
AGH

UNIVERSITY OF SCIENCE AND TECHNOLOGY

IN KRAKOW, POLAND

FACULTY OF ELECTRICAL ENGINEERING, AUTOMATICS, COMPUTER SCIENCE
AND ELECTRONICS

INSTITUTE OF COMPUTER SCIENCE

MONITORING
OF COMPONENT-BASED

APPLICATIONS

ERYK CIEPIELA

MASTER OF SCIENCE THESIS

IN COMPUTER SCIENCE

SUPERVISOR

DR INŻ. MARIAN BUBAK

CONSULTATION

MGR INŻ. MACIEJ MALAWSKI

CRACOW, POLAND

JUNE 2007

Acknowledgements

I would like to kindly acknowledge my grateful thanks to Marian Bubak
– supervisor of this work, for his support and valuable consultation. Especially,
I would like to express my gratitude to Maciej Malawski for his attention,
insightful look, advices and time. Also, the help of ACC Cyfronet AGH
GridSpace Team cannot be overestimated.

This work was made possible owing to the ViroLab Project – EU project
number: IST-027446. The official ViroLab website can be viewed under
http://www.virolab.org.

Abstract

The subject of this thesis is the monitoring of component-based
applications, focusing on Common Component Architecture model with Java-
based CCA-compliant MOCCA framework, which is built over H2O
distributed computing platform. Within the scope of this work the monitoring
system called leMonAdE was developed that supports generally all Java-based
application. In particular, it is targeted to Mocca framework by extending
Mocca framework itself as well as Mocca application manager tool, namely
Moccaccino, with monitoring capabilities.

The results of this work comprise Java tools for dynamic bytecode
instrumentation employing Aspect-Oriented Programming paradigm and
monitoring facilities of Java Management Extensions. Mocca framework and
Moccaccino Manager are enhanced with monitoring support by incorporating
of aforementioned tools within them. Moreover, a prototype of a monitoring
tool is provided as an Eclipse IDE plug-in for leMonAdE-enabled edition of
Moccaccino manager. The performance tests have been carried out and proved
the usability of the system.

This thesis is organized in the following chapters: in Chapter 1 the
rationales of this work are explained and the problem is stated. Chapter 2
outlines the technologies addressed by this work and indicates a target platform
for emerging system. Chapter 3 is devoted to problem analysis along with
discussion of available solutions and current state of the art. In Chapter 4 the
goals of this work are precisely specified and the general concept of a
monitoring system is presented. Chapter 5 presents detailed design of an
emerging system as well as implementation aspects. Chapter 6 gives an answer
on how the system developed meets the performance requirements and
estimates usability of a solution. Chapter 7 concludes the thesis and marks up
future work directions.

Keywords: Monitoring system, monitoring tools, instrumentation,
components, component-based applications, Common Component Architecture
Aspect-Oriented Programming, Mocca, Moccaccino, leMonAdE.

Contents

Chapter 1 Motivation for a Monitoring System.................................... - 9 -

Chapter 2 Technologies to Be Addressed by a Monitoring System. - 13 -

2.1 Java Platform.. - 14 -

2.2 H2O ... - 15 -

2.3 Common Component Architecture .. - 15 -

2.4 Mocca .. - 15 -

2.5 Moccaccino Manager .. - 16 -

2.6 Summary .. - 16 -

Chapter 3 State of the Art of the Monitoring Techniques - 17 -

3.1 Problem Analysis .. - 17 -

3.2 Discussion of Available Solutions... - 20 -

3.2.1 Instrumentation Techniques.. - 20 -

3.2.2 Exposition Techniques.. - 28 -

3.2.3 Access Techniques... - 29 -

3.3 Summary .. - 30 -

Chapter 4 Concept of the leMonAdE Monitoring System - 31 -

4.1 Detailed goals... - 32 -

4.2 The name of the system.. - 33 -

4.3 Concept Overview... - 34 -

4.4 Aspect-Oriented Class Loader... - 34 -

4.5 Monitoring Aspects ...- 36 -

4.6 JMX Interface ..- 37 -

4.7 Aspect-Oriented Class Loader Registry- 37 -

4.8 Adaptation of Mocca Framework..- 38 -

4.9 Architecture Description Language for Moccaccino- 38 -

4.10 Extensions to Moccaccino Manager ..- 39 -

4.11 Monitoring Tools..- 40 -

Chapter 5 Design and Implementation of the leMonAdE Monitoring
System - 41 -

5.1 leMonAdE AOCL...- 42 -

5.1.1 Instrumentation Layer ..- 42 -

5.1.2 Exposition Layer ..- 47 -

5.1.3 Access Layer ...- 50 -

5.2 Mocca leMonAdE Edition...- 51 -

5.3 Moccaccino leMonAdE Edition ...- 52 -

5.4 Tool Layer ...- 54 -

5.5 Implementation summary ..- 56 -

Chapter 6 leMonAdE Monitoring System Performance Analysis.....- 57 -

6.1 Test methodology ..- 58 -

6.2 Test application ..- 60 -

6.3 Test suites..- 62 -

6.4 Sample results...- 63 -

6.5 Analysis of results..- 66 -

Chapter 7 Summary and Future Work ..- 69 -

List of Figures

Figure 1. Monitoring system reference architecture proposed in this
work... - 19 -

Figure 2. The ideas involved in a monitoring system concept spread over
the reference monitoring system architecture... - 34 -

Figure 3. Middleware container adopted to support Aspect-Oriented
Class Loader instrumentation features. ... - 35 -

Figure 4. Comparison of sensor-like and monitor-like instrumentation.... -
36 -

Figure 5. Concise qualitative component diagram of ADLM (a) that is
resolved to the plain component diagram (b)... - 39 -

Figure 6. Overall general architecture of the monitoring system......... - 42 -

Figure 7. Aspect Deployment Scopes (ADS) as ones that pre-instrument
certain subsets of join-point (filled bars denote join-points pre-instrumented by
ADSs). Aspects may instrument only join-points previously pre-instrumented
by ADS that scopes given aspect (arrows denote instrumentation by concrete
aspects).. - 43 -

Figure 8. Class diagram depicting relation between AOCL,
BytecodeProvider, ADSs and generic aspect.. - 45 -

Figure 9. Architecture of Exposition Layer with JMX layers depicted and
interactions with neighbor monitoring system layers. - 47 -

Figure 10. Core classes of JMX-enabled AOCL (marked as colored) as
derivatives of corresponding AOCL classes (marked as white). - 48 -

Figure 11. Aspect inheritance according to standard MBean convention.. -
50 -

Figure 12. Diagram of classes involved in AOCL Registry. - 51 -

Figure 13. Inherited, added and modified items in Moccaccino Manager’s
data flow (a). Extended class loader hierarchy within H2O/Mocca container (b).
..- 52 -

Figure 14. Classes involved in application instrumentation within
Moccaccino leMonAdE edition..- 53 -

Figure 15. AbstractMonitor data structure to apply in graphical JMX
consoles dedicated to AOCL registry. ..- 55 -

Figure 16. Screenshot of a Moccaccino leMonAdE edition Eclipse plug-in
in work...- 55 -

Figure 17. Test runs scheme. Separate runs of base test application (I),
application with source code instrumentation (A: II, III), with leMonAdE
instrumentation (B: IV, V, VI, VII). Separate runs for instrumentation with (III,
VII) and without notifications (II, IV, V, VI) emitted out...................................- 59 -

Figure 18. Sample test cases run results served in a form of charts: four
upper charts plot results from each run (I-VI) for each computation type and
stack characteristics, next four in below visualize the same results but are
focused on runs that do not involve notifications (I-II, IV-VII) for the readability
reasons. ..- 65 -

Figure 19. The standard MBeans class hierarchy as implied by a
convention...- 101 -

Figure 20. JMX-enabled AOCL sample. The application console (upper),
JMX console (lower) with AOCL, ADSs and aspects arranged in a tree-like
structure (left-hand panel) and attributes panel of sample aspect MBean (right-
hand panel). ..- 105 -

Figure 21. Architecture of sample application contained in Moccaccino
Manager distribution. Component instances are arranged in a tree-like
structure; components refer to themselves via qualifiers (lists, maps)..........- 113 -

Figure 22. Sample Moccaccino application that runs within local testbed:
local H2O kernel console (upper), Moccaccino Manager console (lower), JMX
JConsole (right) with tree-like structure of MBeans involved in application run
(left panel). ..- 116 -

Chapter 1: Motivation for a Monitoring System

- 9 -

Chapter 1
Motivation
for a Monitoring System

This chapter generally characterizes the problem and defines fundamental goal of
this work. In sections below, the need for a monitoring system in distributed and
especially in grid environments is shown. Further, it is said that a monitoring system is
a foundation for advanced application development and management tools. Finally,
a specific computation architecture model addressed, namely Common Component
Architecture, is presented and a problem of this thesis is stated.

Nowadays, a need for modern monitoring means arises. Monitoring has
became a vital and, to a significant extent, critical part of distributed systems
architectures, especially in grid computing. Execution of application in
distributed environment which is usually geographically dispersed and takes
hours to complete, remains feedbackless, unresponsive and impossible to
supervise, unless the proper means of monitoring are provided. Application
run that is distributed both in space and in time induces application managers‘
demand for a suitable equipment in order to seize and diagnose running
applications.

Application managers, in addition to application submission interface,
have to be supported with after-submission management and monitoring tools
as well. It becomes especially essential in the case of those application managers
who are willing to access intermediary results or to check computation status.
However, not only application executors cope with the issues of application
monitoring. Application developers constitute the next considerable group that

Chapter 1: Motivation for a Monitoring System

- 10 -

needs monitoring assistance in the prototyping and testing stage. They would
like to take advantage of monitoring support in order to introspect running
code e.g. for verifying, debugging, compatibility testing, performance
analyzing, profiling and optimizing purposes.

Nevertheless, monitoring applicability actually exceeds beyond
performance monitoring. Indeed, monitoring may enable incorporation into
application of additional behavior performing variety of tasks reactively to
monitoring events. Therefore, many of application orthogonal aspects such as
logging, billing, tracking, reporting etc may be implemented on the top of the
monitoring systems.

Monitoring constitutes indispensable foundation for autonomic
computing [47]. In comparison with traditional systems, in autonomic self
managing system administrator plays thoroughly altered role. Instead of
controlling the system directly and manually, they define policies and rules
according to which self-management process is operating. Monitoring events
are passed towards to the self-management agent which process them and
triggers actions of functional areas such as: self-configuration, self-healing, self-
optimization and self-protection.

As long as it concerns distributed applications the motivation for a
monitoring system is especially justified, because of a number of involved
distributed processes that are to be under supervision. Transparent accessing
and harnessing grid resources has to allow inspecting the state of these
resources. Therefore, monitoring shall provide feedback information related to
the resources employed and provide general information about the execution
environment. In particular, it applies to component-based applications whose
components are deployed into containers. As long as the containers provide
computation and memory resources along with basic services they constitute a
specific execution environment that is reasonable to monitor by application
executors. On the other hand, container providers and site administrators are
willing to inspect and measure utilization of the containers under their
authority.

Common Component Architecture (CCA) [1][17] model defines its own
specific application structure involving architectural part such as components,
ports and connections, which are supposed to be observed by interested parties
such as application managers. Furthermore, CCA-based application structure
may alter during execution since this model enables dynamic assembling and
disassembling of components. From a point of view of the application manager,
application architecture dynamicity is significantly worth to monitor.

This work addresses, in general, problem of a monitoring in distributed
systems. Precisely, it focuses on applications complying component–based
architectures. The general goal of this thesis is to provide a framework
supporting component application with enabled monitoring capabilities. A

Chapter 1: Motivation for a Monitoring System

- 11 -

solution has to accomplish this goal by addressing specific target platform,
specific component application framework along with some dedicated tools.
Therefore, Chapter 2 introduces all technologies addressed by the emerging
monitoring system and draws a technological background.

Chapter 2: Technologies to Be Addressed by a Monitoring System

- 13 -

Chapter 2
Technologies to Be Addressed
by a Monitoring System

This chapter explains how technological constraints affect a monitoring system
and outlines a technological background of this thesis. The concrete implementation of
component-based application paradigm is presented along with a target component
framework that are addressed. Further subsections contained in this chapter discuss
technologies and tools involved in a target platform that constitute a foundation for the
emerging monitoring system, namely Java platform, H2O distributed application
framework, Common Component Architecture, Mocca component application
framework and Moccaccino component application manager.

Implementation of monitoring depends heavily on operating system,
software platform and application model. Since operating system manages
hardware and software resources it has the authority to monitor their
utilization as well as to provide static information and characteristics related to
them. Moreover, operating systems define a term of process in order to enable
acquisition and collection of the information related to a particular execution of
a program. In fact, what information is provided depends on operating system.
Nevertheless, as long as this information determines monitoring capabilities the
operating system is fundamental. In general, infrastructure and application
monitoring is determined by to what extent operating system supports
resources and processes monitoring.

Software platform is usually tailored to the operating system, unless such
a platform is designed to be portable. Portability is the realization of

Chapter 2: Technologies to Be Addressed by a Monitoring System

- 14 -

programmers' wish to use once written code everywhere. That implies
independence from operating system and makes monitoring system specific
rather to software platform than to a particular operating system.
Interoperability of systems is an issue arising when dealing with distributed
heterogeneous environment where compatibility of software platforms is
required. Interoperability relies on standards and specifications that
heterogeneous software is expected to comply with.

As a matter of fact, application model affects monitoring with its features
and qualities which are specific to a particular model. Monitoring shall fit in the
model in order to give comprehensive view of application in terms of applied
model.

The following subsections provide more detailed insight into addressed
platform, employed middleware technologies and frameworks as well as
introduces specifications and tools that constitute a basis for this work.

2.1 Java Platform

Java is a software platform which has gained extreme popularity at the
turn of the century. However it is not expedient here to judge Java worthiness,
abilities and limitations, undeniable is the fact that one of the crucial causes of
its success is a portability. Thank to idea of JVM Java OS-independence was
achieved.

JVM is an open specification [33], which has several implementations
(e.g. Sun’s Hot Spot [35]) till now. JVM specification is essential for compiler
writers who wish to target the JVM and for programmers who want to
implement a compatible virtual machine. While JVM knows nothing about the
Java programming language itself, it knows a binary class file format called
Java bytecode. The main part of JVM specification is therefore the definition of
class file format, which is indeed platform and JVM vendor independent.
Thanks to the intermediary code specification it is possible to programmatically
reengineer such a code - as many libraries do in order to provide non-trivial
functionality. Monitoring system which is discussed in this work relies on JVM
specification, and precisely speaking, on the binary class file format definition.

Exploiting its portability, Java has been a leader in proposing non-
commercial innovative techniques for implementing distributed systems. It is
worth to mention at least its Remote Method Invocation [42], Enterprise Java
Beans (EJB) [49] and JINI [50] that are widely and successfully used. Ten years
of dynamic development of Java technology is nowadays intensified as Java
Development Kit (JDK) versions 6 and 7 are announced by Sun to be released as
open source in 2007 with the source code available under the GPL v2 license.

Chapter 2: Technologies to Be Addressed by a Monitoring System

- 15 -

It is noteworthy that there is a significant distinction between JVM and
Java programming language itself. While Java defines syntax, semantics and
compilers producing valid bytecode in JVM class file format, JVM is intended
solely to interpret any valid, not necessary produced by Java, class files.

2.2 H2O

H2O [2][24] is a Java-based middleware platform for building and
deploying distributed applications. The main feature of this framework is that it
decouples the service deployer and the container provider roles. It induces that
H2O allows not merely container owners but any authorized third parties or
clients themselves deploying services into a kernel. Containers called kernels,
host services called pluglets, which are Java classes exposing remote interfaces.
On the transport layer H2O employs RMIX [22], a multi-protocol RMI [42]
extension which overlays transport protocols such as RMI and SOAP [51].

2.3 Common Component Architecture

Common Component Architecture (CCA) [17] is a component standard
for High Performance Computing [1]. CCA provides standards necessary for
component-level interoperability of components developed within different
frameworks such as CORBA [52]. CCA is not a complex specification as it
basically introduces the concepts of provides ports which are public interfaces
that a component realizes and uses ports to declare dependencies to other
components' provides ports required. Specific feature of this model is that the
application architecture is not static, e.g. components, ports as well as
connections may be both added and removed at the runtime. Therefore, such a
model is particularly suitable for applications with dynamic architecture
reorganization.

2.4 Mocca

Mocca [3] is a CCA compliant distributed component framework based
on H2O platform. Current version, namely Mocca_Light, is a pure-Java
implementation of the CCA framework and allows building component
applications on distributed resources available through H2O. Since Java-based
H2O platform is generic and able to support generally all distribution models
that rely on Remote Procedure Call (RPC) Mocca leverages it in order to

Chapter 2: Technologies to Be Addressed by a Monitoring System

- 16 -

support CCA application written in Java. Mocca fully complies the CCA
specification, therefore base classes of application architecture derives from
standardized interface definitions.

2.5 Moccaccino Manager

In order to automate the process of deployment and management of
Mocca applications, the concept of application manager was introduced.
Moccaccino Manager was developed as a responsible for resource (H2O
kernels) discovery, deployment planning, execution and management of a
running application.

In order to support multiple connection and automated dynamic
configuration of component instances, Moccaccino enhances the CCA
application model with port qualifiers and dedicated Configuration Port,
respectively. Moreover, Moccaccino introduces specific XML-based
Architecture Description Language [11], namely Architecture Description
Language for Moccaccino (ADLM) [4], that follows the idea of qualitative
component diagram. Such a diagram facilitates the quantitive parameterization of
application. It introduces the terms of multiple connection and component
instances group to denote a number of component instances with connections
that follow the same pattern, instead of explicitly specifying each component
instance and each connection instance individually.

It was found reasonable to provide monitoring tools as the Moccaccino
Manager extensions. Therefore, a complete integrated tool for launching and
monitoring Mocca applications will be assembled.

2.6 Summary

This chapter gave a view of a technological background the emerging
monitoring system should fit in. The work will be focused on Java-based
components in Mocca framework deployed on H2O kernels. Given with that
goal, more detailed analysis and review of relevant available solutions is to be
carried out. This is what the subsequent chapter is devoted to.

Chapter 3: State of the Art of the Monitoring Techniques

- 17 -

Chapter 3
State of the Art
of the Monitoring Techniques

In previous chapters the general goal of this work and the specific technological
background were considered. The following chapter identifies and analyses the general
challenges encountered when solving previously stated problem of this thesis.
A reference monitoring system architecture is proposed that allows ordering and
aligning of monitoring-related techniques of a current state of the art. Dedicated
subsections discuss how relevant available solutions address the issues identified on
each layer.

Monitoring is quite a broad and divers area and as a term is ubiquitous
in variety of specifications, frameworks and tools. Many efforts address
application monitoring and, in fact, cover distinct concerns. This chapter is
devoted to identify problem concerns and to discuss available solutions
covering them.

3.1 Problem Analysis

It is reasonable to consider monitoring crosswise the layers of some
reference monitoring system architecture in order to separate distinct concerns.
The proposed here layering is intended to be as generic as it is possible and not
bound to any specific programming paradigm. It is especially motivated as long
as monitoring model faces the challenge of inter-technology handover. Since

Chapter 3: State of the Art of the Monitoring Techniques

- 18 -

some efforts such as GridSpace [21] attempt to engage heterogeneous
middleware technologies, proprietary monitoring systems are to be aligned to
some generic architecture. Given with a reference architecture all the solution
aiming at monitoring discussed in this section may be aligned and positioned in
order to classify them and compare with each other.

In proposed reference architecture which is depicted in Figure 1, four
layers are involved. First is the instrumentation layer which deals with an issue
on how to extract, pull out or drag valuable information from running
application processes. Further, the exposition layer is to provide means in order
to make this information remotely accessible, from outside the target
application process, restrictedly according to a given policy. Then the third one
- access layer aims at on how to efficiently access monitoring information in
usually distributed environment. Finally, the tool layer is intended to process
collected monitoring information and serve the end user with functionality
based on it in a convenient way.

As it comes to instrumentation, it challenges the issues of hot-plugging
into running applications, dynamic enabling and disabling, avoidance of
intrusion into the application code, container and frameworks. Because of fact
that monitoring may be oriented either to application low-level introspection or
to high-level business logic monitoring, the latter implies an issue of
instrumentation with enabled access to application runtime state (e.g. variables
values).

Besides runtime state, instrumentation has to be aware of a context
which supplements monitoring information and is crucial for monitoring
information usability. Identified context are:

− Application context – associates monitoring data with a concrete
application

− Place context – associates monitoring data with an architectural part of the
application placed somewhere in the environment

− Time context – associates monitoring data with timestamp and/or with a
sequence number

 Moreover, instrumentation mustn't disrupt proper run of the
application, hence it must be in accordance to some security constraints and
policies.

The fundamental responsibility of exposition layer is to provide remote
access that enables interoperability. Therefore, it must comply well established
standards and protocols. On this layer another security issues of unauthorized
access and information confidentiality are encountered as well.

Chapter 3: State of the Art of the Monitoring Techniques

- 19 -

On the exposition layer monitoring data becomes remotely accessible.
The aim of the subsequent layer - access layer, is to set up logical monitoring
data bus in order to redistribute this data to the interested parties. Such a bus is
to be adapted to support conversation modes like query-response mode and
notification mode. On the access layer exposed monitoring information has to be
effectively redistributed in usually distributed environment. This layer deals
with the issues common for a domain of distributed systems such as: scalability,
network throughput, communication latency, jitter and reliability.

Figure 1. Monitoring system reference architecture proposed in this work.

On each of the above defined layers, agile monitoring system has to be
characterized by a good fitting in the software platform and an easiness of
installation and employment. In particular, such a system is expected not to
intrude the application development process and impose developers neither to
fulfill memory-consuming outgrown library prerequisites nor to deeply
derange the execution environment. Especially, adaptation of application in
order to enable monitoring involving source code reengineering may be
cumbersome, unwished or may affect application reusability.

Especially, it is a principle of the component application model that
components perform pure business logic in a container environment that
provides them with the common services such as data access, transaction and
connectivity services. Following this principle, monitoring should be
transparent for component’s business logic and should be provided as the
container feature.

Moreover, widely applicable monitoring system should adhere to
standards and specifications and fit well in the application model paradigms,
however, without disrupting it.

Chapter 3: State of the Art of the Monitoring Techniques

- 20 -

3.2 Discussion of Available Solutions

This subsection is to discuss available solutions of current state of the art,
however it is not expected to give a comprehensive and holistic review of all
available solutions. This discussion rather focuses on techniques that are
relevant to the specific problem of this thesis and to technologies to be
addressed by the emerging monitoring system. In the sections below the
approaches, generic models and concrete technologies are presented. The
review is organized regarding to the layers of a proposed reference architecture
of a monitoring system.

3.2.1 Instrumentation Techniques

Instrumentation techniques in Java world may be generally divided into
two types: source code instrumentation and bytecode instrumentation.

The source code instrumentation technique relies on developer who is
expected to decorate the application code with monitoring-related code. In such
an immature approach the monitoring information is emitted e.g. to a console,
to a log or to other proprietary tailor-made monitor information collector. Some
of the logging libraries, such as log4j [38] or Apache commons logging [53],
became universally recognized and accepted as their idea is a standard even
outside the Java technology. The strength of the aforementioned two is that
they are generic and come along with a number of ready-to-use compatible
tools and extensions. However, even state of the art logging libraries do not
supports dynamically configurable monitoring and produce lines of logs that
are inconvenient to process and analyze.

Java Management Extensions (JMX) [31] incorporated in JDK was
expected to equip Java with monitoring facilities. In fact, it gained a lot of
popularity in enterprise systems [25], although it isn't suitable for wide range of
distributed systems. Among its disadvantages is that it involves source code
adaptation and imposes specific design patterns to be applied. JMX
instrumentation layer assumes that monitorable classes must follow these
patterns, and in exchange it offers whole monitoring infrastructure including
monitoring agent - MBeanServer, API and remote access facilities.

JMX instrumentation layer imposes some convention and design pattern
that has to be applied on early design stage when the crucial design decisions
have to be taken. Namely, system architecture has to involve dedicated
monitorable classes called Managed Beans (MBeans). It implies that on
subsequent development stages it involves disrupting code reengineering. No
matter which of the following MBean type is applied such an instrumentation
affects system architecture and code:

Chapter 3: State of the Art of the Monitoring Techniques

- 21 -

− Standard MBean – simplest to design and implement as management
interface is described by method names,

− Dynamic MBean – must realize DynamicMBean interface in order to
expose management interface at runtime with generic methods like
getAttribute, invokeMethod which introduce greater flexibility,

− Model MBean – is a Dynamic MBean which is moreover self contained,
self described and configurable at runtime,

− Open MBean – Dynamic MBean which involves solely basic data types for
universal manageability.

Message-oriented monitoring systems may base on variety of Message-
Oriented Middleware (MOM) technologies. In order to standardize advanced
MOMs for Java industry Java Message Service (JMS) API [30] was specified. It
allowed keeping the standard by MOM service providers and client
applications by decoupling client API and third parties’ implementations.

The main and the most significant disadvantage common for all source
code instrumentation techniques is that application logic is not separated from
the orthogonal concern of monitoring making business logic code disturbed
[46]. As it was investigated it requires source code reengineering, plenty of
boiler-plate code and recompilation in order to modify monitoring aspect.
Source code instrumentation results in a code that is much harder to maintain
and enables merely static, poorly configurable monitoring. Last, but not least,
such instrumented application remains tightly-coupled with a one particular
monitoring system with a direct dependencies to external libraries, which
makes the software toughly reusable.

Alternative way is proposed by bytecode instrumentation techniques.
Since JVM specifies binary class file format - intermediate interpretable
program representation, it is possible to carry out instrumentation upon it and
to overcome source-code disabilities and defects. Actually, bytecode stands for
JVM instruction that is interpreted within virtual machine, however, it is also a
customary name for binary class file format.

As long as JVM operates in fact on bytecode, no matter what
programming language it originates from, such an instrumentation is specific
rather to binary class file format than to Java language itself and may be applied
also for applications not written in Java.

Since bytecode instrumentation may be performed on various stages of
the bytecode lifecycle, the following policies are to identify:

− Compile-time bytecode instrumentation – a class file is instrumented
before it is loaded into the JVM. It means that bytecode is transformed by
dedicated tools before it is released. In a particular case instrumentation

Chapter 3: State of the Art of the Monitoring Techniques

- 22 -

may be carried out along with compilation of source code to bytecode.
Hereby, the responsibility of instrumentation is cast to software
development process.

− Load-time bytecode instrumentation – a class files are released with no
instrumentation and remains uninstrumented until they are loaded by
JVMs. When class loader is requested to load particular class its bytecode
is modified in the fly according to instrumentation request. This
mechanism is suitable for one-time instrumentation, however
instrumentation is not configurable at the application runtime. It causes
performance overhead introduced by bytecode modification when loading
classes.

− Dynamic bytecode instrumentation – a class which is already loaded, and
possibly even running, may be redefined. Classes can be modified
multiple times and can be returned to their original state. The mechanism
allows instrumentation which changes during the course of execution. It
causes performance overhead introduced by bytecode modifications at
the runtime, although instrumentation may be dynamically enabled and
disabled that allows performance management.

There are a few libraries for Java bytecode engineering. Byte Code
Engineering Library (BCEL) [15] is intended to analyze, manipulate and even
create from scratch at run-time Java class bytecode. Its approach is to provide
an object representation of binary class file.

ASM [12] library offers similar functionality as BCEL although with
significantly smaller size and increased efficiency. It is especially suitable for
dynamic bytecode redefinition [5] [45] in the fly at load time or even when a
class have been already loaded thanks to java.lang.instrument API
incorporated into JDK since version 5.0. The efficiency of ASM in bytecode
redefinition is achieved by applying visitor design pattern [37]. The other
utilized bytecode engineering libraries are SERP [43] and Javassist [26].

Bytecode engineering enables variety of non-trivial utilities. Along with
reflection and dynamic class loading make Java more dynamic language, and
allows generating JVM-compliant code even from non-Java source code. The
notable example is scripting language such as Ruby [54] which is interpreted by
pure-Java JRuby [55] interpreter using ASM. Moreover, aforementioned
libraries are widely employed in many innovative and successful projects such
as object-relational mapping framework Hibernate [56], Aspect-Oriented
Programming frameworks, compilers, optimizers, code generators and analysis
tools. Despite its advantages, bytecode instrumentation itself remains low-level
and too cumbersome for a monitoring utility.

Therefore, there are many efforts which are targeted to make both source
code and bytecode engineering on higher level and in a more convenient way.

Chapter 3: State of the Art of the Monitoring Techniques

- 23 -

Abstract Syntax Tree (AST) concept is used in parsers as an intermediate
between a parse tree and interpreter's internal representation of a program. An
AST is derived from a parse tree by omitting syntax elements that do not affect
the semantics of the program (e.g. pairs of parentheses are omitted since they
actually affect AST structure rather than a program semantics itself). One of the
most notable examples is the Eclipse IDE Java Development Tooling [28] which
uses its own specific Document Object Model [6] for Java source code. AST
nodes constitute join-points where instrumentation may take place.

Standardized Intermediate Representation (SIR) [7] is intended to be an
abstract representation for procedural and object-oriented programming
languages. It supports Fortran95, Java, C and C++ and it can be generated from
either source code or binaries. In latter mode representation involves: packages,
classes, methods, invocations and a majority of loops. Representation in source
code mode includes additionally all loops, conditionals, exception handling,
critical sections and assignments. SIR is utilized by Monitoring
Instrumentation Request language (MIR) [9] which is XML-based language for
performance monitoring of applications. Using MIR, instrumentation tool may
obtain SIR owing to SIR-request, then indicate join-points and finally submit
instrumentation request.

The alternative approach is introduced by Aspect-Oriented
Programming (AOP) paradigm. AOP follows a principle of separation of
concerns. Whilst functionality is encapsulated in programming language
structures such as classes, procedures, methods etc, some cross-cutting concerns
code is scattered throughout many structures. Therefore, AOP proposes a
technique to handle cross-cutting and orthogonal concerns [46] such as logging,
security, monitoring that are loosely-coupled with business logic itself. This
technique enables injection of additional behavior code called advices which are
launched in due course of application control flow. The assembly of advices
that cover certain concern is called aspect that encloses in an individual module
a particular cross-cutting concern. Usually AOP frameworks introduce
dedicated Join-Points Models (JPM) which constitute a space of available join-
point, along with a pointcut expression language in order to facilitate selection
of certain join-point subsets. In the case of Java aspect frameworks their JPMs
and pointcut expression languages use terms of Java and OOP phenomena such
as classes, methods, fields, inheritance, realization etc.

AOP paradigm may be realized by weaving base source code or
bytecode with aspects code, precisely, with the code of aspects’ advices.
However, some implementations take advantage of a proxy design pattern,
using a proxy objects that delegate method calls and wraps them with some
additional behavior.

There is a number of AOP framework and among then a majority is
addressed to Java, however there exists framework dedicated to e.g. C++ and
C#.

Chapter 3: State of the Art of the Monitoring Techniques

- 24 -

AspectJ [13] offers extension of Java programming language enabling
development of aspects together with the base business logic. Therefore, it
introduces new language constructs such as aspects, inter-type declarations,
pointcuts and advices along with its own specific Java compiler which weave
source code of a base code with aspects code during compilation.

Subsequent AOP tools such as JBoss AOP [27] and AspectWerkz [14] do
not disturb programming language and they weave bytecodes of ordinary Java
base code with ordinary Java aspect code. Instead of introducing dedicated
constructs the existing ones are employed: such as annotations or XML-driven
configuration. They both are able to weave code at the compilation time, at load
time and even, when using Java 5.0 or higher, at the runtime. In contrary to
above mentioned frameworks that utilize code weaving, Spring AOP [45]
takes advantage of proxy design pattern approach and do not support aspect
deploying at the runtime. It does not rely on bytecode weaving and cannot be
applied outside Spring Framework.

AspectJ, AspectWerkz, JBoss AOP, and Spring AOP are the leading tools
in terms of user adoption when taking into account feedback from an active
user community as noted in [10]. Basing on insightful investigation and
comparison of leading AOP tools made in [10] the most important features
compilation may be collected as done in Table 1 and Table 2.

Chapter 3: State of the Art of the Monitoring Techniques

- 25 -

Features AspectJ AspectWerkz JBoss AOP Spring AOP

Aspect
declaration

In code
In annotations
or XML

In annotations
or XML

In XML

Advice bodies In code Java method Java method Java method

Pointcuts In code String value String value String value

Configuration

Dedicated
.lst
inclusion list
file

Dedicated
aop.xml file

Dedicated
jboss-

aop.xml file

Dedicated
springconf

ig.xml file

Invocation
pointcuts

{method,
constructor,
advice} x {call,
execution}

{method,
constructor,
advice} x {call,
execution}

{method,
constructor,
advice} x {call,
execution}

Method
execution
only

Initialization
pointcuts

Class
initialization,
instance
initialization,
pre-
initialization

Class
initialization,
instance
initialization

Instance
initialization

-

Exception
handling
pointcuts

Supported by
dedicated
operators

Supported via
advices

Supported via
advices

Supported via
advices

Control flow
pointcut
expressions

Supported by
cflow and
cflowbelow
operators

Supported by
cflow and
cflowbelow
operators

Supported by
call stack
operators

Supported by
cflow
operator

Table 1. Brief AOP tools comparison according to [10] (part 1).

Chapter 3: State of the Art of the Monitoring Techniques

- 26 -

Features AspectJ AspectWerkz JBoss AOP Spring AOP

Containment
pointcut
expressions

Supported by
within and
withincode
operators

Supported by
within,
withincode,
has
method/fie
ld operators

Supported by
within,
withincode,
has
method/fie
ld operators

-

Special
pointcut
expression
operators

Conditionals -
Dynamic
cflow
operator

-

Dynamic
advice context

Supported by
this,
target,
args
variables
passed to
advices

Supported by
this,
target,
args
variables
passed to
advices

Supported via
reflective
access

Supported via
reflective
access

Extensibility
Thanks to
abstract
pointcuts

By overriding,
advice
bindings

By overriding,
advice
bindings

By overriding,
advice
bindings

Table 2. Brief AOP tools comparison according to [10] (part 2).

Pointcut expression languages introduced by Aspect-Oriented
Programming tools establish an alternative to Abstract Syntax Trees, as long as
it provides a language to select subsets of join-points according to some
programming language-specific rules. A comparison of AOP-like and AST-like
approaches which takes into consideration AspectWerkz and Standard
Intermediate Representation, respectively, is contained in Table 3 and Table 4.

Chapter 3: State of the Art of the Monitoring Techniques

- 27 -

AST-like approach of
Standard Intermediate Language

AOP-like approach of
AspectWerkz

Deepened introspection into program –
to code regions level

Coarse grained join-point space:
before/after/around method calls or field
access, exception caught etc. without
descending to method bodies; follows the
hermitic principle of Object-Oriented
Programming - no access to the
implementation of methods what induces
abstraction layers

No dynamic context – no access to
runtime values

Rich dynamic context – reference to target
object, class members’ signature and call
arguments

Only individually and explicitly
specified code region is instrumented
at once

Pointcuts expression languages are regular-
expression-based supporting terms of
programming language such as inheritance,
realization, encapsulation etc.

Provides only static Abstract Syntax
Tree of a program

Besides syntax representation it provides
also access to runtime values (dynamic
context, aspect context)

Standard supporting C, C++, Java, and
Fortran

Java-specific

Supports only build built-in
intelligence (e.g. metrics suite)

Enables aspect intelligence - proprietary
code (advice) is invoked reaching given join
point

Table 3. Comparison of AST-like and AOP-like instrumentation approaches basing on
Standard Intermediate Language and AspectWerkz library, respectively (part 1).

Chapter 3: State of the Art of the Monitoring Techniques

- 28 -

AST-like approach of
Standard Intermediate Language

AOP-like approach of
AspectWerkz

Thread-relevant features No thread-relevant features

Supports snapshots of current state of
the process

Aspects are stateful and may be monitored
and traced

Join points space is ordered with no
relations

Many join point relations introduced (e.g.
inheritance, regular expression of method
name, location in the code etc); allows
finding join point matching to the given
criteria

Supporting code regions level not
always feasible when given only with
the binaries

Bases only on bytecode

Events are propagated through
network and processed in monitoring
tool-side

Advices are locally executed in target
process, events may be pre-processed locally
according to some logic, generated events
may be better grained

Table 4. Comparison of AST-like and AOP-like instrumentation approaches basing on
Standard Intermediate Language and AspectWerkz library, respectively (part 2).

3.2.2 Exposition Techniques

Exposition techniques, they may base on a number of approaches. One of
them is Message-Oriented Middleware approach of JMS [30] which involves
third-party message service providers for message passing. Generally, JMS
supports two message destination types: queues and topics, with corresponding
message redistribution modes: producer-consumer and publisher-subscriber.
The are lots of JMS implementation supporting variety of features such a
message persistence, reliability, acknowledgments etc.

Unlike MOM, JMX descends from remote object idea. JMX agent layer
introduces MBeanServer in which MBeans are registered in order to make them
remotely accessible. Remote processes may access MBeans’ features such as
attributes, operations and notifications. The transport layer is separated from
MBeanServer itself and is provided by JMX Distributed Services Layer.

Chapter 3: State of the Art of the Monitoring Techniques

- 29 -

A specific solution is provided by Java Platform Debugging
Architecture (JPDA) [32] which is designed for debugging in development
environments for desktop systems. It is a specification and, in the same time, a
reference implementation of services that JVM must provide for debugging
purposes. It allows remote debugger JVM to access debuggee JVM through Java
Debug Wire Protocol and control the execution of application contained in
debuggee machine in the classical debugger-like manner. Given with such a
specification, tool developers are enabled to easily create portable and reusable
debugger utilities. However, beyond debugging in development environments
JPDA no longer seems to be suitable.

Some other proprietary solutions may base on TCP/IP or UDP/IP
protocols stack, that are widely supported in distributed environments fabric.
The example to mention is dedicated log4j log appender using plain TCP
sockets. Higher level protocols that define additionally interoperable message
format such as SOAP [51] may be applied to. Also Web Services intended as a
platform-independent Internet standard is nowadays focusing on specification
of features supporting various message exchange modes such as WS-
Notification [57].

3.2.3 Access Techniques

JMX Distributed Services Layer

Over its agent layer JMX provides services for clients and management
application to enable access and interaction with MBeanServers and the
managed via MBean resources in the servers. Clients connect to MBeanServers
thanks to:

− Connectors – composed of a pair of client and server-side compatible
communication endpoints. Client part provides a protocol-independent
API to access the remote MBean Server.

− Adapters – intended to creates a facade view of MBeanServer through a
given protocols such as HTTP or SNMP, provides only server-side part.

Using either connector or adapter, the client API enables manipulation
over MBeanServer and registered MBeans. Moreover, MBean Proxy of a given
MBean may be created on the client-side. Proxy propagates operations to
perform to the corresponding MBean and in the same time MBean propagates
notification to all of its proxies.

Nonetheless, interoperability is a vital issue on JMX Distributed Services
Layer. Therefore adapters relies on standardized protocols such as HTTP and
SNMP. Since Web Services is widely accepted and adopted standard, the

Chapter 3: State of the Art of the Monitoring Techniques

- 30 -

efforts are undertaken in order to standardize Web Services connector for JMX
agents [58] in order to allow non-Java clients managing Java applications.

JGroups [29] is a one of the libraries for multicast communication that
especially puts emphasis on reliability. Thank to it, processes can set up
ephemeral group across LANs or WANs, join groups, send messages to
members and receive messages from members in the group. It doesn't
necessarily mean that IP Multicast is used since JGroups feature is a flexible
protocol stack.

The monitoring bus endpoints may be arranged in more decentralized
and complex topologies of peer-to-peer network. Such an architecture balances
network load and prevents from network throughput bottlenecks. It also
enables spontaneous establishment of a scope environment of peer groups.
JXTA [34] specifies a set of open protocols that standardize the manner in
which peers discover each other, self-organize into peer groups, advertise and
discover network resources, communicate and monitor each other.

3.3 Summary

The analysis of a problem and introduction of the layers allowed
identification and discussion about the more or less partial and relevant
solutions. This section gave a view how the issues are addressed by current
techniques, which of them are solved and which still remain unaddressed.

Basing on a knowledge of the existing solutions the emerging system
may utilize them in order to fulfill specific requirements. Moreover, system will
focus on challenges that are poorly covered in the current status.

Chapter 4: Concept of the leMonAdE Monitoring System

- 31 -

Chapter 4
Concept of the leMonAdE
Monitoring System

In the present chapter the detailed goals of this thesis are specified. These goals
are to be achieved with an emerging monitoring system, namely leMonAdE. The goals
induce the requirements along with the general concept on how to fulfill them in a given
technological background. The further subsections are devoted to the detailed
description of the concept of leMonAdE monitoring system.

A concept presented in this thesis addresses generally Java-based
applications. Afterwards, upon instrumentation and exposition techniques
foundation the concept is extended in order to support Mocca framework
applications over grid fabric.

The concept addresses requirements that determine practical usefulness
and wide applicability of an emerging solution. Requirements bear in mind
software engineering process that the concept has to fit in and efficiently
improve. The requirements imposed are to ensure that emerging system will be
as much as it is possible reusable and adaptable with other solutions and
technologies.

Chapter 4: Concept of the leMonAdE Monitoring System

- 32 -

4.1 Detailed goals

The present section provides the enumeration of detailed goals that are
to be addressed by a monitoring system. The goals are individually motivated
and explained as follows:

− Separation of business logic and monitoring concern. From the
application development perspective the crucial is a requirement of no
involvement of monitoring concern in course of application development.
The fundamental intention of this work is to eliminate monitoring-related
code disrupting the application business logic implementation.

− Adherence to existing standards and specifications. The solution is
expected to remain universal as long as it's possible, by adhering to
specifications and standards. Since there exist instrumentation and
exposition techniques which are said universal, that rely solely on general
specifications, they may be successfully employed in whole Java world no
matter what application model, framework or architecture is applied.
Although access layer by definition strongly adheres to the architecture of
application, tools layer may cover underlying application model owing to
some well-specified interface between monitoring infrastructure and
monitoring tool. Nonetheless, access layer being the one who is to be
aware of actually employed application model has address to CCA model.

− Introspective monitoring. The solution has to assist application developer
and executor in low-level introspection monitoring while testing
debugging, validating profiling applications. It has to be usable to monitor
running application from the developer’s point of view. It is to monitor
how application works in terms of programming model, language and
paradigms.

− Monitoring of high-level business logic. Nonetheless, monitoring has to
provide means for high-level business logic monitoring. It has to enable
developer to instrument application with some additional behavior that
will expose monitoring and management valuable information. A custom
monitoring intelligence is to be of the developer's choice and may be
responsible for e.g. extraction of intermediary results or tracing the status
of executed application. High-level business logic monitoring is to monitor
how application works in terms of problem domain.

− Dynamic instrumentation. Monitoring aspect should be dynamically
pluggable at the runtime and easy to enable and disable repeatedly in
order to do not constantly affect performance. It implies hot-plugging and
hot-unplugging into running application.

Chapter 4: Concept of the leMonAdE Monitoring System

- 33 -

− Agile adaptation. For a developer's convenience the emerging solution
has to be well coordinated with existing techniques, and as much as its
possible free of external dependencies. Then, the adaptation of target
application code and development environment in order to enable
monitoring will become effortless.

− Monitored application model. Another issue to address is monitored
application model based on CCA specification. A formal description
model is necessary since application instrumentation specification has to
refer to the application architecture. Application model has to constitute a
space for place contexts denoting which architectural part of application the
monitoring event is related to.

− Minimizing overhead. The crucial factor that determines usability of a
monitoring system is the overhead that is introduced. One of the method
of minimization that was already mentioned is a dynamic instrumentation
which makes monitoring pluggable so that overhead is introduced only
when the monitoring is turned on. The emerging solution has to employ
only efficient mechanisms.

− Security. While designing monitoring system security issue has to be
borne in mind. Although emerging solution is not expected to implement
security concern, but rather to take into consideration plugging custom
security modules into it on the design stage.

4.2 The name of the system

The emerging monitoring system was named leMonAdE that stands for
Agile Monitoring Adherence Environment. The terms used in its name reflect
concept along with characteristics expected from such a system:

− Agile – not imposing application framework, well coordinated with
existing technologies, (as much as it’s possible) free of external
dependencies and effortlessly employable

− Adherence – not requiring adaptation of target application code and easy
to employment in the case of already existing applications, rather
adherable than application-intrusive, adhered to standards and
specifications

− Environment – providing a monitoring utilities toolset.

Chapter 4: Concept of the leMonAdE Monitoring System

- 34 -

4.3 Concept Overview

Roughly explained, the concept consists of several ideas. Each idea
addresses one of the layer of a reference monitoring system architecture. On
instrumentation layer, in general, the Aspect-Oriented Programming paradigm
are to be supported by dedicated custom class loader, namely Aspect-Oriented
Class Loader (AOCL) that is presented in section 4.4. Instrumentation will rely
on bytecode weaving of a base application code with a code of the aspects. Such
the aspects are named Monitoring Aspects and are further discussed in section
4.5. On the exposition layer, the Monitoring Aspects instances are to be
monitoring-enabled entities instrumented as MBeans. Such the aspects
registered in MBeanServer will expose the remote interfaces as it is described in
details in section 4.6. The client stubs for accessing remote aspect MBeans are to
be contained in Aspect-Oriented Class Loader Registry as explained in section
4.7. Over the registry the monitoring tools may emerge that will support the
aspect-based monitoring of an application as said in details in section 4.11.

The concept may be adopted in Mocca framework and Moccaccino
Manager and as shown in sections 4.8 and 4.10. In particular, it may take
advantage of the idea of Architecture Description Language for Moccaccino
which is presented in section 4.9.

How the above described ideas map on architecture is shown in Figure 2.
The subsequent sections present successively the ideas layer by layer.

Monitored process

Aspect-
Oriented

ClassLoader

Instrumentation Layer Exposition Layer

Aspect-
Oriented

ClassLoader
Registry

Access Layer

Monitoring
Tool

Tools Layer

Monitoring process

Running
code

Monitoring
Aspects

JMX
Interfaces

Figure 2. The ideas involved in a monitoring system concept spread over the reference
monitoring system architecture.

4.4 Aspect-Oriented Class Loader

This work is intended to fit well in Java platform, therefore it should be
pluggable in the well-defined extension points that Java platform defines. One
of them is as custom class loading policy [40]. Custom class loaders define the

Chapter 4: Concept of the leMonAdE Monitoring System

- 35 -

manner in which JVM dynamically loads classes, and in the same time
constitutes classes' namespace context.

Thanks to custom class loader providing classes' bytecodes from
arbitrary, even remote location may be achieved. Particularly, it may handle on
demand loading of foreign bytecode that is to be woven with application base
code. Moreover, as long as class loaders preserve class namespaces, bytecode
transformation may be scoped to the classes loaded by particular classloader
without interfering other classes. This introduces isolation, which is especially
significant in the case of middleware containers. Basing on one of the aspect
frameworks, such a custom class loader may provide a functionality of aspect
weaving and may enable convenient and easy to employ tools for aspect-
oriented programming. The concept of Aspect-Oriented Class Loader (AOCL)
exceeds beyond monitoring targets, and may be utilized as a generic AOP
utility, nevertheless, it is particularly suitable for monitoring use [8]. As long as
Java object is given with a reference to a class loaded, it provides aspect object
with the AOCL context information. If so application context and space context
information may be contained in AOCL instance. By encapsulating all the
instrumentation functionality within custom class loader, it is easy to adapt
middleware containers by simply replacing appropriate class loader with
AOCL or by extending class loader hierarchy by AOCL as shown in Figure 3.

Figure 3. Middleware container adopted to support Aspect-Oriented Class Loader
instrumentation features.

Owing to bytecode instrumentation techniques AOCL-like
instrumentation affects solely containers without reengineering of application
source code. However, AOP frameworks are bound with their own Join-Point
Model. This in fact puts restrictions for the foreign code to be inserted only in

Chapter 4: Concept of the leMonAdE Monitoring System

- 36 -

defined join points, therefore, developer has to bear in mind the Join-Point
Model while developing aspect code.

4.5 Monitoring Aspects

AOCL enables deployment of aspects of every kind, accomplishing
unrestricted variety of functionalities and, in particular, monitoring.

The monitoring aspect is a stateful entity that is not limited to emitting
out notifications in a sensor-like manner. Since it is stateful it may contain some
monitoring intelligence and may process interception according to some
business logic. Such a monitoring aspect acts rather like a monitor, because it is
able to provide information of higher level of abstraction, to handle queries and
operation invocations. It may be as well containing some static context
information that are passed while instantiating to aspect instance, as well as
dynamic context information that is programmatically accessible via variables
within advice method bodies.

In contrary to monitoring aspects the ordinary foreign code is acting like
a sensor. It is a stateless behavior, not managed and devoid of dynamic context,
therefore, is not able to enable non-trivial processing. It may solely forward
interceptions by emitting out notifications. Moreover, it cannot handle queries
and operation invocations. Comparison of sensor-like and monitor-like
instrumentation is depicted in Figure 4.

Figure 4. Comparison of sensor-like and monitor-like instrumentation.

Chapter 4: Concept of the leMonAdE Monitoring System

- 37 -

4.6 JMX Interface

In order to make aspects monitorable and manageable from remote
location JMX technology is suitable and was successfully employed in several
similar solutions [41].

The concept lies in making both AOCL and aspects manageable via JMX
by making their classes MBeans. In a particular case of standard MBeans it
imposes solely, besides reasonable, design pattern and naming convention of
remote interfaces. Having MBeans registered in so-called MBeanServer, some of
their features such as attributes, operations and notification are exposed. JMX
clients may then connect MBeanServer and access features of registered
MBeans.

Which class’ attributes and operations are to be exposed depends on
MBean type. In a basic standard MBean it is determined by a corresponding
MBean remote interface, which name is imposed by a convention by adding
MBean suffix to the MBean implementation class name.

AOCL may expose management interface containing operations related
to AOCL configuration, codebase locations, aspect deploying, aspect
destroying, setting context information etc. Moreover, it may expose some
valuable information via MBean’s attributes. What is more, each aspect may
expose its own arbitrary set of attributes and operation and may emit out
notification of its choice towards the subscribers.

MBeanServer ensures secure access from remote parties by supporting
pluggable security management, that addresses issues of unauthorized access
and information confidentiality. JMX is another well-defined extension point of
JVM that fully relies on standard specifications.

4.7 Aspect-Oriented Class Loader Registry

Having MBeans registered in MBeanServer connected clients may
request for MBean attributes, operations and notifications. Such a client may be
ordinary JMX consoles as well as more elaborate tools, or custom clients built
upon JMX API.

Basing on this API AOCL's MBean client stub can be developed and
considered as a monitor plugged to corresponding AOCL, namely AOCL
Monitor. Such a monitor may provide access not only to AOCL itself, but as
well to all the aspect deployed in a scope of given AOCL.

Chapter 4: Concept of the leMonAdE Monitoring System

- 38 -

Since usually a number of AOCLs would be involved in application
execution they has to be registered in one or more MBeanServers distributed in
grid environment, each per one JVM. The application managers may then
maintain dedicated registry providing AOCL Monitors, one per each AOCL.
Regarding to AOCL specification, all that AOCL Registry needs is the
MBeanServer address and AOCL's unique object name. Basing of such AOCL
Registry monitoring tools have access to all registered AOCLs and aspects in
their scope.

4.8 Adaptation of Mocca Framework

The aforementioned concepts may be applied e.g. to Mocca framework
which will result in monitoring-enabled Mocca edition. However, it is worth to
emphasize that they can be applied to other framework as well. Since this work
is focused on component-based applications the Mocca framework will be
addressed. The instrumentation of Mocca framework can be carried out as like
in the case of any other Java-based framework by replacing appropriate class
loader with AOCL.

4.9 Architecture Description Language for
Moccaccino

Among Architecture Description Languages (ADLs) [11] for component-
based architectures ADL for Moccaccino (ADLM) [4] can be distinguishes as a
language dedicated to CCA. ADLM introduces a concept of qualitative
component diagram that focuses on component groups and their (possibly
multiple) connections, rather than on individual component instances and
actual connections multiplicity. It allows architecture modelers dealing with a
higher level, concise, easy to refactor UML-like diagram instead of overgrown
and inconvenient component instances' map (see: Figure 5). ADLM is a textual
representation of Application Object Model which is the API incorporated into
Moccaccino Manager for modeling application architecture programmatically.

Chapter 4: Concept of the leMonAdE Monitoring System

- 39 -

Figure 5. Concise qualitative component diagram of ADLM (a) that is resolved to the plain
component diagram (b).

Sample component application architecture of Figure 5 may expressed in
ADLM format as shown in User Manual in Code Snippet 28.

4.10 Extensions to Moccaccino Manager

As mentioned earlier, application managers are obliged to maintain
AOCL Registry. Therefore, each time they request instantiation of AOCL they
have to add it in the registry. In the case of Moccaccino Manager, Application
Handler is an entity responsible for handling running application component
instances and may accept as well responsibility of AOCL Registry.

Moreover, component deployment activity has to be changed as long as
it has to take care of a proper configuration and initialization of AOCL.
Component deployment request has to include the configuration of AOCL
within which component instance would be deployed. The role of the AOCL
configuration provider has to be fulfilled by dedicated Instrumentator module.
From the one hand it has to take as an input instrumentation specification on
the application level, from the other it has to return concrete configurations for
AOCLs that correspond to component instances. Such a configuration should
contain e.g. application and place context information. Application
Instrumentation Specification for Moccaccino (AISM) may be expressed in an

Chapter 4: Concept of the leMonAdE Monitoring System

- 40 -

XML-based format that refers to architectural parts of application as described
in the ADLM document.

4.11 Monitoring Tools

Monitoring utilities toolkit will be provided as a set of ready-to-use
generic aspects which could be deployed, managed and monitored by any of
third party's JMX consoles. Moreover, more tailored JMX-based consoles will
take advantage of AOCL Registry in order to enable simultaneous monitoring
of all distributed AOCLs involved in application. Such aspects toolkit is
intended to assist in introspection monitoring.

Besides using ready-to-use generic aspects, developers are allowed
extending them or even create from scratch custom aspects. Custom aspect
provided by developer may realize monitoring functionality on higher level of
abstraction.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 41 -

Chapter 5
Design and Implementation
of the leMonAdE Monitoring
System

This chapter provides more insightful view in the monitoring system concepts
and shows how this concepts were realized. The following subsections present an
architecture of a system, detailed design and discuss implementation issues. This
chapter is organized regarding to subprojects that has been carried out in scope of this
work: leMonAdE AOCL which constitutes a core of the monitoring system, Mocca
leMonAdE edition that incorporates monitoring capabilities into Mocca framework,
Moccaccino leMonAdE edition that supports management of monitoring-enabled
Mocca application and an Eclipse IDE plug-in that provides UI for monitoring-enabled
Moccaccino manager.

Since architecture, generally, follows proposed reference architecture,
design is divided into four above described layers as it is depicted in Figure 6.
Detailed design has been carried out separately for each layer.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 42 -

M
B
e
a
n
In
te
rf
a
ce

M
B
e
a
n
S
e
rv
e
r JM

X

C
o
n
n
e
ct
o
r

JM
X

A
d
a
p
te
r

JM
X

C
o
n
n
e
ct
o
r

P
ro
to
co
l

C
lie
n
t

Figure 6. Overall general architecture of the monitoring system.

Therefore, design is divided into several subprojects:

− leMonAdE AOCL – core subproject that provide full functionality of
instrumentation, exposition and access layer to utilize in arbitrary Java-
based application model as it is not specific to any.

− Mocca leMonAdE edition – Mocca framework adopted to support
leMonAdE, introducing AOCL.

− Moccaccino leMonAdE edition – Moccaccino Manager adequately
modified in order to support Mocca leMonAdE edition.

− Moccaccino leMonAdE edition Eclipse plug-in – introduces UI to
Moccaccino leMonAdE edition functionality in a form of Eclipse IDE plug-
in for Mocca application developers’ convenience.

Dependency between above enumerated subprojects is that both Mocca
leMonAdE edition and Moccaccino leMonAdE edition uses leMonAdE AOCL
libraries. Moreover, Moccaccino Manager obviously requires Mocca framework
libraries while Eclipse plug-in relies on Moccaccino libraries.

5.1 leMonAdE AOCL

5.1.1 Instrumentation Layer

Obviously, AspectOrientedClassLoader class is a subclass of
java.lang.ClassLoader. The overridden method loadClass performs
seeking class' bytecode in dynamically added locations such as remotely staged
jar file or local file system path.

Seeking of class bytecode is delegated to BytecodeProvider class
which is composed into AspectOrientedClassLoader class. Currently, it

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 43 -

performs seeking in either local file system path or in arbitrary located jar file
under given URL that is resolvable.

What is crucial, class loaders are to be arranged hierarchically. It means
that class' bytecode seeking must be first delegated to the parent. This prevents
from loading the same class twice in distinct class loader what causes
incompatibility of such loaded classes.

As an aspect framework the AspectWerkz was chosen as the one best
fitting in the requirements. It enables runtime bytecode weaving, provides
comprehensive Join-Point Model along with powerful and straightforward
pointcut expression language. What is more, it provides programming utilities
that facilitate aspect development (e.g. annotations-driven development). It is
constantly improved, well documented and successfully employed in several
solutions.

AOCL manages zero or more Aspect Deployment Scopes (ADS) which
actually specify a subset of join-points which are pre-instrumented. They
restrict join-point space since only pre-instrumented join-points are eligible for
instrumentation, and therefore prevent from unwished instrumentation and
injection of disrupting foreign code.

The join-point subsets of ADSs are expressed in pointcut expression
language and have to be specified before loading application classes in order to
perform required pre-instrumentation of join-points while loading application
bytecode. It is required to do so, as long as pre-instrumentation modifies class
structure, which is not allowed by modern JVMs to redefine class structure after
it is loaded. Nonetheless, aspects deployment doesn’t affect instrumented class
structure and, therefore, it may be performed after the instrumented class is
loaded. ADS constitutes moreover a logical context within which aspects are to
be deployed. The role of ADS and its relation with aspects it graphically
explained in Figure 7.

Figure 7. Aspect Deployment Scopes (ADS) as ones that pre-instrument certain subsets of
join-point (filled bars denote join-points pre-instrumented by ADSs). Aspects may

instrument only join-points previously pre-instrumented by ADS that scopes given aspect
(arrows denote instrumentation by concrete aspects).

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 44 -

ADS are designed to be either static, such that having a fixed pointcut
expression specified before ADS deployment, or parameterized, such that having
a parameterized pointcut expression specified, whereas the actual pointcut
expression is resolved at the ADS deployment time, according to the parameter
values provided. Above mentioned two are represented as distinct subclasses of
AspectDeploymentScope class. ADS are deployable via AOCL methods.
Static ADS definition include only a pointcut expression, while parameterized
ADS are to be provided as a class or as a properly manifested jar file. Such a
jar file is expected to has manifest file with attribute Aspect-Deployment-
Scope-Class-Name indicating what is a class implementing parameterized
ADS.

Deploying ADS requires ADS definition along with the name identifier
of ADS, moreover, in the case of parameterized ADS it requires as well a
complete set of parameters values.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 45 -

Figure 8. Class diagram depicting relation between AOCL, BytecodeProvider, ADSs and

generic aspect.

Likewise ADS, aspects may be static and parameterized as well.
Parameterized ADS supports parameterized aspects while static ADS – static
aspects.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 46 -

In the case of static aspects pointcut are to be either:

− specified explicitly coded in aspect class annotations, or

− specified explicitly as parameters passed to the aspect deploy request

Parameterized aspects, in turn, have pointcuts resolved by ADS
according to the parameter values:

− specified implicitly with parameters passed to the aspect deploy request
while actual pointcut is resolved by parameterized ADS

Irrespectively, custom configuration parameters organized in key-value
pairs can be passed to the aspect while deploying. Aspect deploy request is
performed via ADS methods.

When DeploymentScopeAwareAspect interface is realized by
concrete aspect class the reference to encompassing ADS will be injected to its
instances via setAspectDeploymentScope method call just after aspect
instantiation. Given with such a reference to ADS aspect may access ADS
functionality e.g. may undeploy itself.

For developers’ convenience generic class such as
UndeployableAspect is provided that realizes
DeploymentScopeAwareAspect interface and thanks to it may access basic
information about itself. Aspect developer may use its functionality by simply
extending this class.

Reconcilement of AOCL with AspectWerkz requires slight modification
of AspectWerkz library. By default AspectWerkz instrumentation engine reads
configuration related to given class loader when it is requested to load a first
class. The configuration is extracted from XML document located in well-
known location in local file system. This behavior is found not suitable for
AOCL since AOCL is intended to be programmatically configurable and it is to
store its configuration itself instead avoiding awkward manipulating of local
file. Furthermore it is reasonable to read configuration from AOCL instance not
necessarily when first class loading occurs but in arbitrary moment of the
developer’s choice. It especially applies to parameterized ADS classes which are
to be loaded by AOCL before loading application classes and are not expected
to be pre-instrumented. Therefore, the following modification are
indispensable:

− AspectWerkz instrumentation engine has to distinguish load class request
handled by AOCL and other class loaders,

− In the case of AOCL the configuration is to be read not from local file but
from AOCL instance configuration,

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 47 -

− AOCL configuration has to be read in arbitrary moment of the developer’s
choice called activation moment: before activation instrumentation engine
is not supposed do perform any instrumentation, activation causes
reading configuration and after that all subsequently classes to load are
properly pre-instrumented according to configuration provided.

5.1.2 Exposition Layer

The architecture of exposition layer is shown in Figure 9. Nomenclature
of JMX layers and reference monitoring architecture layers may cause some
confusion, so in Figure 9 JMX layers and monitoring system architecture layers
are clearly decoupled.

Figure 9. Architecture of Exposition Layer with JMX layers depicted and interactions with
neighbor monitoring system layers.

Exposition layer in main part consists of JMX-enabled subclasses of
instrumentation layer classes. Therefore derivatives such as
JMXAspectOrientedClassLoader,
JMXStaticAspectDeploymentScope,
JMXParameterizedAspectDeploymentScope along with other helper class
are present on this layer. Each of above listed classes are instrumented as
standard MBeans, thus each of them has a corresponding MBean interface.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 48 -

cd jmx

AbstractAspect

«interface»

AbstractAspectMBean

JMXAspectOrientedClassLoader

JMXAspectOrientedClassLoaderConfiguration
«interface»

JMXAspectOrientedClassLoaderMBean

JMXParameterizedAspectDeploymentScope

«interface»

JMXParameterizedAspectDeploymentScopeMBean

JMXStaticAspectDeploymentScope

«interface»

JMXStaticAspectDeploymentScopeMBean

ClassLoader

aocl::AspectOrientedClassLoader

AspectDeploymentScope

aocl::ParameterizedAspectDeploymentScope

AspectDeploymentScope

aocl::StaticAspectDeploymentScope

Figure 10. Core classes of JMX-enabled AOCL (marked as colored) as derivatives of
corresponding AOCL classes (marked as white).

There is also provided
JMXAspectOrientedClassLoaderConfiguration class (see: Figure 10)
responsible for JMXAspectOrientedClassLoader initialization.
Configuration may be specified via
JMXAspectOrientedClassLoaderConfiguration methods or may be
read form XML document such as presented in Code Snippet 1.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 49 -

<?xml version="1.0" encoding="UTF-8"?>

<jmxaocl name="myapp" domainName="org.foo.myapp">

 <jarUrl>

 file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-app.jar

 </jarUrl>

 <staticADS name="staticADS"

 pointcutExpression="execution(* java.lang.Runnable+.*(..))">

 <staticAspect name="staticAspect"

 class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8"

 jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar">

 <pointcut name="myPointcut"

 expression="execution(* java.lang.Runnable+.*(..))" />

 <parameter name="author" value="me" />

 <parameter name="date" value="today" />

 </staticAspect>

 </staticADS>

 <parameterizedADS name="parameterizedADS"

 class="ec.aocl.sample.scope.MethodTracerAspectDeploymentScope"

 jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-

scope.jar">

 <pointcutParameter name="packageScope"

 value="pl.edu.agh.lemonade.aocl.sample.app" />

 <parameterizedAspect name="parameterizedAspect"

 class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect7"

 jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar">

 <pointcutParameter name="callerMethodName"

 value="void
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()" />

 <pointcutParameter name="calleeMethodName"

 value="void

pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()" />

 <parameter name="author" value="me" />

 <parameter name="date" value="today" />

 </parameterizedAspect>

 </parameterizedADS>

</jmxaocl>

Code Snippet 1. Sample XML-based document expressing configuration of
JMXAspectOrientedClassLoader.

Aspect developer is given with generic AbstractAspect class to
extend. It provides basic functionality and exposes MBean interface of
AbstractAspectMBean. Since AbstractAspect is a standard MBean is has
to comply naming convention and specific inheritance pattern shown in Figure
11: concrete aspects that extends AbstractAspect has to be provided with
corresponding MBean interface that extends abstract aspect’s MBean interface.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 50 -

Figure 11. Aspect inheritance according to standard MBean convention.

5.1.3 Access Layer

As noticed earlier on the application manager’s side AOCL Registry has
to be maintained as long as it provides client stubs for AOCLs. Such a registry
instances of AOCLDescriptor class, each per corresponding AOCL.

AOCLDescriptor contains information such as AOCL configuration,
AOCL MBean's object name and address of MBeanServer where AOCL is being
registered. On the other hand, AOCLDescriptor acts like factory which creates
on demand instances of AOCLMonitors.

AOCLMonitor is a local handle which maintains connection to the
corresponding remote AOCL. A logical tree structure that AOCLs, ADSs, and
aspects are arranged to is reflected in monitors structure. Thus AOCLMonitors
keep references to corresponding ADSMonitors which, in turn, keeps
references to AspectMonitors (see: Figure 12).

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 51 -

Figure 12. Diagram of classes involved in AOCL Registry.

5.2 Mocca leMonAdE Edition

Adaptation of Mocca-enabled H2O container is realized merely by
providing additional JVM arguments required by AspectWerkz library at H2O
startup. Mocca itself, was altered solely in
mocca.srv.impl.MoccaComponentPlugletImpl class. The modification
affects mainly initialization of component pluglet, so that AOCL configuration
given as an initialization parameter is read and according to AOCL is then
instantiated. Finally, AOCL is let to be the one to load component class. The
extended class loader hierarchy is depicted on Figure 13. In this way, every
component instance is associated with exactly one corresponding AOCL
instance.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 52 -

Figure 13. Inherited, added and modified items in Moccaccino Manager’s data flow (a).
Extended class loader hierarchy within H2O/Mocca container (b).

5.3 Moccaccino leMonAdE Edition

In Figure 13 (a) all the inherited, added and modified items in
Moccaccino Manager's data flow are depicted. New Instrumentator module is to
make an Application Instrumentation Plan from XML-based AISM language, that
is used by Deployer module while deploying application. The result of
deployment is Application Handler that is enriched with AOCL Registry that
contain records for each AOCL involved in application run. The classes
involved in application instrumentation are depicted in Figure 14.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 53 -

Figure 14. Classes involved in application instrumentation within Moccaccino leMonAdE
edition.

AISM refers to component groups from ADLM and bind them with the
AOCL configurations provided as it is presented on Figures Code Snippet 2 and
Code Snippet 3.

<component-group name="ping" component-class="Ping" weight="5">

 <connection usesPort="pongs" qualifier-attribs="length=2"

 providesPort="PongPort" weight="5" shared="false">

 <component-group name="pongs" component-class="Pong" weight="5">

 <connection usesPort="zonks" qualifier-attribs="keys=one;two"

 providesPort="ZonkPort" weight="5" shared="false">

 <component-group name="zonks" component-class="Zonk" weight="5"/>

 </connection>

 </component-group>

 </connection>

</component-group>

Code Snippet 2. Sample application architecture expressed in ADLM. It represents three
level tree-like structure of sub-workers.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 54 -

<instrumentation userName="someone" password="secret">

 <componentGroupInstrumentation>

 <componentGroup name="pongs" />

 <parameterizedADS>. . .</parameterizedADS>

 <staticADS>. . .<staticADS>

 <jarUrl>. . .</jarUrl>

 <classpath>. . .</classpath>

 </componentGroupInstrumentation>

</instrumentation>

Code Snippet 3. Sample application instrumentation expressed in AIS as it refers to the
ADLM application architecture presented on Figure Code Snippet 2 in order to bind pongs
component group with given AOCL configuration. The inessential AOCL configuration

details are omitted.

5.4 Tool Layer

As a sample monitoring tool prototype the Eclipse plug-in for
monitoring-enabled Moccaccino manager has been developed. It is actually
based on Eclipse-JMX [20] adapted for management of distributed MBeans
registered in multiple MBeanServers.

As stated recently, access layer introduces AOCLRegistry that stores
monitors associated with corresponding to AOCLs, ADSs and aspects. In UI
layer these entities are easy to arrange in tree-like structure owing to
AbstractMonitor class that is generalization of all above enumerated
monitors as shown in Figure 15. Each AbstractMonitor has
MBeanServerConnection, object name, MBeanInfo, as well as parent and
children monitors. Such a data structure fully enabled monitoring and is easy to
apply in custom graphical JMX console.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 55 -

Figure 15. AbstractMonitor data structure to apply in graphical JMX consoles dedicated to

AOCL registry.

Basing on AbstractMonitor structure and Eclipse-JMX console the
Moccaccino leMonAdE edition Eclipse plug-in was developed. It is presented in
Figure 16.

Figure 16. Screenshot of a Moccaccino leMonAdE edition Eclipse plug-in in work.

Chapter 5: Design and Implementation of the leMonAdE Monitoring System

- 56 -

5.5 Implementation summary

The software developed in a scope of this work include four subprojects,
all developed in pure Java programming language. Development process
generated about 110 classes of 15 packages contained in 4 projects. The
examples and sample application was developed as well. The main external
technologies harnessed in the system was:

− AspectWerkz AOP library

− Java Management Extensions (JMX)

Moreover, realization of concept imposed the slight modification of
AspectWerkz library. The overall number of 15 of external libraries was used.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 57 -

Chapter 6
leMonAdE Monitoring System
Performance Analysis

This chapter gives answers on how the solution developed meets the performance
requirements. The following subsections explain tests methodology, discuss the results
obtained and estimates usability of a solution.

The preliminary experiments with a prototype are intended to
investigate the overhead introduced by leMonAdE instrumentation as
compared to the source code instrumentation technique. The values to measure
are the overhead introduced by AOCL itself, by bytecode instrumentation and
by the notification emitted out. Moreover, not only instrumentation overhead is
to be measured. Since dynamic aspect deployment is allowed only in pre-
instrumented (at class load time) join-points, the impact of such a pre-
instrumentation on bytecode performance has to be estimated. The detailed
description of the test methodology is explained in section 6.1.

The test application was a simple stand-alone Java application
performing millions of simple numerical floating-point or integer
computations. The computations were arranged either in loops nested in
recursive calls or in recursive calls nested in loops, in order to investigate how
stack dynamicity affects performance overhead. Section 6.2 is devoted to
deepened insight into the test application.

Performance test application along with performance test suites are
incorporated into leMonAdE AOCL distribution so that developers can carry
out tests out of a box in production environments on every platform. Moreover,

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 58 -

there are dedicated Ant targets provided in order to facilitate test suite
executions. Further details on how the test suites are designed are covered by
section 6.3. Sample runs of the test suites that has been carried out are described
in section 6.4 and discussed in section 6.5.

6.1 Test methodology

The subsequent experiment runs were carried out according to the
following scheme (also shown in Figure 17):

− Test application with no instrumentation – base application (run I)

− Test application with source code instrumentation

− with instrumentation not involving JMX notifications emitted out
(run II)

− with instrumentation involving JMX notification emitted out (run III)

− Test application with leMonAdE instrumentation

− only with AOCL used as an application class loader (run IV)

− with AOCL and pre-instrumentation of ADS (run V)

− with AOCL, pre-instrumentation of ADS and instrumentation by an
aspect (run VI)

− with AOCL, pre-instrumentation of ADS and instrumentation by an
aspect with JMX notification (run VII)

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 59 -

Figure 17. Test runs scheme. Separate runs of base test application (I), application with
source code instrumentation (A: II, III), with leMonAdE instrumentation (B: IV, V, VI, VII).
Separate runs for instrumentation with (III, VII) and without notifications (II, IV, V, VI)

emitted out.

Moreover, the test application is to perform variable number of
computations in order to estimate linear approximation of overhead
introduced. On the other hand, in order to find out whether and how stack
dynamicity affects the overhead, the test application performs computations
arranged in either:

− loops nested in recursive calls or

− recursive calls nested in loops

What is more, in the test application interception overhead has to be
compared to the time consumed by sample standard computations such as
simple floating-point computation (e.g. sin(x)) or integer computation (e.g. 50!).
Therefore, in the test application each call to the method performing one of the
aforementioned computation are to be instrumented so that we have one
interception per one computation such as sin(x) and 50!.

Given with a test methodology a suitable test application is presented in
the subsequent section.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 60 -

6.2 Test application

The test application is a stand-alone Java application that performs
simple computation, but arranged in a specific way. As shown in Code Snippet
4 the actual computation is performed in instrumentedMethod() body,
while the rest of the methods just arrange computation either in loops nested in
recursive calls or in recursive calls nested in loops.

doIterationsWithinRecursion(recursionTimes, iterationTimes) {

 if (recursionTimes > 0) {

 for (i = 0; i < iterationTimes; i++) instrumentedCall();

 if (recursionTimes > 1)

 doIterationsWithinRecursion(recursionTimes-1, iterationTimes);

 }

}

doRecursionWithinIterations(iterationTimes, recursionTimes) {

 for (i = 0; i < iterationTimes; i++) this.doRecursion(recurionTimes);

}

doRecursion(times) {

 if (times > 0) instrumentedCall();

 if (times > 1) this.doRecursion(times - 1);

}

instrumentedMethod() {

 simple-floating-point-or-integer-calculation;

}

Code Snippet 4. Test application pseudocode. Measured was a time consumed for calls
doIterationsWithinRecursion() and doRecursionWithinIterations().

Since the instrumentedMethod() is to be instrumented, in a source
code instrumentation case its body will look like in Code Snippet 5.
Instrumentation involves counting of calls to instrumentedMethod() and
(additionally in the case of test run III) sending notification about count
attribute changed.

instrumentedMethod() {
 // instrumentation goes here
 count++;

 // notification is sent below

 sendCountChangedNotification(count);

 simple-floating-point-or-integer-calculation;

}

Code Snippet 5. Test application pseudocode of method instrumentedMethod() with

source code instrumentation that counts number of calls and sends JMX notification about
count attribute changed. Test cases will measure instrumentation overhead with (run III) and

without (run II) notifications sent.

As stated above, in the instrumentedMethod() body some simple
computation are performed, either:

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 61 -

− floating-point computation of sin(x) or

− integer computation of 50!

In the case of test run VI application is instrumented with an aspect
shown in Code Snippet 6 that performs logically the same operations as source
code instrumentation in the case of run II.

Similarly, in the case of test run V the aspect used that is shown in Code
Snippet 7 is logically equivalent to the source code instrumentation of run III
that is presented in Code Snippet 5.

@Aspect

public class PerformanceTestAppAspect implements PerformanceTestAppAspectMBean,

 DeploymentScopeAwareAspect {

 private int count = 0;

 @Around("execution(void

pl.edu.agh.lemonade.aocl.sample.app.PerformanceTestApp.doSth())")

 public Object monitor(StaticJoinPoint jp) throws Throwable {

 this.count++;

 return jp.proceed();

 }

 public int getCount() {

 return this.count;

 }

}

Code Snippet 6. Aspect that instruments the sample application in the case of test run VI –
without JMX notifications sent.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 62 -

@Aspect

public class PerformanceTestAppAspect2 extends NotificationBroadcasterSupport

 implements PerformanceTestAppAspect2MBean, DeploymentScopeAwareAspect,

 NotificationBroadcaster {

 private int count = 0;

 @Around("execution(void

pl.edu.agh.lemonade.aocl.sample.app.PerformanceTestApp.doSth())")

 public Object monitor(StaticJoinPoint jp) throws Throwable {

 this.count++;

 Notification not = new AttributeChangeNotification(this, this.count,

 System.currentTimeMillis(), "", "count", "int",

this.count - 1,

 this.count);

 this.sendNotification(not);

 return jp.proceed();

 }

 public int getCount() {

 return this.count;

 }

}

Code Snippet 7. Aspect that instruments the sample application in the case of test run VII –
with JMX attribute changed notifications.

In order to facilitate launching of the test application with accordance to
the test methodology dedicated test suites were developed and are presented in
the following section.

6.3 Test suites

The test suites are included in the leMonAdE distribution and follow the
above assumed methodology. They organize test application runs as it is shown
in pseudocode in Code Snippet 8.

There are two complementary suites:

− First, performing test run I where the base application is run, and test runs
II-III where the application is run with source code instrumentation

− Second, performing test runs IV-VII involving leMonAdE
instrumentation.

For both of the above mentioned two dedicated ant targets shown in
Code Snippet 9 are included in build.xml file.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 63 -

for each computation times in (9 000 000, 10 525 500, 12 250 000, 14 062 500,
16 000 000) do

 for each computation type in (sin(x), 50!) do

 for each application run in (I, II, III, IV, V, VI, VII) do

 for each computation stack characteristics in (iterations within recurion,

recursion within iterations) do
 run sample application(computation times, computation type,

application run, computation stack characteristics)

Code Snippet 8. Test suite pseudocode.

<target name="ptest0" depends="jar">

 <java

classname="pl.edu.agh.lemonade.aocl.sample.start.PerformanceTestSuiteNoAOCL"

fork="true">

 <classpath location="${lemonade.aocl.jar.name}" />

 <classpath location="${lemonade.sample.app.jar.name}" />

 </java>

 </target>

 <target name="ptest1" depends="jar">

 <java

classname="pl.edu.agh.lemonade.aocl.sample.start.PerformanceTestSuiteAOCL"
fork="true">

 <classpath refid="lemonade.aocl.run.classpath" />

 <jvmarg value="-javaagent:${lemonade.aocl.jar.name}" />

 <jvmarg value="-Dcom.sun.management.jmxremote.port=1234" />

 <jvmarg value="-

Dcom.sun.management.jmxremote.authenticate=false" />

 <jvmarg value="-Dcom.sun.management.jmxremote.ssl=false" />

 </java>

 </target>

Code Snippet 9. The ant targets dedicated to launch performance test suites: ptest0 target

dedicated to suit that cover test runs I-III, ptest1 target dedicated to suit that cover test runs
IV-VII.

The above described suites are ready to run evermore, in each and every
environment. The following section provides sample results obtained in one of
the tests that have been performed.

6.4 Sample results

This section is devoted to a test that was carried out with Java HotSpot
Client VM (build 1.5.0_11-b03, mixed mode) on PC-class node:

− Processor Intel Pentium M 1.73 GHz, 2MB cache

− RAM 1GB 795 MHz

Both complementary test suites were launched 5 times each, in order to
obtain complete result set that was subsequently put into tables and plotted as
presented in Figure 18.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 64 -

Table 5. Time consumed by computations regarding to computation type, computation stack
characteristics, number of computations and instrumentation, in seconds.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 65 -

computations of sin(x) with iterations within

recursion

0,000

5,000

10,000

15,000

20,000

25,000

9 000,0 10

562,5

12

250,0

14

062,5

16

000,0

number of computations, in thousends

ti
m

e
 c

o
n

s
u

m
e

d
,
in

 s
e

c
o

n
d

s

computations of sin(x) with recursion within iterations

0,000

5,000

10,000

15,000

20,000

25,000

9 000,0 10 562,5 12 250,0 14 062,5 16 000,0

number of computations, in thousends

ti
m

e
 c

o
n

s
u
m

e
d
,
in

 s
e
c
o

n
d
s

base application

source code

instrumentation

source code

instrumentation

with notifications
AOCL with no

instrumentation

AOCL with pre-

instrumentation

AOCL with

instrumentation

AOCL with

instrumentation

with notifications

computations of 50! with iterations within recursion

0,000

5,000

10,000

15,000

20,000

25,000

9 000,0 10

562,5

12

250,0

14

062,5

16

000,0

number of computations, in thousends

ti
m

e
 c

o
n
s
u
m

e
d

,
in

 s
e
c
o

n
d

s

computations of 50! with recursion within iterations

0,000

5,000

10,000

15,000

20,000

25,000

9 000,0 10 562,5 12 250,0 14 062,5 16 000,0

number of computations, in thousends

ti
m

e
 c

o
n

s
u

m
e

d
,
in

 s
e

c
o

n
d

s

computations of sin(x) with iterations within

recursion

0,700

0,800

0,900

1,000

1,100

1,200

1,300

1,400

9 000,0 10

562,5

12

250,0

14

062,5

16

000,0

number of computations, in thousends

ti
m

e
 c

o
n

s
u

m
e

d
,
in

 s
e

c
o

n
d

s

computations of sin(x) with recursion within iterations

0,700

0,800

0,900

1,000

1,100

1,200

1,300

1,400

9 000,0 10

562,5

12

250,0

14

062,5

16

000,0

number of computations, in thousends

ti
m

e
 c

o
n

s
u

m
e

d
,
in

 s
e

c
o

n
d

s

base

application

source code

instrumentation

AOCL with no

instrumentation

AOCL with pre-

instrumentation

computations of 50! with iterations within recursion

3,900

4,400

4,900

5,400

5,900

6,400

6,900

7,400

7,900

9 000,0 10

562,5

12

250,0

14

062,5

16

000,0

number of computations, in thousends

ti
m

e
 c

o
n

s
u

m
e

d
,
in

 s
e

c
o

n
d

s

computations of 50! with recursion within iterations

3,900

4,400

4,900

5,400

5,900

6,400

6,900

7,400

7,900

9 000,0 10

562,5

12

250,0

14

062,5

16

000,0

number of computations, in thousends

ti
m

e
 c

o
n

s
u

m
e

d
,
in

 s
e

c
o

n
d

s

Figure 18. Sample test cases run results served in a form of charts: four upper charts plot
results from each run (I-VI) for each computation type and stack characteristics, next four in
below visualize the same results but are focused on runs that do not involve notifications (I-

II, IV-VII) for the readability reasons.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 66 -

6.5 Analysis of results

The results obtained in the previous section and collected in Table 5 gave
a view of how leMonAdE affects performance of application. A difference
between time consumed by instrumented application in runs II-VII and
corresponding base application run I is considered as the overhead introduced
by instrumentation. Given with results taken from Table 5 the differences were
calculated and put into Table 6.

Table 6. Overhead regarding to computation type, computation stack characteristics, number
of computations and instrumentation, in seconds.

Assuming that the overhead of each application run is linear with respect
to computation times, the a and b factors of f(x)=ax+b relation were estimated
and contained in Table 7.

Table 7. Linear approximation of a dependency between number of computations and
overhead introduced, factor a is measured in seconds per thousand computations, factor b is

measured in seconds.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 67 -

The result obtained may be concluded as follows:

− In the case of instrumentation without notification the overhead
introduced was expected to be independent of stack characteristics due to
JVM feature of inliling of method calls introduced by aspects. It was
confirmed by the measurement as can be seen in column 2 and 4 of Table
7.

− The overhead introduced by instrumentation was expected to be
independent of the base application type due to fact that there is the same
instrumentation in both cases. The accuracy of experiment does not allow
to definitely confirm this expectation.

− Pre-instrumentation overhead is very similar to the overhead of source
code instrumentation (again, due to inlining).

− Pre-instrumentation overhead varies between 0,002 and 0,05 microseconds
per interception, and does not induce noticeable overhead to the
application execution time.

− Instrumentation with aspects induces overhead which is 2 orders of
magnitude greater than in the case of source code instrumentation.
Additional time is consumed by AspectWerkz library when the advice is
executed since it involves instantiation of JoinPoint object, calling advice
method, which in turn calls instrumented method using refection API.

− In the case of aspect-based instrumentation with notifications the major
part of overhead is introduced by JMX itself.

− The overhead introduced by aspect-based instrumentation with
notifications is about 1,5-3 times grater than in the corresponding case of
source code instrumentation with notification.

− Replacing ordinary class loader with AOCL induces negligible overhead

− Instrumentation with aspects with notifications in the function of
computation times manifests large fluctuations so linear approximation
does not apply in the measured range. It is more reasonable to extract an
average of about 1 microsecond per interception as an approximation of
the overhead. It may be implied by JMX policy in delivering notifications
(e.g. buffering).

The results obtained proved that the pre-instrumentation overhead is
insignificant and is optimized by JVM. In exchange the application is enabled to
be dynamically instrumented with pluggable aspects. The overhead of simple
instrumentation without notifications is 2 orders of magnitude greater than in
the case of source code instrumentation, however does not require stopping
application and recompilation as in the case of source code instrumentation.

Chapter 6: leMonAdE Monitoring System Performance Analysis

- 68 -

Moreover, once deployed, aspect may be undeployed so it no longer causes the
instrumentation overhead. Notification sent by aspect-based instrumentation
causes overhead 1,5-2,5 times greater than in the case of source code
instrumentation, although since aspect may store its state it is enabled to emit
coarse-grained notifications, or since it is an MBean it may switch to the
request-response on demand information exchange mode.

It is also important to note that the overhead introduced by aspect
instrumentation with notifications remains at the order of microseconds which
become negligible after introducing network layer where latency is at the order
of milliseconds.

The test conducted can be regarded as the “worst case” since in the
simple application all of operations were instrumented. In real life scenarios the
ratio between instrumented code will be orders of magnitude lower resulting in
significantly smaller overhead to the application execution time.

Chapter 7: Summary and Future Work

- 69 -

Chapter 7
Summary and Future Work

The main goal of this work which was development of a system for a
monitoring of component-based application was successfully achieved. Since
this thesis was set in some technological context it addressed Common
Component Architecture, Java platform, H2O and Mocca frameworks and
Moccaccino Manager tool. Nevertheless, a monitoring system turns out, in its
major part, generic and applicable to the wider scope of Java-based application.

The monitoring system concept emerged from analysis of current state of
the art. The ideas were addressing specific issues and were realized by
employing suitable libraries and techniques available. Design and
implementation managed to realize the concept. The system accomplished the
requirements previously identified:

− Separation of business logic and monitoring concern was achieved by
taking advantage of AOP paradigm that is implemented by AspectWerkz
library. As long as AspectWerkz employs bytecode instrumentation it
overcomes inconvenience of source code instrumentation.

− Adherence to existing standards and specifications was achieved by
addressing standardized Java platform extension points such as custom
class loaders support or JMX specification. The bytecode instrumentation
relies on JVM specification. Also the component-based application model
CCA which is addressed by this thesis is a standard specification.

− Introspective monitoring is supported by aspect-based instrumentation
that involves advices which are executed during application run in the
places called join-points. Subsets of join points of the developer’s choice

Chapter 7: Summary and Future Work

- 70 -

may be selected using dedicated robust pointcut expression language that
is tailored for Java programming language.

− Monitoring of high-level business logic was enabled thanks to aspect-
based instrumentation. As long as aspects are plain Java objects and have
access to the application state, they are stateful and may be programmed
with some business logic that feeds monitoring tools with information at
the higher level of abstraction.

− Dynamic instrumentation was achieved by taking advantage Java 5.0
capabilities of dynamic redefinition of bytecode at the runtime.

− Agile adaptation of the applications to a monitoring system came true,
since neither derangement of application source code nor recompilation is
needed. The monitoring concert is encapsulated in external code of
aspects, and the join-points are specified either within aspect code or are
specified programmatically through AOCL API.

− Monitored application model was developed. Moccaccino Manager
defines its Architecture Description Language for Moccaccino that fully
describes the architecture of a CCA-based application.

− Minimizing overhead was achieved to some extent, as measured in
performance tests.

− Security, however not covered by this thesis actually was taken into
consideration on the design stage of the monitoring system.

The test carried out proved usability of a system developed. The
leMonAdE monitoring system has provided robust and universal solution on
instrumentation, exposition and access layers of a reference architecture of a
monitoring system.

As long as this work was not focused on providing efficient and scalable
monitoring infrastructure, the integration with existing generic monitoring
infrastructure such as Gemini [9] is scheduled for future work. Integration with
an abstract data bus would make a solution complete and to significant extent
universal.

Future plans include also addressing security issue of authorized access
to monitoring information basing on Shibboleth [44] solution. Especially, since
all employed techniques are enabled to be secured by some security policy.
Shibboleth’s decentralized security model seems to fit well in the distributed
nature of a monitoring of component-based application.

The continuous development direction of the leMonAdE monitoring
system involves creating of monitoring aspects organized in toolkits that will
support developers and deployers of Mocca application and any other Java-

Chapter 7: Summary and Future Work

- 71 -

based applications. The toolkits may be dedicated to developers at the stage of
testing, verifying and debugging of applications as well as monitoring of
application deployed in runtime environment.

Since applicability scope of the system developed enables it to apply to
other Java-based application frameworks, another work left for future is to
make frameworks such as Web Services and Web Services Resource Framework
leMonAdE-enabled. leMonAdE monitoring system is to be applied in Virolab
project as a system capable of monitoring Java-based middleware technologies
supported by GridSpace [21] such as Mocca, Axis, XFire and WSRF.

Monitoring of Component-based Applications

- 72 -

Abbreviations

(in alphabetical order)

ADL – Architecture Description Language

ADLM – Architecture Description Language for Moccaccino

ADS – Aspect Deployment Scope

AISM – Application Instrumentation Specification for Moccaccino

AOCL – Aspect-Oriented Class Loader

AOP – Aspect-Oriented Programming

AST – Abstract Syntax Tree

BCEL – Bytecode Engineering Library

CCA – Common Component Architecture

CORBA – Common Object Request Broker Architecture

HTTP – Hypertext Transfer Protocol

IDE – Integrated Development Environment

JMS – Java Message Service

JMX – Java Management Extensions

JPDA – Java Platform Debugging Architecture

JPM – Join-Point Model

JVM –Java Virtual Machine

LAN – Local Area Network

leMonAdE – Agile Monitoring Adherence Environment

Monitoring of Component-Based Applications

- 73 -

MBean – Managed Bean

MIR – Monitoring Instrumentation Request

MOM – Message-Oriented Middleware

OOP – Object-Oriented Programming

RMI – Remote Method Invocation

RMIX – Remote Method Invocation Extensions

RPC – Remote Procedure Call

SIR – Standard Intermediate Representation

SNMP – Simple Network Management Protocol

SOAP – originally Simple Object Access Protocol, lately also Service-
Oriented Architecture Protocol

TLA – Three Letter Acronym

UML – Unified Modeling Language

WAN – Wide Area Network

XML – Extensible Markup Language

Monitoring of Component-based Applications

- 74 -

References

[1] Armstrong, R., Kumfert, G., McInnes, L.C., Parker, S., Allan, B., Sottile,
M., Epperly, T., Dahlgren, T.: The CCA component model for high-
performance scientific computing. Concurr. Comput. : Pract. Exper.
18(2) (2006) 215–229

[2] Kurzyniec, D., Wrzosek, T., Drzewiecki, D., Sunderam, V.: Towards
self-organizing distributedccomputing frameworks: The H2O
approach. Parallel Processing Letters 13(2) (2003) 273–290

[3] Malawski, M., Kurzyniec, D., Sunderam, V.S.: Mocca - towards a
distributed CCA framework for metacomputing. [18]

[4] Malawski, M., Bartynski, T., Ciepiela, E., Kocot, J., Pelczar, P., Bubak,
M.: An ADL-based support for CCA components on the grid. In:
CoreGRIDWorkshop on Grid Systems, Tools and Environments in
Conjunction with GRIDS@work: CoreGRID Conference, Grid Plugtests
and Contest, Sophia-Antipolis, France (2006)

[5] Bruneton, E., Lenglet, R., Coupaye, T.: Asm: a code manipulation tool
to implement adaptable systems. Technical report, France Telecom
(2002)

[6] Marques, M.: Exploring eclipse’s AST parser. IBM Developer Works
(2005)

[7] Fahringer, T., Gerndt, M., Li, T., Mohr, B., Seragiotto, C., Truong, H.L.:
(Standardized intermediate representation for fortran, java, c and c++
programs)

[8] Davies, J., Huismans, N., Slaney, R.,Whiting, S.,Webster, M., Berry, R.:
An aspect-oriented performance analysis environment. Technical
report, IBM Corporation, Hursley, UK (2003)

[9] Truong, H.L., Balis, B., Bubak, M., Dziwisz, J., Fahringer, T., Hoheisel,
A.: Towards distributed monitoring and performance analysis services
in the K-WF Grid project. [19] 156–163

[10] Kersten, M.: Aopwork: AOP tools comparison. IBM Developer Works
(2005) http://www-128.ibm.com/developerworks/library/j-
aopwork1/.

Monitoring of Component-Based Applications

- 75 -

[11] Architecture description languages
http://www.sei.cmu.edu/architecture/adl.html

[12] ASM – Java bytecode manipulation framework home page
http://asm.objectweb.org

[13] AspectJ – seamless aspect-oriented extension to the Java programming
language home page http://www.eclipse.org/aspectj

[14] AspectWerkz – Plain Java AOP home page
http://aspectwerkz.codehaus.org

[15] Byte Code Engineering Library home page
http://jakarta.apache.org/bcel

[16] Bodkin, R.: Aopwork: Performance monitoring with aspectj. IBM
Developer Works (2005) http://www-
128.ibm.com/developerworks/java/library/j-aopwork10

[17] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S.R., McInnes,
L.C., Parker, S.R., Smolinski, B.A.: Toward a common component
architecture for high-performance scientific computing. In: HPDC.
(1999)

[18] 19th International Parallel and Distributed Processing Symposium
(IPDPS 2005), CD-ROM / Abstracts Proceedings, 4-8 April 2005,
Denver, CA, USA. In: IPDPS, IEEE Computer Society (2005)

[19] 19. Wyrzykowski, R., Dongarra, J., Meyer, N., Wasniewski, J., eds.:
Parallel Processing and Applied Mathematics, 6th International
Conference, PPAM 2005, Poznan, Poland, September 11-14, 2005,
Revised Selected Papers. In Wyrzykowski, R., Dongarra, J., Meyer, N.,
Wasniewski, J., eds.: PPAM. Volume 3911 of Lecture Notes in
Computer Science., Springer (2006)

[20] Eclipse-JMX plugin-in for eclipse IDE
http://code.google.com/p/eclipse-jmx

[21] Gubała, T., Bubak, M.: Gridspace - semantic programming
environment for the grid. [19] 172–179

[22] Jurczyk, P., Golenia, M., Malawski, M., Kurzyniec, D., Bubak, M.,
Sunderam, V.S.: A system for distributed computing based on H2O
and JXTA. In: Cracow Grid Workshop, CGW’04, December 13–15, 2004,
Kraków, Poland (2005) 257–268

[23] Kurzyniec, D., Wrzosek, T., Sunderam, V., Slomiński, A.: RMIX: A
multiprotocol RMI framework for java. In: Proc. of the Intl. Parallel and
Distributed Processing Symposium (IPDPS’03), Nice, France, IEEE
Computer Society (2003) 140–146

[24] H2O home page http://dcl.mathcs.emory.edu/h2o

Monitoring of Component-based Applications

- 76 -

[25] Iordanov, B.: Improve application management with JMX.
www.ftponline.com (2004)
http://www.ftponline.com/special/opsmgmt/iordanov/default.asp

[26] Javassist home page http://www.csg.is.titech.ac.jp/~chiba/javassist

[27] JBoss AOP – Framework for Organizing Cross Cutting Concerns home
page http://labs.jboss.com/jbossaop

[28] Eclipse Java Development Tools (JDT) home page
http://www.eclipse.org/jdt

[29] JGroups - A Toolkit for Reliable Multicast Communication home page
http://www.jgroups.org/javagroupsnew/docs/index.html

[30] Java Message Service (JMS) home page
http://java.sun.com/products/jms

[31] Java Management Extensions (JMX) Technology home page
http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement

[32] Java Platform Debugger Architecture home page
http://java.sun.com/javase/technologies/core/toolsapis/jpda

[33] The Java Virtual Machine Specification - Second Edition
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpe
cTOC.doc.html

[34] CollabNet, Inc.: JXTA Home Page (2005) http://www.jxta.org

[35] Java Sun Developer Network home page http://java.sun.com

[36] Krishnamurthy, R.: Performance analysis of j2ee applications using aop
techniques. ONJava.com (2004)
http://www.onjava.com/pub/a/onjava/2004/05/12/aop.html

[37] Kuleshov, E.: Using the ASM framework to implement common java
bytecode transformation patterns. In on Aspect-Oriented Software
Development, A.S.I.C., ed.: AOSD07 Sixth International Conference on
Aspect-Oriented Software Development. (2007)

[38] Apache log4j – Logging Service home page
http://logging.apache.org/log4j

[39] Fahringer, T., Gerndt, M., Li, T., Mohr, B., Seragiotto, C., Truong, H.L.:
(Monitoring and instrumentation requests for Fortran, Java, C and C++
programs)

[40] Mcmanis, C.: The basics of java class loaders: The fundamentals of this
key component of the java architecture. javaworld.com (1996)
http://www.javaworld.com/javaworld/jw-10-1996/jw-10-
indepth.html

Monitoring of Component-Based Applications

- 77 -

[41] Penchikala, S.: Add object cache monitoring using JMX and aspects.
www.devx.com (2005)
http://www.devx.com/Java/Article/29526/0/page/1

[42] Sun Microsystems, I.: Java Remote Method Invocation (2005)
http://java.sun.com/products/jdk/rmi/

[43] Serp – open source framework for manipulating Java bytecode home
page http://serp.sourceforge.net

[44] Shibboleth - standards-based, open source middleware software which
provides Web Single Sign On (SSO) across or within organizational
boundaries home page http://shibboleth.internet2.edu

[45] Sosnoski, D.: Classworking toolkit: ASM classworking. IBM Developer
Works (2005)
http://www.springframework.org/docs/reference/aop.html

[46] Swarr, R.: Make your apps operations friendly with AOP.
www.ftponline.com (2004)
http://www.ftponline.com/special/opsmgmt/swarr/default.asp.

[47] Autonomic Computing – IBM home page
http://www-128.ibm.com/developerworks/autonomic

[48] Malawski, M., Bubak, M., Placek, M., Kurzyniec, D., Sunderam, V.:
Experiments with distributed component computing across grid
boundaries. In: Proceedings of HPCGECO/COMPFRAME Workshop
in Conjunction with HPDC’06. (2006) 109–116

[49] Enterprise JavaBeans Technology home page
http://java.sun.com/products/ejb

[50] JINI Specifications and API Archive home page
http://java.sun.com/products/jini

[51] SOAP specification http://www.w3.org/TR/soap

[52] CORBA specification
http://www.omg.org/technology/documents/formal/corba_2.htm

[53] Apache Commons Logging – Logging Services home page
http://jakarta.apache.org/commons/logging

[54] Ruby home page http://www.ruby-lang.org/en

[55] JRuby – pure Java implementation of Ruby home page
http://jruby.codehaus.org

[56] Hibernate - Relational Persistence for Java and .NET home page
http://www.hibernate.org

[57] WS-Notification specification http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn

Monitoring of Component-based Applications

- 78 -

[58] Web Services Connector for JMX agents JSR-262
http://jcp.org/en/jsr/detail?id=262

[59] Moccaccino Manager project home site
(http://gforge.cyfronet.pl/projects/moccaccino)

Appendix A: leMonAdE User Manual

- 79 -

Appendix A.
leMonAdE User Manual

This manual is dedicated to users of the leMonAdE monitoring system,
namely software architects and programmers that want to incorporate it in
large systems as well as in simple Java-based applications.

Sections in below are targeted to developers who are willing to take
advantage of leMonAdE on whichever layer of a reference architecture of a
monitoring system. This appendix is organized respectively to the leMonAdE
layers and provides basis on how to employ it on each layer. The examples are
presented and roughly explained. However, in order to get to the further details
developers are supposed to refer to code documentation.

Thanks to leMonAdE’s layered and modular architecture it is usable for
variety of developers’ aims. The foreseen application areas covered in this
manual are:

− On instrumentation layer using Aspect-Oriented Class Loader

− Dynamic deployment of bytecode

− Aspect-Oriented Programming

For Aspect-Oriented Class Loader manual please refer to the
section Using Aspect-Oriented Class Loader.

− On exposition layer using JMX-enabled Aspect-Oriented Class Loader

− Dynamic Programming

− Monitoring and management of desktop applications

− Remote monitoring and management

For JMX-enabled Aspect-Oriented Class Loader manual please
refer to the section JMX-enabled Aspect-Oriented Class
Loader.

Appendix A: leMonAdE User Manual

- 80 -

− On access layer using Mocca and Moccaccino leMonAdE editions

− Monitoring and management of distributed applications

− Supervising multiple simultaneous applications

For Mocca and Moccaccino leMonAdE editions manual please
refer to the section Using Mocca/Moccaccino leMonAdE-
edition.

Distribution

Before starting to work with leMonAdE the distribution has to be
downloaded. The project site containing distribution and documentation is
located at:

− http://gforge.cyfronet.pl/projects/lemonade

The current development version is available and is contained in SVN
repository. Project can be checked out through anonymous access with the
following command:

$ svn checkout https://gforge.cyfronet.pl/svn/lemonade

Moreover, a web interface of this repository is available though:

− http://gforge.cyfronet.pl/viewvc/?root=lemonade

Using Aspect-Oriented Class Loader

All the samples along with dedicated ant targets are incorporated into
the distribution of leMonAdE AOCL. The package containing examples code is
pl.edu.agh.lemonade.aocl.sample. Respective ant targets are included
in build.xml script.

For presentation convenience, all of the examples attend extremely
simple base application. It involves only one class, namely
pl.edu.agh.lemonade.aocl.sample.app.Clock which code is shown
in Code Snippet 10. It merely prints current date aligned with some given offset
each second.

Appendix A: leMonAdE User Manual

- 81 -

public class Clock implements Runnable {

 private long offset = 0;

 private long lastDate = 0;

 private int counter = 0;

 public void runInternal(){

 this.printDate();

 this.counter++;

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 public void run() {

 while (true) {

 this.runInternal();

 }

 }

 public void addHoursOffset(int hours) {

 this.offset -= hours * 1000 * 60 * 60;

 }

 public long getTime() {

 this.lastDate = System.currentTimeMillis();

 return this.lastDate - this.offset;

 }

 private void printDate() {

 System.out.println(new Date(this.getTime()));

 }

 public static void main(String[] args) {

 new Clock().run();

 }

}

Code Snippet 10. Simple base application that the further examples attend.

The core of the instrumentation layer is
pl.edu.agh.lemonade.aocl.AspectOrientedClassLoader class of
leMonAdE AOCL project. It is also an entry point central class of
instrumentation layer API. Following subsections are devoted to show the
concrete examples involving AOCL and to present and explain its features.

Appendix A: leMonAdE User Manual

- 82 -

Static Aspect Deployment Scope

Suppose we want to monitor base application by counting one of its
method executions. For some purpose we also like to prevent from execution
when some condition is fulfilled. For the example simplicity, let’s assume, that
every n-th execution is prevented.

The sample aspect below (Code Snippet 11) accomplish such a task. It is
a pure AspectWerkz-like aspect code. The annotation-driven development was
applied, thus org.codehaus.aspectwerkz.annotation.Aspect and
org.codehaus.aspectwerkz.annotation.Around annotations are
present. Therefore, no external aspect configuration is needed.

The aspect constructor takes special parameter of
org.codehaus.aspectwerkz.AspectContext type however it is not
necessary. Alternatively, the plain default constructor may be provided.
AspectContext serves to pass some metadata information from
AspectOrientedClassLoader that deploys aspects towards the aspect
instance. In this example case the blockFrequency metadata object is passed.
Moreover, it is supported to pass string key-value parameters to the aspect
instance, e.g. aspect instance author.

The actual monitoring logic lies in advice method decorated with
Around annotation, which denotes that such a method is a wrapper of target
method execution (for annotations details refer to AspectWerkz
documentation). Advice checks whether the execution is allowed and either let
it run or not.

Appendix A: leMonAdE User Manual

- 83 -

@Aspect

public class SampleAspect1 {

 private final int param;

 private final String author;

 private int count = 0;

 public SampleAspect1(AspectContext ctx) {

 this.param = (Integer) ctx.getMetaData("blockFrequency");

 this.author = ctx.getParameter("author");

 }

 @Around("execution(void
pl.edu.agh.lemonade.aocl.sample.app.Clock.printDate())")

 public Object monitor(StaticJoinPoint jp) throws Throwable {

 this.count++;

 System.out.println("before call #" + this.count + " by " + author);

 if (count % param != 0) {

 return jp.proceed();

 } else {

 System.out.println("call blocked");

 return null;

 }

 }

}

Code Snippet 11. The sample aspect deployed onto base application that monitors method
execution and prevents from unwished execution.

Having base application code as well as with aspect code, the
AspectOrientedClassLoader has to be employed in order to reconcile
those two.

The glue code (presented in Code Snippet 12) is responsible for
instantiation of AOCL as a child of a given class loader (in most cases current
class loader or system class loader) with a name and domain name provided.
Then the locations of application code and aspect code (e.g. path to appropriate
jar file or URL to jar file or local folder path) have to be added to AOCL.
Since aspects exist in scope of Aspect Deployment Scope the proper has to be
registered in AOCL. In this simple example we use static ADS named ds which
pre-instruments all application class’ methods execution. The static ADS defines
some abstract callback methods, which developer is obliged to implement. It is
worth noting that one of them prepares AspectContext instance which is to
be passed to the aspect constructor, therefore, we can pass object to the aspect
instance.

When all desired ADS are configured and added, AOCL has to be
activated. From then on, every loaded class is pre-instrumented if it matches
previously registered ADSs and new ADSs are no longer allowed to add.

Appendix A: leMonAdE User Manual

- 84 -

Finally, the aspect itself may be deployed. If so, the string key-value
parameters are specified, and along with aspect class name and aspect given
name is passed as parameter of deployAspect method call. The last part of
code is simply loading application main class by AOCL and calling its main
method.

Appendix A: leMonAdE User Manual

- 85 -

public class Sample1 {

 public static void main(String[] args) throws Exception {

 // AOCL instantiation with name MyAOCL and domain name org.foo

 AspectOrientedClassLoader aocl = new AspectOrientedClassLoader(

 ClassLoader.getSystemClassLoader(), "MyAOCL",

"org.foo");

 // appending jar containing application code to the AOCL bytecode

 // provider

 aocl.addJar("./jar/lemonade-sample-app.jar");

 // appending jar containing aspect code to the AOCL bytecode provider

 aocl.addJar("./jar/lemonade-sample-aspect.jar");

 // static ADS instantiation with a pre-instrumentation pointcut

 // specified

 AspectDeploymentScope ads = new StaticAspectDeploymentScope("ds",

 "execution(*

pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))") {

 @Override

 protected void prepareAspectDeploymentScope() {

 // here the ADS preparation are to be performed

 System.out.println("Preparing Aspect Deployment Scope");

 }

 @Override

 public void prepareAspectContext(AspectContext aspectContext) {

 // here the aspect context is to be prepared

 // aspect context will be passed as an aspect

constructor

 // parameter

 System.out.println("Preparing Aspect Context");

 // aspect context metadata enable passing objects to the

aspect

 aspectContext.addMetaData("blockFrequency", 3);

 }

 @Override

 protected void prepareAspect(Object aspectObj,

 AspectContext aspectContext) {

 // here the aspect is to be prepared after its

instatiation

 System.out.println("Preparing Aspect");

 }

 };

 // all ADSs has to be added to the AOCL before its activation

 aocl.addAspectDeploymentScope(ads);

 // since AOCL is activated every loaded class is pre-intrumented if

 // needed

 aocl.activate();

Appendix A: leMonAdE User Manual

- 86 -

 // parameters may be passed to the aspect while deploying

 Map<String, String> params = new HashMap<String, String>();

 params.put("author", "me");

 // deploying aspect with no pointcut definitions

 // with above constructed params

 ads.deployAspect("pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect1",
"myAspect",

 null, params);

 // loading application main class and launching

 Runnable clock = (Runnable)
aocl.loadClass("pl.edu.agh.lemonade.aocl.sample.app.Clock")

 .newInstance();

 new Thread(clock).start();

 }

}

Code Snippet 12. Sample usage of AOCL with simple desktop application involving static
ADS and static aspect.

In order to run such a glue code it is indispensable to include external
library dependencies in classpath. The required jar files are:

− ant-1.5.2.jar

− asm-1.5.4-snapshot.jar

− asm-attrs-1.5.4-snapshot.jar

− asm-util-1.5.4-snapshot.jar

− concurrent-1.3.1.jar

− dom4j-1.4.jar

− jarjar-0.3.jar

− jrexx-1.1.1.jar

− managementapi-jrockit81.jar

− qdox-1.4.jar

− trove-1.0.2.jar

− tools.jar

All the dependencies are inherited from AspectWerkz library. All of
above listed files are delivered with distribution and are contained in its lib
directory. The list of required libraries is also comprised in build.xml file as a
lemonade.aocl.run.classpath classpath definition.

Appendix A: leMonAdE User Manual

- 87 -

As long as AspectWerkz uses java.lang.instrument API in order to
perform bytecode manipulation it provides its own instrumentation agent, that
is introduced by –javaagent:path-to-lemonade-aocl.jar JVM option.

Ant’s build.xml file contains dedicated targets for all the samples to
run. In this sample such a target may look like:

<target name="sample1" depends="jar">

 <java classname="pl.edu.agh.lemonade.aocl.sample.start.Sample1"
fork="true">

 <classpath refid="lemonade.aocl.run.classpath" />

 <jvmarg value="-javaagent:${lemonade.aocl.jar.name}" />

 </java>

 </target>

Therefore, in order to run above discussed sample simply type:

[lemonade-aocl-project-dir]$ ant sample1

ADS-aware aspect with assignable pointcut definition

The following example is similar to the previous one, although more
robust since it take advantage of advanced AOCL features such as ADS-aware
aspects and assignable pointcut definitions. The aspect code is slightly altered
as it is depicted in Code Snippet 13.

First, aspect realizes pl.edu.agh.lemonade.aocl

.DeploymentScopeAwareAspect interface which contains sole method –
setAspectDeploymentScope. This method is used to provide aspect
instance with additional context information related to encompassing ADS.
Every aspect that realizes such the interface has this method called just after
aspect instantiation. Second, the pointcut definition is no longer hard-coded in
Around annotation, instead the symbolic name is used.

Appendix A: leMonAdE User Manual

- 88 -

@Aspect

public class SampleAspect2 implements DeploymentScopeAwareAspect {

 // skipped

 @Around("pointcut")

 public Object monitor(StaticJoinPoint jp) throws Throwable {

 this.count++;

 System.out.println("before call #" + this.count + " by " + author);

 if (count % param != 0) {

 return jp.proceed();

 } else {

 System.out.println("call blocked");

 return null;

 }

 }

// skipped

 public void setAspectDeploymentScope(AspectDeploymentScope ads) {

 this.ads = ads;

 System.out.println("sample aspect is given with encompassing ADS: "

 + this.ads.getName());

 }

}

Code Snippet 13. Static, ADS-aware aspect code with assignable pointcut definitions. The
skipped parts are the same as in the previous example.

Such an aspect has to be appropriately deployed by explicitly providing
pointcut definition that will bind pointcut symbolic name pointcut with actual
pointcut expression. The rest of code remains unchanged as shown in Code
Snippet 14.

Appendix A: leMonAdE User Manual

- 89 -

public class Sample2 {

 public static void main(String[] args) throws Exception {

 // skipped

 aocl.activate();

 // pointcut expression may be defined at aspect deploy time

 Map<String, String> pointcutDefs = new HashMap<String, String>();

 pointcutDefs.put("pointcut",

 "execution(void

pl.edu.agh.lemonade.aocl.sample.app.Clock.printDate())");

 // parameters may be passed to the aspect while deploying

 Map<String, String> params = new HashMap<String, String>();

 params.put("author", "me");

 // deploying aspect with previously defined pointcut definitions

 // and params

 ads.deployAspect("pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect2",

"myAspect",

 pointcutDefs, params);

 // skipped

 }

}

Code Snippet 14. Sample usage of AOCL with simple desktop application involving static
ADS and static ADS-aware aspect with assignable pointcut definition.

The way the glue code presented in Code Snippet 14 is launched remains
unchanged. You might use again dedicated ant target:

[lemonade-aocl-project-dir]$ ant sample2

Parameterized Aspect Deployment Scope

Suppose we need a generic aspect which performs some well defined
additional behavior with reference to abstract join-point, but we also want to
avoid using explicitly pointcut expressions that may seem cumbersome and
inconvenient to aspect developer or deployer. Instead, we want to provide
high-level parameters values, which will imply actual pointcut expression
resolved at aspect deployment time.

The practical example to consider may be tracing of method calls: we
want to monitor each call from within some method (caller method) body to the
other method (callee method) and let’s call it outer call. Moreover, we want to
monitor other calls the callee method performs within its body and let’s call them
internal calls if they call methods from the same package scope, or inner calls if

Appendix A: leMonAdE User Manual

- 90 -

they call method from outside of such package scope. What is more we want to
trace not only internal calls and inner calls but as well accessing fields within
callee method body. Such an abstract aspect may look like the one presented in
Code Snippet 15.

Appendix A: leMonAdE User Manual

- 91 -

@Aspect

public abstract class MethodTracerAspect implements MethodTracerAspectMBean,

 DeploymentScopeAwareAspect {

 private int depth = 0;

 private String id;

 protected final String packageScope;

 protected final String calleeMethodName;

 protected final String callerMethodName;

 protected AspectDeploymentScope scope;

 public MethodTracerAspect(AspectContext context) {

 this.packageScope = context.getParameter("packageScope");

 this.calleeMethodName = context.getParameter("calleeMethodName");

 this.callerMethodName = context.getParameter("callerMethodName");

 this.id = context.getParameter("_id");

 }

 @Around("outerCall")

 public final Object outerCall(StaticJoinPoint jp) throws Throwable {

 this.depth++;

 this.beforeOuterCall(jp);

 long time = System.currentTimeMillis();

 Object result = jp.proceed();

 time = System.currentTimeMillis() - time;

 this.afterOuterCall(jp, time);

 this.depth--;

 return result;

 }

 @Around("innerCall")

 public final Object innerCall(StaticJoinPoint jp) throws Throwable {

 this.depth++;

 this.beforeInnerCall(jp);

 long time = System.currentTimeMillis();

 Object result = jp.proceed();

 time = System.currentTimeMillis() - time;

 this.afterInnerCall(jp, time);

 this.depth--;

 return result;

 }

 @Around("internalCall")

 public final Object internalCall(StaticJoinPoint jp) throws Throwable {

 this.depth++;

 this.beforeInternalCall(jp);

 long time = System.currentTimeMillis();

 Object result = jp.proceed();

 time = System.currentTimeMillis() - time;

 this.afterInternalCall(jp, time);

 this.depth--;

 return result;

Appendix A: leMonAdE User Manual

- 92 -

 }

 @Around("setting")

 public final Object fieldSet(StaticJoinPoint jp) throws Throwable {

 this.depth++;

 this.beforeFieldSet(jp);

 long time = System.currentTimeMillis();

 Object result = jp.proceed();

 time = System.currentTimeMillis() - time;

 this.afterFieldSet(jp, time);

 this.depth--;

 return result;

 }

 @Around("getting")

 public final Object fieldGet(StaticJoinPoint jp) throws Throwable {

 this.depth++;

 this.beforeFieldGet(jp);

 long time = System.currentTimeMillis();

 Object result = jp.proceed();

 time = System.currentTimeMillis() - time;

 this.afterFieldGet(jp, time);

 this.depth--;

 return result;

 }

 // skipped

}

Code Snippet 15. Abstract aspect performing method calls monitoring and accessing fields
monitoring from within given method.

The resolution of pointcut expression, that has to be bound with pointcut
names at aspect deployment time, is delegated to parameterized ADS. Such an
ADS is both to resolve ADS pointcut expression basing on ADS pointcut
parameters and to resolve aspect pointcuts expressions basing on aspect
pointcut parameters. The method responsible for the former is
resolveADSPointcutExpression while for the latter –
resolveAspectPointcutExpressions. The implementation of parameterized
ADS dedicated to our sample is presented in Code Snippet 16.

Appendix A: leMonAdE User Manual

- 93 -

public class MethodTracerAspectDeploymentScope extends

 JMXParameterizedAspectDeploymentScope implements

 MethodTracerAspectDeploymentScopeMBean {

 /**

 * Here the package name we wanted to monitor is stored

 */

 private String packageScope;

 /**

 * @param name

 * arbitrary ADS name

 * @param properties

 * properties that parameterize this ADS instance

 * @throws RequiredParameterNotFoundException

 */

 public MethodTracerAspectDeploymentScope(String name, Properties properties)

 throws RequiredParameterNotFoundException {

 super(name, properties);

 // the only one parameter is the package name within which we want to

 // monitor method calls

 this.packageScope = properties.getProperty("packageScope");

 if (this.packageScope == null) {

 // if some required parameter is not given the exception is

raised

 throw new RequiredParameterNotFoundException("packageScope");

 }

 }

 public String getPackageScope() {

 return packageScope;

 }

 /*

 * implementation of

pl.edu.agh.lemonade.aocl.AspectDeploymentScope#resolveADSPointcutExpression()

 */

 public String resolveADSPointcutExpression() {

 // below it is resolved the pointcut expression of this ADS instance

 // basing on given ADS parameters (the only one is packageScope)

 return "(call(* " + this.packageScope + "..*(..)) && within("

 + this.packageScope + "..)) || "

 + "(call(* ..*(..)) && !call(* " + this.packageScope

 + "..*(..)) && within(" + this.packageScope + "..)) || "

 + "(set(* " + this.packageScope + "..*) && within("

 + this.packageScope + "..)) || " + "(get(* "

 + this.packageScope + "..*) && within(" +

this.packageScope

 + "..))";

 }

 public String traceMethod(String aspectName, String callerMethodName,

 String calleeMethodName, String aspectClassName)

 throws ClassNotFoundException,
RequiredParameterNotFoundException {

Appendix A: leMonAdE User Manual

- 94 -

 // below aspect pointcut parameter are collected in a map

 HashMap<String, String> pointcutParams = new HashMap<String,
String>();

 pointcutParams.put("calleeMethodName", calleeMethodName);

 pointcutParams.put("callerMethodName", callerMethodName);

 pointcutParams.put("packageScope", this.packageScope);

 // below the same parameters are passed as the ordinary string

 // key-values

 // pairs that are to be passed to the aspect instance

 HashMap<String, String> parameters = new HashMap<String, String>();

 parameters.put("calleeMethodName", calleeMethodName);

 parameters.put("callerMethodName", callerMethodName);

 // this inherited method is responsible for such configured aspect

 // deployment

 return this.deployParameterizedAspect(aspectClassName, aspectName,

 pointcutParams, parameters);

 }

 @Override

 public void prepareAspectContext(AspectContext aspectContext) {

 }

 /*

 * implementation of
pl.edu.agh.lemonade.aocl.ParameterizedAspectDeploymentScope#resolveAspectPointcutE

xpressions(java.util.Map)

 */

 @Override

 protected Map<String, String> resolveAspectPointcutExpressions(

 Map<String, String> pointcutParameters)

 throws RequiredParameterNotFoundException {

 // below the pointcut parameters are read...

 String calleeMethodName = pointcutParameters.get("calleeMethodName");

 String callerMethodName = pointcutParameters.get("callerMethodName");

 if (callerMethodName == null) {

 // if some required parameter is not given the exception is

raised

 throw new

RequiredParameterNotFoundException("callerMethodName");

 }

 if (calleeMethodName == null) {

 // if some required parameter is not given the exception is

raised

 throw new

RequiredParameterNotFoundException("calleeMethodName");

 }

 // ... in order to resolve and return actual pointcut expressions

 HashMap<String, String> pointcutDefs = new HashMap<String, String>();

 pointcutDefs.put("outerCall", "call(" + calleeMethodName

 + ") && withincode(" + callerMethodName + ")");

 pointcutDefs.put("innerCall", "call(* ..*(..)) && !call(* "

 + packageScope + "..*(..)) && withincode("

 + calleeMethodName + ")");

Appendix A: leMonAdE User Manual

- 95 -

 pointcutDefs.put("internalCall", "call(* " + this.packageScope

 + "..*(..)) && withincode(" + calleeMethodName +
")");

 pointcutDefs.put("setting", "set(* " + this.packageScope

 + "..*) && withincode(" + calleeMethodName +

")");

 pointcutDefs.put("getting", "get(* " + this.packageScope

 + "..*) && withincode(" + calleeMethodName +
")");

 return pointcutDefs;

 }

}

Code Snippet 16. Parameterized ADS dedicated for the abstract aspect depicted in Code
Snippet 15.

What is needed now is a concrete aspect extending abstract aspect class
that will actually perform monitoring logic. Suppose we want to count method
call and overall time consumed by these calls. The code will look like in Code
Snippet 17.

public class SampleAspect3 extends MethodTracerAspect {

 private int callCount = 0;

 private long overallTimeConsumed = 0;

 public SampleAspect3(AspectContext context) {

 super(context);

 }

 @Override

 protected void afterOuterCall(StaticJoinPoint jp, long time) {

 super.afterOuterCall(jp, time);

 // the counters has to be updated

 this.callCount++;

 this.overallTimeConsumed += time;

 // a proper message has to be displayed

 System.out.println("SampleAspect3: overall time consumed in "

 + this.calleeMethodName + " in " + this.callCount

 + " calls is " + this.overallTimeConsumed);

 }

}

Code Snippet 17. Concrete aspect based on MethodTracerAspect (see: Code Snippet 15) that
counts given method calls and overall time consumed in such a method.

Note that above presented concrete aspect is not bound with any
particular method until it is deployed. Deployment is performed in a glue code
presented in Code Snippet 18.

Appendix A: leMonAdE User Manual

- 96 -

public class Sample3 {

 public static void main(String[] args) throws Exception {

 // AOCL instantiation with name MyAOCL and domain name org.foo

 AspectOrientedClassLoader aocl = new AspectOrientedClassLoader(

 ClassLoader.getSystemClassLoader(), "MyAOCL",

"org.foo");

 // appending jar containing application code to the AOCL classpath

 aocl.addJar("./jar/lemonade-sample-app.jar");

 // since our ADL is parameterized we need to prepare structure storing

 // parameters values

 Properties adsParameters = new Properties();

 // we want to pre-instrument all calls withing a given package

 adsParameters

 .put("packageScope",
"pl.edu.agh.lemonade.aocl.sample.app");

 // instatinating parameterized ADS

 MethodTracerAspectDeploymentScope methodTracerScope = new
MethodTracerAspectDeploymentScope(

 "methodTracerADS", adsParameters);

 // all ADSs has to be added to the AOCL before its activation

 aocl.addAspectDeploymentScope(methodTracerScope);

 // since AOCL is activated every loaded class is pre-intrumented if

 // needed

 aocl.activate();

 // deploying aspect tracing calls within:

 // public void pl.edu.agh.lemonade.aocl.sample.app.Clock.run()

 // targeted at:

 // public void pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()

 aocl.addJar("./jar/lemonade-sample-aspect.jar");

 methodTracerScope

 .traceMethod(

 "myAspect",

 "public void
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()",

 "public void
pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()",

 "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect3");

 // loading application main class and launching

 Runnable clock = (Runnable) aocl.loadClass(

 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance();

 new Thread(clock).start();

 }

}

Code Snippet 18. Glue code instrumenting sample application with sample parameterized
ADS.

Appendix A: leMonAdE User Manual

- 97 -

Now the sample is ready to run and you can use dedicated ant target.

[lemonade-aocl-project-dir]$ ant sample3

Interactive configuration of Aspect-Oriented Class Loader

The following sample is equivalent to the first one, however the way
how the AOCL is configured is significantly altered.

Suppose that we are dealing with two simultaneous threads – the first
one which is actual application thread and the second one that manages
application instrumentation in an interactive way.

In order to support interactive AOCL configuration it is provided
dedicated AOCL’s method waitForActivation which suspends application
thread until instrumentation management thread allows it to resume. While
application thread is suspended instrumentation management thread is enabled
to perform necessary AOCL configuration that has to be done before loading
application bytecode (mainly ADS configuration as long as aspects may be
deployed dynamically at the application runtime). Having configuration
completed, such a thread is expected to call activate AOCL’s method.

Code Snippet 19 is equivalent to the first sample from this manual and
shows how those thread interacts with each other.

Appendix A: leMonAdE User Manual

- 98 -

public class Sample4 {

 public static void main(String[] args) throws Exception {

 // AOCL instantiation with name MyAOCL and domain name org.foo

 final AspectOrientedClassLoader aocl = new AspectOrientedClassLoader(

 ClassLoader.getSystemClassLoader(), "MyAOCL",

"org.foo");

 // this thread will perform aocl configuration

 new Thread(new Runnable() {

 public void run() {

try {

 // appending jar containing aspect code to the AOCL

 // classpath

 aocl.addJar("./jar/lemonade-sample-aspect.jar");

 // static ADS instantiation with a pre-instrumentation

 // pointcut

 // specified

 AspectDeploymentScope ads = new StaticAspectDeploymentScope(

 "ds",

 "execution(* pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))")
{

 @Override

 protected void prepareAspectDeploymentScope() {

 // here the ADS preparation are to be performed

 System.out

 .println("Preparing Aspect Deployment

Scope");

 }

 @Override

 public void prepareAspectContext(

 AspectContext aspectContext) {

 // here the aspect context is to be prepared

 // aspect context will be passed in aspect

 // constructor

 System.out.println("Preparing Aspect Context");

 // aspect context metadata enable passing objects to

 // the

 // aspect

 aspectContext.addMetaData("blockFrequency", 3);

 }

 @Override

 protected void prepareAspect(Object aspectObj,

 AspectContext aspectContext) {

 // here the aspect is to be prepared after its

 // instatiation

 System.out.println("Preparing Aspect");

 }

 };

Appendix A: leMonAdE User Manual

- 99 -

 // all ADSs has to be added to the AOCL before its

 // activation

 aocl.addAspectDeploymentScope(ads);

 // parameters may be passed to the aspect while deploying

 Map<String, String> params = new HashMap<String, String>();

 params.put("author", "me");

 // deploying aspect with no pointcut definitions

 // with above constructed params

 ads.deployAspect(

 "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect1",

 "myAspect", null, params);

 // since AOCL is activated every loaded class is

 // pre-intrumented if needed

 // the main thread is resumed

 aocl.activate();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 } catch (ClassLoaderAlreadyActivatedException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}}).start();

 // this thread will wait after the aocl configuration is completed

 aocl.waitForActivation();

 // loading application main class and launching

 aocl.addJar("./jar/lemonade-sample-app.jar");

 Runnable clock = (Runnable) aocl.loadClass(

 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance();

 new Thread(clock).start();

 }

}

Code Snippet 19. Interactive configuration of AOCL involving two threads: actual
application thread and application instrumentation management thread.

To run the sample you can use dedicated ant target.

Appendix A: leMonAdE User Manual

- 100 -

[lemonade-aocl-project-dir]$ ant sample4

Using JMX-enabled Aspect-Oriented Class
Loader

JMX AOCL is used as an AOCL overlay, thus, JMX-enabled AOCL API is
composed of plain AOCL classes derivatives. JMX-enabled AOCL class inherits
from AOCL class, therefore, it is painless to replace the latter with the former.
However developer is expected to bear in mind that all ADSs have to be valid
MBeans in order to use with JMX-enabled AOCL, so the proper JMX-enabled
equivalent classes have to be used.

JMX-enabled AOCL constitutes exposition layer, enabling among others
dynamic programming as well as remote monitoring and management of
desktop applications.

JMX-enabled Static Aspect Deployment Scope

The next sample bases on the first one from section 0. However, since
sample aspect is to be a standard MBean is has to realize dedicated MBean
interface named similarly as an aspect class but with MBean suffix such as the
one presented in Code Snippet 20.

public interface SampleAspect5MBean extends AbstractAspectMBean {

 // ‘count’ this will be accessible as a read-only attribute of this MBean

 public int getCount();

}

Code Snippet 20. JMX-enabled aspect as a valid MBean.

For the aspect developer convenience the AbstractAspectMBean
interface along with its AbstactAspect realization are provided in
distribution. They encapsulate and expose base attributes of aspects such as
aspect name, aspect class name, ADS name, AOCL name etc.

As standard MBean convention states, MBean interface with
corresponding name with ‘MBean’ suffix determines which attributes and
methods of a given class that will be exposed. If we are dealing with a class
hierarchy the corresponding MBean interfaces are expected to follow this
hierarchy as well. That means that if an arbitrary MyAspect class inherits from
AbstractAspect class, corresponding MyAspectMBean has to inherits form

Appendix A: leMonAdE User Manual

- 101 -

AbstractAspectMBean interface as well just as it is depicted in Figure 19.
Therefore, the aspect code will look like in Code Snippet 21.

Figure 19. The standard MBeans class hierarchy as implied by a convention.

@Aspect

public class SampleAspect5 extends AbstractAspect implements SampleAspect5MBean {

 private final int param;

 private final String author;

 private int count = 0;

 public SampleAspect5(AspectContext ctx) {

 this.param = 3;

 this.author = ctx.getParameter("author");

 }

 @Around("execution(void

pl.edu.agh.lemonade.aocl.sample.app.Clock.printDate())")

 public Object monitor(StaticJoinPoint jp) throws Throwable {

 this.count++;

 System.out.println("before call #" + this.count + " by " + author);

 if (count % param != 0) {

 return jp.proceed();

 } else {

 System.out.println("call blocked");

 return null;

 }

 }

 // implements SampleAspect5MBean
 public int getCount() {

 return this.count;

 }

}

Code Snippet 21. Sample JMX-enabled aspect that inherits from AbstractAspect helper
class.

Appendix A: leMonAdE User Manual

- 102 -

Moreover, the glue code (as shown in Code Snippet 22) has to be slightly
modified simply by replacing AspectOrientedClassLoader instance with
JMXAspectOrientedClassLoader instance.

Appendix A: leMonAdE User Manual

- 103 -

public class Sample5 {

 public static void main(String[] args) throws Exception {

 // JMXAOCL instantiation with name MyAOCL and domain name org.foo

 JMXAspectOrientedClassLoader aocl = new JMXAspectOrientedClassLoader(

 ClassLoader.getSystemClassLoader(), "MyAOCL",

"org.foo");

 // from now on JMX AOCL is exported and registered in MBeanServer

 // thus, it is configurable via JMX API

 // appending jar containing application code to the AOCL classpath

 aocl.addJar("./jar/lemonade-sample-app.jar");

 // appending jar containing aspect code to the AOCL classpath

 aocl.addJar("./jar/lemonade-sample-aspect.jar");

 // static ADS instantiation with a pre-instrumentation pointcut

 // specified

 JMXStaticAspectDeploymentScope jmxStaticAds = new

JMXStaticAspectDeploymentScope(

 "ds",

 "execution(*
pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))") {

 @Override

 public void prepareAspectContext(AspectContext aspectContext) {

 // here the aspect context is to be prepared

 // aspect context will be passed in aspect constructor

 System.out.println("Preparing Aspect Context");

 // aspect context metadata enable passing objects to the

aspect

 aspectContext.addMetaData("blockFrequency", 3);

 }

 };

 // all ADSs has to be added to the AOCL before its activation

 aocl.addAspectDeploymentScope(jmxStaticAds);

 // since AOCL is activated every loaded class is pre-intrumented if

 // needed

 aocl.activate();

 // parameters may be passed to the aspect while deploying

 Map<String, String> params = new HashMap<String, String>();

 params.put("author", "me");

 // deploying aspect with no pointcut definitions

 // with above constructed params

 jmxStaticAds.deployAspect(

 "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect5",

 "myAspect", null, params);

 // loading application main class and launching

 Runnable clock = (Runnable) aocl.loadClass(

Appendix A: leMonAdE User Manual

- 104 -

 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance();

 new Thread(clock).start();

 }

}

Code Snippet 22. A glue code that involves JMX-enabled AOCL and runs sample
application.

Nevertheless, the way how the glue code is executed has to be altered
since some JMX related JVM arguments are required. As long as security wasn’t
addressed concern in this sample we use neither password authentication nor
SSL. Therefore, additional JXM related JVM arguments used are:

• com.sun.management.jmxremote.port

– sets the port number through which you want to enable
JMX/RMI connections

• com.sun.management.jmxremote.authenticate

– enables/disables authentication, it has to be set to true or false

• com.sun.management.jmxremote.ssl

– enables/disables SSL, it has to be set to true or false

Hereby, appropriate ant target is presented in Code Snippet 23.

<target name="sample5" depends="jar">

 <java classname="pl.edu.agh.lemonade.aocl.sample.start.Sample5"

fork="true">

 <classpath refid="lemonade.aocl.run.classpath" />

 <jvmarg value="-javaagent:${lemonade.aocl.jar.name}" />

 <jvmarg value="-Dcom.sun.management.jmxremote.port=1234" />

 <jvmarg value="-
Dcom.sun.management.jmxremote.authenticate=false" />

 <jvmarg value="-Dcom.sun.management.jmxremote.ssl=false" />

 </java>

 </target>

Code Snippet 23. Ant target (a part of build.xml file) that runs provided application main
class and takes care about a proper configuration of classpath and JVM arguments required

by JMX-enabled AOCL.

Such a target allows us running the sample by typing:

[lemonade-aocl-project-dir]$ ant sample5

The output console is verbose and prints out monitoring events, however
we are not compelled to track console any more. Since AOCL, ADSs and
aspects are registered MBeans we may use any of variety of JMX-compliant
consoles and tools to monitor them. So, we may use e.g. the standard tool that
comes with JDK - jconsole, and provide host name and port number for RMI
connector. In our sample we run it as follows:

Appendix A: leMonAdE User Manual

- 105 -

 [lemonade-aocl-project-dir]$ jconsole localhost:1234

In a JMX console we find domain named after AOCL’s domain name (in
this case: org.foo) where AOCL is registered with its name. Then we should
see a view that is presented in Figure 20. AOCL MBean constitutes a root for
tree-like structure of nested ADSs’ MBeans and aspects’ MBeans. The ADS is
registered with its name as it was provided in a glue code while aspect unique
names are aids (aspect ids) that are generated just before aspect deployment.
The MBeans structure is depicted in left-hand tree panel of JMX console
depicted in Figure 20. By choosing the aspect MBean we are given with its
operations, attributes and notifications available. In this sample the Count
attribute may be monitored among others.

Figure 20. JMX-enabled AOCL sample. The application console (upper), JMX console (lower)
with AOCL, ADSs and aspects arranged in a tree-like structure (left-hand panel) and

attributes panel of sample aspect MBean (right-hand panel).

Appendix A: leMonAdE User Manual

- 106 -

Configuration of JMX-enabled Aspect-Oriented Class Loader

In order to facilitate configuration management of JMX-enabled AOCLs
dedicated JMXAspectOrientedClassLoaderConfiguration class is
introduced. It is used to store, serialize and deserialize JMX-enabled AOCLs
configuration and to enable configuration management without explicit
manipulation on JMXAspectOrientedClassLoader instance.

This is alternative way to configure JMX-enabled AOCLs that is
especially suitable for remote monitoring as long as configuration may be
stored in JMXAspectOrientedClassLoaderConfiguration instance,
serialized, passed though network, deserialized and finally applied to JMX-
enabled AOCL instance.

Code Snippet 24 shows a glue code equivalent to Sample1 class that
takes advantage of JMXAspectOrientedClassLoaderConfiguration.

Appendix A: leMonAdE User Manual

- 107 -

public class Sample6 {

 public static void main(String[] args) throws Exception {

 // instantiation of empty AOCL configuration

 JMXAspectOrientedClassLoaderConfiguration config =
JMXAspectOrientedClassLoaderConfiguration

 .newEmpty("MyAOCL", "org.foo");

 // appending jar containing application code to the AOCL classpath

 config.addJar("./jar/lemonade-sample-app.jar");

 // static ADS configuration with a pre-instrumentation pointcut

 // specified

 JMXAspectOrientedClassLoaderConfiguration.StaticADSConfiguration
staticADSConfig = new

JMXAspectOrientedClassLoaderConfiguration.StaticADSConfiguration(

 "staticADS",

 "execution(*
pl.edu.agh.lemonade.aocl.sample.app.Clock.*(..))");

 // static aspect configuration

 JMXAspectOrientedClassLoaderConfiguration.StaticAspectConfiguration
staticAspectConfig = new

JMXAspectOrientedClassLoaderConfiguration.StaticAspectConfiguration(

 "staticAspect",

 "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8",

 "file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar");

 // pointcut definition has to be provided...

 staticAspectConfig.addPointuctDef("myPointcut",

 "execution(* java.lang.Runnable+.*(..))");

 // ... as well as parameters

 staticAspectConfig.addParameter("author", "me");

 staticAspectConfig.addParameter("date", "today");

 staticADSConfig.addStaticAspectConfiguration(staticAspectConfig);

 config.addAspectDeploymentScopeConfiguration(staticADSConfig);

 // configuration of parameterized ADS which is provided as a jar file

 JMXAspectOrientedClassLoaderConfiguration.ParameterizedADSConfiguration

parameterizedADSConfig = new
JMXAspectOrientedClassLoaderConfiguration.ParameterizedADSConfiguration(

 "parameterizedADS",

 "file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-scope.jar");

 parameterizedADSConfig.addPointcutParameter("packageScope",

 "pl.edu.agh.lemonade.aocl.sample.app");

 config.addAspectDeploymentScopeConfiguration(parameterizedADSConfig);

 // parameterized aspect configuration

 JMXAspectOrientedClassLoaderConfiguration.ParameterizedAspectConfiguration

parameterizedAspectConfig = new
JMXAspectOrientedClassLoaderConfiguration.ParameterizedAspectConfiguration(

 "parameterizedAspect",

 "pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect7",

 "file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar");

 // pointcut params has to be provided

 parameterizedAspectConfig.addPointcutParam("callerMethodName",

Appendix A: leMonAdE User Manual

- 108 -

 "public void
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()");

 parameterizedAspectConfig

 .addPointcutParam("calleeMethodName",

 "public void

pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()");

 parameterizedADSConfig

 .addParameterizedAspectConfiguration(parameterizedAspectConfig);

 // JMXAOCL instantiation with above-specified confguration

 JMXAspectOrientedClassLoader aocl = new JMXAspectOrientedClassLoader(

 ClassLoader.getSystemClassLoader(), config);

 // from now on JMX AOCL is exported and registered in MBeanServer

 // thus, it is configurable via JMX API

 // since AOCL is activated every loaded class is pre-intrumented if

 // needed

 aocl.activate();

 // loading application main class and launching

 Runnable clock = (Runnable) aocl.loadClass(

 "pl.edu.agh.lemonade.aocl.sample.app.Clock").newInstance();

 new Thread(clock).start();

 }

}

Code Snippet 24. A glue code that configures JMX-enabled AOCL by taking advantage of
JMXAspectOrientedClassLoaderConfiguration class, and launches the sample

application.

This sample is launched by dedicated ant target:

[lemonade-aocl-project-dir]$ ant sample6

The launched sample may be monitored by any JMX tool.

XML-based configuration of JMX-enabled Aspect-Oriented Class
Loader

The following section is devoted to a sample that is equivalent to the
previous one (in section 0), however it is characterized by alternative way for
configuring JMX-enabled AOCL. As mentioned recently
JMXAspectOrientedClassLoaderConfiguration is serializable,
although not in terms of java.io.Serializable but it may be represented
as XML document.

Verbose glue code from previous section shown in Code Snippet 24 may
be replaced by more concise code presented in Code Snippet 25.

Appendix A: leMonAdE User Manual

- 109 -

public class Sample7 {

 public static void main(String[] args) throws Exception {

 JMXAspectOrientedClassLoaderConfiguration config =

JMXAspectOrientedClassLoaderConfiguration

 .parse(new FileInputStream(new File("./sample-aocl-

config.xml")));

 JMXAspectOrientedClassLoader aocl = new JMXAspectOrientedClassLoader(

 ClassLoader.getSystemClassLoader(), config);

 aocl.activate();

 Runnable clock = (Runnable)

aocl.loadClass("pl.edu.agh.lemonade.aocl.sample.app.Clock")

 .newInstance();

 new Thread(clock).start();

 }

}

Code Snippet 25. Concise glue code that reads JMX-enabled AOCL configuration from XML-
based document and launches the sample application.

In such a code whole configuration is read from external XML file. In our
example sample-aocl-config.xml file is used which is included in the
distribution and presented in Code Snippet 26. Such a file exactly corresponds
to the configuration made by code shown in Code Snippet 24.

Appendix A: leMonAdE User Manual

- 110 -

<?xml version="1.0" encoding="UTF-8"?>

<jmxaocl name="myapp" domainName="org.foo.myapp">

 <jarUrl>

 file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-app.jar

 </jarUrl>

 <staticADS name="staticADS"

 pointcutExpression="execution(* java.lang.Runnable+.*(..))">

 <staticAspect name="staticAspect"

 class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8"

 jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar">

 <pointcut name="myPointcut"

 expression="execution(* java.lang.Runnable+.*(..))" />

 <parameter name="author" value="me" />

 <parameter name="date" value="today" />

 </staticAspect>

 </staticADS>

 <parameterizedADS name="parameterizedADS"

 class="ec.aocl.sample.scope.MethodTracerAspectDeploymentScope"

 jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-sample-

scope.jar">

 <pointcutParameter name="packageScope"

 value="pl.edu.agh.lemonade.aocl.sample.app" />

 <parameterizedAspect name="parameterizedAspect"

 class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect7"

 jar="file:///D:/Documents/Dev/lemonade-aocl/jar/lemonade-

sample-aspect.jar">

 <pointcutParameter name="callerMethodName"

 value="void
pl.edu.agh.lemonade.aocl.sample.app.Clock.run()" />

 <pointcutParameter name="calleeMethodName"

 value="void

pl.edu.agh.lemonade.aocl.sample.app.Clock.runInternal()" />

 <parameter name="author" value="me" />

 <parameter name="date" value="today" />

 </parameterizedAspect>

 </parameterizedADS>

</jmxaocl>

Code Snippet 26. Configuration of JMX-enabled AOCL serialized as an XML-based form that
is bidirectionally transformable to/from

JMXAspectOrientedClassLoaderConfiguration instance.

In order to start sample we can use as usual ant target:

Appendix A: leMonAdE User Manual

- 111 -

[lemonade-aocl-project-dir]$ ant sample7

Using Mocca/Moccaccino leMonAdE Edition

The following instructions has to be followed in order to setup a local
host-scoped testbed as well as to setup fully valid distributed execution
environment.

• Get the distribution of H2O. Version 2.1 that was used in tests is
recommended.

• In lemonade-aocl project create appropriately h2o.properties
file basing on h2o.properties.example file.

• Build lemonade-aocl and deploy it to the h2o library directory by
executing:

[lemonade-aocl-dir]$ ant deploy

• In mocca-lemonade project create appropriately
h2o.properties file basing on h2o.properties.example
file and jmx.properties file basing on
jmx.properties.example file.

• Build mocca-lemonade and deploy it file to the h2o services
directory by executing:

[mocca-lemonade-project-dir]$ ant deploy

• In moccaccino-lemonade project create appropriately
h2o.properties file basing on h2o.properties.example,
aocl.properties file basing on aocl.properties.example
file and mocca-lemonade.properties file basing on
mocca-lemonade.properties.example file.

• Build moccaccino-lemonade and deploy it file to the h2o services
directory by executing:

[moccaccino-lemonade-project-dir]$ ant deploy

• Now you can easily start h2o testbed consisting of one locally
launched kernel according to its configuration written in
\etc\KernelConfig-0.xml just by executing:

Appendix A: leMonAdE User Manual

- 112 -

[mocca-lemonade-project-dir]$ ant h2o

• Sample application is run by executing (n is a sample number – 1
or 2):

[moccaccino-lemonade-project-dir]$ ant sample-n

• Custom application may be submitted with assistance of
lemonade-enabled Moccaccino Manager e.g. by running the
following (Code Snippet 27) ant target:

<target name="runMyApplication">

 <java classname="edu.agh.moccaccino.manager.impl.StartManager"

fork="true">

 <classpath refid="moccaccino.run.classpath" />

 <arg value="[URL to ADLM file]" />

 <arg value="[URL to AISM file]" />

 <arg value="[First kernel endpoint address]" />

 <arg value="[Second kernel endpoint adress]" />

 [another kernels endpoints]

 </java>

 </target>

Code Snippet 27. Generic ant target for submission application by Moccaccino Manager.

Sample Application

Sample application that may be found in the Moccaccino leMonAdeE
Edition distribution is assembled of component instances arranged in a tree-like
structure that delegates calls top-down. Application architecture that
corresponds to ADLM description presented in Code Snippet 28. is depicted in
Figure 21. For further details on ADLM refer to the Moccaccino documentation
[59].

Appendix A: leMonAdE User Manual

- 113 -

Figure 21. Architecture of sample application contained in Moccaccino Manager distribution.
Component instances are arranged in a tree-like structure; components refer to themselves

via qualifiers (lists, maps).

Appendix A: leMonAdE User Manual

- 114 -

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC "moccaccino.adl" "../../adl-schemas/adl-schema.dtd" >

<application name="PingPongZonkApplication">

 <component-classes

 codebase="file:///D:/Documents/Dev/moccaccino-lemonade/jar/moccaccino-

lemonade-samples.jar">

 <component-class name="Ping"

 classname="edu.agh.moccaccino.sampleappa.Ping">

 <provides>

 <port name="MyGoPort"

 classname="edu.agh.moccaccino.sampleappa.PingPort"/>

 </provides>

 <uses qualifier="list">

 <port name="pongs"

 classname="edu.agh.moccaccino.sampleappa.PongPort"/>

 </uses>

 </component-class>

 <component-class name="Pong"

 classname="edu.agh.moccaccino.sampleappa.Pong">

 <provides>

 <port name="PongPort"

 classname="edu.agh.moccaccino.sampleappa.PongPort"/>

 </provides>

 <uses qualifier="map">

 <port name="zonks"

 classname="edu.agh.moccaccino.sampleappa.ZonkPort"/>

 </uses>

 </component-class>

 <component-class name="Zonk"

 classname="edu.agh.moccaccino.sampleappa.Zonk">

 <provides>

 <port name="ZonkPort"

 classname="edu.agh.moccaccino.sampleappa.ZonkPort"/>

 </provides>

 </component-class>

 </component-classes>

 <assembly>

 <component-group name="ping" component-class="Ping" weight="5">

 <connection usesPort="pongs" qualifier-attribs="length=2"

 providesPort="PongPort" weight="5" shared="false">

 <component-group name="pongs" component-class="Pong"
weight="5">

 <connection usesPort="zonks"

 qualifier-attribs="keys=one;two"

providesPort="ZonkPort" weight="5" shared="false">

 <component-group name="zonks" component-

class="Zonk" weight="5"/>

 </connection>

 </component-group>

 </connection>

 </component-group>

 </assembly>

 <deployment/>

Appendix A: leMonAdE User Manual

- 115 -

 <configuration-port-type-maps>
 <!—skipped-->

 </configuration-port-type-maps>

 <execution>

 <component path="."/>

 </execution>

</application>

Code Snippet 28. Architecture description of sample application contained in Moccaccino
Manager distribution. Expressed in XML-based ADLM language. This document describes

the architecture depicted in Figure 21.

In Moccaccino leMonAdE Edition the new concept of Application
Instrumentation Specification for Moccaccino (AISM) is introduced. This is a
XML-based language that contain configuration of all JMX-enabled AOCLs that
are involved in application. AISM refers to component groups defined in
ADLM. The possible instrumentation of sample application is presented in
Code Snippet 29.

The main element of AISM document is instrumentation with
attributes userName and password used as authentication credentials while
connecting to the MBeanServers. Instrumentation element consists of zero or
more componentGroupInstrumentation elements that bind component
groups with a configuration of AOCLs used by components instances of these
groups. In fact, componentGroupInstrumentation has the same syntax as
jmxaocl element (see: Code Snippet 26), although accepts additional nested
componentGroup elements that specify component groups the
componentGroupInstrumentation configuration is to be applied to.

<?xml version="1.0" encoding="UTF-8"?>

<instrumentation userName="" password="">

 <componentGroupInstrumentation>

 <componentGroup name="ping" />

 <staticADS name="staticADS"

 pointcutExpression="execution(private void
edu.agh.moccaccino.sampleappa.Ping.printDate())">

 <staticAspect name="staticAspect"

 class="pl.edu.agh.lemonade.aocl.sample.aspect.SampleAspect8"

 jar="file:///D:/Documents/Dev/lemonade-

aocl/jar/lemonade-sample-aspect.jar">

 <pointcut name="myPointcut"

 expression="execution(private void
edu.agh.moccaccino.sampleappa.Ping.printDate())" />

 <parameter name="author" value="me" />

 <parameter name="date" value="today" />

 </staticAspect>

 </staticADS>

 </componentGroupInstrumentation>

</instrumentation>

Code Snippet 29. AISM document for sample application. It refers to the application ADLM
description from Code Snippet 28.

Appendix A: leMonAdE User Manual

- 116 -

In order to start testbed the following ant target may be applied:

[mocca-lemonade-project-dir]$ ant h2o

Having local H2O kernel up the sample application may be run by
dedicated ant target:

[moccaccino-lemonade-project-dir]$ ant sample-2

Since this example involves single one H2O kernel, all involved AOCLs
are registered in the sample MBeanServer. Therefore, whole application may be
monitored by single standard JMX console. The screenshot presented in Figure
22 shows the output consoles of local H2O kernel and Moccaccino Manager
along with JConsole connected to the kernel’s JVM. In JConsole, note that one
AOCL is per one component instance and all AOCLs are contained in the
application name domain.

Figure 22. Sample Moccaccino application that runs within local testbed: local H2O kernel
console (upper), Moccaccino Manager console (lower), JMX JConsole (right) with tree-like

structure of MBeans involved in application run (left panel).

Additional information

For the detailed information and documentation user is expected to view
the source code and the source code documentation. For deepened view of
samples code the user should refer to the distribution. Additional information
and support may be received by contacting the author.

Appendix B: Papers Relevant to the Thesis

- 117 -

Appendix B.
Papers Relevant to the Thesis

The following appendix provides the papers co-authored by the author
of this thesis that are relevant to this work, respectively:

1. Eryk Ciepiela, Maciej Malawski, Bartosz Baliś, Marian Bubak: System for
Monitoring of Component-based Applications, submitted to Seventh
International Conference on Parallel Processing and Applied
Mathematics PPAM, Gdańsk, Poland 2007

2. Maciej Malawski, Tomasz Bartyński, Eryk Ciepiela, Joanna Kocot,
Przemysław Pelczar and Marian Bubak: An ADL-based Support for
CCA Components, presented in CoreGRIDWorkshop on Grid Systems,
Tools and Environments in Conjunction with GRIDS@work: CoreGRID
Conference, Grid Plugtests and Contest, Sophia-Antipolis, France,
October 2006

3. Maciej Malawski, Tomasz Bartyński, Eryk Ciepiela, Joanna Kocot,
Przemysław Pelczar, Marian Bubak: A new Approach to Supporting
Component Applications on Grid, Cracow Grid Workshop Proceedings,
Kraków, Poland, October 2006 (in press)

