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Oświadczenie studenta

Uprzedzony(-a) o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego
1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2018 r. poz. 1191 z późn. zm.): „Kto
przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego
utworu  albo  artystycznego  wykonania,  podlega  grzywnie,  karze  ograniczenia  wolności  albo
pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska
lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystyczne
wykonanie albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub
nadanie.”, a także uprzedzony(-a) o odpowiedzialności dyscyplinarnej na podstawie art. 307 ust. 1
ustawy  z  dnia  20  lipca  2018  r.  Prawo  o  szkolnictwie  wyższym  i  nauce  (Dz.  U.  
z 2018 r. poz. 1668 z późn. zm.) „Student podlega odpowiedzialności dyscyplinarnej za naruszenie
przepisów obowiązujących w uczelni oraz za czyn uchybiający godności studenta.”, oświadczam, że
niniejszą  pracę  dyplomową  wykonałem(-am)  osobiście  i  samodzielnie  i  nie  korzystałem(-am)  ze
źródeł innych niż wymienione w pracy.

Jednocześnie  Uczelnia  informuje,  że  zgodnie  z  art.  15a  ww.  ustawy  o  prawie  autorskim  
i  prawach  pokrewnych  Uczelni  przysługuje  pierwszeństwo  w  opublikowaniu  pracy  dyplomowej
studenta.  Jeżeli  Uczelnia  nie  opublikowała  pracy  dyplomowej  w  terminie  
6  miesięcy  od  dnia  jej  obrony,  autor  może  ją  opublikować,  chyba  że  praca  jest  częścią  utworu
zbiorowego. Ponadto Uczelnia jako podmiot, o którym mowa w art. 7 ust. 1 pkt 1 ustawy z dnia 20
lipca 2018 r. – Prawo o szkolnictwie wyższym i nauce (Dz. U. z 2018 r. poz. 1668 z późn. zm.), może
korzystać bez wynagrodzenia i bez konieczności uzyskania zgody autora z utworu stworzonego przez
studenta w wyniku wykonywania obowiązków związanych z odbywaniem studiów, udostępniać utwór
ministrowi  właściwemu  do  spraw  szkolnictwa  wyższego  i  nauki  oraz  korzystać  z  utworów
znajdujących się w prowadzonych przez niego bazach danych, w celu sprawdzania z wykorzystaniem
systemu antyplagiatowego. Minister właściwy do spraw szkolnictwa wyższego i nauki może korzystać
z  prac  dyplomowych  znajdujących  się  w  prowadzonych  przez  niego  bazach  danych  w  zakresie
niezbędnym do zapewnienia prawidłowego utrzymania i  rozwoju tych baz oraz współpracujących  
z nimi systemów informatycznych.

……………………………………………
(czytelny podpis studenta)



STRESZCZENIE

Technologia obliczeń kwantowych przeżywa obecnie gwałtowny rozwój. W 2016 roku udostępniono

w chmurze pierwszy komputer kwantowy w ramach projektu IBM Q [1], co ma w założeniach do-

prowadzić do zainteresowania się dziedziną obliczeń kwantowych szersze grono naukowców i studen-

tów. Od tamtego czasu udostępniane są nowe narzędzia i urządzenia kwantowe o coraz lepszej wyda-

jności [2, 3]. Wydaje się zasadne pytanie, czy dziedzina gier kwantowych, rozważana teoretycznie już od

czasów pracy D. A. Meyera [4], a obecnie znajdująca nowe zastosowania [5, 6], ma szanse na ekspery-

mentalną realizację swoich osiągnięć na obecnych komputerach kwantowych z serii IBM Q. Ich uni-

wersalność a także wysoka dostępność stanowi doskonałe warunki do badań nad grami kwantowymi.

Niniejsza praca przedstawia pierwszą realizację kwantowego dylematu więźnia w schemacie Eiserta,

Wilkensa i Lewensteina [7] na komputerze kwantowym IBM Q. Opracowano postać schematu EWL,

która może być uruchamiana na komputerach IBM Q, zbadano wpływ błędów urządzeń kwantowych na

wyniki gry, a także zastosowano metody kwantowej korekcji błędów w celu poprawy tych wyników.



SUMMARY

Quantum computing technology is currently undergoing rapid development. In 2016, the first quantum

computer of the IBM Q project was made available in the cloud [1], which was expected to lead to a

wider interest in the field of quantum computing among scientists and students. Since then, new quan-

tum tools and devices with better and better performance have been made available [2, 3]. It seems

reasonable to ask whether the field of quantum games, considered theoretically since the work of D. A.

Meyer [4], and now finding new applications [5, 6], has a chance for experimental implementation of

its achievements on the current quantum computers from the IBM Q series. Their universality and high

availability provide excellent conditions for research on quantum games. This paper presents the first

realization of the quantum Prisoner’s Dilemma in the Eisert, Wilkens and Lewenstein scheme [7] on the

IBM Q quantum computer. A form of EWL scheme which meets the requirements of IBM Q computers

has been developed, the impact of quantum device errors on game results has been studied, and quantum

error correction methods have been applied to improve these results.
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1. Introduction

1.1. A short introduction to quantum games

The term quantum game comes from the work of Eisert, Wilkens, and Lewenstein [7], in which it

appears to have been first used [8]. It consists of two parts indicating two distinct fields of knowledge in

which the concept of quantum games is rooted.

Firstly, a quantum game is a game and thus it can be understood and theoretized using concepts

known from the game theory — it consists of a set of strategies for each player and a payoff function

[9]. We can study them in order to find strategies which rational players would choose, ex. a Nash

equilibrium, which is such a joint strategy that “no player can achieve a higher payoff by unilaterally

switching to another strategy.” ([9])

However, there is also the second part of the term, the quantum part, which relates to the quantum

information theory. This has multiple implications. First of all, it means that the state of a quantum game

is represented as a qubit or a register of qubits. A qubit is the unit of quantum information which can be

in any linear combination of two states |0〉, |1〉:

|ψ〉 = α|0〉+ β|1〉 , where α, β ∈ C and |α|2 + |β|2 = 1 , (1.1)

as opposed to classical bits, which can only be in one of two states: 0 or 1 [10]. Furthermore, players

execute their strategies by applying unitary operations (quantum gates) to influence the quantum state of

the game. Lastly, the outcome of the game is determined by the act of measuring the quantum state and

applying the payoff function to the measured result in order to obtain the players’ payoffs.

It was D. A. Meyer [4] who came up with the idea of using quantum strategies, as he called them, in

a game. He introduced a simple game called Penny Flip (which he very attractively presented as a duel

between Captain Picard and Q — two characters from a famous television series Star Trek: The Next

Generation) and showed that one player could always win (it was Q in his narrative) if he was allowed

to use quantum strategies against the other player who knew nothing about them (poor Picard), thus was

restricted to the familiar classical strategies. Since then a number of quantum games have been proposed

[7, 11, 12, 13] with intriguing properties. It is also worth mentioning that this problem is not entirely

theoretical as applications are being found [5, 6]. Since not long after the conception of quantum games

there have been attempts to realize them on experimental quantum computers [12, 13, 14, 15, 16, 17].
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1.2. Motivation

As universal quantum computing technology has been made open to the public by IBM through

their IBM Q Experience platform [18], the question of their capabilities in the field of quantum game

realization is still left unanswered.

Previous experimental realizations of quantum games [12, 13, 14, 15, 16] have their limitations. The

quantum hardware used to perform the experiments is not publicly accessible, therefore their results are

not easily reproducible. Moreover, in the case of the linear optics implementations [12, 13, 15, 16], the

construction of a large number of strategies is infeasible.

However, the quantum computers from the IBM Q project could overcome those limitations, as they

are publicly accessible through the Internet and they implement the universal one-qubit quantum gates

as well as their controlled counterparts (in fact this allows the construction of any multi-qubit quantum

gate [19]).

For these reasons, this thesis will attempt to accomplish a complete (ie. including all quantum strate-

gies) realization of a quantum game which would be playable on an IBM Q quantum computer over the

Internet.

1.3. Related work

This section discusses a selection of papers concerning quantum games themselves as well as exper-

imental realizations.

1.3.1. Quantum games

The theoretical background of this work is based on two aforementioned papers of major significance

in the quantum game field.

The first one is the Meyer’s work [4]. Meyer introduces a two-person zero-sum game (Penny Flip), in

which the state of the game is represented as a vector from a two-dimensional complex Hilbert’s space.

He shows that the player who utilizes quantum strategies has an advantage over the player restricted to

mixed classical strategies (see Theorem 2.3.2 in Chapter 2).

Eisert, Wilkens, and Lewenstein further this idea in their paper [7], where they present a quantum

generalization of a two-person nonzero-sum game known as the Prisoner’s Dilemma. They propose a

physical model of the game based on its quantum formulation, which will be called the EWL protocol or

the EWL scheme throughout this work after its originators (this is an important result for this work, as it

will be focused on the EWL scheme implementation). Then they discuss the influence of the amount of

entanglement induced by the entangling gate on the outcome of the game. Authors also show that there

is a quantum strategy for this game that always gives a reward against any classical strategy.

F. Galas Quantum Games on IBM-Q
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1.3.2. Experimental realizations

When it comes to experimental realizations of quantum games there is a lot of published papers on

this subject, therefore only a selection of them will be presented with the focus on the EWL Prisoner’s

Dilemma scheme’s implementations.

Du et al. managed to implement the EWL protocol on their nuclear magnetic resonance quantum

computer [14]. They discuss the game structure as the entanglement parameter γ (which is responsible

for the amount of entanglement the players’ qubits are subjected to) varies from 0 (separable game) to

π/2 (maximum entanglement) and present payoff value plots for three different values of γ as a function

of players’ strategies. The theoretic and experimental plots of the expected payoff as a function of the

parameter γ (assuming the players resort to Nash equilibrium) are then compared.

Prevedel et al. in their work [15] “report the first demonstration of a quantum game on an all-optical

one-way quantum computer.” The implemented game is a quantum version of the Prisoner’s Dilemma

which, however, differs from the EWL protocol by using a different entangling gate — Prevedel et al. use

a combination of Hadamard and CPhase operations. They construct four strategies for each player (two

classical — cooperate and defect and two quantum strategies). Experimental payoffs for the implemented

strategies are then compared to the theoretical payoff function plot.

Pinheiro et al. implement the quantum Prisoner’s Dilemma in the EWL scheme using linear optics

[16]. Only the maximally entangled version of the game is considered. Five different strategies (cooper-

ate, defect, and three quantum strategies) for each player are constructed. In conclusion the theoretical

payoff function plot is presented along with the points corresponding to the values obtained in the exper-

iment.

Zhang et al. propose a model for a quantum gambling machine [12] and prove its feasibility by

demonstrating its optical circuit.

Balthazar et al. realized a quantum duel game using linear optics [13] and show how the game is

generalized from its classical counterpart.

There are already a few quantum game implementations on IBM Q [20] (although it should be noted

that not all games cited in the reference are quantum games in our sense). One of the most significant

is the Quantum Coin Game [17], as it is an implementation of the Meyer’s quantum coin flip game [4].

However, there are not yet any published realizations of the quantum Prisoner’s Dilemma on IBM Q and

therefore this will be the basis of this work.

1.4. Objectives

The main objective of this thesis is to assess the possibility of realizing the EWL Scheme on IBM Q.

This is achieved by the following goals:

F. Galas Quantum Games on IBM-Q
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Quantum game realization on IBM Q

The first objective is to realize a quantum game, namely the quantum Prisoner’s Dilemma as de-

scribed in [7] (EWL scheme), on an IBM Q quantum computer.

In order to achieve this goal the quantum circuit of the EWL scheme needs to be formulated by using

quantum gates available on IBM Q computers. This means that the two-qubit entangling and disentan-

gling gates of the scheme require decomposition, as IBM Q does not allow universal multi-qubit gates

[21].

After the decomposition has been made, the quantum circuit of the EWL scheme should be imple-

mented in Python using the IBM Q’s library for quantum computation: qiskit [3].

Study on the influence of the quantum errors

All quantum devices suffer from their physical limitations. For example, a phenomenon called quan-

tum decoherence [10] is known to occur on these devices, which lead to the corruption of quantum states.

Moreover, the act of measurement itself is not ideal and introduces a non-negligible error [10].

Therefore, the second objective of this work is to study the influence of the quantum computer errors

on the quantum game results.

Quantum error correction

An important aspect of quantum computation is quantum error correction [10]. In fact, it has been

shown that there are methods which allow the mitigation of the quantum errors mentioned above [10].

The third objective is then to use and evaluate some of these methods.

1.5. Structure of the work

Chapter 2 provides a theoretical background to quantum games. It starts by introducing basic con-

cepts of quantum computation as well as game theory. Then the D. A. Meyer’s Penny Flip quantum

game is discussed and on this example some characteristics of quantum games are given. The chapter

concludes with a thorough discussion on the Prisoner’s Dilemma — its classical version as well as the

quantum generalization, namely the EWL scheme, which is the main focus of this thesis.

Chapter 3 discusses issues regarding the realization of quantum algorithms on the IBM Q quantum

computers. It starts with an introduction to IBM Q and then proceeds to discuss the topics of quan-

tum errors and quantum error correction. The chapter concludes with a short section concerning circuit

optimization on IBM Q.

Chapter 4 presents the solution for the problems stated in this chapter. It starts with the methodology

and then proceeds to discuss the EWL scheme realization and ends with a section on the application of

quantum error correction methods.

F. Galas Quantum Games on IBM-Q
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Chapter 5 presents the evaluation of the solution given in Chapter 4. It starts by assessment of the

validity of the EWL realization itself and then proceeds to evaluate the quantum error influence on the

game results as well as the efficiency of the quantum error correction methods.

Chapter 6 concludes this thesis with a summary of the achieved goals and some propositions regard-

ing future works in this area.

F. Galas Quantum Games on IBM-Q
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2. Quantum games

This chapter gives a theoretical background to quantum games. It starts by introducing basic con-

cepts of quantum computation and game theory and then proceeds to introduce the D. A. Meyer’s

Penny Flip game and discuss the characteristics of quantum games on this example. Then the Prisoner’s

Dilemma game and its quantum generalization, namely the EWL scheme, is discussed.

2.1. Quantum computation

We will begin this chapter with an introduction to quantum computation in general. It will provide

theoretical foundations, which will be helpful in understanding quantum games.

2.1.1. Quantum states

A quantum state is described as an element from a projective Hilbert space CPn−1 of a n-

dimensional complex Hilbert space Hn. CPn−1 is the quotient set of Hn for the equivalence relation

∼ defined as |ψ〉 ∼ |φ〉 ⇐⇒ ∃c ∈ C |ψ〉 = c|φ〉. It is conventional to choose normalized vectors

|ψ〉 ∈ Hn (ie. such |ψ〉 that 〈ψ|ψ〉 = 1) as representatives for elements from CPn−1 (called rays).

An important space for quantum computation is CP1, which is the state space of a qubit (also called

the Bloch sphere). If B = {|0〉, |1〉} is a basis forH2, we can write down the state of a qubit as

|ψ〉 = α|0〉+ β|1〉 for some α, β ∈ C , where |α|2 + |β|2 = 1 . (2.1)

2.1.2. State evolution

The evolution of a quantum state in time is determined by a unitary operator, ie. such an operator U

that

U †U = UU † = I , (2.2)

where U † represents the Hermitian conjugate of U and I is the identity operator.

Notable examples of unitary operators in quantum computing are (given along with their matrix

representations inH2):

– The identity operator I ≡
[

1 0

0 1

]
.
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– The Pauli operators X ≡
[

0 1

1 0

]
, Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0

0 −1

]
.

– The Hadamard gate H ≡ 1√
2

[
1 1

1 −1

]
.

2.1.3. Measurement

A measurement is defined with respect to an observable M , ie. a Hermitian operator on the observed

state space. M has a spectral decomposition

M =
∑
i

aiPi , (2.3)

where Pi is the projector onto the eigenspace of M spanned by eigenvector |i〉 with eigenvalue ai. The

probability of obtaining outcome ai is given by

p(ai) = 〈ψ|Pi|ψ〉 . (2.4)

After the measurement, if the measured value was ai, the quantum state collapses to

Pi(ψ)√
p(ai)

. (2.5)

The expectation value of a measurement with respect to an observable M is given by

〈M〉 =
∑
i

ai〈ψ|Pi|ψ〉 = 〈ψ|M |ψ〉 . (2.6)

A very important type of measurement is the one with respect to the Pauli operator Z, which is

also called the measurement in the computational basis. In this type of measurement, the quantum state

will collapse to |0〉 with probability |α|2 and to |1〉 with probability |β|2. Unless stated otherwise, all

measurements throughout this thesis are performed in the computational basis.

2.1.4. Mixed quantum states

In the description of quantum states above we talked about pure, ie. well-determined, quantum states.

However, it is also possible to consider classical probabilistic mixtures of quantum states called mixed

quantum states. This is the case when, for example, we know that there is a 50/50 chance that a qubit

will be in a certain pure quantum state or another. Note that this is very much different from a situation,

where a measurement of a qubit in a pure state will yield 0 or 1 with equal probability, because the qubit

is in fact in a well-determined physical state.

It turns out that we can generalize the above description of pure quantum states to also include

the classical mixtures. There is a way of representing quantum states, which makes it very convenient,
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namely the density operator or density matrix representation. The density operator ρ for a mixed quantum

state which is in a pure quantum state |ψi〉 with probability pi is given by

ρ =
∑
i

pi|ψi〉〈ψi| . (2.7)

Then the expectation value of a measurement with respect to an observable M is given by

〈M〉 =
∑
i

pi〈ψi|M |ψi〉 = Tr(ρM) . (2.8)

2.1.5. Quantum circuits

The state of a quantum computer can be the state of a single qubit, but more commonly it is composed

of multiple qubits. The composition of quantum states is the tensor product of component spaces, for

example the state space of two qubits is given by CP1 ⊗ CP1, where ⊗ denotes the tensor product.

Generally speaking, a quantum computation Q is a function which transforms a quantum state:

Q : ⊗ni=1CPm → ⊗ni=1CPm for some n,m ∈ N . (2.9)

Quantum algorithms are often visualized as quantum circuit diagrams, which are analogous to their

classical counterparts (for examples of quantum circuit diagrams see Figures 2.1, 2.2, and 4.1 below). The

flow of time in a quantum circuit diagram is from left to right. Qubit’s states are graphically represented as

lines (just as wires connect points with the same electric potential in classical circuit diagrams), quantum

gates are depicted as rectangles which are connected to those qubits to which there are applied (just as

logic gates are connected to wires), and measurements are also included as rectangles with a special

symbol.

2.2. Basics of game theory

Game theory is a branch of mathematics which study mathematical models of interactions, involving

conflict as well as cooperation, between rational decision-makers who are interested in maximizing their

profits. Achievements of game theory are widely used in social sciences such as economics, psychology,

and politics to analyze the behavior of social groups, especially in situations of conflict [22]. As we will

also use them in our analysis of quantum games, it is necessary to recall some of the basic concepts of

game theory.

The key idea of game theory is of course the concept of a game. We will be interested in a model of

a game called the normal form.

Definition 2.2.1 (Normal-form game [9, 23]). An n-person normal-form game is a tuple (N,S, p),

where:

– N is a finite set of n players, indexed by i;

F. Galas Quantum Games on IBM-Q
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– S = S1×. . .×Sn, where Si is a set of strategies for player i. If S is finite, the game is called finite.

An element s = (s1, . . . , sn) ∈ S is called a strategy profile or joint strategy. The sequence

(sj)j 6=i will be abbreviated to s−i and s will be sometimes written as (si, s−i);

– p = (p1, . . . , pn), where pi : S → R is a payoff function for player i.

We will also use the following definitions in our analysis of rational decisions:

Definition 2.2.2 (Best response [9]). A strategy si of player i is a best response to a joint strategy s−i
of his opponents if

∀s′i ∈ Si pi(si, s−i) ≥ pi(s′i, s−i) . (2.10)

Definition 2.2.3 (Nash equilibrium [9]). A strategy profile s = (s1, . . . , sn) is a Nash equilibrium if

each si is a best response to s−i, that is, if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si pi(si, s−i) ≥ pi(s′i, s−i) . (2.11)

Definition 2.2.4 (Domination [9]). A strategy si of player i dominates another strategy s′i of that player

if

∀s−i ∈ S−i pi(si, s−i) ≥ pi(s′i, s−i) . (2.12)

Definition 2.2.5 (Strict domination [9]). A strategy si of player i strictly dominates another strategy s′i
of that player if

∀s−i ∈ S−i pi(si, s−i) > pi(s
′
i, s−i) . (2.13)

Definition 2.2.6 ((Strictly) dominant strategy [9]). A strategy si of player i is (strictly) dominant if it

(strictly) dominates all other strategies of that player.

Definition 2.2.7 (Pareto efficiency [9]). A strategy profile s is Pareto efficient if for no strategy profile

s′

∀i ∈ {1, . . . , n} pi(s′) ≥ pi(s) and ∃i ∈ {1, . . . , n} pi(s′) > pi(s) . (2.14)

An important extension to ordinary strategies as defined above are probabilistic mixed strategies.

Definition 2.2.8 (Mixed strategy [9]). A probability distribution mi on a set of strategies Si for player i,

ie. a function mi : Si → [0, 1] such that
∑

si∈Si
mi(si) = 1, is called a mixed strategy of that player.

The set of probability distributions on Si will be denoted by ∆Si and called the set of mixed strategies

for player i. Each strategy si ∈ Si can be identified with mi such that mi(si) = 1 — these strategies will

also be called pure strategies.

Definition 2.2.9 (Mixed strategy profile [9]). An elementm = (m1, . . . ,mn) ∈M = ∆S1× . . .×∆Sn

is called a mixed strategy profile. We define that for each s ∈ S

m(s) := m1(s1) · . . . ·mn(sn) , (2.15)

thus m is also a probability distribution on strategy profiles.

F. Galas Quantum Games on IBM-Q
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Definition 2.2.10 (Expected payoff function [9]). A function E(pi) : M → R is called an expected
payoff function for player i if

∀m ∈M (E(pi))(m) =
∑
s∈S

m(s) · pi(s) . (2.16)

Definition 2.2.11 (Probabilistic Nash equilibrium [9]). A mixed strategy profile m = (m1, . . . ,mn) is

a probabilistic Nash equilibrium or Nash equilibrium on mixed strategies if

∀i ∈ {1, . . . , n} ∀m′i ∈ ∆Si (E(pi))(mi,m−i) ≥ (E(pi))(m
′
i,m−i) . (2.17)

2.3. The Penny Flip game

Having introduced some basic concepts of quantum computing and game theory we are now prepared

to enter the realm of quantum games by discussing the D. A. Meyer’s seminal work [4] and his Penny

Flip game.

The game is described as a duel between Captain Picard of the Starship Enterprise and a strange

entity called Q.1 Apparently, the Enterprise is in danger and Q agreed to help under one circumstance:

that Picard beats him in a simple game involving a coin (penny). The game is played as follows:

1. The penny is placed heads up in a box (in such a way as to obscure its state to the players).

2. Q can flip the coin in the box without telling his decision to Picard.

3. Picard has now the option to flip the coin (his decision also remains unknown to Q).

4. Q can flip the coin again (not telling Picard as before).

5. The box is opened and players can see the arrangement of the coin. Q wins if the penny is heads
up. Otherwise, Picard wins.

2.3.1. The classical Penny Flip (as Picard sees it)

As Captain Picard is an intelligent man and also has finished a game theory course during his training

at Starfleet Academy, he can easily analyze this game using game-theoretical concepts and decide on his

optimal strategy. A good starting point seems to be to write down the payoff matrix for the Penny Flip

game (see Table 2.1 below).

N N N F F N F F

N −1 1 1 −1

F 1 −1 −1 1

Table 2.1. The payoff matrix for the Penny Flip game (the Picard’s payoffs).

1Captain Picard and Q are characters from a television series — Star Trek: The Next Generation.
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F and N denote flip and no flip respectively. The rows are associated with Picard’s strategies and

the columns with Q’s. A strategy profile determines the game’s result and so this is the value at the

intersection of the selected row and column. The values 1 and −1 are the payoffs for Picard where 1

means a win and −1 otherwise. For example, if the Captain decides not to flip the penny (the N row)

and Q decides to flip it in his first move and not to flip it in his second move (the F N column), the final

state of the penny would be tails up, which means victory for Picard.

Considering his best course of action, Captain Picard instantly recognizes that there is no Nash equi-

librium (see Def. 2.2.3), ie. a strategy profile such that no player would like to change his decision

knowing the other player’s choice, thus being a natural solution which players would be likely to agree

upon. This is due to the simple fact that the game’s outcome is determined by the parity of the overall

number of flips — the game is won by Picard if the number of flips is odd (otherwise, it is won by Q).

And as both players can always change the parity of this number by switching their strategy, for each

strategy of each player there is a counter strategy that the other player can employ to secure his victory.

However, as Captain Picard remembered from his lectures, John Nash proved the following theorem:

Theorem 2.3.1 ([23]). Every finite game has at least one probabilistic Nash equilibrium.

Proof. Cf. [23]

In this case, the probabilistic Nash equilibrium is such that Picard plays each of his two pure strate-

gies with probability 1
2 and Q each of his four pure strategies with probability 1

4 , namely the uniform

distribution of the pure strategies for both players.

This probabilistic Nash equilibrium gives the expected payoff of 0 for both players, so Captain Picard

knows that the outcome of the game can be no worse than him winning and losing roughly the same

number of times, when he implements the mixed strategy of randomly flipping or not flipping with the

same probability. Considering the gravity of the current situation Picard agrees to play this disturbingly

simple game of Q’s invention without further ado. Unfortunately, he loses... In this moment, a strange

thing happened: Q made a proposition to replay the game and Captain Picard agreed believing that his

chances are at least 50/50. However, he lost again. And again. And ten more times. What happened?

2.3.2. The quantum Penny Flip (as Q sees it)

Let us present the arrangement of the penny as a normalized vector from a two-dimensional complex

Hilbert space H2 (ie. a qubit) with the basis B = {|0〉, |1〉}, where |0〉 and |1〉 denote the state of the

penny being heads up and tails up respectively. Thus, at every moment of the game the state of the penny

is described by the Equation 2.1.

The actions which players take in order to modify the penny’s state are represented as unitary opera-

tors on H2. For example, Captain Picard can flip the penny, which corresponds to the X Pauli operator,

or leave it as it is, which in turn corresponds to the identity operator I:

X ≡
[

0 1

1 0

]
, I ≡

[
1 0

0 1

]
.
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|q〉 = |0〉 UQ1 UP UQ2

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 2.1. The quantum circuit diagram of the Penny Flip game.

Now we can introduce the quantum scheme of the Pennny Flip game. The game consists of five

consecutive steps, as described in the beginning of this section (2.3), and each of these steps has a

counterpart element in the quantum scheme (see Figure 2.1):

1. The quantum state is first prepared to be |0〉.

2. Q applies his unitary operator UQ1 to modify the quantum state. The state is now UQ1|0〉.

3. Picard applies his unitary operator UP to modify the quantum state. The state is now UPUQ1|0〉.

4. Q applies his unitary operator UQ2 to modify the quantum state. The state is now UQ2UPUQ1|0〉.

5. Finally, the quantum state is measured. If we express it as in the Equation 2.1, then it will col-

lapse to the state |0〉 with probability |α|2 and to the state |1〉 with probability |β|2. Q wins if the

measured result is |0〉. Otherwise, Picard wins.

The trick is that Picard only knows about classical strategies: no flip — I and classical flip — X and

assumes the same about Q, so he does not recognize the danger of the Q’s second action (it does not give

him any advantage in the classical game as it was shown earlier). Q, however, does know that he can

utilize any unitary operators UQ1 and UQ2.

Suppose that Q chooses the Hadamard gate for both actions:

UQ1 = UQ2 = H ≡ 1√
2

[
1 1

1 −1

]
. (2.18)

Then after UQ1 the quantum state will be

UQ1|0〉 =
1√
2

(|0〉+ |1〉) . (2.19)

Regardless of what strategy is chosen by Picard the quantum state will remain as it was:

IUQ1|0〉 = XUQ1|0〉 =
1√
2

(|0〉+ |1〉) = UQ1|0〉 (2.20)

and finally after applying UQ2:

UQ2UQ1|0〉 = H

(
1√
2

(|0〉+ |1〉)
)

=
1√
2

(
1√
2

(|0〉+ |1〉) +
1√
2

(|0〉 − |1〉)
)

= |0〉 , (2.21)

thus Q can always win.
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2.3.3. The “weak advantage” of the quantum player

Meyer also shows that in every two-person zero-sum game the quantum player has a “weak advan-

tage” over the classical player, ie.:

Theorem 2.3.2 ([4]). There is always a mixed/quantum equilibrium for a two-person zero-sum game, at

which the expected payoff for the player utilizing a quantum strategy is at least as great as his expected

payoff with an optimal mixed strategy.

Proof. Cf. [4].

It comes from the fact that the effect of every mixed classical strategy on the quantum state can be

reproduced by a quantum strategy (as it is shown in the proof of the aforementioned theorem), therefore

the quantum player can simulate all mixed classical strategies and thus he is at least as “powerful” as the

classical player.

2.4. Characteristics of a quantum game

Having introduced the first quantum game, we can now ask: what makes a game quantum? What are

the characteristics of a quantum game? Looking closely at the Meyer’s Penny Flip game we can see that

it has these three properties:

1. It uses concepts of quantum computing.
The state of the game is a quantum state; players act on this state by applying unitary operators;

the quantum state is measured to obtain the game’s result.

2. It is reducible to its classical counterpart.
If the set of pure strategies is limited to the classical strategies: I — no flip and X — flip, then the

game reduces to its classical version (see Subsection 2.3.1).

3. It reveals properties beyond those which are found in its classical counterpart.
It has been shown that the quantum player can win the Penny Flip game regardless of the classical

player’s strategy, which is a major improvement on the mixed classical Nash equilibrium with the

expected payoff of 0 for both players.

Henceforth it will be assumed that the term quantum game means a game that has the above charac-

teristics.

2.5. The Prisoner’s Dilemma

The next quantum game which will be discussed is the quantum Prisoner’s Dilemma. The realization

of this game will be the topic of the subsequent chapters. In this section a description of the classical
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version of the Prisoner’s Dilemma will be followed by its quantum formulation, namely the EWL scheme

as it was introduced by Eisert, Wilkens, and Lewenstein [7].

2.5.1. The classical Prisoner’s Dilemma

The Prisoner’s Dilemma is a very well known two-person nonzero-sum game, which is interesting

due to the fact that rational players choose a non-cooperative (“self-interested”) strategy while a greater

reward is offered when both players cooperate. The game can be interpreted as follows:

Alice and Bob are accused of jointly committing a crime and are being held separately. A clever

prosecutor comes to each prisoner and makes them an offer (independently):

– If they both betray each other (defect), they will have to serve three years in prison.

– If they both remain silent (cooperate), they will serve one year in prison.

– If, however, only one of them defects and the other remains silent, the defector will be set free and

the one who was silent will serve as many as five years in prison.

One can formalize the above story as a payoff matrix (see Table 2.2 below), where each payoff

represents the number of prison years avoided from the heaviest punishment — five years’ imprisonment.

Alice

Bob
Cooperate Defect

Cooperate
3

3

0

5

Defect
5

0

1

1

Table 2.2. The payoff matrix for the Prisoner’s Dilemma (common payoff values).

The payoff values given in the above matrix are a common example [9]. Some sources give a more

general form of the payoff matrix [24] (see Table 2.3 below).

Alice

Bob
Cooperate Defect

Cooperate
r

r

s

t

Defect
t

s

p

p

Table 2.3. The payoff matrix for the Prisoner’s Dilemma (the general form), where

s < p < r < t and 2r > s+ t.
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The dominant strategy for this game, ie. such a strategy that always leads to a payoff no worse than

any other strategy, is Defect (it is also a strictly dominant strategy because it always leads to a payoff

which is greater than any other strategy). For example, assuming Bob will Cooperate, Alice can go for

the moderately good reward for mutual cooperation r, but it is better to exploit Bob (by betraying him)

to obtain the biggest reward t (temptation). On the other hand, when Bob Defects, cooperation will lead

to the worst payoff s (the sucker’s payoff) and defection will secure the least worst punishment payoff p.

Proposition 2.5.1. Consider an n-player normal-form gameG = (N,S, p). If s = (s1, . . . , sn) ∈ S is a

joint strategy such that each si (i ∈ {1, . . . , n}) is strictly dominant, then s is a unique Nash equilibrium

in G.

Proof. Each si is a strictly dominant strategy, thus by the definition of strict dominance it has a greater

payoff than all other strategies of player i for all possible joint strategies of the opponents. This implies

that si is a best response for all possible joint strategies of the opponents. Thus si is also a best response

for s−i. As this is the case for each si, then s is a Nash equilibrium by its definition.

Now we have to prove that s is the only Nash equilibrium in G. We will do this by indirect proof.

Suppose, that there is a Nash equilibrium s′ other than s. Then each s′i is a best response to s′−i, thus

s′i has a maximum possible payoff when opponents play s′−i. However, si has a greater payoff than all

other strategies for any opponents’ joint strategy. This leads to contradiction, thus s is a unique Nash

equilibrium in G.

Since the strictly dominant strategy for both players is to Defect, this implies that there is a Nash equi-

librium, namely the Defect-Defect joint strategy, and it is the only equilibrium (by virtue of Proposition

2.5.1).

Then why is this game called the Prisoner’s Dilemma? It comes from the fact that although there is

only one stable solution — Defect-Defect, which gives reward p for both players, there is also another so-

lution, namely Cooperate-Cooperate, which would give both players a greater reward r. In other words,

the Nash equilibrium for this game is not Pareto efficient.

2.5.2. A quantum generalization of the Prisoner’s Dilemma

Eisert, Wilkens, and Lewenstein proposed a quantum formulation of the Prisoner’s Dilemma, which

we will call the EWL protocol or the EWL scheme (see Figure 2.2 below). It is worth mentioning that this

“scheme applies to any two-player binary choice symmetric game.” ([7])
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|q1〉 = |0〉
J

UA

J†

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q2〉 = |0〉 UB

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 2.2. The quantum circuit diagram of the EWL scheme.

First, the quantum state is prepared as

|ψ0〉 = J |00〉 (2.22)

and J (for the maximally entangled form of the scheme, on which we will focus) is given by

J =
1√
2

(I + iX) . (2.23)

The players’ strategic decisions (Cooperate and Defect) are encoded on qubits and each qubit is

mapped to a certain player’s decision — for example the quantum states |0〉 and |1〉 may represent the

decisions Cooperate and Defect respectively (as it will be assumed throughout this thesis). The players,

traditionally named Alice and Bob, encode their strategies with unitary operators (quantum gates) UA
and UB on their respective qubits. If the universal one-bit quantum gate is parameterized as

U(θ, φ, λ) =

[
e−i(φ+λ)/2 cos

(
θ
2

)
−e−i(φ−λ)/2 sin

(
θ
2

)
ei(φ−λ)/2 sin

(
θ
2

)
ei(φ+λ)/2 cos

(
θ
2

) ] , θ ∈ [0, π], φ, λ ∈ [0, 4π) , (2.24)

then the quantum gates which encode the strategies Cooperate and Defect — C and D respectively —

are given by

C ≡ U(0, 0, 0) =

[
1 0

0 1

]
, D ≡ U(π, 0, 0) =

[
0 −1

1 0

]
. (2.25)

The final state is given by

|ψf 〉 = J†(UA ⊗ UB)J |00〉 (2.26)

and this state is measured to obtain a pair of classical strategic decisions (Cooperate or Defect) — one

for each player. The measurement will yield one of the following basis states: 00, 01, 10, 11. The payoff

for a given player is determined by applying their payoff function (see Table 2.3) to the measurement

result. As quantum computing is probabilistic in its nature, we will usually be interested in expected

payoff values.

Eisert, Wilkens, and Lewenstein showed that if we consider a limited set of strategies which can be

parameterized with only two parameters:

U ′(θ, φ) =

[
eiφ cos

(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
eiφ cos

(
θ
2

)] , θ ∈ [0, π], φ ∈ [0,
π

2
] , (2.27)
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(D,D) ceases to be a Nash equilibrium and there is a new equilibrium (Q,Q), where

Q ≡ U ′
(

0,
π

2

)
=

[
i 0

0 −i

]
(2.28)

and the expected payoff values are $A(Q,Q) = $B(Q,Q) = r ($A and $B denote the payoff functions

for Alice and Bob respectively). As the new Nash equilibrium is also Pareto efficient, it is said that “the

players escape the dilemma.” ([7]) However, as Benjamin and Hayden indicated,

it seems unlikely that the restriction to the set [of strategies (see Eq. 2.27 as opposed to Eq.

2.24)] can reflect any reasonable physical constraint (limited experimental resources, say)

because this set is not closed under composition. [25]

In fact, in the space of all quantum strategies (see Eq. 2.24) there is no equilibrium as for every

strategy U(θ, φ, λ) there is a counter strategy U(θ + π,−φ − π
2 , λ − π

2 ) which gives the countering

player the optimal outcome t [25]. However, if we restrict the set of strategies to {U(θ, 0, 0) | θ ∈ [0, π]}
the game reduces to its mixed classical version, in which players choose randomly between the classical

strategies Cooperate and Defect and the parameter θ determines the probability distribution (θ = 0 means

that a player will always Cooperate and θ = π means that they will always Defect).

We will now show that the EWL scheme is indeed a quantum game in our sense (see Section 2.4).

Clearly, it uses concepts of quantum computing: players utilize their strategies by applying unitary oper-

ators on the prepared quantum state, the state is measured to obtain the final outcome. It is also reducible

to its classical counterpart as we have shown above. Lastly, it shows some new intriguing properties.

Despite the lack of Nash equilibrium in the most general case, it turns out that there is one, if players

restrict themselves to a certain subset of strategies, which will be shown below.

As we said before, for each strategy U(θ, φ, λ) there is a counter strategy U(θ+ π,−φ− π
2 , λ− π

2 ).

Suppose Alice chooses strategy A ≡ U(θ, φ, λ). Then the best response for Bob would be to play

B ≡ U(θ + π,−φ − π
2 , λ − π

2 ). If, however, Alice knew that Bob would play B, she could play A′ ≡
U(θ + 2π, φ, λ − π

2 ), as it is the best response for B. Consequently, the best response for A′ is B′ ≡
U(θ + 3π,−φ− π

2 , λ− 3π
2 ) and then it turns out that the countering strategies form a cycle, as the best

response for B′ is A. If players mix the above strategies, ie. Alice plays a mixed strategy cos2 γA
2 A +

sin2 γA
2 A
′ , γA ∈ [0, π] and Bob plays cos2 γB

2 B + sin2 γB
2 B

′ , γB ∈ [0, π], then there is one Nash

equilibrium, namely γA = γB = π
2 , for which the payoffs are $A = $B = s+t

2 [26]. In fact, if any player

chooses γ = π
2 , the payoffs for both players will be fixed on s+t

2 .

This shows that there are infinitely many restricted games and for every one of them there is a Nash

equilibrium giving players an equal payoff, which is only slightly worse than the payoff for mutual

cooperation (note that one of the constraints for the Prisoner’s Dilemma is r > s+t
2 ).
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2.6. Summary

We have introduced basic concepts of quantum computation and game theory, explained the concept

of a quantum game and discussed the Prisoner’s Dilemma — its classical version as well as the quantum

generalization introduced by Eisert, Wilkens, and Lewenstein.
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3. Quantum circuits on IBM Q

In this chapter we introduce IBM Q and issues concerning the realization of quantum algorithms

on the IBM Q quantum computers. We will give some insight into the physical realization of the IBM

Q computers and then proceed to cover the topics of quantum errors and quantum error correction

methods. This chapter ends with a short section on circuit optimization.

3.1. An introduction to IBM Q

As the IBM Q’s homepage states: “IBM Q is an industry first initiative to build universal quan-

tum computers for business, engineering and science.” ([18]) It offers a number of quantum computing

devices and simulators available publicly on the cloud, which can be accessed through the IBM Q Expe-

rience platform [2] or the Web API.

The first quantum processor of the IBM Q project, which implemented 5 qubits, was opened to the

public in 2016 [1]. Since then the project is under constant development offering new devices with more

and more qubits as well as new tools, such as Qiskit [3] — a Python library for quantum computation on

IBM Q. At the time of writing there are four active public IBM Q quantum devices: IBM Q Melbourne

(14 qubits), IBM Q Yorktown (5 qubits), IBM Q Vigo (5 qubits), and IBM Q Ourense (5 qubits) as well

as one premium device: IBM Q Tokyo (20 qubits) available for IBM Q clients only [18].

3.2. Physical realization

The key element of any IBM Q quantum device is the transmon qubit [18]. The name is an abbrevi-

ation of the term transmission line shunted plasma oscillation qubit, which is a type of superconducting

qubit [27]. The transmon qubits are connected with each other by a superconducting bus resonator [28]

to form a network (for an example of such network see Figure 3.1 below). The coupling of qubits de-

termines the possible combinations of controlled-NOT quantum gates. As “[t]he IBM Q experience uses

the cross-resonance interaction as the basis for the CX-gate[] [and] [t]his interaction is stronger when

choosing the qubit with higher frequency to be the control qubit, and the lower frequency qubit to be the

target, [] the frequencies of the qubits determines the direction of the gate.” ([28]) The gate directions

for IBM Q Tenerife are shown in Figure 3.2 below. This whole device is kept in a very low temperature

(around 15 mK [18]) in order to mitigate the effects of quantum decoherence (see Section 3.3 below).
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Figure 3.1. The qubit coupling map of IBM Q Tenerife.

Figure 3.2. The controlled-NOT gate directions in IBM Q Tenerife (as for

30th July 2019).

The IBM Q devices are capable of applying any one-qubit quantum gate as well as the controlled-

NOT gate (in the possible directions, see Figure 3.2) [28], which is sufficient for implementation of any

multi-qubit quantum gate [19].

3.3. Quantum errors

There are two types of errors in quantum devices due to their source: coherence errors (or retention

errors) and gate errors (or operational errors) [29].

3.3.1. Coherence errors

Coherence errors occur as a consequence of the fact that quantum states have a tendency to decohere

with time due to their interactions with the environment. It is therefore essential to limit those interactions

as far as possible, for example by lowering the temperature of the device to an extreme point and thus

taking away almost all of the particles’ kinetic energy (virtually “freezing” them in place). Obviously, it
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is not desirable to isolate a quantum state completely, as this would render it useless for computational

purposes, which require the ability to apply quantum operations and perform measurements.

Ensuring high qubit quality is one of the main challenges of the current quantum computing technol-

ogy. There are two metrics which quantify the ability of a quantum device to retain a quantum state. The

T1 Coherence Time or Relaxation Time is a time constant associated with the relaxation of a qubit, ie.

its decay from the high-energy state |1〉 to the low-energy state |0〉, whereas the T2 Coherence Time or

Dephasing Time is associated with the dephasing of a qubit, ie. the randomization of the qubit’s phase.

For example, the average values of T1 and T2 for IBM Q Tenerife are about 44 µs and 25 µs

respectively (as for 31st May 2019) [30].

3.3.2. Gate errors

Quantum operations in a quantum device are not perfect, which results in errors called the gate errors

(or operational errors). The key concept in quantifying the gate errors is the fidelity [10] of two given

quantum states, which can be understood as a measure of the “closeness” of those states. If we have two

quantum states represented as density matrices ρ and σ, the fidelity F (ρ, σ) of those states is defined as

F (ρ, σ) =

[
Tr
√√

ρσ
√
ρ

]2

. (3.1)

We can then characterize the quantum gate by its average fidelity, ie. the average fidelity of the output

state, ideal over experimental. Alternatively, we can give operational error-rates defined as 1−F , where

F is the average fidelity [31].

In the case of IBM Q Tenerife the average idelities of 1-qubit gates and 2-qubit gates are about

99.89% and 95.54% respectively and the average readout fidelity is about 84.7% (as for 31st May 2019)

[30].

3.4. Quantum error correction

As it was mentioned in the section 3.3 concerning quantum errors, the results obtained on current

quantum devices are far from ideal. There are, however, some methods of mitigating those errors and

these are grouped together under the name of quantum error correction. It should be mentioned that the

possibility of employing quantum error correction on IBM Q devices is limited, as they do not allow

quantum operations after measurement.

In contrast to classical bits, there are a number of kinds of errors that can occur in quantum de-

vices [10]. We will be mostly concerned with one specific kind — the bit flip. The bit flip error results in

a change of a qubit state from |0〉 to |1〉 and vice versa. The effect of this error is the same as applying

the Pauli operator X with a certain probability. This is the only kind of quantum errors which has a

counterpart in classical computation — when a classical bit flip occurs, a bit flips its state from 0 to 1

and vice versa.
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There are also other kinds of quantum errors, which do not have classical counterparts, such as the

phase flip, which has the same effect as applying the Pauli operator Z with a certain probability. As the

phase flip is not directly measurable with measurements in the computational basis (it can be, however,

measured in other basis), it will not be a concern for this thesis.

In this thesis two methods of quantum error correction were used. The first one is based on the idea of

repetition codes and the second one uses the knowledge of the measurement error distribution to mitigate

this kind of error.

3.4.1. The repetition code

The idea of repetition codes is widely used in classical error correction [32]. Suppose that we store a

single bit of information and an error, which can only be the bit flip in this case, occurs with probability

p < 1
2 . Thus, when we read the value of this bit we will get the erroneous result with probability p. We

can improve our situation at the cost of memory usage if we encode the logical state of the bit onto a

number of physical bits. That is for example if we repeat the bit d = 5 times:

0→ 00000 , 1→ 11111 .

When we want to read the logical value of the bit, we need to read the encoded state and decode it simply

by choosing the value that occurs most often (this is called majority voting). The probability of a logical

error, ie. decoding a different value that the one which was encoded, is equal to the probability that a

majority of bits will flip (we can eliminate the risk of a tied vote, when we set d to be an odd number)

and that is equal to pd d2e.

We can use a similar method for quantum error correction [33]. Let us consider the simplest case of

a single-qubit state. First, we prepare the quantum state on d qubits. We also have to prepare one ancilla

qubit for each pair of state qubits. Then, we apply two CNOT gates on each ancilla qubit controlled by

their respective state qubits (see Figure 3.3). Finally, all qubits are measured to obtain the final output of

the quantum correction code R ∈ {0, 1}2d−1.
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|q1〉 = |0〉 State Preparation •

|a1〉 = |0〉 ⊕⊕

|q2〉 = |0〉 State Preparation • •

|a2〉 = |0〉 ⊕⊕

|q3〉 = |0〉 State Preparation •
Figure 3.3. A general repetition quantum correction circuit for a single-qubit state and

repetition number d = 3.

In order to decode the logical bit value we need to know probabilities π(R | E) of obtaining mea-

surement result R, when the encoded value was E ∈ {0, 1}. This probability can be determined experi-

mentally by repetitive measurements of the quantum correction code for each E ∈ {0, 1}. Then we can

calculate a lookup table for decoding logical states l : {0, 1}2d−1 → {0, 1} as shown in the Algorithm 1

listing below.

Input: Measurement distributions πE : {0, 1}2d−1 → [0, 1] for each basis state E ∈ {0, 1}
Output: A lookup table l : {0, 1}2d−1 → {0, 1}
for s ∈ {0, 1}2d−1 do

candidates ← {0, 1};
maxp ← 0;

for state ∈ {0, 1} do
if s ∈ DπE then

if πs(state) > maxp then
maxp ← πs(state);

candidates ← {state};
end
else if πs(state) = maxp then

candidates = candidates ∪ {state};
end

end

end
l(s)← random(candidates);

end
Algorithm 1: Calculating lookup table l from experimental data.
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Having a measurement distribution π we can determine the corrected distribution π′ as shown in the

Algorithm 2 listing below.
Input: A measurement distribution π : {0, 1}2d−1 → [0, 1], a lookup table

l : {0, 1}2d−1 → {0, 1}
Output: The corrected distribution π′ : {0, 1} → [0, 1]

Initialize π′ to 0 for all domain elements;

for s ∈ Dπ do
π′(l(s))← π′(l(s)) + π(s);

end
Algorithm 2: Determining the corrected distribution π′ based on a measurement distribution π and

a lookup table l.

3.4.2. Measurement error mitigation

The second method of quantum error correction used in this thesis is based on the idea that there may

be a bias towards certain measurement results. We can experimentally determine this bias and then apply

a correction to the measurement results. This is called measurement error mitigation and is performed as

follows.

First a series of calibration circuits for a chosen number of qubits n is created, each of which consists

of two parts: preparation of one of the basis states and measurement. A sample set of calibration circuits

for two qubits is shown in Figure 3.4 below.

(a) (b)
(c) (d)

Figure 3.4. Calibration circuits for two qubits. Quantum states to be measured are: (a)

|00〉, (b) |10〉, (c) |01〉, (d) |11〉.

Based on the measurement results of these circuits the calibration matrix A = (aij)i,j∈{1,...,2n} is

then calculated. Each aij corresponds to the conditional probability of obtaining measurement result i,

if the prepared state was j. Thus we can treat A as a stochastic matrix, which transforms vectors of

probability. We assume that if we prepare a quantum state to yield measurement results according to

some vector x, we will get measurement results according to a vector b and

Ax = b . (3.2)

Knowing the calibration matrix A and the experimental measurement probabilities b, we can solve the

system of linear equations Eq. 3.2 to obtain the corrected measurement distribution x.
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3.5. Circuit optimization

Apart from quantum error correction methods there is another way to increase the fidelity of quantum

operations, namely circuit optimization, which involves performing some preprocessing on the classical

computer in order to decrease the size of the quantum circuit, especially the number of the CNOT gates.

In Qiskit there is a module called the transpiler, which is responsible for analysis and transformation

of user-defined circuits and circuit optimization is a part of its functionality. The processing of the tran-

spiler module is defined in terms of transpiler passes. These are circuit processing algorithms which can

be chained together to form a pipeline. A user can define, which transpiler passes should be executed and

in which order. There are, however, four pre-defined transpiler pipelines which correspond to four levels

of optimization:

– Level 0 — the transpiler does no explicit optimization. It only maps the virtual qubits defined in

the circuit to the physical qubits on the backend.

– Level 1 — the transpiler does everything from the previous level and also does some minor opti-

mization by collapsing adjacent quantum gates.

– Level 2 — the transpiler uses a noise-adaptive mapping [34] to map the virtual qubits to the phys-

ical qubits and then performs gate cancellation using commutativity rules.

– Level 3 — the transpiler does everything from the previous level and also does resynthesis of

two-qubit unitary blocks [35].

It should also be noted that there is a circuit element in Qiskit, namely the barrier, which allows to divide

a circuit into parts which will be optimized independently.

3.6. A note on changes in IBM Q during writing of this thesis

As the IBM Q project is under constant development, new features were being added to the Qiskit

Python library and even new quantum devices (IBM Q Vigo and Ourense) were made available during

writing of this thesis. Moreover, the Qiskit API was being changed from time to time, which made the

work on this thesis more difficult.

3.7. Summary

We have introduced IBM Q and concepts related to realization of quantum algorithms on real quan-

tum devices, especially the IBM Q quantum computers. After this and the previous chapter about quan-

tum games we are ready to present the solution of this thesis — the realization of the EWL scheme on

an IBM Q device — in the next chapter.
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4. Solution

This chapter presents the EWL scheme realization on an IBM quantum device. It starts with the

methodology and a detailed description of the method used to decompose matrices and then proceeds to

presents the results of each step taken to create an optimized quantum circuit for execution on IBM Q.

The chapter ends with a description of quantum error correction method application.

4.1. Methodology

The research presented in this thesis was carried out as follows. The first milestone was realization

of the EWL scheme on an IBM Q quantum computer. In order to accomplish this goal it was necessary

to find the decomposition of the J gate into a sequence of fully controlled single-qubit gates, which was

done using the method introduced by Li, Roberts, and Yin [36] as it is described in Section 4.2 below. The

decomposed EWL scheme was tested using a classical simulator available in Qiskit [3]. When the validity

of the EWL Circuit had been ascertained, executions on real IBM Q quantum devices were performed.

As the results obtained on quantum devices were unsatisfactory due to quantum decoherence, attempts

were made to mitigate their influence on the results. Two methods of quantum error correction were

applied independently (see Section 4.3 below).

4.2. EWL scheme realization

As IBM Q devices implement only single-qubit quantum gates and their controlled counterparts, it is

necessary to represent the entangling gate J (see Figure 2.2 and Eq. 2.23) as a combination of the former

in order to realize the EWL scheme on an IBM Q device. In fact, it can be shown that:

Theorem 4.2.1 ([36]). Every quantum gate acting on n-qubit registers can be expressed as no more than

2n−1(2n− 1) fully controlled single-qubit gates chosen from 2n− 1 classes, where the quantum gates in

each class share the same n− 1 control qubits.

Proof. Cf. [36].
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4.2.1. Method description

Li, Roberts, and Yin introduced a method of decomposing unitary matrices [36], which can be used

to decompose arbitrary quantum gates into fully controlled single-qubit gates.

Definition 4.2.1 (P -unitary matrix [36]). Let P = (j1, j2, . . . , jd) be such that the entries of P corre-

spond to a permutation of (1, 2, . . . , d). A two-level unitary matrix is called a P -unitary matrix of type
k for k ∈ {1, 2, . . . , d − 1} if it is obtained from Id by changing a principal submatrix with row and

column indexes jk and jk+1.

For example if P = (j1, j2, j3, j4) = (1, 2, 4, 3), then the P -unitary matrices of type 1, 2 and 3 have

the forms 
∗ ∗ 0 0

∗ ∗ 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 ∗ 0 ∗
0 0 1 0

0 ∗ 0 ∗

 , and


1 0 0 0

0 1 0 0

0 0 ∗ ∗
0 0 ∗ ∗

 ,
respectively.

Proposition 4.2.1 ([36]). Every d×d unitary matrix U can be written as a product of no more than d(d−
1)/2 P -unitary matrices. Moreover, these P -unitary matrices can be chosen to have any determinants

with modulus 1 as long as their product equals det(U).

Proof. Cf. [36].

We will illustrate this proposition with an example from the work of Li, Roberts, and Yin [36]. Let

d = 4, P = (j1, j2, j3, j4) = (1, 2, 4, 3), and

U =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 . (4.1)

Let µ1, µ2, . . . , µ6 be such that µ1, µ2, . . . , µ6 ∈ {z : |z| = 1} and µ1µ2 . . . µ6 = det(U).

First we consider the column of U labeled by the first entry of P : j1 = 1. We choose P -unitary

matrix U1 of type 3 such that det(U1) = µ̄1 and the (j4, j1) = (3, 1) entry of U1U is 0 as follows. Let

u1 =
√
|a31|2 + |a41|2 and

U1 =


1 0 0 0

0 1 0 0

0 0 µ̄1a41
u1

−µ̄1a31
u1

0 0 ā31
u1

ā41
u1

 . Then U1U =


a11 a12 a13 a14

a21 a22 a23 a24

0 a′32 a′33 a′34

u1 a′42 a′43 a′44

 . (4.2)
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Next we choose P -unitary matrix U2 of type 2 such that det(U2) = µ̄2 and the (j3, j1) = (4, 1) entry

of U2U1U is 0 as follows. Let u2 =
√
|a21|2 + u2

1 and

U2 =


1 0 0 0

0 ā21
u2

0 u1
u2

0 0 1 0

0 −µ̄2u1
u2

0 µ̄2a21
u2

 . Then U2U1U =


a11 a12 a13 a14

u2 a′22 a′23 a′24

0 a′32 a′33 a′34

0 a′′42 a′′43 a′′44

 . (4.3)

Now, we choose P -unitary matrix U3 of type 1 such that det(U3) = µ̄3, the (j2, j1) = (2, 1) entry

of U3U2U1U is 0 and the (1, 1) entry of U3U2U1U is 1 as follows. Let

U3 =


ā11 u2 0 0

−µ̄3u2 µ̄3a11 0 0

0 0 1 0

0 0 0 1

 . Then V = U3U2U1U =


1 0 0 0

0 a′′22 a′′23 a′′24

0 a′32 a′33 a′34

0 a′′42 a′′43 a′′44

 . (4.4)

The first row of V is (1, 0, 0, 0), because V is unitary.

Next we turn to columns of V labeled by j2 = 2 and j3 = 4. We can choose P -unitary matrices U4

and U5 of types 3 and 2, respectively, such that det(U4) = µ̄4, det(U5) = µ̄5, the (j4, j2) = (3, 2) entry

of U4V is 0, and the (j3, j2) = (4, 2) entry of U5U4V is also 0. Then we can choose P -unitary matrix

U6 of type 3 such that det(U6) = µ̄6 and the (j4, j3) = (3, 4) entry of U6U5U4V is 0. The intermediate

matrices will have the following zero patterns:

U4V =


1 0 0 0

0 ∗ ∗ ∗
0 0 ∗ ∗
0 ∗ ∗ ∗

 , and U5U4V =


1 0 0 0

0 1 0 0

0 0 ∗ ∗
0 0 ∗ ∗

 .
And finally

U6U5U4V =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = I4 . (4.5)

The (j4, j4) = (3, 3) entry of U6U5U4V is 1 because

det(U6U5U4U3U2U1) det(U) = µ̄6µ̄5 . . . µ̄1 det(U) = |det(U)|2 = 1 . (4.6)

In view of the above we can write

U = U †1U
†
2U
†
3U
†
4U
†
5U
†
6 . (4.7)

It is evident that the matrices U †j (j = 1, . . . , 6) are also P -unitary matrices of the same type as their

respective Uj matrices. It should also be mentioned that some of the Uj may be equal to Id (ie. may be

skipped) if the entry to be eliminated is already 0.
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We are just a step away from finding the decomposition of quantum gates (which are equivalent to

unitary matrices in a given basis) into fully controlled single-qubit gates. This last step is to find the

subset of P -unitary matrices which can be identified with the latter. Given a system with n qubits, we

will denote a fully controlled gate as Cn−1V , where V =

[
v11 v12

v21 v22

]
is a single-qubit gate. Cn−1V has

n − 1 control qubits valued 0 or 1, which determine the controlling subspace. For example, in the case

of 4× 4 unitary matrices there are four possible controlled gates. If we take the first qubit as the control

qubit:



00 01 10 11

00 v11 v12 0 0

01 v21 v22 0 0

10 0 0 1 0

11 0 0 0 1

 ,


00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 v11 v12

11 0 0 v21 v22

 .
If we take the second qubit as the control qubit:



00 01 10 11

00 v11 0 v12 0

01 0 1 0 0

10 v21 0 v22 0

11 0 0 0 1

 ,


00 01 10 11

00 1 0 0 0

01 0 v11 0 v12

10 0 0 1 0

11 0 v21 0 v22

 .

As Li, Roberts, and Yin noticed:

In general, if we label the rows and columns of quantum gates (unitary matrices) acting on n

qubits by binary sequences x1, . . . , xn, then aCn−1V gate corresponds to a two-level matrix

obtained from I2n by replacing its 2 × 2 principal submatrix lying in rows and columns

X = x1 . . . xn and X̃ = x̃1 . . . x̃n by V for two binary sequence X and X̃ [which] differ

exactly in one of their terms, say, xi 6= x̃i. [36]

Definition 4.2.2 (Gray code [36]). Let n be a positive integer and N = 2n. A Gray code Gn is an

N -tuple Gn = (X1, . . . , XN ) such that:

1. X1, . . . , XN are binary string representations of numbers 0, 1, . . . , N − 1 arranged in a certain

order.

2. Two adjacent strings Xj and Xj+1 differ in only one position.

3. X1 and XN differ in only one position.

For example, G2 = (00, 01, 11, 10). If we substitute Gn for P in the definition of P -unitary matrix

(see Def. 4.2.1), we will obtainGn-unitary matrices, which can be identified with fully controlled single-

qubit gates [36]. We can then apply Gn-unitary matrices to Proposition 4.2.1 to find the decomposition

of any unitary matrix (ie. an arbitrary quantum gate) into fully controlled single-qubit gates.
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4.2.2. Method application

In order to decompose the J gate the following steps were taken:

1. A Matlab implementation of the above scheme — pud.m [37] — was used to find the decompo-

sition in the form of a sequence of unitary matrices.

2. The unitary matrices were expressed using the parameterization required by IBM Q to create a

quantum circuit.

3. The quantum circuit was optimized in order to minimize the error on a quantum device.

The results of these steps are described in detail below.

The solution found by Matlab implementation is the following decomposition:

J = J6J5J4J3J2J1 , (4.8)

where

J1 = J6 ≡


1 0 0 0

0 1 0 0

0 0 −i 0

0 0 0 i

 ,

J2 = J5 ≡


1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

 ,

J3 ≡


1 0 0 0

0 1 0 0

0 0 − 1√
2

1√
2

0 0 − 1√
2
− 1√

2

 ,

J4 ≡


1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1 0

0 0 0 1

 ,

and thus

J† = J†1J
†
2J
†
3J
†
4J
†
5J
†
6 . (4.9)
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The full EWL scheme realized using the above elementary gates is shown in Figure 4.1 below (EWL

Circuit). The gate notation used in the Figure 4.1 is as follows:

A ≡
[
−i 0

0 i

]
, B ≡

[
0 1

−1 0

]
,

C ≡ 1√
2

[
−1 1

−1 −1

]
, D ≡ 1√

2

[
1 1

−1 1

]
,

X denotes the NOT (or Pauli σx) gate, andUA,UB denote the gates with which Alice and Bob implement

their respective strategies.

|q1〉 = |0〉 • B • X • X B • UA • B† X • X • B† •
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q2〉 = |0〉 A • C D • A UB A† • D† C† • A†
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 4.1. The quantum circuit diagram of the EWL Circuit. The gate notation is

explained in the containing section.

In Qiskit single-qubit gates are given by the three parameters for the universal quantum gate

U(θ, φ, λ) (see Eq. 2.24), therefore it is necessary to find those parameters for our elementary gates.

After some simple calculations we see that

A ≡ U
(

0,
π

2
,
π

2

)
, A† ≡ U

(
0,

3π

2
,
3π

2

)
,

B ≡ U (π, 2π, 0) , B† ≡ U (π, 0, 0) ,

C ≡ U
(π

2
, 2π, 0

)
, C† ≡ U

(π
2
, π, π

)
,

D ≡ U
(π

2
, 3π, π

)
, D† ≡ U

(π
2
, 0, 0

)
.

As for UA and UB we can see that each player strategy is determined by three parameters

(θi, φi, λi) ∈ Si = [0, π] × [0, 4π)2, where i denotes Alice or Bob. Clearly, the game is infinite, as

the set of strategy profiles S = SA × SB is continuously infinite.

Finally, the circuit was optimized for execution. We used preprocessing optimization (see Sec-

tion 3.5) to optimize J and J† gates which are player-independent parts of the EWL scheme. To achieve

that, we put barriers to separate the player-dependent and player-independent parts of the circuit. The

result is shown in Figure 4.2 below.

Figure 4.2. The quantum circuit diagram of the optimized version of the EWL scheme.
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4.3. Application of quantum error correction methods

One of the objectives of this thesis was to apply quantum error correction methods and evaluate their

influence on the results of the EWL scheme execution on an IBM Q device. Two of such methods were

used: the repetition code and measurement error mitigation. They are described in detail in Section 3.4.

4.3.1. The repetition code

|q1〉 = |0〉
EWL Circuit

•

|q2〉 = |0〉 •

|a1〉 = |0〉 ⊕⊕

|a2〉 = |0〉 ⊕⊕

|q3〉 = |0〉
EWL Circuit

• •

|q4〉 = |0〉 • •

|a3〉 = |0〉 ⊕⊕

|a4〉 = |0〉 ⊕⊕

|q5〉 = |0〉
EWL Circuit

•

|q6〉 = |0〉 •

Figure 4.3. The repetition code circuit for the EWL scheme (d = 3).

The repetition code correction method is applied as follows:

1. The repetition code circuit is prepared for d = 3 (see Figure 4.3).

2. The repetition code circuit is executed on IBM Q for the set of strategies S′ =

{((θA, 0, 0), (θB, 0, 0)) | θA, θB ∈ {0, π}}, which produce the two qubit basis states

{|00〉, |01〉, |10〉, |11〉} on the output of the EWL Circuit.

3. The lookup table l is prepared based on the results from the previous step (see Algorithm 1).

4. The repetition code circuit is executed on IBM Q for a given set of strategies.

5. The results are corrected using the lookup table l as described in Algorithm 2.

The algorithms were implemented in Python and quantum circuits were executed on IBM Q quantum

devices using Qiskit API.
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4.3.2. Measurement error mitigation

Measurement error mitigation is performed as it was described in Section 3.4. It is implemented by

the Qiskit Python library (package qiskit.ignis.mitigation.measurement). The method is

applied in the following steps:

1. The two-qubit calibration circuits for the EWL scheme are prepared (see Figure 3.4) by the

complete_meas_cal function.

2. The calibration circuits are executed on IBM Q.

3. The calibration matrix is calculated based on the results of the calibration circuits as described in

Section 3.4 by a fitter object — CompleteMeasFitter.

4. The EWL Circuit is executed on IBM Q for a given set of strategies.

5. Correction of the results from the previous step is performed based on the calibration matrix by

solving the system of linear equations (3.2) by a filter object — MeasurementFilter.

This method was performed in Python using the Qiskit implementation and quantum circuits were exe-

cuted using the Qiskit API.

4.4. Summary

We have presented the realization of the EWL scheme on an IBM Q quantum device along with two

methods of quantum error correction. In the next chapter we will show the evaluation results of the above

solution.
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This chapter presents the evaluation of the solution given in the previous chapter. It starts by evaluat-

ing the EWL Circuit on a classical simulator without quantum errors to assess the validity of the circuit

itself. Then it attempts to measure the influence of quantum errors of a real quantum device on the game

results and the efficiency of the quantum error correction methods used in this thesis.

5.1. Perfect simulation

As described in Section 1.4 the first objective of this thesis was to find a form of the EWL scheme

compatible with the IBM Q requirements. One can easily prove validity of the obtained circuit (see Figure

4.1) by recomposing the unitary matrices. We compared expected payoff values obtained theoretically

and in the IBM Q simulator. These values are determined as follows. The measurement results of the

EWL Circuit are mapped to payoff values according to Table 5.1 below (cf. Table 2.2).

measured result pA pB

00 3 3

01 0 5

10 5 0

11 1 1

Table 5.1. The mapping of measured outcomes to players’ payoffs.

The expected payoff values are calculated based on the probability distribution of the measurement

results. If π : {00, 01, 10, 11} → [0, 1] is such a distribution and pi : {00, 01, 10, 11} → R is the

mapping shown in Table 5.1 for player i, then the expected payoff value for that player is given by

E(pi) =
∑

r∈{00,01,10,11}
π(r) · pi(r) . (5.1)

In figure 5.1 below we show the payoff values for the first player which result from a chosen subset

of joint quantum strategies. Strategies in the diagram are parameterized by function f : [0, 1] → Sp,
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where Sp is the set of strategies available to each player, as follows:

f(s) :=

U(π − 2sπ, 0, 0) s ∈ [0, 1
2 ]

U(0, (s− 1
2)π, (s− 1

2)π) s ∈ (1
2 , 1]

, (5.2)

where U(θ, φ, λ) is a matrix parameterization given by Eq. 2.24. Thus, f(0) = U(π, 0, 0) = X , f(1
2) =

U(0, 0, 0) = I , and f(1) = U(0, π2 ,
π
2 ) = Z.

Figure 5.1. A graph of the payoff values for the first player which result from classi-

cally simulated games (on IBM Q simulator) where players employ strategies f(s1)

and f(s2), respectively (see Eq. 5.2), and s1, s2 ∈ [0, 1].

The graph in Figure 5.1 is consistent with the theoretical results. The part of the graph for strategies

X → I is actually the graph for the mixed classical game and reproduces results from [26]. The chosen

quantum extension shown in the remaining part of the graph contains interesting Z strategy acting as a

switch of strategies between players. For example joint strategy (X,Z) gives the same payoff as joint

strategy (I,X).

Table 5.2 below shows some statistical information about the results. The variance of the payoff

values is always 0 for the simulated games due to the chosen set of strategies, each of which should yield

exactly one outcome with probability 1 (thus having minimal entropy).
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5.2. Quantum device

The next step was to execute the EWL Circuit on a real quantum device. This was done for three

strategies: X , I , and Z. The Figure 5.2 below shows the payoff values for nine strategy profiles obtained

by executing the EWL Circuit on the 16-qubit IBM Q Melbourne quantum device and applying the same

expected payoff function (see Eq. 5.1). The measurement distribution π is known, as the experiment is

prepared and executed on an IBM Q quantum device 1024 times (which is the default value on IBM Q).

Figure 5.2. A graph of the payoff values for the first player from games executed on

IBM Q Melbourne for strategies: X , I , and Z (the black dots). A semi-transparent

surface of payoffs from games simulated classically (see Figure 5.1) is given for ref-

erence.

As we can see, the payoff graph is somewhat flattened when compared to the simulated results. This is

due to the fact that quantum decoherence changes pure quantum states into mixed ones and thus produces

measurement distributions with higher entropy. Table 5.2 below gives more statistical information about

the results.
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5.3. Quantum error correction

Another question of this thesis was, whether the results presented in the previous section can be im-

proved. Two methods of quantum error correction were tested: the repetition code (for repetition number

d = 3) and measurement error mitigation. These methods produced corrected measurement (outcome)

distributions, to which the payoff function was also applied and the result is shown in the Table 5.2 below.

strategy profile method E(pA) E(pB) V (pA) V (pB)

(X,X)

simulation 1.0 1.0 0.0 0.0
quantum device 1.283 1.264 1.226 1.179

repetition code 1.893 1.761 2.639 2.461

meas. err. mitigation 1.0 1.0 0.0 0.0

(X, I)

simulation 5.0 0.0 0.0 0.0
quantum device 4.494 0.422 1.725 1.383

repetition code 3.303 1.35 4.061 3.382

meas. err. mitigation 4.901 0.025 0.385 0.024

(X,Z)

simulation 0.0 5.0 0.0 0.0
quantum device 0.444 4.502 1.272 1.49

repetition code 2.093 2.708 3.627 3.75

meas. err. mitigation 0.247 4.589 0.759 1.473

(I,X)

simulation 0.0 5.0 0.0 0.0
quantum device 0.491 4.505 1.443 1.459

repetition code 1.493 3.344 3.68 3.981

meas. err. mitigation 0.298 4.6 0.994 1.432

(I, I)

simulation 3.0 3.0 0.0 0.0
quantum device 2.879 2.947 0.827 0.771

repetition code 2.628 2.789 1.648 1.581

meas. err. mitigation 2.884 2.92 0.877 0.848

(I, Z)

simulation 1.0 1.0 0.0 0.0
quantum device 1.224 1.346 1.158 1.455

repetition code 2.174 2.223 3.771 3.8

meas. err. mitigation 1.0 1.0 0.0 0.0

(Z,X)

simulation 5.0 0.0 0.0 0.0
quantum device 4.504 0.437 1.539 1.297

repetition code 2.39 2.004 3.603 3.369

meas. err. mitigation 4.891 0.027 0.425 0.027
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strategy profile method E(pA) E(pB) V (pA) V (pB)

(Z, I)

simulation 1.0 1.0 0.0 0.0
quantum device 1.216 1.382 1.118 1.517

repetition code 2.229 2.292 3.983 4.013

meas. err. mitigation 1.0 1.0 0.0 0.0

(Z,Z)

simulation 3.0 3.0 0.0 0.0
quantum device 2.867 2.945 0.725 0.661

repetition code 2.349 2.373 3.407 3.414

meas. err. mitigation 2.868 2.916 0.743 0.705

Table 5.2. A table gathering expected payoffs and payoff variances for each player,

strategy profile, and method. All values are rounded to the third decimal digit.

Table 5.2 shows that the repetition code not only did not improve the results but also made them

significantly worse. This is probably due to the fact that the repetition code circuit involves a large

number of quantum gates, especially CNOT gates, each of which introduces a substantial error. This

error is to large for the repetition code to work properly. However, the second method of quantum error

correction, measurement error mitigation, brought some major improvement. In some instances, where

the simulated expected payoff was (1, 1), the expected payoffs and variances for the corrected results

were equal to the simulated values up to the third decimal digit.

In order to measure overall quality of the experimental results we can treat the tuple of expected

payoffs for each method as a vector from a 9-dimensional vector space and find their Euclidean distance

from the theoretical expected payoffs. Thus for each player i and method m we can define a value Dm,i:

Dm,i :=

√ ∑
s∈{X,I,Z}2

[(E(pi))(s)− (E(pm,i))(s)]
2 , (5.3)

where E(pi) is the theoretical expected payoff function for player i and E(pm,i) is the experimental

expected payoff function for method m and player i. Table 5.3 below presents those values for each

experimental method and player.

method Dm,A Dm,B

quantum device 1.0723 1.0965

repetition code 4.5333 4.2443

meas. err. mitigation 0.4497 0.5866

Table 5.3. The Dm,i distances from theoretical expected payoffs for each method and

player.

Table 5.3 shows that the repetition code method increased the distance from the theoretical results by

a factor of above four and measurement error mitigation decreased the same distance by a factor of two.
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5.4. Summary

We have presented the evaluation results of the EWL scheme realization. It showed that the EWL

Circuit is valid and that results obtained on a real quantum device can be improved with some quan-

tum error correction methods, in this case measurement error mitigation. We have also shown that the

repetition code quantum error correction method was unsuccessful in this matter.
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6. Summary and Conclusion

This chapter concludes this thesis with the summary of the achieved goals and some remarks con-

cerning possible future works in this area.

6.1. Achieved Goals

This thesis shows that the realization of the EWL scheme on IBM Q quantum devices is possible by

achieving the following goals stated in Chapter 1:

Quantum game realization on IBM Q

The EWL scheme has been formulated using the elementary quantum gates required by IBM Q and a

quantum circuit has been constructed, which can be executed on IBM Q quantum devices. This is the first

published realization of the EWL scheme on IBM Q and thus makes the quantum Prisoner’s Dilemma

available for playing by anyone with access to the Internet. It is also a full realization meaning that all

possible quantum strategies can be employed.

Study on the influence of the quantum errors

The influence of the quantum errors on the game results has been studied and some statistical infor-

mation is available in Tables 5.2 and 5.3.

Quantum error correction

Two methods of quantum error correction: the repetition code and measurement error mitigation have

been studied and used to correct the outcomes of quantum plays on an IBM Q device. Their efficiency

is shown in Tables 5.2 and 5.3. Measurement error mitigation turned out to have great results and the

repetition code, at least in the form implemented in this thesis, failed to correct errors.

6.2. Future Works

For better insight on quantum errors state tomography should be performed to determine the quan-

tum state produced by the EWL Circuit and to obtain the fidelity between experimental and theoretical



50 6.2. Future Works

quantum states. One could also use the obtained quantum state and a defined measurement operator to

calculate the payoff value (see Eq. 2.8) instead of using the measurement result distribution.

Another possible direction of future research could be to study more quantum error correction meth-

ods and their utility in the domain of quantum games. This topic was only touched in this thesis by the

means of trial and error and a more thorough study is needed. In the future IBM Q devices may allow

quantum gates after measurements and this would open the way to utilization of another kind of quantum

error correction methods which require this condition.
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