl.sample.app.Clock.run() 

  // targeted at: 

  // public void pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal() 

  aocl.addJar("./jar/lemonade-sample-aspect.jar"); 

  methodTracerScope 

    .traceMethod( 

      "myAspect", 

      "public void 
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()", 

      "public void 
pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()", 

     
 "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect3"); 

 

  // loading application main class and launching 

  Runnable clock = (Runnable) aocl.loadClass( 

   

 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance(); 

  new Thread(clock).start(); 

 } 

 

} 

Code Snippet 18. Glue code instrumenting sample application with sample parameterized 
ADS. 
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Now the sample is ready to run and you can use dedicated ant target. 

[lemonade-aocl-project-dir]$ ant sample3 

Interactive configuration of Aspect-Oriented Class Loader 

The following sample is equivalent to the first one, however the way 
how the AOCL is configured is significantly altered. 

Suppose that we are dealing with two simultaneous threads – the first 
one which is actual application thread and the second one that manages 
application instrumentation in an interactive way. 

In order to support interactive AOCL configuration it is provided 
dedicated AOCL’s method waitForActivation which suspends application 
thread until instrumentation management thread allows it to resume. While 
application thread is suspended instrumentation management thread is enabled 
to perform necessary AOCL configuration that has to be done before loading 
application bytecode (mainly ADS configuration as long as aspects may be 
deployed dynamically at the application runtime). Having configuration 
completed, such a thread is expected to call activate AOCL’s method. 

Code Snippet 19 is equivalent to the first sample from this manual and 
shows how those thread interacts with each other. 
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public class Sample4 { 

 

 public static void main(String[] args) throws Exception { 

 

  // AOCL instantiation with name MyAOCL and domain name org.foo 

  final AspectOrientedClassLoader aocl = new AspectOrientedClassLoader( 

    ClassLoader.getSystemClassLoader(), "MyAOCL", 

"org.foo"); 

 

  // this thread will perform aocl configuration 

  new Thread(new Runnable() { 

 

   public void run() { 

 

try { 

 

 // appending jar containing aspect code to the AOCL 

 // classpath 

 aocl.addJar("./jar/lemonade-sample-aspect.jar"); 

 // static ADS instantiation with a pre-instrumentation 

 // pointcut 

 // specified 

 AspectDeploymentScope ads = new StaticAspectDeploymentScope( 

   "ds", 

   "execution(* pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))") 
{ 

 

   @Override 

   protected void prepareAspectDeploymentScope() { 

    // here the ADS preparation are to be performed 

    System.out 

      .println("Preparing Aspect Deployment 

Scope"); 

   } 

 

   @Override 

   public void prepareAspectContext( 

    AspectContext aspectContext) { 

    // here the aspect context is to be prepared 

    // aspect context will be passed in aspect 

    // constructor 

    System.out.println("Preparing Aspect Context"); 

    // aspect context metadata enable passing objects to 

    // the 

    // aspect 

    aspectContext.addMetaData("blockFrequency", 3); 

   } 

 

   @Override 

   protected void prepareAspect(Object aspectObj, 

     AspectContext aspectContext) { 

    // here the aspect is to be prepared after its 

    // instatiation 

    System.out.println("Preparing Aspect"); 

   } 

 

  }; 
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  // all ADSs has to be added to the AOCL before its 

  // activation 

  aocl.addAspectDeploymentScope(ads); 

 

  // parameters may be passed to the aspect while deploying 

  Map<String, String> params = new HashMap<String, String>(); 

  params.put("author", "me"); 

 

  // deploying aspect with no pointcut definitions 

  // with above constructed params 

  ads.deployAspect( 

   "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect1", 

   "myAspect", null, params); 

 

  // since AOCL is activated every loaded class is 

  // pre-intrumented if needed 

  // the main thread is resumed 

  aocl.activate(); 

 } catch (InstantiationException e) { 

   e.printStackTrace(); 

 } catch (IllegalAccessException e) { 

  e.printStackTrace(); 

 } catch (ClassNotFoundException e) { 

  e.printStackTrace(); 

 } catch (ClassLoaderAlreadyActivatedException e) { 

  e.printStackTrace(); 

 } catch (IOException e) { 

  e.printStackTrace(); 

 } 

 

}}).start(); 

 

  // this thread will wait after the aocl configuration is completed 

  aocl.waitForActivation(); 

 

  // loading application main class and launching 

  aocl.addJar("./jar/lemonade-sample-app.jar"); 

  Runnable clock = (Runnable) aocl.loadClass( 

   

 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance(); 

  new Thread(clock).start(); 

 

 } 

 

} 

Code Snippet 19. Interactive configuration of AOCL involving two threads: actual 
application thread and application instrumentation management thread. 

To run the sample you can use dedicated ant target. 
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[lemonade-aocl-project-dir]$ ant sample4 

Using JMX-enabled Aspect-Oriented Class 
Loader 

JMX AOCL is used as an AOCL overlay, thus, JMX-enabled AOCL API is 
composed of plain AOCL classes derivatives. JMX-enabled AOCL class inherits 
from AOCL class, therefore, it is painless to replace the latter with the former. 
However developer is expected to bear in mind that all ADSs have to be valid 
MBeans in order to use with JMX-enabled AOCL, so the proper JMX-enabled 
equivalent classes have to be used. 

JMX-enabled AOCL constitutes exposition layer, enabling among others 
dynamic programming as well as remote monitoring and management of 
desktop applications. 

JMX-enabled Static Aspect Deployment Scope 

The next sample bases on the first one from section 0. However, since 
sample aspect is to be a standard MBean is has to realize dedicated MBean 
interface named similarly as an aspect class but with MBean suffix such as the 
one presented in Code Snippet 20. 

public interface SampleAspect5MBean extends AbstractAspectMBean { 

 

     // ‘count’ this will be accessible as a read-only attribute of this MBean 

 public int getCount(); 

 

} 

Code Snippet 20. JMX-enabled aspect as a valid MBean. 

For the aspect developer convenience the AbstractAspectMBean 
interface  along with its AbstactAspect realization are provided in 
distribution. They encapsulate and expose base attributes of aspects such as 
aspect name, aspect class name, ADS name, AOCL name etc. 

As standard MBean convention states, MBean interface with 
corresponding name with ‘MBean’ suffix determines which attributes and 
methods of a given class that will be exposed. If we are dealing with a class 
hierarchy the corresponding MBean interfaces are expected to follow this 
hierarchy as well. That means that if an arbitrary MyAspect  class inherits from 
AbstractAspect class, corresponding MyAspectMBean has to inherits form 
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AbstractAspectMBean interface as well just as it is depicted in Figure 19. 
Therefore, the aspect code will look like in Code Snippet 21. 

 

 

Figure 19. The standard MBeans class hierarchy as implied by a convention. 

@Aspect 

public class SampleAspect5 extends AbstractAspect implements SampleAspect5MBean { 

 

 private final int param; 

 

 private final String author; 

 

 private int count = 0; 

 

 public SampleAspect5(AspectContext ctx) { 

  this.param = 3; 

  this.author = ctx.getParameter("author"); 

 } 

 

 @Around("execution(void 

pl.edu.agh.lemonade.aocl.sample.app.Clock.printDate())") 

 public Object monitor(StaticJoinPoint jp) throws Throwable { 

  this.count++; 

  System.out.println("before call #" + this.count + " by " + author); 

  if (count % param != 0) { 

   return jp.proceed(); 

  } else { 

   System.out.println("call blocked"); 

   return null; 

  } 

 } 

 

 // implements SampleAspect5MBean 
 public int getCount() { 

  return this.count; 

 } 

} 

Code Snippet 21. Sample JMX-enabled aspect that inherits from AbstractAspect helper 
class. 
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Moreover, the glue code (as shown in Code Snippet 22) has to be slightly 
modified simply by replacing AspectOrientedClassLoader instance with 
JMXAspectOrientedClassLoader instance. 
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public class Sample5 { 

 

 public static void main(String[] args) throws Exception { 

 

  // JMXAOCL instantiation with name MyAOCL and domain name org.foo 

  JMXAspectOrientedClassLoader aocl = new JMXAspectOrientedClassLoader( 

    ClassLoader.getSystemClassLoader(), "MyAOCL", 

"org.foo"); 

  // from now on JMX AOCL is exported and registered in MBeanServer 

  // thus, it is configurable via JMX API 

 

  // appending jar containing application code to the AOCL classpath 

  aocl.addJar("./jar/lemonade-sample-app.jar"); 

 

  // appending jar containing aspect code to the AOCL classpath 

  aocl.addJar("./jar/lemonade-sample-aspect.jar"); 

 

  // static ADS instantiation with a pre-instrumentation pointcut 

  // specified 

  JMXStaticAspectDeploymentScope jmxStaticAds = new 

JMXStaticAspectDeploymentScope( 

    "ds", 

    "execution(* 
pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))") { 

 

   @Override 

   public void prepareAspectContext(AspectContext aspectContext) { 

    // here the aspect context is to be prepared 

    // aspect context will be passed in aspect constructor 

    System.out.println("Preparing Aspect Context"); 

 

    // aspect context metadata enable passing objects to the 

aspect 

    aspectContext.addMetaData("blockFrequency", 3); 

   } 

 

  }; 

 

  // all ADSs has to be added to the AOCL before its activation 

  aocl.addAspectDeploymentScope(jmxStaticAds); 

 

  // since AOCL is activated every loaded class is pre-intrumented if 

  // needed 

  aocl.activate(); 

 

  // parameters may be passed to the aspect while deploying 

  Map<String, String> params = new HashMap<String, String>(); 

  params.put("author", "me"); 

 

  // deploying aspect with no pointcut definitions 

  // with above constructed params 

  jmxStaticAds.deployAspect( 

    "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect5", 

    "myAspect", null, params); 

 

  // loading application main class and launching 

  Runnable clock = (Runnable) aocl.loadClass( 
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 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance(); 

  new Thread(clock).start(); 

 } 

 

} 

Code Snippet 22. A glue code that involves JMX-enabled AOCL and runs sample 
application. 

Nevertheless, the way how the glue code is executed has to be altered 
since some JMX related JVM arguments are required. As long as security wasn’t 
addressed concern in this sample we use neither password authentication nor 
SSL. Therefore, additional JXM related JVM arguments used are: 

• com.sun.management.jmxremote.port  

– sets the port number through which you want to enable 
JMX/RMI connections 

• com.sun.management.jmxremote.authenticate 

– enables/disables authentication, it has to be set to true or false 

• com.sun.management.jmxremote.ssl  

– enables/disables SSL, it has to be set to true or false 

Hereby, appropriate ant target is presented in Code Snippet 23. 

<target name="sample5" depends="jar"> 

  <java classname="pl.edu.agh.lemonade.aocl.sample.start.Sample5" 

fork="true"> 

   <classpath refid="lemonade.aocl.run.classpath" /> 

   <jvmarg value="-javaagent:${lemonade.aocl.jar.name}" /> 

   <jvmarg value="-Dcom.sun.management.jmxremote.port=1234" /> 

   <jvmarg value="-
Dcom.sun.management.jmxremote.authenticate=false" /> 

   <jvmarg value="-Dcom.sun.management.jmxremote.ssl=false" /> 

  </java> 

 </target> 

Code Snippet 23. Ant target (a part of build.xml file) that runs provided application main 
class and takes care about a proper configuration of classpath and JVM arguments required 

by JMX-enabled AOCL. 

Such a target allows us running the sample by typing: 

[lemonade-aocl-project-dir]$ ant sample5 

The output console is verbose and prints out monitoring events, however 
we are not compelled to track console any more. Since AOCL, ADSs and 
aspects are registered MBeans we may use any of variety of JMX-compliant 
consoles and tools to monitor them. So, we may use e.g. the standard tool that 
comes with JDK - jconsole, and provide host  name and port number for RMI 
connector. In our sample we run it as follows: 



Appendix A: leMonAdE User Manual 

- 105 - 

 [lemonade-aocl-project-dir]$ jconsole localhost:1234 

In a JMX console we find domain named after AOCL’s domain name (in 
this case: org.foo) where AOCL is registered with its name. Then we should 
see a view that is presented in Figure 20. AOCL MBean constitutes a root for 
tree-like structure of nested ADSs’ MBeans and aspects’ MBeans. The ADS is 
registered with its name as it was provided in a glue code while aspect unique 
names are aids (aspect ids) that are generated just before aspect deployment. 
The MBeans structure is depicted in left-hand tree panel of JMX console 
depicted in Figure 20. By choosing the aspect MBean we are given with its 
operations, attributes and notifications available. In this sample the Count 
attribute may be monitored among others. 

 

Figure 20. JMX-enabled AOCL sample. The application console (upper), JMX console (lower) 
with AOCL, ADSs and aspects arranged in a tree-like structure (left-hand panel) and 

attributes panel of sample aspect MBean (right-hand panel). 
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Configuration of JMX-enabled Aspect-Oriented Class Loader 

In order to facilitate configuration management of JMX-enabled AOCLs 
dedicated JMXAspectOrientedClassLoaderConfiguration class is 
introduced. It is used to store, serialize and deserialize JMX-enabled AOCLs 
configuration and to enable configuration management without explicit 
manipulation on JMXAspectOrientedClassLoader instance. 

This is alternative way to configure JMX-enabled AOCLs that is 
especially suitable for remote monitoring as long as configuration may be 
stored in JMXAspectOrientedClassLoaderConfiguration instance, 
serialized, passed though network, deserialized and finally applied to JMX-
enabled AOCL instance. 

Code Snippet 24 shows a glue code equivalent to Sample1 class that 
takes advantage of JMXAspectOrientedClassLoaderConfiguration. 
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public class Sample6 { 

 

 public static void main(String[] args) throws Exception { 

 

  // instantiation of empty AOCL configuration 

  JMXAspectOrientedClassLoaderConfiguration config = 
JMXAspectOrientedClassLoaderConfiguration 

    .newEmpty("MyAOCL", "org.foo"); 

 

  // appending jar containing application code to the AOCL classpath 

  config.addJar("./jar/lemonade-sample-app.jar"); 

 

  // static ADS configuration with a pre-instrumentation pointcut 

  // specified 

  JMXAspectOrientedClassLoaderConfiguration.StaticADSConfiguration 
staticADSConfig = new 

JMXAspectOrientedClassLoaderConfiguration.StaticADSConfiguration( 

    "staticADS", 

    "execution(* 
pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))"); 

 

  // static aspect configuration 

  JMXAspectOrientedClassLoaderConfiguration.StaticAspectConfiguration 
staticAspectConfig = new 

JMXAspectOrientedClassLoaderConfiguration.StaticAspectConfiguration( 

    "staticAspect", 

    "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8", 

    "file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar"); 

  // pointcut definition has to be provided... 

  staticAspectConfig.addPointuctDef("myPointcut", 

    "execution(* java.lang.Runnable+.*(..))"); 

  // ... as well as parameters 

  staticAspectConfig.addParameter("author", "me"); 

  staticAspectConfig.addParameter("date", "today"); 

  staticADSConfig.addStaticAspectConfiguration(staticAspectConfig); 

  config.addAspectDeploymentScopeConfiguration(staticADSConfig); 

 

  // configuration of parameterized ADS which is provided as a jar file 

 
 JMXAspectOrientedClassLoaderConfiguration.ParameterizedADSConfiguration 

parameterizedADSConfig = new 
JMXAspectOrientedClassLoaderConfiguration.ParameterizedADSConfiguration( 

    "parameterizedADS", 

    "file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-scope.jar"); 

  parameterizedADSConfig.addPointcutParameter("packageScope", 

    "pl.edu.agh.lemonade.aocl.sample.app"); 

  config.addAspectDeploymentScopeConfiguration(parameterizedADSConfig); 

 

  // parameterized aspect configuration 

 
 JMXAspectOrientedClassLoaderConfiguration.ParameterizedAspectConfiguration 

parameterizedAspectConfig = new 
JMXAspectOrientedClassLoaderConfiguration.ParameterizedAspectConfiguration( 

    "parameterizedAspect", 

    "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect7", 

    "file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar"); 

  // pointcut params has to be provided 

  parameterizedAspectConfig.addPointcutParam("callerMethodName", 
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    "public void 
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()"); 

  parameterizedAspectConfig 

    .addPointcutParam("calleeMethodName", 

      "public void 

pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()"); 

  parameterizedADSConfig 

   
 .addParameterizedAspectConfiguration(parameterizedAspectConfig); 

 

  // JMXAOCL instantiation with above-specified confguration 

  JMXAspectOrientedClassLoader aocl = new JMXAspectOrientedClassLoader( 

    ClassLoader.getSystemClassLoader(), config); 

 

  // from now on JMX AOCL is exported and registered in MBeanServer 

  // thus, it is configurable via JMX API 

  // since AOCL is activated every loaded class is pre-intrumented if 

  // needed 

  aocl.activate(); 

 

  // loading application main class and launching 

  Runnable clock = (Runnable) aocl.loadClass( 

   
 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance(); 

  new Thread(clock).start(); 

 } 

} 

Code Snippet 24. A glue code that configures JMX-enabled AOCL by taking advantage of 
JMXAspectOrientedClassLoaderConfiguration class, and launches the sample 

application. 

This sample is launched by dedicated ant target: 

[lemonade-aocl-project-dir]$ ant sample6 

The launched sample may be monitored by any JMX tool.  

XML-based configuration of JMX-enabled Aspect-Oriented Class 
Loader 

The following section is devoted to a sample that is equivalent to the 
previous one (in section 0), however it is characterized by alternative way for 
configuring JMX-enabled AOCL. As mentioned recently 
JMXAspectOrientedClassLoaderConfiguration is serializable, 
although not in terms of java.io.Serializable but it may be represented 
as XML document. 

Verbose glue code from previous section shown in Code Snippet 24 may 
be replaced by more concise code presented in Code Snippet 25. 
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public class Sample7 { 

 

 public static void main(String[] args) throws Exception { 

 

  JMXAspectOrientedClassLoaderConfiguration config = 

JMXAspectOrientedClassLoaderConfiguration 

    .parse(new FileInputStream(new File("./sample-aocl-

config.xml"))); 

 

  JMXAspectOrientedClassLoader aocl = new JMXAspectOrientedClassLoader( 

    ClassLoader.getSystemClassLoader(), config); 

  aocl.activate(); 

 

  Runnable clock = (Runnable) 

aocl.loadClass("pl.edu.agh.lemonade.aocl.sample.app.Clock") 

    .newInstance(); 

  new Thread(clock).start(); 

 } 

} 

Code Snippet 25. Concise glue code that reads JMX-enabled AOCL configuration from XML-
based document and launches the sample application. 

In such a code whole configuration is read from external XML file. In our 
example sample-aocl-config.xml file is used which is included in the 
distribution and presented in Code Snippet 26. Such a file exactly corresponds 
to the configuration made by code shown in Code Snippet 24. 
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<?xml version="1.0" encoding="UTF-8"?> 

 

<jmxaocl name="myapp" domainName="org.foo.myapp"> 

 

 <jarUrl> 

  file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-app.jar 

 </jarUrl> 

 

 <staticADS name="staticADS" 

  pointcutExpression="execution(* java.lang.Runnable+.*(..))"> 

 

  <staticAspect name="staticAspect" 

   class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8" 

   jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar"> 

   <pointcut name="myPointcut" 

    expression="execution(* java.lang.Runnable+.*(..))" /> 

   <parameter name="author" value="me" /> 

   <parameter name="date" value="today" /> 

  </staticAspect> 

   

 </staticADS> 

 

 <parameterizedADS name="parameterizedADS" 

  class="ec.aocl.sample.scope.MethodTracerAspectDeploymentScope" 

  jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-

scope.jar"> 

  <pointcutParameter name="packageScope" 

   value="pl.edu.agh.lemonade.aocl.sample.app" /> 

 

  <parameterizedAspect name="parameterizedAspect" 

   class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect7" 

   jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar"> 

   <pointcutParameter name="callerMethodName" 

    value="void 
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()" /> 

   <pointcutParameter name="calleeMethodName" 

    value="void 

pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()" /> 

   <parameter name="author" value="me" /> 

   <parameter name="date" value="today" /> 

  </parameterizedAspect> 

 

 </parameterizedADS> 

 

</jmxaocl> 

Code Snippet 26. Configuration of JMX-enabled AOCL serialized as an XML-based form that  
is bidirectionally transformable to/from  

JMXAspectOrientedClassLoaderConfiguration instance. 

In order to start sample we can use as usual ant target: 
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[lemonade-aocl-project-dir]$ ant sample7 

Using Mocca/Moccaccino leMonAdE Edition 

The following instructions has to be followed in order to setup a local 
host-scoped testbed as well as to setup fully valid distributed execution 
environment. 

• Get the distribution of H2O. Version 2.1 that was used in tests is 
recommended. 

• In lemonade-aocl project create appropriately h2o.properties 
file basing on h2o.properties.example file. 

• Build lemonade-aocl and deploy it to the h2o library directory by 
executing: 

[lemonade-aocl-dir]$ ant deploy 

• In mocca-lemonade project create appropriately 
h2o.properties file basing on h2o.properties.example 
file and jmx.properties file basing on 
jmx.properties.example file. 

• Build mocca-lemonade and deploy it file to the h2o services 
directory by executing: 

[mocca-lemonade-project-dir]$ ant deploy 

• In moccaccino-lemonade project create appropriately 
h2o.properties file basing on h2o.properties.example, 
aocl.properties file basing on aocl.properties.example 
file and mocca-lemonade.properties file basing on  
mocca-lemonade.properties.example file. 

• Build moccaccino-lemonade and deploy it file to the h2o services 
directory by executing: 

[moccaccino-lemonade-project-dir]$ ant deploy 

• Now you can easily start h2o testbed consisting of one locally 
launched kernel according to its configuration written in 
\etc\KernelConfig-0.xml just by executing: 
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[mocca-lemonade-project-dir]$ ant h2o 

• Sample application is run by executing (n is a sample number – 1 
or 2): 

[moccaccino-lemonade-project-dir]$ ant sample-n 

• Custom application may be submitted with assistance of 
lemonade-enabled Moccaccino Manager e.g. by running the 
following (Code Snippet 27) ant target: 

<target name="runMyApplication"> 

  <java classname="edu.agh.moccaccino.manager.impl.StartManager" 

fork="true"> 

   <classpath refid="moccaccino.run.classpath" /> 

   <arg value="[URL to ADLM file]" /> 

   <arg value="[URL to AISM file]" /> 

   <arg value="[First kernel endpoint address]" /> 

   <arg value="[Second kernel endpoint adress]" /> 

   [another kernels endpoints] 

  </java> 

 </target> 

Code Snippet 27. Generic ant target for submission application by Moccaccino Manager. 

Sample Application 

Sample application that may be found in the Moccaccino leMonAdeE 
Edition distribution is assembled of component instances arranged in a tree-like 
structure that delegates calls top-down. Application architecture that 
corresponds to ADLM description presented in Code Snippet 28. is depicted in 
Figure 21.  For further details on ADLM refer to the Moccaccino documentation 
[59]. 
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Figure 21. Architecture of sample application contained in Moccaccino Manager distribution. 
Component instances are arranged in a tree-like structure; components refer to themselves 

via qualifiers (lists, maps). 
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<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE application PUBLIC "moccaccino.adl" "../../adl-schemas/adl-schema.dtd" > 

<application name="PingPongZonkApplication"> 

 <component-classes 

  codebase="file:///D:/Documents/Dev/moccaccino-lemonade/jar/moccaccino-

lemonade-samples.jar"> 

  <component-class name="Ping" 

   classname="edu.agh.moccaccino.sampleappa.Ping"> 

   <provides> 

    <port name="MyGoPort" 

 classname="edu.agh.moccaccino.sampleappa.PingPort"/> 

   </provides> 

   <uses qualifier="list"> 

    <port name="pongs" 

 classname="edu.agh.moccaccino.sampleappa.PongPort"/> 

   </uses> 

  </component-class> 

   

  <component-class name="Pong" 

   classname="edu.agh.moccaccino.sampleappa.Pong"> 

   <provides> 

    <port name="PongPort" 

 classname="edu.agh.moccaccino.sampleappa.PongPort"/> 

   </provides> 

   <uses qualifier="map"> 

    <port name="zonks" 

 classname="edu.agh.moccaccino.sampleappa.ZonkPort"/> 

   </uses> 

  </component-class> 

   

  <component-class name="Zonk" 

   classname="edu.agh.moccaccino.sampleappa.Zonk"> 

   <provides> 

    <port name="ZonkPort" 

 classname="edu.agh.moccaccino.sampleappa.ZonkPort"/> 

   </provides> 

  </component-class> 

 </component-classes> 

  

 <assembly> 

  <component-group name="ping" component-class="Ping" weight="5"> 

   <connection usesPort="pongs" qualifier-attribs="length=2" 

    providesPort="PongPort" weight="5" shared="false"> 

    <component-group name="pongs" component-class="Pong" 
weight="5"> 

     <connection usesPort="zonks" 

      qualifier-attribs="keys=one;two" 

providesPort="ZonkPort" weight="5" shared="false"> 

      <component-group name="zonks" component-

class="Zonk" weight="5"/> 

     </connection> 

    </component-group> 

   </connection> 

  </component-group> 

 </assembly> 

  

 <deployment/> 

  



Appendix A: leMonAdE User Manual 

- 115 - 

 <configuration-port-type-maps> 
  <!—skipped--> 

 </configuration-port-type-maps> 

  

 <execution> 

  <component path="."/> 

 </execution> 

</application> 

Code Snippet 28. Architecture description of sample application contained in Moccaccino 
Manager distribution. Expressed in XML-based ADLM language. This document describes 

the architecture depicted in Figure 21. 

In Moccaccino leMonAdE Edition the new concept of Application 
Instrumentation Specification for Moccaccino (AISM) is introduced. This is a 
XML-based language that contain configuration of all JMX-enabled AOCLs that 
are involved in application. AISM refers to component groups defined in 
ADLM. The possible instrumentation of sample application is presented in 
Code Snippet 29. 

The main element of AISM document is instrumentation with 
attributes userName and password used as authentication credentials while 
connecting to the MBeanServers. Instrumentation element consists of zero or 
more componentGroupInstrumentation elements that bind component 
groups with a configuration of AOCLs used by components instances of these 
groups.  In fact, componentGroupInstrumentation has the same syntax as 
jmxaocl element (see: Code Snippet 26), although accepts additional nested 
componentGroup elements that specify component groups the 
componentGroupInstrumentation configuration is to be applied to. 

<?xml version="1.0" encoding="UTF-8"?> 

 

<instrumentation userName="" password=""> 

 <componentGroupInstrumentation> 

  <componentGroup name="ping" /> 

  <staticADS name="staticADS" 

   pointcutExpression="execution(private void 
edu.agh.moccaccino.sampleappa.Ping.printDate())"> 

   <staticAspect name="staticAspect" 

   

 class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8" 

    jar="file:///D:/Documents/Dev/lemonade-

aocl/jar/lemonade-sample-aspect.jar"> 

    <pointcut name="myPointcut" 

     expression="execution(private void 
edu.agh.moccaccino.sampleappa.Ping.printDate())" /> 

    <parameter name="author" value="me" /> 

    <parameter name="date" value="today" /> 

   </staticAspect> 

  </staticADS> 

 </componentGroupInstrumentation> 

</instrumentation> 

Code Snippet 29. AISM document for sample application. It refers to the application ADLM 
description from Code Snippet 28. 
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In order to start testbed the following ant target may be applied: 

[mocca-lemonade-project-dir]$ ant h2o 

Having local H2O kernel up the sample application may be run by 
dedicated ant target: 

[moccaccino-lemonade-project-dir]$ ant sample-2 

Since this example involves single one H2O kernel, all involved AOCLs 
are registered in the sample MBeanServer. Therefore, whole application may be 
monitored by single standard JMX console. The screenshot presented in Figure 
22 shows the output consoles of local H2O kernel and Moccaccino Manager 
along with JConsole connected to the kernel’s JVM. In JConsole, note that one 
AOCL is per one component instance and all AOCLs are contained in the 
application name domain. 

 

Figure 22. Sample Moccaccino application that runs within local testbed: local H2O kernel 
console (upper), Moccaccino Manager console (lower), JMX JConsole (right) with tree-like 

structure of MBeans involved in application run (left panel). 

Additional information 

For the detailed information and documentation user is expected to view 
the source code and the source code documentation. For deepened view of 
samples code the user should refer to the distribution. Additional information 
and support may be received by contacting the author. 
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