
AGH UNIVERSITY OF SCIENCE AND

TECHNOLOGY
IN KRAKOW, POLAND

FACULTY OF ELECTRICAL ENGINEERING, AUTOMATICS,

COMPUTER SCIENCE AND ELECTRONICS

INSTITUTE OF COMPUTER SCIENCE

Optimization of Grid

Application Execution

Master of Science Thesis

Joanna Kocot, Iwona Ryszka

Computer Science

Supervisor: Marian Bubak, PhD

Advice: Maciej Malawski, MSc

KRAKOW, JUNE 2007

Table of Contents

Optimization of Grid Application Execution 3

Table of Contents

Acknowledgements ... 9
Abstract .. 11
Chapter 1 : Introduction .. 13

1.1 Target Environment ... 13
1.1.1 ViroLab Rational Basis.. 13
1.1.2 ViroLab Mission... 13
1.1.3 ViroLab Users Characteristics .. 14
1.1.4 General ViroLab Architecture .. 14

1.2 ViroLab Application Structure... 17
1.2.1 Terminology Related to ViroLab Experiment .. 17
1.2.2 Relations Between the Specified Entities ... 18

1.3 Motivation for Optimization in ViroLab.. 18
1.4 The MSc Thesis Goals ... 19

1.4.1 Identification of Available Optimization Solutions in Grid Computing ... 19
1.4.2 Identification and Analysis of the Problem of Optimization in ViroLab .. 19
1.4.3 ViroLab Optimizer Design and Development .. 19
1.4.4 Proving the Usefulness of the Developed Optimizer for ViroLab .. 19

1.5 Summary .. 19
Chapter 2 : Issues of Optimization for Grid Computing – State of the Art.............................. 21

2.1 Overview of the Grid Technology ... 21
2.2 Overview of the Grid Optimization Problem... 22

2.2.1 Terminology Related to Optimization on Grid ... 22
2.2.2 Grid Optimization Problem Statement.. 22
2.2.3 Grid Optimization Process.. 22
2.2.4 Components in Grid Optimization Process... 24

2.3 Overview of Optimization Algorithms for Grid Computing...................................... 25
2.3.1 Challenges of Optimization in Grid Computing ... 25
2.3.2 Hierarchical Taxonomy of Grid Optimization Algorithms ... 26
2.3.3 Extension to the Hierarchical Taxonomy.. 28
2.3.4 Optimization Algorithms Suitable for Optimization on Grid.. 28

2.4 Summary .. 31
Chapter 3 : Analysis of Optimization Issues in ViroLab Virtual Laboratory Runtime System 33

3.1 Grid Optimization Problem in ViroLab ... 33
3.2 The Optimization in ViroLab Runtime System as an Example of Optimization

Process for Grid Computing .. 33
3.2.1 Optimization Results Consumer ... 34
3.2.2 Optimization Process Phases .. 34
3.2.3 Communication Channels to Other ViroLab Components ... 35

3.3 Requirements for ViroLab Optimizer .. 35
3.3.1 Functional Requirements .. 35
3.3.2 Non-functional Requirements... 36

3.4 ViroLab Optimizer Optimization Model.. 36
3.4.1 Constraints Imposed by ViroLab Environment .. 36
3.4.2 ViroLab Optimizer Optimization Type... 36
3.4.3 Task Dependencies in Optimization Process in ViroLab.. 37

3.5 Analysis of Existing Optimization Algorithms Regarding the ViroLab Optimizer

Requirements ... 37
3.6 Summary .. 38

Chapter 4 : ViroLab Optimizer Design.. 39
4.1 GrAppO Use Cases .. 39
4.2 GrAppO Architecture... 40
4.3 Data Provided by External Components .. 41

4.3.1 Grid Resource Registry... 41
4.3.2 Runtime Library ... 42
4.3.3 Monitoring System ... 42
4.3.4 Provenance Tracking System (PROToS).. 42

4.4 Alternative to the Connection to Provenance Tracking System................................. 43

Table of Contents

Optimization of Grid Application Execution 4

4.5 GrAppO Optimization Algorithm Plug-ins .. 43
4.6 GrAppO State During Execution of Applications.. 44

4.6.1 Short-Sighted and Medium-Sighted Optimization Modes ..44
4.6.2 Far-Sighted Optimization Mode..44

4.7 Control Flow Inside GrAppO... 46
4.7.1 Short-Sighted Optimization Mode ..46
4.7.2 Medium-Sighted Optimization Mode ...48
4.7.3 Far-Sighted Optimization Mode..50

4.8 Summary .. 52
Chapter 5 : GridSpace Application Optimizer Implementation Details 53

5.1 Current GrAppO Implementation Scope.. 53
5.2 GrAppO Configuration... 53

5.2.1 Optimization Policy Usage Schema..53
5.2.2 Properties Configured with Optimization Policy ..54
5.2.3 Service Access Configuration Usage Schema...55
5.2.4 Properties Configured with Service Access Configuration ...55

5.3 Using GrAppO ... 55
5.3.1 Constructors ..55
5.3.2 Initialization Methods ...56
5.3.3 Optimization Requests ..56
5.3.4 Getters and Setters ..56
5.3.5 Using Configuration Classes...57
5.3.6 Using Configuration Files ...57

5.4 Tools Used for GrAppO Design and Development.. 58
5.4.1 Design ...58
5.4.2 Development ...58
5.4.3 Other ...58

5.5 Summary .. 58
Chapter 6 : Tests of GridSpace Application Optimizer.. 59

6.1 Introduction .. 59
6.2 GrAppO Unit Tests... 59

6.2.1 GrAppO Manager Tests ..60
6.2.2 Optimization Engine Tests..60
6.2.3 Performance Predictor Tests ...61
6.2.4 Resource Condition Data Analyzer and Historical Data Analyzer Tests ..61
6.2.5 Test Reports ..61

6.3 GrAppO Integration Tests .. 62
6.4 GrAppO Quality Tests.. 66

6.4.1 Test Environment..66
6.4.2 Tests Objective Function...67
6.4.3 Comparison of Effectiveness of Different Optimization Modes ...68
6.4.4 Comparison of Effectiveness of Different Optimization Algorithms..70
6.4.5 Impact of Quality and Availability of Information from External Components..................................70

6.5 Conclusions .. 71
Chapter 7 : Conclusions and Future Work .. 73

7.1 Conclusions .. 73
7.2 Future Work ... 73

Appendix A: Using GrAppO as External Library .. 75
Appendix B: GrAppO Class Diagrams... 77
Appendix C: ViroLab Experiments Information... 89
Appendix D: GrAppO Configuration Files Format ... 93
Appendix E: GrAppO Performance Tests Environment Details .. 95
References .. 99

List of Figures

Optimization of Grid Application Execution 5

List of Figures

Figure 1: ViroLab Virtual Laboratory general architecture .. 15
Figure 2: Detailed architecture of the ViroLab Virtual Laboratory... 16
Figure 3: Dependencies between ViroLab entities – Grid Object Class, Grid Object Implementations,

Grid Object Instances and Grid Resources (WS Containers and H2O Kernels represent containers on

Grid Resources) .. 18
Figure 4: A hierarchical taxonomy of optimization algorithms in distributed systems [20] 26
Figure 5: Data flow between the optimizer and its data sources and consumers..................................... 35
Figure 6: The GridSpace Application Optimizer use cases diagram ... 40
Figure 7: Component diagram, showing GrAppO decomposition and dependencies between its

components and external ViroLab components .. 41
Figure 8: Structure that is an alternative to the connection to Provenance Tracking System.................. 43
Figure 9: A relation between an optimization algorithm and its different kinds 43
Figure 10: A state diagram of the optimizer performing short- or medium-sighted optimization............ 44
Figure 11: A state diagram of the optimizer running in far-sighted optimization mode 45
Figure 12: A sequence diagram illustrating the flow of control in GrAppO during short-sighted

optimization .. 47
Figure 13: Part of a sequence diagram that illustrates the flow of control in GrAppO during medium-

sighted optimization.. 49
Figure 14: A sequence diagram illustrating the flow of control in GrAppO during the formation of

solution mapping (first phase) in far-sighted optimization... 51
Figure 15: A sequence diagram illustrating the flow of control in GrAppO while answering the requests

from GOI (second phase) in far-sighted optimization .. 52
Figure 16: Optimization Policy as an inner GrAppO class with optimization algorithm configured 54
Figure 17: Optimization Policy read from an external configuration file with optimization algorithm

configured... 54
Figure 18: Service Access Configuration as an inner GrAppO class... 55
Figure 19: Service Access Configuration read from an external configuration file................................. 55
Figure 20: A part of GrAppO tests report .. 62
Figure 21: A test coverage reports for GrAppO main part .. 62
Figure 22: A screen-shot of a ViroLab experiment run from MS Windows command line – Grid

Operation Invoker debug logs show a result of the call to GrAppO optimization method (marked with the

red frame) ... 63
Figure 23: A screen-shot of another ViroLab experiment – this time Grid Operation Invoker calls the

GrAppO optimization method twice (again the request and result log parts are marked with red frame)64
Figure 24: A screen-shot of an execution of the experiment that was also presented on Figure 22; the

experiment was run using the Experiment Planning Environment – a Graphical User Interface for the

ViroLab Runtime... 65
Figure 25: A screen-shot of an execution of the experiment that was also presented on Figure 23; as with

Figure 24, Experiment Planning Environment was used for the experiment execution 66
Figure 26: General view on GrAppO classes and connections .. 77
Figure 27: A class diagram concerning the output GrAppO produces .. 78
Figure 28: GrAppO configuration and Grid Resource Registry service access....................................... 79
Figure 29: A diagram of classes representing Grid Object entities, their aggregation and ranking 81
Figure 30: Classes concerning the optimization algorithms execution .. 82
Figure 31: Performance Predictor classes ... 84
Figure 32: Resource Condition Analyzer classes ... 85
Figure 33: Historical Data Analyzer classes.. 86
Figure 34: Detailed view on classes concerning GrAppO optimization policy configuration reading.... 87
Figure 35: Util class for reading configuration files.. 88

List of Tables

Optimization of Grid Application Execution 6

List of Tables

Table 1: GrAppO Manager main unit test information... 60
Table 2: Additional tests for GrAppO Manager ... 60
Table 3: Optimization Engine main unit test information... 60
Table 4: Implemented optimization algorithms tests .. 61
Table 5: Performance Predictor unit test information.. 61
Table 6: A summary of Resource Condition Data Analyzer and Historical Data Analyzer tests 61
Table 7: Test result for optimization of 10 Grid Object Classes... 69
Table 8: Test result for optimization of 20 Grid Object Classes... 69
Table 9: Test result for optimization of 50 Grid Object Classes... 69
Table 10: Influence of the availability of information on the makespan... 71

List of Code Snippets

Optimization of Grid Application Execution 7

List of Code Snippets

Code Snippet 1: Configuring Cyfronet Repository as Maven2 repository... 75
Code Snippet 2: Configuring GrAppO as Maven2 dependency... 75
Code Snippet 3: Source code of the aligh_experiment.rb script ... 90
Code Snippet 4: Source code of the weka_experiment.rb ... 92
Code Snippet 5: Example XML GrAppO configuration file .. 93
Code Snippet 6: A sample entry in the text GrAppO configuration file... 93
Code Snippet 7: Sample structure of data generated as obtained from GRR.. 95
Code Snippet 8: Sample structure of data generated as obtained from Monitoring System...................... 96
Code Snippet 9: Sample structure of data generated as obtained from PROToS...................................... 97

Optimization of Grid Application Execution 8

Optimization of Grid Application Execution 9

Acknowledgements

We would like to express our thanks to our supervisor – Marian Bubak and Maciej Malawski

for the support we received during the development of the present thesis. Especially, to Maciej

Malawski for the commitment with the project.

Also the help of all the ViroLab Virtual Laboratory team members from ACC Cyfronet AGH

cannot be overestimated.

This work was made possible owing to the ViroLab Project – EU project number: IST-027446.

The official ViroLab website can be viewed under http://www.virolab.org. Please visit also the

website dedicated to ViroLab Virtual Laboratory and created by the ACC Cyfronet AGH team

at http://virolab.cyfronet.pl/. Some parts of the present thesis will be also published there.

Acknowledgements

Optimization of Grid Application Execution 10

Optimization of Grid Application Execution 11

Abstract

Despite the existence of many Grid optimization technologies and algorithms, there are some

environments to which a standard optimization techniques cannot be applied. For them, new

solutions have to be invented and developed.

This thesis is intended to build an optimization engine for one of such environments – ViroLab

Virtual Laboratory Runtime. Its specific model – invoking operations on special objects which

reside on Grid resources – imposes a new approach to optimization. Such an approach is

presented in the shape of the GridSpace Application Optimizer (GrAppO) – an engine for

optimizing Grid applications execution, designed especially for the purposes of the ViroLab

Runtime.

GridSpace Application Optimizer has to face the challenges imposed by the Grid environment

as well as specific only to ViroLab. They are e.g. dynamic nature of the environment,

distributed sources of information, difficulty in defining suitable criteria. Nevertheless, it is able

to significantly increase the quality of the ViroLab Runtime performance, by providing it with

the most suitable objects to invoke operations on.

This thesis follows the complete process of the GrAppO development. From the problem

definition and analysis of existing solutions in the matter, through the design of the final system,

to its implementation and tests which results proved GridSpace Application Optimizer to be a

valuable element.

The thesis is organized as follows:

A detailed description of the environment in which GridSpace Application Optimizer is going to

operate is presented in sections 1.1 and 1.2. Basing on these information, the motivation and

goals of the thesis are specified in sections 1.3 and 1.4, respectively.

Chapter 2 the general problem of optimization in Grid Computing is briefly introduced to

identify main challenges regarding this issue.

As a conclusion derived from Chapter 1 and Chapter 2, the optimizer specification is introduced

in Chapter 3 – including: comparison to a generic grid optimization (3.2), requirements for it

(3.3), optimization type identification (3.4), analysis of the techniques presented in Chapter 2 as

a possible solutions for the optimizer (3.5).

A detailed architecture, designed on basis of the specification (Chapter 3) is presented in

Chapter 4, and its implementation details – in Chapter 5.

Chapter 6 provides a description and results of the tests performed on the ready GridSpace

Application Optimizer prototype.

The conclusions derived from this thesis and some new issues worthy further exploration are

proposed in Chapter 7.

Keywords: Grid Computing, Optimization on Grid, Runtime Optimization, Optimization

Algorithms, Optimization Heuristics, ViroLab, Grid Object.

Abstract

Optimization of Grid Application Execution 12

Optimization of Grid Application Execution 13

Chapter 1: Introduction

The subject of this thesis is an entity – optimizer that would be able to perform optimization of

grid applications under certain circumstances. This chapter introduces the environment in

which this optimizer will be working – ViroLab Virtual Laboratory Runtime, its basis,

architecture and very specific conditions. The conditions and main challenges of the

optimization will be described along with the goals that have to be achieved by the present

thesis to provide a comprehensive solution.

1.1 Target Environment

The ViroLab Virtual Laboratory runtime, which is the target environment for the subject of the

present thesis, is a part of ViroLab project. ViroLab, according to [1]: “is a Specific Targeted

Research Project of the EU 6th Framework Programme for Research and Technological

Development in the area of integrated biomedical information for better health”. In this section,

it will be presented in more detail from the point of view of this thesis.

1.1.1 ViroLab Rational Basis
1

Throughout the world large, high quality databases store information related to various

scientific subjects. Since they are not integrated, nor the tools that enable sharing and processing

their data are available, their use is limited to only local applications.

An extensible Grid-based system could enable integration of these data and publishing it in a

secure way through a number of specialized services.

1.1.2 ViroLab Mission

Nowadays the computer technology has a great impact on the development of medicine. In the

area of the computer science recently has emerged some projects that are dedicated to support

the process of the treatment of patients. One of them is ViroLab, which mission is to provide

researchers and medical doctors in Europe with a virtual laboratory for infectious diseases. It is

intended to facilitate transformation and computation concerning viral genetic information in

order to develop new, more efficient treatments.

By offering an environment to develop, publish and use services that could retrieve data from

distributed clinical databases and perform the complex computation on it, the researchers are

given a comprehensive and integrated solution to the problems they so far solved by hand or

with their own applications. ViroLab provides them with an ability to automate and conduct the

complicated and long-lasting computations on the Grid. It also facilitates collaboration among

the researchers.

1
 Sections 1.1.1 and 1.1.2 were based on [1].

Introduction

Optimization of Grid Application Execution 14

1.1.3 ViroLab Users Characteristics
2

The most common ViroLab users may be divided into three categories, characterized in this

section. They are:

a. Clinical Virologist (other names: medical user, healthcare provider)

It is a person that works for a hospital and helps the medical doctor to get more information

regarding the certain infection case. This user’s main objective is to provide an appropriate

treatment for patients. The main stress will be put onto HIV virus infections and the medical

help for the people with such infections. Such user provides the system with domain expertise

with respect to specific virus mutations and drug characteristics, while they are not assumed to

have any computer-related knowledge.

From the application point of view, it is the person who provides it with all required data.

b. Experiment Developer

An experiment developer is usually a scientific programmer that works in a viral diseases

research institute. The objective of this user’s work is to provide viral diseases researchers (see:

Experiment User) with proper tools that help them conduct experiments and to find useful

results regarding their field of expertise. The knowledge this type of user is expected to have

concerns both the domain field of viral disease research and non-basic skills regarding

programming and computing technologies.

From the application point of view, it is the person who implements it.

c. Experiment User

This person archetype constitutes a scientist that work for a research institute and that put the

vast expertise in the domain of viral diseases to use. The objective of this class of user in scope

of the ViroLab is to combine the virtual laboratory platform with the experiments planned by

experiment developers in order to acquire interesting findings. The ViroLab project enables

them to execute experiments and gather, share and store scientific results.

From the application point of view, it is the person who launches it and makes use of the data it

produces.

1.1.4 General ViroLab Architecture
3

On Figure 1 an overview on the ViroLab virtual laboratory architecture is presented. It identifies

main virtual laboratory subsystems and interactions between them, preserving a general level of

abstraction.

The top layer of this architecture is Presentation. It enables ViroLab users (see section 1.1.3 for

the users description) to interact with the system. The presentation layer consists of ViroLab

Portal – an interface for Clinical Virologists (1.1.3a) and Experiment Users (1.1.3c), and

Experiment Planning Environment – designed for Experiment Developers (1.1.3b). Both of

these components are supported by Collaboration Tools. The presentation layer uses

Experiment Repository for storing experiments which can be executed or redeveloped, and for

keeping tracks of changes to them. It also interacts with two entities responsible for holding

information about Grid Objects (see section 1.2.1 for explanation of the terminology related to

Grid Objects): Domain Ontology Store – which links Grid Object Classes with regard to domain

knowledge and Grid Resources Registry – containing specific Grid Object Classes properties

(including their existing implementations and instances).

2
 Some parts of section 1.1.3 come from the ViroLab design document [4]

3
 The section is based on the general architecture description provided by the ViroLab design document

[4].

Introduction

Optimization of Grid Application Execution 15

Figure 1: ViroLab Virtual Laboratory general architecture

4

The interpretation and execution of an experiment script is performed by ViroLab Runtime,

which does it in a model of invoking operations on either local or remote services. For this

purpose it uses the components: Data Access Client – for retrieving remote data (through Data

Access layer) and Computation Access – for optimization and invocation of Grid Operations

contained in the experiment script. The runtime system is also responsible for experiment

session maintenance.

All the events connected both to experiment execution and behaviour of the virtual laboratory

components are intercepted by Monitoring Infrastructure and directed to Provenance Tracking

System, which stores and publishes information about them.

A more detailed view on dependencies between ViroLab Virtual Laboratory subsystems and the

external resources they use is presented on a component diagram – Figure 2. On this diagram

the architecture was presented in a form of an UML component diagram, emphasizing the

general order of its layers. The diagram also shows relations between the subsystems and the

purpose of their connections in a more precise way.

4
 The figure comes from the ViroLab design document [4].

In
tro

d
u
ctio

n

O
p
tim

iza
tio

n
 o

f G
rid

 A
p

p
lica

tio
n

 E
xecu

tio
n

1
6

Figure 2: Detailed architecture of the ViroLab Virtual Laboratory

Introduction

Optimization of Grid Application Execution 17

1.2 ViroLab Application Structure

The optimization problem in ViroLab descends from the model of the entities on which the

executed application’s operations are invoked. These entities are defined in this section, and

relations between them are specified.

1.2.1 Terminology Related to ViroLab Experiment

The definition of the main entities related to an experiment executed by the ViroLab Runtime is

provided below. The terms were first introduced in the ViroLab design document [4].

a. Grid Operation (GOp) (also Grid Object Operation, Grid Object Method)

Grid Operation is very similar to an abstract method in terms of Object-Oriented programming

paradigm. It binds methods, offering the same functionality, and being abstract – cannot be

invoked (only its implementations can).

Grid Operation is identified not only by its signature, but by a description specific for Grid and

generally: remote computation.

One or more Grid Operation constitutes a Grid Object Class (see 1.2.1b).

b. Grid Object Class (GOb) (or simply Grid Object)

A Grid Object Class is – again, using the terminology of Object-Oriented programming

paradigm – a kind of interface. It is an abstract of the same general functionality offered by

different implementations and thus cannot be instantiated, nor invoked. It is a set of Grid

Operations, which implementations have to be provided by the class’s implementation. The

implementation of a Grid Object Class is Grid Object Implementation (see 1.2.1c).

c. Grid Object Implementation (GObImpl)

Grid Object Implementation implements functionality of its Grid Object Class. It can only be

bound to one Grid Object Class. The implementations of the same class may differ only in non-

functional properties, since they have to offer the same Grid Operations (declared in Grid

Object Class).

Grid Object Implementation is only a static entity, which has to be instantiated (deployed into a

resource) to allow its operations invocation. A Grid Object Implementation deployed into and

run on certain resource is called Grid Object Instance (see 1.2.1d).

d. Grid Object Instance (GObInst)

A Grid Object Instance is an instance (also understood in terms of Object-Oriented

programming paradigm) of a certain Grid Object Class. It is bound to concrete Grid Object

Implementation since it executes its code. A Grid Object Instance can be contacted to perform

some computation. The instances which use the same implementation may (but do not have to)

differ only in resource they are deployed into – not in the code base.

e. Grid Resource

Every resource in Grid which is able to host a Grid Object Instance – i.e. owns a running

container into which Grid Object Implementation of a certain kind (implementation

technology) could be / is deployed.

f. ViroLab Experiment (Application)

ViroLab Experiment
5
 is a code in form of script composed of calls creating Grid Object

Instances and invoking their Grid Operations. As the script interpreter is based on the Ruby

language interpreter, Ruby commands may also be placed in the experiment code.

5
 Further in this thesis the term “application” is more commonly used.

Introduction

Optimization of Grid Application Execution 18

1.2.2 Relations Between the Specified Entities

The dependencies between the entities described in paragraphs 1.2.1a-e can be summarized in

the following way:

• Each Grid Object Class can be implemented by a number of various Grid Object

Implementations – of the same functionality, but e.g. representing different

technologies (Web Service, WSRF, MOCCA Component).

• Grid Object Implementation in turn, not being able to be invoked, is represented by

numerous Grid Object Instances which are ready to perform processing.

• To create a Grid Object Instance, a Grid Object Implementation has to be deployed in a

dedicated container, residing on a certain Grid Resource.

A sample dependency between these entities is shown on Figure 3.

instance

instance instance instance

Grid Object Class

Grid

Operation

02

Grid

Operation

01

Grid Object WS

Implementation
GOp 02

WS

Impl

GOp 01

WS

Impl

Grid Object MOCCA

Implementation
GOp 02

MOCCA

Impl

GOp 01

MOCCA

Impl

implements implements

instance instance

WS Container I

Grid Object WS

Instance I-02

GOp

02 WS

Impl

GOp

01 WS

Impl

Grid Object WS

Instance I-01

GOp

02 WS

Impl

GOp

01 WS

Impl

WS Container II

Grid Object WS

Instance II-01

GOp

02 WS

Impl

GOp

01 WS

Impl

H2O Kernel I

Grid Object

MOCCA Instance I-01

GOp 02

MOCCA

Impl

GOp 01

MOCCA

Impl

H2O Kernel II

Grid Object

MOCCA Instance II-02

GOp 02

MOCCA

Impl

GOp 01

MOCCA

Impl

Grid Object

MOCCA Instance II-01

GOp 02

MOCCA

Impl

GOp 01

MOCCA

Impl

Figure 3: Dependencies between ViroLab entities – Grid Object Class, Grid Object Implementations,

Grid Object Instances and Grid Resources (WS Containers and H2O Kernels represent containers on

Grid Resources)

1.3 Motivation for Optimization in ViroLab

The core functionality of ViroLab Runtime System offers a possibility of executing a ViroLab

Experiment (see section 1.2.1f). However, the source code of the experiment provides only the

information on Grid Object Classes which instances have to be used to invoke certain

operations on them. The choice of the instance, considering the structure of relations between

the entities described in section 1.2 is not trivial and must be performed by making the

following decisions:

Introduction

Optimization of Grid Application Execution 19

• which Grid Object Implementation will be the most suitable to perform the processing

• which ready Grid Object Instance of this Grid Object Implementation will be the most

suitable to perform the processing

• whether the Grid Object Instance should be chosen or a new one is to be deployed

• where (on which Grid Resource) a new Grid Object Instance should be created

The ViroLab Runtime System itself is not able to make these decisions, while it has to provide

the answer to its invoker service. Therefore a need for a dedicated component, that would

analyze all the available data and provide the optimum solution (according to certain criteria) to

the mentioned problems emerges.

In traditional Grid environments a dedicated component – a scheduler of jobs or a resource

broker – is introduced to make decisions similar to the aforementioned. However, the

responsibilities of such component is greater than solving only these issues. Due to this fact, the

term of “scheduling” in case of ViroLab Runtime is replaced with the term “optimization” (and

similarly, the component name “scheduler” with “optimizer”) as the latter term more accurately

describes the core aim of the component.

1.4 The MSc Thesis Goals

The main goal of the thesis is to analyze, design and develop a system that will be able to rise

to the challenges of optimization issues in ViroLab (see 1.3). In order to achieve the aim, the

following sub-goals should be realized:

1.4.1 Identification of Available Optimization Solutions in Grid Computing

Performing a research of already available optimization solutions for Grid computing could

bring a wider view on the problem. Some of the examined artefacts could also appear

applicable to the solution developed within this thesis.

1.4.2 Identification and Analysis of the Problem of Optimization in ViroLab

The analysis of the possibilities and constraints imposed by the target environment (see section

1.1) – ViroLab should lead to a precise statement of the problem which this thesis will attempt

to solve. All the project requirements have to be identified in order to develop a comprehensive

solution.

1.4.3 ViroLab Optimizer Design and Development

The main product of this thesis is going to be an optimization engine for ViroLab Runtime (see

1.1.4). It will have to be designed from scratch and then implemented. It not only has to suit

into the runtime system, but also be a robust and comprehensive solution to the stated problem.

1.4.4 Proving the Usefulness of the Developed Optimizer for ViroLab

The product developed with the thesis have to pass several kinds of tests – starting from unit

tests for each implemented part, through integration tests with other ViroLab components to

performance tests that show its quality. The design of implementation and performance tests

itself is a challenge, as the tests should prove the products value in an unquestionable way.

1.5 Summary

The chapter presented environment to which the subject of this thesis is targeted, introducing its

purpose and structure. By defining the entities that build a ViroLab application, the

optimization subject was identified and the need for optimization stated.

Introduction

Optimization of Grid Application Execution 20

Optimization of Grid Application Execution 21

Chapter 2: Issues of Optimization for Grid

Computing – State of the Art

The ViroLab Project (compare 1.1) is developed using a Grid-based service oriented

architecture, therefore the optimization it uses has to be designed with regard to the

characteristics of the Grid. The following chapter presents the main concepts concerning Grid

computing as a model of distributed computing. Basing on these information an issue of the

optimization of the applications execution on the Grid is provided. The state of current

research on optimization algorithms that comply with the Grid specific conditions will be

presented in detail.

2.1 Overview of the Grid Technology

Grid computing is based on the distributed computing concept. The latter term refers to a model

of computer processing that assumes the simultaneous execution of separate parts of program

on a collection of individual computing devices. Hence the units in a distributed system do not

operate in a uniform processing environment – they must communicate by protocol stacks that

are less reliable than direct code invocation and shared memory [12]. Some characteristics of

these systems are: resource sharing, openness, concurrency, scalability, fault tolerance,

transparency.

The most important types of distributed computing systems are: multiprocessor systems,

multicomputer systems, computing taxonomies, computer cluster, grid computing. In the

following subsections the grid computing technology will be described in detail.

In the early 1990s significant improvements were introduced in the area of computing. The

availability of the Internet and high performance computing gave the possibility to execute

large-scale computation and to use data intensive computing applications in the area of science,

engineering, industry and commerce. This idea led to the emergence of the concept of the Grid

computing.

The term of “the Grid” was originated in the middle 1990s to describe a collection of resources

geographically distributed that can solve large-scale problems. In the foundational paper “The

Anatomy of the Grid. Enabling Scalable Virtual Organizations” [10] Ian Foster, Carl

Kesselman and Steve Tuecke introduced the paradigm of the Grid and its main features.

According to them the Grid concept can be regarded as coordinated resource sharing and

problem solving in dynamic, multi-institutional virtual organizations [10].

The Grid integrates and provides seamless access to a wide variety of geographically

distributed from different administrative areas computational resources (such as

supercomputers, storage systems, instruments, data, service, people) and presents them as a

unified resource. The sharing of resources is restricted and highly controlled, with resource

providers and consumers defining clearly and carefully their sharing rules. A dynamic

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 22

collection of individuals, multiple groups or institutions defined by such restrictions and

sharing the computing resources of the Grid for a common purpose is called a Virtual

Organization (VO) [10].

Moreover, in the Grid environment standard, open general-purpose protocols and interfaces

should be used. The use of open standards provides interoperability and integration facilities.

These standards must be applied for resource discovery, resource access and resource

coordination [12].

Another basic requirement of a Grid Computing system is the ability to provide the quality of

service (QoS) requirements necessary for the end-user community. The Grid allows its

constituent resources to be used in a coordinated fashion to deliver various qualities of service,

such as response time measures, aggregated performance, security fulfilment, resource

scalability, availability, autonomic features e.g. event correlation, configuration management,

and partial fail over mechanisms [11].

2.2 Overview of the Grid Optimization Problem

Among many challenges regarding Grid Computing, the problem of the optimization a Grid

application execution is one of the most important. In this section the problem will be defined

and the generic control flow during the application execution on the Grid presented.

2.2.1 Terminology Related to Optimization on Grid

In the remainder of this chapter, the following assumptions about the terminology will be made:

• Resource – an entity which is used by a process to execute a job. Examples of

resources are storage systems, supercomputers, data sources or people.

• Job – a single, atomic unit of the application that can be independently assigned to a

resource (an appropriate point on the Grid) to be executed on it.

• Application (Grid application) – a collection of atomic jobs which execution is

requested by a user and can be performed on the Grid. These jobs are usually designed

to be executed in parallel on different machines of the Grid. Additionally, specific

dependencies between jobs may be introduced – e.g. a job can define a collection of

other jobs that have to complete before the given job can be executed. Finally, the

results of all of the jobs must be collected and appropriately assembled to produce the

ultimate output for the application [8].

2.2.2 Grid Optimization Problem Statement

The Grid system is responsible for sending a job to a best suitable resource to be executed. In

large systems it is very cumbersome for an individual user to select these resources manually

[19]. Therefore a dedicated component – an optimizer, which acts as localized resource broker

is available in the Grid system. Its scope of responsibilities includes mapping Grid jobs to

resources over multiple administrative domains.

Basing on the aforementioned information, the generic problem of the optimization of the Grid

application execution can be stated as follows:

The process of discovering of the best combination of a job and resources in such a way that

the user and application requirements are fulfilled, in terms of overall execution time

(throughput) and cost of the resources utilized [16]. This mapping is performed by taking static

restrictions and dynamic parameters of jobs and resources into consideration.

2.2.3 Grid Optimization Process

As it was stated in section 2.2.2 the success of the optimization of Grid application depends

mainly on appropriate mapping results. Hence, in this section the general process of the

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 23

optimization of Grid application execution will be described in detail. The process can be

divided into three phases: resource discovery, system selection and job execution. This division

was introduced by Jennifer M. Schopf in [15] – the description of the phases is based on this

paper.

Phase 1: Resource Discovery

The main purpose of this stage is to generate a list of potential resources which are available to

utilize at a given moment. The resource discovery phase involves determining a collection of

resources to be investigated in more detail in Phase 2, information gathering. At the end of this

phase, this collection will contain a set of resources that have passed a minimal feasibility

requirements. This phase can be divided into the following steps:

Step 1: Authorization Filtering

This step determines a collection of resources to which an authorized access can be obtained.

The most common solution is to store a list of resources with all relevant information such as

account names or passwords. Although the necessary data can be obtained in a simple way, this

method does not assure fault tolerance and scalability.

Step 2: Application Requirements Definition

The step is responsible for the specification of minimal job requirements for resources. The

collection of possible job requirements can be divided into static and dynamic ones. The former

involves for instance the type of the operating system or the specific architecture best suitable

for the given code. The latter subgroup represents the requirements such as minimum amount

of RAM available, a load of central processing unit or connectivity needed. The requirements

should be specified in as much detail as possible in order to gain a better result of general

process of optimizing.

The process of the specification of the application requirements is rather complicated, therefore

gathering requirements and their storage is not automated.

Step 3: Minimum Requirement Filtering

Basing on information gathered in previous two steps the process of filtering resources is

executed – the resources to which an access is not granted or that not fulfil the job requirements

are discarded. The collection of valid resources will be investigated in more detail in the next

phase.

Phase 2: System Selection

During this phase a single resource (or a resource collection) must be selected with regard to

which is suitable for a given job. The selection is performed depending on available data. The

process can be divided into two subphases (steps):

Step 1: Dynamic Information Gathering

Apart from the generic and static information about the resources, detailed dynamic data about

the current condition of them is required to perform a better job-resource match. Taking into

consideration such kind of information is important, since it may vary with respect to the

application being requested to execute and the resources being examined. In general on the

Grid, a dedicated component is introduced which a main task is to provide information about a

current resource condition.

Another significant issue in this area is a problem of scalability and consistency. The larger the

system is, the more queries must be performed that can be a time-consuming activity.

Moreover, the system should be able to cope with an unavailability of a resource for a period of

time and a request for the data from it. Currently, the situation is generally avoided by

assuming that the shortage of the dynamic data from a resource leads to ignoring it in an

optimization process.

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 24

Step 2: Final Decision

Having obtained all relevant, detailed information, the next step is to make a decision which

resource (or set of resource) to use. Various approaches are possible according to a selected

algorithm and a policy. Some of them are described in the section 2.2.4.

Phase 3: Job Execution

The last phase is running a job on a selected resource (or a selected collection of resources).

The process consists of the following activities (steps):

Step 1: Advance Reservation [optional]

This step introduces a possibility to reserve a resource in advance in order to make the best use

of a given system. The complexity of the process is varied and it can be performed with both

mechanical and human means. Currently, such system is not introduced on many resources, but

thanks to the emergence of service level agreements paradigm, this activity will have more

impact on Grid application execution in the future.

Step 2: Job Submission

After the selection of resources, the application can be submitted to the resources. Job

submission may be as easy as running a single command or as complicated as running a series

of scripts and may or may not include setup or staging. In general, the lack of standards for job

submission is observed.

Step 3: Preparation Tasks

Preparation Tasks

The step may involve setup, staging, claiming a reservation and other actions that may be

necessary to prepare the resource to run the application. In a Grid environment, authorization

and scalability issues can complicate the process. The common solution is to use scp, ftp or a

large file transfer protocol (e.g. GridFTP) to ensure that the data files needed are in places.

Step 4: Monitoring Process

During the execution of the application, the status of the job can be monitored and regarding to

its progress it can be rescheduled to another resource. Today, such monitoring is typically done

by repetitively querying the resource for status information. In case of the insufficient progress

of the execution, the job may be rescheduled. Sometimes this process can become complicated

because of the lack of control over resources – other jobs may be scheduled causing the one of

concern to be terminated, possibly without any warning or notification.

Step 5: Job Completion

After completion of the job, a notification should be issued to the user. The common solution is

to include an e-mail notification parameter in a submission scripts for parallel machines.

Receiving the information about the completion state is important because of the fault-tolerance

reasons.

Step 6: Cleanup Tasks

The last step involves a retrieval of files from the resource in order to perform data analysis on

the results or a temporary removal settings. The process can be executed by hand or by

including clean-up information in the job submission scripts.

2.2.4 Components in Grid Optimization Process

During the Grid optimization process the optimizer has to interact with other components of

Grid Computing environment.

First of all, to make a proper assignment in the heterogeneous and dynamic Grid environment

the information about the current state and condition of available resources is needed. In

general, Grid optimizers receive data from a general Grid Information System (GIS). GIS is

responsible for collecting and predicting the resource state information (e.g. CPU capacities,

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 25

network bandwidth) and can answer queries for resource information or notify subscribers

about the new data [15].

Another useful information for the process of optimization are application properties (such as

memory and storage requirements, sub-jobs dependency in the application) and the

performance of resource for different application species. Such data will simplify the

computation of the cost estimation for a schedule candidate [5].

Next component is the Launching and Monitoring module. Its main task is to, according to the

given schedule, submit applications to resources, staging input data or executables and

monitoring the execution of the applications [5].

2.3 Overview of Optimization Algorithms for Grid Computing

Regarding to the optimization of the Grid application execution, the most important point in the

generic Grid optimization process is System Selection (see section 2.2.3). The optimization can

be performed owing to the possibility of utilization of different selection strategies, by

introducing appropriate algorithms. In this section challenges regarding the optimization

process in the Grid Computing and classification of optimization algorithms will be described.

2.3.1 Challenges of Optimization in Grid Computing

The optimization of the application execution on the Grid is significantly different from its

counterparts in traditional parallel and distributed systems. Requirements of Grid Computing

make many optimization algorithms that were suitable for systems with a parallel and

distributed architecture useless in this new computing paradigm. In this section some of Grid

characteristics will be investigated to prove the necessity of introduction of new optimizing

algorithms [5]. These are:

• Heterogeneity. As explained in section 2.1, in the Grid environment resources are

distributed among multiple domains in a computer network. Both the computational,

storage nodes and the underlying networks connecting are heterogeneous. This fact

influences directly the complexity of optimization process by creating different

capabilities for job processing and data access. An optimizer has to cope with system

boundaries and resources dependency on external restrictions.

• Autonomy. In contrast to traditional parallel and distributed systems, a Grid optimizer

usually cannot control Grid resources directly hence it has no ownership of them. The

optimizer does not have full information about resources because of their autonomy in

the environment. This lack of control is one of the challenges that must be addressed.

The optimizer cannot violate local policies of resources, which makes it hard for the

Grid optimizer to estimate the exact cost of executing a job on different resources – in

contrast to the traditional systems where the behaviours of resources are predictable

and the process of mapping jobs to resources according to certain performance

requirements does not cause any difficulties. In the Grid environment, the most

common solution to this issue is to introduce adaptive optimization (see 2.3.3).

• Performance Dynamism. This challenge results directly from the autonomy paradigm

of the Grid. The successful mapping jobs-to-resources depends on the estimate of the

performance that the available resources can provide. However, taking into account the

resource autonomy the exact performance cannot be calculated. This is because a

resource has to comply to a local policy and cannot guarantee a fixed execution time.

The same problem applies to networks that connect Grid resources – the available

bandwidth can be heavily affected by network traffic flows which are non-relevant to

Grid jobs. A optimizing algorithms should take into consideration this performance

dynamism.

• Computation-Data Separation. In the Grid environment there is a large number of

heterogeneous computing and storage sites connected via wide area networks. The

communication bandwidth of the underlying network is limited and therefore the cost

for data staging cannot be neglected by optimizing algorithms.

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 26

Considering the mentioned properties, a good optimization system on the Grid should have the

following features [11]:

• adaptability,

• scalability in managing resources and jobs,

• ability to predict and estimate performance,

• ability to take the cost of resources into account when optimizing,

• ability to take user preferences and site policies into consideration.

2.3.2 Hierarchical Taxonomy of Grid Optimization Algorithms

In the paper [20] Casavant and Kuhl introduced a hierarchical taxonomy for optimization

algorithms in generic parallel and distributed computing systems. The Grid optimization

process may be classified using this taxonomy (it is visualized on Figure 4) as well.

Figure 4: A hierarchical taxonomy of optimization algorithms in distributed systems [20]

The hierarchy can be built using the following criteria:

Number of processors. The criterion divides optimization techniques into local and global

one. The former refers to the policy managing processes on a single CPU. In case of global

optimization policy, information about the system is used to allocate processes to multiple

processors to optimize a system-wide performance objective.

The generic Grid optimization process can be classified as a global one. Thus the other criteria

described further in this section will concern the global optimizing policy.

Moment of making the assignment decision. At this level of the hierarchy, a distinction is

drawn with regard to the time of making the optimization decisions, and results in division into

static and dynamic subgroups.

In the static mode, information about both: all resources in the Grid and jobs in an application

is assumed to be available before the optimization of the application. Thus, a firm estimate of

the cost of the computation can be made in advance, and the process of the optimization can be

simplified. However, such policy can become insufficient in dynamic environments where

resources or jobs properties change dynamically.

In the dynamic mode, the possibility of the change of the topology of the system is taken into

consideration. Hence, the optimizer may generate a new assignment of jobs to resources during

execution of the application. This mode is useful when it is difficult to estimate the cost of

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 27

applications or jobs a priori. Dynamic optimization for a job execution has two major

components:

• System state estimation – collecting current state information throughout the Grid and

constructing an estimate,

• Decision making – using the estimate, assignment of a job to a resource is performed.

The advantage of the dynamic mode is load balancing of resources. It should be introduced

when maximizing resource utilization is preferred to minimizing run time for individual jobs.

Both static and dynamic optimization policies can be suitable for Grid environments.

Optimality of an algorithm. The optimum solution can be chosen only if all information

regarding the state of resources and the tasks are available. However, taking into consideration

the NP-complete nature of optimization algorithms and the fact that obtaining the information

can be computationally infeasible, the sub-optimum solutions are usually sufficient.

In the Grid environment, the sub-optimum solutions are efficient enough and current research

concerns them.

Type of the sub-optimum algorithm. The space of sub-optimum solutions can be divided

further into two general categories. First represents approximate algorithms which aim at

finding a solution that can be assumed as a good one according to a given metric. Instead of

searching entire solution space for an optimum solution. Casavant in the paper [20] suggests

metrics such as the time required to evaluate a solution or availability of a mechanism for

intelligently pruning the solution space. The second category includes heuristic algorithms

which assume having knowledge concerning process and system loading characteristics in

advance. The evaluation of this kind of solution is usually based on experiments in the real

world or on simulation.

From the Grid optimizer point of view, heuristic algorithms are appropriate hence they can be

easily adapted to dynamic nature of the Grid.

Number of optimizers. Three optimization paradigms can be introduced regarding the

responsibility for making global optimization decisions [19]:

• Centralized optimization – the strategy assumes existence of a single optimizer

responsible for optimizing the execution of jobs on all surrounding nodes that are part

of the environment. Although the centralized optimizer is easy to implement and can

produce better optimization decisions, as it has all relevant information about available

resources, it can suffer from the lack of scalability and fault tolerance.

• Distributed optimization – this scenario assumes the responsibility of making global

optimization decisions is shared by multiple distributed optimizers. Distributed

optimization overcomes the problem of scalability and can offer better tolerance and

reliability. However, the lack of all the necessary information on available resource,

usually can result in sub-optimum optimization decisions.

• Hierarchical optimization – in hierarchical optimization, a centralized optimizer

dispatches local optimizers a job submission. This type also suffers from problem of

the scalability and communication bottlenecks. Nevertheless, its main advantage is that

the global optimizer and local optimizer can have different policies in optimizing jobs.

Cooperation between optimizers. This criterion concerns distributed optimization policy. In

case of non-cooperative local optimizers, each of them acts as autonomous entity and makes an

optimization decision regarding only its own optimum objects independently of the effects of

the decision on the rest of the system.

The second mode assumes cooperation between local optimizers. Each optimizer is responsible

for its own jobs, but all optimizers are working in order to achieve a common system-wide

goal. The local policy of each one pays attention not only local to performance of a particular

job, but also takes into consideration the contribution to achieving the global aim.

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 28

2.3.3 Extension to the Hierarchical Taxonomy

The hierarchical taxonomy presented in section 2.3.2 does not include all distinguishing

characteristics which optimization systems may have. The characteristics do not fit uniquely

under any particular branch of that tree-structured taxonomy and can be considered as a flat

extension to the scheme presented before. These aspects include [5]:

Objective Functions. This criterion determines the object of the execution of the application.

In Grid computing, the functions can be classified into two subcategories [5]:

• Application centric – this objective function particularly pays attention to the

performance of an application, for example the total cost to run it or a makespan (a

period of time between the initialization of the first job and the termination the last

job).

• Resource centric – such scenario aims to optimize the performance of the resources.

Resource-centric objectives are usually related to resource utilization, for example:

throughput, which is the ability of a resource to process a certain number of jobs in a

given period; utilization, which is the percentage of time a resource is busy.

Adaptive Optimization. An adaptive solution to the optimization problem is the one in which

the algorithms and parameters used to make optimization decisions change dynamically

according to the previous, current and / or future resource status [5].

In Grid computing, the process of the adaptation may concern:

• Resources. Taking into account resource heterogeneity and application diversity,

discovering available resources and selecting an appropriate collection of resources can

impact on high performance and reduce the cost.

• Dynamic Performance. Such kind of adaptation can be regarded as changing the

optimizing policy or rescheduling, or workload distributing according to application-

specific performance models, or finding a proper number of resources to be used.

• Application. In order to achieve the high performance, an optimizer dedicated and

specific to a given application can be introduced. The common solution in such a

situation is to divide the optimizer into two components. First of them is then

responsible for the core process of the optimization, whereas the second is application-

specific (e.g. performance models) and platform-specific (e.g. resource information

collection). The advantage of such solution is the fact that a core of the optimizer can

be general-purpose, when dedicated application-specific components with well-defined

interfaces will be responsible for the communication.

Dependencies Between Jobs in the Application. In the section 2.2.1 a Grid application was

defined as a collection of jobs. In addition, the jobs can be dependent or independent of each

other within one application. Usually, the dependency means there are precedence orders

existing for jobs. Taking into account this issue is crucial hence different and more effective

optimization techniques can be used according to related jobs. The jobs can be presented in the

form of a directed acyclic graph (DAG), in which a node represents a job and a directed edge

denotes the precedence orders between its two vertices.

2.3.4 Optimization Algorithms Suitable for Optimization on Grid

In this section the most common and suitable for the Grid Computing optimization algorithms

will be described. These techniques are used during the second step of phase “System

Selection” in the Grid optimization process (see section 2.2.3). Each of them will be classified

according to the described in sections 2.3.2 and 2.3.3 taxonomies. Description of these

algorithms was created on the base of the paper [5].

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 29

2.3.4.1 Simple heuristics for independent jobs

In case of a collection of independent jobs, some static heuristics algorithms based on execution

cost time can be applied. Most common metrics are [22]:

• Expected execution time – the amount of time to execute the given job assuming that

the selected resource has no load when a job is assigned.

• Expected completion time – the wall-clock time at which the selected resource

completes the execution of the given job (after having finished any previously assigned

jobs).

Using this terminology several simple heuristics for optimizing the execution of independent

jobs can be introduced [17]: Min-min, Max-min, Suffrage and XSuffrage. These heuristics in an

iterative way assign jobs to resources by considering jobs not yet optimized and computing

their expected Minimum Completion Time (MCTs) on each of the available resource and

finding the minimum completion time over all the resources. For each job, a metric is computed

using their MCTs and the job with the best metric is assigned to the resource that let it achieve

its MCT. The process is then repeated until all tasks have been optimized [22]. The distinction

between the heuristics is defined by the function that determines the metric:

• Min-min – the metric is the lowest MCT. The advantage of this method is load-

balancing of the resources.

• Max-min – on the contrary, the job with the maximum minimum completion time is

assigned to the corresponding resource. The heuristic attempts to minimize the

penalties incurred from performing tasks with longer execution times [5].

• Suffrage – a heuristic based on the idea that better schedules can be found by assigning

a machine to a task that would “suffer” most in terms of expected completion time if

that particular machine is not assigned to it. For each job, its suffrage value is defined

as the difference between its best MCT and its second-best MCT [5].

• XSuffrage – an improved Suffrage heuristic proposed by Casanova et al [9], which

instead of computing the suffrage between nodes this metric gives a cluster level

suffrage value to each job.

These general and simple optimization algorithms does not consider QoS, which can affect

their performance in a general Grid environment. Moreover, in heterogeneous systems, the

effectiveness these algorithms is also affected by the rate of heterogeneity of the jobs and the

resources as well as the consistency of the job estimated completion time on different

machines [5].

2.3.4.2 Dependent Jobs Optimization

In case of dependent jobs optimization, the precedence order of jobs is required in advance.

Hence, these techniques are kinds of static optimization. The simple way to present the

dependence of jobs is to construct a directed acyclic graph (DAG), in which nodes represent

jobs and edges represent the data dependencies among the jobs..

In dependent jobs optimization the dichotomy between maximum parallelism and minimum

communication appears. High level of parallelism means dispatching more jobs simultaneously

to different resources, thus increasing the communication cost, especially when the

communication delay is significant [5].

In the following section a different approaches to the problem will be presented with some

example algorithms.

a. List Heuristics

The common idea of list optimization heuristics is to make a list of jobs and execute these from

the front of the list. Thus it consists of two phases: a job prioritizing phase and a resource

selection phase. During the first, one priority of each job is computed to make a ready ordered

list. Then the most appropriate resource is selected for the current highest priority job during

the resource selection phase [13].

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 30

Two important issues regarding this heuristic appear: how to compute a job priority and how to

define the cost function. Considering the job priority, it has to be assumed that the priority of

the job must be set before any mapping decision is made. To solve this problem,

approximations of the job node weight (it represents the computation cost) and the edge weight

(representing the communication cost) are used. Two attributes are introduced in order to

compute the priority of the job: t-level (top level) and b-level (bottom level). The former is the

length of the longest path reaching the job, the latter being the length of the longest path

beginning with the job [21]. The most common heuristics of resource selection phase are:

• Earliest-finish-time-first.

• Assigning critical-path job to a resource.

Both heuristics were proposed by Topcuoglu et al. [18].

Their realization are:

• Heterogeneous Earliest Finish Time – the algorithm sets the weight of a job as the

average execution cost of the node among all available resources. Similarly, the weight

of the edge is the average communication cost among all links connecting all possible

resource pair combinations. The priority of a job node is the b-level attribute of that

node, which is based on mean computation and mean communication costs. Hence,

during the resource selection phase the job with the highest priority is picked for

allocation and a resource which ensures the earliest completion time is selected. A

disadvantage of this method is the possibility of falling into local optima like a greedy

method in case determining the earliest finish time [13].

• Dynamical Critical Path (DCP) – the algorithm was proposed by Kwok et a. [14]. It

does not maintain a static optimization list, but selects the next job node to be

optimized dynamically. At each step of the optimization, it computes the dynamic

critical path (DCP), that can be defined as a critical path in job graph on which the sum

of computation cost and communication costs is maximized. In order to reduce the

value of DCP, the node selected for optimization is the one that has no unoptimized

parent on the DCP [21]. While determining the resource, the algorithm does not

examine all resources, but considers only the ones that hold the nodes communicating

with the one in question. The resource with a job on the critical path has an earliest

start time is selected.

Some other approaches such as Mapping Heuristics or Fast Critical Path (FCP) exist [21]. In

the case of Grid Computing, it is important to pay attention to the fact that algorithms should

consider the heterogeneity of resources, jobs and communication links as well.

b. Clustering Based Heuristics

The main idea of these heuristics is to group heavily communicating jobs to the same cluster

and then assign jobs in a cluster to the same resource. The clusters can be classified as a linear

or as a nonlinear one. A cluster is called nonlinear if two independent jobs are mapped in the

same cluster, otherwise it is called linear [21].

The general algorithm can be divided into two phases [5]:

• job clustering phase – it is responsible for partitioning the original job graph into

clusters,

• post-clustering phase – it can refine the clusters produced in the previous phase and get

the final job-to-resource map.

Some most common particular algorithms using this heuristic is Dominant Sequence Clustering

and CASS-II [5].

c. Duplication Based Algorithms

The main idea behind duplication based optimizing is to use resources’ idle time to duplicate

predecessor jobs. In this way, some of the more critical jobs of a parallel program are

duplicated on more than one resource. Thereby it can potentially reduce the start times of

waiting tasks and reduce the communication cost.

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 31

The difference between particular algorithms of the heuristic is the strategy for selecting the job

for the duplication. The examples of this method are TDS (Task Duplication-based Scheduling

Algorithm) and TANH (Task duplication-based scheduling Algorithm for Network of

Heterogeneous systems) [5].

2.4 Summary

The aim of the chapter was to introduce the current state of the research into the optimization

issue in Grid Computing. After presenting the core of the optimization problem, the taxonomy

of the optimization techniques was shown. Thanks to the taxonomy, the issue can be considered

from different points of views and can simplify the process of the design of the optimizer for

the ViroLab Runtime System. In Chapter 3 the taxonomy will be used in order to specify the

optimization model offered by the ViroLab Runtime.

The algorithms described in section 2.3.4 will be analyzed from the point of view of their

usefulness in the developed system in Chapter 3.

Issues of Optimization for Grid Computing – State of the Art

Optimization of Grid Application Execution 32

Optimization of Grid Application Execution 33

Chapter 3: Analysis of Optimization Issues in

ViroLab Virtual Laboratory Runtime System

In this chapter, basing on the information provided in Chapter 2 and Chapter 1, a detailed

specification of the optimization problem in ViroLab Virtual Laboratory Runtime System was

provided. The problem is discussed with regard to the general optimization issue in Grid

environment that was introduced in section 2.2, including a comparison of the general

optimization process on Grid (2.2.3) with the optimization specific to ViroLab. Afterwards, the

requirements for the optimizer and its model are identified. Finally, the common optimization

techniques are discussed with concerning their possible utility in the optimizer with regard to

the specified requirements.

3.1 Grid Optimization Problem in ViroLab

Although the component inside ViroLab Runtime System that executes subsequent commands

of an experiment (Grid Operation Invoker) uses Grid Object Instances (for the Grid Object-

related vocabulary see section 1.2.1) to invoke Grid Operations of a given Grid Object Class, it

is not able to decide which class’s instance would be the best to perform the operation. This is

because it neither acquires sufficient information to make such a decision, nor is it able to

process it.

Therefore, in order to improve the ViroLab Runtime System performance, a mechanism that

chooses an optimum Grid Object Instance or requests creating it (passing all required data) has

to be developed. One of the goals of this thesis (compare 1.4) is to design and develop this

mechanism in the form of an optimizing engine – later called ViroLab Optimizer or simply

optimizer, that maintains communication channels to other ViroLab components.

3.2 The Optimization in ViroLab Runtime System as an Example of

Optimization Process for Grid Computing

The problem of the optimization in ViroLab can be regarded as a special case of the generic

optimization process in Grid Computing, described in section 2.2. The vocabulary of ViroLab

environment (section 1.2.1) can be mapped into the general Grid terminology (section 2.2.1) in

the following way:

• a Grid Object Instance – a resource

• a Grid Operation – a job

• a ViroLab experiment – a Grid application.

A core optimizing process has to be present during executing an experiment inside ViroLab

Runtime System.

Analysis of Optimization Issues in ViroLab Virtual Laboratory Runtime System

Optimization of Grid Application Execution 34

Thanks to the component architecture of ViroLab Virtual Laboratory Runtime (see section

1.1.4), the ViroLab optimizer will not have to be responsible for all steps during the

optimization process. It will be able to interact with other components which are a part of the

runtime and have access to the information gathered by components of the Middleware layer.

For the description and visualization of ViroLab components please consult section 1.1.4,

Figure 1 and Figure 2.

In the following sections the grid optimization process will be presented from the ViroLab

environment point of view.

3.2.1 Optimization Results Consumer

The only consumer of optimization results is ViroLab Invoker – Grid Operation Invoker (GOI).

It is responsible for creating Grid Object Instances or contacting existing ones, and invoking

Grid Operations on them. The Invoker provides an identification of class of the Grid Object

(Grid Object Class) it is going to use, and obtains a Grid Object Instance or all the data

necessary to create it.

3.2.2 Optimization Process Phases

In section 2.2.3 a general division of the Grid optimization process into several phases was

introduced. In this section these phases will be described from the perspective of the

optimization process in ViroLab Runtime System. The following phases should be compared to

the presented in section 2.2.3.

Phase 1: Resource Discovery

In this phase a list of potential resources which are available to utilize at this moment should be

generated. In a case of ViroLab Optimizer all appropriate Grid Object Implementations,

including their running instances for the given by the invoker Grid Object Class should be

discovered.

The source of information which are used during this phase is ViroLab Registry that contains

information, including generic and static data, related to Grid Objects – Grid Resource Registry

(GRR), which is located in ViroLab Runtime. Grid Resource Registry is the only required data

source for the optimizer. The step of Authorization Filtering can be neglected because the Grid

Resource Registry is assumed to provide information only about the resources to which the

access is granted.

Phase 2: System Selection

The result of this phase is finding the best combination of a resource and a given job. Taking

into consideration ViroLab Runtime System, it means determining the best Grid Object

Instance on which the given Grid Object Operation could be performed.

The phase involves also gathering dynamic information about resources. In case of ViroLab

Runtime System the source of such data is ViroLab Monitoring System, which is located in the

Middleware layer. The system provides information about the state and condition of the

resources on which a Grid Object Instance is running or can be created.

An additional component from the Middleware layer which can be used during this phase is

ViroLab Provenance Tracking System – PROToS. PROToS can be a source of data related to

Grid Object Instances performance in their previous invocations. Utilization of this component

can improve the result of the optimization process.

However, when the far-sighted optimization (see section 3.4.3) is performed an additional data

about the structure of executed application is required. The source of such information is the

manager of ViroLab Runtime – Runtime Library.

The core step of the system selection is performed using the obtained information and

according to the specified policy.

Analysis of Optimization Issues in ViroLab Virtual Laboratory Runtime System

Optimization of Grid Application Execution 35

Phase 3: Job Execution

In the generic Grid optimizing process this phase is responsible for running a job on a selected

resource, while in ViroLab Runtime System this task is assigned to the Grid Object Invoker

component. Hence the role of ViroLab Optimizer is only significant during the first and the

second phase of the optimizing process. The phase of Job Execution is out of space of the

ViroLab Optimizer’s activity.

3.2.3 Communication Channels to Other ViroLab Components

The data flow diagram on Figure 5 summarizes the interactions the ViroLab Optimizer with

other ViroLab Components during the optimization process.

GRR Grid Resource

Registry

Optimizer

RL Runtime Library

GOI Grid Operation

Invoker

MS Monitoring

System

PS Provenance

System

Runtime

Middleware

application structure

information about

Grid Objects

historical performance

data
information about

resource condition

Grid Object Class

Grid Object Instance

- data sent only on demand

- data sent periodically

Key

Figure 5: Data flow between the optimizer and its data sources and consumers

To work correctly, ViroLab Optimizer should require only the connection to Grid Resource

Registry – in order to retrieve the information it has to pass to the Grid Operation Invoker (and

of course to the invoker itself). Such solution is not optimum, since the information stored in

the registry is insufficient to make any accurate prediction of performance. Therefore,

interactions with other sources of information significantly improve the quality of solution the

optimizer chooses

3.3 Requirements for ViroLab Optimizer

This section describes the basic functional (3.3.1) and non-functional (3.3.2) requirements that

ViroLab optimizer should satisfy.

3.3.1 Functional Requirements

To be useful in the ViroLab environment, the optimizer has to meet the basic requirement:

• Provide a possibly accurate answer (or report an appropriate error) to each question of

type: which Grid Object Instance (ready or only to be created) of the Given Grid Object

Class is most suitable to perform an operation on.

Analysis of Optimization Issues in ViroLab Virtual Laboratory Runtime System

Optimization of Grid Application Execution 36

3.3.2 Non-functional Requirements

The most important non-functional requirement for ViroLab Optimizer is that its computation

processes cannot bring significant latency in responses to the requests from invoker.

What is more, the optimizer design should comply with the following requirements:

• Clear interface with an appropriate exception handling.

• Easily adjustable to environment – it should be able to adjust to different conditions of

its environment – i.e. if the existing sources of information do not provide sufficient

data, the optimizer should try to create and utilize new information channels.

• Easily extendible – it should offer a simple way to extend its functionality with new

features, more advanced algorithms, analysis of data from new information channels.

• Easily configurable – the optimizer should offer a possibility to configure it externally

– this configuration includes: optimization algorithms to be used, utilized data

channels, properties constituting a policy of optimization.

3.4 ViroLab Optimizer Optimization Model

The following subsections contain a study of the ViroLab Optimizer characteristics which

enables to fully recognize its optimization model. The constraints it has to comply with are

identified. On this basis, regarding the classifications of Grid optimization solutions (sections

2.3.2 and 2.3.3) and the characteristics of the optimization problem in ViroLab (3.2), the model

of optimization that will be performed is identified.

3.4.1 Constraints Imposed by ViroLab Environment

The ViroLab environment (see section 1.1) puts some restraints on its optimizer. These

limitations occur due to the fact that the optimizer does not own the resources it uses.

Therefore, it does not have an authorization to administrate them.

The constraints are as follows:

• No direct control over resources – the optimizer can only act as a broker; it cannot

guarantee that the task it schedules will be executed on the resource it chooses.

• No exclusive access to resources – the information about resources gathered by the

optimizer can be imprecise or out-of-date. Furthermore, the optimizer cannot

guarantee that the quality of scheduled jobs will not be aggravated by some tasks

executed by the local scheduler.

• No queue – the optimizer is not able to manage the tasks after they are submitted to

resources.

3.4.2 ViroLab Optimizer Optimization Type

Basing on the classification introduced in sections 2.3.2 and 2.3.3, the following characteristics

of the ViroLab Optimizer can be distinguished:

• Global – it uses information about the system to allocate processes to multiple

processors and optimizes a system-wide performance objective.

• A hybrid solution between static and dynamic optimization – the basic functionality

offers choosing the optimum resources at runtime (based on information from other

ViroLab components). However, this functionality can be extended by providing a plan

of resource choices for more than one application’s tasks at a time.

• Centralised – it is not distributed.

• Optimum in its basic functionality – it finds the solution that is optimum from the point

of view of the basic knowledge it gains; suboptimum – when it is extended, the amount

of optimization prerequisites increases and the optimum solution based on the extended

knowledge becomes impossible to find. Still, the suboptimum solution obtained with

the extended functionality may occur to be better than the optimum solution computed

using only the basic mode.

Analysis of Optimization Issues in ViroLab Virtual Laboratory Runtime System

Optimization of Grid Application Execution 37

• Application centric – the optimization process pays attention to the performance of the

application.

• Adaptive – the process of the optimization can be dynamically adapted to changing

situation in the ViroLab environment thanks to optimization policy and algorithms

configuration.

3.4.3 Task Dependencies in Optimization Process in ViroLab

The optimizer can be used in one of the following modes – depending on whether the

dependencies between subsequent tasks are taken into consideration:

• Short-sighted optimization mode – it implements the basic optimizer’s functionality,

which is choosing an optimum solution for one task at a time. The other tasks are

neglected.

• Medium-sighted optimization mode – the tasks can be submitted to the optimizer in

groups – for each of the tasks a resource is chosen regarding the previous choices. The

tasks are not reordered, nor are they arranged in queues – the group of tasks is mapped

to the group of their solutions (resources).

• Far-sighted optimization mode – a suboptimum solution, includes choosing resources

for all tasks of the executed application as well as optimization by ordering the tasks.

The mentioned far-sighted optimization features should introduce significant improvement to

the solution. What is more, running in this mode, the optimizer will able to search for optimum

solution, regarding the actual Grid Operation
6
. In the other scenarios only the Grid Object

Classes are known to the optimizer, and thus only collective performance of all the classes

operations can be considered. Nevertheless, such optimization scarcely ever brings solutions for

all the requested tasks (the short-sighted optimization must be used to later assign solution to

them), thus, in some rare cases it brings only unnecessary computation.

3.5 Analysis of Existing Optimization Algorithms Regarding the ViroLab

Optimizer Requirements

In section 2.3 the overview of optimizing algorithms for the Grid Computing were introduced.

In this section they will be discussed from the ViroLab Optimizer point of view with respect to

its requirements (section 3.3).

In order to perform the optimization process using any algorithm, some sources of information

must be available. In case of the ViroLab Optimizer, other ViroLab components will provide

necessary data (see 3.2). Simple heuristics use mostly information about the execution cost.

Thanks to the availability of information from ViroLab Monitoring System and ViroLab

Provenance Tracking System such computations can be performed. However, the issue of the

heterogeneous environment can have a significant impact on such estimations. The

performance of these algorithms can be affected by the rate of heterogeneity of the jobs and the

resources. Unfortunately, this problem concern all simple heuristics for independent jobs. The

solution to this problem can be adaptive optimization techniques. Simple heuristics should give

results well enough for short-sighted optimization mode (see 3.4.3).

Some more challenges may appear when far-sighted optimization mode is taken into

consideration. In these case the problem of optimizing dependent jobs must be analyzed. An

additional difficulty is the issue of mapping a ViroLab application script to DAG. Because of

the dynamic character of the script, the process of creating the DAG for the application can be

complicated. Nevertheless, executing the script in parallel, if possible, should give some

improvement in the optimization regarding to short-sighted optimization mode. The heuristics

6
 Choosing the solution with regard to a specific Grid Operation of Grid Object Class could be

implemented also as an extension to the previous (short- and medium- sighted modes).

Analysis of Optimization Issues in ViroLab Virtual Laboratory Runtime System

Optimization of Grid Application Execution 38

for dependent jobs optimization should be suitable for this mode. Probably, changing the

optimization of the whole script at a time into an iterative process of optimizing its parts should

also bring a positive impact on the optimization process. In addition, it would make the method

less complicated.

Medium-sighted optimization mode can be regarded as a simplified version of the far-sighted

optimization mode. Neglecting the dependencies between jobs and setting the appropriate

priorities should improve the optimization result in comparison to the short-sighted

optimization mode. The heuristics which are the most suitable for this kind of optimization

should be adapted from the heuristics for the independent jobs optimization.

The possibility of introducing adaptive optimization is an important issue concerning the

ViroLab Optimizer. A suitable configuration and selection of different algorithms is the best

solution for the optimization process in this heterogeneous environment.

3.6 Summary

The target of this chapter was to present the analysis of optimization issue in a certain

environment – ViroLab Virtual Laboratory Runtime system. It was proved that the issue is a

particular case of the general optimization problem in Grid Computing. The identification of

the specific requirements for the ViroLab Optimizer enables to state the characteristics of the

optimization model suitable for it. These characteristics in turn will be used to determine the

optimizer’s architecture. In this chapter it was also shown that the requirements determine the

collection of possible optimization techniques that can be used in a ViroLab Optimizer.

Optimization of Grid Application Execution 39

Chapter 4: ViroLab Optimizer Design

Having the precise ViroLab Optimizer characteristic, a design model for its implementation

can be built. This chapter specifies and describes the structure and behaviour of the

implementation of ViroLab Optimizer specification provided by Chapter 3 – GridSpace

Application Optimizer, in short: GrAppO.

Note: Some ideas concerning the GridSpace Application Optimizer design, developed for the

purpose of this thesis were also included in the ViroLab design document [4].

4.1 GrAppO Use Cases

On the basis of optimization mode analysis (section 3.4) the following optimizer use cases can

be identified:

• Plan application execution – corresponds to the first stage of far-sighted optimization

mode. It includes creation of the application graph from the experiment code (if the

code only is available), ordering the Grid Operation calls in the experiment – such

ordering may significantly improve the optimization quality, and assignment of

resources for invocation of each Grid Operation in the application (some assignments

may not be available at this time). This process introduces significant delay to the

application execution, however, in most cases it also minimizes the delay to responding

the Grid Operation Invoker requests.

• Assign resource to Grid Object – this use case represents the activity performed on

Grid Operation Invoker request – either in short-sighted or in the last phase of far-

sighted optimization mode (in these two cases the activities of the optimizer may

differ).

• Assign resources to Grid Objects – an equivalent of medium-sighted optimization

mode – the optimizer assigns resources to all the given Grid Objects at a time.

The described use cases are illustrated by Figure 6.

ViroLab Optimizer Design

Optimization of Grid Application Execution 40

Figure 6: The GridSpace Application Optimizer use cases diagram

4.2 GrAppO Architecture

In the GridSpace Application Optimizer architecture the following components can be

distinguished:

• GrAppO Manger – a component responsible for coordination of the work of other

components. It also contacts the most important external to the optimizer component –

Grid Resource Registry and receives calls from Grid Operation Invoker.

• Optimization Engine – a heart of the optimization. It executes dedicated optimization

algorithms. The optimization in this part can be based on the estimation of each

solution
7
 performance prepared by the Performance Predictor.

• Performance Predictor – a component used for making predictions of Grid Object

Instances performance – including execution time and resource consumption. It bases

on the analysis from Historical Data Analyzer and Resource Condition Data Analyzer.

• Historical Data Analyzer – contacts the external Provenance Tracking System

(PROToS) to obtain information about previous executions, analyses it, and prepares

for the performance estimation.

• Resource Condition Data Analyzer – contacts the external Monitoring System to

obtain information about condition of resources that can be used, analyses it, and

prepares for the performance estimation.

7
 Further in this document the term ‘solution’ means ‘Grid Object Instance or Grid Object

Implementation with link to resource where it can be created’. In some cases also the sole ‘Grid Object

Instance’ can be used in this context.

ViroLab Optimizer Design

Optimization of Grid Application Execution 41

• Application Structure Analyzer – a component used in far-sighted optimization mode

(see section 3.4.3 for the explanation of this term). Provided with the application graph

or code defines the task assignment to Grid Object Instances and order of execution.

The component diagram on Figure 7 shows the dependencies between components of

GridSpace Application Optimizer.

GridSpace Application Optimizer

Application Structure Analyzer

<<optional>>

GrAppO Manager

Optimization Engine

Performance Predictor

Historical Data Analyzer Resource Condition Data Analyzer

Grid Operation Invoker Runtime Library

Grid Resource Registry

Provenance Tracking System Monitoring System

Figure 7: Component diagram, showing GrAppO decomposition and dependencies between its

components and external ViroLab components

A detailed description of the data obtained from external components for analysis is provided in

section 4.3.

Owing to its modular architecture, any new sources and their data analyzers could be connected

to GridSpace Application Optimizer. The only required change is to modify the Performance

Predictor to tell it that a new data analyzer should be used.

4.3 Data Provided by External Components

The data connections between the optimizer and other ViroLab components were identified in

section 3.2. In this section a detailed study on what information will be passed through these

connections is presented.

4.3.1 Grid Resource Registry

Grid Resource Registry is the most important and the only required source of information for

the optimizer. The registry lists its contents applicable to the given input (Grid Object Class).

That is:

• All the Grid Object Implementations of the given Grid Object Class. Each

implementation is assigned an information about:

o id – identification in the registry, that is passed to the Grid Object Invoker, so

that it can obtain information needed for creating its instance

o service implementation technology – e.g. Web Service, MOCCA Component,

WSRF

o type – e.g. stateful/stateless, shared/not shared

ViroLab Optimizer Design

Optimization of Grid Application Execution 42

o constraints – e.g. it can be deployed only on some resources

o resource consumption – e.g. it requires a certain amount of memory

o running instances (Grid Object Instances) of the implementation – see the next

bullet

• All the Grid Object Instances of the listed Grid Object Implementation or a given

implementation. The information attached to each instance includes:

o id – identification in the registry, that is passed to the Grid Object Invoker, so

that it can obtain information needed for contacting the instance

o location – a link to the resources where the Grid Object Instance is deployed;

this information is used to query the resource monitoring service

• All the resources, where Grid Object Implementations could be deployed to create a

Grid Object Instance – e.g. H2O kernels for MOCCA Components. The only required

information about them is location. As in case of Grid Object Instance it is a link to the

resource, used while querying the monitoring service

As the Grid Resource Registry cooperates with Monitoring Service, it controls the state of its

contents, and thus never returns any object that is not functioning – i.e. neither Grid Object

Instances that were destroyed, nor service containers that are not running. However, it does not

control whether the instances or containers work correctly.

4.3.2 Runtime Library

A communication channel to this component is not required and is used only when the

optimizer works in far-sighted optimization mode (see 3.4.3). The data provided by Runtime

Library concerns:

• Application graph or code. If it is the code – the optimizer has to build its graph.

• Application context – the identification and configuration of the experiment that is to

be executed. This information is used when the invoker requests the optimization – the

request have to be associated with the experiment the invoker is analyzing.

4.3.3 Monitoring System

The information obtained from the monitoring helps to choose the resource that is in optimum

condition to handle Grid Operations execution. It includes:

• Information about the hardware of the node on which the resource is operating (e.g.

CPU, RAM)

• Information about state and condition of the node – e.g. its load, available memory

Another connection to monitoring system can be created if no provenance implementation is

available. Through this connection then, notifications of events concerning the lifecycle and

executions of Grid Object Instances is sent in a publisher/subscriber mode. This data, gathered

by the optimizer, could be interpreted to compute the Instances performance (e.g. execution

time, resource consumption) – in this way replacing information that in other circumstances

would have been obtained from Provenance Tracking System (4.3.4).

4.3.4 Provenance Tracking System (PROToS)

Analysis of the information from Provenance Tracking System together with monitoring data

can lead to a very accurate time and resource consumption estimation. From the provenance

data, information about how a certain Grid Object Instance performed on each resource, is

extracted. This information includes:

• Resource consumption – e.g. how much RAM or CPU it used

• Duration of the executed Grid Operations of given Grid Object Instance – time that was

needed for the operation to be completed.

ViroLab Optimizer Design

Optimization of Grid Application Execution 43

4.4 Alternative to the Connection to Provenance Tracking System

When no implementation of Provenance Tracking System exists in GrAppO environment, the

connection to that system can be replaced by Performance Data Database. It stores the same

information relevant to Grid Object Instances lifecycle as Provenance Tracking System. These

data are obtained through an additional information channel to Monitoring Service, based on

the publisher/subscriber communication mode. The information from Monitoring Service are

gathered by a Historical Data Analyzer component subclass: Monitoring Notification Listener.

The listener awaits notifications from the monitoring, and if such occurs, interprets it and stores

in proper format in Performance Data DB.

A schema of this solution can be viewed on Figure 8.

Figure 8: Structure that is an alternative to the connection to Provenance Tracking System

Such solution is a way to adapt to an environment where some of the information sources are

missing, still acquiring sufficient data to perform optimization, in this way fulfilling the

requirement of the optimizer being adjustable to the environment (compare 3.3.2).

4.5 GrAppO Optimization Algorithm Plug-ins

The algorithms GrAppO uses for optimization are pluggable as each of them has to implement

the same interface. Which of the algorithms will be used for optimization is a matter of external

configuration. However, there always is a default optimization algorithm available.

Such solutions On Figure 9 a sample relation between the general optimization algorithm and

its different implementations is shown.

Figure 9: A relation between an optimization algorithm and its different kinds

Obviously, instead of the CustomOptimizationAlgorithm that appeared on Figure 9 any

optimization algorithm implementations can be plugged. The default optimization algorithm is

required, while its implementation is unrestricted.

ViroLab Optimizer Design

Optimization of Grid Application Execution 44

4.6 GrAppO State During Execution of Applications

Running in the basic optimization modes (short-sighted and medium-sighted optimization – see

section 3.4.3), GrAppO acts like a stateless service. After its creation, each call to it from Grid

Object Invoker is independent of previous calls.

In case of far-sighted optimization mode, the optimizer state has to be maintained in order to

identify the application that was optimized, in the call from the invoker. This is required since

the optimization is done before the Grid Object Invoker requests it, and the invoker obtains

previously prepared data. This section presents all possible GrAppO states and transitions

between them concerning the three possible optimization modes.

4.6.1 Short-Sighted and Medium-Sighted Optimization Modes

The analysis of GrAppO state changes during its lifecycle in short- or medium- sighted

optimization mode is depicted on Figure 10 (in both modes the states and transitions are the

same). Its detailed description can be found further in this subsection.

Created Ready Optimizingcreate initialize
optimiztation

request

destroy

optimization

performed

Figure 10: A state diagram of the optimizer performing short- or medium-sighted optimization

The allowed states of the optimizer performing short- or medium- sighted optimization are as

follows:

• Created – a state in which the optimizer is after invocation of its constructor. In this

state GrAppO is not yet initialized, therefore it cannot perform any optimization.

• Ready – initialized optimizer waits in this state for incoming optimization requests

from the invoker.

• Optimizing – GrAppO performs optimization (on request of Grid Operation Invoker).

In this scenario, the following transitions between states are allowed:

• Null�Created – this transition is triggered by a call to GrAppO constructor, during

the transition the optimizer is being created.

• Created�Ready – initialization of the optimizer.

• Ready�Optimizing – a transition triggered by an optimization request from the

invoker, GrAppO prepares to the optimization then.

• Optimizing�Ready – after performing optimization (state: Optimization), results are

returned to Grid Object Invoker and GrAppO is ready for the next request.

• Ready�Null – destroying the optimizer instance, could be done automatically by a

garbage collection mechanism.

4.6.2 Far-Sighted Optimization Mode

Figure 11 presents the process of state changes in the far-sighted optimization scenario. Please

see the next paragraphs for its explanation.

ViroLab Optimizer Design

Optimization of Grid Application Execution 45

Created Initialized Optimizingcreate initialize
optimization

request

optimization

completed

solution

returned

Ready

Analyzing Solution Mapping

solution

request

destroy

destroy

Figure 11: A state diagram of the optimizer running in far-sighted optimization mode

During far-sighted optimization, the optimizer can reach the following states:

• Created – a state in which the optimizer is after invocation of its constructor. In this

state GrAppO is not yet initialized, therefore it cannot perform any optimization.

• Initialized – initialized optimizer waits in this state for optimization of the whole

application request from Runtime Library.

• Optimizing – GrAppO performs the application optimization (on request of Runtime

Library). A mapping Grid Object Class : solution is created.

• Ready – at this stage the optimization is completed and the optimizer is waiting for

incoming solution assignment requests from Grid Object Optimizer.

• Analyzing Solution Mapping – GrAppO analyzes the solution mapping created

during the optimization and, on that basis, chooses solution for the Grid Object passed

by the invoker. In some cases an additional optimization (similar to the one in short-

sighted mode) is needed.

The following transitions are allowed:

• Null�Created – this transition is triggered by a call to GrAppO constructor, during

the transition the optimizer is being created.

• Created�Initialized – initialization of the optimizer.

• Initialized�Optimizing – a transition triggered by an optimization request from

Runtime Library.

• Optimizing�Ready – the optimization is being performed and the results stored as a

list of Grid Object Class : solution mapping.

• Ready� Analyzing Solution Mapping – a transition triggered by a solution

assignment request from Grid Operation Invoker. For invoker the request could be

indistinguishable from the GOI’s optimization request in previous scenario. However,

in this case, the request must carry an application identifier.

• Analyzing Solution Mapping�Ready – after analysis of the solution mapping that

that takes place in the Analyzing Solution Mapping state, the results are returned to

Grid Operation Invoker.

• Ready�Null, Initialized�Null – destroying the optimizer instance – could be done

automatically by a garbage collection mechanism.

ViroLab Optimizer Design

Optimization of Grid Application Execution 46

4.7 Control Flow Inside GrAppO

The subsections 4.7.1, 4.7.2, and 4.7.3 describe the general sequence of calls between

GridSpace Application Optimizer components and external subsystems during optimization in

short-, medium-, and far- sighted optimization scenarios, respectively.

4.7.1 Short-Sighted Optimization Mode

The flow of control in GridSpace Application Optimizer while performing short-sighted

optimization is illustrated by the sequence diagram on Figure 12. The detailed description of

each method call is provided further in this subsection.

The interpretation of the calls presented on the diagram is as follows:

1: Grid Operation Invoker requests optimization – an assignment of Grid Object Instance or

data necessary to create it to the given Grid Object Class. It is also possible to pass a Grid

Object Implementation name to GrAppO (namely, its façade – GrAppO Manager) – only

the solutions including this implementation will be chosen then.

2: GrAppO Manger queries the Grid Resource Registry for any relevant information

about the obtained Grid Object Class (or Grid Object Implementation). These

information was specified in section 4.3.1.

3: GrAppO Manager provides the main optimization engine (Optimization Engine) with

the data obtained from registry and requests for the solution.

4: Performance Predictor is called to estimate invocation time and resource consumption

for each solution. It is provided with the data from the registry.

5a: Request for analysis of the resources condition to a dedicated component – Resource

Condition Data Analyzer. URLs of the resources are passed as an argument of the call.

6a: Resource Condition Data Analyzer queries the Monitoring System for resource state

information with the obtained URLs.

7a: The results of the analysis are returned to Performance Predictor.

5b: Request for analysis of the historical data concerning previous Grid Object Instances

performance. It is sent to a dedicated component – Historical Data Analyzer. The call

passes a list of Grid Object Implementations and a list of URLs to resources.

6b: Historical Data Analyzer queries the Provenance Tracking System for the information

with the obtained Grid Object Implementations and resource URLs. This two

arguments allow the Provenance Tracking System to find: for all Grid Object

Implementations and for all URLs: all the Grid Object Instances that were built from

the given implementation on the given URL. When no Provenance Tracking System

implementation is available, the call is replaced by a query to Performance Data

Database (see section 4.4 for a detailed description of this solution).

7b: The results of the analysis are returned to Performance Predictor.

8: On the basis of the analysis results, the estimation of execution costs for each solution

is calculated.

9: The results of the estimation are returned to Optimizer Engine.

10: Basing on the estimation made by Performance Predictor and using certain

optimization algorithm, Optimizer Engine chooses the most optimum solution.

11: The solution is returned to GrAppO manager and then

12: to Grid Operation Invoker.

Note: Operations 5a-7a can be performed in parallel with 5b-7b.

V
iro

L
a
b
 O

p
tim

izer D
esig

n

O
p
tim

iza
tio

n
 o

f G
rid

 A
p
p
lica

tio
n
 E

xecu
tio

n

4
7

Figure 12: A sequence diagram illustrating the flow of control in GrAppO during short-sighted optimization

GrAppO ManagerGRRGOI Monitoring System PROToSOptimization Engine Performance Predictor RCDA HDA

1: optimize(GObClass)

2: GObData :=

getInformation(GObClass)

4: estimatePerformance

(GObData)

3: findOptimumSolution

(GObData)

5a: analyzeResources

Condition(URL[])
6a: getResources

Condition(URL[])
7a: returnRanked

Resources

5b: analyzeHistoricalData

(GObImpl[], URL[])
6b: getHistoricalData

(GObImpl[], URL[])

7b: returnRankedData

8: estimate

Performance()

9: returnRankedData

10: assignSolution()

11: returnSolution

12: returnSolution

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

PROToS – Provenance Tracking System

HDA – Historical Data Analyzer

RCDA – Resource Condition Data Analyzer

Key

ViroLab Optimizer Design

Optimization of Grid Application Execution 48

4.7.2 Medium-Sighted Optimization Mode

The sequence diagram (Figure 13) in this scenario is very similar to the one in case of short-

sighted optimization (Figure 12). The main difference can be seen in method calls, which carry

a list of arguments (or contain a list of solutions in the resulting value) instead of just one. The

main scheme of the optimization is the same as in the previous case.

In comparison to the control flow in short-sighted optimization mode, the significant difference

appears in the first calls. In this scenario, the request from Grid Operation Invoker (1) contains

a list of Grid Object Classes instead of just one. Similarly, the query to Grid Resource Registry

(2) includes a list of classes.

Certainly, the implementation of subsequent operations has to support the case of multiple Grid

Object Classes, but the methods 5-8 can be exactly the same. The value returned to the invoker

also has to carry solutions for all the requested Grid Object Classes (in the form of Grid Object

Class : solution mapping).

V
iro

L
a
b
 O

p
tim

izer D
esig

n

O
p
tim

iza
tio

n
 o

f G
rid

 A
p
p
lica

tio
n
 E

xecu
tio

n

4
9

Figure 13: Part of a sequence diagram that illustrates the flow of control in GrAppO during medium-sighted optimization

GrAppO ManagerGRRGOI Monitoring System PROToSOptimization Engine Performance Predictor RCDA HDA

1: optimize(GObClass[])

2: GObData[] :=

getInformation(GObClass[])

4: estimatePerformance

(GObData[])

3: findOptimumSolution

(GObData[])

5a: analyzeResources

Condition(URL[])
6a: getResources

Condition(URL[])
7a: returnRanked

Resources

5b: analyzeHistoricalData

(GObImpl[], URL[])
6b: getHistoricalData

(GObImpl[], URL[])

7b: returnRankedData

8: estimate

Performance()

9: returnRankedData

10: mapSolutions()

11: returnSolution

Mapping
12: returnSolution

Mapping

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

PROToS – Provenance Tracking System

HDA – Historical Data Analyzer

RCDA – Resource Condition Data Analyzer

Key

ViroLab Optimizer Design

Optimization of Grid Application Execution 50

4.7.3 Far-Sighted Optimization Mode

The control flow in far-sighted optimization can be divided into two phases:

1. The solution mapping is being created – whole application optimization is being

performed. The mapping form is similar to the one used in case of medium-sighted

optimization.

2. The optimizer is answering the requests from Grid Operation Invoker with already

assigned solution.

GridSpace Application Optimizer has to maintain its state throughout the two phases and

between them.

The sequence diagrams for the two phases are displayed on Figure 14 and Figure 15,

respectively.

The first phase is very similar to medium-sighted optimization. However, in this case, it is

Runtime Library that requests the optimization (1) – not Grid Operation Invoker. The request

parameter is different as well, since here it has to be the whole application. What is more, to

query Grid Resource Registry, the Grid Object Classes first have to be extracted from the

application code or graph (2). During this process also an application graph can be built and the

Grid Operation calls reordered.

The final solution mapping (11) should contain solutions for all the application classes. Some

of them may not be possible to compute at this stage though. In such case, for some of the

classes, an additional optimization (search for solutions) have to be performed in the second

phase.

V
iro

L
a
b
 O

p
tim

izer D
esig

n

O
p
tim

iza
tio

n
 o

f G
rid

 A
p
p
lica

tio
n
 E

xecu
tio

n

5
1

 Figure 14: A sequence diagram illustrating the flow of control in GrAppO during the formation of solution mapping (first phase) in far-sighted optimization

GrAppO ManagerGRR Monitoring System PROToSOptimization Engine Performance Predictor RCDA HDA

1: optimize(Application)

3: GObData[] :=

getInformation(GObClass[])

5: estimatePerformance

(GObData[])

4: findOptimumSolution

(GObData[])

6a: analyzeResources

Condition(URL[])
7a: getResources

Condition(URL[])
8a: returnRanked

Resources

6b: analyzeHistoricalData

(GObImpl[], URL[])
7b: getHistoricalData

(GObImpl[], URL[])

8b: returnRankedData

9: estimate

Performance()

10: returnRankedData

11: mapSolutions()

12: returnSolution

Mapping

Runtime Library

2: processApplication()

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

PROToS – Provenance Tracking System

HDA – Historical Data Analyzer

RCDA – Resource Condition Data Analyzer

Key

ViroLab Optimizer Design

Optimization of Grid Application Execution 52

GrAppO ManagerGOI

1: optimize(GObClass)

3: returnSolution

GOI – Grid Operation Invoker

GRR – Grid Resource Registry

Key

2: checkSolution

Mapping()

Figure 15: A sequence diagram illustrating the flow of control in GrAppO while answering the requests

from GOI (second phase) in far-sighted optimization

In the second phase GrAppO awaits for requests from Grid Operation Invoker, keeping the

session. When a request occurs (1), the optimizer analyzes the solution mapping (2) to find a

solution for the requested Grid Object Class, which is then passed to the invoker (3). If no

solution was provided, the optimization like in short-sighted mode is performed.

4.8 Summary

In this chapter the design of the implementation of ViroLab Optimizer – GridSpace Application

Optimizer (GrAppO) was provided. Its architecture was prepared regarding the requirements

specified in section 3.3 and for each of the optimization modes described in 3.4.3 an evaluation

scenario was presented – including the analysis of GrAppO states and the control flow among

its components.

The chapter provided a complete design of the requested optimization system – GridSpace

Application Optimizer. However, considering the progression of work on its environment,

some of the designed features are currently impossible to implement (the scope of the

implementation is specified in section 5.1).

Optimization of Grid Application Execution 53

Chapter 5: GridSpace Application Optimizer

Implementation Details

In the following chapter implementation of the most important modules of GridSpace

Application Optimizer is described, beginning with the scope of the implementation. The way of

using GrAppO is then presented, including its configuration details and API description. The

class diagrams can be viewed in Appendix B. In the last section the tools used during GrAppO

design and development process are listed.

5.1 Current GrAppO Implementation Scope

For the purpose of this thesis only short- and medium- sighted optimization was implemented.

This is because the far-sighted optimization introduces a great amount of new problems to be

solved e.g. building the application graph
8
, not bringing any significant performance

improvements in comparison to medium-sighted optimization. What is more, the Runtime

Library component is not yet adapted to provide the application in any form to GrAppO.

Although the connections to Monitoring and Provenance Tracking Systems are not yet

available (the systems are not configured to receive and answer requests), the analysis of data

obtained from the Monitoring and Provenance Tracking Systems is implemented in GrAppO –

using mock components that produce test data. The listener and database gathering provenance

data from Monitoring infrastructure (the solution is described in 4.4) were not implemented.

5.2 GrAppO Configuration

One of the required features (see section 3.3) of GridSpace Application Optimizer is to be able

to use different, pluggable optimization algorithms and policies. As a realization of this

mechanism, an Optimization Policy was introduced.

Since the optimization quality improves when it interacts with other ViroLab components (see

section 4.3) a way of configuration access to them is provided in GrAppO as well. By using this

option, default links to services of these components can be replaced with links to their other

instances offering a wider and more accurate set of information and/or a better connection

quality.

5.2.1 Optimization Policy Usage Schema

The Optimization Policy can be configured externally, in a static way or passed from an

application execution service. Therefore, the configuration is implemented in two ways: it

8
 This functionality is planned to be implemented as an external module, placed in ViroLab Virtual

Laboratory Runtime, as other ViroLab subsystems may need to use the graph as well.

GridSpace Application Optimizer Implementation Details

Optimization of Grid Application Execution 54

could be specified either by an instance of inner GrAppO class, or with an external XML or

properties text configuration file. A visualization of the two possible solutions is presented on

Figure 16 and Figure 17, respectively. A sample property (optimization algorithm)

configuration is also illustrated there.

Figure 16: Optimization Policy as an inner GrAppO class with optimization algorithm configured

Figure 17: Optimization Policy read from an external configuration file with optimization algorithm

configured

5.2.2 Properties Configured with Optimization Policy

The properties which can be defined with Optimization Policy include:

• Optimization algorithm – the algorithm implementation that should be used to perform

optimization (the simplest one could be choosing random Grid Object Instance from

the available). Certainly, the optimization algorithm implementation does not have to

be placed inside GridSpace Application Optimizer as shown on Figure 16 and Figure

17 – it can be any external implementation of the optimization algorithm interface

specified by GrAppO.

• Preferred implementation type – this feature defines which service implementation

technology should be preferred to others (e.g. the preference could be given to services

implemented as MOCCA components). It also says whether other than preferred

implementation technologies will be allowed.

• Whether the preference should be given to the services which use less RAM / CPU

rather than to others. If both options are used, GrAppO will try to choose the solution

that keeps balance between utilization of these resources.

• Whether Monitoring / Provenance Tracking System should be contacted to obtain

useful optimization data or the connection shouldn’t be allowed.

• Algorithms that should be used to process and analyze the data retrieved from

Monitoring / Provenance Tracking System. These, like optimization algorithm are

pluggable.

Should no Optimization Policy be specified, a default configuration is used.

GridSpace Application Optimizer Implementation Details

Optimization of Grid Application Execution 55

5.2.3 Service Access Configuration Usage Schema

The ways of implementation of Service Access Configuration are analogous to these used in

case of Optimization Policy (see Figure 18 and Figure 19). However, these the two

configurations are fully independent.

Figure 18: Service Access Configuration as an inner GrAppO class

Figure 19: Service Access Configuration read from an external configuration file

5.2.4 Properties Configured with Service Access Configuration

Service Access Configuration consists of three properties:

• Grid Resource Registry service URL – this property is mandatory as GrAppO cannot

be used without a connection to the registry.

• Monitoring System service URL – optional.

• Provenance Tracking System service URL – optional.

5.3 Using GrAppO

Grid Application Optimizer is distributed as a java library (grappo-<version>.jar). It can

be downloaded from http://virolab.cyfronet.pl/maven2/cyfronet/gridspace/grappo/grappo/ or

defined as Maven2 dependency (for instructions how to do it see Appendix A). When the

library is added to a project classpath, methods which the optimizer publishes can be invoked.

The methods published for Grid Operation Invoker are a part of to the main GrAppO class:

cyfronet.gridspace.grappo.GridspaceApplicationOptimizer (it is an equivalent

of the GrAppO Manager component façade). This section contains the method signatures and

description, which are also available in GrAppO javadoc documentation at https://zeus45.cyf-

kr.edu.pl/~asia/grappo/apidocs/index.html.

5.3.1 Constructors

After invocation of these methods, GrAppO state changes to created (see section 4.6 for

analysis of the optimizer’s states):

• GridspaceApplicationOptimizer() – creates GrAppO instance with default

configuration.

• GridspaceApplicationOptimizer(OptimizationPolicy) – creates GrAppO

instance with the given Optimization Policy (the policy class is a member of the

cyfronet.gridspace.grappo.configuration package).

• GridspaceApplicationOptimizer(File) – creates GrAppO instance with

Optimization Policy parsed from the specified configuration file. This method may

throw GridspaceApplicationOptimizerInitializationException in case

when the configuration file is improper.

GridSpace Application Optimizer Implementation Details

Optimization of Grid Application Execution 56

5.3.2 Initialization Methods

A successful invocation of one of the following methods causes GrAppO to change to the ready

state (see section 4.6):

• init(String) – initializes the GrAppO instance, configuring it to use URL passed as

an argument to establish connection to Grid Resource Registry service.

• init(ServiceAccessConfiguration) – initializes the GrAppO instance,

configuring it to use the provided Service Access Configuration to establish

connections to Grid Resource Registry, Monitoring System, and Provenance Tracking

System services. The service configuration class is a member of the

cyfronet.gridspace.grappo.configuration package)

• init(File) – initializes the GrAppO instance, configuring it to use the Service

Access Configuration read from the specified file to establish connections to Grid

Resource Registry, Monitoring System, and Provenance Tracking System services.

These methods throw a GridspaceApplicationOptimizerInitializationException

if the initialization fails due to inability to find the specified services or improper service

configuration.

5.3.3 Optimization Requests

A call to one of the optimize(…) methods triggers optimization, transferring the optimizer to

the optimizing state (see section 4.6). Application Context passed as their last argument

represents an identifier of the application for which the optimization was requested. It contains

also credentials of the user who executed it and is later used to authenticate in the services

GrAppO uses.

The optimization request can have one of the following syntax:

• optimize(String, ApplicationContext) – triggers the optimization for Grid

Object Class provided as the first argument.

• optimize(String, String, ApplicationContext) – triggers the optimization

for Grid Object Class provided as the first argument using only instances of Grid

Object Implementation passed as the second argument. If the implementation is null,

the method acts like the previous one i.e. considering all instances of the class.

• optimize(String[], ApplicationContext) – triggers the optimization for Grid

Object Classes provided as the first argument.

• optimize(String[], String[], ApplicationContext) – triggers the

optimization for Grid Object Classes provided as the first argument using only

instances of Grid Object Implementations passed as the second argument. If some of

the implementations are null, all instances of the class will be considered.

These methods throw either a NoAvailableResourcesException if no resources can be

found in the registry for the provided Grid Object Class / Implementation, or a

GridspaceApplicationOptimizerException if an internal GrAppO error occurs.

5.3.4 Getters and Setters

A value of arguments passed in constructors and initializers can later be changed by calling an

appropriate setter method and obtained with proper getter method. The parameters that can be

modified and viewed are:

• Optimization Policy – methods: getOptimizationPolicy(),

setOptimizationPolicy(OptimizationPolicy);

• Grid Resource Registry service URL – methods: getRegistryServiceURL(),

setRegistryServiceURL(String);

• Service Access Configuration – methods: getServiceAccessConfiguration(),

setServiceAccessConfiguration(ServiceAccessConfiguration).

GridSpace Application Optimizer Implementation Details

Optimization of Grid Application Execution 57

Application Context is read-only – it can be obtained by calling an appropriate getter method

(getApplicationContext()).

5.3.5 Using Configuration Classes

As stated in section 5.2, GridSpace Application Optimizer can be configured either with a

proper instance of a configuration class or with a configuration file.

In case of the optimization policy (class OptimizationPolicy), if configuration with a class

is requested, the following variables (in accordance to the list in section 5.2.2) has to be set

(with respective getter and setter methods):

• optimizationAlgorithm – instance of the OptimizationAlgorithm class

(package: cyfronet.gridspace.grappo.engine). Default:

cyfronet.gridspace.grappo.sample.RandomOptimizationAlgorithm.

• preferredType – one of the types enlisted in an enumeration object from the library

provided with Grid Resource Registry service –

cyfronet.gridspace.grr.GridObjectType. Default: null (meaning any).

• strictTypePreferrence – a boolean value determining whether other than

preferred implementations types will be used (false) or not (true). Default:

false.

• useMonitoring – a boolean value indicating whether the Monitoring System

service will be used (true) or not (false). Default: false.

• useProvenance – similarly to the useMonitoring variable, decides about using

Provenance Tracking System service. Default: false.

The values of the properties contained in ServiceAccessConfiguration class are of

java.lang.String type and can be read or written with the methods:

• get/setRregistryServiceURL – the URL to the Grid Resource Registry service.

Cannot be null.

• get/setMonitoringServiceURL – the URL to the Monitoring System service.

Default: empty.

• get/setProvenanceServiceURL – the URL to the Provenance Tracking System

service. Default: empty.

5.3.6 Using Configuration Files

In section 5.3.5 a description of GrAppO configuration with a class was provided. In this

section the configuration using configuration files will be discussed. The configuration files for

both the optimization policy and service access configuration must be in one of the formats

presented in Appendix D and contain the described further properties.

If optimization policy configuration file misses one of the properties, the default values of

OptimizationPolicy class are used (these default values were provided with the

enumeration in section 5.3.5). The key-value properties that can be placed in the file are (they

are listed in the same order as the corresponding variables in section 5.3.5):

• optimization.algorithm – the value has to be a fully qualified name of the class

that implements the OptimizationAlgorithm interface.

• preferred.service.type – one of the values: WS, MOCCA, WSRF, JOB.

• preferred.strict – true or false value.

• use.monitoring – true or false value.

• use.provenance – true or false value.

In case of service access configuration, the key-value properties that can be placed in the

configuration file are:

• registry.url – URL to Grid Resource Registry service.

GridSpace Application Optimizer Implementation Details

Optimization of Grid Application Execution 58

• monitoring.url – URL to Monitoring System service.

• provenance.url – URL to Provenance Tracking System service.

The registry.url property value has to be provided – otherwise the configuration file is

invalid.

5.4 Tools Used for GrAppO Design and Development

For the purpose of design and development of the present project, the following tools were

used:

5.4.1 Design

Microsoft Visio – a member of Microsoft Office package, used for creating all of the diagrams

contained in this thesis (except for Figure 1, which was copied from the ViroLab design

document [4]).

5.4.2 Development

Eclipse SDK (http://www.eclipse.org) – a programming environment, which was used for

implementation of all the project’s classes. Version: 3.2.2

Subversion (http://subversion.tigris.org/) – a version control system, that facilitated maintaining

consistency of the implementation code.

Maven (http://maven.apache.org/) version:2.0.6, and Ant (http://ant.apache.org/) version: 1.7.0

– for project code, releases, and homepage ([25]) management.

XFire (http://xfire.codehaus.org/) library – required to implement connection to Grid Resource

Registry. Version: 1.2.6.

JUnit (http://www.junit.org/) – testing framework, used in the project for writing and

performing unit tests as well as some integration tests. Version: 3.8.1.

Cobertura (http://cobertura.sourceforge.net/) – used as maven plug-in for generating test

coverage reports.

Enterprise Archtect (http://www.sparxsystems.com.au/) – a tool used for class diagrams

generation using reverse engineering.

5.4.3 Other

For collaboration with other ViroLab Virtual Laboratory GForge system (http://gforge.org/)

containing GrAppO project [24], and developer’s Wiki pages [8] were used.

5.5 Summary

During the implementation of GrAppO 85 Java classes were created. The total number of

source code lines is about 9500. Apart from plain Java classes, dedicated XML files with

configuration were created. The source code can be viewed under

http://gforge.cyfronet.pl/viewvc/trunk/?root=grappo or checked out from Subversion repository

https://gforge.cyfronet.pl/svn/grappo/trunk.

GrAppO as a final product is distributed as a Java archive library, which size (without

dependencies) is 50kB. With all dependent libraries the size of the distribution is 2.5MB.

Optimization of Grid Application Execution 59

Chapter 6: Tests of GridSpace Application

Optimizer

This chapter contains a description of test methods and techniques used to control GridSpace

Application Optimizer execution and performance, along with the results of the performed

tests.

6.1 Introduction

The process of testing involved measurement of the optimization quality from different points

of view. Unit tests were performed to prove the correctness and completeness of individual

units of source code of GrAppO. Integration tests were used to validate the connections to other

components
9
 of ViroLab Virtual Laboratory Runtime – Grid Resource Registry and Grid

Operation Invoker (the other modules – Runtime Library and components of the Middleware

Layer – Monitoring System and Provenance Tracking System were not yet implemented).

Finally, quality tests were executed to verify the usefulness of GrAppO operations in a given

environment.

6.2 GrAppO Unit Tests

Unit tests were implemented
10

 for all GrAppO components during or before their development.

They were intended to show that the optimizer works correctly with all kinds of input data –

including the proper behaviour in case of incorrect input. To release the project, all the unit

tests had to be passed.

The information about all the performed unit tests were assembled in the sections: 6.2.1-6.2.4.

The most detailed tests were performed for the GrAppO Manager (6.2.1) component, since it is

the interface (façade), GridSpace Application Optimizer exposes for requests from other

ViroLab components (external to GrAppO). This is why it has to be tested against various, also

erroneous input – to develop proper error handling and resistance.

Note: For the explanation of the roles of modules under test please see section 4.2.

9
 See section 3.2.3 for the summary of communication channels to other ViroLab components and

section 1.1.4 for the situation of these components in ViroLab Virtual Laboratory architecture.
10

 All unit tests were performed using the JUnit framework (see also 5.4.2).

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 60

6.2.1 GrAppO Manager Tests

GridspaceApplicationOptimizerTest11 - tests the functionality of the main component –

GrAppO Manager. The detailed description of the methods of this test can be found in Table 1.

Test method name Description

testConstructors Runs each of the GridSpace Application Optimizer constructors (see

also 5.3.1). Optimization policy configuration files were tested both

for XML and .properties format.
testInit Tests all the initialization methods using the Grid Resource Registry

URL and service access configuration files in both formats. The init

method were also called with files containing errors – to catch the

proper exception.
testOptimize Checks whether the optimization methods work correctly –

including proper Grid Object Class names and the ones that are not

present in the repository. An attempt to query GRR, when its service

URL is improper was also performed.
testTypePreference Tests whether GrAppO, configured to choose only one type of Grid

Object Implementation does not choose another type.

Table 1: GrAppO Manager main unit test information

Additional GrAppO Manager tests included tests of the classes that perform parsing of the

configuration files: ConfigurationFileReader and OptimizationPolicyBuilder.

Test name Description

ConfigurationFileReaderTest Tests the two static methods of the class that parse:

(first) optimization policy or (second) service access

configuration file. The files were given in XML and

.properties format. Improper file paths were also used

to obtain a proper exception.
OptimizationPolicyBuilderTest Tests building an optimization policy class from the

configuration read from configuration file.

Table 2: Additional tests for GrAppO Manager

6.2.2 Optimization Engine Tests

Tests of the Optimization Engine component include the test of the component interface –

OptimizationEngine class along with test of all the implemented optimization algorithms.

The test methods of the OptimizationEngineTest were presented in Table 3.

Test method name Description

testConstructor Runs the Optimization Engine constructor with an optimization policy

class or null – to check the exception handling.
testOptimize

testOptimizeList

Checks whether the optimization methods work correctly – for both

optimization of single Grid Object (short-sighted) and a group of Grid

Objects (medium-sighted).

Table 3: Optimization Engine main unit test information

11

 the test names consist of the class name and the suffix ‘Test’ – e.g. the test for the class ‘ClassTest’

is named ‘ClassTest’

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 61

The various implemented optimization algorithms were tested with

OptimizationAlgorithmsTest test class methods, enumerated in Table 4.

Test method name Description

testXXXAlgorithm Tests each implemented optimization algorithm (XXX means any

algorithm that was implemented in the system – e.g. Random, Min-

min, Max-min, Suffrage). Each algorithm implementation is provided

with correct, incomplete, empty and null data set to monitor its

behaviour in case of proper and improper input. The output is also

compared to the expected.

Table 4: Implemented optimization algorithms tests

6.2.3 Performance Predictor Tests

The Performance Predictor component test performed calls to all the component’s main

methods – constructor and prediction methods. The tests of prediction used various

combinations of generated data. A short summary of the test is provided in Table 5.

Test method name Description

testConstructor Runs the Performance Predictor constructor with

monitoring and provenance service URL. Tests

also empty URLs, which should not cause an error.
testPredictMonitoring Checks whether the predictor obtains data from

monitoring service and transforms it correctly to a

performance estimation.
testPredictProvenance Checks whether the predictor obtains data from

provenance service and transforms it correctly to a

performance estimation.
testPredictMonitoringProvenance Checks whether the predictor obtains data both

from provenance and monitoring services and

transforms it correctly to a performance estimation
testPredictList Checks whether the predictor obtains data from

provenance and monitoring services and whether

the estimated values are correct – for a group of

Grid Objects (medium-sighted optimization).

Table 5: Performance Predictor unit test information

6.2.4 Resource Condition Data Analyzer and Historical Data Analyzer Tests

The two components were tested by generating various sets of data for analysis – simulating the

results of queries to Monitoring System (in case of Resource Condition Data Analyzer) and to

Provenance Tracking System (in case of Historical Data Analyzer). These included also

corrupted data. Table 6 summarizes these components’ test information.

Test name Description

ResourceConditionDataAnalyzerTest

HistoricalDataAnalyzerTest

Both contain a testAnalyze() method, which

performs the component’s analysis on generated

sets of data.

Table 6: A summary of Resource Condition Data Analyzer and Historical Data Analyzer tests

6.2.5 Test Reports

The tests described in sections 6.2.1 and 6.2.2 concern the GridSpace Application Optimizer

part that was released and integrated into ViroLab Runtime release (see also 6.3). They are

therefore summarized by test reports, which can be viewed at the GrAppO homepage [25]

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 62

under Maven Surefire Report in Project Reports section. A part of this report is also displayed

on Figure 20.

Figure 20: A part of GrAppO tests report

The released part GridSpace Application Optimizer (see earlier in this section) was also

investigated with a test coverage reporting tool – Cobertura (http://cobertura.sourceforge.net/).

Its report indicates the percent of project code covered by unit tests. A part of it is presented on

Figure 21. A more detailed view on it is available at the GrAppO homepage [25] under

Cobertura Test Coverage link in Project Reports section.

Figure 21: A test coverage reports for GrAppO main part

The report shows that all the main GrAppO classes were fully covered with unit tests.

6.3 GrAppO Integration Tests

GridSpace Application Optimizer was successfully integrated with Grid Resource Registry and

Grid Operation Invoker. Both of this connections were tested during the successive ViroLab

Runtime prototype releases. Additionally, the connection to the registry is being checked with

unit tests (see 6.1).

The ViroLab Virtual Laboratory Runtime releases are the best integration tests for the

optimizer. Therefore, in this section screen-shots showing also execution logs of ViroLab

experiments
12

 runs are shown. The experiments are ready ViroLab applications, designed also

12

 The scripts are distributed under a MIT License which can be found in Appendix C along with the

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 63

for the purpose of ViroLab Runtime integration testing – one of them is used for an alignment

of a viral DNA strain, the other one uses data mining for a weather prediction. Their sources

can be found in Appendix C.

The figures: Figure 22 and Figure 23 show screen-shots of command line execution of two of

the ViroLab experiments. The logs of Grid Operation Invoker and GridSpace Application

Optimizer (set to the DEBUG mode) indicate the following steps important from the point of

view of integration between components:

• request for optimization (GOI),

• query to the Grid Resource Registry (GrAppO),

• GRR response (GrAppO),

• optimization – choosing and returning to GOI the ID of one of the obtained instances

(GrAppO),

• receiving response from GrAppO (GOI)

These steps are marked with red frames on both screen-shots.

Figure 22: A screen-shot of a ViroLab experiment run from MS Windows command line – Grid

Operation Invoker debug logs show a result of the call to GrAppO optimization method (marked with the

red frame)

experiments contents and basic information about them.

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 64

Figure 23: A screen-shot of another ViroLab experiment – this time Grid Operation Invoker calls the

GrAppO optimization method twice (again the request and result log parts are marked with red frame)

It is easy to see that the optimizer works in either short- or far- sighted
13

 optimization mode

here. Especially the Figure 23 shows that – since two calls for single Grid Object Instance took

place there.

Figure 24 and Figure 25 show the usage of ViroLab Virtual Laboratory Runtime with GrAppO

through a Graphical User Interface for Experiment Developers (for ViroLab users see 1.1.3) –

13

 In fact it was the short-sighted optimization, since far-sighted optimization was not implemented for

the present thesis (see 5.1)

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 65

the Experiment Planning Environment. The scripts presented on the screen-shots were the same

as the ones used for preparing the visualizations from Figure 22 and Figure 23.

Figure 24: A screen-shot of an execution of the experiment that was also presented on Figure 22; the

experiment was run using the Experiment Planning Environment – a Graphical User Interface for the

ViroLab Runtime

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 66

Figure 25: A screen-shot of an execution of the experiment that was also presented on Figure 23; as with

Figure 24, Experiment Planning Environment was used for the experiment execution

6.4 GrAppO Quality Tests

The section presents information about the methods and techniques that were used to prove the

utility of GridSpace Application Optimizer in ViroLab Runtime System and the quality of the

information that can be obtained from it depending on the environment.

The aim of the quality tests was to show general trends of the optimization quality and its

dependence on different parameters of the environment. The test results presented in this

section (subsections 6.4.3-6.4.5) were obtained for the test environment described in section

6.4.1 and on a single machine. Therefore, although the tests were repeated may times, the

results may slightly differ depending on the environment condition and their repeatability

cannot be guaranteed.

6.4.1 Test Environment

At the current stage of development of the ViroLab Runtime System, not all its components are

available. The sources of information for GridSpace Application Optimizer are limited as

Monitoring System and Provenance Tracking System services have not been completed yet and

the Grid Resource Registry contains only the small amount of the sample data. Taking this into

consideration, the performance tests of GrAppO appeared to be infeasible to perform in the

target environment.

To solve this problem, a simulated ViroLab Runtime environment had to be developed. The

Grid Resource Registry, Monitoring System and Provenance Tracking System services were

implemented as mock components that offer only the functionality required by GridSpace

Application Optimizer. These are:

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 67

• GRRService – a component that provide the following functionality of Grid Resource

Registry (compare: GRRService interface on Figure 28):
o getOptimizationInfo(String gridObjectFullName, String

gridObjectImplementationName, GridObjectType

gridObjectType) – the method that can be used to obtain information about

the Grid Object Implementations of the given Grid Object Class and available

resources.
o getOptimizationInfo(List<String> gridObjectFullNames,

List<String> gridObjectImplementationNames, GridObjectType

gridObjectType) – a bulk version of the previous operation.

• MonitoringService – a component that provide the following functionality of

Monitoring System (compare: MonitoringService class on Figure 32):

o getResourcesInformation(Set<String> locations) – the method

enables to obtain information regarding the current state of resources in the

given locations

• ProvenanceService – a component that can be regarded as a substitution of

PROToS service with the following functionality (compare: MonitoringService

class on Figure 33):
o getProvenanceInfo(Set<String> implNames, Set<String>

locations) – the method is delegated to provide historical data about the

previous execution of operations on the given Grid Object Implementations in

the given locations

These components cannot communicate with the original sources of information they have to

obtain the required information in other way. What is more, since the data are only necessary

for the testing purposes, they can be randomly generated if only they meet general constraints

regarding the information from these components.

In order to make the test environment more generic, the components implementation use the

information from previously generated XML files. These files contain data specified to each

component that are serialized to a format of XML. They can be automatically generated by a

provided generator or created manually. Thanks to such a solution the process of testing

becomes more precise. An example of such XML file with generated data can be viewed in

Appendix E.

Every execution of a test in the environment has to define files that will be the source of needed

data. In this way different optimization techniques can be performed using the same data in

order to compare their achievements. Therefore the performance of a single technique can be

verified according to the varied amount of data.

The amount of generated test data can be configured a priori by:

• number of available resources,

• maximum number of Grid Object Class definitions available in Grid Resource

Registry,

• maximum number of Grid Object Implementations per one Grid Object Class,

• maximum number of Grid Object Instances per one Grid Object Implementation

• maximum number of kernels per one Grid Object Class.

The generators produce various numbers of these elements (up to the maximum number) which

simulate the actual situation in the Grid Resource Registry.

6.4.2 Tests Objective Function

Optimizers in Grid environments can use a variety of optimization criteria, such as

maximization of resource utilization, minimization of the cost to the user or minimization the

makespan. For the purpose of these testing the latest criterion was selected as GridSpace

Application Optimizer is an application centric optimizer (see 3.4.2). The following paragraphs

define additional terms related to this criterion. The definitions were based on [22].

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 68

Expected completion and execution time:

• Expected completion time (CTjr) of the job j on the resource r is defined as a moment

of time when the resource r completes the job j (after finishing execution of all

previously planned jobs and executing the job j).

• Expected execution time (ETjr) of a job j on a resource r can be regarded as an

amount of time needed by the resource r to execute the job j assuming that the resource

r has no load at the moment of the assignment the job j to it.

Let Tr be the time when the resource r is able to initialize the execution of any not assigned yet

job. From the aforementioned definitions the expected completion time can be defined as:

CTjr = Tr + ETjr.

Let R be the set containing resources available in an environment. Let J be the set of jobs and

each job j is to be assigned to any resource r from the set R. Then, the makespan for the

complete assignment is defined as:

)(max jr
Jj

CT
∈

The makespan is a measure of the throughput of the heterogeneous computing system. The

objective function is to minimize the makespan.

In order to compute the metrics of the makespan in GridSpace Application Optimizer,

additional sources of information have to be used. These are the mock components described in

6.4.1 – the data concerning expected completion time of Grid Object Instance (jobs) is obtained

from ProvenanceService and the data about the time of availability of the resources

(locations) is provided by MonitoringService.

6.4.3 Comparison of Effectiveness of Different Optimization Modes

In section 3.4.3 three optimization modes for GridSpace Application Optimizer were specified:

short-, medium- and far- sighted optimization. As explained in 5.1, at the current stage of

development GrAppO can be run in short- and medium- sighted optimization modes, while it

does not offer far-sighted optimization. Therefore testing of GrAppO optimization effectiveness

involves only the two available modes.

The tests assume availability of all necessary data produced by local implementations of

ProvenanceService and MonitoringService (see section 6.4.1). During the execution of

the tests random data from the services were generated with the constraint that the maximum

expected execution time of Grid Operation is 500 seconds and the maximum time waiting for

the resource to become available is set to 1500 seconds. The data generated by GRRService

implementation followed the following constraints:

• maximum number of Grid Object Class definitions available in Grid Resource Registry

is set to 100 ,

• maximum number of Grid Object Implementations per one Grid Object Class is set to

10,

• maximum number of Grid Object Instances per one Grid Object Implementation is set

to 10

• maximum number of kernels per one Grid Object Class is set to 7.

The variable parameter in the test is a number of available resources and the number of Grid

Object Classes for the optimization. For each combination of a given number of resources and a

given number of Grid Object Classes a list with names of Grid Object Classes that have to be

optimized was randomly generated and passed to GridSpace Application Optimizer. The

elements in the list can be repeated. For each list the short-sighted optimization and the

medium-sighted optimization were performed. For a given combination of a number of

resources and the number of Grid Object Classes a test was performed 1000 times.

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 69

The results of the tests were collected in Table 7, Table 8 and Table 9 for the test cases that use

the list of Grid Object Classes containing 10, 20 and 50 elements, respectively.

Number of

resources

Improvement

of makespan

Percentage of

improved results

Percentage of

the same results

Average

improvement

5 5.78% 57.1% 27.0% 12.58%

10 4.58% 43.7% 49.7% 11.69%

20 2.87% 26.4% 71.5% 10.74%

Table 7: Test result for optimization of 10 Grid Object Classes

Number of

resources

Improvement

of makespan

Percentage of

improved results

Percentage of

the same results

Average

improvement

5 4.03% 61.7% 4.0% 11.70%

10 5.90% 61.1% 19.6% 12.23%

20 5.47% 51.0% 45.8% 11.23%

50 2.00% 20.2% 79.1% 10.28%

Table 8: Test result for optimization of 20 Grid Object Classes

Number of

resources

Improvement

of makespan

Percentage of

improved results

Percentage of

the same results

Average

improvement

5 2.95% 61.4% 0.0% 11.07%

20 5.59% 57.5% 19.4% 12.99%

50 4.05% 43.0% 53.1% 10.25%

100 2.21% 26.4% 72.6% 8.85%

Table 9: Test result for optimization of 50 Grid Object Classes

The meaning of the values in columns of the tables is as follows:

• Improvement of makespan – presents the average improvement of the makespan for

all results while using the medium-sighted optimization in comparison to the

short-sighted optimization mode.

• Percentage of improved results – shows the percentage of jobs that obtained a better

result (makespan) thanks to the introduction of the medium-sighted optimization mode

(in comparison to the short-sighted mode).

• Percentage of the same results – presents the percentage of jobs for which both

optimization modes provided the same solution.

• Average improvement – represents the average improvement of the makespan when

only the improved results are considered.

The improvement of the makespan depends on the number of available resources and the

number of Grid Object Class that are requested for the optimization. If the number of resources

is significantly greater than the number of the objects for the optimization, the improvement of

the makespan is the smallest. It is caused by the fact that with random generated data available

Grid Object Instances or Grid Object Implementations are distributed on random locations and

the probability of mapping two or more Grid Object Class to the same resource is smaller than

in the other cases. Therefore, the medium-sighted optimization suggests the solution very

similar to the solution of short-sighted optimization, which is shown by the significant amount

of the same solutions obtained from both optimization modes in such situation.

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 70

The best improvement of the makespan is observed for the situation when the number of

available resources is smaller that the number of Grid Object Classes for the optimization. The

rate of the improvement varies between 5.5% and 6.0% in the results of tests. However, if the

number of resources is significantly smaller than the number of Grid Object Classes, the

improvement is smaller (e.g. with 5 resources and 50 Grid Object Classes for the optimization

in the test the improvement was only 2.95%).

With the increase of proportion of the number of Grid Object Classes to the number of

available resources, the amount of improved results also increases. At the same time, the

amount of the same results from both modes decreases.

Taking into consideration only these results for which the makespan was improved, the average

rate of improvement is the best also for the situation when the number of resources is smaller

than the number of Grid Object Classes for optimizing. The improvement overcomes the level

of 12%.

6.4.4 Comparison of Effectiveness of Different Optimization Algorithms

In order to apply any reasonable optimization algorithm (for the description of different

algorithm please see section 2.3.4), again, external sources of information are needed –

represented by local implementations of ProvenanceService and MonitoringService

(see section 6.4.1).

In situations, when no additional optimization data (other than the implementations list

obtained from the Grid Resource Registry) is available, GridSpace Application Optimizer can

use an algorithm for choosing a random solution from all possible. As it almost always brings a

very week solution, it is discouraged. For the purpose of these tests, using algorithm that

chooses random solution could be treated as if no optimization was performed. In such case,

GrAppO if configured to use any other optimization algorithm, even in short-sighted

optimization mode, brings on average 200% better solution (minimizing the makespan). In

example tests GrAppO was requested to optimize 5 Grid Object Classes. Each test was

performed 1000 times.

The most common algorithms used for the minimizing the expected completion time –

Min-min and Max-min (for the algorithms description see section 2.3.4.1) – for random input

data give very similar results. However, Max-min heuristic gives better solutions when, among

the Grid Object Classes to optimize appears one or relatively small group of Grid Object

Classes with significantly longer execution time than the others. The improvement that this

heuristic brings in such a situation, as the tests proved, is at the rate 5.6% in comparison to

Min-Min heuristic.

6.4.5 Impact of Quality and Availability of Information from External Components

The previously described optimization quality tests (sections 6.4.3 and 6.4.4) assume the

GridSpace Application Optimizer sources of information provide a complete set of data – all

the requested information is obtained. However, in some cases not all the data is available,

therefore, the provided information is incomplete. The tests described in this sections were

aimed to investigate how GrAppO results are influenced by the lack of some information.

Assuming that if the optimization metrics is impossible to compute for some Grid Object

Classes a random solution is chosen, the tests were performed with regard to how much

information is missing. While simulating such situations, the test parameters were set as

follows:

• number of available resources is set to 10

• maximum number of Grid Object Class definitions available in Grid Resource Registry

is set to 100 ,

• maximum number of Grid Object Implementations per one Grid Object Class is set to

10,

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 71

• maximum number of Grid Object Instances per one Grid Object Implementation is set

to 10

A single step of the test involved generating the list with 20 names of Grid Object Classes. The

elements in the list could be repeated. Afterwards, the request for the optimization of these Grid

Object Classes was sent to the GrAppO. The optimization mode was set to medium-sighted and

the algorithm used was the Max-min heuristics. First, the optimization was performed assuming

all data from ProvenanceService and MonitoringService are available. After its

completion, a given amount of data was removed from the set obtained from

MonitoringService and the same request for the optimization was sent to the GrAppO

again. The test considered removing the following amount of data: 10%, 20%, 30%, 40%, and

50%. For each of the values the test was executed 1000 times. The results of the tests are shown

in Table 10.

Percentage of removed data Deterioration of makespan

10% 9.81%

20% 20.90%

30% 42.93%

40% 88.12%

50% 124.26%

Table 10: Influence of the availability of information on the makespan

As Table 10 shows, the lack of information from external data sources has significant influence

on the makespan. The more data are unavailable, the greater deterioration of the makespan is

observed. The relation is non-linear. With 10% of lacking information the rate of aggravation

of thee makespan is approximately at the same level – 9.81%, whereas, when half information

is unreachable, the deterioration of the makespan is 124%! This effect is caused by the

necessity of using of the algorithm that chooses random solution in for more Grid Object

Classes (see section 6.4.4 for the comparison of this algorithm to more advanced heuristics).

6.5 Conclusions

The target of this chapter was to present the results of testing the Grid Application Optimizer.

The report from Cobertura reporting tool showed that all main GrAppO classes code was fully

covered with unit tests, which, passed, suggest that GridSpace Application Optimizer responds

properly to all kinds of requests.

The integration tests that concern Grid Resource Registry and Grid Operation Invoker were

performed during preparing the ViroLab Virtual Laboratory Runtime releases and showed, by

executing ViroLab experiments, that the existing communication channels between

components are operating correctly.

The aim of the quality tests was to prove the utility of GrAppO in the ViroLab Runtime System

and verify the quality of information provided by it in different environment configurations.

Testing of two optimization modes (short-sight and medium-sight) showed that with a suitable

rate of available resources to Grid Object Classes for optimizing the medium-sight optimization

mode can achieve the improvement at the level 13% in the comparison to short-sighted mode.

In test cases Min-min and Max-min heuristics were used and gave satisfactory results.

However, for these heuristics additional data from external components are necessary. In a case

when the data is incomplete and the necessity of using a random algorithm for the optimization

appears, the results of the optimization worsen when the lack of information becomes more

significant.

Tests of GridSpace Application Optimizer

Optimization of Grid Application Execution 72

Optimization of Grid Application Execution 73

Chapter 7: Conclusions and Future Work

This chapter summarizes the thesis goals that were achieved during the work on it. It also

identifies the new challenges that emerged during the work on the project.

7.1 Conclusions

The main goal of the thesis – providing an optimizer for ViroLab was successfully achieved.

After the design process, the implementation and testing a correctly operating system can be

released. It offers the functionality that was possible to implement at the time, which is

described in 5.1.

During the design of GridSpace Application Optimizer a thorough research (Chapter 2) was

performed on optimization technologies for Grid Computing. Some of the heuristics analyzed

during the research and problem analysis (Chapter 3) were later implemented as GrAppO

optimization algorithms, giving satisfactory results.

The GridSpace Application Optimizer design was done in compliance with the requirements

identified in 3.3. Thanks to the possibility of using different optimization policies, service

access configurations, and pluggable optimization algorithms mechanism, GridSpace

Application Optimizer is an easily configurable and adaptive component. Its adjustability and

reliability can be extended by implementing the spare connection to Monitoring System (future

task: 0)

All the performed tests proved the completeness and correctness of the developed system. The

results of the execution of quality tests showed the introduction of different optimization modes

was beneficial. Thanks to adaptive techniques the results that GridSpace Application Optimizer

produces are improved and can improve the performance of the whole ViroLab Runtime

System. However, the optimizer is easily influenced by the quantity and the quality of

information gathered from external data sources – dependencies to other components of

ViroLab.

7.2 Future Work

In the future, the following work could be done to improve GrAppO optimization. Its

evaluation could also become a valuable research topic. The tasks for the future, presented in

the next subsections were ordered from the most to the least urgent.

Implementing Connections to Other ViroLab Components. It is the most urgent issue, as only

the information gathered by Grid Resource Registry are insufficient for any efficient

optimization (see test results in section 6.4.5). However, although GrAppO is prepared for

receiving additional data, other components services were not yet published. Obtaining the

communication channels to Monitoring System and Provenance Tracking System will also

enable verifying implemented heuristics with real data.

Conclusions and Future Work

Optimization of Grid Application Execution 74

Parallelizing the Queries to Monitoring System and PROToS. The queries to Monitoring

System and Provenance Tracking System as pointed in 4.7 can be implemented as parallel

operations, which can significantly decrease the delay the optimization brings to the application

execution. This is because the queries are sent to remote services, and each takes long to

complete. Unless they are executed simultaneously, the impact on the application optimization

time they bring is a sum of the queries duration.

Optimization with Regard to Grid Operations. Introducing an optimization that concerns not

only the Grid Object Class that will be used, but the actual Grid Operation to be invoked as

well should bring a certain improvement to the optimization. This would require additional

input from Grid Object Invoker, still it would narrow the analysis of historical information from

Provenance Tracking System only to the required Grid Operation, making the performance

estimation more accurate.

Testing New Optimization Algorithms. To find the most suitable for the optimization, more,

various algorithms should be implemented and tested. Introducing new techniques such as

genetic algorithms or simulated annealing and dynamic adjustment the algorithm to the input

data can give better solutions. Furthermore, if external components were able to provide

additional data concerning Grid Object Classes, implementing the heuristics that include

Quality of Service guidance could be also an interesting issue.

Graphical Interface for GrAppO Configuration. To make GrAppO more user-friendly a

graphical interface can be developed. For this purpose for example a JMX console could be

used. User would gain an opportunity to observe the results of GrAppO operations on-line and,

if necessary, easily change its configuration.

Implementing Far-Sighted Optimization. For now the Runtime Library, which should provide

the application graph does not exist. In order to perform the far-sighted optimization, the

GrAppO will have to obtain an application graph or at least the application structure – that

brings also the challenge of defining the method of mapping the application code into a graph.

For the far-sighted optimization mode dedicated heuristics can be implemented. Thanks to

introduction of this mode, the GrAppO should offer better results.

Implementing the Spare Connection to Monitoring System. Since the data obtained from

Provenance Tracking System are crucial for GrAppO, introducing a spare connection to

Monitoring System that would enable GrAppO to receive the information even if no

Provenance System is present, should improve the reliability of the results provided by

GrAppO. The solution that uses a dedicated database and connects to the Monitoring System in

a model of notifications to listeners was described in 4.4.

Optimization of Grid Application Execution 75

Appendix A: Using GrAppO as External Library

The appendix specifies how to utilize GridSpace Application Optimizer functionality from

within other projects built with Maven.

To use GridSpace Application Optimizer library as a dependency for a Maven2 project, two

sections in the project pom.xml file have to be configured: the Maven2 repository location and

dependency details.

The repository location can be configured by inserting the code presented on Code Snippet 1

into the <repositories> section (if this section is not present, it has to be created):

<repository>
<releases>

 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>

 <checksumPolicy>warn</checksumPolicy>
 </releases>

<snapshots>
 <enabled>false</enabled>
</snapshots>

 <id>cyfronet-repository</id>
 <name>Cyfronet Repository</name>
 <url>http://virolab.cyfronet.pl/maven2</url>
 <layout>default</layout>
</repository>

Code Snippet 1: Configuring Cyfronet Repository as Maven2 repository

Dependency details are specified in the <dependencies> section (as before, if it does not

exist, it has to be created) with a code similar to one on Code Snippet 2:

<dependency>
<groupId>cyfronet.virolab.grappo</groupId>
<artifactId>grappo</artifactId>
<version>0.2.2</version> <!—- use the latest version -->

</dependency>

Code Snippet 2: Configuring GrAppO as Maven2 dependency

Using GrAppO as External Library

Optimization of Grid Application Execution 76

Optimization of Grid Application Execution 77

Appendix B: GrAppO Class Diagrams

This appendix contains the class diagrams of the elements that served for the implemented

GridSpace Application Optimizer functionality. The diagrams were created using reverse

engineering.

The most general view on GridSpace Application Optimizer classes is presented on Figure 26.

It is reflecting the GrAppO architecture – compare with section 4.2, Figure 7.

Figure 26: General view on GrAppO classes and connections

GrAppO Class Diagrams

Optimization of Grid Application Execution 78

The main class – GridspaceApplicationOptimizer14 corresponds to the GrAppO

Manager component from section 4.2. The other classes bear the names of the components they

represent. The XService interfaces stand for the services of other ViroLab components

GrAppO contacts – the registry (GRRService), monitoring (MonitoringService),

provenance (ProvenanceService).

The subsequent diagrams will present a more detailed view on implemented GridSpace

Application Optimizer classes.

Figure 27 presents the GrAppO façade – the main class (GridspaceApplicationOptimizer)

along with the output it produces when called – either an instance of OptimizationResult

or one of the exceptions.

Figure 27: A class diagram concerning the output GrAppO produces

14

 Here and further in this appendix the provided classes and packages names are relative to the main

GrAppO package: cyfronet.gridspace.grappo.

GrAppO Class Diagrams

Optimization of Grid Application Execution 79

OptimizationResult is a class for encapsulating the result of optimization – the solution. As

the solution can be either a ready Grid Object Instance or Grid Object Implementation with

Grid Resource (for now – a H2O kernel) to deploy it on, the presented structure was proposed,

to enable proper returning of the solution to Grid Object Invoker.

On Figure 28 GridSpace Application Optimizer configuration was presented – using classes:

• configuration.ServiceAccessConfiguration – for storing connection URLs

to services which are GrAppO data sources,

• configuration.OptimizationPolicy – for configuring properties that are used

during optimization process.

On the diagram also a Grid Resource Registry service interface is present, as the connection

URL to the service is either provided directly by an initialization method or obtained from the

service access configuration class (configuration.ServiceAccessConfiguration).

The ServiceAccessConfiguration class extends the java.util.Properties class.

Thanks to that it can be easily read from a text or XML file that use special format – described

in Appendix D – using the method Properties.load(java.io.InputStream) or

Properties.loadFromXML(java.io.InputStream), respectively. The properties values

were described in sections 5.3.5 (configuration using the provided classes) and 5.3.6

(configuration using files).

To facilitate serializing the OptimizationPolicy class to file, it implements the

java.io.Serializable interface.

Figure 28: GrAppO configuration and Grid Resource Registry service access

GrAppO Class Diagrams

Optimization of Grid Application Execution 80

A more detailed view on classes concerned with reading the configuration files is presented on

Figure 34 and Figure 35.

The diagram presented on Figure 29 (next page) depicts the relations between classes that

represent Grid Object entities (compare with section 1.2.1 and Figure 3).

The class gob.GObDataSet accumulates all the data concerning Grid Object Implementations

and their instances (Grid Object Instances) and H2O kernels, that was obtained from Grid

Resource Registry service. It contains collection of the objects representing Grid Object

Implementations (gob.GridObjectImplementation) – which in turn aggregates objects

representing all its instances (gob.GridObjecInstance) along with a collection of objects

representing resources – namely H2O kernels (gob.H2OKernel). GObDataSet also

references an instance of gob.GObRanking which stores additional (to the performance

estimation) rates concerning each entity in the data set (the rates can be higher e.g. for the

implementations of type set as preferred in the optimization policy).

G
rA

p
p
O

 C
la

ss D
ia

g
ra

m
s

O
p
tim

iza
tio

n
 o

f G
rid

 A
p
p
lica

tio
n
 E

xecu
tio

n

8
1

Figure 29: A diagram of classes representing Grid Object entities, their aggregation and ranking

GrAppO Class Diagrams

Optimization of Grid Application Execution 82

The classes responsible for the optimization mechanism evaluation are depicted on Figure 30.

The main class here is engine.OptimizationEngine class, which is a core of the

Optimization Engine component – compare with GrAppO architecture (4.2). It uses the data

obtained from the registry, the estimated performance data (gathered from other ViroLab

services if available) – predictor.PerformanceEstimation – to evaluate the optimization

algorithm, indicated by the optimization policy. The algorithm evaluated must implement of the

engine.OptimizationAlgorihtm interface and its two methods – for single and group

optimization (according to the optimization mode – short- or medium- sighted, respectively).

The implementation can be simple (as sample.RandomOptimzationAlgorithm) or

introduce advanced features, by extending the algorithm.SimpleHeuristic abstract class.

In case of any error during the optimization process, the engine.OptimizationException

is thrown.

Figure 30: Classes concerning the optimization algorithms execution

GrAppO Class Diagrams

Optimization of Grid Application Execution 83

The classes that take part in the estimation of each solution performance are presented on

Figure 31 (next page). Their core class is predictor.PerformancePredictor – being also

the engine of the whole GrAppO Predictor Performance component (please compare with

GrAppO architecture – section 4.2).

The class uses the data gathered by Resource Condition Data Analyzer (see also Figure 32) in

form of monitoring.ResourceConditionData and by Historical Data Analyzer (see also

Figure 33) – provenance.HistoricalImplementationPerformanceData, which in turn

aggregates a number of provenance.HistoricalOperationPerformanceData (the data

structures will be further described with Figure 32 and Figure 33, respectively).

The output produced by PerformancePredictor is a list of performance estimations for the

solutions for which any data relevant to performance were available. Each estimation is in form

of predictor.PerformanceEstimation class instance. The estimated values it contains

were derived from the data structures:

• ResourceConditionData – available CPU, RAM and availability time (the time in

which the resource is going to be available)

• HistoricalImplementationData – average and maximum: execution time, RAM

and CPU usage – the values are computed on the basis of the information of each

implementation’s operation executed, contained in

HistoricalOperationPerformanceData objects.

In case of any error during computing the estimation, a

predictor.PerformancePredictionException is thrown.

GrAppO Class Diagrams

Optimization of Grid Application Execution 84

F
ig

u
re

 3
1
:
P
er

fo
rm

an
ce

 P
re

d
ic

to
r

cl
as

se
s

GrAppO Class Diagrams

Optimization of Grid Application Execution 85

The main class responsible for contacting the Monitoring System service and analyzing data

obtained from it is monitoring.ResourceConditionDataAnalyzer (see Figure 32). It is

the heart of the Resource Condition Data Analyzer GrAppO component – compare with

GrAppO architecture (section 4.2). On the diagram on Figure 32, the Monitoring System

service is represented by an interface monitoring.MonitoringService. For the sake of

performance tests (see section 6.4), it is now implemented as a local service producing test

data.

The analysis performed by ResourceConditionDataAnalyzer class results in a

monitoring.ResourceConditionData class instance, containing all the information that

were be extracted from the information being result from the query to the Monitoring System.

The query itself carries only the URLs of resources of interest as an argument.

In case any error during connection to monitoring or the analysis itself, the

monitoring.ResourceConditionDataAnalysisException is thrown.

Figure 32: Resource Condition Analyzer classes

GrAppO Class Diagrams

Optimization of Grid Application Execution 86

The construction of the Historical Data Analyzer component (for GrAppO architecture see

section 4.2), presented on Figure 33, is very similar to Resource Condition Data Analyzer –

compare with Figure 32.

The provenance service used for testing is, like in case of monitoring service, a local

implementation of interface provenance.ProvenanceService, that is used for producing

test data. The class provenance.HistoricalDataAnalyzer contacts the Provenance

Tracking System service, and queries it with the names of Grid Object Implementations which

previous performance it is interested in along with the URLs of resources which are currently

available (not to obtain information about resources it cannot use). If the URLs set is empty, all

resources are considered.

The result of the analysis performed by HistoricalDataAnalyzer is

provenance.HistoricalImplementationPerformanceData – object representing all

information that could be obtained about the performance of one Grid Object Implementation.

It aggregates the data concerning all operations of this implementation that were executed in

the past – in form of provenance.HistoricalOperationPerformanceData. This object

is identified by the operation name, the implementation name and the resource that it was

performed on – these data might not be unique, as the same operation could have been

performed more than once. Other values, HistoricalOperationPerformanceData carries

are information about the operation’s execution time, the amount of RAM and CPU it

consumed and that were available at the moment of execution.

Figure 33: Historical Data Analyzer classes

GrAppO Class Diagrams

Optimization of Grid Application Execution 87

The Figure 34 presents in detail the solution that was used when reading the optimization

policy configuration from a file. From the contents of the configuration file, a

configuration.OptimizationPolicyConfiguration is loaded, which contains only

String variables. It is due to extending the java.util.Properties class. The

OptimizationPolicyConfiguration class is afterwards transformed by a static method of

configuration.OptimizationBuilder into a ready to use

configuration.OptimizationPolicy class instance. It uses the final values stored in

OptimizationPolicyConfiguration to determine the properties keys for the optimization

policy when crating its instance.

The described solution was needed because the OptimizationPolicy class variables, unlike

the variables of ServiceAccessConfiguration class, are instances of other than String

java classes.

Figure 34: Detailed view on classes concerning GrAppO optimization policy configuration reading

GrAppO Class Diagrams

Optimization of Grid Application Execution 88

The util.ConfigurationFileReader class, presented on Figure 35, is used for reading

optimization policy and service access configuration files. It creates an

OptimizationPolicyConfiguration class instance, which will be turned into an

OptimizationPolicy instance (see Figure 34). The ServiceAccessConfiguration as

well as OptimizationPolicyConfiguration, thanks to extending the

java.util.Properties class, can be read directly from the file (see the description of

Figure 28).

The exceptions can be thrown when the given file cannot be read

(util.ConfigurationFileReadingException) or when the properties in the file are

incorrect (util.ConfigurationException).

Figure 35: Util class for reading configuration files

Optimization of Grid Application Execution 89

Appendix C: ViroLab Experiments Information

The appendix is intended to present information about the ViroLab experiments that were used

in the tests described in section 6.3.

ViroLab Virtual Laboratory Experiments basic information:

Release version: 0.2.4
Release date: 18.05.2007
Authors: ACC CYFRONET AGH Krakow Poland (http://www.cyfronet.pl)
Project: EU IST ViroLab (http://www.virolab.org)
Virtual Lab website: http://virolab.cyfronet.pl

ViroLab Virtual Laboratory Experiments License:

The MIT License

Copyright (c) 2006-2007 ACC CYFRONET AGH Krakow Poland
(http://www.cyfronet.pl)

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

ViroLab Experiments Information

Optimization of Grid Application Execution 90

The following experiments were written in GScript – a scripting language for ViroLab based on

the Ruby programming language [26].

Experiment sources of align_experiment (used for screen-shots on Figure 22 and Figure

24):

Author: ACC CYFRONET AGH, Krakow, Poland
Contact: Tomasz Gubala (gubala@science.uva.nl)
License: please consult the MIT license provided previously in
this section

Test RegaDB Alignment tool(s)
Expected output: simple alignment info

require 'cyfronet/gridspace/goi/core/g_obj'

argsArray =
[">LowScore\nAA"].to
_java :String

regaDBMutationsTool = GObj.create('regadb.RegaDBMutationsTool')

#align(sequence, region name)
regaDBMutationsTool.align(argsArray, "PRO")

while regaDBMutationsTool.isAligning do
 sleep(2)
 puts "aligning"
end

puts "Result: "+ regaDBMutationsTool.getResult
puts "Exit value: " + regaDBMutationsTool.getExitValue.to_s

clean up MOCCA components
regaDBMutationsTool.undeploy
MoccaResource.cleanup
puts 'End of align experiment !!'
JSystem.exit(0)

#end

Code Snippet 3: Source code of the aligh_experiment.rb script

Experiment sources of weka_experiment (used for screen-shots on Figure 23 and Figure 25):

Author: ACC CYFRONET AGH, Krakow, Poland
Contact: Tomasz Bartynski
License: please consult the MIT license provided previously in
this section

Test Weka classification tools (ViroLab specific)
Experiment:
1.Use Database data loader (WS) to load a data set from an SQL
database table. The result is returned in ARFF format (A)
2.Use ARFF Data splitter (WS) to split A into trainA and testA
It takes trainA and the percentage of testA that will be
created. The result is a bean with trainA and testA
3.Instantiate One-rule classifier (MOCCA)
4.Train it with One-rule classifier::Train method and trainA
5.Execute classification with One-rule classifier::Classify
method and testA. Returns attributes collection B
6.Use Data ARFF predict checker (WS) to evaluate the

ViroLab Experiments Information

Optimization of Grid Application Execution 91

percentage of right classification

require 'cyfronet/gridspace/goi/core/g_obj'

logger = JLogger.getLogger('goi.wekaexperiment')
logger.info('Start of weka experiment !!')

Create Web Service Grid Object Instance
retriever = GObj.create('cyfronet.gridspace.gem.weka.WekaGem')
Build the query

QUERY = 'select outlook, temperature, humidity, windy, play from
weather limit 100;'
DATABASE = "jdbc:mysql://127.0.0.1/test"
USER = 'testuser'
PASSWORD = ''

param = {
 :dbUrl => DATABASE,
 :query => QUERY,
 :username => USER,
 :password => PASSWORD
 }
(1)
A = retriever.loadDataFromDatabase(DATABASE, QUERY, USER,
PASSWORD)

(2)
prepare args for WS splitting data
param = {
 :data => A,
 :trainingDataPercent => 20
 }
B = retriever.splitData(A, 20)
trainA = B.predictingData
testA = B.testingData

(3)
classifier =
GObj.create('cyfronet.gridspace.gem.weka.OneRuleClassifier')

Set the name of attribute that will be predicted
attributeName = 'play'
(4)
classifier.train(trainA, attributeName)

(5)
prediction = classifier.classify(testA)
logger.info('Predicted data:' + prediction.to_s)

(6)
classificationPercentage = retriever.compare(testA, prediction,
attributeName)
show results
logger.info('Prediction quality:' +
classificationPercentage.to_s)

clean up MOCCA components
classifier.undeploy
logger.info('End of weka experiment !!')

ViroLab Experiments Information

Optimization of Grid Application Execution 92

MoccaResource.cleanup

JSystem.exit(0)

Code Snippet 4: Source code of the weka_experiment.rb

Optimization of Grid Application Execution 93

Appendix D: GrAppO Configuration Files

Format

This appendix presents the format of files that can be used for GridSpace Application

Optimizer configuration. The format is a standard for storing properties, that can be read

either with java.util.Properties.loadFromXML(java.io.InputStream) – for an

XML file or java.util.Properties.load(java.io.InputStream) – for an ordinary

text file.

The XML configuration file must begin with the DTD schema declaration:

http://java.sun.com/dtd/properties.dtd. Like on Code Snippet 5:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM

 "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="property">value</entry>
</properties>

Code Snippet 5: Example XML GrAppO configuration file

A text file intended for storing the GrAppO configuration should be an ordinary file filled with

key=value entires. For example:

property=value

Code Snippet 6: A sample entry in the text GrAppO configuration file

The actual properties names needed for GrAppO configuration were described in Appendix B.

Configuration Files Format

Optimization of Grid Application Execution 94

Optimization of Grid Application Execution 95

Appendix E: GrAppO Performance Tests

Environment Details

This appendix presents a snapshots of the XML files that were used for testing of the GridSpace

Application Optimizer performance.

The extract on Code Snippet 7 presents the XML representation of example data that can be

obtained from Grid Resource Registry service.

<?xml version="1.0" encoding="UTF-8"?>
<GridSpace>
 <OptimizationInfoBean className="classname0">
 <kernels>
 <kernel>address1</kernel>
 <kernel>address7</kernel>
 </kernels>
 <ImplementationInstances>
 <ImplementationInstance>
 <id>1000</id>
 <name>impl1000</name>
 <implementationType>WS</implementationType>
 <cpuUtilizationRate>47</cpuUtilizationRate>
 <ramUtilizationRate>584</ramUtilizationRate>
 <InstanceInfos>
 <InstanceInfo id="1000" location="address3" />
 <InstanceInfo id="1001" location="address4" />
 </InstanceInfos>
 </ImplementationInstance>
 <ImplementationInstance>
 <id>1001</id>
 <name>impl1001</name>
 <implementationType>MOCCA</implementationType>
 <cpuUtilizationRate>782</cpuUtilizationRate>
 <ramUtilizationRate>409</ramUtilizationRate>
 <InstanceInfos>
 <InstanceInfo id="1002" location="address2" />
 </InstanceInfos>
 </ImplementationInstance>
 </ImplementationInstances>
 </OptimizationInfoBean>
</GridSpace>

Code Snippet 7: Sample structure of data generated as obtained from GRR

GrAppO Performance Tests Environment Details

Optimization of Grid Application Execution 96

Code Snippet 8 shows XML representation of sample data from Monitoring System service.

<?xml version="1.0" encoding="UTF-8"?>
<MonitoringInformation>
<resource>
 <location>address0</location>
 <cpu>4853</cpu>
 <cpuUsage>1717</cpuUsage>
 <ram>2761</ram>
 <ramUsage>800</ramUsage>
 <availableTime>389</availableTime>
</resource>
<resource>
 <location>address1</location>
 <cpu>2748</cpu>
 <cpuUsage>1617</cpuUsage>
 <ram>4360</ram>
 <ramUsage>947</ramUsage>
 <availableTime>248</availableTime>
</resource>
<resource>
 <location>address2</location>
 <cpu>4827</cpu>
 <cpuUsage>1635</cpuUsage>
 <ram>3555</ram>
 <ramUsage>59</ramUsage>
 <availableTime>458</availableTime>
</resource>
</MonitoringInformation>

Code Snippet 8: Sample structure of data generated as obtained from Monitoring System

The last extract (Code Snippet 9) presents the XML representation of example data that can be

obtained from the Provenance Tracking System service.

<?xml version="1.0" encoding="UTF-8"?>
<HistoricalOperationPerformance>
 <GObImpl name="impl1000">
 <operation name="name1" location="address1">
 <availableCPU>2889</availableCPU>
 <cpuUsage>89</cpuUsage>
 <availableRAM>3823</availableRAM>
 <ramUsage>88</ramUsage>
 <executionTime>3</executionTime>
 </operation>
 <operation name="name1" location="address4">
 <availableCPU>4426</availableCPU>
 <cpuUsage>89</cpuUsage>
 <availableRAM>4418</availableRAM>
 <ramUsage>93</ramUsage>
 <executionTime>17</executionTime>
 </operation>
 </GObImpl>
 <GObImpl name="impl1001">
 <operation name="name1" location="address0">
 <availableCPU>3037</availableCPU>
 <cpuUsage>129</cpuUsage>
 <availableRAM>1660</availableRAM>
 <ramUsage>85</ramUsage>
 <executionTime>31</executionTime>
 </operation>
 <operation name="name1" location="address1">

GrAppO Performance Tests Environment Details

Optimization of Grid Application Execution 97

 <availableCPU>3059</availableCPU>
 <cpuUsage>135</cpuUsage>
 <availableRAM>4326</availableRAM>
 <ramUsage>99</ramUsage>
 <executionTime>26</executionTime>
 </operation>
 </GObImpl>
</HistoricalOperationPerformance>

Code Snippet 9: Sample structure of data generated as obtained from PROToS

GrAppO Performance Tests Environment Details

Optimization of Grid Application Execution 98

References

Optimization of Grid Application Execution 99

References

[1] Official ViroLab webpage: http://www.virolab.org

[2] 6th
 Framework Programme: http://ec.europa.eu/research/fp6/index_en.cfm?p=0, European

Commission.

[3] ViroLab Virtual Laboratory homepage by ACC Cyfronet AGH team:

http://virolab.cyfronet.pl

[4] ViroLab WP3 team: “ViroLab Virtual Laboratory Design Document”; December 2006.

[5] Fangpeng D., Selim G. Akl: “Scheduling Algorithms for Grid Computing: State of the Art

and Open Problems”; School of Computing, Queen’s University, Kingston, Ontario;

January 2006.

[6] Fahringer T., Prodan R., Duan R., Nerieri F., Podlipnig S., Qin j., Siddiqui M., Truaong H.,

Villazón A., Wieczorek M.: “ASKALON: A Grid Application Development and Computing

Environment”; Institute of Computer Science, University of Innsbruck.

[7] Ritchie G., and Levine J.: “A hybrid ant algorithm for scheduling independent jobs in

heterogeneous computing environments”.

[8] Jacob B.: Introduction to Grid Computing, IBM Redbooks, 2005.

[9] Casanova H., Legrand A., Zagorodnov D., and Berman F.: Heuristics for Scheduling

Parameter Sweep Applications in Grid Environments, Proc. of the 9th hetero-geneous

Computing Workshop 2000, 349—363.

[10] Foster I., Kesselman C., and Tuecke S.: The Anatomy of the Grid: Enabling Scalable

Virtual Organizations, International Journal Supercomputer Applications 2001, 200—220

[11] Joseph J. and Fellenstein C.: Grid Computing, IBM Press, 2004.

[12] Joseph J., Ernest M., and Fellenstein C.: Evolution of grid computing architecture and grid

adoption models (http://www.research.ibm.com/journal/sj/434/joseph.pdf).

[13] Kim J., Rho J. Lee J., Ko M.: Effective Static Task Scheduling for Realistic Heterogeneous

Environment, 7
th
 International Workshop on Distributed Computing, IWDC 2004, Khargpur,

India, December 2005.

[14] Kwok Y.-K.and Ahmad I.: Dynamic critical-path scheduling: An effective technique for

allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst., 7(5):506–521,

1996.

[15] Nabrzyski J., Schopf J. M., and Weglarz J.: Grid Resource Management. State of the Art

and Future Trends, ch 2. Ten Actions When Grid Scheduling, Kluwer Academic Publishers,

2003.

[16] Li M. and Baker M.: The Grid: Core Technologies, John Wiley & Sons, 2005.

[17] Maheswaran M., Ali S., Siegel H.J., Hensgen D., and Freund R.: Dynamic mapping of a

class of independent tasks onto heterogeneous computing systems, IEEE Heterogeneous

Computing Workshop 1999, 30—44.

[18] Topcuoglu H., Hariri S. and Wu M.Y., Performance-Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing , IEEE Transactions on Parallel and

Distributed Systems, Vol. 13, No. 3, pp. 260 - 274, 2002.

[19] Buyya R. and Baker M. (eds.), Grid Computing - GRID 2000, ch. Evaluation of Job-

Scheduling Strategies for Grid Computing, Springer, 2000.

[20] Casavant T.L. and Kuhl J.G.: A Taxonomy of Scheduling in General-Purpouse Distrbuted

Computing Systems, IEEE Trans. on software Engineering vol.14 (1998), no.2, 141—154.

References

Optimization of Grid Application Execution 100

[21] Shi Z.: Scheduling Tasks with Precedence Constraints on Heterogeneous Distributed

Computing Systems, The University of Tennesse, Knoxville, December 2006.

[22] He X., Sun X., and Laszewski G.: A QoS guided scheduling algorithm for grid computing,

Workshop on Grid and Cooperative Computing 2002.

[23] ViroLab Wiki pages for developer from ACC Cyfronet AGH:

http://grid.cyfronet.pl/virolab/wiki/doku.php

[24] GridSpace Application Optimizer GForge project: http://gforge.cyfronet.pl/projects/grappo

[25] GridSpace Application Optimizer homepage: https://virolab.cyfronet.pl/~asia/grappo

[26] Ruby Programming Language: http://www.ruby-lang.org/en/

