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Abstract 

Despite the existence of many Grid optimization technologies and algorithms, there are some 

environments to which a standard optimization techniques cannot be applied. For them, new 

solutions have to be invented and developed. 

This thesis is intended to build an optimization engine for one of such environments – ViroLab 

Virtual Laboratory Runtime. Its specific model – invoking operations on special objects which 

reside on Grid resources – imposes a new approach to optimization. Such an approach is 

presented in the shape of the GridSpace Application Optimizer (GrAppO) – an engine for 

optimizing Grid applications execution, designed especially for the purposes of the ViroLab 

Runtime. 

GridSpace Application Optimizer has to face the challenges imposed by the Grid environment 

as well as specific only to ViroLab. They are e.g. dynamic nature of the environment, 

distributed sources of information, difficulty in defining suitable criteria. Nevertheless, it is able 

to significantly increase the quality of the ViroLab Runtime performance, by providing it with 

the most suitable objects to invoke operations on. 

This thesis follows the complete process of the GrAppO development. From the problem 

definition and analysis of existing solutions in the matter, through the design of the final system, 

to its implementation and tests which results proved GridSpace Application Optimizer to be a 

valuable element. 

 

 

The thesis is organized as follows: 

A detailed description of the environment in which GridSpace Application Optimizer is going to 

operate is presented in sections 1.1 and 1.2. Basing on these information, the motivation and 

goals of the thesis are specified in sections 1.3 and 1.4, respectively. 

Chapter 2 the general problem of optimization in Grid Computing is briefly introduced to 

identify main challenges regarding this issue. 

As a conclusion derived from Chapter 1 and Chapter 2, the optimizer specification is introduced 

in Chapter 3 – including: comparison to a generic grid optimization (3.2), requirements for it 

(3.3), optimization type identification (3.4), analysis of the techniques presented in Chapter 2 as 

a possible solutions for the optimizer (3.5). 

A detailed architecture, designed on basis of the specification (Chapter 3) is presented in 

Chapter 4, and its implementation details – in Chapter 5. 

Chapter 6 provides a description and results of the tests performed on the ready GridSpace 

Application Optimizer prototype. 

The conclusions derived from this thesis and some new issues worthy further exploration are 

proposed in Chapter 7. 

 

 

Keywords: Grid Computing, Optimization on Grid, Runtime Optimization, Optimization 

Algorithms, Optimization Heuristics, ViroLab, Grid Object.    
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Chapter 1:   Introduction 

The subject of this thesis is an entity – optimizer that would be able to perform optimization of 

grid applications under certain circumstances. This chapter introduces the environment in 

which this optimizer will be working – ViroLab Virtual Laboratory Runtime, its basis, 

architecture and very specific conditions. The conditions and main challenges of the 

optimization will be described along with the goals that have to be achieved by the present 

thesis to provide a comprehensive solution. 

1.1 Target Environment 

The ViroLab Virtual Laboratory runtime, which is the target environment for the subject of the 

present thesis, is a part of ViroLab project. ViroLab, according to [1]: “is a Specific Targeted 

Research Project of the EU 6th Framework Programme for Research and Technological 

Development in the area of integrated biomedical information for better health”. In this section, 

it will be presented in more detail from the point of view of this thesis.  

1.1.1 ViroLab Rational  Basis
1
 

Throughout the world large, high quality databases store information related to various 

scientific subjects. Since they are not integrated, nor the tools that enable sharing and processing 

their data are available, their use is limited to only local applications. 

An extensible Grid-based system could enable integration of these data and publishing it in a 

secure way through a number of specialized services. 

1.1.2 ViroLab Mission 

Nowadays the computer technology has a great impact on the development of medicine. In the 

area of the computer science recently has emerged some projects that are dedicated to support 

the process of the treatment of patients. One of them is ViroLab, which mission is to provide 

researchers and medical doctors in Europe with a virtual laboratory for infectious diseases. It is 

intended to facilitate transformation and computation concerning viral genetic information in 

order to develop new, more efficient treatments. 

By offering an environment to develop, publish and use services that could retrieve data from 

distributed clinical databases and perform the complex computation on it, the researchers are 

given a comprehensive and integrated solution to the problems they so far solved by hand or 

with their own applications. ViroLab provides them with an ability to automate and conduct the 

complicated and long-lasting computations on the Grid. It also facilitates collaboration among 

the researchers. 

                                                      
1
 Sections 1.1.1 and 1.1.2 were based on [1]. 
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1.1.3 ViroLab Users Characteristics
2
 

The most common ViroLab users may be divided into three categories, characterized in this 

section. They are: 

a. Clinical Virologist (other names: medical user, healthcare provider)  

It is a person that works for a hospital and helps the medical doctor to get more information 

regarding the certain infection case. This user’s main objective is to provide an appropriate 

treatment for patients. The main stress will be put onto HIV virus infections and the medical 

help for the people with such infections. Such user provides the system with domain expertise 

with respect to specific virus mutations and drug characteristics, while they are not assumed to 

have any computer-related knowledge. 

From the application point of view, it is the person who provides it with all required data. 

b. Experiment Developer 

An experiment developer is usually a scientific programmer that works in a viral diseases 

research institute. The objective of this user’s work is to provide viral diseases researchers (see:  

Experiment User) with proper tools that help them conduct experiments and to find useful 

results regarding their field of expertise. The knowledge this type of user is expected to have 

concerns both the domain field of viral disease research and non-basic skills regarding 

programming and computing technologies. 

From the application point of view, it is the person who implements it. 

c. Experiment User 

This person archetype constitutes a scientist that work for a research institute and that put the 

vast expertise in the domain of viral diseases to use. The objective of this class of user in scope 

of the ViroLab is to combine the virtual laboratory platform with the experiments planned by 

experiment developers in order to acquire interesting findings. The ViroLab project enables 

them to execute experiments and gather, share and store scientific results.  

From the application point of view, it is the person who launches it and makes use of the data it 

produces. 

1.1.4 General ViroLab Architecture
3
 

On Figure 1 an overview on the ViroLab virtual laboratory architecture is presented. It identifies 

main virtual laboratory subsystems and interactions between them, preserving a general level of 

abstraction. 

 

The top layer of this architecture is Presentation. It enables ViroLab users (see section 1.1.3 for 

the users description) to interact with the system. The presentation layer consists of ViroLab 

Portal – an interface for Clinical Virologists (1.1.3a) and Experiment Users (1.1.3c), and 

Experiment Planning Environment – designed for Experiment Developers (1.1.3b). Both of 

these components are supported by Collaboration Tools. The presentation layer uses 

Experiment Repository for storing experiments which can be executed or redeveloped, and for 

keeping tracks of changes to them. It also interacts with two entities responsible for holding 

information about Grid Objects (see section 1.2.1 for explanation of the terminology related to 

Grid Objects): Domain Ontology Store – which links Grid Object Classes with regard to domain 

knowledge and Grid Resources Registry – containing specific Grid Object Classes properties 

(including their existing implementations and instances). 

                                                      
2
 Some parts of section 1.1.3 come from the ViroLab design document [4] 

3
 The section is based on the general architecture description provided by the ViroLab design document 

[4]. 
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Figure 1: ViroLab Virtual Laboratory general architecture

4
 

 

The interpretation and execution of an experiment script is performed by ViroLab Runtime, 

which does it in a model of invoking operations on either local or remote services. For this 

purpose it uses the components: Data Access Client – for retrieving remote data (through Data 

Access layer) and Computation Access – for optimization and invocation of Grid Operations 

contained in the experiment script. The runtime system is also responsible for experiment 

session maintenance.  

All the events connected both to experiment execution and behaviour of the virtual laboratory 

components are intercepted by Monitoring Infrastructure and directed to Provenance Tracking 

System, which stores and publishes information about them. 

 

A more detailed view on dependencies between ViroLab Virtual Laboratory subsystems and the 

external resources they use is presented on a component diagram – Figure 2. On this diagram 

the architecture was presented in a form of an UML component diagram, emphasizing the 

general order of its layers. The diagram also shows relations between the subsystems and the 

purpose of their connections in a more precise way.  

                                                      
4
 The figure comes from the ViroLab design document [4]. 
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Figure 2: Detailed architecture of the ViroLab Virtual Laboratory 
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1.2 ViroLab Application Structure 

The optimization problem in ViroLab descends from the model of the entities on which the 

executed application’s operations are invoked. These entities are defined in this section, and 

relations between them are specified.   

1.2.1 Terminology Related to ViroLab Experiment 

The definition of the main entities related to an experiment executed by the ViroLab Runtime is 

provided below. The terms were first introduced in the ViroLab design document [4]. 

a. Grid Operation (GOp) (also Grid Object Operation, Grid Object Method ) 

Grid Operation is very similar to an abstract method in terms of Object-Oriented programming 

paradigm. It binds methods, offering the same functionality, and being abstract – cannot be 

invoked (only its implementations can). 

Grid Operation is identified not only by its signature, but by a description specific for Grid and 

generally: remote computation. 

One or more Grid Operation constitutes a Grid Object Class (see 1.2.1b). 

b. Grid Object Class (GOb) (or simply Grid Object)  

A Grid Object Class is – again, using the terminology of Object-Oriented programming 

paradigm – a kind of interface. It is an abstract of the same general functionality offered by 

different implementations and thus cannot be instantiated, nor invoked. It is a set of Grid 

Operations, which implementations have to be provided by the class’s implementation. The 

implementation of a Grid Object Class is Grid Object Implementation (see 1.2.1c).  

c. Grid Object Implementation (GObImpl) 

Grid Object Implementation implements functionality of its Grid Object Class. It can only be 

bound to one Grid Object Class. The implementations of the same class may differ only in non-

functional properties, since they have to offer the same Grid Operations (declared in Grid 

Object Class). 

Grid Object Implementation is only a static entity, which has to be instantiated (deployed into a 

resource) to allow its operations invocation. A Grid Object Implementation deployed into and 

run on certain resource is called Grid Object Instance (see 1.2.1d). 

d. Grid Object Instance (GObInst) 

A Grid Object Instance is an instance (also understood in terms of Object-Oriented 

programming paradigm) of a certain Grid Object Class. It is bound to concrete Grid Object 

Implementation since it executes its code. A Grid Object Instance can be contacted to perform 

some computation. The instances which use the same implementation may (but do not have to) 

differ only in resource they are deployed into – not in the code base. 

e. Grid Resource 

Every resource in Grid which is able to host a Grid Object Instance – i.e. owns a running 

container into which Grid Object Implementation of a certain kind (implementation 

technology) could be / is deployed. 

f. ViroLab Experiment (Application) 

ViroLab Experiment
5
 is a code in form of script composed of calls creating Grid Object 

Instances and invoking  their Grid Operations. As the script interpreter is based on the Ruby 

language interpreter, Ruby commands may also be placed in the experiment code. 

                                                      
5
 Further in this thesis the term “application” is more commonly used. 
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1.2.2 Relations Between the Specified Entities 

The dependencies between the entities described in paragraphs 1.2.1a-e can be summarized in 

the following way: 

• Each Grid Object Class can be implemented by a number of various Grid Object 

Implementations – of the same functionality, but e.g. representing different 

technologies (Web Service, WSRF, MOCCA Component). 

• Grid Object Implementation in turn, not being able to be invoked, is represented by 

numerous Grid Object Instances which are ready to perform processing. 

• To create a Grid Object Instance, a Grid Object Implementation has to be deployed in a 

dedicated container, residing on a certain Grid Resource. 

A sample dependency between these entities is shown on Figure 3. 

instance

instance instance instance
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Grid 
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Operation 
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GOp 02 

WS 
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GOp 01 
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Impl

 
Figure 3: Dependencies between ViroLab entities – Grid Object Class, Grid Object Implementations, 

Grid Object Instances and Grid Resources (WS Containers and H2O Kernels represent containers on 

Grid Resources)  

1.3 Motivation for Optimization in ViroLab 

The core functionality of ViroLab Runtime System offers a possibility of executing a ViroLab 

Experiment (see section 1.2.1f). However, the source code of the experiment provides only the 

information on Grid Object Classes which instances have to be used to invoke certain 

operations on them. The choice of the instance, considering the structure of relations between 

the entities described in section 1.2 is not trivial and must be performed by making the 

following decisions: 
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• which Grid Object Implementation will be the most suitable to perform the processing 

• which ready Grid Object Instance of this Grid Object Implementation will be the most 

suitable to perform the processing 

• whether the Grid Object Instance should be chosen or a new one is to be deployed 

• where (on which Grid Resource) a new Grid Object Instance should be created 

The ViroLab Runtime System itself is not able to make these decisions, while it has to provide 

the answer to its invoker service. Therefore a need for a dedicated component, that would 

analyze all the available data and provide the optimum solution (according to certain criteria) to 

the mentioned problems emerges. 

In traditional Grid environments a dedicated component – a scheduler of jobs or a resource 

broker – is introduced to make decisions similar to the aforementioned. However, the 

responsibilities of such component is greater than solving only these issues. Due to this fact, the 

term of “scheduling” in case of ViroLab Runtime is replaced with the term “optimization” (and 

similarly, the component name “scheduler” with “optimizer”) as the latter term more accurately 

describes the core aim of the component. 

1.4 The MSc Thesis Goals 

The main goal of the thesis is to analyze, design and develop a system that will be able to rise 

to the challenges of optimization issues in ViroLab (see 1.3). In order to achieve the aim, the 

following sub-goals should be realized: 

1.4.1 Identification of Available Optimization Solutions in Grid Computing 

Performing a research of already available optimization solutions for Grid computing could 

bring a wider view on the problem. Some of the examined artefacts could also appear 

applicable to the solution developed within this thesis. 

1.4.2 Identification and Analysis of the Problem of Optimization in ViroLab 

The analysis of the possibilities and constraints imposed by the target environment (see section 

1.1) – ViroLab should lead to a precise statement of the problem which this thesis will attempt 

to solve. All the project requirements have to be identified in order to develop a comprehensive 

solution. 

1.4.3 ViroLab Optimizer Design and Development 

The main product of this thesis is going to be an optimization engine for ViroLab Runtime (see 

1.1.4). It will have to be designed from scratch and then implemented. It not only has to suit 

into the runtime system, but also be a robust and comprehensive solution to the stated problem. 

1.4.4 Proving the Usefulness of the Developed Optimizer for ViroLab   

The product developed with the thesis have to pass several kinds of tests – starting from unit 

tests for each implemented part, through integration tests with other ViroLab components to 

performance tests that show its quality. The design of implementation and performance tests 

itself is a challenge, as the tests should prove the products value in an unquestionable way. 

1.5 Summary  

The chapter presented environment to which the subject of this thesis is targeted, introducing its 

purpose and structure. By defining the entities that build a ViroLab application, the 

optimization subject was identified and the need for optimization stated. 
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Chapter 2:   Issues of Optimization for Grid 

Computing – State of the Art 

The ViroLab Project (compare 1.1) is developed using a Grid-based service oriented 

architecture, therefore the optimization it uses has to be designed with regard to the 

characteristics of the Grid. The following chapter presents the main concepts concerning Grid 

computing as a model of distributed computing. Basing on these information an issue of the 

optimization of the applications execution on the Grid is provided. The state of current 

research on optimization algorithms that comply with the Grid specific conditions will be 

presented in detail. 

2.1 Overview of the Grid Technology 

Grid computing is based on the distributed computing concept. The latter term refers to a model 

of computer processing that assumes the simultaneous execution of separate parts of program 

on a collection of individual computing devices. Hence the units in a distributed system do not 

operate in a uniform processing environment – they must communicate by protocol stacks that 

are less reliable than direct code invocation and shared memory [12]. Some characteristics of 

these systems are: resource sharing, openness, concurrency, scalability, fault tolerance, 

transparency. 

The most important types of distributed computing systems are: multiprocessor systems, 

multicomputer systems, computing taxonomies, computer cluster, grid computing. In the 

following subsections the grid computing technology will be described in detail. 

 

In the early 1990s significant improvements were introduced in the area of computing. The 

availability of the Internet and high performance computing gave the possibility to execute 

large-scale computation and to use data intensive computing applications in the area of science, 

engineering, industry and commerce. This idea led to the emergence of the concept of the Grid 

computing. 

The term of “the Grid” was originated in the middle 1990s to describe a collection of resources 

geographically distributed that can solve large-scale problems. In the foundational paper “The 

Anatomy of the Grid. Enabling Scalable Virtual Organizations” [10] Ian Foster, Carl 

Kesselman and Steve Tuecke introduced the paradigm of the Grid and its main features. 

According to them the Grid concept can be regarded as coordinated resource sharing and 

problem solving in dynamic, multi-institutional virtual organizations [10]. 

The Grid integrates and provides seamless access to a wide variety of geographically 

distributed from different administrative areas computational resources (such as 

supercomputers, storage systems, instruments, data, service, people) and presents them as a 

unified resource. The sharing of resources is restricted and highly controlled, with resource 

providers and consumers defining clearly and carefully their sharing rules. A dynamic 
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collection of individuals, multiple groups or institutions defined by such restrictions and 

sharing the computing resources of the Grid for a common purpose is called a Virtual 

Organization (VO) [10]. 

Moreover, in the Grid environment standard, open general-purpose protocols and interfaces 

should be used. The use of open standards provides interoperability and integration facilities. 

These standards must be applied for resource discovery, resource access and resource 

coordination [12]. 

Another basic requirement of a Grid Computing system is the ability to provide the quality of 

service (QoS) requirements necessary for the end-user community. The Grid allows its 

constituent resources to be used in a coordinated fashion to deliver various qualities of service, 

such as response time measures, aggregated performance, security fulfilment, resource 

scalability, availability, autonomic features e.g. event correlation, configuration management, 

and partial fail over mechanisms [11]. 

2.2 Overview of the Grid Optimization Problem 

Among many challenges regarding Grid Computing, the problem of the optimization a Grid 

application execution is one of the most important. In this section the problem will be defined 

and the generic control flow during the application execution on the Grid presented. 

2.2.1 Terminology Related to Optimization on Grid 

In the remainder of this chapter, the following assumptions about the terminology will be made: 

• Resource – an entity which is used by a process to execute a job. Examples of 

resources are storage systems, supercomputers, data sources or people. 

• Job – a single, atomic unit of the application that can be independently assigned to a 

resource (an appropriate point on the Grid) to be executed on it. 

• Application (Grid application) – a collection of atomic jobs which execution is 

requested by a user and can be performed on the Grid. These jobs are usually designed 

to be executed in parallel on different machines of the Grid. Additionally, specific 

dependencies between jobs may be introduced – e.g. a job can define a collection of 

other jobs that have to complete before the given job can be executed. Finally, the 

results of all of the jobs must be collected and appropriately assembled to produce the 

ultimate output for the application [8]. 

2.2.2 Grid Optimization Problem Statement 

The Grid system is responsible for sending a job to a best suitable resource to be executed. In 

large systems it is very cumbersome for an individual user to select these resources manually 

[19]. Therefore a dedicated component – an optimizer, which acts as localized resource broker 

is available in the Grid system. Its scope of responsibilities includes mapping Grid jobs to 

resources over multiple administrative domains. 

Basing on the aforementioned information, the generic problem of the optimization of the Grid 

application execution can be stated as follows: 

 

The process of discovering of the best combination of a job and resources in such a way that 

the user and application requirements are fulfilled, in terms of overall execution time 

(throughput) and cost of the resources utilized [16]. This mapping is performed by taking static 

restrictions and dynamic parameters of jobs and resources into consideration. 

2.2.3 Grid Optimization Process 

As it was stated in section 2.2.2 the success of the optimization of Grid application depends 

mainly on appropriate mapping results. Hence, in this section the general process of the 
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optimization of Grid application execution will be described in detail. The process can be 

divided into three phases: resource discovery, system selection and job execution. This division 

was introduced by Jennifer M. Schopf in [15] – the description of the phases is based on this 

paper. 

 

Phase 1: Resource Discovery 

The main purpose of this stage is to generate a list of potential resources which are available to 

utilize at a given moment. The resource discovery phase involves determining a collection of 

resources to be investigated in more detail in Phase 2, information gathering. At the end of this 

phase, this collection will contain a set of resources that have passed a minimal feasibility 

requirements. This phase can be divided into the following steps: 

Step 1: Authorization Filtering  

This step determines a collection of resources to which an authorized access can be obtained. 

The most common solution is to store a list of resources with all relevant information such as 

account names or passwords. Although the necessary data can be obtained in a simple way, this 

method does not assure fault tolerance and scalability. 

Step 2: Application Requirements Definition  

The step is responsible for the specification of minimal job requirements for resources. The 

collection of possible job requirements can be divided into static and dynamic ones. The former 

involves for instance the type of the operating system or the specific architecture best suitable 

for the given code. The latter subgroup represents the requirements such as minimum amount 

of RAM available, a load of central processing unit or connectivity needed. The requirements 

should be specified in as much detail as possible in order to gain a better result of general 

process of optimizing. 

The process of the specification of the application requirements is rather complicated, therefore 

gathering requirements and their storage is not automated. 

Step 3: Minimum Requirement Filtering  

Basing on information gathered in previous two steps the process of filtering resources is 

executed – the resources to which an access is not granted or that not fulfil the job requirements 

are discarded. The collection of valid resources will be investigated in more detail in the next 

phase. 

 

Phase 2: System Selection 

During this phase a single resource (or a resource collection) must be selected with regard to 

which is suitable for a given job. The selection is performed depending on available data. The 

process can be divided into two subphases (steps): 

Step 1: Dynamic Information Gathering  

Apart from the generic and static information about the resources, detailed dynamic data about 

the current condition of them is required to perform a better job-resource match. Taking into 

consideration such kind of information is important, since it may vary with respect to the 

application being requested to execute and the resources being examined. In general on the 

Grid, a dedicated component is introduced which a main task is to provide information about a 

current resource condition. 

Another significant issue in this area is a problem of scalability and consistency. The larger the 

system is, the more queries must be performed that can be a time-consuming activity. 

Moreover, the system should be able to cope with an unavailability of a resource for a period of 

time and a request for the data from it. Currently, the situation is generally avoided by 

assuming that the shortage of the dynamic data from a resource leads to ignoring it in an 

optimization process. 
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Step 2: Final Decision  

Having obtained all relevant, detailed information, the next step is to make a decision which 

resource (or set of resource) to use. Various approaches are possible according to a selected 

algorithm and a policy. Some of them are described in the section 2.2.4. 

 

Phase 3: Job Execution 

The last phase is running a job on a selected resource (or a selected collection of resources). 

The process consists of the following activities (steps): 

Step 1: Advance Reservation [optional]  

This step introduces a possibility to reserve a resource in advance in order to make the best use 

of a given system. The complexity of the process is varied and it can be performed with both 

mechanical and human means. Currently, such system is not introduced on many resources, but 

thanks to the emergence of service level agreements paradigm, this activity will have more 

impact on Grid application execution in the future. 

Step 2: Job Submission  

After the selection of resources, the application can be submitted to the resources. Job 

submission may be as easy as running a single command or as complicated as running a series 

of scripts and may or may not include setup or staging. In general, the lack of standards for job 

submission is observed. 

Step 3: Preparation Tasks  

Preparation Tasks 

The step may involve setup, staging, claiming a reservation and other actions that may be 

necessary to prepare the resource to run the application. In a Grid environment, authorization 

and scalability issues can complicate the process. The common solution is to use scp, ftp or a 

large file transfer protocol (e.g. GridFTP) to ensure that the data files needed are in places. 

Step 4: Monitoring Process  

During the execution of the application, the status of the job can be monitored and regarding to 

its progress it can be rescheduled to another resource. Today, such monitoring is typically done 

by repetitively querying the resource for status information. In case of the insufficient progress 

of the execution, the job may be rescheduled. Sometimes this process can become complicated 

because of the lack of control over resources – other jobs may be scheduled causing the one of 

concern  to be terminated, possibly without any warning or notification. 

Step 5: Job Completion  

After completion of the job, a notification should be issued to the user. The common solution is 

to include an e-mail notification parameter in a submission scripts for parallel machines. 

Receiving the information about the completion state is important because of the fault-tolerance 

reasons. 

Step 6: Cleanup Tasks  

The last step involves a retrieval of files from the resource in order to perform data analysis on 

the results or a temporary removal settings. The process can be executed by hand or by 

including clean-up information in the job submission scripts. 

2.2.4 Components in Grid Optimization Process 

During the Grid optimization process the optimizer has to interact with other components of 

Grid Computing environment. 

First of all, to make a proper assignment in the heterogeneous and dynamic Grid environment 

the information about the current state and condition of available resources is needed. In 

general, Grid optimizers receive data from a general Grid Information System (GIS). GIS is 

responsible for collecting and predicting the resource state information (e.g. CPU capacities, 
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network bandwidth) and can answer queries for resource information or notify subscribers 

about the new data [15].  

Another useful information for the process of optimization are application properties (such as 

memory and storage requirements, sub-jobs dependency in the application) and the 

performance of resource for different application species. Such data will simplify the 

computation of the cost estimation for a schedule candidate [5]. 

Next component is the Launching and Monitoring module. Its main task is to, according to the 

given schedule, submit applications to resources, staging input data or executables and 

monitoring the execution of the applications [5]. 

2.3 Overview of Optimization Algorithms for Grid Computing 

Regarding to the optimization of the Grid application execution, the most important point in the 

generic Grid optimization process is System Selection (see section 2.2.3). The optimization can 

be performed owing to the possibility of utilization of different selection strategies, by 

introducing appropriate algorithms. In this section challenges regarding the optimization 

process in the Grid Computing and classification of optimization algorithms will be described.  

2.3.1 Challenges of Optimization in Grid Computing 

The optimization of the application execution on the Grid is significantly different from its 

counterparts in traditional parallel and distributed systems. Requirements of Grid Computing 

make many optimization algorithms that were suitable for systems with a parallel and 

distributed architecture useless in this new computing paradigm. In this section some of Grid 

characteristics will be investigated to prove the necessity of introduction of new optimizing 

algorithms [5]. These are: 

• Heterogeneity. As explained in section 2.1, in the Grid environment resources are 

distributed among multiple domains in a computer network. Both the computational, 

storage nodes and the underlying networks connecting are heterogeneous. This fact 

influences directly the complexity of optimization process by creating different 

capabilities for job processing and data access. An optimizer has to cope with system 

boundaries and resources dependency on external restrictions. 

• Autonomy. In contrast to traditional parallel and distributed systems, a Grid optimizer 

usually cannot control Grid resources directly hence it has no ownership of them. The 

optimizer does not have full information about resources because of their autonomy in 

the environment. This lack of control is one of the challenges that must be addressed. 

The optimizer cannot violate local policies of resources, which makes it hard for the 

Grid optimizer to estimate the exact cost of executing a job on different resources – in 

contrast to the traditional systems where the behaviours of resources are predictable 

and the process of mapping jobs to resources according to certain performance 

requirements does not cause any difficulties. In the Grid environment, the most 

common solution to this issue is to introduce adaptive optimization (see 2.3.3). 

• Performance Dynamism. This challenge results directly from the autonomy paradigm 

of the Grid. The successful mapping jobs-to-resources depends on the estimate of the 

performance that the available resources can provide. However, taking into account the 

resource autonomy the exact performance cannot be calculated. This is because a 

resource has to comply to a local policy and cannot guarantee a fixed execution time. 

The same problem applies to networks that connect Grid resources – the available 

bandwidth can be heavily affected by network traffic flows which are non-relevant to 

Grid jobs. A optimizing algorithms should take into consideration this performance 

dynamism. 

• Computation-Data Separation. In the Grid environment there is a large number of 

heterogeneous computing and storage sites connected via wide area networks. The 

communication bandwidth of the underlying network is limited and therefore the cost 

for data staging cannot be neglected by optimizing algorithms.  
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Considering the mentioned properties, a good optimization system on the Grid should have the 

following features [11]: 

• adaptability, 

• scalability in managing resources and jobs, 

• ability to predict and estimate performance, 

• ability to take the cost of resources into account when optimizing, 

• ability to take user preferences and site policies into consideration. 

2.3.2 Hierarchical Taxonomy of Grid Optimization Algorithms 

In the paper [20] Casavant and Kuhl introduced a hierarchical taxonomy for optimization 

algorithms in generic parallel and distributed computing systems. The Grid optimization 

process may be classified using this taxonomy (it is visualized on Figure 4) as well. 

 
Figure 4: A hierarchical taxonomy of optimization algorithms in distributed systems [20] 

 

The hierarchy can be built using the following criteria: 

 

Number of processors. The criterion divides optimization techniques into local and global 

one. The former refers to the policy managing processes on a single CPU. In case of global 

optimization policy, information about the system is used to allocate processes to multiple 

processors to optimize a system-wide performance objective. 

The generic Grid optimization process can be classified as a global one. Thus the other criteria 

described further in this section will concern the global optimizing policy. 

 

Moment of making the assignment decision. At this level of the hierarchy, a distinction is 

drawn with regard to the time of making the optimization decisions, and results in division into 

static and dynamic subgroups.  

In the static mode, information about both: all resources in the Grid and jobs in an application 

is assumed to be available before the optimization of the application. Thus, a firm estimate of 

the cost of the computation can be made in advance, and the process of the optimization can be 

simplified. However, such policy can become insufficient in dynamic environments where 

resources or jobs properties change dynamically.  

In the dynamic mode, the possibility of the change of the topology of the system is taken into 

consideration. Hence, the optimizer may generate a new assignment of jobs to resources during 

execution of the application. This mode is useful when it is difficult to estimate the cost of 
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applications or jobs a priori. Dynamic optimization for a job execution has two major 

components: 

• System state estimation – collecting current state information throughout the Grid and 

constructing an estimate, 

• Decision making – using the estimate, assignment of a job to a resource is performed. 

The advantage of the dynamic mode is load balancing of resources. It should be introduced 

when maximizing resource utilization is preferred to minimizing run time for individual jobs. 

Both static and dynamic optimization policies can be suitable for Grid environments. 

 

Optimality of an algorithm. The optimum solution can be chosen only if all information 

regarding the state of resources and the tasks are available. However, taking into consideration 

the NP-complete nature of optimization algorithms and the fact that obtaining the information 

can be computationally infeasible, the sub-optimum solutions are usually sufficient.  

In the Grid environment, the sub-optimum solutions are efficient enough and current research 

concerns them. 

 

Type of the sub-optimum algorithm. The space of sub-optimum solutions can be divided 

further into two general categories. First represents approximate algorithms which aim at 

finding a solution that can be assumed as a good one according to a given metric. Instead of 

searching entire solution space for an optimum solution. Casavant in the paper [20] suggests 

metrics such as the time required to evaluate a solution or availability of a mechanism for 

intelligently pruning the solution space. The second category includes heuristic algorithms 

which assume having knowledge concerning process and system loading characteristics in 

advance. The evaluation of this kind of solution is usually based on experiments in the real 

world or on simulation. 

From the Grid optimizer point of view, heuristic algorithms are appropriate hence they can be 

easily adapted to dynamic nature of the Grid. 

 

Number of optimizers. Three optimization paradigms can be introduced regarding the 

responsibility for making global optimization decisions [19]: 

• Centralized optimization – the strategy assumes existence of a single optimizer 

responsible for optimizing the execution of jobs on all surrounding nodes that are part 

of the environment. Although the centralized optimizer is easy to implement and can 

produce better optimization decisions, as it has all relevant information about available 

resources, it can suffer from the lack of scalability and fault tolerance. 

• Distributed optimization – this scenario assumes the responsibility of making global 

optimization decisions is shared by multiple distributed optimizers. Distributed 

optimization overcomes the problem of scalability and can offer better tolerance and 

reliability. However, the lack of all the necessary information on available resource, 

usually can result in sub-optimum optimization decisions. 

• Hierarchical optimization – in hierarchical optimization, a centralized optimizer 

dispatches local optimizers a job submission. This type also suffers from problem of 

the scalability and communication bottlenecks. Nevertheless, its main advantage is that 

the global optimizer and local optimizer can have different policies in optimizing jobs. 

 

Cooperation between optimizers. This criterion concerns distributed optimization policy. In 

case of non-cooperative local optimizers, each of them acts as autonomous entity and makes an 

optimization decision regarding only its own optimum objects independently of the effects of 

the decision on the rest of  the system. 

The second mode assumes cooperation between local optimizers. Each optimizer is responsible 

for its own jobs, but all optimizers are working in order to achieve a common system-wide 

goal. The local policy of each one pays attention not only local to performance of a particular 

job, but also takes into consideration the contribution to achieving the global aim. 
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2.3.3 Extension to the Hierarchical Taxonomy 

The hierarchical taxonomy presented in section 2.3.2 does not include all distinguishing 

characteristics which optimization systems may have. The characteristics do not fit uniquely 

under any particular branch of that tree-structured taxonomy and can be considered as a flat 

extension to the scheme presented before. These aspects include [5]: 

 

Objective Functions. This criterion determines the object of the execution of the application. 

In Grid computing, the functions can be classified into two subcategories [5]: 

• Application centric – this objective function particularly pays attention to the 

performance of an application, for example the total cost to run it or a makespan (a 

period of time between the initialization of the first job and the termination the last 

job). 

• Resource centric – such scenario aims to optimize the performance of the resources. 

Resource-centric objectives are usually related to resource utilization, for example: 

throughput, which is the ability of a resource to process a certain number of jobs in a 

given period; utilization, which is the percentage of time a resource is busy. 

 

Adaptive Optimization. An adaptive solution to the optimization problem is the one in which 

the algorithms and parameters used to make optimization decisions change dynamically 

according to the previous, current and / or future resource status [5].  

In Grid computing, the process of the adaptation may concern: 

• Resources. Taking into account resource heterogeneity and application diversity, 

discovering available resources and selecting an appropriate collection of resources can 

impact on high performance and reduce the cost. 

• Dynamic Performance. Such kind of adaptation can be regarded as changing the 

optimizing policy or rescheduling, or workload distributing according to application-

specific performance models, or finding a proper number of resources to be used. 

• Application. In order to achieve the high performance, an optimizer dedicated and 

specific to a given application can be introduced. The common solution in such a 

situation is to divide the optimizer into two components. First of them is then 

responsible for the core process of the optimization, whereas the second is application-

specific (e.g. performance models) and platform-specific (e.g. resource information 

collection). The advantage of such solution is the fact that a core of the optimizer can 

be general-purpose, when dedicated application-specific components with well-defined 

interfaces will be responsible for the communication. 

 

Dependencies Between Jobs in the Application. In the section 2.2.1 a Grid application was 

defined as a collection of jobs. In addition, the jobs can be dependent or independent of each 

other within one application. Usually, the dependency means there are precedence orders 

existing for jobs. Taking into account this issue is crucial hence different and more effective 

optimization techniques can be used according to related jobs. The jobs can be presented in the 

form of a directed acyclic graph (DAG), in which a node represents a job and a directed edge 

denotes the precedence orders between its two vertices.  

2.3.4 Optimization Algorithms Suitable for Optimization on Grid 

In this section the most common and suitable for the Grid Computing optimization algorithms 

will be described. These techniques are used during the second step of phase “System 

Selection” in the Grid optimization process (see section 2.2.3). Each of them will be classified 

according to the described in sections 2.3.2 and 2.3.3 taxonomies. Description of these 

algorithms was created on the base of the paper [5]. 
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2.3.4.1 Simple heuristics for independent jobs 

In case of a collection of independent jobs, some static heuristics algorithms based on execution 

cost time can be applied. Most common metrics are [22]:  

• Expected execution time – the amount of time to execute the given job assuming that 

the selected resource has no load when a job is assigned. 

• Expected completion time – the wall-clock time at which the selected resource 

completes the execution of the given job (after having finished any previously assigned 

jobs). 

Using this terminology several simple heuristics for optimizing the execution of independent 

jobs can be introduced [17]: Min-min, Max-min, Suffrage and XSuffrage. These heuristics in an 

iterative way assign jobs to resources by considering jobs not yet optimized and computing 

their expected Minimum Completion Time (MCTs) on each of the available resource and 

finding the minimum completion time over all the resources. For each job, a metric is computed 

using their MCTs and the job with the best metric is assigned to the resource that let it achieve 

its MCT. The process is then repeated until all tasks have been optimized [22]. The distinction 

between the heuristics is defined by the function that determines the metric: 

• Min-min – the metric is the lowest MCT. The advantage of this method is load-

balancing of the resources. 

• Max-min – on the contrary, the job with the maximum minimum completion time is 

assigned  to the corresponding resource. The heuristic attempts to minimize the 

penalties incurred from performing tasks with longer execution times [5]. 

• Suffrage – a heuristic based on the idea that better schedules can be found by assigning 

a machine to a task that would “suffer” most in terms of expected completion time if 

that particular machine is not assigned to it. For each job, its suffrage value is defined 

as the difference between its best MCT and its second-best MCT [5]. 

• XSuffrage – an improved Suffrage heuristic proposed by Casanova et al [9], which 

instead of computing the suffrage between nodes this metric gives a cluster level 

suffrage value to each job. 

 

These general and simple optimization algorithms does not consider QoS, which can affect 

their performance in a general Grid environment. Moreover, in heterogeneous systems, the 

effectiveness these algorithms is also affected by the rate of heterogeneity of the jobs and the 

resources as well as the consistency of the job estimated completion time on different 

machines [5]. 

2.3.4.2 Dependent Jobs Optimization 

In case of dependent jobs optimization, the precedence order of jobs is required in advance. 

Hence, these techniques are kinds of static optimization. The simple way to present the 

dependence of jobs is to construct a directed acyclic graph (DAG), in which nodes represent 

jobs and edges represent the data dependencies among the jobs..  

In dependent jobs optimization the dichotomy between maximum parallelism and minimum 

communication appears. High level of parallelism means dispatching more jobs simultaneously 

to different resources, thus increasing the communication cost, especially when the 

communication delay is significant [5]. 

In the following section a different approaches to the problem will be presented with some 

example algorithms. 

a. List Heuristics 

The common idea of list optimization heuristics is to make a list of jobs and execute these from 

the front of the list. Thus it consists of two phases: a job prioritizing phase and a resource 

selection phase. During the first, one priority of each job is computed to make a ready ordered 

list. Then the most appropriate resource is selected for the current highest priority job during 

the resource selection phase [13]. 
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Two important issues regarding this heuristic appear: how to compute a job priority and how to 

define the cost function. Considering the job priority, it has to be assumed that the priority of 

the job must be set before any mapping decision is made. To solve this problem, 

approximations of the job node weight (it represents the computation cost) and the edge weight 

(representing the communication cost) are used. Two attributes are introduced in order to 

compute the priority of the job: t-level (top level) and b-level (bottom level). The former is the 

length of the longest path reaching the job, the latter being the length of the longest path 

beginning with the job [21]. The most common heuristics of resource selection phase are: 

• Earliest-finish-time-first. 

• Assigning critical-path job  to a resource. 

Both heuristics were proposed by Topcuoglu et al. [18]. 

 

Their realization are: 

• Heterogeneous Earliest Finish Time – the algorithm sets the weight of a job as the 

average execution cost of the node among all available resources. Similarly, the weight 

of the edge is the average communication cost among all links connecting all possible 

resource pair combinations. The priority of a job node is the b-level attribute of that 

node, which is based on mean computation and mean communication costs. Hence, 

during the resource selection phase the job with the highest priority is picked for 

allocation and a resource which ensures the earliest completion time is selected. A 

disadvantage of this method is the possibility of falling into local optima like a greedy 

method in case determining the earliest finish time [13]. 

• Dynamical Critical Path (DCP) – the algorithm was proposed by Kwok et a. [14]. It 

does not maintain a static optimization list, but selects the next job node to be 

optimized dynamically. At each step of the optimization, it computes the dynamic 

critical path (DCP), that can be defined as a critical path in job graph on which the sum 

of computation cost and communication costs is maximized. In order to reduce the 

value of DCP, the node selected for optimization is the one that has no unoptimized 

parent on the DCP [21]. While determining the resource, the algorithm does not 

examine all resources, but considers only the ones that hold the nodes communicating 

with the one in question. The resource with a job on the critical path has an earliest 

start time is selected. 

Some other approaches such as Mapping Heuristics or Fast Critical Path (FCP) exist [21]. In 

the case of Grid Computing, it is important to pay attention to the fact that algorithms should 

consider the heterogeneity of resources, jobs and communication links as well. 

b. Clustering Based Heuristics 

The main idea of these heuristics is to group heavily communicating jobs to the same cluster 

and then assign jobs in a cluster to the same resource. The clusters can be classified as a linear 

or as a nonlinear one. A cluster is called nonlinear if two independent jobs are mapped in the 

same cluster, otherwise it is called linear [21]. 

The general algorithm can be divided into two phases [5]: 

• job clustering phase – it is responsible for partitioning the original job graph into 

clusters, 

• post-clustering phase – it can refine the clusters produced in the previous phase and get 

the final job-to-resource map. 

Some most common particular algorithms using this heuristic is Dominant Sequence Clustering 

and CASS-II [5]. 

c. Duplication Based Algorithms 

The main idea behind duplication based optimizing is to use resources’ idle time to duplicate 

predecessor jobs. In this way, some of the more critical jobs of a parallel program are 

duplicated on more than one resource. Thereby it can potentially reduce the start times of 

waiting tasks and reduce the communication cost.  
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The difference between particular algorithms of the heuristic is the strategy for selecting the job 

for the duplication. The examples of this method are TDS (Task Duplication-based Scheduling 

Algorithm) and TANH (Task duplication-based scheduling Algorithm for Network of 

Heterogeneous systems) [5]. 

2.4 Summary 

The aim of the chapter was to introduce the current state of the research into the optimization 

issue in Grid Computing. After presenting the core of the optimization problem, the taxonomy 

of the optimization techniques was shown. Thanks to the taxonomy, the issue can be considered 

from different points of views and can simplify the process of the design of the optimizer for 

the ViroLab Runtime System. In Chapter 3 the taxonomy will be used in order to specify the 

optimization model offered by the ViroLab Runtime. 

The algorithms described in section 2.3.4 will be analyzed from the point of view of their 

usefulness in the developed system in Chapter 3. 
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Chapter 3:   Analysis of Optimization Issues in 

ViroLab Virtual Laboratory Runtime System 

In this chapter, basing on the information provided in Chapter 2 and Chapter 1, a detailed 

specification of the optimization problem in ViroLab Virtual Laboratory Runtime System was 

provided. The problem is discussed with regard to the general optimization issue in Grid 

environment that was introduced in section 2.2, including a comparison of the general 

optimization process on Grid (2.2.3) with the optimization specific to ViroLab. Afterwards, the 

requirements for the optimizer and its model are identified. Finally, the common optimization 

techniques are discussed with concerning their possible utility in the optimizer with regard to 

the specified requirements. 

3.1 Grid Optimization Problem in ViroLab 

Although the component inside ViroLab Runtime System that executes subsequent commands 

of an experiment (Grid Operation Invoker) uses Grid Object Instances (for the Grid Object-

related vocabulary see section 1.2.1) to invoke Grid Operations of a given Grid Object Class, it 

is not able to decide which class’s instance would be the best to perform the operation. This is 

because it neither acquires sufficient information to make such a decision, nor is it able to 

process it. 

Therefore, in order to improve the ViroLab Runtime System performance, a mechanism that 

chooses an optimum Grid Object Instance or requests creating it (passing all required data) has 

to be developed. One of the goals of this thesis (compare 1.4) is to design and develop this 

mechanism in the form of an optimizing engine – later called ViroLab Optimizer or simply 

optimizer, that maintains communication channels to other ViroLab components. 

3.2 The Optimization in ViroLab Runtime System as an Example of 

Optimization Process for Grid Computing 

The problem of the optimization in ViroLab can be regarded as a special case of the generic 

optimization process in Grid Computing, described in section 2.2. The vocabulary of ViroLab 

environment (section 1.2.1) can be mapped into the general Grid terminology (section 2.2.1) in 

the following way: 

• a Grid Object Instance – a resource 

• a Grid Operation – a job 

• a ViroLab experiment – a Grid application. 

A core optimizing process has to be present during executing an experiment inside ViroLab 

Runtime System. 
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Thanks to the component architecture of ViroLab Virtual Laboratory Runtime (see section 

1.1.4), the ViroLab optimizer will not have to be responsible for all steps during the 

optimization process. It will be able to interact with other components which are a part of the 

runtime and have access to the information gathered by components of the Middleware layer. 

For the description and visualization of ViroLab components please consult section 1.1.4, 

Figure 1 and Figure 2. 

In the following sections the grid optimization process will be presented from the ViroLab 

environment point of view. 

3.2.1 Optimization Results Consumer 

The only consumer of optimization results is ViroLab Invoker – Grid Operation Invoker (GOI). 

It is responsible for creating Grid Object Instances or contacting existing ones, and invoking 

Grid Operations on them. The Invoker provides an identification of class of the Grid Object 

(Grid Object Class) it is going to use, and obtains a Grid Object Instance or all the data 

necessary to create it. 

3.2.2 Optimization Process Phases 

In section 2.2.3 a general division of the Grid optimization process into several phases was 

introduced. In this section these phases will be described from the perspective of the 

optimization process in ViroLab Runtime System. The following phases should be compared to 

the presented in section 2.2.3. 

 

Phase 1: Resource Discovery 

In this phase a list of potential resources which are available to utilize at this moment should be 

generated. In a case of ViroLab Optimizer all appropriate Grid Object Implementations, 

including their running instances for the given by the invoker Grid Object Class should be 

discovered. 

The source of information which are used during this phase is ViroLab Registry that contains 

information, including generic and static data, related to Grid Objects – Grid Resource Registry 

(GRR), which is located in ViroLab Runtime. Grid Resource Registry is the only required data 

source for the optimizer. The step of Authorization Filtering can be neglected because the Grid 

Resource Registry is assumed to provide information only about the resources to which the 

access is granted. 

 

Phase 2: System Selection 

The result of this phase is finding the best combination of a resource and a given job. Taking 

into consideration ViroLab Runtime System, it means determining the best Grid Object 

Instance on which the given Grid Object Operation could be performed. 

The phase involves also gathering dynamic information about resources. In case of ViroLab 

Runtime System the source of such data is ViroLab Monitoring System, which is located in the 

Middleware layer. The system provides information about the state and condition of the 

resources on which a Grid Object Instance is running or can be created. 

An additional component from the Middleware layer which can be used during this phase is 

ViroLab Provenance Tracking System – PROToS. PROToS can be a source of data related to 

Grid Object Instances performance in their previous invocations. Utilization of this component 

can improve the result of the optimization process. 

However, when the far-sighted optimization (see section 3.4.3) is performed an additional data 

about the structure of executed application is required. The source of such information is the 

manager of ViroLab Runtime – Runtime Library. 

The core step of the system selection is performed using the obtained information and 

according to the specified policy. 
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Phase 3: Job Execution 

In the generic Grid optimizing process this phase is responsible for running a job on a selected 

resource, while in ViroLab Runtime System this task is assigned to the Grid Object Invoker 

component. Hence the role of ViroLab Optimizer is only significant during the first and the 

second phase of the optimizing process. The phase of Job Execution is out of space of the 

ViroLab Optimizer’s activity. 

3.2.3 Communication Channels to Other ViroLab Components 

The data flow diagram on Figure 5 summarizes the interactions the ViroLab Optimizer with 

other ViroLab Components during the optimization process. 
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Figure 5: Data flow between the optimizer and its data sources and consumers 

 

To work correctly, ViroLab Optimizer should require only the connection to Grid Resource 

Registry – in order to retrieve the information it has to pass to the Grid Operation Invoker (and 

of course to the invoker itself). Such solution is not optimum, since the information stored in 

the registry is insufficient to make any accurate prediction of performance. Therefore, 

interactions with other sources of information significantly improve the quality of solution the 

optimizer chooses 

3.3 Requirements for ViroLab Optimizer 

This section describes the basic functional (3.3.1) and non-functional (3.3.2) requirements that 

ViroLab optimizer should satisfy. 

3.3.1 Functional Requirements 

To be useful in the ViroLab environment, the optimizer has to meet the basic requirement: 

• Provide a possibly accurate answer (or report an appropriate error) to each question of 

type: which Grid Object Instance (ready or only to be created) of the Given Grid Object 

Class is most suitable to perform an operation on. 
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3.3.2 Non-functional Requirements 

The most important non-functional requirement for ViroLab Optimizer is that its computation 

processes cannot bring significant latency in responses to the requests from invoker. 

What is more, the optimizer design should comply with the following requirements: 

• Clear interface with an appropriate exception handling. 

• Easily adjustable to environment – it should be able to adjust to different conditions of 

its environment – i.e. if the existing sources of information do not provide sufficient 

data, the optimizer should try to create and utilize new information channels. 

• Easily extendible – it should offer a simple way to extend its functionality with new 

features, more advanced algorithms, analysis of data from new information channels. 

• Easily configurable – the optimizer should offer a possibility to configure it externally 

– this configuration includes: optimization algorithms to be used, utilized data 

channels, properties constituting a policy of optimization. 

3.4 ViroLab Optimizer Optimization Model 

The following subsections contain a study of the ViroLab Optimizer characteristics which 

enables to fully recognize its optimization model. The constraints it has to comply with are 

identified. On this basis, regarding the classifications of Grid optimization solutions (sections 

2.3.2 and 2.3.3) and the characteristics of the optimization problem in ViroLab (3.2), the model 

of optimization that will be performed is identified. 

3.4.1 Constraints Imposed by ViroLab Environment 

The ViroLab environment (see section 1.1) puts some restraints on its optimizer. These 

limitations occur due to the fact that the optimizer does not own the resources it uses. 

Therefore, it does not have an authorization to administrate them. 

The constraints are as follows: 

• No direct control over resources – the optimizer can only act as a broker; it cannot 

guarantee that the task it schedules will be executed on the resource it chooses. 

• No exclusive access to resources – the information about resources gathered by the 

optimizer can be imprecise or out-of-date. Furthermore, the optimizer cannot 

guarantee that the quality of scheduled jobs will not be aggravated by some tasks 

executed by the local scheduler. 

• No queue – the optimizer is not able to manage the tasks after they are submitted to 

resources. 

3.4.2 ViroLab Optimizer Optimization Type 

Basing on the classification introduced in sections 2.3.2 and 2.3.3, the following characteristics 

of the ViroLab Optimizer can be distinguished: 

• Global – it uses information about the system to allocate processes to multiple 

processors and optimizes a system-wide performance objective. 

• A hybrid solution between static and dynamic optimization – the basic functionality 

offers choosing the optimum resources at runtime (based on information from other 

ViroLab components). However, this functionality can be extended by providing a plan 

of resource choices for more than one application’s tasks at a time. 

• Centralised – it is not distributed. 

• Optimum in its basic functionality – it finds the solution that is optimum from the point 

of view of the basic knowledge it gains; suboptimum – when it is extended, the amount 

of optimization prerequisites increases and the optimum solution based on the extended 

knowledge becomes impossible to find. Still, the suboptimum solution obtained with 

the extended functionality may occur to be better than the optimum solution computed 

using only the basic mode. 
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• Application centric – the optimization process pays attention to the performance of the 

application. 

• Adaptive – the process of the optimization can be dynamically adapted to changing 

situation in the ViroLab environment thanks to optimization policy and algorithms 

configuration. 

3.4.3 Task Dependencies in Optimization Process in ViroLab 

The optimizer can be used in one of the following modes – depending on whether the 

dependencies between subsequent tasks are taken into consideration: 

• Short-sighted optimization mode – it implements the basic optimizer’s functionality, 

which is choosing an optimum solution for one task at a time. The other tasks are 

neglected. 

• Medium-sighted optimization mode – the tasks can be submitted to the optimizer in 

groups – for each of the tasks a resource is chosen regarding the previous choices. The 

tasks are not reordered, nor are they arranged in queues – the group of tasks is mapped 

to the group of their solutions (resources). 

• Far-sighted optimization mode – a suboptimum solution, includes choosing resources 

for all tasks of the executed application as well as optimization by ordering the tasks.  

The mentioned far-sighted optimization features should introduce significant improvement to 

the solution. What is more, running in this mode, the optimizer will able to search for optimum 

solution, regarding the actual Grid Operation
6
. In the other scenarios only the Grid Object 

Classes are known to the optimizer, and thus only collective performance of all the classes 

operations can be considered. Nevertheless, such optimization scarcely ever brings solutions for 

all the requested tasks (the short-sighted optimization must be used to later assign solution to 

them), thus, in some rare cases it brings only unnecessary computation. 

3.5 Analysis of Existing Optimization Algorithms Regarding the ViroLab 

Optimizer Requirements 

In section 2.3 the overview of optimizing algorithms for the Grid Computing were introduced. 

In this section they will be discussed from the ViroLab Optimizer point of view with respect to 

its requirements (section 3.3). 

 

In order to perform the optimization process using any algorithm, some sources of information 

must be available. In case of the ViroLab Optimizer, other ViroLab components will provide 

necessary data (see 3.2). Simple heuristics use mostly information about the execution cost. 

Thanks to the availability of information from ViroLab Monitoring System and ViroLab 

Provenance Tracking System such computations can be performed. However, the issue of the 

heterogeneous environment can have a significant impact on such estimations. The 

performance of these algorithms can be affected by the rate of heterogeneity of the jobs and the 

resources. Unfortunately, this problem concern all simple heuristics for independent jobs. The 

solution to this problem can be adaptive optimization techniques. Simple heuristics should give 

results well enough for short-sighted optimization mode (see 3.4.3). 

 

Some more challenges may appear when far-sighted optimization mode is taken into 

consideration. In these case the problem of optimizing dependent jobs must be analyzed. An 

additional difficulty is the issue of mapping a ViroLab application script to DAG. Because of 

the dynamic character of the script, the process of creating the DAG for the application can be 

complicated. Nevertheless, executing the script in parallel, if possible, should give some 

improvement in the optimization regarding to short-sighted optimization mode. The heuristics 

                                                      
6
 Choosing the solution with regard to a specific Grid Operation of Grid Object Class could be 

implemented also as an extension to the previous (short- and medium- sighted modes). 
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for dependent jobs optimization should be suitable for this mode. Probably, changing the 

optimization of the whole script at a time into an iterative process of optimizing its parts should 

also bring a positive impact on the optimization process. In addition, it would make the method 

less complicated. 

 

Medium-sighted optimization mode can be regarded as a simplified version of the far-sighted 

optimization mode. Neglecting the dependencies between jobs and setting the appropriate 

priorities should improve the optimization result in comparison to the short-sighted 

optimization mode. The heuristics which are the most suitable for this kind of optimization 

should be adapted from the heuristics for the independent jobs optimization.  

 

The possibility of introducing adaptive optimization is an important issue concerning the 

ViroLab Optimizer. A suitable configuration and selection of different algorithms is the best 

solution for the optimization process in this heterogeneous environment. 

3.6 Summary 

The target of this chapter was to present the analysis of optimization issue in a certain 

environment – ViroLab Virtual Laboratory Runtime system. It was proved that the issue is a 

particular case of the general optimization problem in Grid Computing. The identification of 

the specific requirements for the ViroLab Optimizer enables to state the characteristics of the 

optimization model suitable for it. These characteristics in turn will be used to determine the 

optimizer’s architecture. In this chapter it was also shown that the requirements determine the 

collection of possible optimization techniques that can be used in a ViroLab Optimizer. 
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Chapter 4:   ViroLab Optimizer Design 

Having the precise ViroLab Optimizer characteristic, a design model for its implementation 

can be built. This chapter specifies and describes the structure and behaviour of the 

implementation of ViroLab Optimizer specification provided by Chapter 3 – GridSpace 

Application Optimizer, in short: GrAppO. 

Note: Some ideas concerning the GridSpace Application Optimizer design, developed for the 

purpose of this thesis were also included in the ViroLab design document [4].   

4.1 GrAppO Use Cases 

On the basis of optimization mode analysis (section 3.4) the following optimizer use cases can 

be identified: 

• Plan application execution – corresponds to the first stage of far-sighted optimization 

mode. It includes creation of the application graph from the experiment code (if the 

code only is available), ordering the Grid Operation calls in the experiment – such 

ordering may significantly improve the optimization quality, and assignment of 

resources for invocation of each Grid Operation in the application (some assignments 

may not be available at this time). This process introduces significant delay to the 

application execution, however, in most cases it also minimizes the delay to responding 

the Grid Operation Invoker requests. 

• Assign resource to Grid Object – this use case represents the activity performed on 

Grid Operation Invoker request – either in short-sighted or in the last phase of far-

sighted optimization mode (in these two cases the activities of the optimizer may 

differ). 

• Assign resources to Grid Objects – an equivalent of medium-sighted optimization 

mode – the optimizer assigns resources to all the given Grid Objects at a time. 

The described use cases are illustrated by Figure 6. 
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Figure 6: The GridSpace Application Optimizer use cases diagram 

4.2 GrAppO Architecture 

In the GridSpace Application Optimizer architecture the following components can be 

distinguished: 

• GrAppO Manger – a component responsible for coordination of the work of other 

components. It also contacts the most important external to the optimizer component – 

Grid Resource Registry and receives calls from Grid Operation Invoker. 

• Optimization Engine – a heart of the optimization. It executes dedicated optimization 

algorithms. The optimization in this part can be based on the estimation of each 

solution
7
 performance prepared by the Performance Predictor. 

• Performance Predictor – a component used for making predictions of Grid Object 

Instances performance – including execution time and resource consumption. It bases 

on the analysis from Historical Data Analyzer and Resource Condition Data Analyzer. 

• Historical Data Analyzer – contacts the external Provenance Tracking System 

(PROToS) to obtain information about previous executions, analyses it, and prepares 

for the performance estimation. 

• Resource Condition Data Analyzer – contacts the external Monitoring System to 

obtain information about condition of resources that can be used, analyses it, and 

prepares for the performance estimation. 

                                                      
7
 Further in this document the term ‘solution’ means ‘Grid Object Instance or Grid Object 

Implementation with link to resource where it can be created’. In some cases also the sole ‘Grid Object 

Instance’ can be used in this context. 
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• Application Structure Analyzer – a component used in far-sighted optimization mode 

(see section 3.4.3 for the explanation of this term). Provided with the application graph 

or code defines the task assignment to Grid Object Instances and order of execution. 

 

The component diagram on Figure 7 shows the dependencies between components of 

GridSpace Application Optimizer. 

GridSpace Application Optimizer

Application Structure Analyzer

<<optional>>

GrAppO Manager

Optimization Engine

Performance Predictor

Historical Data Analyzer Resource Condition Data Analyzer

Grid Operation Invoker Runtime Library

Grid Resource Registry

Provenance Tracking System Monitoring System

 
Figure 7: Component diagram, showing GrAppO decomposition and dependencies between its 

components and external ViroLab components 

 

A detailed description of the data obtained from external components for analysis is provided in 

section 4.3. 

Owing to its modular architecture, any new sources and their data analyzers could be connected 

to GridSpace Application Optimizer. The only required change is to modify the Performance 

Predictor to tell it that a new data analyzer should be used. 

4.3 Data Provided by External Components 

The data connections between the optimizer and other ViroLab components were identified in 

section 3.2. In this section a detailed study on what information will be passed through these 

connections is presented. 

4.3.1 Grid Resource Registry 

Grid Resource Registry is the most important and the only required source of information for 

the optimizer. The registry lists its contents applicable to the given input (Grid Object Class). 

That is: 

• All the Grid Object Implementations of the given Grid Object Class. Each 

implementation is assigned an information about: 

o id – identification in the registry, that is passed to the Grid Object Invoker, so 

that it can obtain information needed for creating its instance 

o service implementation technology – e.g. Web Service, MOCCA Component, 

WSRF 

o type – e.g. stateful/stateless, shared/not shared 
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o constraints – e.g. it can be deployed only on some resources 

o resource consumption – e.g. it requires a certain amount of memory 

o running instances (Grid Object Instances) of the implementation – see the next 

bullet 

• All the Grid Object Instances of the listed Grid Object Implementation or a given 

implementation. The information attached to each instance includes:  

o id – identification in the registry, that is passed to the Grid Object Invoker, so 

that it can obtain information needed for contacting the instance 

o location – a link to the resources where the Grid Object Instance is deployed; 

this information is used to query the resource monitoring service 

• All the resources, where Grid Object Implementations could be deployed to create a 

Grid Object Instance – e.g. H2O kernels for MOCCA Components. The only required 

information about them is location. As in case of Grid Object Instance it is a link to the 

resource, used while querying the monitoring service 

 

As the Grid Resource Registry cooperates with Monitoring Service, it controls the state of its 

contents, and thus never returns any object that is not functioning – i.e. neither Grid Object 

Instances that were destroyed, nor service containers that are not running. However, it does not 

control whether the instances or containers work correctly. 

4.3.2 Runtime Library 

A communication channel to this component is not required and is used only when the 

optimizer works in far-sighted optimization mode (see 3.4.3). The data provided by Runtime 

Library concerns: 

• Application graph or code. If it is the code – the optimizer has to build its graph. 

• Application context – the identification and configuration of the experiment that is to 

be executed. This information is used when the invoker requests the optimization – the 

request have to be associated with the experiment the invoker is analyzing. 

4.3.3 Monitoring System 

The information obtained from the monitoring helps to choose the resource that is in optimum 

condition to handle Grid Operations execution. It includes: 

• Information about the hardware of the node on which the resource is operating (e.g. 

CPU, RAM) 

• Information about state and condition of the node – e.g. its load, available memory 

 

Another connection to monitoring system can be created if no provenance implementation is 

available. Through this connection then, notifications of events concerning the lifecycle and 

executions of Grid Object Instances is sent in a publisher/subscriber mode. This data, gathered 

by the optimizer, could be interpreted to compute the Instances performance (e.g. execution 

time, resource consumption) – in this way replacing information that in other circumstances 

would have been obtained from Provenance Tracking System (4.3.4). 

4.3.4 Provenance Tracking System (PROToS) 

Analysis of the information from Provenance Tracking System together with monitoring data 

can lead to a very accurate time and resource consumption estimation. From the provenance 

data, information about how a certain Grid Object Instance performed on each resource, is 

extracted. This information includes: 

• Resource consumption – e.g. how much RAM or CPU it used 

• Duration of the executed Grid Operations of given Grid Object Instance – time that was 

needed for the operation to be completed. 
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4.4 Alternative to the Connection to Provenance Tracking System 

When no implementation of Provenance Tracking System exists in GrAppO environment, the 

connection to that system can be replaced by Performance Data Database. It stores the same 

information relevant to Grid Object Instances lifecycle as Provenance Tracking System. These 

data are obtained through an additional information channel to Monitoring Service, based on 

the publisher/subscriber communication mode. The information from Monitoring Service are 

gathered by a Historical Data Analyzer component subclass: Monitoring Notification Listener. 

The listener awaits notifications from the monitoring, and if such occurs, interprets it and stores 

in proper format in Performance Data DB. 

A schema of this solution can be viewed on Figure 8. 

 
Figure 8: Structure that is an alternative to the connection to Provenance Tracking System 

 

Such solution is a way to adapt to an environment where some of the information sources are 

missing, still acquiring sufficient data to perform optimization, in this way fulfilling the 

requirement of the optimizer being adjustable to the environment (compare 3.3.2). 

4.5 GrAppO Optimization Algorithm Plug-ins 

The algorithms GrAppO uses for optimization are pluggable as each of them has to implement 

the same interface. Which of the algorithms will be used for optimization is a matter of external 

configuration. However, there always is a default optimization algorithm available. 

Such solutions On Figure 9 a sample relation between the general optimization algorithm and 

its different implementations is shown. 

 
Figure 9: A relation between an optimization algorithm and its different kinds 

 

Obviously, instead of the CustomOptimizationAlgorithm that appeared on Figure 9 any  

optimization algorithm implementations can be plugged. The default optimization algorithm is 

required, while its implementation is unrestricted. 
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4.6 GrAppO State During Execution of Applications 

Running in the basic optimization modes (short-sighted and medium-sighted optimization – see 

section 3.4.3), GrAppO acts like a stateless service. After its creation, each call to it from Grid 

Object Invoker is independent of previous calls. 

In case of far-sighted optimization mode, the optimizer state has to be maintained in order to 

identify the application that was optimized, in the call from the invoker. This is required since 

the optimization is done before the Grid Object Invoker requests it, and the invoker obtains 

previously prepared data. This section presents all possible GrAppO states and transitions 

between them concerning the three possible optimization modes. 

4.6.1 Short-Sighted and Medium-Sighted Optimization Modes 

The analysis of GrAppO state changes during its lifecycle in short- or medium- sighted 

optimization mode is depicted on Figure 10 (in both modes the states and transitions are the 

same). Its detailed description can be found further in this subsection. 

Created Ready Optimizingcreate initialize
optimiztation

request

destroy

optimization

performed

 
Figure 10: A state diagram of the optimizer performing short- or medium-sighted optimization 

 

The allowed states of the optimizer performing short- or medium- sighted optimization are as 

follows: 

• Created – a state in which the optimizer is after invocation of its constructor. In this 

state GrAppO is not yet initialized, therefore it cannot perform any optimization. 

• Ready – initialized optimizer waits in this state for incoming optimization requests 

from the invoker. 

• Optimizing – GrAppO performs optimization (on request of Grid Operation Invoker). 

 

In this scenario, the following transitions between states are allowed: 

• Null�Created – this transition is triggered by a call to GrAppO constructor, during 

the transition the optimizer is being created. 

• Created�Ready – initialization of the optimizer. 

• Ready�Optimizing – a transition triggered by an optimization request from the 

invoker, GrAppO prepares to the optimization then. 

• Optimizing�Ready – after performing optimization (state: Optimization), results are 

returned to Grid Object Invoker and GrAppO is ready for the next request. 

• Ready�Null – destroying the optimizer instance, could be done automatically by a 

garbage collection mechanism. 

4.6.2 Far-Sighted Optimization Mode 

Figure 11 presents the process of state changes in the far-sighted optimization scenario. Please 

see the next paragraphs for its explanation. 
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Figure 11: A state diagram of the optimizer running in far-sighted optimization mode 

 

During far-sighted optimization, the optimizer can reach the following states: 

• Created – a state in which the optimizer is after invocation of its constructor. In this 

state GrAppO is not yet initialized, therefore it cannot perform any optimization. 

• Initialized – initialized optimizer waits in this state for optimization of the whole 

application request from Runtime Library. 

• Optimizing – GrAppO performs the application optimization (on request of Runtime 

Library). A mapping Grid Object Class : solution is created. 

• Ready – at this stage the optimization is completed and the optimizer is waiting for 

incoming solution assignment requests from Grid Object Optimizer. 

• Analyzing Solution Mapping – GrAppO analyzes the solution mapping created 

during the optimization and, on that basis, chooses solution for the Grid Object passed 

by the invoker. In some cases an additional optimization (similar to the one in short-

sighted mode) is needed. 

 

The following transitions are allowed: 

• Null�Created – this transition is triggered by a call to GrAppO constructor, during 

the transition the optimizer is being created. 

• Created�Initialized – initialization of the optimizer. 

• Initialized�Optimizing – a transition triggered by an optimization request from 

Runtime Library. 

• Optimizing�Ready – the optimization is being performed and the results stored as a 

list of Grid Object Class : solution mapping. 

• Ready� Analyzing Solution Mapping – a transition triggered by a solution 

assignment request from Grid Operation Invoker. For invoker the request could be 

indistinguishable from the GOI’s optimization request in previous scenario. However,  

in this case, the request must carry an application identifier. 

• Analyzing Solution Mapping�Ready – after analysis of the solution mapping that 

that takes place in the Analyzing Solution Mapping state, the results are returned to 

Grid Operation Invoker. 

• Ready�Null, Initialized�Null – destroying the optimizer instance – could be done 

automatically by a garbage collection mechanism. 
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4.7 Control Flow Inside GrAppO 

The subsections 4.7.1, 4.7.2, and 4.7.3 describe the general sequence of calls between 

GridSpace Application Optimizer components and external subsystems during optimization in 

short-, medium-, and far- sighted optimization scenarios, respectively. 

4.7.1 Short-Sighted Optimization Mode 

The flow of control in GridSpace Application Optimizer while performing short-sighted 

optimization is illustrated by the sequence diagram on Figure 12. The detailed description of 

each method call is provided further in this subsection. 

 

The interpretation of the calls presented on the diagram is as follows: 

1: Grid Operation Invoker requests optimization – an assignment of Grid Object Instance or 

data necessary to create it to the given Grid Object Class. It is also possible to pass a Grid 

Object Implementation name to GrAppO (namely, its façade – GrAppO Manager) – only 

the solutions including this implementation will be chosen then. 

2: GrAppO Manger queries the Grid Resource Registry for any relevant information 

about the obtained Grid Object Class (or Grid Object Implementation). These 

information was specified in section 4.3.1. 

3: GrAppO Manager provides the main optimization engine (Optimization Engine) with 

the data obtained from registry and requests for the solution. 

4: Performance Predictor is called to estimate invocation time and resource consumption 

for each solution. It is provided with the data from the registry. 

5a: Request for analysis of the resources condition to a dedicated component – Resource 

Condition Data Analyzer. URLs of the resources are passed as an argument of the call. 

6a: Resource Condition Data Analyzer queries the Monitoring System for resource state 

information with the obtained URLs. 

7a: The results of the analysis are returned to Performance Predictor. 

5b: Request for analysis of the historical data concerning previous Grid Object Instances 

performance. It is sent to a dedicated component – Historical Data Analyzer. The call 

passes a list of Grid Object Implementations and a list of URLs to resources. 

6b: Historical Data Analyzer queries the Provenance Tracking System for the information 

with the obtained Grid Object Implementations and resource URLs. This two 

arguments allow the Provenance Tracking System to find: for all Grid Object 

Implementations and for all URLs: all the Grid Object Instances that were built from 

the given implementation on the given URL. When no Provenance Tracking System 

implementation is available, the call is replaced by a query to Performance Data 

Database (see section 4.4 for a detailed description of this solution). 

7b: The results of the analysis are returned to Performance Predictor. 

8: On the basis of the analysis results, the estimation of execution costs for each solution 

is calculated. 

9: The results of the estimation are returned to Optimizer Engine. 

10: Basing on the estimation made by Performance Predictor and using certain 

optimization algorithm, Optimizer Engine chooses the most optimum solution. 

11: The solution is returned to GrAppO manager and then 

12: to Grid Operation Invoker. 

 

Note: Operations 5a-7a can be performed in parallel with 5b-7b. 
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Figure 12: A sequence diagram illustrating the flow of control in GrAppO during short-sighted optimization 

GrAppO ManagerGRRGOI Monitoring System PROToSOptimization Engine Performance Predictor RCDA HDA

1: optimize(GObClass)

2: GObData :=

getInformation(GObClass)

4: estimatePerformance

(GObData)

3: findOptimumSolution

(GObData)

5a: analyzeResources

Condition(URL[])
6a: getResources

Condition(URL[])
7a: returnRanked

Resources

5b: analyzeHistoricalData

(GObImpl[], URL[])
6b: getHistoricalData

(GObImpl[], URL[])

7b: returnRankedData

8: estimate

Performance()

9: returnRankedData

10: assignSolution()

11: returnSolution

12: returnSolution

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

PROToS – Provenance Tracking System

HDA – Historical Data Analyzer

RCDA – Resource Condition Data Analyzer

Key
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4.7.2 Medium-Sighted Optimization Mode 

The sequence diagram (Figure 13) in this scenario is very similar to the one in case of short-

sighted optimization (Figure 12). The main difference can be seen in method calls, which carry 

a list of arguments (or contain a list of solutions in the resulting value) instead of just one. The 

main scheme of the optimization is the same as in the previous case. 

 

In comparison to the control flow in short-sighted optimization mode, the significant difference 

appears in the first calls. In this scenario, the request from Grid Operation Invoker (1) contains 

a list of Grid Object Classes instead of just one. Similarly, the query to Grid Resource Registry 

(2) includes a list of classes. 

Certainly, the implementation of subsequent operations has to support the case of multiple Grid 

Object Classes, but the methods 5-8 can be exactly the same. The value returned to the invoker 

also has to carry solutions for all the requested Grid Object Classes (in the form of Grid Object 

Class : solution mapping). 
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Figure 13: Part of a sequence diagram that illustrates the flow of control in GrAppO during medium-sighted optimization 

GrAppO ManagerGRRGOI Monitoring System PROToSOptimization Engine Performance Predictor RCDA HDA

1: optimize(GObClass[])

2: GObData[] :=

getInformation(GObClass[])

4: estimatePerformance

(GObData[])

3: findOptimumSolution

(GObData[])

5a: analyzeResources

Condition(URL[])
6a: getResources

Condition(URL[])
7a: returnRanked

Resources

5b: analyzeHistoricalData

(GObImpl[], URL[])
6b: getHistoricalData

(GObImpl[], URL[])

7b: returnRankedData

8: estimate

Performance()

9: returnRankedData

10: mapSolutions()

11: returnSolution

Mapping
12: returnSolution

Mapping

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

PROToS – Provenance Tracking System

HDA – Historical Data Analyzer

RCDA – Resource Condition Data Analyzer

Key
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4.7.3 Far-Sighted Optimization Mode 

The control flow in far-sighted optimization can be divided into two phases: 

1. The solution mapping is being created – whole application optimization is being 

performed. The mapping form is similar to the one used in case of medium-sighted 

optimization. 

2. The optimizer is answering the requests from Grid Operation Invoker with already 

assigned solution. 

GridSpace Application Optimizer has to maintain its state throughout the two phases and 

between them. 

The sequence diagrams for the two phases are displayed on Figure 14 and Figure 15, 

respectively. 

 

The first phase is very similar to medium-sighted optimization. However, in this case, it is 

Runtime Library that requests the optimization (1) – not Grid Operation Invoker. The request 

parameter is different as well, since here it has to be the whole application. What is more, to 

query Grid Resource Registry, the Grid Object Classes first have to be extracted from the 

application code or graph (2). During this process also an application graph can be built and the 

Grid Operation calls reordered. 

The final solution mapping (11) should contain solutions for all the application classes. Some 

of them may not be possible to compute at this stage though. In such case, for some of the 

classes, an additional optimization (search for solutions) have to be performed in the second 

phase. 
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 Figure 14: A sequence diagram illustrating the flow of control in GrAppO during the formation of solution mapping (first phase) in far-sighted optimization 

 

 

GrAppO ManagerGRR Monitoring System PROToSOptimization Engine Performance Predictor RCDA HDA

1: optimize(Application)

3: GObData[] :=

getInformation(GObClass[])

5: estimatePerformance

(GObData[])

4: findOptimumSolution

(GObData[])

6a: analyzeResources

Condition(URL[])
7a: getResources

Condition(URL[])
8a: returnRanked

Resources

6b: analyzeHistoricalData

(GObImpl[], URL[])
7b: getHistoricalData

(GObImpl[], URL[])

8b: returnRankedData

9: estimate

Performance()

10: returnRankedData

11: mapSolutions()

12: returnSolution

Mapping

Runtime Library

2: processApplication()

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

PROToS – Provenance Tracking System

HDA – Historical Data Analyzer

RCDA – Resource Condition Data Analyzer

Key
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GrAppO ManagerGOI

1: optimize(GObClass)

3: returnSolution

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

Key

2: checkSolution

Mapping()

 
Figure 15: A sequence diagram illustrating the flow of control in GrAppO while answering the requests 

from GOI (second phase) in far-sighted optimization  

 

In the second phase GrAppO awaits for requests from Grid Operation Invoker, keeping the 

session. When a request occurs (1), the optimizer analyzes the solution mapping (2) to find a 

solution for the requested Grid Object Class, which is then passed to the invoker (3). If no 

solution was provided, the optimization like in short-sighted mode is performed. 

4.8 Summary 

In this chapter the design of the implementation of ViroLab Optimizer – GridSpace Application 

Optimizer (GrAppO) was provided. Its architecture was prepared regarding the requirements 

specified in section 3.3 and for each of the optimization modes described in 3.4.3 an evaluation 

scenario was presented – including the analysis of GrAppO states and the control flow among 

its components. 

The chapter provided a complete design of the requested optimization system – GridSpace 

Application Optimizer. However, considering the progression of work on its environment, 

some of the designed features are currently impossible to implement (the scope of the 

implementation is specified in section 5.1).  
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Chapter 5:   GridSpace Application Optimizer 

Implementation Details 

In the following chapter implementation of the most important modules of GridSpace 

Application Optimizer is described, beginning with the scope of the implementation. The way of 

using GrAppO is then presented, including its configuration details and API description. The 

class diagrams can be viewed in Appendix B. In the last section the tools used during GrAppO 

design and development process are listed.   

5.1 Current GrAppO Implementation Scope 

For the purpose of this thesis only short- and medium- sighted optimization was implemented. 

This is because the far-sighted optimization introduces a great amount of new problems to be 

solved e.g. building the application graph
8
, not bringing any significant performance 

improvements in comparison to medium-sighted optimization. What is more, the Runtime 

Library component is not yet adapted to provide the application in any form to GrAppO.  

Although the connections to Monitoring and Provenance Tracking Systems are not yet 

available (the systems are not configured to receive and answer requests), the analysis of data 

obtained from the Monitoring and Provenance Tracking Systems is implemented in GrAppO – 

using mock components that produce test data. The listener and database gathering provenance 

data from Monitoring infrastructure (the solution is described in 4.4) were not implemented.  

5.2 GrAppO Configuration 

One of the required features (see section 3.3) of  GridSpace Application Optimizer is to be able 

to use different, pluggable optimization algorithms and policies. As a realization of this 

mechanism, an Optimization Policy was introduced. 

Since the optimization quality improves when it interacts with other ViroLab components (see 

section 4.3) a way of configuration access to them is provided in GrAppO as well. By using this 

option, default links to services of these components can be replaced with links to their other 

instances offering a wider and more accurate set of information and/or a better connection 

quality. 

5.2.1 Optimization Policy Usage Schema 

The Optimization Policy can be configured externally, in a static way or passed from an 

application execution service. Therefore, the configuration is implemented in two ways: it 

                                                      
8
 This functionality is planned to be implemented as an external module, placed in ViroLab Virtual 

Laboratory Runtime, as other ViroLab subsystems may need to use the graph as well.   
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could be specified either by an instance of inner GrAppO class, or with an external XML or 

properties text configuration file. A visualization of the two possible solutions is presented on 

Figure 16 and Figure 17, respectively. A sample property (optimization algorithm) 

configuration is also illustrated there. 

 
Figure 16: Optimization Policy as an inner GrAppO class with optimization algorithm configured 

 
Figure 17: Optimization Policy read from an external configuration file with optimization algorithm 

configured 

5.2.2 Properties Configured with Optimization Policy 

The properties which can be defined with Optimization Policy include: 

• Optimization algorithm – the algorithm implementation that should be used to perform 

optimization (the simplest one could be choosing random Grid Object Instance from 

the available). Certainly, the optimization algorithm implementation does not have to 

be placed inside GridSpace Application Optimizer as shown on Figure 16 and Figure 

17 – it can be any external implementation of the optimization algorithm interface 

specified by GrAppO. 

• Preferred implementation type – this feature defines which service implementation 

technology should be preferred to others (e.g. the preference could be given to services 

implemented as MOCCA components). It also says whether other than preferred 

implementation technologies will be allowed. 

• Whether the preference should be given to the services which use less RAM / CPU 

rather than to others. If both options are used, GrAppO will try to choose the solution 

that keeps balance between utilization of these resources. 

• Whether Monitoring / Provenance Tracking System should be contacted to obtain 

useful optimization data or the connection shouldn’t be allowed. 

• Algorithms that should be used to process and analyze the data retrieved from 

Monitoring / Provenance Tracking System. These, like optimization algorithm are 

pluggable. 

Should no Optimization Policy be specified, a default configuration is used. 
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5.2.3 Service Access Configuration Usage Schema 

The ways of implementation of Service Access Configuration are analogous to these used in 

case of Optimization Policy (see Figure 18 and Figure 19). However, these the two 

configurations are fully independent. 

 
Figure 18: Service Access Configuration as an inner GrAppO class 

 
Figure 19: Service Access Configuration read from an external configuration file 

5.2.4 Properties Configured with Service Access Configuration 

Service Access Configuration consists of three properties: 

• Grid Resource Registry service URL – this property is mandatory as GrAppO cannot 

be used without a connection to the registry. 

• Monitoring System service URL – optional. 

• Provenance Tracking System service URL – optional. 

5.3 Using GrAppO 

Grid Application Optimizer is distributed as a java library (grappo-<version>.jar). It can 

be downloaded from http://virolab.cyfronet.pl/maven2/cyfronet/gridspace/grappo/grappo/ or 

defined as Maven2 dependency (for instructions how to do it see Appendix A). When the 

library is added to a project classpath, methods which the optimizer publishes can be invoked. 

The methods published for Grid Operation Invoker are a part of to the main GrAppO class: 

cyfronet.gridspace.grappo.GridspaceApplicationOptimizer (it is an equivalent 

of the GrAppO Manager component façade). This section contains the method signatures and 

description, which are also available in GrAppO javadoc documentation at https://zeus45.cyf-

kr.edu.pl/~asia/grappo/apidocs/index.html.  

5.3.1 Constructors 

After invocation of these methods, GrAppO state changes to created (see section 4.6 for 

analysis of the optimizer’s states): 

• GridspaceApplicationOptimizer() – creates GrAppO instance with default 

configuration. 

• GridspaceApplicationOptimizer(OptimizationPolicy) – creates GrAppO 

instance with the given Optimization Policy (the policy class is a member of the 

cyfronet.gridspace.grappo.configuration package). 

• GridspaceApplicationOptimizer(File) – creates GrAppO instance with  

Optimization Policy parsed from the specified configuration file. This method may 

throw GridspaceApplicationOptimizerInitializationException in case 

when the configuration file is improper. 
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5.3.2 Initialization Methods 

A successful invocation of one of the following methods causes GrAppO to change to the ready 

state (see section 4.6): 

• init(String) – initializes the GrAppO instance, configuring it to use URL passed as 

an argument to establish connection to Grid Resource Registry service. 

• init(ServiceAccessConfiguration) – initializes the GrAppO instance, 

configuring it to use the provided Service Access Configuration to establish 

connections to Grid Resource Registry, Monitoring System, and Provenance Tracking 

System services. The service configuration class is a member of the 

cyfronet.gridspace.grappo.configuration package) 

• init(File) – initializes the GrAppO instance, configuring it to use the Service 

Access Configuration read from the specified file to establish connections to Grid 

Resource Registry, Monitoring System, and Provenance Tracking System services. 

These methods throw a GridspaceApplicationOptimizerInitializationException 

if the initialization fails due to inability to find the specified services or improper service 

configuration. 

5.3.3 Optimization Requests 

A call to one of the optimize(…) methods triggers optimization, transferring the optimizer to 

the optimizing state (see section 4.6). Application Context passed as their last argument 

represents an identifier of  the application for which the optimization was requested. It contains 

also credentials of the user who executed it and is later used to authenticate in the services 

GrAppO uses. 

The optimization request can have one of the following syntax: 

• optimize(String, ApplicationContext) – triggers the optimization for Grid 

Object Class provided as the first argument. 

• optimize(String, String, ApplicationContext) – triggers the optimization 

for Grid Object Class provided as the first argument using only instances of Grid 

Object Implementation passed as the second argument. If the implementation is null, 

the method acts like the previous one i.e. considering all instances of the class. 

• optimize(String[], ApplicationContext) – triggers the optimization for Grid 

Object Classes provided as the first argument. 

• optimize(String[], String[], ApplicationContext) – triggers the 

optimization for Grid Object Classes provided as the first argument using only 

instances of Grid Object Implementations passed as the second argument. If some of 

the implementations are null, all instances of the class will be considered. 

These methods throw either a NoAvailableResourcesException if no resources can be 

found in the registry for the provided Grid Object Class / Implementation, or a 

GridspaceApplicationOptimizerException if an internal GrAppO error occurs. 

5.3.4 Getters and Setters 

A value of arguments passed in constructors and initializers can later be changed by calling an 

appropriate setter method and obtained with proper getter method. The parameters that can be 

modified and viewed are: 

• Optimization Policy – methods: getOptimizationPolicy(), 

setOptimizationPolicy(OptimizationPolicy); 

• Grid Resource Registry service URL – methods: getRegistryServiceURL(), 

setRegistryServiceURL(String); 

• Service Access Configuration – methods: getServiceAccessConfiguration(), 

setServiceAccessConfiguration(ServiceAccessConfiguration). 
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Application Context is read-only – it can be obtained by calling an appropriate getter  method 

(getApplicationContext()). 

5.3.5 Using Configuration Classes 

As stated in section 5.2, GridSpace Application Optimizer can be configured either with a 

proper instance of a configuration class or with a configuration file. 

In case of the optimization policy (class OptimizationPolicy), if configuration with a class 

is requested, the following variables (in accordance to the list in section 5.2.2) has to be set 

(with respective getter and setter methods): 

• optimizationAlgorithm – instance of the OptimizationAlgorithm class 

(package: cyfronet.gridspace.grappo.engine). Default: 

cyfronet.gridspace.grappo.sample.RandomOptimizationAlgorithm. 

• preferredType – one of the types enlisted in an enumeration object from the library 

provided with Grid Resource Registry service – 

cyfronet.gridspace.grr.GridObjectType. Default: null (meaning any). 

• strictTypePreferrence – a boolean value determining whether other than 

preferred implementations types will be used (false) or not (true). Default: 

false. 

• useMonitoring – a boolean value indicating whether the Monitoring System 

service will be used (true) or not (false). Default: false. 

• useProvenance – similarly to the useMonitoring variable, decides about using 

Provenance Tracking System service. Default: false. 

 

The values of the properties contained in ServiceAccessConfiguration class are of 

java.lang.String type and can be read or written with the methods: 

• get/setRregistryServiceURL – the URL to the Grid Resource Registry service. 

Cannot be null. 

• get/setMonitoringServiceURL – the URL to the Monitoring System service. 

Default: empty. 

• get/setProvenanceServiceURL – the URL to the Provenance Tracking System 

service. Default: empty. 

5.3.6 Using Configuration Files 

In section 5.3.5 a description of GrAppO configuration with a class was provided. In this 

section the configuration using configuration files will be discussed. The configuration files for 

both the optimization policy and service access configuration must be in one of the formats 

presented in Appendix D and contain the described further properties. 

If optimization policy configuration file misses one of the properties, the default values of 

OptimizationPolicy class are used (these default values were provided with the 

enumeration in section 5.3.5). The key-value properties that can be placed in the file are (they 

are listed in the same order as the corresponding variables in section 5.3.5): 

• optimization.algorithm – the value has to be a fully qualified name of the class 

that implements the OptimizationAlgorithm interface. 

• preferred.service.type – one of the values: WS, MOCCA, WSRF, JOB. 

• preferred.strict – true or false value. 

• use.monitoring – true or false value. 

• use.provenance – true or false value. 

 

In case of service access configuration, the key-value properties that can be placed in the 

configuration file are: 

• registry.url – URL to Grid Resource Registry service. 
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• monitoring.url – URL to Monitoring System service. 

• provenance.url – URL to Provenance Tracking System service. 

The registry.url property value has to be provided – otherwise the configuration file is 

invalid. 

5.4 Tools Used for GrAppO Design and Development 

For the purpose of design and development of the present project, the following tools were 

used: 

5.4.1 Design 

Microsoft Visio – a member of Microsoft Office package, used for creating all of the diagrams 

contained in this thesis (except for Figure 1, which was copied from the ViroLab design 

document [4]). 

5.4.2 Development 

Eclipse SDK (http://www.eclipse.org) – a programming environment, which was used for 

implementation of all the project’s classes. Version: 3.2.2 

Subversion (http://subversion.tigris.org/) – a version control system, that facilitated maintaining 

consistency of the implementation code. 

Maven (http://maven.apache.org/) version:2.0.6, and Ant (http://ant.apache.org/) version: 1.7.0 

– for project code, releases, and homepage ([25]) management. 

XFire (http://xfire.codehaus.org/) library – required to implement connection to Grid Resource 

Registry. Version: 1.2.6. 

JUnit (http://www.junit.org/) – testing framework, used in the project for writing and 

performing unit tests as well as some integration tests. Version: 3.8.1. 

Cobertura (http://cobertura.sourceforge.net/) – used as maven plug-in for generating test 

coverage reports. 

Enterprise Archtect (http://www.sparxsystems.com.au/) – a tool used for class diagrams 

generation using reverse engineering. 

5.4.3 Other 

For collaboration with other ViroLab Virtual Laboratory GForge system (http://gforge.org/) 

containing GrAppO project [24], and developer’s Wiki pages [8] were used. 

5.5 Summary 

During the implementation of GrAppO 85 Java classes were created. The total number of 

source code lines is about 9500. Apart from plain Java classes, dedicated XML files with 

configuration were created. The source code can be viewed under 

http://gforge.cyfronet.pl/viewvc/trunk/?root=grappo or checked out from Subversion repository 

https://gforge.cyfronet.pl/svn/grappo/trunk. 

GrAppO as a final product is distributed as a Java archive library, which size (without 

dependencies) is 50kB. With all dependent libraries the size of the distribution is 2.5MB. 
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Chapter 6:   Tests of GridSpace Application 

Optimizer 

This chapter contains a description of test methods and techniques used to control GridSpace 

Application Optimizer execution and performance, along with the results of the performed 

tests.  

6.1 Introduction 

The process of testing involved measurement of the optimization quality from different points 

of view. Unit tests were performed to prove the correctness and completeness of individual 

units of source code of GrAppO. Integration tests were used to validate the connections to other 

components
9
 of ViroLab Virtual Laboratory Runtime – Grid Resource Registry and Grid 

Operation Invoker (the other modules – Runtime Library and components of the Middleware 

Layer – Monitoring System and Provenance Tracking System were not yet implemented). 

Finally, quality tests were executed to verify the usefulness of GrAppO operations in a given 

environment. 

6.2 GrAppO Unit Tests 

Unit tests were implemented
10

 for all GrAppO components during or before their development. 

They were intended to show that the optimizer works correctly with all kinds of input data – 

including the proper behaviour in case of incorrect input. To release the project, all the unit 

tests had to be passed. 

The information about all the performed unit tests were assembled in the sections: 6.2.1-6.2.4. 

The most detailed tests were performed for the GrAppO Manager (6.2.1) component, since it is 

the interface (façade), GridSpace Application Optimizer exposes for requests from other 

ViroLab components (external to GrAppO). This is why it has to be tested against various, also 

erroneous input – to develop proper error handling and resistance. 

 

Note: For the explanation of the roles of modules under test please see section 4.2. 

                                                      
9
 See section 3.2.3 for the summary of communication channels to other ViroLab components and 

section 1.1.4 for the situation of these components in ViroLab Virtual Laboratory architecture. 
10

 All unit tests were performed using the JUnit framework (see also 5.4.2). 
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6.2.1 GrAppO Manager Tests 

GridspaceApplicationOptimizerTest11 - tests the functionality of the main component – 

GrAppO Manager. The detailed description of the methods of this test can be found in Table 1. 

Test method name Description 

testConstructors Runs each of the GridSpace Application Optimizer constructors (see 

also 5.3.1). Optimization policy configuration files were tested both 

for XML and .properties format. 
testInit Tests all the initialization methods using the Grid Resource Registry 

URL and service access configuration files in both formats. The init 

method were also called with files containing errors – to catch the 

proper exception. 
testOptimize Checks whether the optimization methods work correctly – 

including proper Grid Object Class names and the ones that are not 

present in the repository. An attempt to query GRR, when its service 

URL is improper was also performed. 
testTypePreference Tests whether GrAppO, configured to choose only one type of  Grid 

Object Implementation does not choose another type. 

Table 1: GrAppO Manager main unit test information 

 

Additional GrAppO Manager tests included tests of the classes that perform parsing of the 

configuration files: ConfigurationFileReader and OptimizationPolicyBuilder. 

Test name Description 

ConfigurationFileReaderTest Tests the two static methods of the class that parse: 

(first) optimization policy or (second) service access 

configuration file. The files were given in XML and 

.properties format. Improper file paths were also used 

to obtain a proper exception. 
OptimizationPolicyBuilderTest Tests building an optimization policy class from the 

configuration read from configuration file. 

Table 2: Additional tests for GrAppO Manager 

6.2.2 Optimization Engine Tests 

Tests of the Optimization Engine component include the test of the component interface – 

OptimizationEngine class along with test of all the implemented optimization algorithms. 

The test methods of the OptimizationEngineTest were presented in Table 3. 

Test method name Description 

testConstructor Runs the Optimization Engine constructor with an optimization policy 

class or null – to check the exception handling. 
testOptimize 

testOptimizeList 

Checks whether the optimization methods work correctly – for both 

optimization of single Grid Object (short-sighted) and a group of Grid 

Objects (medium-sighted). 

Table 3: Optimization Engine main unit test information 

                                                      
11

 the test names consist of the class name and the suffix ‘Test’ – e.g. the test for the class ‘ClassTest’ 

is named ‘ClassTest’ 
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The various implemented optimization algorithms were tested with 

OptimizationAlgorithmsTest test class methods, enumerated in Table 4. 

Test method name Description 

testXXXAlgorithm Tests each implemented optimization algorithm (XXX means any 

algorithm that was implemented in the system – e.g. Random, Min-

min, Max-min, Suffrage). Each algorithm implementation is provided 

with correct, incomplete, empty and null data set to monitor its 

behaviour in case of proper and improper input. The output is also 

compared to the expected. 

Table 4: Implemented optimization algorithms tests 

6.2.3 Performance Predictor Tests 

The Performance Predictor component test performed calls to all the component’s main 

methods – constructor and prediction methods. The tests of prediction used various 

combinations of generated data. A short summary of the test is provided in Table 5. 

Test method name Description 

testConstructor Runs the Performance Predictor constructor with 

monitoring and provenance service URL. Tests 

also empty URLs, which should not cause an error. 
testPredictMonitoring Checks whether the predictor obtains data from 

monitoring service and transforms it correctly to a 

performance estimation. 
testPredictProvenance Checks whether the predictor obtains data from 

provenance service and transforms it correctly to a 

performance estimation. 
testPredictMonitoringProvenance Checks whether the predictor obtains data both 

from provenance and monitoring services and 

transforms it correctly to a performance estimation 
testPredictList Checks whether the predictor obtains data from 

provenance and monitoring services and whether 

the estimated values are correct – for a group of 

Grid Objects (medium-sighted optimization). 

Table 5: Performance Predictor unit test information 

6.2.4 Resource Condition Data Analyzer and Historical Data Analyzer Tests 

The two components were tested by generating various sets of data for analysis – simulating the 

results of queries to Monitoring System (in case of Resource Condition Data Analyzer) and to 

Provenance Tracking System (in case of Historical Data Analyzer). These included also 

corrupted data. Table 6 summarizes these components’ test information. 

Test name Description 

ResourceConditionDataAnalyzerTest 

HistoricalDataAnalyzerTest 

Both contain a testAnalyze() method, which 

performs the component’s analysis on generated 

sets of data. 

Table 6: A summary of Resource Condition Data Analyzer and Historical Data Analyzer tests 

6.2.5 Test Reports 

The tests described in sections 6.2.1 and 6.2.2 concern the GridSpace Application Optimizer 

part that was released and integrated into ViroLab Runtime release (see also 6.3). They are 

therefore summarized by test reports, which can be viewed at the GrAppO homepage [25] 
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under Maven Surefire Report in Project Reports section. A part of this report is also displayed 

on  Figure 20. 

 
Figure 20: A part of GrAppO tests report 

 

The released part GridSpace Application Optimizer (see earlier in this section) was also 

investigated with a test coverage reporting tool – Cobertura (http://cobertura.sourceforge.net/). 

Its report indicates the percent of project code covered by unit tests. A part of it is presented on 

Figure 21. A more detailed view on it is available at the GrAppO homepage [25] under 

Cobertura Test Coverage link in Project Reports section. 

 
Figure 21: A test coverage reports for GrAppO main part 

 

The report shows that all the main GrAppO classes were fully covered with unit tests. 

6.3 GrAppO Integration Tests 

GridSpace Application Optimizer was successfully integrated with Grid Resource Registry and 

Grid Operation Invoker. Both of this connections were tested during the successive ViroLab 

Runtime prototype releases. Additionally, the connection to the registry is being checked with 

unit tests (see 6.1). 

The ViroLab Virtual Laboratory Runtime releases are the best integration tests for the 

optimizer. Therefore, in this section screen-shots showing also execution logs of ViroLab 

experiments
12

 runs are shown. The experiments are ready ViroLab applications, designed also 

                                                      
12

 The scripts are distributed under a MIT License which can be found in Appendix C along with the 
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for the purpose of ViroLab Runtime integration testing – one of them is used for an alignment 

of a viral DNA strain, the other one uses data mining for a weather prediction. Their sources 

can be found in Appendix C. 

 

The figures: Figure 22 and Figure 23 show screen-shots of command line execution of two of 

the ViroLab experiments. The logs of Grid Operation Invoker and GridSpace Application 

Optimizer (set to the DEBUG mode) indicate the following steps important from the point of 

view of integration between components: 

• request for optimization (GOI), 

• query to the Grid Resource Registry (GrAppO), 

• GRR response (GrAppO), 

• optimization – choosing and returning to GOI the ID of one of the obtained instances 

(GrAppO), 

• receiving response from GrAppO (GOI) 

These steps are marked with red frames on both screen-shots. 

 
Figure 22: A screen-shot of a ViroLab experiment run from MS Windows command line – Grid 

Operation Invoker debug logs show a result of the call to GrAppO optimization method (marked with the 

red frame) 

                                                                                                                                                           
experiments contents and basic information about them. 



Tests of GridSpace Application Optimizer 

Optimization of Grid Application Execution 64 

 
Figure 23: A screen-shot of another ViroLab experiment – this time Grid Operation Invoker calls the 

GrAppO optimization method twice (again the request and result log parts are marked with red frame) 

 

It is easy to see that the optimizer works in either short- or far- sighted
13

 optimization mode 

here. Especially the Figure 23 shows that – since two calls for single Grid Object Instance took 

place there. 

 

Figure 24 and Figure 25 show the usage of ViroLab Virtual Laboratory Runtime with GrAppO 

through a Graphical User Interface for Experiment Developers (for ViroLab users see 1.1.3) – 

                                                      
13

 In fact it was the short-sighted optimization, since far-sighted optimization was not implemented for 

the present thesis (see 5.1) 
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the Experiment Planning Environment. The scripts presented on the screen-shots were the same 

as the ones used for preparing the visualizations from Figure 22 and Figure 23. 

 
Figure 24: A screen-shot of an execution of the experiment that was also presented on Figure 22; the 

experiment was run using the Experiment Planning Environment – a Graphical User Interface for the 

ViroLab Runtime 
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Figure 25: A screen-shot of an execution of the experiment that was also presented on Figure 23; as with 

Figure 24, Experiment Planning Environment was used for the experiment execution 

6.4 GrAppO Quality Tests 

The section presents information about the methods and techniques that were used to prove the 

utility of GridSpace Application Optimizer in ViroLab Runtime System and the quality of the 

information that can be obtained from it depending on the environment. 

The aim of the quality tests was to show general trends of the optimization quality and its 

dependence on different parameters of the environment. The test results presented in this 

section (subsections 6.4.3-6.4.5) were obtained for the test environment described in section 

6.4.1 and on a single machine. Therefore, although the tests were repeated may times, the 

results may slightly differ depending on the environment condition and their repeatability 

cannot be guaranteed. 

6.4.1 Test Environment 

At the current stage of development of the ViroLab Runtime System, not all its components are 

available. The sources of information for GridSpace Application Optimizer are limited as 

Monitoring System and Provenance Tracking System services have not been completed yet and 

the Grid Resource Registry contains only the small amount of the sample data. Taking this into 

consideration, the performance tests of GrAppO appeared to be infeasible to perform in the 

target environment. 

To solve this problem, a simulated ViroLab Runtime environment had to be developed. The 

Grid Resource Registry, Monitoring System and Provenance Tracking System services were 

implemented as mock components that offer only the functionality required by GridSpace 

Application Optimizer. These are: 
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• GRRService – a component that provide the following functionality of Grid Resource 

Registry (compare: GRRService interface on Figure 28): 
o getOptimizationInfo(String gridObjectFullName, String 

gridObjectImplementationName, GridObjectType 

gridObjectType) – the method that can be used to obtain information about 

the Grid Object Implementations of the given Grid Object Class and available 

resources. 
o getOptimizationInfo(List<String> gridObjectFullNames, 

List<String> gridObjectImplementationNames, GridObjectType 

gridObjectType) – a bulk version of the previous operation. 

• MonitoringService – a component that provide the following functionality of 

Monitoring System (compare: MonitoringService class on Figure 32): 

o getResourcesInformation(Set<String> locations) – the method 

enables to obtain information regarding the current state of resources in the 

given locations 

• ProvenanceService – a component that can be regarded as a substitution of 

PROToS service with the following functionality (compare: MonitoringService 

class on Figure 33): 
o getProvenanceInfo(Set<String> implNames, Set<String> 

locations) – the method is delegated to provide historical data about the 

previous execution of operations on the given Grid Object Implementations in 

the given locations 

These components cannot communicate with the original sources of information they have to 

obtain the required information in other way. What is more, since the data are only necessary 

for the testing purposes, they can be randomly generated if only they meet general constraints 

regarding the information from these components. 

In order to make the test environment more generic, the components implementation use the 

information from previously generated XML files. These files contain data specified to each 

component that are serialized to a format of XML. They can be automatically generated by a 

provided generator or created manually. Thanks to such a solution the process of testing 

becomes more precise. An example of such XML file with generated data can be viewed in 

Appendix E. 

 

Every execution of a test in the environment has to define files that will be the source of needed 

data. In this way different optimization techniques can be performed using the same data in 

order to compare their achievements. Therefore the performance of a single technique can be 

verified according to the varied amount of data. 

The amount of generated test data can be configured a priori by: 

• number of available resources,  

• maximum number of Grid Object Class definitions available in Grid Resource 

Registry, 

• maximum number of Grid Object Implementations per one Grid Object Class, 

• maximum number of Grid Object Instances per one Grid Object Implementation 

• maximum number of kernels per one Grid Object Class. 

The generators produce various numbers of these elements (up to the maximum number) which 

simulate the actual situation in the Grid Resource Registry. 

6.4.2 Tests Objective Function 

Optimizers in Grid environments can use a variety of optimization criteria, such as 

maximization of resource utilization, minimization of the cost to the user or minimization the 

makespan. For the purpose of these testing the latest criterion was selected as GridSpace 

Application Optimizer is an application centric optimizer (see 3.4.2). The following paragraphs 

define additional terms related to this criterion. The definitions were based on [22]. 
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Expected completion and execution time: 

• Expected completion time (CTjr) of the job j on the resource r is defined as a moment 

of time when the resource r completes the job j (after finishing execution of all 

previously planned jobs and executing the job j). 

• Expected execution time (ETjr) of a job j on a resource r can be regarded as an 

amount of time needed by the resource r to execute the job j assuming that the resource 

r has no load at the moment of the assignment the job j to it. 

Let Tr be the time when the resource r is able to initialize the execution of any not assigned yet 

job. From the aforementioned definitions the expected completion time can be defined as: 

CTjr = Tr + ETjr.  

 

Let R be the set containing resources available in an environment. Let J be the set of jobs and 

each job j is to be assigned to any resource r from the set R. Then, the makespan for the 

complete assignment is defined as:  

)(max jr
Jj

CT
∈

 

The makespan is a measure of the throughput of the heterogeneous computing system. The 

objective function is to minimize the makespan. 

 

In order to compute the metrics of the makespan in GridSpace Application Optimizer, 

additional sources of information have to be used. These are the mock components described in 

6.4.1 – the data concerning expected completion time of Grid Object Instance (jobs) is obtained 

from ProvenanceService and the data about the time of availability of the resources 

(locations) is provided by MonitoringService. 

6.4.3 Comparison of Effectiveness of Different Optimization Modes 

In section 3.4.3 three optimization modes for GridSpace Application Optimizer were specified: 

short-, medium- and far- sighted optimization. As explained in 5.1, at the current stage of 

development GrAppO can be run in short- and medium- sighted optimization modes, while it 

does not offer far-sighted optimization. Therefore testing of GrAppO optimization effectiveness 

involves only the two available modes. 

The tests assume availability of all necessary data produced by local implementations of 

ProvenanceService and MonitoringService (see section 6.4.1). During the execution of 

the tests random data from the services were generated with the constraint that the maximum 

expected execution time of Grid Operation is 500 seconds and the maximum time waiting for 

the resource to become available is set to 1500 seconds. The data generated by GRRService 

implementation followed the following constraints: 

• maximum number of Grid Object Class definitions available in Grid Resource Registry 

is set to 100 , 

• maximum number of Grid Object Implementations per one Grid Object Class is set to 

10, 

• maximum number of Grid Object Instances per one Grid Object Implementation is set 

to 10 

• maximum number of kernels per one Grid Object Class is set to 7. 

The variable parameter in the test is a number of available resources and the number of Grid 

Object Classes for the optimization. For each combination of a given number of resources and a 

given number of Grid Object Classes a list with names of Grid Object Classes that have to be 

optimized was randomly generated and passed to GridSpace Application Optimizer. The 

elements in the list can be repeated. For each list the short-sighted optimization and the 

medium-sighted optimization were performed. For a given combination of a number of 

resources and the number of Grid Object Classes a test was performed 1000 times. 
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The results of the tests were collected in Table 7, Table 8 and Table 9 for the test cases that use 

the list of Grid Object Classes containing 10, 20 and 50 elements, respectively. 

Number of 

resources 

Improvement 

of makespan 

Percentage of 

improved results 

Percentage of 

the same results 

Average 

improvement 

5 5.78% 57.1% 27.0% 12.58% 

10 4.58% 43.7% 49.7% 11.69% 

20 2.87% 26.4% 71.5% 10.74% 

Table 7: Test result for optimization of 10 Grid Object Classes 

 

Number of 

resources 

Improvement 

of makespan 

Percentage of 

improved results 

Percentage of 

the same results 

Average 

improvement 

5 4.03% 61.7% 4.0% 11.70% 

10 5.90% 61.1% 19.6% 12.23% 

20 5.47% 51.0% 45.8% 11.23% 

50 2.00% 20.2% 79.1% 10.28% 

Table 8: Test result for optimization of 20 Grid Object Classes 

 

Number of 

resources 

Improvement 

of makespan 

Percentage of 

improved results 

Percentage of 

the same results 

Average 

improvement 

5 2.95% 61.4% 0.0% 11.07% 

20 5.59% 57.5% 19.4% 12.99% 

50 4.05% 43.0% 53.1% 10.25% 

100 2.21% 26.4% 72.6% 8.85% 

Table 9: Test result for optimization of 50 Grid Object Classes 

 

The meaning of the values in columns of the tables is as follows: 

• Improvement of makespan – presents the average improvement of the makespan for 

all results while using the medium-sighted optimization in comparison to the 

short-sighted optimization mode. 

• Percentage of improved results – shows the percentage of jobs that obtained a better 

result (makespan) thanks to the introduction of the medium-sighted optimization mode 

(in comparison to the short-sighted mode). 

• Percentage of the same results – presents the percentage of jobs for which both 

optimization modes provided the same solution. 

• Average improvement – represents the average improvement of the makespan when 

only the improved results are considered. 

 

The improvement of the makespan depends on the number of available resources and the 

number of Grid Object Class that are requested for the optimization. If the number of resources 

is significantly greater than the number of the objects for the optimization, the improvement of 

the makespan is the smallest. It is caused by the fact that with random generated data available 

Grid Object Instances or Grid Object Implementations are distributed on random locations and 

the probability of mapping two or more Grid Object Class to the same resource is smaller than 

in the other cases. Therefore, the medium-sighted optimization suggests the solution very 

similar to the solution of short-sighted optimization, which is shown by the significant amount 

of the same solutions obtained from both optimization modes in such situation. 
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The best improvement of the makespan is observed for the situation when the number of 

available resources is smaller that the number of Grid Object Classes for the optimization. The 

rate of the improvement varies between 5.5% and 6.0% in the results of tests. However, if the 

number of resources is significantly smaller than the number of Grid Object Classes, the 

improvement is smaller (e.g. with 5 resources and 50 Grid Object Classes for the optimization 

in the test the improvement was only 2.95%). 

With the increase of proportion of the number of Grid Object Classes to the number of 

available resources, the amount of improved results also increases. At the same time, the 

amount of the same results from both modes decreases.  

Taking into consideration only these results for which the makespan was improved, the average 

rate of improvement is the best also for the situation when the number of resources is smaller 

than the number of Grid Object Classes for optimizing. The improvement overcomes the level 

of 12%. 

6.4.4 Comparison of Effectiveness of Different Optimization Algorithms 

In order to apply any reasonable optimization algorithm (for the description of different 

algorithm please see section 2.3.4), again, external sources of information are needed –

represented by local implementations of ProvenanceService and MonitoringService 

(see section 6.4.1). 

In situations, when no additional optimization data (other than the implementations list 

obtained from the Grid Resource Registry) is available, GridSpace Application Optimizer can 

use an algorithm for choosing a random solution from all possible. As it almost always brings a 

very week solution, it is discouraged. For the purpose of these tests, using algorithm that 

chooses random solution could be treated as if no optimization was performed. In such case, 

GrAppO if configured to use any other optimization algorithm, even in short-sighted 

optimization mode, brings on average 200% better solution (minimizing the makespan). In 

example tests GrAppO was requested to optimize 5 Grid Object Classes. Each test was 

performed 1000 times. 

 

The most common algorithms used for the minimizing the expected completion time – 

Min-min and Max-min (for the algorithms description see section 2.3.4.1) – for random input 

data give very similar results. However, Max-min heuristic gives better solutions when, among 

the Grid Object Classes to optimize appears one or relatively small group of Grid Object 

Classes with significantly longer execution time than the others. The improvement that this 

heuristic brings in such a situation, as the tests proved, is at the rate 5.6% in comparison to 

Min-Min heuristic. 

6.4.5 Impact of Quality and Availability of Information from External Components 

The previously described optimization quality tests (sections 6.4.3 and 6.4.4) assume the 

GridSpace Application Optimizer sources of information provide a complete set of data – all 

the requested information is obtained. However, in some cases not all the data is available, 

therefore, the provided information is incomplete. The tests described in this sections were 

aimed to investigate how GrAppO results are influenced by the lack of some information.  

Assuming that if the optimization metrics is impossible to compute for some Grid Object 

Classes a random solution is chosen, the tests were performed with regard to how much 

information is missing. While simulating such situations, the test parameters were set as 

follows:  

• number of available resources is set to 10 

• maximum number of Grid Object Class definitions available in Grid Resource Registry 

is set to 100 , 

• maximum number of Grid Object Implementations per one Grid Object Class is set to 

10, 
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• maximum number of Grid Object Instances per one Grid Object Implementation is set 

to 10 

A single step of the test involved generating the list with 20 names of Grid Object Classes. The 

elements in the list could be repeated. Afterwards, the request for the optimization of these Grid 

Object Classes was sent to the GrAppO. The optimization mode was set to medium-sighted and 

the algorithm used was the Max-min heuristics. First, the optimization was performed assuming 

all data from ProvenanceService and MonitoringService are available. After its 

completion, a given amount of data was removed from the set obtained from 

MonitoringService and the same request for the optimization was sent to the GrAppO 

again. The test considered removing the following amount of data: 10%, 20%, 30%, 40%, and 

50%. For each of the values the test was executed 1000 times. The results of the tests are shown 

in Table 10. 

Percentage of removed data Deterioration of makespan 

10% 9.81% 

20% 20.90% 

30% 42.93% 

40% 88.12% 

50% 124.26% 

Table 10: Influence of the availability of information on the makespan 

 

As Table 10 shows, the lack of information from external data sources has significant influence 

on the makespan. The more data are unavailable, the greater deterioration of the makespan is 

observed. The relation is non-linear. With 10% of lacking information the rate of aggravation 

of thee makespan is approximately at the same level – 9.81%, whereas, when half information 

is unreachable, the deterioration of the makespan is 124%! This effect is caused by the 

necessity of using of the algorithm that chooses random solution in for more Grid Object 

Classes (see section 6.4.4 for the comparison of this algorithm to more advanced heuristics). 

6.5 Conclusions 

The target of this chapter was to present the results of testing the Grid Application Optimizer. 

The report from Cobertura reporting tool showed that all main GrAppO classes code was fully 

covered with unit tests, which, passed, suggest that GridSpace Application Optimizer responds 

properly to all kinds of requests. 

The integration tests that concern Grid Resource Registry and Grid Operation Invoker were 

performed during preparing the ViroLab Virtual Laboratory Runtime releases and showed, by 

executing ViroLab experiments, that the existing communication channels between 

components are operating correctly. 

The aim of the quality tests was to prove the utility of GrAppO in the ViroLab Runtime System 

and verify the quality of information provided by it in different environment configurations. 

Testing of two optimization modes (short-sight and medium-sight) showed that with a suitable 

rate of available resources to Grid Object Classes for optimizing the medium-sight optimization 

mode can achieve the improvement at the level 13% in the comparison to short-sighted mode. 

In test cases Min-min and Max-min heuristics were used and gave satisfactory results. 

However, for these heuristics additional data from external components are necessary. In a case 

when the data is incomplete and the necessity of using a random algorithm for the optimization 

appears, the results of the optimization worsen when the lack of information becomes more 

significant. 
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Chapter 7:   Conclusions and Future Work 

This chapter summarizes the thesis goals that were achieved during the work on it. It also 

identifies the new challenges that emerged during the work on the project. 

7.1 Conclusions 

The main goal of the thesis – providing an optimizer for ViroLab was successfully achieved. 

After the design process, the implementation and testing a correctly operating system can be 

released. It offers the functionality that was possible to implement at the time, which is 

described in 5.1. 

During the design of GridSpace Application Optimizer a thorough research (Chapter 2) was 

performed on optimization technologies for Grid Computing. Some of the heuristics analyzed 

during the research and problem analysis (Chapter 3) were later implemented as GrAppO 

optimization algorithms, giving satisfactory results. 

The GridSpace Application Optimizer design was done in compliance with the requirements 

identified in 3.3. Thanks to the possibility of using different optimization policies, service 

access configurations, and pluggable optimization algorithms mechanism, GridSpace 

Application Optimizer is an easily configurable and adaptive component. Its adjustability and 

reliability can be extended by implementing the spare connection to Monitoring System (future 

task: 0)   

All the performed tests proved the completeness and correctness of the developed system. The 

results of the execution of quality tests showed the introduction of different optimization modes 

was beneficial. Thanks to adaptive techniques the results that GridSpace Application Optimizer 

produces are improved and can improve the performance of the whole ViroLab Runtime 

System. However, the optimizer is easily influenced by the quantity and the quality of 

information gathered from external data sources – dependencies to other components of 

ViroLab.  

7.2 Future Work 

In the future, the following work could be done to improve GrAppO optimization. Its 

evaluation could also become a valuable research topic. The tasks for the future, presented in 

the next subsections were ordered from the most to the least urgent. 

 

Implementing Connections to Other ViroLab Components. It is the most urgent issue, as only 

the information gathered by Grid Resource Registry are insufficient for any efficient 

optimization (see test results in section 6.4.5). However, although GrAppO is prepared for 

receiving additional data, other components services were not yet published. Obtaining the 

communication channels to Monitoring System and Provenance Tracking System will also 

enable verifying implemented heuristics with real data. 
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Parallelizing the Queries to Monitoring System and PROToS. The queries to Monitoring 

System and Provenance Tracking System as pointed in 4.7 can be implemented as parallel 

operations, which can significantly decrease the delay the optimization brings to the application 

execution. This is because the queries are sent to remote services, and each takes long to 

complete. Unless they are executed simultaneously, the impact on the application optimization 

time they bring is a sum of the queries duration. 

 

Optimization with Regard to Grid Operations. Introducing an optimization that concerns not 

only the Grid Object Class that will be used, but the actual Grid Operation to be invoked as 

well should bring a certain improvement to the optimization. This would require additional 

input from Grid Object Invoker, still it would narrow the analysis of historical information from 

Provenance Tracking System only to the required Grid Operation, making the performance 

estimation more accurate. 

 

Testing New Optimization Algorithms. To find the most suitable for the optimization, more, 

various algorithms should be implemented and tested. Introducing new techniques such as 

genetic algorithms or simulated annealing and dynamic adjustment the algorithm to the input 

data can give better solutions. Furthermore, if external components were able to provide 

additional data concerning Grid Object Classes, implementing the heuristics that include 

Quality of Service guidance could be also an interesting issue. 

 

Graphical Interface for GrAppO Configuration. To make GrAppO more user-friendly a 

graphical interface can be developed. For this purpose for example a JMX console could be 

used. User would gain an opportunity to observe the results of GrAppO operations on-line and, 

if necessary, easily change its configuration. 

 

Implementing Far-Sighted Optimization. For now the Runtime Library, which should provide 

the application graph does not exist. In order to perform the far-sighted optimization, the 

GrAppO will have to obtain an application graph or at least the application structure – that 

brings also the challenge of defining the method of mapping the application code into a graph. 

For the far-sighted optimization mode dedicated heuristics can be implemented. Thanks to 

introduction of this mode, the GrAppO should offer better results. 

 

Implementing the Spare Connection to Monitoring System. Since the data obtained from 

Provenance Tracking System are crucial for GrAppO, introducing a spare connection to 

Monitoring System that would enable GrAppO to receive the information even if no 

Provenance System is present, should improve the reliability of the results provided by 

GrAppO. The solution that uses a dedicated database and connects to the Monitoring System in 

a model of notifications to listeners was described in 4.4. 
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Appendix A:   Using GrAppO as External Library 

The appendix specifies how to utilize GridSpace Application Optimizer functionality from 

within other projects built with Maven. 

To use GridSpace Application Optimizer library as a dependency for a Maven2 project, two 

sections in the project pom.xml file have to be configured: the Maven2 repository location and 

dependency details. 

The repository location can be configured by inserting the code presented on Code Snippet 1 

into the <repositories> section (if this section is not present, it has to be created): 

<repository> 
<releases> 

       <enabled>true</enabled> 
      <updatePolicy>never</updatePolicy> 

       <checksumPolicy>warn</checksumPolicy> 
     </releases> 

<snapshots> 
      <enabled>false</enabled> 
</snapshots> 

     <id>cyfronet-repository</id> 
     <name>Cyfronet Repository</name> 
     <url>http://virolab.cyfronet.pl/maven2</url> 
     <layout>default</layout> 
</repository> 

Code Snippet 1: Configuring Cyfronet Repository as Maven2 repository 

 

Dependency details are specified in the <dependencies> section (as before, if it does not 

exist, it has to be created) with a code similar to one on Code Snippet 2: 

<dependency> 
<groupId>cyfronet.virolab.grappo</groupId> 
<artifactId>grappo</artifactId> 
<version>0.2.2</version> <!—- use the latest version --> 

</dependency> 

Code Snippet 2: Configuring GrAppO as Maven2 dependency
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Appendix B:   GrAppO Class Diagrams 

This appendix contains the class diagrams of the elements that served for the implemented 

GridSpace Application Optimizer functionality. The diagrams were created using reverse 

engineering. 

The most general view on GridSpace Application Optimizer classes is presented on Figure 26. 

It is reflecting the GrAppO architecture – compare with section 4.2, Figure 7. 

 
Figure 26: General view on GrAppO classes and connections 



GrAppO Class Diagrams 

Optimization of Grid Application Execution 78 

The main class – GridspaceApplicationOptimizer14 corresponds to the GrAppO 

Manager component from section 4.2. The other classes bear the names of the components they 

represent. The XService interfaces stand for the services of other ViroLab components 

GrAppO contacts – the registry (GRRService), monitoring (MonitoringService), 

provenance (ProvenanceService). 

 

The subsequent diagrams will present a more detailed view on implemented GridSpace 

Application Optimizer classes. 

 

Figure 27 presents the GrAppO façade – the main class (GridspaceApplicationOptimizer) 

along with the output it produces when called – either an instance of OptimizationResult 

or one of the exceptions. 

 
Figure 27: A class diagram concerning the output GrAppO produces 

                                                      
14

 Here and further in this appendix the provided classes and packages names are relative to the main 

GrAppO package: cyfronet.gridspace.grappo. 
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OptimizationResult is a class for encapsulating the result of optimization – the solution. As 

the solution can be either a ready Grid Object Instance or Grid Object Implementation with 

Grid Resource (for now – a H2O kernel) to deploy it on, the presented structure was proposed, 

to enable proper returning of the solution to Grid Object Invoker. 

 

On Figure 28 GridSpace Application Optimizer configuration was presented – using classes:  

• configuration.ServiceAccessConfiguration – for storing connection URLs 

to services which are GrAppO data sources, 

• configuration.OptimizationPolicy – for configuring properties that are used 

during optimization  process. 

On the diagram also a Grid Resource Registry service interface is present, as the connection 

URL to the service is either provided directly by an initialization method or obtained from the 

service access configuration class (configuration.ServiceAccessConfiguration). 

The ServiceAccessConfiguration class extends the java.util.Properties class. 

Thanks to that it can be easily read from a text or XML file that use special format – described 

in Appendix D – using the method Properties.load(java.io.InputStream) or 

Properties.loadFromXML(java.io.InputStream), respectively. The properties values 

were described in sections 5.3.5 (configuration using the provided classes) and 5.3.6 

(configuration using files). 

To facilitate serializing the OptimizationPolicy class to file, it implements the 

java.io.Serializable interface. 

 
Figure 28: GrAppO configuration and Grid Resource Registry service access 
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A more detailed view on classes concerned with reading the configuration files is presented on 

Figure 34 and Figure 35. 

 

The diagram presented on Figure 29 (next page) depicts the relations between classes that 

represent Grid Object entities (compare with section 1.2.1 and Figure 3). 

The class gob.GObDataSet accumulates all the data concerning Grid Object Implementations 

and their instances (Grid Object Instances) and H2O kernels, that was obtained from Grid 

Resource Registry service. It contains collection of the objects representing Grid Object 

Implementations (gob.GridObjectImplementation) – which in turn aggregates objects 

representing all its instances (gob.GridObjecInstance) along with a collection of objects 

representing resources – namely H2O kernels (gob.H2OKernel). GObDataSet also 

references an instance of gob.GObRanking which stores additional (to the performance 

estimation) rates concerning each entity in the data set (the rates can be higher e.g. for the 

implementations of type set as preferred in the optimization policy). 
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Figure 29: A diagram of classes representing Grid Object entities, their aggregation and ranking 
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The classes responsible for the optimization mechanism evaluation are depicted on Figure 30. 

The main class here is engine.OptimizationEngine class, which is a core of the 

Optimization Engine component – compare with GrAppO architecture (4.2). It uses the data 

obtained from the registry, the estimated performance data (gathered from other ViroLab 

services if available) – predictor.PerformanceEstimation – to evaluate the optimization 

algorithm, indicated by the optimization policy. The algorithm evaluated must implement of the 

engine.OptimizationAlgorihtm interface and its two methods – for single and group 

optimization (according to the optimization mode – short- or medium- sighted, respectively). 

The implementation can be simple (as sample.RandomOptimzationAlgorithm) or 

introduce advanced features, by extending the algorithm.SimpleHeuristic abstract class. 

In case of any error during the optimization process, the engine.OptimizationException 

is thrown. 

 
Figure 30: Classes concerning the optimization algorithms execution 
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The classes that take part in the estimation of each solution performance are presented on 

Figure 31 (next page). Their core class is predictor.PerformancePredictor – being also 

the engine of the whole GrAppO Predictor Performance component (please compare with 

GrAppO architecture – section 4.2). 

The class uses the data gathered by Resource Condition Data Analyzer (see also Figure 32) in 

form of monitoring.ResourceConditionData and by Historical Data Analyzer (see also 

Figure 33) – provenance.HistoricalImplementationPerformanceData, which in turn 

aggregates a number of provenance.HistoricalOperationPerformanceData (the data 

structures will be further described with Figure 32 and Figure 33, respectively). 

The output produced by PerformancePredictor is a list of performance estimations for the 

solutions for which any data relevant to performance were available. Each estimation is in form 

of predictor.PerformanceEstimation class instance. The estimated values it contains 

were derived from the data structures: 

• ResourceConditionData – available CPU, RAM and availability time (the time in 

which the resource is going to be available) 

• HistoricalImplementationData – average and maximum: execution time, RAM 

and CPU usage – the values are computed on the basis of the information of each 

implementation’s operation executed, contained in 

HistoricalOperationPerformanceData objects. 

In case of any error during computing the estimation, a 

predictor.PerformancePredictionException is thrown.  
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The main class responsible for contacting the Monitoring System service and analyzing data 

obtained from it is monitoring.ResourceConditionDataAnalyzer (see Figure 32). It is 

the heart of the Resource Condition Data Analyzer GrAppO component – compare with 

GrAppO architecture (section 4.2). On the diagram on Figure 32, the Monitoring System 

service is represented by an interface monitoring.MonitoringService. For the sake of 

performance tests (see section 6.4), it is now implemented as a local service producing test 

data. 

The analysis performed by ResourceConditionDataAnalyzer class results in a 

monitoring.ResourceConditionData class instance, containing all the information that 

were be extracted from the information being result from the query to the Monitoring System. 

The query itself carries only the URLs of resources of interest as an argument. 

In case any error during connection to monitoring or the analysis itself, the 

monitoring.ResourceConditionDataAnalysisException is thrown. 

 
Figure 32: Resource Condition Analyzer classes 
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The construction of the Historical Data Analyzer component (for GrAppO architecture see 

section 4.2), presented on Figure 33, is very similar to Resource Condition Data Analyzer – 

compare with Figure 32. 

The provenance service used for testing is, like in case of monitoring service, a local 

implementation of interface provenance.ProvenanceService, that is used for producing 

test data. The class provenance.HistoricalDataAnalyzer contacts the Provenance 

Tracking System service, and queries it with the names of Grid Object Implementations which 

previous performance it is interested in along with the URLs of resources which are currently 

available (not to obtain information about resources it cannot use). If the URLs set is empty, all 

resources are considered. 

The result of the analysis performed by HistoricalDataAnalyzer is 

provenance.HistoricalImplementationPerformanceData – object representing all 

information that could be obtained about the performance of one Grid Object Implementation. 

It aggregates the data concerning all operations of this implementation that were executed in 

the past – in form of provenance.HistoricalOperationPerformanceData. This object 

is identified by the operation name, the implementation name and the resource that it was 

performed on – these data might not be unique, as the same operation could have been 

performed more than once. Other values, HistoricalOperationPerformanceData carries 

are information about the operation’s execution time, the amount of RAM and CPU it 

consumed and that were available at the moment of execution.  

 
Figure 33: Historical Data Analyzer classes 
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The Figure 34 presents in detail the solution that was used when reading the optimization 

policy configuration from a file. From the contents of the configuration file, a 

configuration.OptimizationPolicyConfiguration is loaded, which contains only 

String variables. It is due to extending the java.util.Properties class. The 

OptimizationPolicyConfiguration class is afterwards transformed by a static method of 

configuration.OptimizationBuilder into a ready to use 

configuration.OptimizationPolicy class instance. It uses the final values stored in 

OptimizationPolicyConfiguration to determine the properties keys for the optimization 

policy when crating its instance. 

The described solution was needed because the OptimizationPolicy class variables, unlike 

the variables of ServiceAccessConfiguration class, are instances of other than String 

java classes. 

 
Figure 34: Detailed view on classes concerning GrAppO optimization policy configuration reading 



GrAppO Class Diagrams 

Optimization of Grid Application Execution 88 

The util.ConfigurationFileReader class, presented on Figure 35, is used for reading 

optimization policy and service access configuration files. It creates an 

OptimizationPolicyConfiguration class instance, which will be turned into an 

OptimizationPolicy instance (see Figure 34). The ServiceAccessConfiguration as 

well as OptimizationPolicyConfiguration, thanks to extending the 

java.util.Properties class, can be read directly from the file (see the description of 

Figure 28). 

The exceptions can be thrown when the given file cannot be read 

(util.ConfigurationFileReadingException) or when the properties in the file are 

incorrect (util.ConfigurationException). 

 
Figure 35: Util class for reading configuration files 
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Appendix C:   ViroLab Experiments Information 

The appendix is intended to present information about the ViroLab experiments that were used 

in the tests described in section 6.3. 

ViroLab Virtual Laboratory Experiments basic information: 

Release version: 0.2.4 
Release date: 18.05.2007 
Authors: ACC CYFRONET AGH Krakow Poland (http://www.cyfronet.pl) 
Project: EU IST ViroLab (http://www.virolab.org) 
Virtual Lab website: http://virolab.cyfronet.pl 

 

ViroLab Virtual Laboratory Experiments License: 

The MIT License 
 
Copyright (c) 2006-2007 ACC CYFRONET AGH Krakow Poland 
(http://www.cyfronet.pl) 
 
Permission is hereby granted, free of charge, to any person 
obtaining a copy of this software and associated documentation 
files (the "Software"), to deal in the Software without 
restriction, including without limitation the rights to use, 
copy, modify, merge, publish, distribute, sublicense, and/or 
sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following 
conditions: 
 
The above copyright notice and this permission notice shall be 
included in all copies or substantial portions of the Software. 
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE. 
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The following experiments were written in GScript – a scripting language for ViroLab based on 

the Ruby programming language [26]. 

 

Experiment sources of align_experiment (used for screen-shots on Figure 22 and Figure 

24):  

# Author: ACC CYFRONET AGH, Krakow, Poland 
# Contact: Tomasz Gubala (gubala@science.uva.nl) 
# License: please consult the MIT license provided previously in 
# this section 
 
# Test RegaDB Alignment tool(s) 
# Expected output: simple alignment info 
 
require 'cyfronet/gridspace/goi/core/g_obj' 
 
argsArray = 
[">LowScore\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"].to
_java :String 
 
regaDBMutationsTool = GObj.create('regadb.RegaDBMutationsTool') 
 
#align(sequence, region name) 
regaDBMutationsTool.align(argsArray, "PRO") 
 
while regaDBMutationsTool.isAligning do 
  sleep(2) 
  puts "aligning" 
end 
 
puts "Result: "+ regaDBMutationsTool.getResult 
puts "Exit value: " + regaDBMutationsTool.getExitValue.to_s 
 
# clean up MOCCA components 
regaDBMutationsTool.undeploy 
MoccaResource.cleanup 
puts 'End of align experiment !!' 
JSystem.exit(0) 
 
#end 

Code Snippet 3: Source code of the aligh_experiment.rb script 

 

Experiment sources of weka_experiment (used for screen-shots on Figure 23 and Figure 25):  

# Author: ACC CYFRONET AGH, Krakow, Poland 
# Contact: Tomasz Bartynski 
# License: please consult the MIT license provided previously in 
# this section 
 
# Test Weka classification tools (ViroLab specific) 
# Experiment: 
# 1.Use Database data loader (WS) to load a data set from an SQL 
# database table. The result is returned in ARFF format (A) 
# 2.Use ARFF Data splitter (WS) to split A into trainA and testA 
# It takes trainA and the percentage of testA that will be  
# created. The result is a bean with trainA and testA 
# 3.Instantiate One-rule classifier (MOCCA) 
# 4.Train it with One-rule classifier::Train method and trainA 
# 5.Execute classification with One-rule classifier::Classify  
# method and testA. Returns attributes collection B 
# 6.Use Data ARFF predict checker (WS) to evaluate the  
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# percentage of right classification 
 
 
require 'cyfronet/gridspace/goi/core/g_obj' 
 
logger = JLogger.getLogger('goi.wekaexperiment') 
logger.info('Start of weka experiment !!') 
 
# Create Web Service Grid Object Instance 
retriever =  GObj.create('cyfronet.gridspace.gem.weka.WekaGem') 
# Build the query 
 
QUERY = 'select outlook, temperature, humidity, windy, play from 
weather limit 100;' 
DATABASE = "jdbc:mysql://127.0.0.1/test" 
USER = 'testuser' 
PASSWORD = '' 
 
param = { 
   :dbUrl => DATABASE, 
   :query => QUERY, 
   :username => USER, 
   :password => PASSWORD 
 } 
# (1) 
A = retriever.loadDataFromDatabase(DATABASE, QUERY, USER, 
PASSWORD) 
 
# (2) 
# prepare args for WS splitting data 
param = { 
   :data => A, 
   :trainingDataPercent => 20 
 } 
B = retriever.splitData(A, 20) 
trainA = B.predictingData 
testA = B.testingData 
 
# (3) 
classifier = 
GObj.create('cyfronet.gridspace.gem.weka.OneRuleClassifier') 
 
# Set the name of attribute that will be predicted 
attributeName = 'play' 
# (4) 
classifier.train(trainA, attributeName) 
 
# (5) 
prediction = classifier.classify(testA) 
logger.info('Predicted data:' + prediction.to_s) 
 
# (6) 
classificationPercentage = retriever.compare(testA, prediction, 
attributeName) 
# show results 
logger.info('Prediction quality:' + 
classificationPercentage.to_s) 
 
# clean up MOCCA components 
classifier.undeploy 
logger.info('End of weka experiment !!') 
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MoccaResource.cleanup 
 
JSystem.exit(0) 

Code Snippet 4: Source code of the weka_experiment.rb 
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Appendix D:   GrAppO Configuration Files 

Format 

This appendix presents the format of files that can be used for GridSpace Application 

Optimizer configuration. The format is a standard for storing properties, that can be read 

either with java.util.Properties.loadFromXML(java.io.InputStream) – for an 

XML file or  java.util.Properties.load(java.io.InputStream) – for an ordinary 

text file. 

The XML configuration file must begin with the DTD schema declaration:  

http://java.sun.com/dtd/properties.dtd. Like on Code Snippet 5: 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE properties SYSTEM 

 "http://java.sun.com/dtd/properties.dtd"> 
<properties> 
 <entry key="property">value</entry> 
</properties>  

Code Snippet 5: Example XML GrAppO configuration file 

 

A text file intended for storing the GrAppO configuration should be an ordinary file filled with 

key=value entires. For example: 

property=value 

Code Snippet 6: A sample entry in the text GrAppO configuration file 

 

The actual properties names needed for GrAppO configuration were described in Appendix B.
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Appendix E:   GrAppO Performance Tests 

Environment Details  

This appendix presents a snapshots of the XML files that were used for testing of the GridSpace 

Application Optimizer performance. 

The extract on Code Snippet 7 presents the XML representation of example data that can be 

obtained from Grid Resource Registry service. 

<?xml version="1.0" encoding="UTF-8"?> 
<GridSpace> 
 <OptimizationInfoBean className="classname0"> 
  <kernels> 
   <kernel>address1</kernel> 
   <kernel>address7</kernel> 
  </kernels> 
  <ImplementationInstances> 
   <ImplementationInstance> 
    <id>1000</id> 
    <name>impl1000</name> 
    <implementationType>WS</implementationType> 
    <cpuUtilizationRate>47</cpuUtilizationRate> 
    <ramUtilizationRate>584</ramUtilizationRate> 
    <InstanceInfos> 
     <InstanceInfo id="1000" location="address3" /> 
     <InstanceInfo id="1001" location="address4" /> 
    </InstanceInfos> 
   </ImplementationInstance> 
   <ImplementationInstance> 
    <id>1001</id> 
    <name>impl1001</name> 
    <implementationType>MOCCA</implementationType> 
    <cpuUtilizationRate>782</cpuUtilizationRate> 
    <ramUtilizationRate>409</ramUtilizationRate> 
    <InstanceInfos> 
     <InstanceInfo id="1002" location="address2" /> 
    </InstanceInfos> 
   </ImplementationInstance> 
  </ImplementationInstances> 
 </OptimizationInfoBean> 
</GridSpace>  

Code Snippet 7: Sample structure of data generated as obtained from GRR 
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Code Snippet 8 shows XML representation of sample data from Monitoring System service. 

<?xml version="1.0" encoding="UTF-8"?> 
<MonitoringInformation> 
<resource> 
 <location>address0</location> 
 <cpu>4853</cpu> 
 <cpuUsage>1717</cpuUsage> 
 <ram>2761</ram> 
 <ramUsage>800</ramUsage> 
 <availableTime>389</availableTime> 
</resource> 
<resource> 
 <location>address1</location> 
 <cpu>2748</cpu> 
 <cpuUsage>1617</cpuUsage> 
 <ram>4360</ram> 
 <ramUsage>947</ramUsage> 
 <availableTime>248</availableTime> 
</resource> 
<resource> 
 <location>address2</location> 
 <cpu>4827</cpu> 
 <cpuUsage>1635</cpuUsage> 
 <ram>3555</ram> 
 <ramUsage>59</ramUsage> 
 <availableTime>458</availableTime> 
</resource> 
</MonitoringInformation>  

Code Snippet 8: Sample structure of data generated as obtained from Monitoring System 

 

The last extract (Code Snippet 9) presents the XML representation of example data that can be 

obtained from the Provenance Tracking System service. 

<?xml version="1.0" encoding="UTF-8"?> 
<HistoricalOperationPerformance> 
 <GObImpl name="impl1000"> 
  <operation name="name1" location="address1"> 
   <availableCPU>2889</availableCPU> 
   <cpuUsage>89</cpuUsage> 
   <availableRAM>3823</availableRAM> 
   <ramUsage>88</ramUsage> 
   <executionTime>3</executionTime> 
  </operation> 
  <operation name="name1" location="address4"> 
   <availableCPU>4426</availableCPU> 
   <cpuUsage>89</cpuUsage> 
   <availableRAM>4418</availableRAM> 
   <ramUsage>93</ramUsage> 
   <executionTime>17</executionTime> 
  </operation> 
 </GObImpl> 
 <GObImpl name="impl1001"> 
  <operation name="name1" location="address0"> 
   <availableCPU>3037</availableCPU> 
   <cpuUsage>129</cpuUsage> 
   <availableRAM>1660</availableRAM> 
   <ramUsage>85</ramUsage> 
   <executionTime>31</executionTime> 
  </operation> 
  <operation name="name1" location="address1"> 



GrAppO Performance Tests Environment Details 

Optimization of Grid Application Execution 97 

   <availableCPU>3059</availableCPU> 
   <cpuUsage>135</cpuUsage> 
   <availableRAM>4326</availableRAM> 
   <ramUsage>99</ramUsage> 
   <executionTime>26</executionTime> 
  </operation> 
 </GObImpl> 
</HistoricalOperationPerformance> 

Code Snippet 9: Sample structure of data generated as obtained from PROToS 
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