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Oświadczenie studenta

Uprzedzony(-a) o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2
ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j.
Dz.U. z 2018 r. poz. 1191 z późn. zm.): „Kto przywłaszcza sobie autorstwo
albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu albo
artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo
pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia
bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej
albo w postaci opracowania, artystyczne wykonanie albo publicznie zniekształca
taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.”, a także
uprzedzony(-a) o odpowiedzialności dyscyplinarnej na podstawie art. 307 ust.
1 ustawy z dnia 20 lipca 2018 r. Prawo o szkolnictwie wyższym i nauce (Dz.
U. z 2018 r. poz. 1668 z późn. zm.) „Student podlega odpowiedzialności
dyscyplinarnej za naruszenie przepisów obowiązujących w uczelni oraz za czyn
uchybiający godności studenta.”, oświadczam, że niniejszą pracę dyplomową
wykonałem(-am) osobiście i samodzielnie i nie korzystałem(-am) ze źródeł in-
nych niż wymienione w pracy.

Jednocześnie Uczelnia informuje, że zgodnie z art. 15a ww. ustawy o prawie
autorskim i prawach pokrewnych Uczelni przysługuje pierwszeństwo w opubli-
kowaniu pracy dyplomowej studenta. Jeżeli Uczelnia nie opublikowała pracy
dyplomowej w terminie 6 miesięcy od dnia jej obrony, autor może ją opubli-
kować, chyba że praca jest częścią utworu zbiorowego. Ponadto Uczelnia jako
podmiot, o którym mowa w art. 7 ust. 1 pkt 1 ustawy z dnia 20 lipca 2018
r. – Prawo o szkolnictwie wyższym i nauce (Dz. U. z 2018 r. poz. 1668
z późn. zm.), może korzystać bez wynagrodzenia i bez konieczności uzyska-
nia zgody autora z utworu stworzonego przez studenta w wyniku wykonywania
obowiązków związanych z odbywaniem studiów, udostępniać utwór ministrowi
właściwemu do spraw szkolnictwa wyższego i nauki oraz korzystać z utworów
znajdujących się w prowadzonych przez niego bazach danych, w celu sprawdza-
nia z wykorzystaniem systemu antyplagiatowego. Minister właściwy do spraw
szkolnictwa wyższego i nauki może korzystać z prac dyplomowych znajdujących
się w prowadzonych przez niego bazach danych w zakresie niezbędnym do za-
pewnienia prawidłowego utrzymania i rozwoju tych baz oraz współpracujących
z nimi systemów informatycznych.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(czytelny podpis studenta)
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Abstract

Quantum computers are one of the main areas of interest in computer sci-
ence nowadays, thanks to their computational power. By launching the IBM
Quantum Experience platform in 2016, IBM gave access to real quantum de-
vices to internet users worldwide. Unfortunately, errors occurring in quantum
computers are a severe obstacle to reliable quantum computations, and quan-
tum error-correction is a field of study aimed at dealing with this problem. As
part of this thesis, research among existing quantum error-correction methods
was conducted, and two error-correcting codes were realized on IBM Q: the five-
qubit perfect code and the three-qubit bit-flip code. To the best of the author’s
knowledge, it is the first implementation of the five-qubit perfect code on this
quantum computing platform. Techniques such as randomized benchmarking
and quantum state tomography were used to assess the effectiveness of imple-
mented methods of error correction. The obtained results have shown that the
three-qubit bit-flip code can improve the fidelity of quantum computations.
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Streszczenie

Komputery kwantowe cieszą się obecnie ogromnym zainteresowaniem ze
względu na ich wyjątkowe możliwości obliczeniowe. W 2016 roku firma IBM
uruchomiła platformę IBM Q Experience, dając tym samym dostęp do praw-
dziwych urządzeń kwantowych użytkownikom internetu na całym świecie. Nie-
stety, występujący w tych urządzeniach szum kwantowy powoduje, że wyniki
obliczeń uzyskiwanych na tych komputerach są obarczone dużymi błędami.
Kwantowa korekcja błędów to dziedzina nauki obejmująca różne metody zwal-
czania błędów kwantowych. W ramach tej pracy wykonany został przegląd ist-
niejących metod kwantowej korekcji błędów. Ponadto, przy użyciu platformy
IBM Q zostały zaimplementowane dwa kwantowe kody korekcji błędów: „per-
fekcyjny” kod pięcioqubitowy i kod trzyqubitowy „bit-flip”. Według najlepszej
wiedzy autora jest to pierwsza implementacja „perfekcyjnego” kodu pięcioqu-
bitowego na tej platformie. Skuteczność zaimplementowanych kodów została
przetestowana przy użyciu technik takich jak randomizowane testy porównaw-
cze i kwantowa tomografia stanu. Wyniki eksperymentów pokazały, że kod
trzyqubitowy „bit-flip” może poprawić wiarygodność wyników uzyskiwanych z
komputerów kwantowych.
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Chapter 1

Introduction

1.1 Motivation
Quantum computing is one of the most popular and promising subjects of study

nowadays. Due to their special characteristics, quantum computers may outcom-
pete classical computers in dealing with many types of computational problems,
especially those that require performing operations on voluminous data or perform-
ing calculations on big numbers. A well-known example demonstrating the power of
quantum computers is how they can break public-key cryptographic systems, such as
the widely used RSA (Rivest–Shamir–Adleman) cryptosystem, in polynomial time,
using the Shor’s factorization algorithm [2].

The fundamental difference between quantum and classical computers is how
a unit of information is stored in each of them. In classical computers, a unit of
information is represented by a bit, which can be in either 0 or 1 logical state. In
quantum computers, a single piece of information is stored in a qubit, which may be
in one of the 0 and 1 logical states, but also in an arbitrary superposition of these
states. It means that a qubit can be in both of its base states at the same time,
from which the capabilities of quantum computers arise.

IBM is one of the companies that invest in quantum computing. It was the first
to have launched, in 2016, a cloud computing platform, named IBM Quantum Ex-
perience (shortly IBM Q), through which real quantum devices can be accessed by
anyone with stable access to the Internet. Since 2017, we have the ability to program
these quantum computers with Qiskit [6], an open-source Python [9] framework.
Thanks to IBM Q, more and more theoretically known quantum programs are re-
alized on real quantum devices, including optimization algorithms [3] and quantum
games [4].

Currently (as for 21st August 2020), there are ten quantum computers accessi-
ble through IBM Q Experience, one one-qubit quantum computer, eight five-qubit
quantum computers, and one fifteen-qubit quantum computer. Also, a quantum
simulator is available through the platform, which can simulate a quantum device
of up to 32 qubits. Assessment of available software tools for programming IBM Q
devices can be found in [5].

Besides all the advantages that come with the development of quantum com-
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puters, and the fact that many quantum algorithms can at present be implemented
and run on real quantum devices, some obstacles must be overcome to ensure the
fidelity of the results from quantum computers. Quantum states in real quantum
computers are very fragile, which is why information that they store can be easily
lost. As a result, computations run on quantum computers are highly error-prone.
Extensive research is conducted nowadays, in order to enable fault-tolerant quantum
computations, and there is a lot to be done in this field. One way to mitigate the
destructive influence of errors on computations run on quantum devices is the usage
of quantum error-correction methods.

1.2 Related work
In this section, an overview of publications regarding the current state of knowl-

edge on quantum error-correction and a quick review of the selection of publications
presenting realizations of quantum error-correcting methods on IBM Q will be given.
A more detailed study of existing quantum error correction applications on IBM Q
is given in Chapter 4.

1.2.1 Theory of quantum error-correction

The first goal of this thesis is to conduct research among methods of quantum
error-correction, especially on quantum error-correcting codes. There are scientific
publications that cover this subject, including books and papers.

In [10], most of the known quantum error-correcting codes are described, with
the theoretical background of these codes explained in detail. The author begins
with basic examples of error-correcting codes, such as the three-qubit bit-flip code,
and the three-qubit phase-flip code, followed by the nine-qubit Shor’s code, capable
of correcting an arbitrary error on a single qubit. Later on, he describes more
advanced and powerful quantum error-correcting codes, named the stabilizer codes.
Stabilizer codes were first proposed in [11] by D. Gottesman, and they form a more
general family of quantum error-correcting codes, which includes, for example, the
perfect five-qubit code or the seven-qubit Steane code. D. Gottesman presented
an overview of quantum-error correction as well, in [12]. Another source of the
theoretical knowledge on quantum error correction is chapter 5 of [13]. It gives a
very clear explanation of some of the quantum error-correcting codes. Moreover,
quantum circuits for these codes are presented, and their architecture is discussed in
detail, which is helpful for practical applications of quantum error-correcting codes.
Theoretical information on quantum error-correction can also be found in chapter 7
of [14]. Papers, which give an introduction to quantum error-correction are [15, 16].

1.2.2 Applications of quantum error-correcting methods on

IBM Q

The second goal of this thesis is to analyze the applicability of quantum error-
correction on IBM quantum computers. There are papers, which present applica-
tions of quantum error-correction methods on this platform.
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A realization of repetition codes on IBM Q devices is shown in [17]. In this
paper, the repetition codes are implemented on up to fifteen qubits and evaluated
on both a real quantum device and a quantum simulator. Realizations of four-qubit
quantum error-detecting codes were presented in [19, 20, 21, 22]. Quite a large
number of implementations of this type of quantum codes on IBM Q emerges from
the fact that it only demands five qubits, as stated in [18], and most of the real
quantum devices available through the IBM Q Experience platform have only five
qubits. On the other hand, in [24, 25] a completely different approach is shown.
In these papers, implementations of quantum error-correcting programs specifically
for fully entangled states, such as the Bell states, and based on these states’ special
features, are presented.

1.3 Objectives of the thesis
This thesis’s first objective is to conduct research among existing methods of

quantum error-correction, especially among quantum error-correcting codes, to
find methods that can be realized on IBM Q devices. The limited number of available
qubits on these devices and the impossibility to perform measurements multiple
times during an execution of a quantum program must be taken into account.

Afterward, a review of existing applications of quantum error-correction
methods on IBM quantum computers should be provided. Special attention
will be paid to how the current limitations of IBM quantum devices can be overcome.

As a result of this research, a new implementation of a quantum error-
correction method on IBM Q should be realized. Also, the effectiveness of
this method in protecting a quantum state in the presence of quantum
noise should be assessed. An appropriate method for evaluating the proposed
solution must be chosen, taking into account a quantum nature of the program, and
limitations of the IBM Q devices.

Another goal of this thesis is to compare results for more than one method
of quantum error-correction, which would allow even deeper analysis. Various
aspects should be regarded during the evaluation, such as the effectiveness in pro-
tecting quantum states, but the ease of implementation and understandability of a
method, as well as the number of qubits and quantum operations needed for each
method, should also be taken into account.

1.4 Structure of the work
In Chapter 2 the basic terms related to quantum computing are introduced,

and also an overview of errors in quantum computers is given. Chapter 3 gives
an introduction to quantum error-correcting codes and also to some of the available
methods for evaluating such codes. Moreover, examples of quantum error-correcting
codes are discussed. In Chapter 4, an overview of existing applications of quantum
error-correcting codes is presented. In Chapter 5 a new implementation of the perfect
five-qubit code is presented, and it’s evaluated in Chapter 6. Chapter 7 concludes
the thesis and gives thoughts on future work.
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Chapter 2

Quantum computation and quantum

errors

In this chapter, basic terms related to quantum computing will be introduced.
Also, an overview of errors that occur in quantum computers will be given.

2.1 Bra-ket notation
The bra-ket notation, also known as the Dirac’s notation after it’s inventor,

was first introduced in [26]. It’s used in quantum mechanics to describe states in
quantum systems. Quantum states are vectors from a Hilbert space over the field
of complex numbers. Primarily, such vectors are denoted as column vectors.

In the bra-ket notation, a vector is written in between the | and 〉 characters,
and can be referred to as ket . For example, one of the base states of a qubit, the
zero state, can be written as

|0〉 =

(
1
0

)
. (2.1)

In general, a ψ vector representing a quantum n-qubit state in the bra-ket notation
will be written as

|ψ〉 =


ψ1

ψ2

.

.

.
ψn

 . (2.2)

A hermitian conjugate of a quantum state in the bra-ket notation is written
between the 〈 and | characters, and it’s called bra .

〈ψ| =
(
ψ∗1 ψ∗2 . . . ψ∗n

)
, (2.3)

where ψ∗i is the complex conjugate of ψi.
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The bra-ket notation can also be used to express some of the operations on
vectors representing quantum states. The scalar product of two quantum states
φ and ψ can be written as

〈φ|ψ〉 =
(
φ∗1 φ∗2 . . . φ∗n

)

ψ1

ψ2

.

.

.
ψn

 . (2.4)

On the other hand, the outer product, or matrix multiplication, of these vectors
can be written as

|φ〉〈ψ| =


φ1

φ2

.

.

.
φn


(
ψ∗1 ψ∗2 . . . ψ∗n

)
. (2.5)

Moreover, the tensor product of these vectors can be denoted with

|φ〉|ψ〉 = |φψ〉 =


φ1

φ2

.

.

.
φn

⊗

ψ1

ψ2

.

.

.
ψn

 =



φ1ψ1

φ1ψ2

.

.

.
φ2ψ1

φ2ψ2

.

.

.
φnψ1

φnψ2

.

.

.
φnψn



. (2.6)

2.2 Quantum state
Quantum computers differ from their classical counterparts in the way that in-

formation is represented in each of them. Also, they differ in how this stored infor-
mation can be operated on. In this section, a brief note on what quantum states
and operations are will be given. A more in-depth discussion on this topic can be
found in chapter 1 of [13].
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2.2.1 Quantum unit of information

In classical computers, the unit of information is the bit. A bit can be in one
of two possible states, represented as 0 and 1. On the other hand, in quantum
computation, the unit of information is a qubit, and two base, orthogonal states of
a qubit are |0〉 and |1〉.

In contrast to a classical bit, a qubit can not only be in one of its base states,
but its state can be any unit vector from the two-dimensional, vector space spanned
by the base states. A general form which describes a state of a qubit, |ψ〉, is

|ψ〉 = α |0〉+ β |1〉 ←→
(
α
β

)
, (2.7)

where α and β are complex numbers, satisfying the condition

|α|2 + |β|2 = 1. (2.8)

It can be said that the state |ψ〉 is a superposition of the base states |0〉 and |1〉
with amplitudes α and β.

2.2.2 Multi-qubit quantum state

In classical computers, an ordered set of n bits is called a word. For example,
the possible, classical, two-bit words are

00, 01, 10, 11, (2.9)

or in the bra-ket notation

|00〉 , |01〉 , |10〉 , |11〉 . (2.10)

In general, there are 2n possible words of length n, representing n-bit classical
states, and a classical system comprising of n bits can be in one of them at a time.
The n-bit words can be obtained as all possible tensor products of length n of the
one-bit states. For example, in the case of the state |01〉

|01〉 = |0〉 ⊗ |1〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 . (2.11)

The n-qubit quantum state, on the other hand, can be an arbitrary superposition
of the 2n possible classical states

|Ψ〉 =
2n−1∑
x=0

αx |x〉n , (2.12)
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so that αx are complex numbers satisfying the condition

2n−1∑
x=0

|αx|2 = 1. (2.13)

For example, a general form of the two-qubits quantum states is

|ψ〉 = α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉 , (2.14)

where

|α0|2 + |α1|2 + |α2|2 + |α3|2 = 1. (2.15)

2.2.3 Entanglement

An attentive reader may notice that the general form of a multi-qubit quantum
state shown in section 2.2.2 does not restrict it to be a tensor product of one-qubit
quantum states. For example, the two-qubit state

1√
2

(|00〉+ |11〉) + 0(|01〉+ |10〉) =
1√
2

(|00〉+ |11〉) (2.16)

is a valid quantum state, but no two single-qubit quantum states have the tensor
product equal to this state.

In general, there are multiple-qubit quantum states which can’t be expressed
through the states of the individual, component qubits of these states, and we call
them entangled states. If two qubits are entangled, the state of one of them implies
the state of the other one.

Among entangled states, there are maximally entangled states, for which the
state of one of the component qubits determines the states of all other qubits in
this state. Maximally entangled two-qubit states are called the Bell’s states. The
states are ∣∣Ψ±00〉 =

1√
2

(|00〉 ± |11〉), (2.17)

∣∣Ψ±01〉 =
1√
2

(|01〉 ± |10〉). (2.18)

The maximally entangled three-qubit states are called Greenberger–Horne–Zeilinger
(shortly GHZ) states [28]. The states are∣∣Ψ±000〉 =

1√
2

(|000〉 ± |111〉), (2.19)
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∣∣Ψ±001〉 =
1√
2

(|001〉 ± |110〉), (2.20)

∣∣Ψ±010〉 =
1√
2

(|010〉 ± |101〉), (2.21)

∣∣Ψ±011〉 =
1√
2

(|011〉 ± |100〉). (2.22)

2.3 Density matrix
Quantum states which can be expressed with a ket are ideal quantum states,

called pure quantum states. In real quantum computers, however, a quantum state
can be represented by some classical probability distribution over pure states and
such a quantum state is called a mixed quantum state. To describe both pure
and mixed quantum states, the density matrix formalism can be used. The density
matrix for a pure quantum state |ψ〉 is defined as

ρ = |ψ〉 〈ψ| . (2.23)

On the other hand, a density matrix for a mixed state, which can be one of n
pure states with some probabilities, is defined as

ρ =
n∑
i=1

pi |ψi〉 〈ψi| , (2.24)

so that

n∑
i=1

pi = 1, (2.25)

where the pure state ψi occurs with classical probability pi.

2.4 Quantum operators
A quantum state of n qubits can be transformed into another quantum state of n

qubits with the use of quantum operators, which are also called quantum gates. The
reversibility of quantum computation draws from the fact that quantum operators
must be unitary operators. An operator U is unitary if and only if

U †U = UU † = I ⇐⇒ U † = U−1, (2.26)
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where U and I are of the same dimensions. It can be noticed that, by definition,
the inverse of a unitary operator always exists.

Quantum operators have matrix representations, but also they have graphical
representations. In general, quantum programs are often presented as quantum
circuits, where each qubit is embodied by a horizontal line, and operators by named
boxes.

Examples of single and multi-qubit operators, with their matrix and graphical
representations, are shown in Table 2.1 and 2.2 respectively.

Operator Matrix Gate

I

[
1 0

0 1

]
I

X

[
0 1

1 0

]
X

Y

[
0 −i
i 0

]
Y

Z

[
1 0

0 −1

]
Z

H

[
1√
2

1√
2

1√
2
− 1√

2

]
H

S

[
1 0

0 i

]
S

S†
[

1 0

0 −i

]
S†

T

[
1 0

0 1+i√
2

]
T

T†
[

1 0

0 1−i√
2

]
T †

U1(θ)

[
1 0

0 eiθ

]
U1

U2(θ,γ)

[
1√
2
− eiθ√

2
eiγ√
2

eiθ+iγ√
2

]
U2

U3(θ,γ,φ)

[
cos φ

2
−eiθ sin φ

2

eiγ sin φ
2

eiθ+iγ cos φ
2

]
U3

Table 2.1: Single-qubit quantum operators.
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Operator Matrix Gate Alternative

controlled-NOT


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 •

X

•

controlled-Z


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 •

Z

•

•

SWAP


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ×
×

Toffoli



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


•

•

Table 2.2: Multi-qubit quantum operators.

Important examples of single-qubit quantum operators are the X, Y and Z,
called the Pauli operators [27]. Together with the identity operator, I, the Pauli
operators form a basis in the space of 2x2 quantum operators.

An application of quantum operator A on a quantum state |ψ〉 is denoted as

A |ψ〉 . (2.27)

If the state is represented by a density matrix

ρ = |ψ〉 〈ψ| , (2.28)

then an application of quantum operator A on this state is denoted as

AρA†. (2.29)
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2.4.1 Measurement

The only non-reversible operation in quantum computations is the state mea-
surement. As the Bohr’s rule states, when a measurement is performed on a n-qubit
state |ψ〉,

|ψ〉 =
2n−1∑
x=0

αx |x〉 , (2.30)

where |x〉0 ... |x〉n form a basis in the space of n-qubit space, then with probability

px = |αx|2, (2.31)

the result of the measurement will be |x〉.

Just as a quantum state can be expressed with respect to different bases, a
measurement can also be performed in different bases. If a measurement of a single
qubit’s state can result in either state |0〉 or |1〉, such a measurement is called a Z
basis, or computational basis, measurement.

2.5 Errors in quantum computers
Both classical bits and qubits, in classical and quantum computers respectively,

are exposed to the influence of their outer environments, for example to temperature
fluctuations or collisions with surrounding particles [13].

In the case of classical bits, the size of their physical representation, huge com-
pared to the size of an atom, makes them almost immune to such interactions. The
approximate size of a transistor in current computers is 10−8m [32], while the size
of an atom is around 10−10m. Thus, the probability of a classical bit flipping from
one of its possible states to the other is minuscule. On the other hand, physical
qubits are of an order of magnitude of atoms, making them highly responsive to
even the slightest changes in their surroundings. As a result, a piece of information
stored in a qubit can easily be lost. Full isolation of qubits in quantum computers
would solve the problem but is impossible. Even though states in existing quantum
devices, for example in IBM Q devices, are well isolated and kept in immensely
low temperatures, of an order of magnitude of 0.01 Kelvin [31], it is not enough to
guarantee fault-tolerant quantum computations.

2.5.1 Quantum channel

The environment where we store or transmit quantum information may be re-
ferred to as a quantum channel. Ideally, a quantum state represented by a density
matrix ρ, sent through a quantum channel E remains untouched

E(ρ) = ρ. (2.32)
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In real quantum devices, however, this is usually not the case. Instead, with
some classical probability p a random, unitary operator A is applied to the initial
state causing a quantum error, and with probability (1− p) the state is preserved

E(ρ) = (1− p)ρ+ pAρA†. (2.33)

Because the error occurs with some classical probability, the result quantum state
is also described by a classical probability of the original and erroneous quantum
states occurring. That means that a mixed quantum state is obtained.

There are some quantum error channels that can be distinguished from others.

2.5.2 Bit-flip channel

Once a quantum state is sent through a bit-flip channel, with some probability
p the X Pauli operator is applied to this state

E(ρ) = (1− p)ρ+ pXρX†. (2.34)

The influence of this operator on a single-qubit quantum state is as follows,

X|0〉 = |1〉,
X|1〉 = |0〉,

|ψ〉 = α|0〉+ β|1〉 −→ X|ψ〉 = β|0〉+ α|1〉.
(2.35)

The bit-flip channel is the only one that has an equivalent in classical computers.

2.5.3 Phase-shift channel

In a phase-shift channel, with some probability the phase of the original state is
changed by an angle θ

E(ρ) = (1− p)ρ+ pRθρR
†
θ. (2.36)

where the operator Rθ is of the form

Rθ =

(
1 0
0 eiθ

)
, (2.37)

and its impact on a single-qubit is

Rθ|0〉 = |0〉,
Rθ|1〉 = eiθ|1〉,

|ψ〉 = α|0〉+ β|1〉 −→ Rθ|ψ〉 = α|0〉+ eiθβ|1〉.
(2.38)

An important example of a phase-shift is a phase-flip when the angle by which
the phase is changed is equal to π, and the rotation operator is the Z Pauli operator
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E(ρ) = (1− p)ρ+ pZρZ†. (2.39)

As a result, the initial qubit state changes the following way

Z|0〉 = |0〉,
Z|1〉 = −|1〉,

|ψ〉 = α|0〉+ β|1〉 −→ Z|ψ〉 = α|0〉 − β|1〉.
(2.40)

2.5.4 Depolarizing channel

In general, a quantum error channel where with probabilities px, pz and py Pauli
operatorsX, Z and Y , respectively, are applied, and with probability 1−(px+pz+py)
the state remains unchanged, is called a Pauli channel

E(ρ) = (1− (px + pz + py))ρ+ pxXρX
† + pzZρZ

† + pyY ρY
†. (2.41)

A special type of a Pauli channel where px = pz = py is called the depolarizing
channel,

E(ρ) = (1− p)ρ+
p

3
(XρX† + ZρZ† + Y ρY †), (2.42)

where p = px + pz + py. In case if p = 1, we call such a channel a completely
depolarizing channel. On the other hand, if p < 1, we call such a channel a partially
depolarizing channel.

2.6 Summary
In this chapter, basic terms, which are used further in this work, were explained.

Also, the cause of noise in quantum computers was discussed, and an overview of
quantum errors was given. The next chapter focuses on quantum error-correcting
codes.
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Chapter 3

Quantum error-correcting codes

In this section, an introduction to quantum error-correcting codes will be given,
and examples of such codes will be presented. Also, a selection of methods that can
be used for evaluating quantum error-correcting codes will be described.

3.1 Introduction and basic terms
A quantum error-correcting code is a sequence of quantum operations able to

correct quantum errors that impact the quantum state passed to the code. With
these codes, the original quantum state is encoded in such a way that information
needed to detect and correct an error can be obtained from the encoded state.
There are common steps that can be distinguished in the majority of quantum
error-correcting codes.

3.1.1 Notation

Usually, quantum codes take the initial, k-qubit quantum state and transform it
into its representation as a n-qubit quantum state, where k ≤ n. Such a quantum
code is denoted as

[[n, k, d]], (3.1)

where d represents the distance of the code. For two n-qubit quantum states, the
Hamming distance is defined as the minimum number of qubits on which a quantum
operator must be applied to obtain one state from the other, and the distance d of
a [[n, k, d]] quantum error-correcting code, is defined as the minimum Hamming
distance between a pair of valid codewords for that code.

3.1.2 Syndrome measurement and error syndrome

In quantum programs, qubits can be measured only as the final operation. In
quantum error-correcting codes, errors are detected without performing a measure-
ment, only with the use of other quantum operators, and with the help of ancilla
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qubits. Ancilla qubits are additional qubits which don’t store the encoded quantum
state, but some other information based on which appropriate action can be chosen
to restore the original quantum state. The process of gathering the needed informa-
tion in ancilla qubits is called the syndrome measurement, and the quantum state
stored in ancilla qubits, after the syndrome measurement is performed, is called the
error syndrome.

3.1.3 Quantum Hamming bound

If a quantum error-correcting code uses unique error syndromes to detect Pauli
X, Y , and Z errors on each code qubit, then the quantum Hamming bound defines
the minimum number, n, of qubits on which a k-qubit state can be encoded to correct
an arbitrary, quantum error on at least t qubits. For such a code, the condition

t∑
j=0

(
n
j

)
3j2k ≤ 2n (3.2)

must be satisfied [10].

In case of a code able to correct an arbitrary, quantum error on a single qubit,
and if the original state is a one-qubit state, and therefore t = 1 and k = 1, the
condition is of the form

2(1 + 3n) ≤ 2n (3.3)

Quantum error-correcting codes that use the minimum number of qubits n sat-
isfying the quantum Hamming bound for given k and t, able to correct arbitrary
quantum errors on t qubits, are called the perfect codes.

3.1.4 Codewords

For a given [[n, k, d]] error-correcting code, codewords are all, n-qubit quantum
states, which can be obtained in the process of encoding a k-qubit quantum state
with this code. If the initial base states are |ψ1〉 and |ψ2〉, then the all codewords
can be expressed as superpositions of new, n-qubit, encoded base states, which are
denoted as

∣∣ψ1

〉
and

∣∣ψ2

〉
respectively. The encoded base states are called the logical

base states.

3.2 General structure
In most of the quantum error-correcting codes, there are several common steps

that can be distinguished. A circuit visualizing a general quantum error-correcting
code is shown in Figure 3.1, where the initial k-qubit state is encoded onto n qubits,
and m ancilla qubits are used.
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q0 : |ψ0〉

Encoding

SM EC

Decoding

. . .

qk−1 : |ψk−1〉
. . .

qn−1 : |0〉

qn : |0〉
. . . . . . . . .

qn+m−1 : |0〉

Figure 3.1: General structure of a quantum error-correcting code. SM stands for
Syndrome Measurement, and EC for Error Correction.

3.2.1 State encoding

Usually, quantum error-correcting codes begin with the encoding of the initial
state to a larger Hilbert space. The initial state may be simply repeated across a
larger number of qubits, but also a more complex encoding may be performed. A
[[n, k, d ]] code encodes a k -qubit states to n-qubit codewords.

3.2.2 Syndrome measurement

Syndrome measurement is the procedure where errors are detected. Despite
its name, no actual measurement, in the sense of collapsing a quantum state to
one of the base states and reading its value, is performed. It would destroy the
superposition of the original state if it was present. Moreover, when it comes to
existing quantum devices, e. g. those available through the IBM Q Experience
platform, further operations on a circuit are not possible after the final measurement
was performed. Instead, error syndrome is obtained through the application of
adequate quantum gates, often controlled gates, and it is usually stored in ancilla
qubits. For example, information on the error that occurred can be deduced by
comparing phases and parity of code qubits. As a result, an error is detected,
whereas the procedure does not know the actual value of the code qubits; thus, the
routine works regardless of the initial state. The measured error syndrome must
clearly indicate the quantum operation which must be applied to recover the correct
state.

In the case of all codes mentioned in this work, ancilla qubits are always initialized
with the |0〉 state.

3.2.3 Error correction

Based on the syndrome measurement stored in ancilla qubits, the error-correcting
procedure applies adequate quantum operations to correct the erroneous state if an
error has been detected. When considering quantum errors that can be represented
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as unitary operators, these errors can be removed by applying the same operator
once again.

3.2.4 State decoding

A the end, the initial state, which was passed to the procedure, is recovered from
the encoded, corrected state. After detection and correction routines, the encoded
state is expected to be the same as right after the encoding procedure. As quantum
gates are unitary operators, the state can be decoded by applying the encoding
procedure backward.

3.3 Three-qubit bit-flip code
The three-qubit bit-flip code is a very simple example of a quantum error-

correcting code. It protects a single qubit’s state against bit-flip errors [10].

3.3.1 State encoding

The three-qubit bit-flip code takes a single qubit’s state, |ψ〉, as input,

|ψ〉 = α |0〉+ β |1〉 , (3.4)

and encodes it as

|ψ′〉 = α |000〉+ β |111〉 . (3.5)

Repeating the base states across three qubits is done using cNOT gates. The
theoretical circuit performing this procedure can be found e. g. in [13, 10], and is
illustrated in Figure 3.2.

q0 : |ψ〉 • •

q1 : |0〉

q2 : |0〉

Figure 3.2: Quantum state encoding for the three-qubit bit-flip code.

3.3.2 Syndrome measurement

The syndrome measurement protocol for the three-qubit bit-flip code uses two
ancilla qubits. The first ancilla qubit stores the result of parity check of the first
and the second code qubits, and the second ancilla the result of parity check of the
second and the third code qubits.
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The parity check of two qubits is done by applying two cNOT operators, both
with the ancilla as the target qubit, and one of the compared qubits as the control.
If the states are different, the ancilla qubit is flipped once and will be in the state
|1〉. If both of the states are equal, the ancilla state will be |0〉, as it will either be
flipped zero or two times. The circuit for this procedure can be found in [13], and
is shown in Figure 3.3.

•
• •

•

|ψ′〉

q3 : |0〉
q4 : |0〉

Figure 3.3: Syndrome measurement circuit for the three-qubit bit-flip code.

Equivalently, the circuit can be realized as shown in Figure 3.4, by substituting
quantum operations with their identities, as presented in [13]. The transformed
circuit stands a good basis for designing the syndrome measurement procedure for
other, more complex quantum error-correcting codes.

Z

Z Z

Z

|ψ′〉

q3 : |0〉 H • H

q4 : |0〉 H • H

Figure 3.4: Syndrome measurement circuit for the three-qubit bit-flip code after
transformations.

With Z0Z1 and Z1Z2 describing the results of the parity check of qubits 0 with
1, and 1 with 2, respectively, the interpretation of error syndrome for this code is as
shown in Table 3.1, where Xi denotes a bit-flip on ith qubit.

X0 X1 X2 I

Z0Z1 1 1 0 0

Z1Z2 0 1 1 0

Table 3.1: Interpretation of syndrome measurement for the three-qubit bit-flip code.
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3.3.3 Error correction

Based on the measured error syndrome, appropriate action should be taken to
recover the correct state. CNOT and Toffoli gates can be used for that purpose. An
example procedure is illustrated in Figure 3.5 [13]. In the case if the error syndrome
is either |10〉 or |01〉, either the first or the second cNOT gate flips the erroneous
qubit back to the correct state. However, if the error syndrome is |11〉, indicating
an error on the middle qubit, first, the qubits 0 and 2 are flipped to an incorrect
state. However, with the use of a Toffoli gate with multiple targets, all qubits are
flipped back to their original state.

q0 :

q1 :

q2 :

q3 : • •
q4 : • •

Figure 3.5: Error correction circuit for the three-qubit bit-flip code.

3.3.4 State decoding

The encoded state can be decoded back to the initial state by performing the
encoding procedure, presented in Figure 3.2, backward to it, due to the unitarity
of quantum operations. The decoding circuit for the three-qubit bit-flip code is
illustrated in Figure 3.6.

q0 : • •

q1 :

q2 :

Figure 3.6: Decoding circuit for the three-qubit bit-flip code.

3.4 Three-qubit phase-flip code
The three-qubit phase-flip code is another example of a quantum error-correcting

code able to correct one type of a Pauli error. It can correct a phase-flip error on
one of the code qubits [10].
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3.4.1 State encoding

The three-qubit phase-flip code encodes the initial state |ψ〉,

|ψ〉 = α |0〉+ β |1〉 , (3.6)

as

|ψ′〉 = α |+ + +〉+ β |− − −〉 , (3.7)

where

|+〉 =
1√
2

(|0〉+ |1〉),

|−〉 =
1√
2

(|0〉 − |1〉).
(3.8)

First, the base states are repeated across the code qubits with cNOT gates, and
then, with Hadamard gates, the encoding of |0〉 to |+〉 and |1〉 to |−〉 is performed
[10]. Figure 3.7 illustrates the circuit for this procedure.

q0 : |ψ〉 • • H

q1 : |0〉 H

q2 : |0〉 H

Figure 3.7: State encoding circuit for the three-qubit phase-flip code.

3.4.2 Syndrome measurement

The identity in Equation 3.9 [13] helps deduce the syndrome measure process for
the phase-flip code. In fact, as compared to the syndrome measurement procedure
for the bit-flip code, shown in Figure 3.4, X gates are used in the places of the Z
gates to compare the phases of two pairs of qubits.

•

X

= •

H Z H
(3.9)

The syndrome measurement circuit for the three-qubit phase-flip code is pre-
sented in Figure 3.8, and the error syndrome interpretation is shown in Table 3.2,
where XiXj is the result of phase check on qubits i and j, and Zi denotes the Z
error on qubit i.
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|ψ′〉

q3 : |0〉 H • H

q4 : |0〉 H • H

Figure 3.8: Syndrome measurement circuit for the three-qubit phase-flip code.

Z0 Z1 Z2 I

X0X1 1 1 0 0

X1X2 0 1 1 0

Table 3.2: Interpretation of syndrome measurement for the three-qubit phase-flip
code.

3.4.3 Error correction

The methodology of the error correction procedure for the three-qubit phase-flip
code is analogous to the one for the bit-flip code, shown in Figure 3.5. However, if a
qubit was impacted by a Z error, the Z operator must be used to restore the qubit’s
state. Figure 3.9 show the circuit performing error correction for the phase-flip code.

q0 : Z Z

q1 : Z

q2 : Z Z

q3 : • •
q4 : • •

Figure 3.9: Error correction circuit for the three-qubit phase-flip code.

3.4.4 State decoding

The encoding procedure, shown in Figure 3.7, must be applied backward to the
code qubits to obtain the quantum state that was initially passed to the error-
correcting code. The decoding procedure for the three-qubit phase-flip code is pre-
sented in Figure 3.10.
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q0 : H • •

q1 : H

q2 : H

Figure 3.10: State decoding circuit for the three-qubit phase-flip code.

3.5 Nine-qubit Shor’s code
Quantum error-correcting codes can be combined to create codes with greater

capabilities. The nine-qubit Shor’s code is an example of a code build from the
three-qubit bit-flip code and the three-qubit phase flip code. It uses nine qubits to
encode a single qubit quantum state and is able to correct an arbitrary error on one
of the code qubits.

3.5.1 State encoding

The encoding procedure for the Shor’s code includes two steps. First, the initial
state |ψ〉,

|ψ〉 = α |0〉+ β |1〉 , (3.10)

is encoded with the three-qubit phase-flip code. In the second step, each of these
qubits is encoded with the three-qubit bit flip code [10]. The encoded state is of the
form

|ψ′〉 =
α

2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)+

β

2
√

2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉).

(3.11)

Circuit in Figure 3.11 presents the encoding procedure for the Shor’s code, which
was presented e. g. in [13].
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q0 : |ψ〉 • • H • •

q1 : |0〉

q2 : |0〉

q3 : |0〉 H • •

q4 : |0〉

q5 : |0〉

q6 : |0〉 H • •

q7 : |0〉

q8 : |0〉

Figure 3.11: Encoding circuit for the Shor code.

3.5.2 Syndrome measurement

In the syndrome measurement procedure for the Shor’s code, the bit-flip and the
phase-flip errors are checked independently.

It can be noticed that in the codeword for this code, qubits 0 to 2, 3 to 5, and
6 to 8 have common phases. In the first step, the phase check of qubits 0 to 2 with
the phase of qubits 3 to 5 is performed, and the result of this check is stored in one
ancilla qubit. The same is performed to compare the phases of qubits 3 to 5 with
phases of qubits 6 to 8.

In the next step, the parity checking procedure, equivalent for the one used for
the three-qubit bit-flip code, shown in Figure 3.4, is performed for qubits 0 to 2, 3
to 5, and 6 to 8.

Moreover, it can be noticed that as

Y = iXZ, (3.12)

the Y single-qubit error will also be detected by the Shor’s code [12]. In total,
the Shor’s code uses eight ancilla qubits, two of them storing the results of the phase
check, and six storing parity check results.

The error syndrome circuit for the nine-qubit Shor’s code was proposed in [13]
and is illustrated in Figure 3.12.

30 Chapter 3



Z

Z Z

Z

Z

Z Z

Z

Z

Z Z

Z



|ψ′〉

q9 : |0〉 H • H

q10 : |0〉 H • H

q11 : |0〉 H • H

q12 : |0〉 H • H

q13 : |0〉 H • H

q14 : |0〉 H • H

q15 : |0〉 H • H

q16 : |0〉 H • H

Figure 3.12: Syndrome measurement circuit for the Shor code.

Tables 3.3 and 3.4 show how to interpret error syndromes of the Shor’s code.
The result of comparing the phase of qubits i, i + 1 and i + 2 with the phase of
qubits i + 3 i + 4 and i + 5 is denoted as Xi −Xi+5, and the result of parity check
on qubits i and j is represented as ZiZj. Phase error on qubit i, j or k is denoted
as Zijk, and X or Y error on qubit i is denoted as Xi or Yi respectively.
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Z012 Z345 Z678 X0 X1 X2 X3 X4 X5 X6 X7 X8

X0 −X5 1 1 0 0 0 0 0 0 0 0 0 0

X3 −X8 0 1 1 0 0 0 0 0 0 0 0 0

Z0Z1 0 0 0 1 1 0 0 0 0 0 0 0

Z1Z2 0 0 0 0 1 1 0 0 0 0 0 0

Z3Z4 0 0 0 0 0 0 1 1 0 0 0 0

Z4Z5 0 0 0 0 0 0 0 1 1 0 0 0

Z6Z7 0 0 0 0 0 0 0 0 0 1 1 0

Z7Z8 0 0 0 0 0 0 0 0 0 0 1 1

Table 3.3: Interpretation of syndrome measurement for the Shor’s code, part 1.

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 I

X0 −X5 1 1 1 1 1 1 0 0 0 0

X3 −X8 0 0 0 1 1 1 1 1 1 0

Z0Z1 1 1 0 0 0 0 0 0 0 0

Z1Z2 0 1 1 0 0 0 0 0 0 0

Z3Z4 0 0 0 1 1 0 0 0 0 0

Z4Z5 0 0 0 0 1 1 0 0 0 0

Z6Z7 0 0 0 0 0 0 1 1 0 0

Z7Z8 0 0 0 0 0 0 0 1 1 0

Table 3.4: Interpretation of syndrome measurement for the Shor’s code, part 2.

3.5.3 Error correction

In the error correction protocol for the Shor’s code, first, the phase-flip error is
corrected, and subsequently the bit-flip error is corrected. Like in case of the three-
qubit phase-flip code, Z gates are used to restore the initial phase of a quantum state.
For correcting bit-flip errors, X gates are used, like in the case of the three-qubit
bit-flip code. The whole error correcting procedure is shown in Figure 3.13.
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q0 : Z Z

q1 : Z Z

q2 : Z Z

q3 : Z

q4 : Z

q5 : Z

q6 : Z Z

q7 : Z Z

q8 : Z Z

q9 : • •
q10 : • •
q11 : • •
q12 : • •
q13 : • •
q14 : • •
q15 : • •
q16 : • •

Figure 3.13: Error correction circuit for the Shor code.

3.5.4 State decoding

Finally, to decode the encoded and corrected state, the encoding procedure, il-
lustrated in Figure 3.11, must be applied to the code qubits in reverse. The decoding
circuit for the Shor’s code is shown in Figure 3.14.
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q0 : • • H • •
q1 :

q2 :

q3 : • • H

q4 :

q5 :

q6 : • • H

q7 :

q8 :

Figure 3.14: Decoding circuit for the Shor code.

3.6 The perfect five-qubit code
The five-qubit [[5, 1, 3]] code is an example of a perfect code, in the sense of the

quantum Hamming bound. It is able to protect a single-qubit state and correct an
arbitrary single-qubit error on one of the five encoding qubits. In this section, the
structure and characteristics of this quantum error-correcting code will be discussed.

Let’s define four five-qubit quantum operators

M0 = Z1X2X3Z4,

M1 = Z0Z2X3X4,

M2 = X0Z1Z3X4,

M3 = X0X1Z2Z4,

(3.13)

where

Z0 = Z ⊗ I ⊗ I ⊗ I ⊗ I,
Z1 = I ⊗ Z ⊗ I ⊗ I ⊗ I,
Z2 = I ⊗ I ⊗ Z ⊗ I ⊗ I,
Z3 = I ⊗ I ⊗ I ⊗ Z ⊗ I,
Z4 = I ⊗ I ⊗ I ⊗ I ⊗ Z,
X0 = X ⊗ I ⊗ I ⊗ I ⊗ I,
X1 = I ⊗X ⊗ I ⊗ I ⊗ I,
X2 = I ⊗ I ⊗X ⊗ I ⊗ I,
X3 = I ⊗ I ⊗ I ⊗X ⊗ I,
X4 = I ⊗ I ⊗ I ⊗ I ⊗X.

(3.14)
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3.6.1 State encoding

The five-qubit perfect code encodes the initial quantum states |ψ〉,

|ψ〉 = α |0〉+ β |1〉 , (3.15)

as ∣∣ψ〉 = α
∣∣0〉+ β

∣∣1〉 , (3.16)

where

∣∣0〉 =
1

4
(I +M0)(I +M1)(I +M2)(I +M3) |00000〉 =

|00000〉+ |10010〉+ |01001〉+ |10100〉
+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉+ |00101〉 ,

(3.17)

∣∣1〉 =
1

4
(I +M0)(I +M1)(I +M2)(I +M3) |11111〉 =

|11111〉+ |01101〉+ |10110〉+ |01011〉
+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉+ |11010〉 .

(3.18)

The quantum circuit which performs such encoding, for a quantum state origi-
nally stored in qubit q0, was proposed in [13], and is shown in Figure 3.15.

q0 : |ψ〉 Z H Z • H • • H • H

q1 : |0〉 H • • H

q2 : |0〉 H • •

q3 : |0〉 H

q4 : |0〉

Figure 3.15: Encoding circuit for the five-qubit code.

3.6.2 Syndrome measurement

The syndrome measurement for the five-qubit perfect code is obtained by ap-
plying the M0, M1, M2, M3 operators, and storing the result of each of them in a
separate ancilla qubit. At the end of the syndrome measurement procedure, each
ancilla qubit will be in either |0〉 or |1〉 state. As a result, there are 16 different possi-
ble error syndromes that can be detected, and all syndromes indicate the occurrence
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of a different quantum error or no error. The interpretation of results of syndrome
measurement is shown in Table 3.5, where Xi, Yi and Zi denotes respectively X, Y
and Z error on ith qubit. For example, if the error syndrome is equal to |0100〉, it
indicates that X error occurred on qubit 0.

X0 Y0 Z0 X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3 X4 Y4 Z4 I

M0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0

M1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0

M2 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0

M3 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0

Table 3.5: Interpretation of syndrome measurement for the five-qubit code.

The quantum circuit which performs syndrome measurement for the perfect five-
qubit code, and stores the results of M0, M1, M2 and M3 operators in ancilla qubits
q5, q6, q7 and q8 respectively, was presented e. g. in [13] and is shown if Figure 3.16.

Z X X

Z Z X

X Z Z

X X Z

Z X X Z


|ψ′〉

q5 : H • H

q6 : H • H

q7 : H • H

q8 : H • H

Figure 3.16: Syndrome measurement circuit for the five-qubit code.

3.6.3 Error correction

Based on the error syndrome, appropriate action must be taken to recover the
correct, encoded state. Due to the reversibility of quantum operations, the Pauli
error that corrupted the state can be corrected by applying the same Pauli operator
to the impacted qubit once again. An example of correction of the X0 error is shown
in figure 3.17.
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q0 : X

q1 :

q2 :

q3 :

q4 :

q5 : X • X

q6 : •
q7 : X • X

q8 : X • X

Figure 3.17: Circuit correcting the X0 error.

First, the ancilla qubits expected to be in the |0〉 state for a particular error
syndrome are negated. Then, if the actual error syndrome was equal to the expected
one, the ancilla qubits will be in the state |1111〉 at this point, and a four-controlled
operator will apply a correcting gate to the impacted qubit. Then, the original error
syndrome has to be restored by flipping the negated ancilla qubits to their original
states.

3.6.4 State decoding

To restore the original single-qubit state, decoding is performed. As quantum
operations are reversible, the encoding procedure, shown in Figure 3.15, can be
applied to the circuit backward to decode the state. In Figure 3.18, a quantum
circuit which performs decoding for the five-qubit code is shown.

q0 : H • H • • H • Z H Z

q1 : H • • H

q2 : • • H

q3 : H

q4 :

Figure 3.18: Decoding circuit for the five-qubit code.
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3.7 Evaluation of quantum error-correcting codes
This section presents a selection of techniques that can be used to assess quantum

error-correcting codes.

3.7.1 Quantum state tomography

To assess the quantum state obtained from executing a quantum program in
the presence of noise, the quantum state tomography can be performed, which will
allow further characterization of the state. Quantum state tomography is a method
to experimentally reconstruct the density matrix for a quantum state, possibly a
mixed quantum state, by measuring it in different bases.

State fidelity

State fidelity is a measure of how two quantum states differ from each other.
Often it is defined with respect to the expected quantum state and calculated for the
experimentally obtained quantum state. Fidelity of two quantum states, represented
by density matrices ρ and σ, is given by[

Tr

(√√
ρσ
√
ρ

)]2
, (3.19)

where Tr denotes the matrix trace.

State purity

State purity is a measure of how pure a quantum state is. Given a quantum
state represented by a density matrix, ρ, the purity of this state is defined as

Tr
(
ρ2
)
. (3.20)

3.7.2 Clifford group

Clifford group is a set of quantum operators of the form

Cn = {V : V PnV
† = Pn}, (3.21)

where Pn denotes elements from the Pauli group, defined as

Pn = {eiθP1 ⊗ P2 ⊗ · · · ⊗ Pn, θ ∈ [0,
π

2
, π

3π

2
], P1 ∈ [X, Y,X, I]}. (3.22)

As stated in the Gottesman-Knill teorem [30], quantum circuits which contain
only the gates from the Clifford group, called the Clifford gates, can be efficiently
simulated on classical computers.

Sequences of Clifford gates can be referred to as Clifford sequences.
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3.7.3 Randomized benchmarking

Randomized benchmarking is a technique used to characterize quantum devices
in terms of an average error rate per a quantum gate, which was first proposed in
[29]. It uses sequences of different length of randomly chosen gates from the Clifford
group to study how the average gate error changes with the length of the used
sequence.

For an increasing number of Clifford gates, k, Clifford sequences of the form

C1C2 . . . Ck(C1C2 . . . Ck)
−1, (3.23)

where Ci denotes ith Clifford gate in the sequence, are applied to a quantum
circuit.

Each sequence of the form in Equation 3.23 would produce identity if there was
no noise in the system, so the sequence should not change the input quantum state.
However, in the presence of noise, the fidelity of the output state decays with Clifford
sequences’ length applied to the circuit.

3.8 Summary
In this chapter, the basis and a general scheme of quantum error-correcting codes,

as well as some examples of such codes, were presented. In Chapter 5, realization
of the five-qubit perfect code, described in section 3.6, and the three-qubit bit-flip
code, presented in section 3.3, on IBM Q will be discussed.

In the next chapter, an overview of existing applications of quantum error-
correcting methods on IBM Q will be given.
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Chapter 4

Quantum Error Correction Methods

Applications on IBM Q

Through the IBM Q Experience platform, real quantum devices, as well as a
reliable quantum simulator, can be accessed online for free. Moreover, convenient
software tools for programming these devices are available. As a result, research
oriented on quantum computing is often conducted using the IBM Q platform nowa-
days, and quantum error correction is no exception. In this section, an overview of
existing applications of quantum error correction methods on IBM Q will be given.
Also, a selection of features of the Qiskit framework will be discussed.

4.1 Quantum repetition codes
Repetition codes are one of the groups of quantum error-correction methods im-

plemented with the use of the IBM Q Experience platform. In [17], repetition codes
of the distance d between 3 and 8 were studied. In this approach, the original qubit’s
state is repeated across d qubits and ancilla qubits are used for storing information
about the parity of pairs of qubits. Look-up tables filled with experimental data,
containing the probabilities of different inputs, based on the received output, are
used for restoring the initial state. The analysis showed that the probability of an
error occurring decays exponentially with the code distance. Thus, quantum in-
formation stored across many qubits is more reliable than information stored in a
single qubit. Moreover, it was verified that with the use of information about code
qubits’ parity, stored in ancilla qubits, the encoded states can be protected with
even greater fidelity.

4.2 Quantum error-detecting codes with post selec-

tion
In [18], it was stated that the [[4, 2, 2]] quantum error-detecting code, which can

be implemented with merely five qubits, can be used to improve a quantum circuit’s
fault-tolerance. This code is capable of detecting an error, but it is not capable

40 Chapter 4



of correcting it. However, the faulty states can be discarded after the procedure
completes, which is called post-selection. The implementation of this code with the
use of IBM Q Experience platform was presented in a couple of publications.

In [19], an implementation of a [[4, 2, 2]] coherent parity check code, targeted at
the IBMQX4 5-qubit IBM quantum device, was presented. The procedure was run
in 154 batches, each including 8192 experimental runs of the circuit. With the use
of Qiskit, output state-tomography was performed to reconstruct the approximate
density matrix for the output states. The purity and fidelity of the experimentally
obtained density matrices before and after post-selection were compared. The results
showed that the [[4, 2, 2]] code can successfully detect quantum errors. With the use
of post-selection, it was proven to improve the output state’s purity from 0.52±0.02
to 0.74± 0.03, and its fidelity from 0.62± 0.03 to 0.75± 0.04. Unfortunately, only
(54± 2)% of the results survived the post-selection procedure.

In [20], a [[4, 2, 2]] quantum error detecting code was implemented with the
QASM assembly language, and it was tested on the IBMQX5 16-qubit IBM quan-
tum device. The infidelities of the output states obtained from a raw two-qubit
quantum state, and a state encoded with the [[4, 2, 2]] code with post-selection,
were experimentally obtained and compared. Experiments were carried out with
the use of the randomized benchmarking protocol, including 30 random Clifford se-
quences of lengths from 2 to 92 applied to the quantum circuit, each executed 1024
times. The results showed that the average output state infidelity dropped from
5.8(2)% for a raw physical state to 0.60(3)% for the encoded state. A very similar
experiment was performed as a part of [21]. Its results confirmed a factor of ten
decrease in the infidelity of the output states with the use of the [[4, 2, 2]] quantum
error-detecting code, from 2.8% for the raw physical state, to 0.19% for the encoded
state. In [22], an implementation of the [[4, 2, 2]] quantum error-detecting code is
presented as well. Experiments comparing the performances of a bare circuit, and a
circuit with the [[4, 2, 2]] code with post-selection, for twenty different input states,
were run on several IBM 5Q chips. It was proven that fault-tolerantly designed,
longer circuits can outperform shorter, non-fault-tolerant circuits.

4.3 Nondestructive discrimination and automated

error-correction of fully-entangled states
There are papers that show a different approach to quantum error-correction. In

classical quantum error-correcting codes, the original state is encoded in an enlarged
Hilbert space, and a majority voting method is used to restore the initial value. In
[23], a completely new method is presented. An error-correction procedure for fully
entangled quantum states, the Generalized Bell states in particular, able to correct
a single bit-flip error or an arbitrary phase-change error, is designed. This method
hinges on specific properties, e. g. symmetry, of the Generalized Bell states. The
original state is not repeated across multiple qubits, but information about the
phase and the parity of the state is stored in ancilla qubits, enabling the initial state
to be recovered without interrupting the original state. A proof of correctness of
the method was presented, and it was stated that it can be implemented on real
quantum devices.
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An implementation of this procedure on a five-qubit quantum computer, avail-
able through the IBM Q Experience platform, was presented in [24]. Due to limi-
tations of the used device, like lack of connectivity between all pairs of qubits, the
original circuit was modified to match its target device. First, the phase-checking cir-
cuit and the parity-checking circuit were realized separately. For each circuit, all four
Bell states were prepared, and experimental density matrices were obtained through
quantum state tomography procedure. The calculated output state’s fidelities were
on average for all Bell states 0.8027 for the phase-checking circuit and 0.80755 for the
parity-checking circuit. A circuit realizing both phase and parity correction was also
implemented. However, the results obtained from it were less successful as a conse-
quence of the increased number of used gates. An implementation of nondestructive
discrimination and automated error correction for the generalized Bell states is also
shown in [25]. Experiments are run on a five-qubit quantum computer available
through the IBM Q experience platform, and experimental density matrices for the
output states are obtained through the state tomography procedure. The average
absolute deviation of the measured output states from the ideal states is 0.28%.
Moreover, an analogous procedure for fully entangled three-qubit quantum states,
the GHZ states, is presented in this publication. Due to the limitations of the used
quantum device, discrimination, and correction of errors for these states were per-
formed separately. The results for GHZ states had an average absolute deviation of
0.17% from the ideal states.

4.4 Qiskit framework
Qiskit is an open-source, Python framework, with which quantum programs can

be implemented and run on quantum devices, including those available through the
IBM Q Experience platform. Qiskit consists of four elements: Qiskit Terra, Qiskit
Aer, Qiskit Ignis, and Qiskit Aqua, each oriented on a different aspect of quantum
programming. Qiskit offers a wide range of tools that can be very helpful in dealing
with quantum errors and quantum noise.

Qiskit Terra is a foundation for all other Qiskit modules. It provides its users with
access to quantum backends and offers basic functionalities, such as constructing
and running quantum circuits. Quantum operations can be applied as quantum
gates or pulses. The latter work closer to the hardware and can be used to reduce
errors in quantum circuits. Moreover, Qiskit Terra enables the transpilation of
quantum circuits to analogous circuits, optimized for a particular target backend.
Transpilation can reduce the number of quantum gates in the circuit, and thus
shorten the program’s runtime on this device. Also, Qiskit Terra has visualization
tools, which are needed for the users to interpret results obtained from running
quantum programs.

Qiskit Aer is a module with which reliable quantum simulations can be carried
out. Simulations run on a bare quantum simulator imitate an ideal quantum device’s
behavior, without quantum noise. Qiskit Aer, however, offers mechanisms for intro-
ducing realistic, and at the same time highly configurable, artificial quantum noise
into simulations. Other limitations of real quantum devices, like non-fully-connected
coupling map, or a restricted set of available quantum gates, can be simulated with
Qiskit Aer.
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Qiskit Ignis is a module particularly useful for implementing and testing quantum
error-correction methods. It’s oriented on analyzing and mitigating noise and errors
in quantum devices. Functionalities of Qiskit Ignis are divided into three sections,
which are characterization, verification andmitigation. The characterization module
is aimed at measuring noise parameters of quantum systems, such as gate control
errors. The verification module provides the user with tools for verifying gates and
circuits’ performance. Among all, it enables the user to perform quantum state
tomography or test quantum circuits with the randomized benchmarking protocol.
Also, it contains an implementation of quantum repetition codes. The mitigation
module is oriented on reducing the effects of errors in quantum circuits. Calibration
measurements, obtained from running calibration circuits, can be used to fit actual,
erroneous output results to less noisy results, based on statistical data.

4.5 Summary
In this chapter, existing applications of quantum error-correcting codes on IBM

Q, and also some features of the Qiskit framework, were discussed. It can be no-
ticed that available quantum devices impact the choice of quantum error-correcting
methods for implementation on IBM Q, and methods which can be realized on the
five-qubit quantum devices are especially popular, like the [[4, 2, 2]] code. The next
chapter focuses on a new implementation of the perfect-five qubit code realized on
IBM Q as a part of this thesis.
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Chapter 5

Solution

The five-qubit perfect code is the smallest, in the sense of the quantum Hamming
Bound, quantum-error correcting code for a one qubit state, able to correct one
arbitrary single-qubit quantum error. Using the error correction implementation
proposed in section 5.2.3, it demands twelve qubits in total, so it can be run on both
the ibmq 16 melbourne and the ibmq qasm simulator. To the best of the author’s
knowledge, it has not been realized on IBM Q before, and therefore it was chosen
to be implemented as a part of this thesis.

One of the goals of this thesis was to compare the effectiveness of more than one
method of quantum error-correction. Due to its simplicity, the three-qubit bit-flip
code was chosen to be implemented as a part of this thesis as well, so that the
efficacy of the two codes can be assessed.

In this chapter, the realization of both quantum error-correcting codes on IBM
Q is presented. The changes to known theoretical circuits for the codes, needed to
make them compliant with the used software tools, are explicated. Moreover, a new
error-correction procedure for the five-qubit perfect code is shown.

5.1 Technologies
Quantum programs realized as a part of this work were implemented with the

Python 3.7 programming language [9]. To access quantum devices available through
the IBM Quantum Experience platform, the Qiskit 0.19.6 library [6] was used.

5.2 New implementation of the perfect five-qubit

code
According to the quantum Hamming bound, the five-qubit perfect code, de-

scribed in section 3.6, is the smallest quantum code of distance three, able to correct
a single, arbitrary quantum error. This code uses five qubits to encode a single-qubit
state and seven ancilla qubits, so it requires twelve qubits in total. As a quantum
simulator able to simulate up to thirty-two qubits, and a real quantum device with
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fifteen qubits are available through the IBM Q Experience platform, this code can
be implemented and executed on this platform, however, to the best of the author’s
knowledge, such implementation has not been realized before.

As mentioned in section 3.6, the five-qubit perfect code comprises of four steps:
encoding, syndrome measurement, error correction and decoding. Realization of
these protocols are described in sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4, respectively.

The first part of the work done to realize the five-qubit code on IBM Q was
to transform known circuits, proposed e. g. in chapter 5 of [13], to make them
applicable on IBM Q. Such changes were introduced to the syndrome measurement
procedure, described in section 5.2.2.

The second part was to propose new quantum circuits that were not shown in
any of the available resources known to the author, based on theoretical information
found in available resources, in particular in [13]. Based on the syndrome interpre-
tation table for this code, which is shown in [13], a new, optimized error-correction
circuit for the five qubit code was designed and realized, and it’s presented in sec-
tion 5.2.3. Also, the decoding circuit for the five-qubit perfect code, shown in Figure
3.18, was proposed as a part of this thesis based on the encoding procedure for this
code, which can be found in [13], and the unitarity of quantum operators.

The last part was to implement the code using the Qiskit framework.

5.2.1 State encoding

The theoretical quantum circuit for the state encoding procedure is shown in
Figure 3.15. The procedure was presented in chapter 5 of [13]. As a part of this
work, the procedure was implemented with Qiskit, and no changes were introduced
to the circuit. Figure 5.1 shows a quantum circuit generated from the Python code
with Qiskit visualization tools.

Z H Z H

H

H

H

H

H

H

q10

q11

q12

q13

q14

5c1

Figure 5.1: Implementation of encoding for the five-qubit code.
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5.2.2 Syndrome measurement

The theoretical syndrome measurement circuit for the five-qubit code is presented
in [13], and it’s shown in Figure 3.16. In section 3.6, operators M0, M1, M2 and M3

were introduced, and their controlled versions are used in the syndrome measurement
procedure. In order for the circuit to be implemented with Qiskit, multi-target
controlled-Mi gates, where Mi represents operators M0, M1, M2 and M3, had to be
decomposed into controlled gates with single targets.

In general, a quantum controlled gate with a single control qubit and n-qubit tar-
get operatorA, whereA is a tensor product of n single-qubit operatorsA1, A2, . . . , An,
can be rewritten as a product of n separate, single-target controlled operations [13].
A gate of the form shown in Figure 5.2, can be equivalently realized as presented in
Figure 5.3.

q0 : |ψ〉 •

q1 : |0〉

A. . . . . .

qn : |0〉

Figure 5.2: Multi-target controlled gate.

q0 : |ψ〉 • •

q1 : |0〉 A1

. . . . . . . . .

qn : |0〉 An

Figure 5.3: Decomposed multi-target controlled gate.

The controlled-Mi operators, which can be denoted as cMi, were transformed as
shown in Equation 5.1.
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cM0 ≡ cZ1cX2cX3cZ4,

cM1 ≡ cZ0cZ2cX3cX4,

cM2 ≡ cX0cZ1cZ3cX4,

cM3 ≡ cX0cX1cZ2cZ4

(5.1)

The transformed, compiled circuit is presented in Figure 5.4.
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9c1

Figure 5.4: Implementation of syndrome measurement for the five-qubit code.

5.2.3 Error correction

The error correction procedure was designed based on the error syndromes in-
terpretation illustrated in Table 3.5.

After the syndrome measurement procedure, the state of each ancilla qubit is
either |0〉 or |1〉. To apply the appropriate Pauli operator on erroneous qubit, four-
controlled operators were used, where all ancilla qubits are the control qubits, the
controlled operation is the Pauli operator which caused an error, and affected qubit
is the target qubit. Before the four-controlled operator can be applied, the ancilla
qubits which are in the |0〉 state must be first negated, because a controlled gate
only impacts its target if all control qubits are in the |1〉 state. For example, the
correction X0 should be applied if the state of ancilla qubits is |0100〉,

|0100〉 = |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 , (5.2)
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and to detect this state with a controlled operation, it must be changed to

|0100〉 −→ X |0〉 ⊗ |1〉 ⊗X |0〉 ⊗X |0〉 = |1111〉 . (5.3)

Afterward, the original state of ancilla qubits must be restored to perform anal-
ogous controlled operations for all possible error syndromes, based on the original
state of ancillas. The procedure which corrects this error, proposed in this thesis, is
shown in Figure 3.17.

For the code to be able to correct an arbitrary error on one of the code qubits,
an analogous procedure must be performed for all possible error syndromes in Table
3.5. For each error syndrome, the ancillas that are in the state |0〉 in this error
syndrome are negated, and only if the actual error syndrome matched the checked
one all control qubits will be in the state |1〉, and the correcting operator will be
applied to the erroneous qubit. The full error correction algorithm for the five-qubit
perfect code for the is shown in Algorithm 1.

Algorithm 1: Error correction algorithms for the five-qubit perfect code
for all possible error syndromes do

negate ancillas which are in |0〉 state for this error syndrome;
if all ancilla qubits are in state |1〉 at this point then

apply appropriate operator to the erroneous qubit based on Table
3.5;

end
flip negated ancilla qubits back to their original state;

end

Four-controlled gate implementation

A four-controlled quantum operation, illustrated in Figure 5.5, is not directly
available through the Qiskit framework. However, it can be expressed with Toffoli
gates, with the use of three ancilla qubits [34]. A decomposed four-controlled gate
is presented in Figure 5.6.

q0 : •

q1 : •

q2 : •

q3 : •

q4 : A

Figure 5.5: General four-controlled gate.
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q0 : • •

q1 : • •

q2 : • •

q3 : • •

q4 : A

q5 : • •

q6 : • •

q7 : •

Figure 5.6: General four-controlled gate build with Toffoli gates.

Toffoli gate isn’t directly applicable on IBM Q quantum devices, as there’s no
physical counterpart of this operation. Instead, it’s further decomposed single-qubit
and two-qubit operators. The default decomposition of the Toffoli gate in Qiskit
contains six cNOT gates, and such decomposition is shown in Figure 5.7, with q0
and q1 as control qubits, and q2 as the target qubit.

q0 : • • • T •

q1 : • • T T †

q2 : H T † T T † T H

Figure 5.7: Decomposition of Toffoli gate with six cNOT gates.

In real quantum computers, the more quantum operations are used in a circuit,
the more costly it is to execute this circuit. To lower the number of quantum oper-
ations used in the error correction procedure for the five-qubit code, an alternative
implementation of the Toffoli gate, which was presented in [36], was used. The
alternative decomposition uses four cNOT gates and is show in figure 5.8.

Chapter 5 49



q0 : • •

q1 : • •

q2 : Ryπ
4

Ry−π
4

Ryπ
4

Ry−π
4

Figure 5.8: Decomposition of Toffoli gate with four cNOT gates.

Further optimization

It can be noticed that based on the order in which individual error-correcting
protocols for all Pauli errors and all qubits, it is possible to get rid of some operators
by reusing the state of intermediate parity checks. In general, if two identical gates
are adjacent, in terms that there are no other gates between them, both gates can
be removed from the circuit without changing its functionality. For example the
sequence shown in Figure 5.9 is equivalent to the sequence presented in Figure 5.10.

q0 : • • • •

q1 : • • • •

q2 : • • • •

q3 : • • X • • X

q4 : A B

q5 : • • • •

q6 : • • • •

q7 : • •

Figure 5.9: Example of adjacent four-controlled gates application.
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q0 : • •

q1 : • •

q2 : • •

q3 : • • X • • X

q4 : A B

q5 : • •

q6 : • • • •

q7 : • •

Figure 5.10: Example of adjacent four-controlled gates application after optimiza-
tion.

In the case of the error-correcting procedure realized in this work, it can be
noticed that there are two situations when duplicated gates from the adjacent, in-
dividual error-correcting sequences can be removed.

1. If two adjacent error syndromes have equal state of the first two ancilla qubits,
the last Toffoli gate from the sequence for the first error syndrome and the
first Toffoli gate from the sequence for the second error syndrome can be
removed. In case if the first or second ancilla qubit’s state is zero for both
error syndromes, the duplicated X gates would also be removed from the
circuit.

2. If two adjacent error syndromes have equal state of the first three ancilla
qubits, the two last Toffoli gates from the first sequence and the two first
Toffoli gates from the second sequence can be removed. Like in the previous
case, if the first, second, or third ancilla qubit’s state is zero for both error
syndromes, the duplicated X gates would also be removed from the circuit.

As a result, by scheduling the correction of errors appropriately, the number
of gates that can be removed from the circuit can be increased. The optimal order
contains as many adjacent correcting sequences for error syndromes with equal states
of the first three ancilla qubits, and then as many adjacent correcting sequences for
error syndromes with equal states of the first two ancilla qubits, as possible.

Assuming that error syndromes represent binary numbers, with the first ancilla
as the most significant bit, the optimal scheduling is to perform error correcting
sequences in the order of error syndromes representing subsequent numbers. Such
order is shown in Equation 5.4, where Xi, Yi and Zi denotes the procedure which
corrects the X, Y or Z error, respectively, on the ith qubit.
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Z1X3Z0X0X2Z4Y0Z2X4X1Y1Z3Y2Y3Y4 (5.4)

It can be seen in Table 3.5 that the error syndrome for error Z1 is |0001〉, and
0001 ≡ bin(1). Then, the error syndrome for error X3 is |0010〉, and 0010 ≡ bin(2),
and so on. Finally, the error syndrome for the error Y4 is |1111〉, and 1111 ≡ bin(16).
Using this order of error correcting sequences in the realization of error correcting
procedure for the five-qubit perfect code, and removing duplicate gates, the number
of used Toffoli gates in total was decreased from 90 to 54.

In Figure 5.11, a part of the final error correcting circuit, with the first two
error-correcting sequences, is shown. The correction of Z1 and X3 error is marked
with an orange and a green box, respectively. The full circuit can be found at the
link [35].
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Figure 5.11: A snippet of implementation of error correction for the five qubit code.
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5.2.4 State decoding

The decoding circuit for the five-qubit code is shown in Figure 3.18. It was
proposed based on the encoding procedure illustrated in Figure 3.15, and the fact
that quantum operators are unitary. Figure 5.12 shows the circuit generated from
the Python code.
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Figure 5.12: Implementation of decoding for the five qubit code.

5.3 Implementation of the three-qubit bit-flip code
The three-qubit bit-flip code was also realized on IBM Q as a part of this thesis.

This code was chosen for implementation due to its simplicity, for the purpose of
comparing its efficacy with the efficacy of the five-qubit perfect code.

This code is theoretically described in section 3.3, and realization of encoding,
syndrome measurement, error correction and decoding for this code is shown in
sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4 respectively. Although the circuits for all steps
of the three-qubit bit-flip code are known, the syndrome measurement and error
correction circuits had to be transformed as a part of this thesis to be applicable on
IBM Q.

5.3.1 State encoding

The theoretical state encoding procedure is presented in Figure 3.2, and it was
implemented without introducing any changes. The equivalent quantum circuit,
generated from the Python implementation of the three-qubit bit-flip code, is shown
in Figure 5.13.
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Figure 5.13: Implementation of encoding for the three-qubit bit-flip code.

5.3.2 Syndrome measurement

To realize the syndrome measurement procedure for the three-qubit bit-flip code,
shown in Figure 3.4, with Qiskit, the controlled gates with two target qubits was
decomposed into single-target controlled gates like it’s shown in section 5.2.2. The
controlled gate with a multi-qubit target operator cZiZj was decomposed as pre-
sented in Equation 5.5.

cZiZj ≡ cZicZj. (5.5)

The result quantum circuit is presented in Figure 5.14.
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Figure 5.14: Implementation of syndrome measurement for the three-qubit bit-flip
code.
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5.3.3 Error correction

The theoretical error correction procedure for the three-qubit bit-flip code is
presented in Figure 3.5. To implement it with Qiskit, the Toffoli gate with three
target qubits had to be split to three Toffoli gates with a single target qubit, by
analogy to decomposing controlled gates with one control qubit. The gate ccZ0Z1Z2

was transformed as shown in Equation 5.6.

ccZ0Z1Z2 ≡ ccZ0ccZ1ccZ2 (5.6)

Figure 5.15, generated from the Python code, shows the circuit realized on IBM
Q.

q10

q11

q12

q13

q14

5c1

Figure 5.15: Implementation of error correction for the three-qubit bit-flip code.

5.3.4 State decoding

In the case of the three-qubit bit-flip code, the encoding and decoding procedures
are the same, as can be noticed in Figures 3.7 and 3.6. The decoding procedure was
realized on IBM Q unchanged. The circuit generated with Qiskit is shown in Figure
5.16.
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Figure 5.16: Implementation of decoding for the three-qubit bit-flip code.

5.4 Summary
In this chapter, the new implementation of the five-qubit perfect code on IBM Q

was presented. Changes to the theoretical circuits were explained, and a procedure
for error correction was proposed. Also, the implementation of the three-qubit bit-
flip code on IBM Q was shown. In the next chapter, the efficacy of both quantum
error-correcting codes in a depolarizing channel is assessed and compared.
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Chapter 6

Evaluation

In this chapter, an evaluation of the realization of the perfect five-qubit code
and the three-qubit bit-flip code, which were presented in Chapter 5, will be shown.
First, the correctness of both methods will be experimentally verified. Then, the
effectiveness of both codes in the presence of quantum noise will be measured and
compared.

6.1 Experimental verification of correctness
This section shows the verification of the correctness of implemented quantum

error-correcting codes. The verification procedure for both codes was carried out on
the ibmq qasm simulator. By default, this device simulates a perfect quantum
computer, so the results obtained from it are compliant with theoretical results.

In each experiment, quantum errors were introduced to the circuits, after the
state encoding procedure, and before syndrome measurement, by applying quantum
operators. Then, it was verified that the originally encoded state is preserved using
the quantum error-correcting code. It was also verified that the error syndrome
stored in ancilla qubits correctly indicates the error that corrupted the encoded
state. In all experiments, the measurements were performed in the computational
basis. All experiments were initialized with the |0〉 state and included 1024 circuit
executions.

6.1.1 The five-qubit perfect code

The implemented five-qubit code is expected to correct an arbitrary, single qubit-
quantum error on one of the code qubits. In this section, a set of experiments aimed
at proving the correctness of the code is presented.

Nine experiments were run in total. The results of all experiments are given in
Table 6.1, where the first column contains the experiments’ identifiers. The second
and third columns indicate what gate was applied to which qubit to simulate a
quantum error, respectively. The fourth and the last columns show all of the output
states measured in an experiment, together with the percentage of occurrences of a
particular output state in this experiment.
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No. Gate Qubit Output Percentage

1. X 2 |000000101000〉 100%

2. Y 2 |000001101000〉 100%

3. Z 2 |000001000000〉 100%

4. X 4 |000001001000〉 100%

5. Y 4 |000001111000〉 100%

6. Z 4 |000000110000〉 100%

7. H 3 |000001100000〉 50.7%
|000000010000〉 49.3%

8. U3 0 |000000000000〉 25.3%
|000000100000〉 28.1%
|000000111000〉 44.8%
|000000011000〉 1.8 %

9. U3 1 |000000000000〉 1%
|000001011000〉 60.9%
|000001010000〉 9.5%
|000000001000〉 28.6 %

Table 6.1: Results of verification experiments for the five-qubit perfect code.

In the first six experiments, all possible Pauli errors were applied to qubits 2
and 4, one type of error to one qubit at a time. Obtained results for each of these
experiments showed that the initial state, stored in qubit 0, is preserved with 100%
accuracy. Moreover, the measured error syndromes, stored in qubits 5 to 8, are
compliant with expected ones, shown in Table 3.5.

In the experiment no. 7, it was confirmed that the code corrects not only Pauli
errors but also an arbitrary single-qubit error. The error corresponding to the
Hadamard gate, which takes a state into an equal superposition of the two basis
states, was applied to the qubit 3. In this case, the initial state is always |0〉, as
expected. Moreover, the observed error syndromes are |1100〉 and |0010〉, each with
probabilities close to 50%. These error syndromes correspond to the Z3 and X3

errors, as can be read in Table 3.5. It is the expected result as

H =
1√
2

(
1 1
1 −1

)
=

1√
2

[(
1 0
0 −1

)
+

(
0 1
1 0

)]
=

1√
2

[Z +X] . (6.1)

Finally, experiments no. 8 and 9. were performed to test the implementation of
the five-qubit perfect code against arbitrary single-qubit quantum errors. Randomly
selected with each execution, arbitrary single-qubit errors were applied to qubits 0
and 1, one qubit at a time. It can be seen that with 100% accuracy, the initial
|0〉 state is preserved. Moreover, for both tested qubits, measured states indicate
all possible error syndromes for errors that can occur on this qubit, with different
probabilities.
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6.1.2 The three-qubit bit-flip code

The implemented three-qubit bit-flip code should correct the bit-flip, or X, error
on any code qubit. In this section, a set of experiments aimed at proving the
correctness of the code is discussed.

In Table 6.2, the results of all verification experiments for the three-qubit bit-flip
code are presented. The interpretation of data in each column is the same as for
Table 6.1.

No. Gate Qubit Output Percentage

1. X 0 |00010〉 100%

2. X 1 |00011〉 100%

3. X 2 |00001〉 100%

Table 6.2: Results of verification experiments for the three-qubit bit-flip code.

Three experiments were carried out in total, and each of them tested the resilience
of the code from the bit-flip error on subsequent code qubits. In all experiments,
the initial |0〉 state was preserved with 100% accuracy. What is more, the obtained
error syndromes for each error are compliant with the expected ones, presented in
Table 3.1.

Summary

The verification experiments have shown that the five-qubit perfect codes’ imple-
mentation preserves the initial state with 100% accuracy if an arbitrary error occurs
on one of the code qubits. Moreover, the experiments for the three-qubit bit-flip
code have confirmed that this code corrects a single bit-flip error on any code qubits
100% of the times.

6.2 Evaluation with Randomized Benchmarking
An evaluation procedure was performed to assess the efficiency of implemented

quantum error-correcting codes. In the presence of artificial quantum noise, both
codes were tested using the randomized benchmarking protocol, described in section
3.7.3, and quantum state tomography, described in section 3.7.1. The efficacy of
implemented codes was compared to the one of a raw qubit.

Technologies

The evaluation procedure for realized quantum error-correcting codes was im-
plemented in the Python 3.7 programming language [9]. Benchmarking methods
available in Qiskit [6], especially in Qiskit Ignis, were used. The Matplotlib library
[7] was used for generating plots, and measured data was operated on using the
SciPy library [8].
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Environment configuration

Both of the implemented codes can be run on a device with at least twelve qubits
and, at first, the experiment was meant to be run on a real quantum device, the
fifteen-qubit ibmq 16 melbourne. The first obstacle was that, at first, the five-
qubit perfect code could not be run on this device due to too large a number of
operations. This problem was dealt with by reducing the number of used Toffoli
gates, and also using an alternative implementation of this gate, as mentioned in
Section 5.2.3. However, the noise of ibmq 16 melbourne was too high to be able to
obtain interpretable results from runs on this backend.

Instead, the experiment was run on the ibmq qasm simulator, and it was
configured to simulate a real backend with slight quantum noise.

Before the experiment was executed, all circuits were transpiled to equivalent
circuits built only with gates available in the ibmq 16 melbourne. The used gates
set comprised of gates U1,U2, U3 and cNOT .

To simulate an environment of a real quantum device on ibmq qasm simulator, an
artificial noise model was applied to it. A depolarizing channel, shown in Equation
6.2, was applied to all code qubits for the five-qubit code, and the three-qubit code,
and to the raw qubit, where ρ denotes a general state of a qubit which is sent through
the channel.

E(ρ) = 0.997ρ+ 0.001(XρX† + ZρZ† + Y ρY †), (6.2)

Methodology

The aim of the described experiment was to test the ability of implemented quan-
tum error-correcting codes to protect a single-qubit quantum state in a simulated
environment, resembling a real quantum device environment. The general structure
of a single run of the experiment was as follows.

Three identical, single qubit quantum states were initialized with the same quan-
tum state. The first one was left untouched, the second one was encoded with the
five-qubit perfect code, and the third one with the three-qubit bit-flip code. Then,
sequences of randomly generated single-qubit Clifford gates were applied to the raw
qubit and each qubit in the encoded states. After the syndrome measurement, error
correction, and decoding procedures, the final measurements were performed, and
the obtained output states were compared to the initial ones to see how well the
original state was preserved with each method. A general scheme for running this
experiment for a quantum-error correcting code is shown in Figure 6.1.
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q0 : |ψ〉

Encoding

Cliffords

SM EC

Decoding. . .

qn−1 : |0〉 Cliffords

qn : |0〉
. . . . . . . . .

qn+m−1 : |0〉

Figure 6.1: General scheme for a single run of the experiment for a n-qubit quantum
error-correcting code using m ancilla qubits.

Such an experiment was performed for Clifford sequences of length from 1 to
1801 by 200. For each of the lengths, the experiment was performed five times to
obtain averaged results.

In more detail, the following steps were included in the experiments.

1. Clifford sequences comprising only single-qubit Clifford gates, of lengths from
1 to 1801 by 200, were generated. For each length, five different sequences
were generated to obtain averaged results.

2. Generated Clifford sequences were applied to both quantum error-correcting
codes and the raw qubit. In the case of quantum-error correcting codes, Clif-
ford sequences were applied to code qubits, one sequence to one qubit, between
the encoding and syndrome measurement procedures, as shown in Figure 6.1.

3. The obtained circuits were transpiled to the set of available gates U1, U2, U3,
and cNOT .

4. Transpiled circuits were executed on ibmq qasm simulator with artificial noise
of the form in Equation 6.2. Each circuit was executed 1024 times.

5. For each circuit, the density matrices for the output states were reconstructed
using quantum state tomography.

6. From obtained density matrices, state fidelities and purities were calculated
for each output state. Then, fidelities and purities for all Clifford sequences of
the same length and the same error-correction method were averaged.

The experiment was performed for initial states |0〉 and |1〉.

Results

The results of run experiment were visualized using the Matplotlib library [7].
Plots showing the changes in average fidelities of measured output states for in-
creasing length of Clifford sequences for initial states |0〉 and |1〉 are illustrated in
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Figures 6.2 and 6.3, respectively. On the other hand, Figures 6.4 and 6.5 present
the changes in the purity of measured output states based on the length of used
Clifford sequence. The full results are given in Appendix A.
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Figure 6.2: Fidelity comparison for the |0〉 state.
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Figure 6.3: Fidelity comparison for the |1〉 state.
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Figure 6.4: Purity comparison for the |0〉 state.
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Figure 6.5: Purity comparison for the |1〉 state.

The shape of visualized data for both initial states and for both fidelities as
well as purities resembles exponential functions. In fact, in the general Random-
ized Benchmarking protocol, it is suggested that the dependence of how well is the
original qubit’s state preserved on the length of the applied Clifford sequence is an
exponential function of the form

aαn + b, (6.3)

where n is the length of the Clifford sequence [29].

The result data were fitted to exponential decays with the use of the SciPy library
[8]. The calculated formulas interpolating measured fidelities are listed in Table 6.3,
and fitted formulas for state purities are given in Table 6.4.
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Method Initial state Formula

Raw qubit |0〉 0.5044 * 0.9980n + 0.4946

Raw qubit |1〉 0.4970 * 0.9979n + 0.5029

5-qubit code |0〉 0.4712 * 0.9966n + 0.4926

5-qubit code |1〉 0.4678 * 0.9964n + 0.4967

3-qubit code |0〉 0.5680 * 0.9990n + 0.4255

3-qubit code |1〉 0.6019 * 0.9990n + 0.3869

Table 6.3: Fitted exponential functions for state fidelity data.

Method Initial state Formula

Raw qubit |0〉 0.4979 * 0.9961n + 0.5007

Raw qubit |1〉 0.4992 * 0.9959n + 0.5009

5-qubit code |0〉 0.4303 * 0.9928n + 0.5007

5-qubit code |1〉 0.4321 * 0.9925n + 0.5012

3-qubit code |0〉 0.4948 * 0.9974n + 0.4962

3-qubit code |1〉 0.4814 * 0.9972n + 0.4967

Table 6.4: Fitted exponential functions for state purity data.

It can be noted that in an ideal quantum computer, the output states would
always be equal to the initial state. For that reason, calculated fidelities and purities
would always be equal to 1, so the Equation 6.3 would be a constant function y = 1.
It would be the case if, for example, α was equal to 1, and a+ b was equal to 1. It
can be deduced that the closer the fitted exponential to a constant function y = 1,
the better the code for which the output state’s fidelity and purity decay with this
function.

Conclusions

1. It can be noticed that the input state does not impact how well a particular
error correcting method works. As for the average fidelity of the output states,
the base of the exponent for fitted exponential functions differs merely by
±0.0001, ±0.0002, and ±0 for the raw qubit, the five-qubit code, and three-
qubit code, respectively. In the case of the average purities of output states, the
differences in the bases of the exponents are ±0.0002, ±0.0003, and ±0.0002
for the raw qubit, the five-qubit code, and three-qubit code, respectively.

2. For all experiments, the three-qubit bit-flip code best preserved both the fi-
delity and purity of output states. As for the average state fidelities, the cal-
culated base of the exponent function is the closest to 1, by 0.00105± 0.00005
closer than the raw qubit and by 0.0025 ± 0.0001 closer than the five-qubit
code. In the case of the purity of output states, the base of the exponent of
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fitted function for the three-qubit bit-flip code is also the closest to 1 compared
to other methods. It’s by 0.0013 ± 0.0002 closer then the raw qubit, and by
0.00465± 0.0.00025 closer then the five-qubit perfect code.

3. The superiority of the three-qubit bit-flip code over the raw qubit shows that
using simple, repetition codes can improve quantum computation’s fidelity.

4. The fact that the five-qubit code gave worse results than the other two methods
may be caused by the number of operations that it is built with, as these
operations introduce noise to the circuit themselves.

5. From the exact results given in Appendix A, it can be noticed, both the fidelity
and the purity of measured output states converges to the value 0.5, indicating
that the state becomes a maximally mixed state.

6.3 Summary
In this chapter, the experiments aimed at proving the correctness of implemented

codes, and evaluating these codes, were described. Conclusions drawn from the
assessment of the effectiveness of implemented quantum error-correcting methods
can be used to improve the fidelity and purity of the results obtained from quantum
computations and stand a basis for further studies. In the next chapter, a summary
of the whole thesis is given, and thoughts on possible future work are expressed.
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Chapter 7

Summary, conclusions and future

work

This section summarizes the thesis. First, an overview of what has been done
as a part of this work is given. Then the conclusions that can be drawn from the
obtained results of run experiments are listed. Moreover, the possibilities for future
work regarding topics covered in this thesis are outlined.

7.1 Summary
The work done as a part of this thesis began with research conducted in the sub-

jects of quantum computation and quantum error-correcting methods, in particular
quantum error-correcting codes. Special attention was paid to existing applications
of quantum error-correcting methods on IBM Q. The results of this study are covered
in Chapters 2, 3 and 4.

In the next step, the Qiskit library and architecture of quantum devices available
through IBM Q were studied, and two quantum error-correcting codes were chosen
to be realized on this quantum computing platform - the five-qubit perfect code
and the three-qubit bit-flip code. Changes to existing circuits, as well as a new,
optimized circuit for the error correction procedure for the five-qubit perfect code,
were proposed, and both codes were implemented using the Qiskit library. To the
best of the author’s knowledge, it was the first realization of the five-qubit perfect
code on IBM Q. The details of the implementation can be found in Chapter 5.

Several experiments were carried out, which confirmed the correctness of imple-
mented quantum error-correcting methods. Then, the efficiency of both codes in the
presence of quantum noise was tested on ibmq qasm simulator, using techniques such
as randomized benchmarking and quantum state tomography. The results obtained
from these experiments are discussed in Chapter 6.

7.2 Conclusions
The results of this thesis show that
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1. The five qubit perfect and the three-qubit bit-flip code can be successfully
realized on IBM Q.

2. The fidelity and purity of quantum computation can be improved using simple
repetition codes, such as the three-qubit bit-flip code.

3. A simple method can outperform more powerful, complex quantum-error cor-
rection methods, able to correct more types of errors. It shows that it’s best
to use a quantum error-correcting method built with as few quantum oper-
ators as possible. However, it may change with the development of existing
quantum devices.

7.3 Future work
As a part of this thesis, it has been shown that the three-qubit bit-flip code

improves the fidelity of quantum computation. This should be further investigated,
and the abilities of this error-correcting code on a real quantum device should be
assessed.

The new realization of the five-qubit-perfect code on IBM Q indicates that there
still are new, theoretically known quantum error-correcting methods, which can
be implemented using this platform, for example, the seven-qubit [[7, 1, 3]] code
[10]. Moreover, combining quantum-error correcting codes with other quantum error
mitigation methods, such as the calibration of qubits [6] is also worth studying. The
new, implemented methods could be then compared to the ones realized in this
thesis.

Moreover, more experiments can be carried out to test the effectiveness of quan-
tum error-correcting codes realized as part of this thesis in the presence of different
quantum noise types. It would be very valuable to use a real quantum device for
this purpose.

Another possible direction of future works would be to implement the five-qubit
perfect code and the three-qubit bit-flip code on a different quantum platform, for
example the D-Wave 2000Q [38], and compare the efficacy of this method on different
architectures of quantum computers.
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Appendix A

Appendix to Chapter 6

Cliffords Raw qubit 5-qubit code 3-qubit code

Mean Std-dev Mean Std-dev Mean Std-dev

1 0.998044 0.001190 0.960352 0.005008 0.985547 0.004496
201 0.834961 0.017551 0.758398 0.010844 0.919531 0.007891
401 0.733203 0.009067 0.588281 0.015326 0.807031 0.006926
601 0.646680 0.011100 0.523242 0.018444 0.698828 0.018931
801 0.602539 0.015254 0.501953 0.012391 0.637695 0.012391
1001 0.559375 0.012571 0.503906 0.018746 0.604297 0.016636
1201 0.546484 0.017477 0.490039 0.020243 0.557422 0.012418
1401 0.520898 0.013786 0.500391 0.014229 0.547852 0.013672
1601 0.528711 0.012422 0.510352 0.012967 0.542969 0.007564
1801 0.507422 0.019194 0.505664 0.011584 0.531641 0.014179

Table A.1: Fidelitiy table for the |0〉 state.
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Cliffords Raw qubit 5-qubit code 3-qubit code

Mean Std-dev Mean Std-dev Mean Std-dev

1 0.998821 0.000804 0.962500 0.002897 0.986719 0.002025
201 0.824805 0.005593 0.752930 0.013862 0.912500 0.007583
401 0.715820 0.011368 0.591016 0.015843 0.802930 0.020267
601 0.648438 0.008286 0.533008 0.012476 0.713672 0.009275
801 0.599414 0.011100 0.508984 0.017893 0.645508 0.015610
1001 0.572070 0.013091 0.495898 0.025006 0.587500 0.007583
1201 0.541992 0.010853 0.506055 0.021299 0.567969 0.018893
1401 0.516797 0.017296 0.502930 0.010764 0.541992 0.011637
1601 0.513867 0.012068 0.494922 0.011250 0.538867 0.023289
1801 0.517578 0.017373 0.506055 0.008663 0.529297 0.020612

Table A.2: Fidelitiy table for the |1〉 state.

Cliffords Raw qubit 5-qubit code 3-qubit code

Mean Std-dev Mean Std-dev Mean Std-dev

1 0.996667 0.002065 0.925177 0.008715 0.971670 0.008777
201 0.725647 0.023630 0.634262 0.011367 0.853091 0.013098
401 0.611006 0.008437 0.517459 0.005035 0.689802 0.008149
601 0.543823 0.006751 0.502872 0.002680 0.580606 0.016187
801 0.522215 0.007199 0.501646 0.000665 0.538797 0.006788
1001 0.507913 0.002999 0.501770 0.001472 0.522889 0.007579
1201 0.506275 0.003321 0.501198 0.000827 0.507687 0.003268
1401 0.502047 0.001182 0.500629 0.000214 0.506252 0.002265
1601 0.502692 0.001718 0.501373 0.000755 0.504613 0.001469
1801 0.501660 0.001462 0.500639 0.000607 0.502879 0.001562

Table A.3: Purity table for the |0〉 state.
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Cliffords Raw qubit 5-qubit code 3-qubit code

Mean Std-dev Mean Std-dev Mean Std-dev

1 0.998088 0.001522 0.929189 0.006026 0.974681 0.003381
201 0.711541 0.007596 0.629025 0.013526 0.841788 0.014034
401 0.593740 0.010011 0.518375 0.006224 0.685402 0.024097
601 0.545394 0.004657 0.503079 0.001601 0.592469 0.007125
801 0.520942 0.004434 0.502259 0.002025 0.543842 0.009143
1001 0.511337 0.004335 0.502073 0.000956 0.516907 0.003447
1201 0.504459 0.001634 0.502257 0.001385 0.511158 0.005837
1401 0.501705 0.001228 0.501219 0.001252 0.504712 0.001541
1601 0.501404 0.001114 0.501234 0.000590 0.505255 0.003845
1801 0.502694 0.002497 0.501057 0.000837 0.503261 0.001767

Table A.4: Purity table for the |1〉 state.
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