
AGH University of Science and Technology

Faculty of Electrical Engineering, Automatics, Computer Science
and Electronics

Institute of Computer Science

Jakub Wach

Collection and storage of
provenance data

Master of Science Thesis

Supervision

Dr. Marian Bubak

Consultancy

Bartosz Balis

Krakow, June 2008

Abstract

The subject of this thesis is collection and storage of the provenance data in a
Grid system. Provenance is defined as derivation path of a piece of data. Nowadays
Grid systems are equipped with tools and components forming collaborative space
for science, called virtual laboratories. These modern scientific environments allows
for executing in silico experiments in such disciplines as biochemistry, astronomy or
quantum physics. In each of those cases, scientists are highly interested in resem-
blances between experiments and results, tracing data entities or attaching metadata
to obtained results. All these requirements can be fulfilled by tracing, storing and
querying provenance in the system.
This thesis presents PROToS - provenance tracking system designed to meet specific
requirements of the ViroLab virtual laboratory. It is based around semantic modelling
of provenance and system’s data and motivated by the Semantic Grid vision. Apart
from design and implementation of the PROToS, also integration in challenging envi-
ronment of the ViroLab is presented.
Contents of this thesis is organized in chapters, as follows. First chapter introduces
subject of this work, presenting motivation and objectives to be achieved. Second
chapter describes background of the thesis, that is provenance, the ViroLab system
and its virtual laboratory. Third chapter presents most important existing provenance
systems along with brief analysis. Fourth chapter defines requirements for provenance
tracking system to be created. Fifth chapter overviews architecture of the system.
Also, identified use cases and project organization are presented. Sixth chapter de-
tails PROToS design and implementation, describing also technologies used. Seventh
chapter shows PROToS environment in the ViroLab virtual laboratory along with ex-
amples of real-world provenance usage. Eighth chapter is devoted to project’s status
and future work.

Key words

provenance, grid, semantic web, ontologies, semantic integration, data mining, Vi-
roLab, virtual laboratory

1

Acknowledgements

I would like to express my gratitude to dr Marian Bubak, supervisor of this thesis for
his invaluable help, commitment and time.

This work was made possible thans to the ViroLab and CoreGrid projects.

Contents

Abstract . 1

Chapter 1. Introduction . 6
1.1. Motivation . 6
1.2. Objectives . 7
1.3. Organization of this document . 7

Chapter 2. Background . 9
2.1. Virtual laboratories . 9
2.2. ViroLab . 10

2.2.1. Introduction . 10
2.2.2. Virtual Laboratory . 11
2.2.3. Virtual Laboratory Applications . 13

2.3. Provenance . 14
2.3.1. Definition . 14
2.3.2. Possible applications of provenance in virtual laboratories 15

2.4. Grid computing . 17

Chapter 3. Overview of provenance systems 21
3.1. Existing provenance systems . 21
3.2. Discussion . 23

Chapter 4. Requirements specification for provenance sub-system . . . 25
4.1. Requirements . 26
4.2. Preliminary assumptions . 28
4.3. System’s environment overview . 29

Chapter 5. PROToS architecture . 31
5.1. Dictionary . 31
5.2. Core concepts . 33
5.3. Architecture overview . 36
5.4. PROToS Use Cases . 37

5.4.1. DRE component . 38
5.4.2. DGE component . 38
5.4.3. Core application . 39
5.4.4. Node application . 41

3

Contents

5.5. Project organization . 41
5.5.1. Maven introduction . 41
5.5.2. PROToS modules . 42

Chapter 6. PROToS design and implementation 46
6.1. Modules detailed design . 46

6.1.1. Conventions . 46
6.1.2. Protos-dre component . 47
6.1.3. Protos-dge component . 50
6.1.4. Protos-dss component . 52
6.1.5. Protos-ssn component . 57
6.1.6. Protos-sp component . 63
6.1.7. Protos-data component . 66
6.1.8. Protos-interfaces component . 72
6.1.9. Protos-config component . 73
6.1.10.Protos-onts component . 76
6.1.11.Protos-pstore component . 79
6.1.12.Protos-xmldb component . 81

6.2. Technologies used . 85
6.2.1. Stadards applied . 85
6.2.2. Solutions used . 86

Chapter 7. Feasibility study . 89
7.1. Ontologies for the provenance system . 89
7.2. Provenance usage . 91
7.3. QUery TRanslation tOols - QUaTRO . 91

7.3.1. Introduction . 91
7.3.2. Overview . 92
7.3.3. Query construction . 93

7.4. Sample scenarios . 94
7.4.1. Drug Resistance . 94

7.5. Performance evaluation . 95

Chapter 8. Conclusions and future work . 98

Bibliography . 100

Appendix A. System configuration . 105
A.1.Compile-time . 105
A.2.Run-time . 106

A.2.1. XML configuration files . 108
A.2.2. Remote configuration by JMX . 110

A.3.Detailed system configuration . 113
A.3.1. PROToS Core application . 113
A.3.2. PROToS Node application . 116
A.3.3. DSS component . 117
A.3.4. DRE component . 120
A.3.5. DGE component . 123
A.3.6. SSN component . 126

Appendix B. Sample deployment . 129
B.1. Physical component layout . 129

4

Contents

B.2. Configuration settings . 129
B.2.1. Compile-time configuration . 130
B.2.2. Run-time configuration . 137

Appendix C. Administrator manual . 142
C.1.Environment prerequisites . 142
C.2.Obtaining: package and source . 143

C.2.1. Binary package . 143
C.2.2. Source package . 143

C.3.Building from source . 143
C.3.1. With ANT . 143
C.3.2. Without ANT . 144

C.4. Installation instructions . 145
C.4.1. From binaries with ANT support . 145
C.4.2. From source with ANT support . 145
C.4.3. For source without ANT support . 146

C.5.Sample configuration . 146

Appendix D. User manual . 148
D.1.Storing data . 148
D.2.Retrieving data . 150

List of Figures . 152

List of Tables . 159

Chapter 1

Introduction

This chapter provides a rationale for this work. First section con-
tains brief motivation for research in provenance tracking field. Sec-
ond one presents list of objectives to be filled. Finally, the organi-
zation of this thesis is given.

1.1. Motivation

Tracking origins and derivation paths of data (the provenance) in large scale,
high level system is recently gaining more interest. It is especially emphasized since
e-Science has become popular. The e-Science term [67], popularized by John Taylor
means new kind of scientific research, backed by the next generation infrastructure.
It is typically identified with Grids, offering virtualization of resources [70] and col-
laboration over virtual organizations [62]. A number of initiatives emerged to extend
science Grid systems with needed capabilities. An example could be the myGrid
[74] project. In this system, application data, workflow templates and annotations
including provenance information are stored in the common information repository.
Provenance in myGrid is generated from workflow execution events and involves lim-
ited semantic in form of ontology annotations. Other attempts to provenance tracking
include Karma provenance framework [72] and Virtual Provenance Data Model [77].
However, all these solutions have drawbacks and limitations. In most cases they are
too narrow-minded or tightly integrated with particular system, being hardly usable
in different environments. Moreover, the future of e-Science lies in the Semantic Grid
[59] so its ideas should be also incorporated.
Thus, need for profound research in this area still exists. So research should end with
design of provenance model and accompanying system suitable for broad range of Grid
systems of new era - the e-Science.

6

1.2. Objectives

1.2. Objectives

Goals of this work of primary importance can be summarized as follows:

1. research and design of semantic provenance model applicable in wide range of Grid
systems, enabling not only gathering of provenance data but also complex mining
queries over the data

2. perform research on requirements and possible applications of provenance system in
collaborative science space for bioinformatics, like the ViroLab virtual laboratory

3. design and implementation of the provenance tracking system for the ViroLab
virtual laboratory environment

4. research and design of provenance system integration within the ViroLab environ-
ment, involving necessary external components and interfaces

The provenance tracking infrastructure being developed, should be based on cur-
rent state of the art solutions, following best patterns and fixing identified shortcom-
ings. Research done in this field is summarized in section 3.
Work of this thesis is bound to the ViroLab and its specific requirements. Yet, prove-
nance model to be designed should be generic enough to allow provenance tracking in
other environments. Therefore, additional source of provenance usage scenario should
be studied, as those from First Provenance Challenge [60]. Insight in various prove-
nance usage scenarios is given in sections 4.1 and 2.3.2.
What is more, designed and implemented provenance tracking component has to be
integrated in productional, final ViroLab system. Thus, has to prove itself in challeng-
ing and technically advanced environment of Grid system. System’s architecture shall
be prepared for implementing necessary reliability and performance improvements
easily. Also, implementation with industry standards and proven libraries should help
system achieve this goal. Design and implementation details are covered in section 6.
Technologies behind system’s prototype are presented in section 6.2.
In summary this work concentrates on
• performing thorough study of provenance modelling and tracking requirements in

modern virtual laboratories
• design and implementation of provenance tracking system prototype, fulfilling the

ViroLab user’s requirements

1.3. Organization of this document

The remainder of this thesis is organized as follows. Chapter 2 is devoted to
background of the thesis, introducing provenance, the ViroLab system and its virtual
laboratory. Chapter 3 gives overview of existing provenance systems and presents
brief analysis of theirs strong and weak spots. In chapter 4 requirements for the Vi-
roLab provenance system are defined. Next chapter - 5 contains overview of system’s
architecture along with use cases and project organization in Maven2. Chapter 6 is
completely devoted to details of the PROToS design and implementation, describing
also technologies used along with explanation for choices made. In chapter 7 examples
of provenance real-world usage are presented. Moreover, description of PROToS inte-
gration in the ViroLab virtual laboratory is given. Last chapter, number 8, contains

7

1.3. Organization of this document

information regarding project’s current state and future work to be done. Appendices
contains as follows: A - detailed guide to system’s configuration, B - sample deployment
of PROToS, C - administrator manual and D - data storage / retrieval manual.

Chapter 2

Background

This chapter presents background of this thesis work - the prove-
nance tracking system. First section introduces new tools for
e-Science, virtual laboratories. Successive section presents overview
of the ViroLab and its virtual laboratory. Next, basic information
about provenance and its usage is given. Finally, Grid technologies
constituting virtual laboratories are presented.

2.1. Virtual laboratories

Virtual laboratory can be defined as multiple, integrated components forming
collaborative space for science. Before the ViroLab, few other project adopted this
approach for conducting experiments, processing workflows and constructing Grid ap-
plications. Below we present state of the art in the virtual laboratory area. Kepler.

Kepler [22] is a system created for constructing workflows. Most important feature of
Kepler is advanced environment for visual building and execution of workflows. They
are described in the MoML language, destined for modeling workflows as clustered
graphs. This representation brings following advantages:
• Implementation independent - being based on XML, MoML is designed to work

with any tool.
• Semantic independent - MoML itself does not carry semantic information about

interconnections between components, offering ”director” mechanism instead.
• Integrated with Web - as MoML is based on XML with syntax similar to the

commonly used HTML.
• Rendering support - MoML models can contains annotations (hints) for rendering

utilities.

9

2.2. ViroLab

Workflows in the Kepler are constructed from following component’s classes: di-
rectors, actors, relations and ports. Actors encapsulate functionalities, as calls to Web
Services and Globus Jobs executions. Moreover, actor can encapsulate whole other
workflow.
Kepler’s virtual laboratory serves good users without technical knowledge, enabling
simple drag and drop workflow construction. Albeit easy to use, this approach is
not suitable for more complex workflows / experiments, containing many loops and
branches. Taverna. Taverna [34] is experiment construction workbench used in the

myGrid project. Experiments in Taverna are written with usage of the Simple Con-
ceptual Unified Flow Language (Scufl). This language enables describing conceptual
tasks as a single entities without implementation particulars. Scufl workflows are built
of services and Taverna environment provides following means of accessing them:
• WSDL files from local file system
• Services used in already existing workflows
• Standard UDDI registry
• WSDL files from remote locations, pointed out by URL
• Specific myGrid registry, called GRIMOIRES

This virtual laboratory is very popular, with more than 1000 services available.
Nonetheless, it can be pointed out that script-based experiment definition can be
much more productive than visual drag-and-drop one. Triana. Triana [35] is a

problem-solving environment, enabling easy workflow construction by using user-friendly
GUI. It allows for drag-and-drop building blocks of the workflow and define connection
between them. Also, user can edit workflow blocks and set adequate parameter values.
Workflow elements can take form of local operations, Grid jobs and remote Web Service
calls. Also, dynamic WS discovery and invocation is possible.
In conclusion Triana is simple and easy to use, but shares same disadvantages as other
”drag-and-drop” workflow construction environments.

2.2. ViroLab

2.2.1. Introduction

ViroLab [73], site: [37] is EU-funded project number 027446 from 6th Framework
Programme.
Its main mission is to develop a virtual laboratory enabling decision support in viral
disease treatment. Main ideas behind this project are:
• Integrating distributed medical knowledge to facilitate research and treatment in

virology diseases field. Nowadays, many large clinical patient databases are avail-
able. These can be used in various tasks, as discovering drug susceptibility. Great
challenge of the ViroLab is to provide uniform, user-friendly access to the data
for members of the medical scientific community.

• Providing users with complex tools taking advantage of available medical data.
These vary from simple drug ranking to very advanced automata model of the
HIV-1 co-receptor tropism. Every application is to be available in user-friendly

10

2.2. ViroLab

and unified manner. What is more, one of most important feature of the ViroLab
is combining applications in workflow-like experiments.

• Basing on Grid architecture. Virtualization of the hardware, computing infrastruc-
ture, databases and services - in summary provides powerful environment for run-
ning bioinformatic applications. Bridge to infrastructure like clusters and EGEE
grid offers enough computing power.

The ViroLab project organization is split on several work packages, listed as
follows:
1. Project Management

Takes care of financial and administrative management of the ViroLab consortium.
Ensures on-schedule execution and communication with sponsor - EU Commission.

2. Virtual Organization
Responsible for building security infrastructure for the Grid, presentation layer and
middleware.

3. Structure of the ViroLab virtual laboratory
Most important work package, developing virtual laboratory, concerning such as-
pects as uniform data access, user session management, experiment execution,
resource brokering, user collaboration and provenance.

4. RetroGram: Virtualization, Enhancement and Individual Based Inter-
pretation
Handles development of the distributed decision support system, based on existing
drug ranking software. Includes tools for detailed studies on patients and obtained
treatment results.

5. Population and epidemiological based interpretation system
Responsible for carrying development of expert rules for clinical patient treatment.
Will also validate the ViroLab results basing on epidemiological studies.

6. Dissemination
Takes care of presenting ViroLab results to the public.

As stated, virtual laboratory is critical work package from end-user’s point of view.
Also, this is where provenance tracking system lies. Thus it is presented in separate
section 2.2.2.

2.2.2. Virtual Laboratory

The ViroLab virtual laboratory (Vlvl [66] and [57], main site: [38]) is tool for
collaborative planning and executing in-silico experiments. Enables sharing, anno-
tating, discussing and saving results of these experiments. With provenance track-
ing enabled, mining results traces and exploring resemblances between experiments
is possible. Virtual laboratory provides tools for for writing experiments’s plans
(Experiment Planning Environment, EPE) and managing experiment’s execu-
tion (Experiment Management Interface, EMI).
Experiment is main concept behind Vlvl. It is defined as process combining data
and services (activities) processing that data to obtain results. Data and services are
not restricted to a local machine, but can come from multiple, distributed resources.
In the Vlvl, experiment’s lifecycle has following stages:

11

2.2. ViroLab

• Planning
In this stage, Developer creates and delivers valid experiment plan, containing
experiment identification (name and version), local input files and libraries, legal
information and most important - experiment script. It is a program written
computer programming language, interpreted by the VLvl components. Current
version of the Vlvl uses JRuby [21]. Script defines services and data used along with
control flow. It can be said that script constitute heart of the experiment. VLvl
provides also Experiment Repository for storing and versioning experiment
plans.

• Execution
In this stage Experiment Users - Scientists and Virologists performs experiment
according to defined textbfplan. It is done by executing provided script in one of
two modes:
— local - requiring local installation of the runtime software. Script is passed to

the runtime by command-line tool.
— remote - allowing to run experiment on remote runtime server by using the

ViroLab portal tool (EMI) or development tool (EPE). In this case it is required
that experiment plan is available in the Experiment Repository.

Different execution modes adds required flexibility to the Vlvl environment, ful-
filling needs of any type of user and organization. For example, local execution is
suitable for testing purposes whether remote mode is convenient for long-running
complex experiments.

• Result management
In this stage user can evaluate, annotate and store outcome of his experiment.
This is very important as enables strong collaboration between scientists and lays
foundations for tracking provenance.

To sum up, experiment lifecycle defined for the Vlvl supports collaborative work
of all types users, from developers to clinicians.

Fig. 2.1 depicts abstract layers of the Virtual Laboratory.
This conceptual architecture consists of following:

• Users of the system, acting in experiment lifecycle stages described above.
• Interfaces, representing tools dedicated to particular user’s groups. These in-

clude mentioned earlier EPE - used by Developers, EMI and application-specific
components running inside the ViroLab portal, used by Scientists and Virologists.

• Runtime, constituting bridge between interfaces and various services, both com-
putational and data. Runtime components allows for selecting resources and use
them in experiment’s execution.

• Services performing computations and accessing distributed data sources. First
type can point to Web Services, WSRF, components or grid jobs. The latter
provide access to relational databases, files and other sources, all in unified and
vitalized way.

• Infrastructure layer constitutes physical layer where all services run. Virtual
laboratory supports multiple solutions, ranging from single PC machines to large
Grid testbeds as EGEE and DEISA.

12

2.2. ViroLab

Figure 2.1. Conceptual layers of the ViroLab virtual laboratory. Figure does not
reflect real, complex architecture of the VLvl, but rather presents how components

are grouped.

Above description presents only background of the ViroLab virtual laboratory. In
fact, its architecture is far more complex. Thorough design and manual of the VLvl
is to be found on the web [38].

2.2.3. Virtual Laboratory Applications

The ViroLab Design Deliverable document contains detailed description of some
important applications, prepared to run in the ViroLab virtual laboratory environ-
ment. These are very important, being first source for later requirements analysis and
specification for various ViroLab’s sub-systems, as provenance tracking.

• Rule-based Decision Support System (Drug Ranking System; DRS)
This application helps clinical virologists chose drugs most efficient for treating pa-
tients. It is done by using publicly available, high quality databases relating virus
genotype to drug-susceptibility. To obtain personalized healthcare for a patient,
virologist should only enter list of virus mutations and use one of available rule
sets. Application also allows for commenting rule sets and results, thus sharing
knowledge between application’s users. Rule sets evolve in time, so one of appli-

13

2.3. Provenance

cation’s features are automatic updates. On each request, the DRS will contact
remote databases, check for rule set’s updates and eventually download them.
What is more, the DRS application can also be used as shingle step in more complex
experiments.

• From Genotype Information To Drug Resistance Interpretation
Scenario for this application extends the Drug Ranking System’s one. It allows
virologists to interpret bare HIV RNA strands. Application’s steps include:
— translation of the nucleotide sequence to the amino acid one. Results will be

available in some popular formats, for user’s convenience.
— comparison of the nucleotide sequence to reference strains. As as result, mu-

tations per-gene will be obtained. Reference sequences shall be obtained from
external databases.

— identification of the HIV virus subtype, based on amino acid sequences obtained
in previous step.

— drug resistance prediction, handled by the DRS application.

Also, virologists would like to attach overviews and statistics to results obtained in
the application. Finally, summary of all mutations per codon should be provided.
As in case of previous application, also this has to deal with different data formats.
Therefore, conversion to the common format will also be provided.

• Establishing Large Databases of HIV Sequences
This application concentrates on serving HIV sequences data from various, dis-
tributed sources. Scenario of this application reuses some components from the
previous application. It consists of three main steps:
— data is gathered from sources available in the Grid
— data is processed - this is where previously described components enter. Main

transformations to be applied are mutations and substitutions identification,
sequence alignment and subtyping.

— data is exported to common format and made available to system’s users.
• Data Retriever (and applications accessing hospital data)

The application is build to gather various hospital data and present results as
combined datasets available on the Grid. What is more, these datasets are to be
presented in an unified format.
Main purpose of this application is accessing internal databases of hospitals. These
are scattered and built with different standards. Also, various security restrictions
apply, mostly related to protection of patient’s personal data. Proposed solution
overcomes these issues with so-called sandbox environment.

2.3. Provenance

2.3.1. Definition

From Merrian-Webster Online Dictionary [43]:

Provenance - origin, source. Comes from French - provenir to come forth,
originate, from Latin provenire, from pro- forth + venire to come more at.

In computer science applications, provenance is defined as:

14

2.3. Provenance

The provenance of a piece of data is the process that led to the data.

Other definition is:

A derivation path of a piece of data.

In complex Grid systems, as the ViroLab, provenance could include almost everything
action of user or component, such as:
• experiment’s call to a computational service, including type and identifier of argu-

ments and obtained results
• data load and store, realized by specific services and including particulars of used

data source (type, protocol, physical machine, geographical location)
• internal calls of system’s runtime, involving such details as class and implementa-

tion of used Grid Object, SQL/HQL/OQL query sent to a data source or concrete
computing resource used (host, port, architecture, OS..)

• abstract events describing complex workflow concerning particular domain, as ’New
drug ranking in the DRS application’

• Gird monitoring data, involving scheduling time, service call performance and oth-
ers

• User’s actions involving GUI controls, defining abstract actions as ’experiment run’
or ’result save’

• parts of applications scenarios, as attaching annotations to data is sometimes
treated as a provenance (metadata)

All items listed above could be reckoned as provenance definition for the complex
virtual laboratory system.

2.3.2. Possible applications of provenance in virtual laboratories

Virtual laboratory as described in section 2.2.2 can constitute first base for possible
provenance application scenarios.
As stated in respective section, experiment and its lifecycle are most important
concepts behind virtual laboratories. Following scenarios presents how provenance
could be applied along with experiment usage.
1. Data trace. When an experiment is executed, outcome of some processing could

be saved as result. Next, obtained results could be used in consequent experiments
as input of various services, producing another results. When provenance tracking
is enabled, such (common) scenario builds data graph, where data entities are
vertices and processing constitutes edges. Using gathered provenance data, user
can receive answer for queries like:
• from what pieces of data this piece was derived?
• how often particular service was called to obtain this piece of data?
• what pieces of data were derived from particular piece / pieces of data?
• how many operations (service calls) were required to obtain data X from data

Y ?

Browsing provenance data graph can reveal much more information about data and
service dependencies than shown with example queries. What is more, powerful
techniques as statistical analysis are able to explore even greater level of detail.

15

2.3. Provenance

2. Experiments resemblances. Many experiments conducted in virtual laboratory
will be from particular domain, as HIV infection treatment. Using provenance data
gathered from many experiments of one type, user is able to discover similarities
between different traces. For example, following queries are possible:
• what are most common data entities used for particular operation?
• how many steps are typically required to obtain data X ?
• which experiments were conducted on data from particular location (hospital)
• who conducts experiment on patients with particular disease (hence: who could

help solve similar problems in treatment)

As presented, these queries are typically enhanced with similarity operators (’like’,
’typical’ and so on).

3. Annotation storage. Ability to send provenance data at any stage of experi-
ment’s lifecycle could be used for attaching annotations to actions, data entities
and service calls. Metadata attached could vary from text descriptions of experi-
ments or results to rating of application’s accuracy. The latter, when used properly,
can add another level of usefulness to virtual laboratory applications. For example,
previous queries could be rewritten as:
• what are highest ranked data entities used for particular operation?
• what are best operations required to obtain data X?
• in bioinformatics domain: what is the best treatment for particular disease?

This way, simple data and services annotations are enriched with semantic meaning.
4. Experiment repeat. Provenance record of the experiment execution can be used

for later repeat of exact or similar experiments. Even if experiment’s plan is lost,
with usage of the provenance it can be restored.

5. Experiment replay. Exhaustive gathering of provenance data, as described in
previous section leads to full record of processes. Using this data, user is able
to perform smart experiment replay, starting from chosen time point. What is
more, specific virtual laboratory component could be designed to perform such
replay automatically. Such usage could speed up complex experiments execution,
by starting new computation after time-consuming part.

Apart from virtual laboratory, another source of possible provenance applications
can be the Provenance Challenge [28]. Scientists from all around the world, involved in
provenance development agreed that mining over large sets is useful and required. To
test capabilities of existing provenance systems, specific FRMI (Functional Magnetic
Resonance Imaging) workflow was defined along with set of useful queries concerning
this workflow.
Workflow is composed of following operations:
• align wrap - compares new image with reference one, determining how new image

should be adjusted to match reference brain.
• reslice - transforms new brain image according to the parameter set - output of

the align wrap operation.
• softmean - all images resliced by previous operation are averaged into single image.
• slicer - creates 2D atlas data set from the averaged image.
• convert - transforms 2D atlas data set to specific graphical atlas image.

16

2.4. Grid computing

Paper [60] summarizes works done by the First Provenance Challenge. Queries
presented in this work are very good examples of what scientists require from the
provenance system side. Example queries follows:
• Find the process that led to Atlas X Graphic (thus retrieving full provenance of

given piece of data)
• Find the Stage 3, 4 and 5 details of the process that led to Atlas X Graphic (thus

retrieving partial trace)
• A user has annotated some anatomy images with a key-value pair center=UChicago.

Find the outputs of align warp where the inputs are annotated with center=UChicago.
• A user has annotated some atlas graphics with key-value pair where the key is

studyModality. Find all the graphical atlas sets that have metadata annotation
studyModality with values speech, visual or audio, and return all other annotations
to these files.

As shown, Provenance Challenge queries are quite similar to those presented for
VLvl.
In summary quick analysis of possible provenance applications in typical scientific-driven
Grid environment shows provenance’s great potential. Furthermore, some applications
are necessary in modern virtual laboratories and can not be achieved without full
provenance tracking.

2.4. Grid computing

All contemporary virtual laboratories are Grid-aware. This is because Grid-enabled
Service-Oriented Architecture integrating and virtualizing resources fits best require-
ments of automated application creation.
History of the Grid dates back to the 1990s, when scientists put their interest in the
new idea of a virtual supercomputer. First significant summary of new infrastructure
appeared in 1998, when Ian Foster and Carl Kesselman published [68]. They defined
the Grid as:

..a hardware and software infrastructure that provides dependable, consis-
tent, pervasive and inexpensive access to high-end computational capabilities.

Since then, may other Grid system types emerged, as Data Grid, Collaboration Grid
or Network Grid. Principles that should be followed by all Grid systems were defined
by Foster in his next article [61]. He lists following rules:
• Built with open, general standards in such fundamental aspects as resource discov-

ery and access, authentication and authorization. This is crucial to achieve system
that is inter operable and available in global scale. What is more, standards assure
that system is general-purpose, not application specific, thus able to integrate and
use multiple resources.

• Delivering miscellaneous qualities of service from every dimension as security, per-
formance and reliability, to meet user requirements. This should allow system to
be much more usable than simple combination of it’s elements.

• Integrating and coordinating resources from different control domains, taking care
about such issues as security, payments or policy settings.

17

2.4. Grid computing

Contemporary definitions, as those provided by Rajkumar Buyya in [58] tends to
view Grid as an distributed infrastructure, that enables integration, aggregation and
sharing of various, autonomous, geographically distributed resources (as computers,
networks or data), chosen dynamically in order to fulfill users’ quality of service de-
mands.

Typical architecture of the Grid system, designed to accomplish all goal mentioned
above, is divided into four virtual tiers, as presented in Fig. 2.2. Brief description
follows:
1. Applications. Grid applications are created with usage of services provided by

lower middleware tiers to access resources and perform computations. Nowadays,
many applications are developed as portlets and deployed in grid portals, such as
Gridsphere [14]. Those portlet containers provides additional level of user-oriented
services, as programming interfaces to common resources and security entry point.

2. User middleware. Uses lower tier - system middleware to provide higher level
services required by the user. This includes application development tools, as
compilers or debuggers with necessary libraries. Provides also so-called resource
brokers, managers for Grid resources and processes.

3. System middleware. This tier does most of the work that identify system to be a
Grid. Provides uniform method of accessing distributed resources from the hetero-
geneous fabric tier. Takes care about resources discovery and registration. Manages
computational processes, scheduling and optimizing them to achieve best service
and resource utilization. Finally, assures quality of service demanded by the system
user.

4. Fabric. This tier makes up physical background of the Grid system. It consists of
networks connecting physical machines (of any kind, form PCs to supercomputers)
and data sources. Everything in this tier is basically called a resource.
As stated before, middleware tier is the most important one in mission to provide a

fully-fledged Grid system. Thus, standards concerning this tier have been established.
Initial one was created by the Open Grid Forum and called Open Grid Services Ar-
chitecture (OGSA, [24]). It is based on Web Services technologies (as SOAP and
WSDL) and addresses key services, as security, execution and resources management,
information and data. Same organization published in 2003 new standard - Open
Grid Services Infrastructure (OGSI, [25]). OGSI was meant to constitute infrastruc-
ture layer for OGSA, by essentially extending standard Web Services with statefulness.
Later this standard became obsolete in favor to the Web Services Resource Framework
(WSRF, [46]). This new standard, introduced by the OASIS in 2004 is in fact family
of complex specifications defining what operations could be implemented by Web Ser-
vices to become stateful. This complexity, especially concerning identification of the
WSRF-enabled services with WS-Addressing [45], raised great deal of controversy and
resulted in slow adoption of the standard in the Grid community.
Describes standards would have little impact without proper, open implementations.
There are several Grid frameworks, implementing those standards or subsets. Most
notable are listed below.
• Globus Toolkit [11]. Established in 1995 and now developed by the Globus Alliance,

Globus Toolkit is oldest and most popular open source framework. Currently at
version 4, offers support for OGSA / OGSI, WSRF, WS-Management and stateless

18

2.4. Grid computing

Applications
Grid portal and
applications -

portlets

Collaboration
tools

Scientific
environment

Libraries
Resource
brokers

Compilers,
debuggers, …

Quality of service
assurance

Data access
Scheduling

(process
management)

Networks
Physical

computers
Data sources

Applications

User middleware

System middleware

Fabric

Figure 2.2. Typical Grid system architecture virtual tiers. This is rather virtual model
presenting which components should be present in a Grid system and they should be

grouped.

Web Services technologies (WSDL, SOAP). Primary use of the Globus is devel-
opment of computational grid middleware and grid based application requiring
stateful Web Services.It consists of four components:
— Grid Security Infrastructure (GSI), based on X.509 Certificates, Public Key

Infrastructure and SSL to provide authorization, resource authentication, en-
cryption and single sign-on for Grid services.

— Globus Resource Allocation Manager (GRAM), a uniform interface to various
local schedulers (as LSF), providing remote execution features.

— Monitoring and Discovery Service (MDS), used to publish and discovery re-
source properties, as nodes capabilities.

— GridFTP - an extension of the FTP protocol for reliable, secure data manage-
ment in the Grid environment.

At present many large, productional Grid systems use Globus in middleware tiers,
for example CERN grid an US TeraGrid.

• UNICORE [36]. UNiform Interface to COmputing REsources (UNICORe in short)
project was initiated in 1997 as an middleware solution alternative for the Globus
Toolkit.From version 6 it partially supports WSRF standard, including WS-Resource-
Lifetime but without full implementation of WS-Notification. UNICORE architec-
ture is divided on three layers:
— User, accessing resources by running the UNICORE Client on a local machine.

It’s interface is made from Job Preparation Agent and Job Monitor Agent.

19

2.4. Grid computing

These components are used to compose, submit and check status of jobs running
in the UNICORE-enabled Grid.

— Server, bound to a specific organization, defining so-called Usite, managing con-
nected UNICORE Clients. Usite consists of Gateway (entry point for Clients),
User database, Incarnation database (defining commands suitable for every
available target system) and Network Job Supervisor.

— Target System, offering computational power and resources. Target systems
are organized as Vsites. Each Vsite consists of two components: Target System
Interface and Batch Subsystem. Those components cooperate in executing
passed jobs on systems belonging to a Vsite.

Since UNICORE development was funded by the UE, many other UE funded
projects makes use of it. Among others, most notable ones are OpenMolGRID,
EUROGIRD or fresh Chemomentum project [6].

• Gridbus [13]. This project was founded by the University of Melbourne with focus
on eBusiness application (thus name GRID BUSiness). Nowadays is open source
project, developed by multi-institutional consortium. It provides technologies for
various applications, ranging from cluster economy to portals and simulation. Cur-
rent version support WSRF-compliant services along with standard, stateless Web
Services.
Gridbus applications includes such projects as NeuroGrid, HydroGrid and Aus-
tralian Virtual Laboratory.

What should be expressly noted, many present-day Grid projects uses only parts
of mentioned middleware solutions, as OGSA-DAI components from the Globus or
simply WSRF implementation. This is because developers have to build solutions
for particular needs, as virtual laboratories for e-science. Those Grids not necessarily
fits into middleware model proposed by off-the-shelf solutions, having need for extra
components and functionalities, like a provenance tracking system.

Chapter 3

Overview of provenance systems

First section of this chapter is devoted to overview of existing
provenance-enabled systems and solutions. Each important system
is briefly described. Second section provides discussion of mentioned
systems with strong and weak spots emphasized.

3.1. Existing provenance systems

As stated before, provenance tracking in Grid systems is becoming very hot topic
lately. This section contains brief analysis of existing systems and theirs weak points.
It is based mainly on papers referred in text.

1. myGrid [74] and [76]
In myGrid system, provenance is represented with usage of semantic web tech-
nologies: RDF and ontologies. Data is collected on different levels: process, data,
organization and knowledge. Main sequence of provenance generation is composed
of two stages:
• Workflow execution generates events.
• Postprocessing annotates logged provenance events with semantic concepts.

They are taken from ontology description of services used in workflow execution.

What should be expressly noted, authors of myGrid concentrates on provenance
browsing capabilities. Easy construction of complex mining queries is a little bit
difficult in this model. Furthermore, browsing as implemented in myGrid does not
allow queries to cross provenance domain and query for application data.

2. Virtual Data Provenance Model [77]
This work concentrates on creating fully-functional provenance model with high
querying capabilities. Provenance information is presented as falling into one of
two types:

21

3.1. Existing provenance systems

• prospective - describing workflow (modeled as procedure) to obtain piece of
data.

• retrospective - describing execution environment of a procedure (runtime prop-
erties, resources used).

Authors of the VDM state that only prospective provenance constitutes trace of a
piece of data. However they also find that retrospective information is required for
complete overview of the data. Information about data process environment is of
great value in data preparation and analysis in science-driven systems.
In fact, VDM defines provenance of a piece of data as a functional procedure that
was used to produce it and can be used to reproduce it. Moreover, data - procedure
association fidelity allows for later re-execution of process leading to particular
piece of data. In addition, metadata can be associated with datasets, procedures,
arguments, calls and workflows. Those annotations take form similar to the RDF
[29], that is triples subject – predicate – object. Subject is one of the five entities
to be annotated, predicate is the name of metadata entry and object contains
actual value. All data is stored in relational model, therefore information about
operations (such as argument) is represented by pure strings. Also, datasets used
by procedures (workflows) are stored by names. This way, all semantic information
about data is lost.
As far as querying capabilities are concerned, authors of the VDM distinguish three
query types:
• virtual data relationship queries - core queries of the model. Focuses on prospec-

tive procedures and retrospective logs of procedure’s calls. Serves queries such
as: find procedures and calls by given name, find calls by given procedure, find
jobs running for more than specified time - retrospective one.

• annotation queries - queries making use of annotations capabilities of the VDM.
What is more, with this query type, user can select VDM objects (as dataset
or workflow) annotated with specified meta data entry. Servers queries such
as: select all annotations for defined object or find all objects with annotations
having defined predicate. present)

• lineage graph queries - making use of lineage relationship, as described in [75].
Can be derived for all data entities. Serves complex queries such as: find
datasets derivation path or find all ancestors of some dataset.

Model allows for more complex queries as combinations of above types. These
are described as Provenance Queries in Multiple Dimensions. Unique feature of
the VDM is the ability to update provenance database. Provenance data can
be modified or enriched with new information, such as procedures or annotations.
Queries of this type are referred to as Modification and Composition Queries.
All queries can be expressed in commonly used SQL language, which is an advan-
tage of using relational model for provenance data.

3. PROVENANCE project [64]
This very interesting project aimed to define provenance suited for SOA and build
adequate architecture on the top of the definition.
Authors presents concept of p-assertions. Each p-assertion represents stage in a

22

3.2. Discussion

process and is to be submitted by some actor involved in the process. Following
groups are distinguished:
• interaction p-assertions - document data flow between actors
• relationship p-assertions - document data flow within actors
• actor state p-assertions - documents internal state of an actor

Albeit presented model is interesting from theoretic point of view, it should be
pointed out that it is rather suited for being background of more complex model.

4. Karma provenance framework [72]
This framework is destined for workflows in SOA-based systems. In short, it allows
collecting following two of provenance information:
• process - known also as workflow trace. Documents workflow execution and

service calls particulars. Can be used for example to monitor workflow progress
in distributed Grid environment.

• data - derivation paths of a piece of data. Documents services, parameters and
input information that contributed in creation of every available piece of data.
This derivation data is gathered across all workflows executed in the system.
Also, services that used particular piece of data are part of the trace. Data
provenance could be used in determining quality of obtained information.

Karma was designed to met domain requirements of the Linked Environments
for Atmospheric Discovery (LEAD) [71], while preserving good performance in
workflow-oriented environment. Karma introduces notion of activity, taking place
at different levels of execution - workflow, service or application. Every part of each
level along with every data entity is identified by globally unique ID. For user’s
convenience, Karma generates three types of XML provenance documents, based
of mentioned activities:
• workflow - activities of particular workflow execution
• process - activities of particular service or application call, including input and

output
• data - applications that created or used particular piece of data, across all

executed workflows

Those provenance documents are created on the fly by the Karma. All recorded
activities are stored in relational database. System provides also simple graphical
tool for viewing and navigating provenance graphs (documents).
In [72] Authors provides also performance evaluation of the Karma as compared
to PRServ solution [65]. They reckon Karma as being faster, but restricted to
LEAD applications. The latter should be expressly noted, as virtual laboratory
applications defines slightly different requirements.

3.2. Discussion

All previously described models have certain limitations. For example, myGrid so-
lution does not offer easy way of adding metadata information to provenance records.
Also, however provenance data is enriched by ontologies, it only concern services in
very narrow scope. What is more, myGrid system querying capabilities can not span
multiple domains - in example provenance and application data.

23

3.2. Discussion

As far as the PROVENANCE project is concerned, model proposed by final report
is quite low level and generic. Albeit this could be seen as a feature, it lacks many
particulars that would definitely enhance level of provenance information stored and
query capabilities. As already stated, it rather should be part of a broader, more
complex provenance model/framework.
The VDM proposition is interesting in assuming particular computation model, sepa-
rating model’s elements - as experiment, operation, input and so on. This strongly en-
hances level of provenance details captured. Yet, it seems that semantic web modelling
with ontologies would be more adequate. Ontologies precisely capture environment
modeled. What is more, separation to concepts (models) and individuals (registries)
in ontologies are parallel to VDM’s idea of prospective and retrospective provenance.
Finally, ontology-driven model would support more complex queries, enabling mining
over provenance data.
In conclusion listed solutions either focus on low-level models or do not support well
complex, mining queries over various repositories. Especially, queries spanning multi-
ple domains are not covered by existing models. Enriching data with semantic infor-
mation seems to be good road to follow in design of new, appropriate model.

Chapter 4

Requirements specification for provenance
sub-system

This chapter provides requirement specification for emerging prove-
nance system along with some insight into its features. First section
formulates requirements - both functional and non-functional, on
the basis of ViroLab’s applications analysis. Next section contains
architecture assumptions made to fulfill those requirements. Finally
overview of provenance tracking environment inside virtual labora-
tory is presented.

Based on the detailed study of Virtual Laboratory applications, two important
types of provenance data available in the system were identified.
These are:
1. annotation provenance: Extra information about some piece of data, depends on

specific application requirements. Exists solely as annotations, doesn’t provide
additional reasoning information.

2. actor provenance (event): A record of some action taken by an actor in system,
using Virtual Laboratory application. Could be connected with creating new piece
of data or changing existing piece. Enables Provenance sub-system to trace process
that led to some piece of data in details, including creating or changing other system
data involved in this process.

Emerging system should make possible recording those two types of provenance
data. What is more, it should be done in a way convenient for medical applications,
primary concern of the ViroLab project.
As it was already stated in the Chapter 3 - Related Work, provenance is very fresh
topic in the Grid systems. Therefore, only few systems approached the matter until
now. The VL provenance sub-system should base on research done in that projects

25

4.1. Requirements

and adapt some current approaches, but with specific ViroLab’s requirements kept in
mind.

4.1. Requirements

Requirements for the VLvl provenance system were gathered by detailed analysis
of described earlier, real world VL applications. Possible provenance use in these
applications is summarized below.
• Drug Ranking System (DRS)

Identified provenance tasks includes annotating results with meta data and tracking
statistic of the DRS, like most used rule set or typical mutations for specific patient
group. The latter can add much functionality to the DRS application desired and
used by clinical virologists, thus extending application use cases.

• From Genotype To Drug Resistance
Application’s use cases incorporate provenance for storing annotations on various
application stages. Other provenance usage in the application includes tracking
and mining origins of gathered results.

• Establishing Large Databases Of HIV Sequences
One of possible provenance task is to store information about the process of gather-
ing data. Such information could be later used to perform fast updates. It should
be pointed out, that such usage would generate massive amounts of provenance
data.

• Data Retriever (and applications accessing hospital data)
Application description, as found in the Deliverable document, suggests that prove-
nance tracking system shall be used to store execution history data. This could
include tracking data requests along with events specific to applications running in
the sandbox environment.

Functional requirements

Gathering, storing and mining provenance data constitute main responsibilities of
the provenance tracking system. From end-user point of view, convenient and potent
provenance querying capabilities are even more important.
Therefore provenance sub-system has to fulfill following requirements:
1. Architecture should support recording both annotations and events (actor prove-

nance) in the VL virtual laboratory
2. Provenance information recording should be fine-grained, allowing to capture even

smallest pieces of data
3. Storage should be able to hold recorded provenance data indefinitely, without risk

of information loss
4. User should be able to query for both stored annotations and actor provenance
5. System should allow querying for data annotations for particular piece of data or

set of conditions
6. System should also allow querying actor provenance for a particular piece of data.

Such query should retrieve whole trace of the piece of data. Depth of the trace
shall depend on the user-defined query.

7. Query capabilities of the system should allow user to perform mining on a prove-

26

4.1. Requirements

nance data. In example, no only queries for simple traces should be allowed but
also queries about resemblances between various data traces. Also, statistic queries
as stated in VL applications description have to be supported without additional
processing.

8. User should be capable of accessing provenance information from specified time
scope.

9. Provenance system architecture should allow users to save, reuse and share their
mining queries. This requirement is crucial as virtual laboratory is designed as
collaborative environment.

10. Architecture should provide means for preparing backup of provenance information
stored. Output format should be configured and some optimization of the process,
as compression should be considered.

Non-functional requirements

As stated in the introduction, recorded provenance data is immutable, and therefore
storage space requirements will grow infinitely in time. What is more, complicated
queries processing so large amounts of data could be very demanding task. Thus, also
some performance requirements have to be fulfilled. In the grid systems and especially
in the ViroLab, security issues are very important. Although provenance data will
not contain any sensitive information, query construction and result rendering could
access restricted domains. Therefore, security requirements should be kept in mind.

All above aspects of the provenance tracking system imposes following requirements
on the architecture:
1. Storage back end of the provenance tracking system should be largely scalable
2. Space used for provenance data should be minimized, but without sacrificing query

performance (thus compression is not recommended)
3. Architecture of the storage should be distributed, using multiple nodes to achieve

big storage space
4. Data storage should be reconfigurable, allowing storage nodes to be revoked or

added in run-time
5. External system interfaces should provide seamless integration with other compo-

nents, by using some remote communication technology
6. Run-time configuration, management and monitoring of the whole provenance com-

ponent should be possible remotely
7. Architecture design should take into consideration characteristics of distributed

systems, as synchronization of multi-threaded processing.
8. Transmission of sensitive data, as patient-related records, should be authorized and

encrypted
9. Query processing should be efficient in handling queries that cope with large

amounts of data
10. Complicated query processing characteristics should be taken into account in ar-

chitecture design, to avoid possible performance penalties

27

4.2. Preliminary assumptions

4.2. Preliminary assumptions

Profound analysis of the requirements listed in previous section along with research
on existing provenance have been done. It led to some preliminary assumptions, that
have to be made in order to design robust and appropriate provenance tracking system
architecture.
These assumptions follow:
1. Built with ontologies

Formally, ontology represents set of concepts from specific domain along with prop-
erties and relations between those concepts. This can be used to model some
knowledge about given system, for example provenance, defined as processes (actor
events) and meta-data. What is more, concept of separate ontology domains can be
used to separate events generated in different system applications. Also, required
annotations of data entities and operations can be easily modeled using ontologies.
What should be noted, ontologies allow reasoning on gathered data. So feature
could be used by the provenance tracking system to extract more fine-grained
information, fulfilling adequate requirement. Usage of ontologies adds also much
flexibility to the system. In a research project with ever-changing requirements
this feature is not to be underestimated. This assumption goes in line with recent
research in the virtual laboratory area. As it was pointed out in [59] and [63],
semantic and knowledge services in Grid systems are of paramount importance.
Current standard for modeling ontologies is the OWL language. There are many
existing standardized solutions designed for processing and reasoning over OWL
ontologies. Using such tools would definitely speed up implementation and boost
reliability of the provenance system.

2. XQuery support -
Lately XQuery language has become the standard for mining XML based data.
With high-level, SQL-like and English-resembling syntax it is very easy to learn
and use. These features make XQuery perfect fit for the ’user friendly querying’
requirement. Additionally, the language itself is very powerful, allowing for nested
constructs of the basic FLOWR (for, let, where, order by, return).
What is important, XQuery is official W3C recommendation and ultimately will
be supported by major DBMS engines.

3. XML storage
Thorough research on available XQuery support has revealed that in order to use
the language a native XML DBMS must be used. This is because all existing
XQuery APIs are able to access only data contained in files, not data sources. So
architecture would be very inefficient.

4. Support for ontology languages
Apart from user-friendly XQuery, provenance system should also support other
query languages. Because of the ontology nature of the data, the most desired are
RDF specific ones. Particularly, RDQL and SPARQL languages are broadly used
and most developed. What is important, they are supported by the industry-stan-
dard OWL solutions, as Jena Ontology Framework.

5. Distributed storage
Research on the provenance usage in other project, described in the Related work

28

4.3. System’s environment overview

section has led to follow ’Separate store pattern’ from the Provenance project. Also,
in order to maintain satisfying performance, storage architecture will be distributed
with respect to ontology descriptions.

6. Interoperability and high performance
To satisfy interoperability requirements, provenance system will use Stateless Web
Services interface to external components. However, Web Services suffer from some
performance issues. Thus, where applicable, other communication middleware will
be used. In example, Java Remote Method Invocation seems to be good solution
for inter-system communication.

4.3. System’s environment overview

Fig. 4.1 depicts PROToS with provenance environment. It is composed from
identified system components, cooperating in provenance tracking, storing and using.

Figure 4.1. Environment of the PROToS. Figure includes all external components of
the virtual laboratory, cooperating in tracking of provenance data. Most important
omponents are Monitoring - feeding PROToS with data and Presentation - processing

provenance queries.

Brief description of the environment follows:
• PROToS System

Central point of the environment. Provides core capabilities as interfaces for prove-
nance data storage and retrieval. It’s architecture is covered in great details in
chapter 5.

29

4.3. System’s environment overview

• Event Generation
The component responsible for generating events from domain ontologies. As
stated before, PROToS system is assumed to make use of ontology models for
describing provenance events and annotations. These ontologies have to be con-
verted into Java classes, that can be instantiated and send to notify PROToS.
Key assumption is that most of provenance events can be modeled as single OWL
language classes. Every single-class event should stick to a chosen model, as
Java-bean. Therefore, process of translating OWL-based ontology to Java-based
package can be easily automated.
Such tool is present in the system for pure convenience reasons.

• Monitoring Infrastructure
This virtual laboratory sub-system is responsible for monitoring experiment exe-
cution in the Middleware. Thus, each stage of the execution could be modeled in
specific ontology and send to the PROToS, as a piece of provenance data. Quality
and amount of provenance data provided by the monitoring infrastructure does
not depend on experiments being executed. Accordingly, the component is crucial
in order to collect as much provenance as possible.

• Grid Middleware
Middleware component models part of the virtual laboratory that executes user’s
experiments. During execution, user’s scripts can communicate with miscellaneous
services, called Grid Objects. PROToS can also act as Grid Object, therefore
experiments are able to store script - specific provenance data. Events to be send
from inside scripts shall be modeled in application-specific ontologies, concerning
separate domains as protein folding.

• Provenance Data Mining
This component, part of the Presentation, enables users to create provenance and
data mining queries in an user-friendly way. Analysis of the virtual laboratory
revealed that enormous amount of provenance data will be generated by the system.
Thus, to utilize data in common user practice, specific tool is required. What is
more, typical user will not possess technical knowledge, so the component shall
allow complex provenance mining is simple manner.

• Presentation
Presentation component defines user interface of the virtual laboratory. Execution
of the queries built with Provenance Data Mining tool along with other appli-
cations will definitely include calls to the PROToS system. Furthermore, some
application-specific Presentation sub-components may allow user to store addi-
tional meta-data in the provenance sub-system.

Provenance tracking environment, as depicted above, is solely first - draft of compo-
nents necessary for adequate PROToS operation. Current, real-world implementation
of these, as found in the VL virtual laboratory can be found in section 7. Also, whole
description of the provenance tracking in the ViroLab virtual laboratory is in [53].

Chapter 5

PROToS architecture

This chapter provides brief overview of the PROToS architecture.
First section contains dictionary of terms used in this and consecu-
tive chapters. Next section describes core concepts behind the Viro-
Lab’s provenance tracking and PROToS architecture. Third section
presents component architecture overview of PROToS. Following
one presented use case diagrams for identified PROToS scenarios.
Last one describes project organization, done with Maven2 tool.

As stated in previous chapter, main goal of this work is to develop solution for han-
dling provenance in virtual laboratory of Grid-enabled system. Thus, simple name
was chosen - PROToS. It stands for PROvenance Tracking System. From now on, the
system will be referred to with this simple name only.
PROToS is designed from the very beginning to prove itself in challenging environment
of the modern virtual laboratories. As stated in the requirements before, system for
tracking provenance in the Vlvl should boast with high performance, huge storage
space and such user-friendly features as remote configuration. What is more, being a
research project, it should also be flexible enough to embrace changing requirements
and allow swift replacement of implementations along with algorithm’s advancements.
This chapter provides first insight into PROToS architecture and core concepts, de-
signed to fulfill above description.

5.1. Dictionary

Table 5.1 summarizes most important definitions and acronyms used in successive
sections of the documentation. Some of them were used before, or relate to technologies
presented in last section 6.2. From now on, all of them will be referred to without
explanation.

31

5.1. Dictionary

Table 5.1: PROToS dictionary

Acronym Definition

Vlvl ViroLab virtual laboratory. Part of the VirLab grid system.

DGE
Data Gathering Engine. PROToS component responsible for gath-
ering provenance data.

DRE
Data Retrieval Engine. PROToS component responsible for pro-
cessing queries and returning results.

DSS
Distributed Storage Supervisor. PROToS component responsible
for storage management

SP
Storage Peer. PROToS component acting as single storage end-
point. Element of the PROToS distributed storage.

SSN
Storage Super Node. PROToS component responsible for manage-
ment of storage endpoints.

Event

Instance of a Java class that represents some system event such as
user action or new data annotation. Events are delivered by the
monitoring infrastructure to the DGE component of PROToS.This
name is also used sometimes to describe internal PROToS represen-
tation of delivered event instance, that is an ontology component.

Provenance
event

System event that provides some provenance information. Depends
on application

DO

Domain Ontology. Set of ontology components, that describes some
domain of Grid application. For simple applications there can be
only one Domain Ontology. See ’preliminary assumptions’ for more
information about ontologies in PROToS.

XQuery Modern, industry-standard language for querying XML data.

FLOWR
For - Let - Where - Order By - Return. Basic query construct in
XQuery language

RDF
Resource Description Framework. W3C specification for metadata
information and information modeling. Based on subject - object -
predicate triplets.

OWL
Web Ontology Language. Industry standard for ontology descrip-
tion, based on RDF.

IoC
Inversion of Control. Design pattern, foundation of Java lightweight
component technologies.

DI
Dependency Injection. Design pattern, being form of the Inversion
of Control. Implemented in such frameworks as Spring [31] and
widely used in PROToS applications.

WS Short for stateless Web Services.

32

5.2. Core concepts

5.2. Core concepts

This section presents core concepts, lying in the foundations of the PROToS archi-
tecture. These concepts strictly follows and extends design assumptions made in the
section 4.2.

1. Ontology models
As stated in respective section, OWL-based ontologies are ideal for modeling prove-
nance knowledge in systems like the ViroLab. Analysis of provenance applications
in the VLvl has led to separation used ontologies on three main groups:
• Data models

Models describing data entities available in the system. Should model appli-
cation’s specific entities (as drug rankings in the DRS application) along with
domain (as Patient). Also execution input and output should be taken into
account as separate entities (as Image or Report).

• Domain specific models
Various applications running in VLvl can originate from different domain. As
far as the ViroLab is concerned, domains are related to virusology and patient
treatment, but next generation projects can span on very different domains.
Domain ontology is to model specific knowledge of an application. For example
in the Drug Ranking Application, grid object call can be modeled as New
Drug Ranking PROToS event with used rule set and tested nucleotide sequence
properties. Range of these properties should point to adequate concepts from
common data model. Usage of domain specific models allows for very fine
grained provenance tracking. Nonetheless, use of application specific models
depends on experiment’s script write, what can be viewed as a drawback.

• Experiment model
Models provenance events bound to generic experiment execution. Every ex-
periment, regardless of execution domain, is composed of calls to grid objects,
data reads and writes. Also some metadata, as user login or experiment script
version can be attributed to each execution. All above can be modeled in one
common ontology. So model is not able to capture domain-specific knowledge,
as semantic types of grid object’s arguments, but can be applied to execution
of every script, without effort from script’s author.

OWL language chosen for modeling PROToS provenance ontologies possess very
useful feature - ability to establish relation between concepts from different models.
So-called object properties should be used to link concepts from experiment, data
and domain models. Fig. 5.1 presents how example models could be joined.
As depicted, data model defines one concepts, root for data entities hierarchy. This
concept is linked to the Service call concept from generic experiment model, as
input and output data range. Because generic call can take as argument any data,
root concept has to be used instead of one of specific, concrete entities (Data A,
Data B). Those concepts are used by the Domain call from domain model. It
is possible because the concepts model particular call of some grid object, thus
argument types are known by the time ontology is written. Generic experiment
model contains also Experiment concept, aggregating execution calls and carrying

33

5.2. Core concepts

Figure 5.1. Example PROToS ontology models. Diagram contains example for each
group - data, domain and experiment. Also, model’s concepts are linked by object

properties and inheritance relation.

experiment’s meta data. What should be additionally noted, various models are
linked not only by object properties, but also by inheritance - example Domain
call and Service call concepts.

2. Hierarchical storage
In section 4.2 design assumption of distributing the storage was made. This concept
extends the idea with defining hierarchy in the storage.
First level of the storage consist of Nodes. Each node manages one or more
assigned domain ontologies and is directly connected to the storage root. Node is
designed to act as ’thick’ member, that is performing part of required storage/re-
trieval processing. Second level is composed of Peers. Each Peer is designed to
be ’thin’ member, providing only storage space and a basic API for manipulating
data. Groups of Peers are to be assigned to a Node. Thereby, storage is organized
in tree-like structure. Example storage organization is depicted on Fig. 5.2.
Proposed design takes advantage of ontology foundations of the PROToS. Prove-
nance usage projections for the Vlvl shows that typical queries span only few
domain ontologies, often only one. In this storage schema, such queries are to be
handled by one Node. Therefore, distributed query and results merging algorithms
are not used. Performance gains in those cases are quite huge. What is more, clear
separation on processing (Node) and storing (Peer) components allows for efficient
utilization of available system resources.

3. Distributed processing

34

5.2. Core concepts

Figure 5.2. Example three-level storage hierarchy of the PROToS. Storage depicted
consists of one root, two nodes and five peers creating tree-like structure.

Projected usage characteristics of the provenance sub-system requires PROToS to
have single access point, preferably as stateless Web Service. Yet, performance
plays great role according to requirements defined in 4.1. This issue is to be
addressed by distributing processing, which goes nicely with hierarchical storage
concept.
Physically, PROToS architecture distinguishes three types of components:
• Core application

Acts as single entry point for the PROToS, exposing external interfaces (pro-
ducer, consumer). Manages Nodes and handles general system configuration.
Performs computations required for distributed querying and result merging.
Also, processing specific to ontology models, as incoming provenance data val-
idation is to be handled by the Core. Queries and event processing specific
to certain domain ontology is entirely delegated to adequate Nodes. Root
component from diagram 5.2 is to be implemented by the Core application.

• Node application
As stated previously, manages assigned domain ontology models and Peers.
Handles all processing related to in-house models. Node application imple-
ments Node component from diagram 5.2.

• Peer application
Implements component Peer from diagram 5.2. Acting as simple storage fa-
cility contains as little logic as possible. Key assumption is that Node should
use computation resources only and Peer should use storage resources.

35

5.3. Architecture overview

5.3. Architecture overview

Diagram 5.3 summarizes architecture of the PROToS system, outlined in section
5.2. Components are presented along with main external, exposed interfaces.

Figure 5.3. Proposed PROToS architecture as UML component diagram. Diagram
depicts core components - applications and sub-components encapsulating particu-
lar functionalities. Also, main interfaces are presented, with IDataGatehring and

IDataRetrieval constituting system’s external interface.

Depicted system’s components fall into one of two groups:
• applications - components to be deployed on physical machines, as runnable Java

JAR or WAR archives. Short descriptions of application’s roles are to be found in
previous section 5.2.

• software components - encapsulating interfaces and implementations for specific
functionalities. Packed together forms applications of the PROToS system. Short
descriptions for these components follow:

36

5.4. PROToS Use Cases

— Data Gathering Engine - DGE in short. Responsible for accepting, validat-
ing and handling PROToS events delivered to the IDataGathering interface it
exposes.

— Data Retrieval Engine - DRE in short. Responsible for accepting, validating
and handling queries along with formatting and packing results. Also, backup
functionality is to be provided by the DRE. Exposes one interface - IDataRe-
trieval.

— Distributed Storage Supervisor - DSS in short. Responsible for managing
Nodes available for the PROToS system, processing complicated multi-domain
queries and results merging. Acts as a mediator between PROToS distributed
storage and other Core components. In fact, DSS is most important and com-
plex component of the PROToS. Exposes interface IStorageSupervisorFacade,
used by the DRE and DGE components to communicate with Nodes.

— Core configuration component, responsible for handling remote and local
access to configuration of the Core components.

— Storage Super Node - SSN in short. Responsible for managing ontologies
and Peers designated for this Node.

— Node Configuration is responsible for handling remote and local management
of SSN’s configuration.

Presented components are mostly implemented as separate software components
(modules). Details of mapping between components and modules can be found in
section 5.5.2. Detailed design and implementation descriptions of all PROToS com-
ponents and modules are to be found in respective sections of chapter 6. Overview of
the PROToS architecture was also given in [56].

5.4. PROToS Use Cases

PROToS system at it’s final stage shall provide functionalities fulfilling previously
defined requirements. Use cases capturing these are presented on diagrams 5.4, 5.5,
5.6 and 5.7.
Listed use case diagrams feature actors, described below:
• Administrator

Grid system user, responsible for deployment and installation of the PROToS sys-
tem, or deployment of new applications in PROToS-enabled environment. The
latter task would involve configuring Domain Ontologies for new applications.

• External component
Components interested in mining provenance data stored inside PROToS. As de-
picted in Fig. 4.1, these are Presentation and Provenance data mining compo-
nents. Apart from shown, other Grid system components could be also interested in
provenance. For example, there are some ideas about using the data in application
optimization sub-systems.

• Monitoring Infrastructure
Part of the Virtual Laboratory responsible for sending system events to PROToS.
Described in section 4.3.

• Grid Middleware

37

5.4. PROToS Use Cases

Virtual Laboratory component, sending domain-specific events to the PROToS.
Covered in section 4.3.

Use cases specific to particular PROToS components and applications are presented
in consecutive sections.

5.4.1. DRE component

Fig. 5.4 presents use case specific to the DRE component.

Figure 5.4. DRE component Use Case UML diagram. Figure presents core use cases,
bound to DREs functionalities.

Actor in this use case is an external component interested in querying provenance.
It acts in one of following scenarios:
1. Query provenance system

In this scenario actor submits provenance mining query to the DRE and retrieves
the result. The query is in one of the supported languages. Component’s configu-
ration is complete and defines requested format of returned result.

2. Prepare provenance data backup
In this scenario actor submits request for full PROToS data backup. The format
and other particulars of the backup process are configured.

5.4.2. DGE component

Diagram 5.5 depicts use cases for the DGE component.
Actor in this use case can be either Monitoring Infrastructure or Grid Middleware

component. It can act in following scenario:
1. Submit PROToS event

In this scenario actor submits new PROToS event to the DGE component. The

38

5.4. PROToS Use Cases

Figure 5.5. DGE component Use Case UML diagram. Figure depicts core component’s
functionalities.

event is configured, valid and contains all necessary data for PROToS storage.
DGE component is also configured to handle incoming event’s type.

5.4.3. Core application

Fig. 5.6 presents use cases in PROToS Core application configuration. Particular
components under configuration are also marked on the diagram.

PROToS system administrator is an actor in presented use cases. He acts in fol-
lowing scenarios:
1. Configure event validation

In this scenario Administrator configures the validation policy for incoming PRO-
ToS events. Policies differ in rigour of validation and system components involved
in validation.

2. Configure event handling
In this scenario actor configures handlers required for specific event’s types. Ad-
ministrator chooses one or more handlers from list of currently implemented and
available for the DGE component.

3. Configure Domain Ontologies
In this scenario actor configures DOs required for the DSS operation. Administra-
tor can add a new Domain Ontology, remove an existing one or require system to
load new versions of available and configured DOs.

4. Configure storage
In this scenario, Administrator configures distributed storage of the PROToS sys-
tem. Configuration is fine-grained with regard to nodes available to the DSS. It
involves also configuring DOs handled by particular nodes.

5. Configure query result formatting
In this scenario, Administrator configures result formatters available for incoming

39

5.4. PROToS Use Cases

Figure 5.6. PROToS core application Use Case UML diagram. Diagram presents
configuration functionalities of the component.

queries. The actor chooses one or many formatters from list of available for the
DRE component.

6. Configure query validation
In this scenario, Administrator configures validators active for incoming queries.
The actor chooses one or many validators from list of implemented and applicable.
Validators are specific to language, type and options of incoming queries.

7. Configure query handling
In this scenario, Administrator configures handlers available for incoming, specific
queries. The actor chooses one or many query handlers from a list of all imple-
mented and available for the DRE. Handlers are specific to languages of queries
and particulars of handling algorithm.

40

5.5. Project organization

5.4.4. Node application

Diagram 5.7 depicts use cases for the PROToS Node applications.

Figure 5.7. PROToS node application Use Case UML diagram. Diagram depicts con-
figuration functionalities of the application component.

System’s administrator is an actor in these use cases. He can act in following
scenarios:
1. Configure peers

In this scenario Administrator decides which storage peers shall be available for
the Node. Peers are passed as addresses, in format understood by the node logic.

2. Configure DOs
In this scenario Administrator configures Node’s domain ontologies.

3. Configure ontology processing
In this scenario, Administrator configures ontology processing capabilities of the
Node. This includes adequate DOs. Also, such particulars as ontology reasoning
state, ontology storage format and incoming ontology model transformations are
set up.

5.5. Project organization

The PROToS project is organized with help from great Maven 2 [23] tool.

5.5.1. Maven introduction

Maven 2 is open-source tool for building and managing Java-based projects. It is
based around concept of POM (Project Object Model) - XML file describing all vital
aspects of a project. These include for example name and description of the project,

41

5.5. Project organization

developers involved, source code management and - most important - dependencies.
The latter enables defining exact versions of libraries and components required by the
project, thus solving major Java disadvantage (so-called ’jarmageddon’). Dependen-
cies are fetched from central repositories, assuring unified build environments. What is
more, in Maven dependencies can be defined in several scopes. This allows for using
different libraries in testing and production environments. Each piece of code with
own POM is called module. Maven allows for aggregation and inheritance relations
between modules, defined in POMs. Also POM vital data, as dependencies, can be
shared between POMs by using these relations. Build process of a module finishes
with binary - called artifact. Each module can be configured to produce more than
one artifact in chosen packaging, as Java JAR, WAR or EAR. Maven provides re-
lease mechanisms, allowing for publishing generated artifact under certain tag (group,
artifact id and version) to remote locations. Therefore, work in large, distributed
groups (as the ViroLab consortium) is much easier. Each build can also generate
project information and documentation as Java Doc, published by Maven as set of
easy to access HTML pages. All above steps are executed in clearly defined process,
called build lifecycle. Lifecycle is made up of phases (as compile, test, package,
verify, deploy). Each phase consists of goals - specific tasks representing fine piece of
work (as unpacking project’s dependencies). Each goal can be bound to one or more
phases, allowing flexible builds. Finally, Maven offers easy to use plugins system for
extending it’s capabilities. Most popular and used in PROToS includes automatic
code reporting (as PMD [27], test code coverage or FindBuge [10]) and continuous
integration bridge. Plugin configuration allows for binding with lifecycle phases and
goals, thereby achieving reliable and reproducible builds.

5.5.2. PROToS modules

Maven modules along with aggregation and inheritance between module’s POMs,
encourage fine-grained separation of project’s components. Each module encapsulates
particular functionalities, logic and APIs with clear relations to other components.
Those principles applied to the PROToS project resulted in module’s hierarchy de-
picted in Fig. 5.8.

Hierarchy shown includes only inheritance relation between modules. Each com-
ponent belong to one of several groups, depending on it’s function and POM type.
1. Super POMs group

This group contains POMs defining common information for separate branches in
PROToS hierarchy. It’s packaging is always defined as POM, therefore resulting
artifacts provides only XML data. Modules from the group are marked as deep
blue.
• PROToS defines root of PROTOs-related modules. All possible external com-

ponents presented in Fig. 4.1, as ’Provenance Data Mining’ should inherit this
POM. Contains most basic project information, as metadata (group, version,
description), artifact repositories, SCM and continuos integration, developers
and license used.

• PROToS Core defines branch for PROToS-specific modules. Configures com-

42

5.5. Project organization

Figure 5.8. Hierarchy of PROToS modules as defined in Maven2 POMs. Diagram
includes only inheritance relation between modules, defining branches in module tree.

Dependencies are shown on other diagrams.

mon PROToS settings, as build plugins used (PMD, test coverage etc.) and
dependencies for test environment.

• PROToS SP defines branch for Storage Peer components. It is required because
SP is partitioned on API module and specific implementations.

2. Core logic group
This group contains modules reflecting core components from architecture diagram
5.3. Modules from this group are marked as light green.
• DRE contains interfaces and implementation of the Data Retrieval Engine com-

ponent. Described in section 6.1.2.
• DGE contains interfaces and implementation of the Data Gathering Engine

component. Covered in details in section 6.1.3.
• DSS contains interfaces and implementation of the Distributed Storage Super-

visor component. Details provided in section 6.1.4.

43

• SSN contains interfaces and implementation of the Storage Super Node com-
ponent and Node application. Covered in section 6.1.5.

• SP stand-alone contains implementation of the Super Peer component, based
on eXist database [9]. Details of the implementation are provided in section
6.1.6.

3. Utilities group
Modules from this group encapsulates common PROToS logic of particular aspect.
These components were born during PROToS development, to avoid duplication
of the code. Modules of the group are marked as light blue.
• OntS encapsulates ontology - processing logic of the PROToS. Description pro-

vided in section 6.1.10.
• Config contains configuration provider definition and implementation, used by

core system components. Covered in details in section 6.1.9.
• P-Store encapsulates simple persistence utility, used by core components for

state management. Described in section 6.1.11.
• XML:DB encapsulates data model and logic for working with databases over

XML:DB API, as SP endpoints. Covered in details in section 6.1.12.
4. Interfaces and data models group

Contains components encapsulating common data models or interface definitions.
Modules from this group are marked as violet.
• Data module contains definition of the common data model for communication

with PROToS system. Covered in section 6.1.7.
• Interface module encapsulates logic and configuration required for the Core

application. Described in details in section 6.1.8.
• SP API contains definition of interfaces that should be implemented by the SP

incarnations. Described in section 6.1.6.

Fig. 5.9 presents simplified dependencies between PROToS modules, as defines in
respective POMs.

Only direct dependencies are shown in the diagram because dependency relation
in Maven is defined as transient. That is, all core components are dependent on the
Data module, but only OntS and SP API import it. As depicted, Core and Node
application’s components all import utility logic modules.
In summary, without usage of Maven tool, not only organization but also development
of such large project as PROToS would much more difficult. Necessary Maven overhead
of writing XML configuration - POMs - is definitely justified.

5.5. Project organization

Figure 5.9. Interdependencies in PROToS modules hierarchy. Dependencies are tran-
sitive, hence only direct dependencies are depicted.

45

Chapter 6

PROToS design and implementation

This chapter contains detailed description of PROToS design and
implementation. Each section reflects one software component
(Maven2 module) as defined in project organization. Last part of
the chapter is devoted to technologies used along with explanations.

6.1. Modules detailed design

This section contains detailed description of PROToS design and implementation.
For convenience, section organization reflects modules hierarchy, as depicted in Fig.
5.8.

6.1.1. Conventions

Following subsections contain detailed descriptions of PROToS components. Each
subsection contains component’s dependencies as UML component diagram and com-
ponent’s design as UML class diagrams. Component’s Descriptions and used diagrams
make use of following conventions:

• If class depicted in UML diagram does not list methods or list some private at-
tributes, it is implied that this class has accessor methods for every protected
and private attribute. All accessors use Java Bean manner, that is propertyX has
accessors named setX and getX. This rule is introduced to make diagrams more
clear.

• All component’s dependency diagrams contains only external dependencies. That
is only exclusively dependant components outside of the PROToS are shown.

• In descriptions of component dependency diagrams, notions of a ’component’, a
’library’ and an ’artifact’ are used alternatively. All of them denote a software
component.

46

6.1. Modules detailed design

6.1.2. Protos-dre component

Description

This component encapsulates logic for data retrieval functionality, as executing
provenance - mining queries and preparing backups. It also handles formatting and
returning results in user-defined formats. The component heavily depends on the
distributed storage, represented by the DSS component.

Design

All source code of the protos-dre component is placed in packages
pl.cyfronet.virolab.protos.dre.*.
Fig. 6.1 depicts core, external interfaces of the DRE component.

Figure 6.1. UML class diagram of DRE’s core interfaces. Diagram models behaviour
of the component in main three aspects: configuration attributes, configuration model

and retrieval functionality. Also, reference implementation of DRE is shown.

Following list comprises descriptions of these interfaces:
• IConfigurationBean

This interface defines methods for manipulating configuration properties of the
DRE. In fact, interface sticks to the Java bean model (thus name suffix) with
additional, convenience methods (as addNewX and removeX). The interface is
described in great details in the configuration section A.

• IConfiguration
Interface defining methods for handling actual component configuration. Sticks to
the stateful component model, described in separate section A.2.

• IDataRetrieval
Defines essential behavior of the component. First method is used to execute

47

6.1. Modules detailed design

queries, whether second allows for preparing backup of the whole storage. These
methods operate with usage of common data model, described in section 6.1.7.

Those interfaces are implemented by the DRE facade. This is shown in Fig.
6.2, where class DataRetrievalImplementation is reference implementation of the
DRE facade.

Figure 6.2. DRE implementation as UML class diagram. Diagram presents partic-
ulars of reference implementation (apart from core interface’s methods) along with

configuration-specific classes - property holder and provider.

Apart from interface, the DRE facade also defines following methods:
• Methods start, stop and isRunning come from the Spring Lifecycle interface and

are delegated to generic, defined in IConfiguration interface.
• Methods getDSS and setDSS are used by the DI container to inject instance of

storage supervising component, vital for the DRE operations.
• Accessor methods for provider property are used to inject adequate GenericXML-

Provider instance. It is used for configuration persistence. Reference implemen-
tation - textbfXMLConfigurationProvider - is also depicted in Fig. 6.2.

Class ConfigurationBean also shown on 6.2 encapsulates configuration proper-
ties of the component. Facade delegates accessor methods defined in the IConfigu-
rationBean to this class.
Core DRE functionalities includes handling various queries, validating them and for-
matting results. Model for classes responsible for mentioned operations is depicted in
Fig. 6.3.

Model includes:
• Interface IQueryResultFormatter that should be implement by all classes pro-

cessing query results. Results will be passed through all active instances in order
defined by the list.

48

6.1. Modules detailed design

Figure 6.3. UML class diagram depicting DRE’s utilities. Classes are partitioned on
three functional groups: query handlers, query validators and result formatters. Each

group - interface and implementations is encapsulated in separate package.

• Interface IQueryHandler that should be implemented by all classes handling
particular query type and language. Query will be passed for handling only if
canHandle method will return true.

• Interface IQueryValidator that shall be implemented by all query validators.
Query will be validated by a class only if canValidate method will return true.
Decision is to be based on Query attributes: language, type and options.

All itemized interfaces contains method init, used by the DRE to pass DSS in-
stance.

Dependencies

Fig. 6.4 depicts external dependencies of the component.

Figure 6.4. External dependencies of the PROToS DRE component. Depicted one -
spring-context - is used for tight integration with Spring’s lifecycle.

External module spring-context provides lifecycle interface method, for better in-
tegration with the Spring. This way, methods for starting and stopping DRE compo-
nent will be automatically called by the container when needed (as when starting and
stopping whole container).

49

6.1. Modules detailed design

6.1.3. Protos-dge component

Description

The protos-dge main responsibilities are data gathering functionalities, as accept-
ing, validating and storing incoming provenance data. In regard of event storage, the
component is dependent of the Distributed Storage Supervisor (DSS) component.

Design

Source code packages of the component begins with the pl.cyfronet.virolab.-
protos.dge prefix.
Fig. 6.5 presents essential interfaces of the DGE component.

Figure 6.5. DGE interfaces on UML class diagram. Interfaces represent core function-
alities: configuration setting, configuration management and data gathering. Refer-

ence implementation facade of the component is also depicted.

Description of interfaces functionalities follows:
• IConfigurationBean

Interface defining how component’s configuration properties could be altered. It is
composed of Java-bean accessors and additional, convenience methods, as addNewHan-
dler. The DGE configuration properties are covered in details on the section A.

• IConfiguration
This interface adds stateful configuration behavior to the DGE component. Thor-
ough explanation of the stateful model is in section A.2.

50

6.1. Modules detailed design

• IDataGathering
Core interface of the component, defining it’s most vital function. Operates on
common data model, described in 6.1.7.

Fig. 6.6 depicts reference DGE facade, implementing all essential interfaces cov-
ered above.

Figure 6.6. DGE implementation UML class diagram. Reference implementation
along with configuration utilities (attribute holder, provider) are presented. Also,

non-interface methods and attributes of the component are shown.

Additional methods of the DataGatheringImplementation class are:
• Accessor methods for DSS are used to inject instance of storage supervising com-

ponent.
• Accessor methods for provider property are used to inject GenericXMLProvider

instance. The provider is used for managing configuration persistence.
• Methods start, stop and isRunning come from the Spring Lifecycle interface.

These methods provide tight integration with Spring’s stateful component model.
The implementation delegates start and stop calls to generic startDGE and stopDGE
methods.

Implementation package contains also following classes:
• XMLConfigurationProvider is simple extension of the GenericXMLProvider

handling DGE’s ConfigurationBean.
• ConfigurationBean encapsulates configuration properties of the component. It’s

persistence is handled by the XMLconfigurationProvider.
As stated in the description, DGE responsibilities includes handling and validating

of incoming events. For these functionalities specific interfaces are used. They are
presented in Fig. 6.7.

Interfaces descriptions:

51

6.1. Modules detailed design

Figure 6.7. UML class diagram of DGE’s utilities, handling two important responsi-
bilities of the component: validating and handling incoming events. Each utility group

is encapsulated in a separate package.

• IEventHandler is to be implemented by handlers for specific events. Event in-
stance will be passed to the handler only if canHandle method returns true. Deci-
sion has to be made basing on type and options attributes.

• IEventValidator is to be implemented by validators for specific events. Event
instance will be passed to the validator only if canValidate method returns true.

Every interface contains also method init. It is used by the DGE component to pass
DSS instance, when putting handler/validator into service.

Dependencies

External dependencies of the DGE component are presented in Fig. 6.8.
Component spring-context plays same role as in the case of DRE module, provid-

ing tight Spring integration. Library jena provides ontology processing capabilities for
the DGE logic.

6.1.4. Protos-dss component

Description

The protos-dss component encapsulates all logic required for maintaining, config-
uring and accessing distributed storage of the PROToS system. Main facade of the
component acts as a mediator between storage and other components (DRE, DGE),
providing ontology-based routing algorithms for provenance data. What is more, all
of Domain Ontologies are to be stored in the DSS, for performing some ontology -

52

6.1. Modules detailed design

Figure 6.8. External dependencies of the PROToS DGE component. Diagram include
spring-context for Spring’s Lifecycle interface and Jena ontology framework.

related functionalities, as data validation. This also assures best performance of these
tasks, as data do not have to fetched from distributed data store.

Design

All source code of this component is placed in the packages with pl.cyfronet.-
virolab.protos.dss prefix.
In Fig. 6.9 all interfaces of the DSS component are presented. Because the DSS
makes use of the Facade design pattern, all vital interfaces are extended by one super
interface, called IStorageSupervisorFacade.

Particular DSS facade interfaces are described below.
• IOntologyConfigurationBean

The interface defining how ontology attributes of the DSS can be altered. Sticks to
the Java-bean model, with additional convenience method used for manipulating
collections. This type of interface definition allows for Java-bean config holders
that can be easily persisted. IOntologyConfigurationBean is covered in details
in the configuration section A.

• IConfigurationBean
Second ’bean’-type configuration interface of the DSS. This allows for changing
attributes related to distributed storage and ontology reasoning. Also precisely
described in the configuration section A.

• IConfigurationAPI
This interface extends preceding ’bean’ interfaces forming full configuration model
of the DSS component. It also adds methods required for stateful operation of the
component. Full description of the stateful model is given in the section A.2.

• IOntologyConfiguration
The interface that defines methods for altering ontology state of the DSS. These
methods are excluded from the IOntologyConfigurationBean for two reasons.
Firstly, they are manipulating state of the component, not static configuration.

53

6.1. Modules detailed design

Figure 6.9. DSS essential interfaces as UML class diagram. Apart from reference
implementation, behaviour in following aspects is modelled: common configuration at-
tributes, ontology configuration attributes, configuration management, ontology man-

agement and distributed storage communication.

Secondly, they should be available for remote management by user, only for internal
use. More on this topic is available in the section A.
Interface operates on the Jena [18] ontology data model.

• IOntologyAPI
Interface extends IOntologyConfiguration forming unified API for ontology
functionalities offered by the DSS. The method validateIndividual will only return
true if passed list of individuals are consistent with DOs loaded into DSS.

• ICommunicationAPI
Interface providing actual access to the distributed storage. Method executeQuery
is entirely handled by the DSS because typical query can span multiple nodes,
therefore results have to be gathered and merged. Nonetheless, processing of data
storage is to be handled by single nodes. Thus, adequate methods (getCommuni-
cator) returns single communicator to applicable node. Hence, better performance
is achieved because part of processing is delegated to the responsible node.
Reference implementation of the IStorageSupervisorFacade is depicted in Fig.

6.10 in form of the class StorageSupervisor.

54

6.1. Modules detailed design

Figure 6.10. UML class diagram of DSS reference implementation. Particulars of
facade implementation are shown along with configuration data holder and suitable

configuration provider.

Following list comprises descriptions of class methods and attributes:
• provider attribute contains reference to the configuration persistence utility. Suit-

able implementation is also depicted in Fig. 6.10 as class XMLConfiguration-
Provider.

• stateProvider attribute contains reference to the component state persistence man-
ager. Reference implementation comes from the protos-pstore component, de-
scribed in section 6.1.11.

• nodes attribute contains reference to the storage nodes data base. This is very
important class because it’s algorithms are to decide how provenance data should
be scattered and balanced on the distributed storage. It’s facade interface is shown
in Fig. 6.11.

• ontologies attribute contains reference to the domain ontology models data base. It
simply encapsulates logic necessary for extracting and storing various information
form DOs. Reference implementation is placed in the protos-onts module, covered
in details in the section 6.1.10.

• configuration fields contains instance of the ConfigurationBean, also depicted in
Fig. 6.10. This simple container, Java bean class contains current configuration
attributes of the DSS component.

• reasoner and inference attributes are used for semantic processing of loaded Do-
main Ontologies. They are used for such tasks as quick, incoming event validation.

• methods start, stop isRunning comes from Spring’s Lifecycle interface. Those

55

6.1. Modules detailed design

methods are used for tight, seamless integration with Spring’s stateful component
model.
Apart from nodes data base, Fig. 6.11 depicts also one more important interface -

INodeReferenceFactory.

Figure 6.11. UML class diagram of DSS component’s utilities. Classes presented in-
clude very important Nodes database (interface and reference implementation) and
node reference management. The latter is build around Abstract Factory pattern,
including core AbstractNodeReferenceFactory and interface for factories handling par-

ticular protocols. Also, reference implementation of factory for RMI is depicted.

Together with class AbstractNodeReferenceFactory and interface IStorageN-
odeFacade it forms utility for obtaining usable node references from various addresses.
The utility is using Abstract Factory design pattern. Currently, the DSS component
offers node reference factory implementation for the RMI - class RmiNodeRefer-
enceFactory, as shown on Fig. 6.11.

Dependencies

Fig. 6.12 depicts external dependencies of the component.
Just as in the case of previous core components, there are only two of them: jena,

used for ontology processing and spring-context, used for tight integration with the
Spring lifecycle model.

56

6.1. Modules detailed design

Figure 6.12. PROToS DSS external dependencies component diagram. Diagram in-
cludes Jena ontology framework and Spring lifecycle integration.

6.1.5. Protos-ssn component

Description

The protos-ssn module contains both interfaces for essential Node application
functionality and implementation of the Storage Super Node component. From
perspective of the DSS, whole storage node looks like one being - Node application.
Under the hood, the SSN component manages group of Storage Peers. It’s role
also includes management of one or more DOs, therefore handling all ontology-related
processing of the Node, as reasoning on individual registries. Basically, all work that
can’t be delegated to]textbfStorage Peers is to be performed here. For example,
queries in languages other than XQuery have to be processed by the Storage Super
Node.

Node interface model

Interfaces constituting Node lies in the pl.cyfronet.protos.sn and pl.cyfronet.-
protos.sn.interfaces packages.
Fig. 6.13 depicts all interfaces defining required Node behavior. As shown, interface
model makes use of the Facade design pattern - thus suffix Facade in two SN parent
interfaces. First, the IStorageNodeCommFacade represents behavior that should
be presented to components requesting access to storage functionalities, as DRE.
That is why configuration interfaces are extended only by the second parent facade -
IStorageNodeFacade. This interface is used by storage management components of
the PROToS.

Following list is composed of short interface’s descriptions:
• IConfigurationBean

This interface defines methods for SN configuration attributes. Methods naming
follows Java-bean model with additional convenience method (as unit operation on
collection). This way implemented configuration holder can be simply, easy to use

57

6.1. Modules detailed design

Figure 6.13. Storage Node interfaces as UML class diagram. Interfaces model be-
haviour in following aspects: configuration properties and management, ontology
management, storage and querying functionalities. Also, diagram presents two Node
facades: full as used by the DSS component and communicator as presented to other

components.

Java bean. Thorough descriptions of interface’s methods are available in Appendix
A.

• IConfigurationAPI
The interface defining methods of stateful component model applied to the Node.
The model itself is covered in details in separate section A.2.

• IOntologyStateModifier
Interface that defines ontology-related functionalities actually modifying state of
the component. These methods basically allows for adding and removing DOs
bound to the particular SN. The method removeRegistryFromDomain forces com-
ponent to remove registry of individuals bound to specific DO.

• IOntologyAPI
This interface defines methods for ontology processing that do not change state of
the SN component. As opposed to previous interface, this defines only ’getter ’
methods. Also, by extending IOntologyStateModifier forms complete ontology
processing facade of the component.

• IStorageAPI
Interface defining methods operating directly on storage managed by particular

58

6.1. Modules detailed design

SN. Apart from essential saveData method it contains also validation functionali-
ties in form of validateModel and validateModelConsistency methods.

• IQueryAPI
The interface that defines only one method - executeQuery. This functionality
is detached from other storage-accessing methods because it requires much more
complicated implementation and typically access to all Storage Peers bound to
the node.

Node interfaces description requires one more remark. As depicted on the diagram
6.13, interface’s methods operates on class OntModelWrapper, not on the generic
Jena data model. This is special class that makes ontology model serializable and
allows for sending OntModel instance with such protocols as RMI. Because in section
4.2 RMI was pointed as a candidate for internal middleware, such wrapper class had
to be included in design.

SSN core design

All classes and interfaces of the SSN are placed in packages with pl.cyfronet.-
virolab.protos.sn.ssn prefix.
Diagram 6.14 depicts essential classes of the reference SSN implementation design.

Figure 6.14. SSN implementation as UML class diagram. Diagram contains reference
implementation of the full facade interface with its non-interface properties. Also,

critical implementation groups - Configurables and State are presented.

59

6.1. Modules detailed design

Main class is the StorageSuperNode, implementing IStorageSuperNode in-
terface, described previously. It’s core attributes and methods are described as follows:
• configuration attribute contains reference to the holder of component’s configura-

tion data. This is simple Java bean class, convenient for persistence.
• provider instance field contains reference to the configuration’s persistence man-

ager. Manager is provided by the protos-config component, described in the section
6.1.9.

• state attribute contains instance of the SsnState class, also depicted in Fig. 6.14.
— SsnState

This is Java-bean containing all classes that constitute component’s run-time
state. All instances contained have to be persisted on component’s stop and
restored on component’s start. Currently there are three state interfaces:

— ISimpleOntologyDataBase
Encapsulates logic necessary for performing ontology loading and storage. In-
terface and implementations come from protos-onts module and are described
in section 6.1.10.

— IXmlDb
One of many aspects of the SSN operations is management of incoming XML
data. Coming from unified model libraries, but different sources, events in
XML representation can differ in for example namespace mappings. Role of
this class is to learn incoming data and enable unification before saving events
in common data store. It does not depend on component’s configuration but
belong to state exactly because of learning in the run-time.

— IPeerDataBase
Implementations of this interface shall manage Storage Peers available for
the node. Core logic should implement parsing StoragePeer addresses and
producing ExtendedEndpoint instances, allowing access to the Peer.

• stateProvider field contains reference to the state persistence utility. It’s main con-
cern is (re)storing instance of the SsnState class on component’s lifecycle events.
Interface as well as reference implementation lies in the protos-pstore module, de-
scribed in section 6.1.11.

• configurables attribute contains reference to an instance of the SsnConfigurables
class, shown in Fig. 6.14.
— SsnConfigurables

This Java bean holds references to the configurables - classes dependent on
current state and configuration. Those classes can be perfectly restored from
component’s state, therefore do not need to be persisted altogether with the
state. IConfigurable interface and it’s extensions are covered in section 6.1.5.

• reconfiguration field contains instance of the ReconfigurationContext class. This
is main entry point of one of most important SSN algorithm - reconfiguration.
Actual implementation decides how state (ontologies and peers) is to be set up.
Current design is presented in the section 6.1.5.

• start, stop and isRunning methods come from the Lifecycle interface. It is used
for seamless integration with Spring stateful component model. Those methods
will be called automatically by the container when needed. Internally the SSN
delegates those call to generic methods from the IConfigurationaAPI interface.

60

6.1. Modules detailed design

SSN reconfiguration design

Diagram 6.15 presents design of the reconfiguration model for the SSN component.

Figure 6.15. UML class diagram of the SSN reconfiguration model. Model is based
on Strategy design pattern and consists of following: ReconfigurationContext defining
common algorithm steps and IReconfigurator interface, defining algorithm’s particu-

lars. Also, SSN configuration holder and configurables are part of the model.

Reconfiguration makes use of the Strategy design pattern. Entry point is the Re-
configrationContext class (’context’ of the strategy). It defines following methods:
• accessors for the reconfigurator property. Actual implementation of the IRecon-

figurator interface is to be set by the DI container and handle particulars of
reconfiguration algorithm.

• reconfigure method, starting reconfiguration sequence. This method takes state,
configurables and actual configuration of the SSN component. It’s responsi-
bility is to check which elements of the configuration have been altered since state
was set up and call adequate IReconfigurator methods. Also, if any changes
are performed on the state, reconfigurables also have to be modified. Described
checking sequence is generic and delegates all algorithm-specific functionalities to
the IReconfigurator instance. Finally, after completion of this method state and
configurables reflect actual component’s configuration.

As stated previously, implementations of the IReconfigurator interface defines
particulars of reconfiguration algorithms. Depicted in Fig. 6.15, interface defines
following methods:
• loadOntologies method sets up ontology data base of the component. Actual im-

plementation of the ISimpleOntologyDataBase interface is defined here. Also,

61

6.1. Modules detailed design

initialization sequence from current configuration depends on chosen implementa-
tion.

• loadPeers method loads peers that are to be used by the SSN, using current com-
ponent’s configuration. Defines effective implementation of the IPeerDataBase
used.

• getConfigurables method fills SsnConfigurables holder with all required imple-
mentations of the IConfigurable interface. Currently, only IXmlDbLogic is
used.
— IXmlDbLogic

Implementation of this class handles saving and querying data contained in
the SSN. It is very important, as algorithms for scattering data and merging
distributed query results have very strong impact on system’s performance and
salability. Internally, implementations of this interface delegate XML:DB API
logic to classes from the protos-xmldb module, covered in section 6.1.12.

• reloadPeers method is called when reconfiguration algorithm decides that peers
have been changed. This stage of sequence can for example decide to transfer
provenance data from nodes being discarded to new ones. Therefore it’s imple-
mentation is also very important.

• reloadOntologies method is called when reconfiguration algorithm detects that on-
tology models bound to the SSN have been changed.

• reloadConfigurables method is called every time state (that is ontologies or peers)
is changed. This is because such change have to reflected in configurables internal
state. In case of the mentioned IXmlDbLogic this is crucial for reliable operation.

Dependencies

In Fig. 6.16, external dependencies of the SSN component are presented.

Figure 6.16. PROToS SSN external dependencies as UML component diagram. Di-
agram includes Spring’s lifecycle integration, Jena ontology framework and XML:DB

communication library.

Following list describes those libraries:

62

6.1. Modules detailed design

• jdom, used for XML processing. usage of this component is very extensive, due to
processing of XML results and XML-based XQuery language.

• xmldb-api, used in conversion from XML:DB data model to the PROToS one.
• spring - in fact, it is composed from several artifacts, including core, context, re-

moting and jmx. Together those components provides full Spring integration for
the SSN.

6.1.6. Protos-sp component

The Storage Peer component acts as end point in the PROToS distributed
storage. From hierarchy point of view, group of SPs is to be managed by one SSN
component instance.
SP components are designed to acts as simple storage units, with as little logic as
possible. Basic requirement for a SP is to support XQuery and provide some access
for configuring XML storage, as XML:DB API set. Therefore, simplest SP could be
naive XML database, as eXist [9]. Also, most of the configuration is to be handled
in SP native way and set up on component’s deployment. Thus, SP component is
not subject to the stateful component model A.2 or remote management. Vital part
of the configuration - storage - is to be handled by an applicable SSN via XML:DB
functionalities.
Currently SP module is composed of two components:
1. SP API defines basic set of features that should be implemented by full-blown

SP implementations. These interfaces are not applicable to SPs wrapping native
XML databases, where corresponding behavior could be achieved in native way.

2. SP stand-alone component contains reference implementation of the SP compo-
nent, using eXist database for XML storage.

Described SP sub components are covered in following sections.

Protos-sp API component

Description

As stated before, this module contains interfaces that have to be implemented by
all full-blown SP implementations.

Interfaces

Interfaces are placed in the pl.cyfronet.virolab.protos.sn.sp.* packages.
Fig. 6.17 depicts SP interfaces.

As shown, SP model follows Facade design pattern. Currently there is only one
essential interface - IConfigurationAPI extended by the facade IStoragePeerFa-
cade. It defines following methods:
• loadBaseConfiguration method loads configuration of the component from applica-

ble persistence service. This method is required to refresh configuration if persisted
config (for example XML file) was changed when component is in service.

• reconfigure method causes SP to refresh component’s state using current (loaded)
configuration. This method and loadBaseConfiguration were split up to preserve
clear division between changing configuration and actual component’s state.

63

6.1. Modules detailed design

Figure 6.17. SP API interfaces as UML class diagram. API consists of interface defin-
ing configuration behaviour and facade to be implemented by all SP components.

Facade is provided in case another aspects of SP behaviour were introduced.

• shutdownStoragePeer method is called when SP is put out of service. Should
force component to persist all data in temporary storage and save it’s current
configuration. The method is to be called for example when SP is revoked from
the SSN.

Protos-sp stand-alone component

Description

The module containing reference implementation of the SP. Implementation is
based around instance of the eXist native XML db. Because it is wrapper implemen-
tation. it supports SP API-defined behavior in aneXist-native way. Thus, does not
implement SP API interfaces.

Design

Source code of this component is placed in packages with pl.cyfronet.virolab.-
protos.sn.sp.simple prefix.
Diagram 6.18 presents simplified design of the component’s core.

The ExistWrapper class is core of the implementation. Extending Java Runnable
interface allows for running database in separate thread. Defines following attributes
and methods:

64

6.1. Modules detailed design

Figure 6.18. SP stand-alone reference implementation on UML class diagram. Dia-
gram includes main eXist wrapping class along with associated IConfigurator. Also,

reference configurator implementation, based on XML files, is provided.

• configurator attribute holds instance of the IConfigurator, utility for configuring
component from persistence service. Fig. 6.18 contains also reference implementa-
tion of configurator - the XMLConfigurator class. It provides persistence service
in the XML file.

• server attribute contains reference to the Jetty [19] servlet container instance.
Server is necessary for running eXist, as it is distributed as Java web application
(WAR).

• existWar attribute points to the place in classpath or file system, where eXist WAR
is stored.

• contextPath attribute defines context path of the eXist, that will be part of the SP
URL as passed to the SSN.

• connectors attribute defines how application will be available. This includes pro-

65

6.1. Modules detailed design

tocol, valid IP and port (if applicable). Typically, only one connector using HTTP
protocol and port 8080 is configured.

Dependencies

External dependencies of the Protos-sp stand-alone are depicted in Fig. 6.19.

Figure 6.19. PROToS SP external dependencies as UML component diagram. Di-
agram includes two jetty components responsible for providing servlet container for

eXist and XML JDOM library.

As a rule, library jdom is used for XML processing. In case of this compo-
nent, stand-alone server is configured by a specific XML file. Components from
group org.mortbay.jetty are used to setup embedded Jetty servlet container, host-
ing eXist database instance. Component jetty serves full database logic. Code from
maven-plugin is used because it provides simple bootstrap and configuration for the
container.

6.1.7. Protos-data component

Description

This component contains common data model of the PROToS system along with
utilities for processing entities of the model. Model itself is composed of events, queries
and query result representations. Virtually every PROToS component is dependent of
this component.

Design

All source code belonging to the protos-data component is placed in pl.cyfronet.-
virolab.protos.common* packages.
Fig. 6.20 presents core classes of the common data model.

Detailed description follows:
• Event

This is base class for incoming ontology-enriched events, representing both actor
provenance and meta data. These properties mirrors OWL features:

66

6.1. Modules detailed design

Figure 6.20. UML class diagram of PROToS common data model. This include
classes for representing provenance events, provenance-mining queries and query re-
sults. Model is prepared to fit requirements of Web Services and RMI-type communi-

cations.

— ontologyComponents contains names of OWL classes or properties modeled by
the event.

— datatypeProperties maps names of primitive type property to actual values,
supporting one-to-many relation. Equivalent of the OWL datatype property.

— objectProperties maps names of complex type property to actual values, being
also Event instances. Equivalent of the OWL object property.

Properties type and options, with enumerated values, sets actual PROToS type (as
’simple’) and various options of the event. Property eventClass contains full-qualified
name of the bean class representing OWL concept, when annotated data model is
used. This topic is described more elaborately in 6.1.7.

• Query
Represents ontology-mining queries to be processed by the PROToS. Because of
requirements from various communication middlewares, as RMI, Query class im-
plements standard Java Serializable interface.
Provides properties to support every type of query possible. Configuration options
includes options, type and language used. What is more, by setting properties,
PROToS can make use of in-query variables, thus preventing ’injection’-type at-
tacks. Variable syntax is similar to HQL, that is variable named var has to be
included in queryString as :var.

• QueryResult
Instances of this class act as a holder for the actual query result. Property type en-
ables user to check actual type of result, contained in the holder property. because
result instances are to be send through network, also QueryResult implements
Serializable interface.

• ResultHolder
Subclasses of the ResultHolder should provide means for storing and pre-processing

67

6.1. Modules detailed design

actual query result. Default one allows for storing result as String or byte array,
with conversion logic provided in UTF-8 encoding. Being filed in the QueryResult
also implements Serializable interface.

Fig. 6.21 presents full data model with helper classes and enumerations used by
core classes. As far as enumerations are concerned, values are self-explaining.

Figure 6.21. Common data model helper classes and enumerations at UML class dia-
gram. Helpers includes options defined for queries and events. Enumerations includes

for example query languages and event types supported.

Following list contains short description of helper classes:
• QueryOptions

Properties referencePoint, rangeType and timeRange allows for choosing timeframe
of data to be queried. ResultsLimit restricts amount of OWL entities to be re-
turned. Finally, queryDepth property limits XML level that will be searched.

• EventOptions
Available options changes validation that should be applied to the incoming event.
These are:

68

6.1. Modules detailed design

— consistencyValidation - if set to true, system should check whether ontology in-
formation built from event is consistent with already stored ontology individuals
(registries)

— domainValidation - if set, system shall validate event versus adequate domain
ontologies

— specificationValidation - if set to true, additional specification checking should
be performed by the PROToS

Annotated data model

As stated previously, all provenance data must be submitted to the PROToS as
instances of the Event class. Those instances can transfer any necessary ontology
information contained in source domain ontologies, as values of adequate attributes.
Yet, in some aspects this model could prove itself unsuitable.
In example, events coming right from experiments, as seen in Fig. 4.1 are to be filled
by experiment’s writer. In order to accomplish that with default model, following
steps are required:
• instantiation of bare instance of the Event class
• identification of OWL class modeling requested PROToS event and filling ontolo-

gyComponents with list containing URI of the class
• identification of URIs of requested class properties
• identification of type of these properties (object or datatype)
• filling adequate map property of the Even instance with entries URI-value

Above procedure seems too complicated, especially for ViroLab’s users without
appropriate amount of technical knowledge. Thus, annotated event model was created.
It is based on the observation made in ’Event Generation’ description (4.3), that every
OWL class can be easily translated into Java bean. Of course, so bean still has to
extend Event class. Key features of the model are summarized below:
• OWL class is represented by class extending Event in the Java-bean convention.
• All datatype properties are converted to built-in Java types.
• All object properties are using Event type.
• All getters and setters of event’s properties should use adequate maps (datatype-

Properties or objectProperties). This requirement comes from WebServices fea-
tures. Because WSDL for PROToS services is to be created with Event class in
the data model, WS serialization would not take additional event properties into
account. Therefore, all property values that shall survive WS communication are
to be stored in Event maps.

• Ontology-related information are to be represented as annotations of event’s
methods. Usage of annotations allows for preservation of more ontology data that
usage of bare Event class features.

• Full qualified name of the actual event class should be stored as eventClass prop-
erty. This will be used after WebServices transfer to determine which event class
should be scanned for ontology information.

Fig. 6.22 depicts annotations defined for current data model.
Short description follows:

69

6.1. Modules detailed design

Figure 6.22. Current annotated data model on UML class diagram. Model defines an-
notations representing all needed ontology particulars: OWL class, datatype property,
object property and individual id. Also, required feature used for validation purposes

is included.

• IndividualId is used to tag property responsible for carrying ID of ontology indi-
vidual.

• OntologyType annotates class with URI of the OWL class it is representing.
• DatatypeProperty tags property as being datatype.
• ObjectProperty tags property as being object.
• Required defines that some property is required by the OWL ontology model. It is

an example of additional information that could not be preserved in OWL-to-Java
conversion otherwise.

Implementation

In Fig. 6.23, additional utilities used for processing data models classes are pre-
sented.

Following list comprises short descriptions of utilities:
• OntologyAnnotationProcessor

Core utility for processing annotated event model. Provides generic methods for
extracting datatype an object properties, individual id and actual ontology type
(OWL class URI) of the event.

70

6.1. Modules detailed design

Figure 6.23. UML class diagram of common data model utilities. Most important
classes from this group handles processing and handling of annotated provenance

events.

• AnnotatedEventValidator
This utility is used to validate annotated events. Current implementation makes
use only of Required annotation for setters. It also checks various necessary filed
of generic Event class.

• EventUtils
Introspects instance of the Event class, printing available info to the chosen logger.
Used for testing and debug.

• ClassUtils
Provides debug and testing for annotated event model. This utility helps detects
run-time problems with various class loaders in managed environments.

Dependencies

Fig. 6.24 depicts external dependencies of the Protos-data component.
It depends only on the commons-beanutils library, provided by the Apache. Util-

ities from the library are used to manipulate bean-like events in very convenient
way, unavailable in standard Java JRE API. In example, event classes extending
SimpleEvent using PROToS annotations are processed with extensive usage of the
commons-beanutils. In fact, all utilities for processing annotations, as AnnotatedE-
ventValidator and OntologyAnnotationProcessor makes use of this component.

71

6.1. Modules detailed design

Figure 6.24. PROToS Data external dependencies as UML component diagram. Dia-
gram includes only commons-beanutils package.

6.1.8. Protos-interfaces component

Description

Module protos-interface contains communicators for WS operations along with full
configuration for the PROToS Core application. Because the application is built
with an Dependency Injection container, configuration is what really matters in this
component. Deep thorough reference of the DI config is given in the section A.

Design

Diagram 6.25 depicts WS communicators of the PROToS Core application.

Figure 6.25. WebService communicators on UML class diagram. Communicators im-
plement external interfaces - IDataGathering and IDataRetrieval and delegate func-

tionality to adequate components (implementation properties).

Each communicator’s design consist of following:
1. interface corresponding it’s functions - IDataGathering and IDataRetrieval.

These are core interfaces in adequate components, serving the functionality.
2. accessors for implementation attribute. It holds reference to the instance of com-

ponent serving the functionality. Instance is injected by the DI container.
3. adequate entry in the configuration of the application. This is covered in section

A.1.

72

6.1. Modules detailed design

Dependencies

External dependencies of the component are presented in Fig. 6.26.

Figure 6.26. PROToS interface external dependencies on UML component diagram.
Diagram includes Spring’s integration, XFire WebService framework, and JDOM for

XML processing. Also, geno2drs events are provided for testing purposes.

These are as follows:
• spring-beans and spring provides Spring IoC container integration, that ties whole

application. Components are not referenced directly from the Interface code, but
from the applicationContext.xml file - application’s configuration. The spring com-
ponent provides artifacts for such application aspects as RMI or WS integration
and JMX configuration.

• xfire component provides all Web Services functionality. It also nicely integrates
with Spring WS layer.

• jdom - a widely used XML processing library and geno2drs ontology event model
are referenced by the Interface component solely for testing purposes.

6.1.9. Protos-config component

Description

The protos-config module encapsulates logic responsible for configuring compo-
nent’s using persistence services. Module is required to store objects in question in
an editable way. What is more, implementation should allow configuring already
instantiated objects. This way, some attributes can be set in object and other loaded
from persistent store.

Design

Package prefix for this component is pl.cyfronet.virolab.protos.config. Fig.
6.27 depicts essentials of the config component.

73

6.1. Modules detailed design

Figure 6.27. Config component core classes on UML class diagram. Model consists
of main configuration manager interface IConfiguartionProvider along with reference

implementation - GenericXMLProvider and its helper classes.

It is composed of following classes and interfaces:
• ConfigResource

This enumeration defines which types of storage resources are supported by avail-
able configuration utility implementations.

• IConfigurationProvider
The interface defining required behavior of all persistent configuration providers.
Methods of the interface are as follows:
— accessors for classpathResource attribute, allowing to set file available in appli-

cation’s class path that shall be used to store objects.
— accessors for fileSystemResource attribute, allowing to set system-wide path to

file that should be used as persistent store.
— accessors for preferredResource attribute, allowing to chose which resource should

be used if more than one is configured.
— accessors for beanKey attribute, defining unique ID of the object that will be

stored on next call to the save method.
— loadConfiguration method that shall load from persistent storage configuration

74

6.1. Modules detailed design

with ID equal to current beanKey and copy loaded values to applicable object’s
attributes.

— saveConfiguration method that shall read object’s attributes and save them
under current beanKey in the persistent store.

— removeConfiguration method that shall search for configuration with beanKey
ID and remove it from persistent resource.

• GenericXMLProvider
This is implementation of the IConfigurationProvider interface, that employs
XML serialization of the objects. The provider reflects persisted objects searching
for attributes with accessors defined as getX and setX. Thus it imposes Java-bean
structure on the objects under question. Actual persistent resource handling is
done by strategies implementing StreamStrategy interface.

• OneFileStrategy
Implements StreamStrategy interface, storing all objects in one XML resource
(file), either from class path or from file system. Uses XStream [48] to handle
Object to XML mapping.

Dependencies

Fig. 6.28 depicts external dependencies of the Protos-config.

Figure 6.28. PROToS Config external dependencies as UML component diagram.
Most important dependency is xstream component, responsible for object to XML

mapping.

Component common-beanutils is used to manipulate Java beans, that are to be han-
dled by config utility. Typical usage involves reflecting incoming beans for properties
to be persisted or restored. Xstream component provides Java-to-XML (de)serialization,
and the jdom library in used for manipulating serialized beans inside storage XML
files. Reference implementation of the Protos-config stores all beans in one XML
valid file, thus jdom role is very important.

75

6.1. Modules detailed design

6.1.10. Protos-onts component

Description

Protos-onts module encapsulates common ontology processing logic of the PRO-
ToS. As DOs are one core concepts of the system, this module is used by almost all
PROToS components.
Main functionality of the protos-onts concentrate on following aspects:
1. retrieving ontology models from various external sources
2. extracting information from DOs, as individuals, ontology URI and others
3. providing convenience utility for manipulating ontologies represented in various

models - Jena API, pure XML and PROToS data
4. providing bridges between ontology representations (Jena, XML, RDF) and PRO-

ToS annotated event model

Design

Package prefix for this component is pl.cyfronet.virolab.protos.onts.
Diagram 6.29 depicts main interfaces and classes of the protos-onts component.

Figure 6.29. PROToS onts module core on UML class diagram. Model includes on-
tology databases, utility for checking ontology db state and Abstract Factory - based

ontology model reference retriever.

Presented classes concentrate on two aspects, described below.

76

6.1. Modules detailed design

• DOs storage and management
Consists of following:
— textbfISimpleOntologyDataBase and IOntologyDataBase interface defining

all methods required for fully-functional DO data base. The latter extends first
one adding discrimination for data, domain and experiment models, as used by
for example protos-dss component. Reference implementation of main interface
is provided in the impl package, as depicted on diagram 6.30.

— textbfOntologyChecker class is utility for performing updates on an ontology
database. Initialized with an instance of ISimpleOntologyDataBase or IOn-
tologyDataBase and list of new DOs shows which models have been removed,
added or updated.

• DO retrieval
This functionality is designed to follow abstract factory design pattern. Consists
of following:
— AbstractOntModelFactory class decides which protocol-specific factory should

be returned. Decision is based on the model address passed, as it contains
protocol identifier. Adding new specific factories requires getFactoryInstance
method to be extended.

— IOntModelFactory interface should be implemented by factories specific for
particular protocol (ontology source). As depicted in Fig. 6.30, currently
protos-onts provides factories for DOs available in class path and via HTTP
protocol.

Figure 6.30. UML class diagram of onts core reference implementation. Diagram in-
cludes factories for ontology models accessible by HTTP protocol and class path.

Apart from described functionalities, main package pl.cyfronet.virolab.protos.-
onts contains many utilities manipulating ontology models, as OntModelSerializer
class and others.
Separate paragraph shall be devoted to the datautils package, containing ’bridge’

77

6.1. Modules detailed design

between ontology and PROToS event models. It is presented in Fig. 6.31.

Figure 6.31. PROToS onts common data model utilities as UML class diagram. De-
picted classes provides conversion from common data model (events) to Jena ontology
model (Individual, OntModel classes). Only annotated events are processed by these

converters.

Core class - EventToModelBuilder allows for building ontology model containing
individuals from instance of annotated PROToS event. Constructor of the class takes
two arguments:
• instance of event from annotated model (described in section 6.1.7
• instance of OntModel containing ontology models applicable for the event. This is

required because event itself does not contain definition of classes and properties,
only values for new individual.

Building is dependent on the IndividualBuilder, responsible for recursive build-
ing instances of Jena API Individual class. Methods of this class supports separation
of ontology models, therefore class descriptions (DOs) are not mixed with individual
registry created from an event.

Dependencies

In Fig. 6.32 external dependencies of the component are presented.

78

6.1. Modules detailed design

Figure 6.32. PROToS Onts external dependencies as UML component diagram. Apart
from typical Jena and JDOM components, experiment and geno2drs event libraries

are provided for testing purposes.

Artifact jena, providing OWL ontology processing is most important dependency.
It is commonly used in almost all onts core logic classes. Jdom XML processor is
used in parts of code dealing with the XML-RDF form of ontologies. Typical usage
involves manipulation of nodes structure, as in classes XmlStructureManipulator
and XmlFormatUtils.
Libraries from group pl.cyfronet.virolab.onto contains ontologies converted to PROToS
events. They are used for integration testings purposes - usage of real-world events
and event aggregates assure higher quality of the component.

6.1.11. Protos-pstore component

Description

Name of the protos-pstore component is an acronym for Persistent STORE. This
component contains logic for loading and saving whole objects in persistent storage,
such as file. As opposed to the protos-config component (section 6.1.9), does not copy
persisted fields values to an object, but loads whole object state as was previously
persisted. What is more, format of persistence is not required to be editable, but
rather compact in size (for example binary).

Design

Fig. 6.33 depicts simplified pstore design diagram.
Diagram is composed of following classes:

• StorageResource
Enumeration of possible storage resource types.

• ResourceFactory

79

6.1. Modules detailed design

Figure 6.33. P-store core classes on UML class diagram. Diagram consists of main
interface - IStorageProvider, reference implementation - LocalSerializableStorage and

common helper classes.

Factory for resources. For given resource type and protocol-specific address factory
returns instance of Java File, allowing IO operations.

• IStorageProvider
The interface defining required behavior of storage providers. Defined methods
allows for:
— configuring resource type and name to be used (accessors for resource property).

For example in case of file system resource, name of the resource to be used
should take form of full file system path.

— configuring preferred resource (accessors for preferredResource attribute). This
is the resource that shall be used for persistence in case more than one is
available.

— persisting and loading any Java object (save and load methods). Apart object
persisted, additional argument is the key - unique ID that shall identify object
in persistent storage.

• LocalSerializableStorage
This is reference implementation of IStorageProvider interface. Uses local files
for storing data and Java serializable mechanisms for processing objects. There-
fore, each object passed have to be serializable. Simply, it means that object and
it’s dependency graph instances have to implement Serializable interface or be
declared as transient.
The implementation adds accessors for map containing mappings between resource
types and names.

Dependencies

External dependencies of the protos-pstore component are depicted in Fig. 6.34.

80

6.1. Modules detailed design

Figure 6.34. PROToS P-store external dependencies as UML component diagram. Di-
agram includes standard JDOM for XML processing and ws-common-util component

for Base64 encoding.

As usual, jdom artifact is used for processing XML data - in this case, default
implementation stores all passed object in one XML file. Little component named
ws-common-util provides Base64 coding, used to nest serialized object as binary XML
elements.

6.1.12. Protos-xmldb component

Description

The protos-xmldb component handles all XML data bases management, data and
service model used by the PROToS components. Most important part is model of
the PROToS XML:DB enabled endpoint, described in section 6.1.12. Endpoints are
complemented by set of services and executors, constituting easy to use API. There-
fore, component’s using protos-xmldb do not have to deal with plain queries in such
languages as XUpdate and XQuery. All logic is moved to the API level. It is covered in
section 6.1.12. Last but not least, module provides full model for preparing XUpdate
queries, shown in the section 6.1.12.

Xmldb endpoint model

Packages of the endpoint model are pl.cyfronet.virolab.protos.xmldb and pl.-
cyfronet.virolab.protos.xmldb.loader.
Diagram 6.35 presents core classes of the model.

XML:DB endpoints are represented as instances of one of two following class:
• XmldbEndpoint This class encapsulates connection with some endpoint, as in-

stance of eXist database. It provides access to the root collection of the endpoint
(accessors for collection attribute) and connection management logic.

• ExtendedEndpoint Class extending XmldbEndpoint, designed specially for
the SSN component. Allows for executing queries from xmldb API and accessing
various services and executors for supported languages. In fact, the execute method

81

6.1. Modules detailed design

Figure 6.35. PROToS Xmldb endpoint model as UML class diagram. Diagram consists
of classes representing endpoint and Abstract Factory based loaders. Also, reference

implementation of factory - DefaultEndpointFactory - is presented.

is convenience utility that reflects passed query and passes it to an adequate ex-
ecutor. Currently supported queries and executors are depicted in Fig. 6.36.

Instantiation of endpoints is handled by specific classes, following the abstract
factory design pattern. They are also presented on the diagram 6.35, in the loader
package. It comprises following:

• class AbstractStorageSchema defining particulars of the XML storage that
should be met by all endpoints.

• class AbstractEndpointFactory responsible for deciding which implementation
of the IEndpointFactory should be used. Takes instance of class extending Ab-
stractStorageSchema as an argument. It is used for initialization of the endpoint
factory.

• interface IEndpointFactory that should be implemented by all endpoint factories.
• class DefaultEndpointFactory, the reference implementation of factory inter-

face. Apart from instantiation of the XmldbEndpoint it also makes various

82

6.1. Modules detailed design

checks on endpoint. Conformance to schema is validated and if necessary lacking
features are added.

Services model

The services model is contained inside pl.cyfronet.virolab.protos.xmldb.-
services.* packages.
Model is depicted on the diagram 6.36. Core classes lie in the root package.

Figure 6.36. PROToS xmldb services model as UML class diagram. Diagram includes
common model in form of IExecutor, AbstractQuery and ServiceType along with

implementations for XQuery and XUpdate languages.

Their’s functions are as follows:
• ServiceType enumerates services supported by the model. Currently XUpdate

and XQuery are available.
• AbstractQuery class should be extended by queries for specific services. Every

query should at least define type of service required and enable compilation to
string. As presented on 6.36, protos-xmldb implements currently XQueryQuery
and XUpdateQuery. First one is simple wrapper around query in string format,
as passed to the PROToS from external components. It allows only for definition of
XML nodes that should wrap query result. The latter is entry point to the XUpdate

83

6.1. Modules detailed design

query model, covered in section 6.1.12. Apart from construction of the actual query
it also allows for manipulating XML namespaces (*Namespaces* methods) and
converting query to the XML JDOM data model.

• IExecutor interface shall be implemented by all executors for specific services.
As depicted on 6.36 current implementation support execution for XUpdate and
XQuery languages. Apart from actual execution of query on service, executors
perform also validation functions.

XUpdate data model

XUpdate language is widely used in the PROToS to perform maintenance of
XML:DB endpoints. Queries for this functionality have to be created in the PRO-
ToS run time. Therefore, need for class-level model for XUpdate came into existence.
Model is contained in the pl.cyfronet.virolab.protos.xmldb.services.xupdate pack-
age.
Fig. 6.37 shows very simplified class diagram of the model.

Figure 6.37. Simplified UML class diagram of the PROToS Xmldb model for XUpdate.
Model allows for creating any XUpdate queries supported by specification.

Only generalization and realization properties are preserved on the diagram - aggre-
gation, dependency and attributes were removed for the sake of clarity. As depicted,
whole XUpdate specification is implemented, allowing for any type of query to be
defined, compiled and send to a chosen endpoint. Because XUpdate uses XML syn-
tax, convenient JDOM model was used for compiled representation. More elaborate
description of the model could be found in the PROToS JavaDoc documentation.

Dependencies

Fig. 6.38 shows overview of the protos-xmldb dependencies.

84

6.2. Technologies used

Figure 6.38. PROToS XML:DB module external dependencies as UML component
diagram. Model includes JDOM for XML processing and xmldb-api for communication

with XML:DB endpoints.

The xmldb-api component provides interfaces and data models for communica-
tion with eXist database. This include protocols for XQuery and XUpdate languages
along with model for databases, collections and data sets. As a rule, jdom is used to
manipulate XML queries and obtained results.

6.2. Technologies used

In order to achieve all goals mentioned previously, choice to use industry-standard
solutions and technologies was made.

6.2.1. Stadards applied

Widely accepted standards makes PROToS more stable and portable. This kind
of approach also renders system easier to understand and extend. Therefore, progress
made in specific fields - as communication, implemented in adequate standards, can
be easily transferred and utilized in the PROToS.

Amongst other, following standards were applied when developing PROToS:
• Dependency Injection components [8] - very light weight software components sim-

plifying implementation switching and inter-dependency management. Following
DI principles in design promotes loose coupling and separation between function
(interface) and implementation. DI approach also helps by separating algorithms
implementation and application configuration, moving it to the special, declarative
file.

• Web Services related standards
— Web Services Architecture [41]
— Web Services Description Language (WSDL 1.1) [40]
— SOAP (once Simple Object Access Protocol) [39]

• XML related standards
— StAX - Streaming API for XML [33]. Very fast with small memory footprint

XML access interface. Widely used in high-performance XML processing li-
braries, as XFire.

85

6.2. Technologies used

— JAXB (Java API for XML Binding) [17]. Powerfull java-to-XML mapping
specification. It’s implementation is used by the XFire.

• JMX (Java Management Extensions) [20]. It is the standard for remote manage-
ment and monitoring of Java applications. JMX provides off-the-box tools for
building modular, dynamic solutions for large, distributed systems like PROToS.

6.2.2. Solutions used

Development of such system as PROToS could not be possible without usage of
external software components. Following list contains most notable technologies and
solutions that have been used, with short explanation for each.
1. Dependency Injection components container - Spring [31]

Spring is a lightweight and highly embeddable container for POJO (Plain Old
Java Object) components that makes use of Dependency Injection design pat-
tern. It enables application developer to define multiple objects, implementing
specified interfaces, and automatically injects them into dependent components.
This unique feature simplifies PROToS design, making it cleaner and much more
robust. But Spring is much more than DI-compliant container, being the leading
Java, non-EJB application framework. It offers full support for a wide range of
popular technologies as JMX, RMI and Web Services. Thus, extending PROToS
with new capabilities comes at virtually no cost. All application’s configuration,
from components definitions to JMX and Web Services settings is stored in one,
XML based file. This feature adds much flexibility to the PROToS deployment
process.

2. Jetty Servlet Container [19]
Jetty is lightweight, open-source implementation of the Java Servlet and JSP spec-
ifications, written entirely in Java. Embedded, is used in Storage Peer components
for deployment of the eXist instance. Main advantage of this approach is high
performance with small memory footprint because only truly required libraries are
loaded into memory. What is also important to be noted, Storage Peer built with
Jetty is able to operate as standalone Java application. It does not need to be
packed into WAR and deployed in a fully-fledged container as Tomcat.

3. Apache Tomcat Web Server [5]
Tomcat is a fully-fledged Java web server, developed by the Apache Software Foun-
dation. Besides standard Servlet and JSP support, as provided by Jetty, it also
offers support for other technologies needed by the PROToS, as JNDI registry.
With support from native libraries, Tomcat can scale up to thousands of connec-
tions, while preserving very good performance. With all that features, it comes
completely free. In the PROToS project, Tomcat is used to deploy critical, core
component, requiring all mentioned features.

4. XML storage - eXist [9]
eXist is an Open Source, XML native database with built-in XQuery support. It
also supports XUpdate, an open language for modifying XML data. Being native
XML database eXist is also quite good performer. On the Java side, eXist supports
XML:DB API that provides a common interface to XML databases. Main reason
for this choice was XQuery support, as it’s one of the primary assumptions for

86

6.2. Technologies used

PROToS system. Another major reason was support for XML:DB API, which
speed up PROToS implementation process.

5. Middleware solutions
• XFire Web Services [47]

XFire is a next-generation java SOAP framework, with easy to use API and
support for many standards, as JAXB. It is built on the StAX model described
previously, inheriting it’s performance and low memory requirements. XFire
was chosen over Apache Axis2 [2] exactly because of performance reasons. In
real-world tests, XFire proved to be 2 to 6 times faster than Axis with 1 -
1/5 of it’s latency. In my opinion these numbers are the best justification. At
present XFire project has been closed and merged with Celtix as Codehaus
CXF. Migration to the new framework was considered, but at current stage
this project is too immature.

• RMI [30], internal middleware.
RMI stands for Remote Method Invocation and is Java-native object oriented
API for remote procedure call (RPC). While being pure Java, it’s performance
is very good. It also has numerous features typical for industry-standard solu-
tions, as support for naming service. RMI provides also tight integration with
Java security and encryption mechanisms, making good use of SSL/TLS. All
mentioned reasons are convincing enough to choose RMI over other communi-
cation methods, as Web Services or CORBA. Of course performance was the
most important reason of this choice.

6. Semantic processing
• Jena2 Ontology API [18]

Jena is a Java framework for building Semantic Web applications, with excel-
lent API for OWL language. It includes own SPARQL implementation, called
ARQ with query engine and rule-based reasoner. Jena allows other reason-
ers to be deployed using various interfaces, as DIG, and could perform lot of
ontology-related processing as validation of OWL classes and individuals. What
is more, Jena supports natively reading and storing OWL in XML format,
which is crucial as XML database was chosen for data storage. Even though
Jena isn’t very good performer, it’s the best available framework with many
useful features, that would be very difficult to obtain otherwise.

• Pellet [26], an OWL reasoner.
Pellet is the leading-edge reasoner for OWL ontologies that provides very good
performance and full compliance with OWL-DL dialect. It also provides a set
of untypical features as ontology analysis and repair, species validation and
datatype reasoning, which could be used internally by PROToS. With bundled
Jena-compliant interface, Pellet was easily integrated into ontology processing
infrastructure of the project.

7. Utilities
• Woodstox [44]

Woodstox is a high-performance XML processor, fully compatible with StAX
model. It handles also such tasks as XML validation with namespace sup-
port. It was chosen over StAX Reference Implementation exclusively because
of performance numbers.

87

6.2. Technologies used

• XStream [48]
XStream is small and fast library for object to XML mapping. It is used
in PROToS for run-time configuration persistence. The library was chosen
over other solutions, as JAXB because it’s XML scheme is very easy to un-
derstand. Changing configuration files managed by the XStream requires no
specific knowledge of the mapping itself. Also, XStream JAR is much smaller
that JAXB’s, thus saving class loader memory space.

• Apache Commons - Beanutils [3]
Because of adopted Java Bean data model for event, PROToS extensively ma-
nipulates bean-like data. The Beanutils library contains many convenience
methods, absent in the Java JRE. Usage concentrates on dynamic discovery of
beans properties, reflecting ontology models that PROToS use.

Chapter 7

Feasibility study

This chapter presents example usage of provenance tracking in
the the ViroLab virtual laboratory. In the main part, full
provenance-enabled scenario is presented along with provenance
data usage. Two section are devoted to integration particulars,
living in PROToS environment. In last section, preliminary per-
formance evaluation is given.

This chapter refers to section 4.3, where provenance tracking environment was de-
picted. Here external components implemented and deployed in the ViroLab virtual
laboratory are presented. Also, sample real-world usage is shown. Provenance usage
in the ViroLab virtual laboratory is also presented in [52]. PROToS, QUaTRO and
virutal laboratory with full provenance capabilities are breifly described in [54].

7.1. Ontologies for the provenance system

As pointed out in many sections of this thesis, ontologies are foundation of prove-
nance tracking. It could be stated that system is as good as the quality of gathered
data. Thus, without good provenance models for data, experiment and various do-
mains, whole PROToS system is useless.
In section 1 example ontology models for PROToS are presented. As depicted in Fig.
5.1, good models should have cross-references by object properties and inheritance
relations. Fig. 7.1 presents ontology models deployed in the current VLvl.

Diagram contains only few concepts from each model, for the sake of clarity. On-
tologies are depicted using UML Class diagram. Even though this kind of diagram
can not present such details of ontology models as relation direction or multiplicity,
it is able to model object/datatype properties along with inheritance relation. Thus
presenting ontology in familiar and easy to understand way.
As shown, there is one additional ontology model - Upper ontology. This specific

89

7.1. Ontologies for the provenance system

Figure 7.1. Ontology models currently deployed in the ViroLab virtual laboratory.
Diagram includes experiment, data and domain specific models, along with special
model - upper. Presented models are tightly integrated by multiple inheritance and

object property relations.

model contains root concepts defining ViroLab’s semantic hierarchies - data (ViroLab-
DataEntity), event (ViroLabEvent) and others. From PROToS point of view, these
concepts are treated as part of data models and propagated to all Nodes in the dis-
tributed storage. Upper ontology concepts are also common point for cross-domain ref-
erences. For example, concepts from generic ontology refers only to ViroLabDataEntity
because inputs and outputs can be of any data type. Also, ExecutionStage aggregates
domain events, using root concept ViroLabEvent. When defining models for particular
domain, exact types used by adequate services are known. Therefore, not root but
leaf concepts from data ontology could be used. This feature is presented as relation
between NewDrugRanking and Ruleset concepts.

90

7.2. Provenance usage

7.2. Provenance usage

This section provides brief description of how provenance data is used in the Vlvl.
Description concentrates on user-oriented querying capabilities, as this aspect was
emphasized during requirements gathering stage.
Provenance information, gathered during experiment execution in destined primary
for user’s mining. However, also other virtual laboratory components can make use of
this data. Following list summarizes this kind of usage:
1. Optimization

Our Grid application optimizer - GrAppO - is designed to take advantage of gath-
ered provenance data. Such information as service call times, delays in experiment
execution and detailed performance of particular technologies involved, passed from
monitoring infrastructure to the PROToS constitute great base for optimization
purposes. Furthermore, complete performance metrics of many experiments are
subject to statistical analysis involving many factors, resulting in even higher level
of optimization possible.

2. Result management
Result management at its current stage is designed as combination of persistent
storage solution (WebDav [42] and annotations describing such aspects of result
as user, type, service and experiment used. Because in the ViroLab semantic data
model also results can be treated as data entities, those annotations are stored
within PROToS. This results in tight integration of results with regular application
data. Also, all capabilities of provenance-managed concepts are preserved.

3. Experiment replay
Currently, experiment replay feature is only a concept. Its implementation within
virtual laboratory is yet to be decided. Nevertheless, feature’s design makes exten-
sive use of provenance data. As already stated in section 5, such feature can not
exist without provenance tracking and storage. What should be noted, Vlvl users
expressed their interest in possibilities of experiment replay. It has been pointed
out that in some cases, described feature would be more than appreciated.

7.3. QUery TRanslation tOols - QUaTRO

Following section presents description of the QUaTRO - QUery TRanslation Tool,
component designed exclusively for mining repositories of provenance and data in the
Vlvl. QUaTRO architecture and ideas were developed by author of this work as part
of the VLvl. Implementation was carried on by the author and other colleagues.

7.3.1. Introduction

QUaTRO is first attempt to implement Provenance Data Mining component as
depicted in Fig. 4.1. It was presented for the first time in [55]. Main concepts behind
QUaTRO are as follows:

1. Ontology based. OWL models used in the ViroLab virtual laboratory encapsulate
huge amount of knowledge about the system and its applications. Also, properties
of ontologies, like description allows for user-friendly descriptions and vocabulary

91

7.3. QUery TRanslation tOols - QUaTRO

to be used. This way, end user as Virologists is able to fully understand query
under construction.

2. Data mappings. Data ontology models allows for representing application data
entities as concepts. But only experiment and domain events are to be stored in
PROToS. Core idea is to write special RDBMS mappings for data models, encapsu-
lating information needed to fetch data entities from available databases. This way,
not only provenance but also data repositories are to be supported by the QUa-
TRO queries. In current version, such mappings are defined for RegaDB scheme
[69]. Using defined cross-domain references even allows for mixed data-provenance
queries. Furthermore, QUaTRO GUI can make use of those mappings, allowing
user to see available entities while constructing the query.

3. Operators. Wide range of different operators should be provided. This include
arithmetic operators (equal, less, greater than), set theory (union, intersection),
aggregation (max, min, average). Coupled with ability to enter data domain oper-
ators offer possibilities of very powerful queries.

7.3.2. Overview

Fig. 7.2 presents GUI of QUaTRO’s current stage.

Figure 7.2. Overview of QUaTRO GUI. GUI consists of three main parts: query tree,
storage and result view. First panel allows for defining mining queries, using ontologies,
data entities and operators. Second one is responsible for managing persistent query

storage. Last part presents retrieved query results.

It is composed of three main parts: query tree, query persistence and query result
view. First panel is used to defining mixed queries, spanning data and provenance

92

7.3. QUery TRanslation tOols - QUaTRO

domains. Query definition process is described in section 7.3.3. Third part of the GUI
is used for presenting query result. Current stage offers tabular XML view of retrieved
provenance or data concepts. Other, more sophisticated result rendering components
are under development. Second part is used for query persistence management. It’s
features are as follows:

1. Query save
This panel part allows persisting currently defined query.Query is to be stored in
the internal data base and available for later use. Only user that saved the query
is to be able do load it in the future.
To save current query (that is query present in the editor) user should enter its
unique description (current query description) and click button save query. QUa-
TRO will display adequate message, depending on the status of saving.

2. Query load
Combo box used for loading queries. The query storage space is separate for
each ViroLab’s portal user. Credentials for storage are taken automatically from
portlet context, so each user is able to see only queries written by himself. User
chooses previously saved query using combo box. After selecting a query, QUaTRO
automatically loads it into the query tree. Query loaded is immediately ready to
be launched.

3. Query quicsave / quickload
Part of the persistence panel, composed of quick slots for queries. Every slot can
hold one query, that will be kept in main memory, not persistent storage. This
way is much faster than persistent storage, but lasts only as long as portal session
of the current user.
This type of the short-time storage allows user to build few versions of the same
query for testing purposes. Actually it acts as a clipboard for QUaTRO users.
To use this clipboard, users should first input its description in the input box
Current query description and click on chosen slot. If slot is already in use, old
query will be replaced - and thus lost.

As depicted in Fig. 7.2, technically QUaTRO is a portlet, deployable in the Viro-
Lab portal, running GridSphere [14] container. Moreover, to fit user’s requirements,
QUaTRO is built with AJAX (Google Web Toolkit [12] used). GWT ensures that GUI
response time is minimized. Query persistence module uses Hibernate [15] for ORM
mapping. In conclusion implementation uses most modern technologies to enhance
user’s experience and usability.

7.3.3. Query construction

Fig. 7.3 depicts sample query constructed with usage of QUaTRO GUI.
Depicted query is fairly simple, with three concepts used. Following steps are to

be taken in construction process:
• Root concept is selected from combo box. Individuals or data entities reflecting

this type are to be returned. Whole query can be viewed as ”Select root concepts
fulfilling following criteria...”. Combo box allows for selecting leaf concept from
any model - experiment, data or domain. In this example Experiment is chosen.

93

7.4. Sample scenarios

Figure 7.3. Sample query constructed with usage of QUaTRO GUI. Query consists of
three concepts, connected by object properties and one datatype property (id) using

arithmetic operator.

• Object property is selected from combo box, listing all available properties for
concept Experiment. In the example, stageContext is chosen. This property
aggregates domain events sent during experiment’s execution.

• Because property chosen is object, whole process of selecting ontology object re-
peats. However, range of the property reduces scope to child concepts of the
ViroLabEvent. All other steps are identical as previously. In the example, con-
sequently NewDrugRanking and VirusNucleotideSequence are selected.

• Next, user chooses to start new criteria branch. It is done by selecting and oper-
ator. Freshly created combo box allows for selecting Experiment’s properties. In
the example, datatype property id is chosen.

• Because property id is datatype, next step involves selecting operator, adequate to
property’s type. Example query uses arithmetic greater or equal operator.

• In last step user enters required property’s value. Thus branch is closed.

To sum up, query construction with QUaTRO is simple and easy to understand.
Regardless of query complexity, query is constructed in same way. Currently, test
QUaTRO users typically construct queries with as many as 10 branches.

7.4. Sample scenarios

This section presents sample scenarios of provenance usage in the ViroLab virtual
laboratory.

7.4.1. Drug Resistance

This scenario makes use of example applications running in the ViroLab virtual
laboratory - DRS and REGA tools. The goal of this experiment is to determine best
drug combinations for a particular HIV virus taken from the blood sample of a patient.
Full scenario contains following stages:

• HIV virus nucleotide sequence is isolated - this stage prepares input for Drug
Resistance experiment.

• Alignment of the nucleotide sequence. As a result, HIV genes are identified.

94

7.5. Performance evaluation

• Obtained gene sequences are compared to reference strains. Mutations are deter-
mined.

• Mutations are passed to DRS. Rankings of most effective drugs for particular HIV
are obtained.

However presented scenario seems quite simple, provenance tracking of it’s exe-
cution is quite complex. Multiple events are generated, delivered by the GEMINI
[50] monitoring system, collected, semantically aggregated and stored in the PROToS.
Collection and semantic aggregation of monitoring events in the ViroLab virtual lab-
oratory is described in [51].
Events generated include:

• generic experiment - start of new experiment instance, calls to services and so on.
• domain specific - enhancing gathered information with knowledge of particular

execution’s domains. Stages of the scenario generates following domain events:
SequenceAlignment, MutationComputation and NewDrugRanking.

Domain-specific events are aggregated and related to events from generic experi-
ment ontology. This way, domain events denotes that particular WS calls are in fact
alignment and ranking operations. Moreover, input data entities are to be identified
as for example nucleotide sequence.

7.5. Performance evaluation

Aiming to fulfill requirements for provenance tracking system, as defined in section
4.1 basic performance evaluation was performed. However it should be stated that
performance improvements for PROToS are yet to be implemented. It is described
in details in section 8. Therefore, test configuration involves only one application
component of each type. Nevertheless, such test can help evaluating what data sets
sizes are acceptable from performance point of view. Also, test involving different
queries is helpful in designing query optimization rules for the PROToS.

Fig. 7.4 depicts how PROToS components are deployed in testing environment.
Core and Node components are using standard, reference implementations, as config-
ured in appendix B. Peer application component is eXist 2.0.0 instance running in the
Tomcat 6.0 container. Physical machines used are as follows:

1. Machine1 Intel Core Duo, 1.73 Ghz, 1GB RAM, Tomcat 6.0.
2. Machine2 AMD Opteron 2.4 Ghz dual core, 4GB RAM, Tomcat 5.0.28.

Performance testing was performed for three queries of different complexity. They
are as follows:

1. Query ’simple’. Select distinct data sources used in calls involving ’Test’ bases.
Calls are to be part of experiments written in Ruby and calling grid operations
with particular substitutions in input.

2. Query ’advanced’. Query testing XQuery particulars, as cascade ’for’ clause, to
retrieve provenance information.

95

7.5. Performance evaluation

Figure 7.4. Deployment diagram of the PROToS, prepared for preliminary perfor-
mance testing.

3. Query ’complex’. Selects mutations being results of an experiment, calling some
grid objects running on Cyfronet’s server. Also, experiment’s input is set.

Fig. 7.5 presents test results obtained.
As depicted, system scales well for the data sets size under consideration. Response
time growth is linear with data amount. However it is clear that achieved response
times are acceptable only for simple queries and advance up to 40 mb of data. This
should be addressed with implementation of full distributed storage along with other
improvements, as described in section 8.

7.5. Performance evaluation

Figure 7.5. Results of the DRE performance testing for three typical queries of dif-
ferent complexity. Tests were performed using PROToS deployment configuration as

presented earlier.

97

Chapter 8

Conclusions and future work

This chapter summarizes work done in this thesis. Main part is
devoted to future work that should be done in order to achieve
fully-functional provenance tracking system for the ViroLab virtual
laboratory.

Principal goal of this work - system for provenance tracking and storage - called PRO-
ToS was successfully achieved. This thesis provides precise description of its design and
implementation, along with technologies that were used. Furthermore, semantic-rich
model for provenance information was presented. It builds on the top of thorough
research on virtual laboratories requirements and user’s needs. Project identified
sweet spot between abstractness and usability of the provenance model. Moreover,
also justification in form of possible applications and usage analysis in the ViroLab
was shown. Finally, integration in challenging environment of the ViroLab virtual
laboratory was described.
What should be pointed out is success of the PROToS, expressed by series of publica-
tions. They are listed in appendix D.2. Moreover, as presented in section 7 PROToS
is currently fully integrated with VLvl. Provenance information, both generic and
domain is tracked in experiments performed in the virtual laboratory and stored in
the PROToS distributed storage. Created ontology models reflects applications run by
the ViroLab’s users and the common data model. Combination of provenance data and
those models enables users to perform complex mining, enriching ViroLab’s usefulness.
What is more, event some widely-used applications, as DRS incorporated provenance
usage in their basic use cases. Real-world users from the project are providing feedback
for improving both PROToS and QUaTRO.
In conclusion, all this is proof that functional and non-functional requirements defined
in chapter 4.1 for the provenance tracking system for the ViroLab virtual laboratory
are well met.

98

Conclusions and future work

PROToS development is somewhat bound to the lifecycle of the ViroLab project.
Therefore, future work as listed below is bound to last stage of the project, involving
performance and reliability improvements.
• Main performance improvement is implementation of fully-functional distributed

XQuery support. It is to be based on ontology information, hinting what reg-
istries are available on which Nodes. Current prototype supports distributed,
multi node architecture, but storage and querying is performed only on one node.
Albeit, needed code infrastructure is in place, waiting only for algorithm to be
implemented. Also, scattering provenance data based on domain model the data
concerns is to be implemented along with distributed queries.

• Future performance enhancements includes also rebalancing ontology data stored
on Nodes. First research on proposed architecture shown that with specific usage
patterns, some Nodes could be overloaded with data. Current solution is to move
some Peers from underutilized Nodes. This however requires user’s action and can
not be done automatically. New idea assumes that data could be moved between
Nodes. Even though moving of the data is proved to be expensive, this could be best
solution because in typical systems multiple usage patterns are equally possible. In
general, proposed algorithm can also participate in data storage sequence. When
delegating provenance event to applicable Node not only domain ontology involved
should be taken into account, but also its utilization.

• Reliability improvements concentrates on Nodes backup handling. First enhance-
ment will enable per-Node backup of assigned ontology models and Peer registries.
Second enhancement will enable revocation of Nodes and Peers without data loss.
When Core or Node reconfiguration detects that a Node or Peer has been revoked
from storage, data from that component will be moved to Node / Peer selected by
the algorithm. Possibly, data will be stored on most underutilized Node / Peer.
This comes in line with previously described performance improvement.

• System is to be thoroughly tested. High reliability will be assured by code coverage
by unit tests at about 90mocks of external components and high code standards
secured by conformance to PMD and FindBugs reports.

• Improvements in technologies used - in example, XFire [47] has successor in form
of Apache CXF [4]. It addresses most important shortcomings of the XFire. Since
Web Services constitute external interface of the PROToS, reimplementation based
on CXF could be well justified.

Bibliography

[1] Apache Ant.
http://ant.apache.org.

[2] Apache Axis2.
http://ws.apache.org/axis2.

[3] Apache Commons - Beanutils.
http://commons.apache.org/beanutils/.

[4] Apache CXF.
http://cxf.apache.org/.

[5] Apache Tomcat.
http://tomcat.apache.org.

[6] Chemomentum project.
http://www.chemomentum.org/.

[7] Cyfronet’s GForge server.
https://gforge.cyfronet.pl/projects/protos/.

[8] Dependency Injection Design Pattern explained.
http://www.martinfowler.com/articles/injection.html.

[9] eXist Native XML Database.
http://exist.sourceforge.net.

[10] FindBugs reporting tool.
http://findbugs.sourceforge.net/.

[11] Globus toolkit.
http://www.globus.org/.

[12] Google Web Toolkit.
http://code.google.com/webtoolkit/.

[13] Gridbus.
http://www.gridbus.org.

[14] GridSphere portal framework.
http://www.gridsphere.org/.

[15] Hibernate.
http://www.hibernate.org/.

[16] Java Runtime Environment 6.
http://java.sun.com/javase/6/.

[17] JAXB - Java Architecture for XML Binding.
https://jaxb.dev.java.net/.

100

http://ant.apache.org
http://ws.apache.org/axis2
http://commons.apache.org/beanutils/
http://cxf.apache.org/
http://tomcat.apache.org
http://www.chemomentum.org/
https://gforge.cyfronet.pl/projects/protos/
http://www.martinfowler.com/articles/injection.html
http://exist.sourceforge.net
http://findbugs.sourceforge.net/
http://www.globus.org/
http://code.google.com/webtoolkit/
http://www.gridbus.org
http://www.gridsphere.org/
http://www.hibernate.org/
http://java.sun.com/javase/6/
https://jaxb.dev.java.net/

Bibliography

[18] Jena Semantic Web Framework.
http://jena.sourceforge.net.

[19] Jetty6 Servlet container.
http://www.mortbay.org.

[20] JMX - Java Management Extensions.
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

[21] JRuby language home.
http://jruby.codehaus.org/.

[22] Kepler project homepage.
http://kepler-project.org/.

[23] Maven 2 Project Management Tool.
http://maven.apache.org/.

[24] OGSA - Open Grid Services Architecture.
http://www.globus.org/ogsa/.

[25] OGSI - Open Grid Services Infrastructure.
https://forge.gridforum.org/projects/ogsi-wg.

[26] Pellet OWL Reasoner.
http://www.mindswap.org/2003/pellet/.

[27] PMD reporting tool.
http://pmd.sourceforge.net.

[28] Provenance Challenge web site.
http://twiki.ipaw.info/bin/view/Challenge/.

[29] Resource Description Framework.
http://www.w3.org/RDF/.

[30] RMI - Remote Method Invocation.
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp.

[31] Spring Application Framework.
http://springframework.org.

[32] Spring reference documentation.
http://static.springframework.org/spring/docs/2.5.x/reference/index.
html.

[33] StAX - Streaming API for XML.
http://jcp.org/en/jsr/detail?id=173.

[34] Taverna project homepage.
http://taverna.sourceforge.net/.

[35] TRIANA project homepage.
http://www.trianacode.org/.

[36] UNICORE.
http://www.unicore.eu.

[37] ViroLab main site.
http://www.virolab.org.

[38] ViroLab virtual laboratory.
http://virolab.cyfronet.pl/trac/vlvl.

[39] W3C SOAP specification.
http://www.w3.org/TR/soap/.

[40] W3C WDL specification.
http://www.w3.org/TR/wsdl.

101

http://jena.sourceforge.net
http://www.mortbay.org
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://jruby.codehaus.org/
http://kepler-project.org/
http://maven.apache.org/
http://www.globus.org/ogsa/
https://forge.gridforum.org/projects/ogsi-wg
http://www.mindswap.org/2003/pellet/
http://pmd.sourceforge.net
http://twiki.ipaw.info/bin/view/Challenge/
http://www.w3.org/RDF/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://springframework.org
http://static.springframework.org/spring/docs/2.5.x/reference/index.html
http://static.springframework.org/spring/docs/2.5.x/reference/index.html
http://jcp.org/en/jsr/detail?id=173
http://taverna.sourceforge.net/
http://www.trianacode.org/
http://www.unicore.eu
http://www.virolab.org
http://virolab.cyfronet.pl/trac/vlvl
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl

Bibliography

[41] Web Services Architecture.
http://www.w3.org/TR/ws-arch/.

[42] WebDAV.
http://www.webdav.org/.

[43] Webster Dictionary.
http://www.merriam-webster.com/dictionary/.

[44] Woodstox XML Processor.
http://woodstox.codehaus.org/.

[45] WS-Addressing.
http://www.w3.org/Submission/ws-addressing/.

[46] WSRF - Web Services Resource Framework.
http://www.globus.org/wsrf/.

[47] XFire Web Services.
http://xfire.codehaus.org.

[48] XStream Java-to-XML.
http://xstream.codehaus.org/.

[49] XStream output reference.
http://xstream.codehaus.org/manual-tweaking-output.html.

[50] Balis B., Bubak M., Dziwisz J., Truong H.-L., Fahringer T.: Integrated Monitoring
Framework for Grid Infrastructure and Applications. Cunningham P., Cunningham M.,
editors, Innovation and the Knowledge Economy. Issues, Applications, Case Studies,
pages 269–276, Ljubljana, Slovenia, Paz. 2005. IOS Press.

[51] Balis B., Bubak M., Pelczar M.: From Monitoring Data to Experiment Information –
Monitoring of Grid Scientific Workflows. Proc. 3rd IEEE International Conference on
e-Science and Grid Computing, e-Science 2007. IEEE Computer Society, Gru. 2007. In
Print.

[52] Balis B., Bubak M., Pelczar M., Wach J.: Provenance querying for end-users: A drug
resistance case study. Bubak M., Albada G. D. van, Dongarra J., Sloot P. M. A.,
editors, ICCS (3), volume 5103 series Lecture Notes in Computer Science, pages 80–89.
Springer, 2008.

[53] Balis B., Bubak M., Pelczar M., Wach J.: Provenance tracking and quering in virolab.
Cracow’07 Grid Workshop, pages 71–76. ACC Cyfronet AGH, 2008.

[54] Balis B., Bubak M., Pelczar M., Wach J.: Provenance tracking and querying in the
virolab virtual laboratory. CCGRID, pages 675–680. IEEE Computer Society, 2008.

[55] Balis B., Bubak M., Wach J.: User-oriented querying over repositories of data and
provenance. E-SCIENCE ’07: Proceedings of the Third IEEE International Conference
on e-Science and Grid Computing, pages 187–194, Washington, DC, USA, 2007. IEEE
Computer Society.

[56] Balis B., Bubak M., Wach J.: Provenance tracking in the virolab virtual laboratory.
Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics : 7th
International Conference, PPAM 2007, pages 50–60. Springer, 2008.

[57] Bubak M., Gubala T., Kasztelnik M., Malawski M., Nowakowski P., Sloot P. M. A.:
Collaborative virtual laboratory for e-health. Expanding the Knowledge Economy: Is-
sues, Applications, Case Studies, eChallenges e-2007 Conference Proceedings, pages
537–544. IOS Press, 2007.

[58] Buyya R., Venugopal S.: A gentle introduction to grid computing and technologies.
Computer Society of India Communications, 42(1), July 2005.

[59] De Roure D., Jennings N. R., Shadbolt N. R.: The Semantic Grid: A future e-Science

102

http://www.w3.org/TR/ws-arch/
http://www.webdav.org/
http://www.merriam-webster.com/dictionary/
http://woodstox.codehaus.org/
http://www.w3.org/Submission/ws-addressing/
http://www.globus.org/wsrf/
http://xfire.codehaus.org
http://xstream.codehaus.org/
http://xstream.codehaus.org/manual-tweaking-output.html

Bibliography

infrastructure. Berman F., Fox G., Hey A. J. G., editors, Grid Computing – Making
the Global Infrastructure a Reality, pages 437–470. John Wiley and Sons Ltd., 2003.

[60] al. L. M. et: The first provenance challenge. Concurrencyand Computation: Practice
and Experience, 2007.

[61] Foster I.: What is the grid? - a three point checklist. GRIDtoday, 1(6), July 2002.
[62] Foster I., Kesselman C., Tuecke S.: The anatomy of the Grid: Enabling scalable virtual

organizations. Lecture Notes in Computer Science, 2150:1–12, 2001.
[63] Goble C., Roure D. D., Shadbolt N. R., Fernandes A. A. A.: Enhancing Services and

Applications with Knowledge and Semantics. Foster I., Kesselman C., editors, The Grid
2: Blueprint for a New Computing Infrastructure, chapter 23, pages 432–458. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[64] Groth P., Jiang S., Miles S., Munroe S., Tan V., Tsasakou S., Moreau L.: An Ar-
chitecture for Provenance Systems. Raport instytutowy, University of Southampton,
2006.

[65] Groth P., Luck M., Moreau L.: A protocol for recording provenance in service-oriented
grids. The 8th International Conference on Principles of Distributed Systems
(OPODIS’04), [”lib/utils:month_11914” not defined] 2004.

[66] Gubala T., Balis B., Malawski M., Kasztelnik M., Nowakowski P., Assel M., Hare-
zlak D., Bartynski T., Kocot J., Ciepiela E., Krol D., Wach J., Pelczar M., Funika W.,
Bubak M.: Virolab virtual laboratory. Bubak M., Turaa M., Wiatr K., editors, Pro-
ceedings of Cracow Grid Workshop - CGW’07, October 2007, Krakow, Poland, 2007.
ACC-Cyfronet AGH.

[67] Hey T., Trefethen A. E.: The uk e-science core programme and the grid. Future Gener.
Comput. Syst., 18(8):1017–1031, 2002.

[68] Kesselman C., Foster I.: The grid: Blueprint for a new computing infrastructure.
November 1998.

[69] Libin P., Deforche K., Laethem K. V., Camacho R., Vandamme A.-M.: RegaDB: An
Open Source, Community-Driven HIV Data and Analysis Management Environment.
Fifth European HIV Drug Resistance Workshop, Cascais, Portugal, 2007.

[70] Nemeth Z., Sunderam V.: Virtualization in grids: A semantical approach. Grid Com-
puting: Software Environments and Tools. Springer.

[71] Plale B., Gannon D., Reed D. A., Graves S. J., Droegemeier K., Wilhelmson R., Ra-
mamurthy M.: Towards dynamically adaptive weather analysis and forecasting in lead.
Sunderam V. S., Albada G. D. van, Sloot P. M. A., Dongarra J., editors, Interna-
tional Conference on Computational Science (2), volume 3515 series Lecture Notes in
Computer Science, pages 624–631. Springer, 2005.

[72] Simmhan Y. L., Plale B., Gannon D., Marru S.: Performance evaluation of the karma
provenance framework for scientific workflows. Moreau L., Foster I. T., editors, IPAW,
volume 4145 series Lecture Notes in Computer Science, pages 222–236. Springer, 2006.

[73] Sloot P. M., Tirado-Ramos A., Altintas I., Bubak M., Boucher C.: From molecule to
man: Decision support in individualized e-health. Computer, 39(11):40–46, 2006.

[74] Stevens R. D., Robinson A. J., Goble C. A.: mygrid: personalised bioinformatics on
the information grid. ISMB (Supplement of Bioinformatics), pages 302–304, 2003.

[75] Woodruff A., Stonebraker M.: Supporting fine-grained data lineage in a database visu-
alization environment. ICDE, pages 91–102, 1997.

[76] Zhao J., Goble C., Stevens R.: Semantically linking and browsing provenance logs for
e-science. Lecture Notes in Computer Science. Springer, 2004.

[77] Zhao Y., Wilde M., Foster I. T.: Applying the virtual data provenance model.

Moreau L., Foster I. T., editors, IPAW, volume 4145 series Lecture Notes in Computer
Science, pages 148–161. Springer, 2006.

Appendix A

System configuration

Configuration is a major aspect of every system. In such large, fully-distributed
and loosely-coupled system as the PROToS it becomes even more important. Careful
design of configuration features adds much to the flexibility and overall usability of
the application.
PROToS system configuration options fall into one of two types, described in the
following section.

A.1. Compile-time

As stated previously, PROToS system makes use of lightweight components, based
around Inversion of Control (Dependency Injection) pattern. Current implementation
utilizes the Spring Framework [31]. Therefore, configuration of a finished application,
that is implementations of required interfaces along with component dependencies is
stored in one, declarative file, typically named applicationContext. The file is read on
startup by the container and used to bootstrap the application itself with all required
components. This configuration can not be changed after container start, so every
change requires application restart. Thorough manual on the Spring XML configura-
tion can be found on the Web [32].
Fig. A.1 presents abstract example application based on Dependency Injection con-
tainer. As depicted, in run-time all component dependencies are resolved by container
with regard to application configuration. There is only one instance implementing
interface C, injected to two different implementations of interface A. What is more,
components type A and C have different implementations of interface B injected. This
kind of behavior can be easily configured in the Spring applicationContext file.

Compile-time configuration adds great deal of flexibility to the application. It
allows to change almost any part and aspect of the system - from state persistence
strategy to the type of the storage used (multi node, single node) by only a few lines of

105

A.2. Run-time

Figure A.1. Example dependency injection container in work. First layer of the dia-
gram presents dependencies between interfaces used in application and available im-
plementations. Middle layer models DI container, using provided configuration to wire

application’s components. Third layer depicts application in run-time.

XML. What is more, thanks to integration features provided by the Spring, external
interfaces of the PROToS are also configured declaratively in the applicationContext
file. This includes Web Services, Remote Method Invocation and JMX connectors.
So feature simplifies management of the application because such properties as WS
endpoint name and interfaces to be managed with JMX are all configured in one
file. All these user-friendliness comes without sacrificing separation of concern, as the
configuration is still decoupled from the code.

A.2. Run-time

Apart from application configuration that has to be available during boot, as ser-
vices ports, many components have own properties that could be changed on the
fly. Those include in example ontology models used or storage peers belonging to a
particular node.
This type of configuration defines actual state of the application. This state, along with
configuration defining it should be persistent. It is crucial for usability of the system.
To address this requirement, simple model of stateful component was developed.

Fig. A.2 presents stateful model applied to the Storage Super Node component.

106

A.2. Run-time

Figure A.2. Model of the example configuration-enabled stateful component. It con-
sists of one ’Bean’ interface, defining configuration attributes and one ’API’ interface,

defining configuration management behaviour.

It will be used as an example.
Configuration of each component is composed from following interfaces:
• at least one ’Bean’ interface

These interfaces define configuration properties in some aspect of component’s
operation, as ontologies or nodes management. These properties are exposed in
standard Java bean manner. For property X there should be a read method getX
and if property is writable, also a write method setX. There could be also conve-
nience method for some properties. In the example, for property storagePeers
apart from get/set methods there exist also methods for adding and removing single
entries from a collection.
Simple convention is to name these interfaces with ’ConfigurationBean’ suffix
(in example: IOntologyConfigurationBean, INodesConfigurationBean).

• exactly one ’API’ interface
This interface extends ’Bean’ interfaces and is implemented by the container to
obtain stateful behavior. It defines methods required for stateful component man-
agement. These are as follows:
— loadBaseConfiguration

Loads configuration beans from persistent storage (called ’base’ one). Any

107

A.2. Run-time

pending changes to the current configuration will be discarded. This method
does not change state of the components, only configuration properties of beans.

— saveCurrentConfiguration
Saves current configuration beans properties to the persistent storage. Thus,
current configuration becomes the ’base’ one. Old base configuration becomes
obsolete and is not available anymore.

— reconfigure
Reconfigures component, using current configuration. This method actually
changes state of the component, so should be used with caution. Does not
change base configuration, so in case of problems last stable configuration could
be loaded and used to reconfigure a component.

— stopX, where X defaults to the component name
This method should cause component to stop it’s operations, free resources
and persist both configuration and state. State persistence is required because
base configuration can still be modified after component is stopped. Therefore,
system has to be able to determine after boot whether to reconfigure. The
method will be called by a container on application shutdown.

— startX, where X defaults to the component name
This method should initialize component by allocating resources and loading
both state and configuration from persistent storage. Also, reconfiguration
method should be called. This should be done to assure correct operation when
the base configuration was changed after state had been persisted. The method
will be called by a container any time component is put into service.

Simple convention is to name this interface ’IConfigurationAPI’.

A.2.1. XML configuration files

First mode of working with a run-time configuration is by usage of XML files. As
stated in previous section, configuration-enabled components are persisting configu-
ration as a ’base’ one. The protos-config module, described in the implementation
section, is provided for this purpose.
Actual resources containing component’s configuration are set by container. To modify
the configuration, one have to simply edit those files with text or XML editor. Files
can be changed while component is both stopped and running. In the latter case, user
should call loadBaseConfiguration method from respective API interface, to make
freshly edited configuration the current one.

Setting configuration component

As every component, also configuration one is managed by the Dependency Injec-
tion container. Therefore, specific entry in the adequate applicationContext file has
to be added.

1 <bean
2 c l a s s=” pl . cy f r one t . v i r o l a b . protos . sn . ssn . impl .
3 XMLConfigurationProvider ”>
4 <property name=”beanKey” value=”ssnBean”/>
5 <property name=” c las spathResource ” value=” beansConf ig . xml”/>

108

A.2. Run-time

6 <property name=” f i l eSys temResource ” value=” . / beansConf ig . xml”/>
7 <property name=” pre f e r r edResource ” value=”FILE SYSTEM”/>
8 <property name=” strategyClassName ”
9 value=” pl . cy f r one t . v i r o l a b . protos . c o n f i g . xstream .

10 OneFi leStrategy ”/>
11 </bean>

Listing A.1. Example component configuration. Represents config provider for the
SSN component instance.

Listing A.1 shows example configuration of the component for SSN. Management
settings applied in the example includes:
• bean key, used by the configuration provider as unique name for storing and re-

trieval of the bean
• name of the class path resource used for configuration storage. In example it is

beansConfig.xml.
• name of the file system resource used for configuration storage. Here it is beansCon-

fig.xml file located in the root application directory.
• definition of the preferred resource to be used. In this example the file system

resource is preferred.
• bean storage strategy to be used. Currently single file storage should be used.

Using default configuration implementation

At present, the XStream [48] based implementation is provided for configuration
bean (de)serialization. Implementation of the main interface IConfigurationProvider
is located in the package pl.cyfronet.virolab.protos.config as class GenericXML-
Provider.
The implementation offers one additional setting option - strategyClassName. Strat-
egy is used for storing and retrieving XML bean representation from actual resources.
Configuration component is distributed with one strategy, namely OneFileStrategy.
It simply uses one File - type resource, provided in constructor, for storing all beans
data. Details can be found in the respective implementation section.
XStream produces XML output that is very easy to understand, modify and use.

1 <pl . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . Conf igurat ionBean>
2 <s to ragePeer sAddres se s>
3 <s t r i n g>e x i s t : : l o c a l h o s t : 2 0 0 8 0 : e x i s t /xmlrpc/db</ s t r i n g>
4 </ s toragePeer sAddres se s>
5 <a l lMode l sUr l s>
6 <s t r i n g>h t t p : // v i r o l a b . cy f r one t . p l / onto / t e s t 1 . owl</ s t r i n g>
7 </ a l lMode l sUr l s>
8 <supportedUr is>
9 <s t r i n g>h t t p : //www. v i r o l a b . org / onto</ s t r i n g>

10 </ supportedUris>
11 <inferenceMode> f a l s e</ inferenceMode>
12 </ p l . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . Conf igurat ionBean>

109

A.2. Run-time

Listing A.2. Example output of the XStream Java to XML streamer. Presents SSN
ConfigurationBean instance in XML.

Listing A.2 shows example XStream output - serialized SSN ConfigurationBean
instance. Listing demonstrates following XStream syntax features:
• collections and lists content is mapped with element type preserved, enabling usage

of non-generic collections.
• in case of built-in types, actual type is omitted, as in case of the boolean infer-

enceMode property.
• user-defined types are simply mapped as full-qualified Java names. This applies

also to the bean class.
• properties of beans are written in the standard, Java bean manner.

Complete reference of the XStream output can be found on the web [49].

A.2.2. Remote configuration by JMX

Java Management Extensions [20] is used by the PROToS to enable remote con-
figuration of all components. JMX integration is done with specific support from
Spring container. Although this imposes tight code coupling with Spring, it simplified
system’s implementation and added some interesting features. Besides, with Spring
support, every aspect of JMX configuration, as MBean server, is managed from the
applicationContext file.

Setting up the JMX

As mentioned previously, all JMX related configuration is managed by Spring.
Apart from actual system components, every application needs JMX MBean Server,
Connector and Exporter. Therefore applicatonContext have to contain respective
entries.

1 <bean id=”mbeanServer”
2 c l a s s=” org . spr ingframework . jmx . support . MBeanServerFactoryBean”>
3 < !−− Will not c r e a t e new MBeanServer each time −−>
4 <property name=” l o c a t e E x i s t i n g S e r v e r I f P o s s i b l e ” va lue=” true ”/>
5 </bean>

Listing A.3. Example configuration of the MBean server instance. Sets up factory
class to be used along with some configuration properties.

Listing A.3 shows example configuration of the JMX MBean server. Besides
class serving required functionality, configuration contains only one option - locateEx-
istingServerIfPossible. It tells factory, that only one MBeanServer instance should be
used within current application. Although not necessary, this options saves some Java
memory.

1 <bean id=” serverConnector ”
2 c l a s s=” org . spr ingframework . jmx . support .
3 ConnectorServerFactoryBean ”>

110

A.2. Run-time

4 <property name=” s e r v i c e U r l ”
5 value=” s e r v i c e : j m x : r m i : / / 1 2 7 . 0 . 0 . 1 / j n d i /
6 rmi : / / 1 2 7 . 0 . 0 . 1 :3099 / Conf igurat ion ”/>
7 <property name=” s e r v e r ” r e f=”mbeanServer”/>
8 <property name=” threaded ” value=” true ”/>
9 <property name=”daemon” value=” true ”/>

10 </bean>

Listing A.4. Configuration of the factory for JMX ConnectorServer’s. Sets up
adequate class and bunch of required properties.

Listing A.4 depicts example configuration of the JMX Server Connector Fac-
tory. It’s function is creating JSR-160 JMXConnectorServer, registering it with pro-
vided MBeanServer instance and putting into service. In the example serviceUrl prop-
erty is configured to use JNDI and expose configuration under name Configuration on
local’s machine port 3099. Other properties configure JMXServerConnector to be
started in a separate thread as daemon.

1 <bean id=”JmxExporter”
2 c l a s s=” org . spr ingframework . jmx . export . MBeanExporter”
3 lazy− i n i t=” f a l s e ”>
4 <property name=” s e r v e r ” r e f=”mbeanServer”/>
5 </bean>

Listing A.5. Example configuration of the MBean Exporter bean. Configures class
serving functionality and sets up MBean Server that should be used.

Listing A.5 presents example configuration of the JMX MBean Exporter. Prop-
erties shown only forces Spring container to init the component at once (lazy-init
property) and configures MBeanServer to be used (server property).
Nonetheless, this component plays very important role in the whole configuration, as
it exports application components managed through JMX. It is done by two additional
properties - beans and assembler.

1 <bean id=”JmxExporter”>
2 <property name=” beans ”>
3 <map>
4 <entry key=” connector:name=Conf igurat ion ”
5 value−r e f=” serverConnector ”/>
6 <entry key=” protos . conf ig :name=BeanName1”
7 value−r e f=”Bean1”/>
8 <entry key=” protos . conf ig :name=BeanName2”
9 value−r e f=”Bean2”/>

10 </map>
11 </ property>
12 <property name=” assembler ”>
13 <bean r e f=”MBeanAssembler”/>
14 </ property>
15 </bean>
16 <bean id=”MBeanAssembler”

111

A.2. Run-time

17 c l a s s=” org . spr ingframework . jmx . export . assembler .
18 InterfaceBasedMBeanInfoAssembler ”>
19 <property name=” inter faceMappings ”>
20 <props>
21 <prop key=” protos . conf ig :name=BeanName1”>
22 pl . cy f r one t . v i r o l a b . protos . BeanInterfaceA
23 </prop>
24 <prop key=” protos . conf ig :name=BeanName2”>
25 pl . cy f r one t . v i r o l a b . protos . BeanInter faceB ;
26 pl . cy f r one t . v i r o l a b . protos . BeanInter faceC
27 </prop>
28 </ props>
29 </ property>
30 </bean>

Listing A.6. Configuration of JMX-enabled component’s export. Uses previously
described Exporter bean and new Assembler component. The latter configures which

interfaces of JMX beans shall be externally accessible.

Listing A.6 shows how these properties shall be used to enable JMX remote man-
agement for chosen application components.
1. Firstly, each component should be registered under unique name in the JMX Ex-

porter. This part is done by adding entries to the beans map. In the example
we have two distinct components, namely Bean1 and Bean2. Additionally, the
Server Connector should be also added to the map.

2. Secondly, specific MBean Assembler should be configured. In the example an
instance of the InterfaceBasedMBeanInfoAssembler is used. The exporter
allows for choosing which interfaces of the component should be available through
JMX. This is very important feature, as it enables to expose only interfaces defined
as the Configuration-enabled Component model (Fig. A.2. It is done by configuring
property interfaceMappings of the Assembler. Each component name is mapped
to the list of exportable interfaces. In the example component Bean1 exports
one interface - BeanInterfaceA and component Bean2 exports two interfaces -
BeanInterfaceB and BeanInterfaceC.

All above applicationContext entries constitute JMX configuration for the PROToS
applications. No additional code or component is required.

Usage of the JMX

Preferred way of working with JMX configuration is by using the Java Mon-
itoring and Management Console (JConsole) tool. It it bundled with Java
Runtime Environment, and can be started by typing jconsole in the command line.
After the tool is started, one should check Remote Process box and enter service
URL. It is the same as value of the serviceUrl property of the JMX Connector
bean, as shown in listing A.4. In the example it is service:jmx:rmi://127.0.0.1/jndi
/rmi://127.0.0.1:3099/Configuration. Of course localhost address (127.0.0.1) should
be replaced with actual IP address of the machine hosting the application to be con-
figured.

112

A.3. Detailed system configuration

Figure A.3. Example screen of Console connected to the remote SSN component. As
depicted, all configuration attributes and methods are described and available.

Fig. A.3 depicts JConsole connected to the SSN application. Main screen consists
of left-sided navigation and right-sided property view. The SSN bean is selected and
it’s tree is unfolded. All component properties, defined in ’Bean’ interfaces are listed
under the Attributes branch. Methods, defined in the ’API’ interface along with
property getters and setters are listed under the Operations branch. This kind of view
makes management through JConsole an easy task. What is more, MBean info view
provides component’s meta data details. Such data as previously configured domain
and bean name or actual class of the component can be quickly checked.

A.3. Detailed system configuration

This section presents detailed configuration of all PROToS system applications and
components. Where applicable, configuration is divided on run-time and compile-time.

A.3.1. PROToS Core application

The PROToS Core application configuration lies in the protos-interfaces module.
Main file is default Spring container applicationContext.xml. It consists of beans (com-
ponents) definitions, which will be described in details later and common application

113

A.3. Detailed system configuration

configuration, for such aspects as RMI, JMX and WebServices. JMX was already
covered in details in previous section, therefore listing A.7 focuses on other aspects.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN 2.0//EN”
3 ” h t t p : //www. springframework . org /dtd/ spr ing−beans −2.0 . dtd”>
4 <beans>
5

6 <bean id=” r e g i s t r y ”
7 c l a s s=” org . spr ingframework . remoting . rmi . RmiRegistryFactoryBean ”>
8 <property name=” port ” value=”5099”/>
9 <property name=” alwaysCreate ” value=” true ”/>

10 </bean>
11 <import
12 r e s ou r c e=” c l a s s p a t h : o r g / codehaus / x f i r e / spr ing / x f i r e . xml”/>
13 <bean id=” address ingHandler ”
14 c l a s s=” org . codehaus . x f i r e . addre s s ing . Address ingInHandler ”/>
15 <bean id=”DreWsCommunicatorBean”
16 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dre . WSCommunicator”>
17 <property name=” implementation ” r e f=”DreBean”/>
18 </bean>
19 <bean id=”DgeWsCommunicatorBean”
20 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dge . WSCommunicator”>
21 <property name=” implementation ” r e f=”DgeBean”/>
22 </bean>
23 <bean name=” DreServ ice ”
24 c l a s s=” org . codehaus . x f i r e . sp r ing . ServiceBean ”>
25 <property name=” serv iceBean ” r e f=”DreWsCommunicatorBean”/>
26 <property name=” s e r v i c e C l a s s ” value=
27 ” p l . cy f r one t . v i r o l a b . protos . dre . i n t e r f a c e s . IDataRetr i eva l ”/>
28 <property name=”name” value=” DreServ ice ”/>
29 <property name=” inHandlers ”>
30 < l i s t>
31 <r e f bean=” address ingHandler ”/>
32 </ l i s t>
33 </ property>
34 </bean>
35 <bean name=” DgeService ”
36 c l a s s=” org . codehaus . x f i r e . sp r ing . ServiceBean ”>
37 <property name=” serv iceBean ” r e f=”DgeWsCommunicatorBean”/>
38 <property name=” s e r v i c e C l a s s ” value=
39 ” p l . cy f r one t . v i r o l a b . protos . dge . i n t e r f a c e s . IDataGathering ”/>
40 <property name=”name” value=” DgeService ”/>
41 <property name=” inHandlers ”>
42 < l i s t>
43 <r e f bean=” address ingHandler ”/>
44 </ l i s t>
45 </ property>
46 </bean>

114

A.3. Detailed system configuration

47

48 <bean id=”mbeanServer” />
49 <bean id=” serverConnector ” />
50

51 <bean id=”DreBean” />
52 <bean id=”DgeBean” />
53 <bean id=”DssBean” />
54 </ beans>

Listing A.7. Common configuration of the Core application. Contains only application
specific beans without logic serving components. Also already described JMX beans

are omitted.

First lines of the listing, that is 6-10 configures bean responsible for setting up RMI
Registry, required for JMX operations. First property, port configures simply TCP
server port for incoming RMI connection. The latter, alwaysCreate, forces container
to create separate Registry for the Core application. It is necessary to avoid potential
namespace collisions.
Lines 12-46 represent configuration of the WebServices related beans. First line im-
ports definitions from external file. This is very convenient because configuration com-
mon to all WebServices enabled applications don’t need to be repeated. In lines 15-22
beans representing communicator for WebServices are declared. Beans are delegating
externally exposed methods to internal implementations, provided by the implemen-
tation property. Next listing lines, namely 23-46 configures actual Web Services for
data gathering and retrieval. Each service requires following properties to be set:
• serviceBean

Component serving logic for the service. It is passed as a reference to the Spring
bean.

• serviceClass
Fully qualified name of the Java interface that will be exposed as Web Service.
This allows for beans with multiple interfaces implemented but only one exposed.

• name
Name of the service, that will be part of the service URL used for Web Service
communication.

• inHandlers
List of in handlers required by the service. As the PROToS services are fully con-
figured in the applicationContext, only standard XFire AddressingInHanlder
is necessary. If system was to use for example JAX-WS services, it would need
additional handlers here.

Lines 48-49 contains references to the JMX-specific beans, covered in previous
section. Next lines, namely 51-53 defines application beans, described in details in
next, respective sections.

115

A.3. Detailed system configuration

A.3.2. PROToS Node application

Configuration for the PROToS Node application lies in the applicationContext.xml
file in the protos-ssn module. Configuration comprises application beans, which is
covered in details in following sections and common RMI/JMX configuration.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN 2.0//EN”
3 ” h t t p : //www. springframework . org /dtd/ spr ing−beans . dtd”>
4

5 <beans>
6

7 <bean id=”RmiExporter”
8 c l a s s=” org . spr ingframework . remoting . rmi . RmiServiceExporter ”>
9 <property name=” serviceName ” value=” StoragePeer ”/>

10 <property name=” s e r v i c e ” r e f=”SsnBean”/>
11 < !−− use same Reg i s t ry as f o r JMX −−>
12 <property name=” r e g i s t r y ” r e f=” r e g i s t r y ”/>
13 </bean>
14 <bean id=”RmiCommunicator”
15 c l a s s=” pl . cy f r one t . v i r o l a b . protos . sn . ssn . RMICommunicator”>
16 <property name=” core ”>
17 <r e f bean=”SsnBean”/>
18 </ property>
19 </bean>
20

21 <bean id=” r e g i s t r y ” />
22 <bean id=”mbeanServer” />
23 <bean id=”JmxExporter” />
24 <bean id=”SsnBean” />
25 </ beans>

Listing A.8. Example configuration of the Node application. Contains only
application’s configuration. Beans constituting application’s logic and JMX

configuration are omitted.

Listing A.8 depicts Node application configuration with shortened description of beans
covered in other sections.
Lines 7-19 of the appplicationContext contains configuration of the RMI support.
Bean RmiCommunicator is delegating logic to the actual implementation, provided
as the core property. Bean RmiExporter configures Spring RMI support to export
the bean to the RMI registry, provided in property registry. Provided component will
be served under the name provided in a respective property (serviceName). It is all
that is required to set up Remote Method Invocation communication for the Node.
Line 21 defines RMI Registry bean, covered in previous section. Lines 22-23 configures
JMX as described earlier. Finally line 24 deals with application component, covered
in respective following section.

116

A.3. Detailed system configuration

A.3.3. DSS component

Distributed Storage Supervisor component is most important part of the Core
application. It manages whole PROToS storage, so careful configuration is key to
fulfill desired system requirements.

Compile-time

Compile-time configuration of the DSS component shall be placed in the appli-
cationContext.xml file of the Core application, found in the protos-interfaces
module. Listing A.9 shows typical configuration of the bean.

1 <bean id=”DssBean”
2 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dss . impl . S to rageSuperv i so r ”
3 i n i t−method=” s t a r t ” destroy−method=” stop ”>
4 <property name=” prov ide r ”>
5 <bean c l a s s=
6 ” p l . cy f r one t . v i r o l a b . protos . dss . impl . XMLConfigurationProvider ”>
7 <property name=”beanKey” value=”dssBean”/>
8 <property name=” c las spathResource ” value=” beansConf ig . xml”/>
9 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>

10 <property name=” strategyClassName ” value=
11 ” p l . cy f r one t . v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
12 </bean>
13 </ property>
14 <property name=” s ta t eProv ide r ”>
15 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . p s to r e . l o c a l .
16 L o c a l S e r i a l i z a b l e S t o r a g e ”>
17 <property name=” r e s o u r c e s ”>
18 <map>
19 <entry>
20 <key><value>CLASS PATH</ value></key>
21 <value>DssState . xml</ value>
22 </ entry>
23 </map>
24 </ property>
25 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>
26 </bean>
27 </ property>
28 <property name=” nodes ”>
29 <bean
30 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dss . impl . NodesDataBase”/>
31 </ property>
32 <property name=” o n t o l o g i e s ”>
33 <bean
34 c l a s s=” pl . cy f r one t . v i r o l a b . protos . onts . impl . OntologyDataBase”/>
35 </ property>
36 </bean>

Listing A.9. Example compile-time configuration of the DSS Bean used in the Core

117

A.3. Detailed system configuration

application. Sets up implementation class along with critical properties as nodes and
ontology databases.

First line of listing A.9 contains definition of the bean along with configuration
of lifecycle methods. These are init-method and destroy-method attributes, pointing
at methods defined for the stateful component model (Fig. A.2). Consecutive lines
configure properties of the bean, conveniently listed below.
• provider

Sets configuration provider, responsible for serializing, persisting and deserializing
configuration beans of the component. Configuration as depicted makes use of stan-
dard protos-config module, which was already described. It is arranged to store
data under dssBean name in the file beansConfig.xml available in the classpath.

• stateProvider
This property configures bean responsible for persisting state of the DSS com-
ponent. Because state is not required to be editable, depicted config uses class
LocalSerializableStorage from module protos-pstore for this functionality. It
used default Java serialization mechanisms along with XML headers to manage
given objects. Utility requires two properties to be set:
— resources, declaring type and location of resources used to store object in ques-

tion
— preferredResource, managing which resource should be chosen in case of multiple

configured
• nodes

Configures storage nodes database to be used. This is very important because
crucial algorithms as data and ontology distribution are implemented in this com-
ponent. Configuration shown in the example listing uses basic NodesDataBase
implementation, intended for developer environment and testing.

• ontologies
Sets instance of class managing ontology models. Typically this is simple class,
with implementations differing only in applied minor optimizations.

Run-time

Fig. A.4 depicts configuration model for the DSS component. There are two ’bean’
interfaces - IOntologyConfigurationBean and IConfigurationBean and one ’API’ inter-
face, namely IConfigurationAPI.The latter is deeply covered in the respective section
about configuration models. ’Bean’ interfaces, representing configuration properties
of the component are described as follows:
• IOntologyConfigurationBean

The interface contains methods for manipulating ontology properties. Currently
only properties are models - domain, data specific and experiment.
This section uses notion of storage URL. This is an specific URL where an
ontology model can be found. It’s format is: [protocol][://][URI]. Currently the
PROToS system supports protocols http and classpath.
List of the interface methods:
— setAllModelsUrls - sets list of domain ontology models to be used. List contains

storage URLs where these models can be found.

118

A.3. Detailed system configuration

Figure A.4. PROToS DSS component configuration model. Model is composed of two
Bean interfaces - for common and ontology configuration along with one standard API

interface.

— getAllModelsUrls - returns list of domain ontology models. Each model is rep-
resented by the URL it was fetched from.

— addNewModelUrl - adds new domain ontology model from storage URL passed.
— removeModelByUrl - forces component to remove domain model from use.

Model is identified by the storage URL.
— getAllModelIds - returns list containing unique IDs of all domain models cur-

rently in use.
— getModelUrlById - returns storage URL of the domain model with passed

unique ID
— getAllDataModelsUrls - gets list of data ontology models. Each model is repre-

sented by the storage URL.
— setAllDataModelsUrls - sets list of data ontology models to be used within

PROToS system. List contains storage URLs where these models can be fetched
from.

— addDataModelUrl - adds new data ontology model. Model is represented by
the storage URL.

— removeDataModelByUrl - removes data model from use. Model is identified by
the storage URL.

119

A.3. Detailed system configuration

— getDataModelUrlById - gets storage URL of the data model identified by the
passed unique ID

— getAllDataModelIds - returns list containing unique IDs of all data models in
use.

— setExperimentModelUrl - sets storage URL of the experiment model.
— getExperimentModelUrl - gets storage URL of the experiment model.

• IConfigurationBean This interface defines methods for manipulating generic DSS
component functionalities, as storage management.
This section uses notion of node address. Format of the address is: [protocol][dns
name—ip = url]:[port]:[node name]. At present, only one protocol is supported -
rmi. For example, well-formed node address could be:
’rmi:www.foo.bar.com:1099:StorageNode’.
Interface methods follow:
— setReasonerFactoryClass - sets class that will act as OWL ontology reasoner.

Attribute should be fully-qualified class name available in the run-time.
— getReasonerClass - returns fully-qualified name of the reasoner class.
— addStorageNode - adds new node to the distributed storage. Argument should

be well-formed node address.
— removeStorageNode - removes storage node using node address as call argument.
— getStorageNodes - returns list of node addresses available in the storage.
— setStorageNodes - sets storage node list. Collection passed should contain only

well formed unique node addresses.

What should be expressly repeated, configuration bean methods do not change
actual state of the component. For example, after call to the removeNode method
storage will not change. It would be changed only after call to the reconfigure method.

A.3.4. DRE component

This component performs functions related to the data retrieval, as processing in-
coming queries. It is fully configurable with regard to supported query types, languages
and returned results.

Compile-time

Compile-time DRE configuration should be placed in the applicationContext.xml
file of a Core application. Typically file is located in the protos-interfaces module.
Listing A.10 shows example configuration of the DRE bean.

1 <bean id=”DreBean” c l a s s=
2 ” p l . cy f r one t . v i r o l a b . protos . dre . impl . DataRetr ieval Implementat ion ”
3 i n i t−method=” s t a r t ” destroy−method=” stop ”>
4 <property name=” dss ” r e f=”DssBean”/>
5 <property name=” prov ide r ”>
6 <bean c l a s s=
7 ” p l . cy f r one t . v i r o l a b . protos . dre . impl . XMLConfigurationProvider ”>
8 <property name=”beanKey” value=”dreBean”/>
9 <property name=” c las spathResource ” value=” beansConf ig . xml”/>

10 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>

120

A.3. Detailed system configuration

11 <property name=” strategyClassName ” value=
12 ” p l . cy f r one t . v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
13 </bean>
14 </ property>
15 <property name=” fo rmat t e r s ”>
16 < l i s t>
17 <value>
18 pl . cy f r one t . v i r o l a b . protos . dre . f o rmat t e r s .
19 BasicQueryResultFormatter
20 </ value>
21 </ l i s t>
22 </ property>
23 <property name=” hand le r s ”>
24 < l i s t>
25 <value>
26 pl . cy f r one t . v i r o l a b . protos . dre . hand le r s . SimpleXqueryHandler
27 </ value>
28 </ l i s t>
29 </ property>
30 <property name=” v a l i d a t o r s ”>
31 < l i s t>
32 <value>
33 pl . cy f r one t . v i r o l a b . protos . dre . v a l i d a t o r s .
34 XquerySyntaxValidator
35 </ value>
36 </ l i s t>
37 </ property>
38 </bean>

Listing A.10. Example DRE Bean’s compile-time configuration. Sets up
implementation of the IDataGathering interface along with implementation-specific

properties.

First line of the listing creates new bean under DreBean name with lifecycle meth-
ods (init-method and destroy-method attributes) bound to the component model ones.
Lines 4-31 contains configuration of the DRE properties, as follows:
• Line 2 initializes bean with the DSS instance, which is required as DRE needs

access to the distributed storage (property dss).
• Lines 5-14 set up configuration provider for the DRE bean. As in previous exam-

ples, also this sample uses module protos-config
• Lines 15-21 configures result formatters to be used. Value of the formatters prop-

erty should be ordered list containing fully-qualified names of classes implementing
the IQueryResultFormatter interface. When returning result, DRE will use
each applicable formatter, in order as defined in the list. Therefore, ordering of
formatters is quite important. In listing A.10 only default, empty formatter is
provided.

• In lines 22-28 query handlers are configured. Just as for previous property, also
handlers takes ordered list. The only difference is that classes passed as values

121

A.3. Detailed system configuration

should implement the IQueryHandler interface. Processing behavior is identi-
cal. In the example handler for the XQuery language and simple type queries is
provided.

• Lines 30-36 initializes the validators property. Classes passed as argument should
implement the IQueryValidator interface. List is processed in order, although in
case of validation this feature does not play important role. In the example listing
DRE bean is configured to use XQuery syntax validator only.

Run-time

Figure A.5. PROToS DRE component configuration model. Model consists of two
interfaces - bean-type and API-type. The latter is common one, shared by all PROToS

stateful components.

Fig. A.5 shows configuration model of the DRE component. It contains one ’bean’
interface - namely IConfigurationBean and one ’API’ type - IConfiguration. The latter
is standard API interface as described in a respective section.
Bean interface’s methods are as follows:
• getHandlers - returns list of fully-qualified class serving as query handlers.
• setHandlers - sets query handlers to be used by the DRE component. Argument

should be list of fully-qualified class names.
• addNewHandler - adds new handler, using fully-qualified class name as argument.
• removeHandler - removes handler in use by it’s fully-qualified class name.
• getValidators - returns validators used by the DRE as list of fully-qualified class

names.
• setValidators - sets validators to be used. Takes list of fully-qualified class names,

available in the run-time.

122

A.3. Detailed system configuration

• addNewValidator - adds new validator class to be used.
• removeValidator - removes validator that is currently in use from service.
• getFormatters - returns list of the formatters in service.
• setFormatters - sets list of formatters to be used.
• addNewFormatter - adds new formatter to the list of currently available.
• removeFormatter - removes formatter from service, using it’s fully-qualified class

name as key.

As can be seen, run-time configuration properties mirrors some of the compile-time
ones. This is because in compile time user can provide default formatters, validators
and handlers, which will be available on every time component is started. What is
more, these properties are unlikely to change. Still, run-time reconfiguration of for
example returned results type is possible.

A.3.5. DGE component

Data Gathering Engine component is responsible for such functionalities as storage
of incoming events. Also in case of this component, actual type of events handled
depends on configuration, so this should be handled carefully.

Compile-time

This type of configuration of the DGE component should be put in the application-
Context file of the Core application. File itself resides usually in the protos-inter-
faces module.
Listing A.11 depicts typical configuration of a DRE based bean.

1 <bean id=”DgeBean” c l a s s=” pl . cy f r one t . v i r o l a b . protos . dge . impl .
2 DataGatheringImplementation ”
3 i n i t−method=” s t a r t ” destroy−method=” stop ”>
4 <property name=” dss ” r e f=”DssBean”/>
5 <property name=” prov ide r ”>
6 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . dge . impl .
7 XMLConfigurationProvider ”>
8 <property name=”beanKey” value=”dgeBean”/>
9 <property name=” c las spathResource ” value=” beansConf ig . xml”/>

10 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>
11 <property name=” strategyClassName ” value=
12 ” p l . cy f r one t . v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
13 </bean>
14 </ property>
15 <property name=” v a l i d a t o r s ”>
16 < l i s t>
17 <value>
18 pl . cy f r one t . v i r o l a b . protos . dge . v a l i d a t o r s .
19 RequiredAnnotatedEventValidator
20 </ value>
21 <value>
22 pl . cy f r one t . v i r o l a b . protos . dge . v a l i d a t o r s .
23 SimpleEventFie ldsVal idator

123

A.3. Detailed system configuration

24 </ value>
25 </ l i s t>
26 </ property>
27 <property name=” hand le r s ”>
28 < l i s t>
29 <value>
30 pl . cy f r one t . v i r o l a b . protos . dge . hand le r s .
31 SimpleAnnotatedEventHandler
32 </ value>
33 </ l i s t>
34 </ property>
35 </bean>

Listing A.11. DGE Bean’s compile-time configuration example. Sets up reference
implementation of the IDataRetrieval interface along with implementation’s specific

properties.

In the first line container initializes new bean with id DgeBean. Also, lifecycle
methods (init-method and destroy-method) are set to respectively start and stop, as
defined in the stateful component model. Next lines configures following bean prop-
erties:
• dss

Initializes DGE bean with an instance of the DSS component. It is required, as
DGE needs access to the distributed storage.

• provider
Sets provider to be used for configuration persistence. As usual, the protos-config
module is used. Also, typical configuration for classpath resource storage is used.

• validators
Configures classes that should be used for validation of incoming events. Argu-
ment takes form of list containing fully-qualified names of classes implementing
the IEventValidator interface. In listing A.11 two validators are configured:
— RequiredAnnotatedEventValidator, that checks if each property anno-

tated as ’Required’ is not null
— SimpleEventFieldsValidator, that checks whether basic event fields are ini-

tialized with proper values
• handlers

Configures handlers for incoming event types. Argument passed should be list
with fully-qualified class names. Each class should be available in the run-time
and implement the IEventHandler interface. In the example, one handler is
configured - SimpleAnnotatedEventHandler.

Run-time

Fig. A.6 shows configuration model for the DGE component. It consists of two
interfaces - the IConfigurationBean (bean type) and the IConfiguration (API type).
First one configures DRE properties as follows:
• getValidators - returns list of active event validators.
• setValidators - replaces active validators with new list.

124

A.3. Detailed system configuration

Figure A.6. PROToS DGE component configuration model, composed of IConfigu-
rationBean (defining configuration properties) and common ICnfiguration (defining

management behaviour).

• addNewValidator - adds new validator to the list of active ones.
• removeValidator - removes validator from service.
• getHandlers - returns list of event handlers in use.
• setHandlers - replaces active handlers with new ones.
• addNewHandler - puts new handler into service.
• removeHandler - removes passed handler from the list of active ones.
• setOverrideValidationSettings - if set to true, DRE will override validation settings

of incoming events with general ones.
• getOverrideValidationSettings - checks actual state of validation overriding.
• setConsistencyValidation - forces validation of incoming ontology individuals con-

sistency with existing ones.
• getConsistencyValdiation - checks state of the consistency validation general set-

ting.
• setDomainValidation - forces validation of the incoming ontology elements with

domain ontology loaded by the system.
• getDomainValidation - checks actual state of the domain validation general set-

ting.
• setSpecificationValidation - forces specification validation of incoming events.
• getSpecificationValidation - checks state of the specification validation general

setting.

Also in case of this component some run-time properties mirror compile-time ones.
Behavior is the same as with the DRE component - compile-time settings shall be

125

A.3. Detailed system configuration

treated as default ones, available on every start of the component regardless of run-time
ones.

A.3.6. SSN component

Storage Super Node is central and therefore most important component of a node
applications. It manages endpoints (XML databases), so such aspects as data dis-
tribution and XML storage details are to be configured here. Careful configuration is
highly advised. Bugs in the SSN configuration can possibly render part of the system
unusable.

Compile-time

Compile-time configuration of the SSN fits into applicationContext.xml file of a
protos-node application, residing in the protos-ssn module.
Listing A.12 depicts typical configuration of the SSN component.

1 <bean id=”SsnBean”
2 c l a s s=” pl . cy f r one t . v i r o l a b . protos . sn . ssn . impl . StorageSuperNode ”>
3 <property name=” prov ide r ”>
4 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . sn . ssn . impl .
5 XMLConfigurationProvider ”>
6 <property name=”beanKey” value=”ssnBean”/>
7 <property name=” c las spathResource ” value=” beansConf ig . xml”/>
8 <property name=” f i l eSys temResource ” value=” . / beansConf ig . xml”/>
9 <property name=” pre f e r r edResource ” value=”FILE SYSTEM”/>

10 <property name=” strategyClassName ” value=
11 ” p l . cy f r one t . v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
12 </bean>
13 </ property>
14 <property name=” s ta t eProv ide r ”>
15 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . p s to r e . l o c a l .
16 L o c a l S e r i a l i z a b l e S t o r a g e ”>
17 <property name=” r e s o u r c e s ”>
18 <map>
19 <entry>
20 <key><value>CLASS PATH</ value></key>
21 <value>SsnState . s t a t e</ value>
22 </ entry>
23 <entry>
24 <key><value>FILESYSTEM</ value></key>
25 <value>. / SsnState . s t a t e</ value>
26 </ entry>
27 </map>
28 </ property>
29 <property name=” pre f e r r edResource ” value=”FILESYSTEM”/>
30 </bean>
31 </ property>
32 <property name=” r e c o n f i g u r a t i o n ” >
33 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g .

126

A.3. Detailed system configuration

34 Reconf igurat ionContext ”>
35 <property name=” r e c o n f i g u r a t o r ”>
36 <bean c l a s s=
37 ” p l . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . ba s i c .
38 Bas i cRecon f i gura to r ”>
39 <property name=” d e f a u l t C o l l e c t i o n ”>
40 <value>provenanceTests</ value>
41 </ property>
42 </bean>
43 </ property>
44 </bean>
45 </ property>
46 </bean>

Listing A.12. Example compile-time configuration of the SSN Bean coming from the
Node application. Configures usage of reference implementation along with required

properties. Most important property is reconfiguration algorithm to be used.

Lines 1-2 initializes the bean, giving it an unique id. Lifecycle methods do not
have to be bound because current SSN implementation directly implements Spring’s
Lifecycle interface.
Following lines configures bean’s properties:
• Lines 3-13 configures provider property. It is bean managing configuration persis-

tence, derived from the protos-config module. Typically new bean is set to use
file system resource named beansConfig.xml available in the root directory.

• Lines 14-31 sets stateProvider property. Typically used is the LocalSerializ-
ableStorage class from the module protos-pstore. In the example, state provider
bean is configured to use file system resource named SsnState.state.

• In lines 32-45, the reconfiguration strategy for SSN bean is initialized. This is the
most important property to be configured for SSN. Such aspects as XML databases
management and peer revocation are handled by the strategy.
In the example, the BasicReconfigurator strategy class is used.

Run-time

Fig. A.7 depicts run-time configuration model of the SSN component. Apart from
standard API interface, it consists of one bean type interface, namely the IConfigura-
tionBean.
This section uses notion of the peer address. It is address of a peer (storage endpoint)
to be used by the SSN component. It’s format is: [type]:[protocol]:[dns name—ip =
url]:[port]:[node name]. Supported types:
• sp for instances exposing Storage Peer interface
• exist for sole eXist XML DB instances

Supported protocols are:
• rmi - for peers using RMI protocol
• an empty string for native communication (as in case of the eXist)

An example of well-formed peer address is exist::localhost:20080:exist/xmlrpc/db.
Bean property methods follow:

127

A.3. Detailed system configuration

Figure A.7. PROToS SSN component configuration model. Model is composed of
IConfigurationBean interface, defining configuration properties of the SSN and com-

mon IConfigurationAPI interface.

• setReasonerFactoryClass - configures ontology OWL reasoner factory to be used.
Takes fully-qualified class name as an argument.

• getReasonerFactoryClass - returns current OWL reasoner factory class used.
• setInferenceMode - if set to true, SSN component will try to perform ontology

reasoning on stored data. Currently this is not recommended, as performance
drops dramatically in the inference mode.

• getInferenceMode - returns current state of the inference mode flag.
• addStoragePeer - adds new storage peer to the current SSN. Argument should be

well-formed peer address.
• removeStoragePeer - removes storage peer from service, using it’s peer address as

an argument.
• getStoragePeers - returns list containing peer addresses of all storage peers in use.
• setStoragePeers - replaces all storage peers with new ones, passing list of peer

addresses.

Appendix B

Sample deployment

This chapter presents sample deployment of the PROToS system. It contains
complete reference - layout of the components on machines and full configuration.

B.1. Physical component layout

Example deployment involves following PROToS component’s configuration:
• one Core application
• two Node applications
• three Peer applications

Those components are deployed on three physical machines:
• Machine A at IP address 192.168.1.101
• Machine B at IP address 192.168.1.102
• Machine C at IP address 192.168.1.103

Fig. B.1 presents how PROToS components are deployed on available physical
machines.

Depicted components layout follows philosophy of maximizing resource utilization.
This way on Machine A there are two components: computational-heavy Core and
Peer using storage resources. The same applies to machines B and C, where Node
instances are computational-oriented.
Of course different deployment options are open, but for example installing Core and
Node on the same machine would make idea of distributing computation (see section
5.2 useless.

B.2. Configuration settings

This section presents complete configuration, both run-time and compile-time of
the components depicted on the diagram B.1.

129

B.2. Configuration settings

Figure B.1. PROToS example UML deployment diagram. Diagram presents PROToS
with distributed storage composed of two Node and three Peer applications. All com-
ponents are deployed on three physical machines in a way yielding best performance.

For the sake of clarity, compile-time configuration is same for all components of one
type. Only run-time configuration differs.

B.2.1. Compile-time configuration

Section presents full listings of component’s configurations, with brief description
only. Full compile-time configuration reference is to be found in respective sections of
the chapter A.

Core application

Listing B.1 presents compile-time configuration of the Core application.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN 2.0//EN”
3 ” h t t p : //www. springframework . org /dtd/ spr ing−beans −2.0 . dtd”>
4 <beans>
5

6 <import r e s ou r c e=
7 ” c l a s s p a t h : o r g / codehaus / x f i r e / spr ing / x f i r e . xml”/>
8 < !−− JMX / RMI c o n f i g u r a t i o n s e c t i o n −−>
9 < !−− RMI r e g i s t r y f o r JMX connector −−>

130

B.2. Configuration settings

10 <bean id=” r e g i s t r y ” c l a s s=” org . spr ingframework . remoting . rmi .
11 RmiRegistryFactoryBean ”>
12 <property name=” port ” value=”5099”/>
13 <property name=” alwaysCreate ” value=” true ”/>
14 </bean>
15 < !−− JMX s e r v e r / connector−−>
16 <bean id=”mbeanServer”
17 c l a s s=” org . spr ingframework . jmx . support . MBeanServerFactoryBean”>
18 < !−− Will c r e a t e new MBeanServer each time −−>
19 <property name=” l o c a t e E x i s t i n g S e r v e r I f P o s s i b l e ” va lue=” f a l s e ”/>
20 </bean>
21 <bean id=” serverConnector ” c l a s s=” org . spr ingframework . jmx .
22 support . ConnectorServerFactoryBean ”>
23 <property name=” s e r v i c e U r l ”
24 value=” s e r v i c e : j m x : r m i : / / 1 2 7 . 0 . 0 . 1 / j n d i /
25 rmi : / / 1 2 7 . 0 . 0 . 1 :5099 / Conf igurat ion ”/>
26 <property name=” s e r v e r ” r e f=”mbeanServer”/>
27 </bean>
28 < !−− BEANS to be exported −−>
29 <bean id=” expor te r ”
30 c l a s s=” org . spr ingframework . jmx . export . MBeanExporter”
31 lazy− i n i t=” f a l s e ”>
32 <property name=” beans ”>
33 <map>
34 <entry key=” protos . conf ig :name=DreBean”
35 value−r e f=”DreBean”/>
36 <entry key=” protos . conf ig :name=DgeBean”
37 value−r e f=”DgeBean”/>
38 <entry key=” protos . conf ig :name=DssBean”
39 value−r e f=”DssBean”/>
40 <entry key=” connector:name=Conf igurat ion ”
41 value−r e f=” serverConnector ”/>
42 </map>
43 </ property>
44 <property name=” assembler ”>
45 <bean
46 c l a s s=” org . spr ingframework . jmx . export . assembler .
47 InterfaceBasedMBeanInfoAssembler ”>
48 <property name=” inter faceMappings ”>
49 <props>
50 <prop key=” protos . conf ig :name=DreBean”>
51 pl . cy f r one t . v i r o l a b . protos . dre . i n t e r f a c e s . ICon f i gu ra t i on
52 </prop>
53 <prop key=” protos . conf ig :name=DgeBean”>
54 pl . cy f r one t . v i r o l a b . protos . dge . i n t e r f a c e s . ICon f i gu ra t i on
55 </prop>
56 <prop key=” protos . conf ig :name=DssBean”>
57 pl . cy f r one t . v i r o l a b . protos . dss . i n t e r f a c e s . IConf igurat ionAPI

131

B.2. Configuration settings

58 </prop>
59 </ props>
60 </ property>
61 </bean>
62 </ property>
63 <property name=” s e r v e r ” r e f=”mbeanServer”/>
64 </bean>
65 < !−− Xf i r e WEBSERVICES s e c t i o n −−>
66 <bean id=” address ingHandler ”
67 c l a s s=” org . codehaus . x f i r e . addre s s ing . Address ingInHandler ”/>
68 <bean name=” DreServ ice ”
69 c l a s s=” org . codehaus . x f i r e . sp r ing . ServiceBean ”>
70 <property name=” serv iceBean ” r e f=”DreWsCommunicatorBean”/>
71 <property name=” s e r v i c e C l a s s ” value=
72 ” p l . cy f r one t . v i r o l a b . protos . dre . i n t e r f a c e s . IDataRetr i eva l ”/>
73 <property name=”name” value=” DreServ ice ”/>
74 <property name=” inHandlers ”>
75 < l i s t>
76 <r e f bean=” address ingHandler ”/>
77 </ l i s t>
78 </ property>
79 </bean>
80 <bean name=” DgeService ”
81 c l a s s=” org . codehaus . x f i r e . sp r ing . ServiceBean ”>
82 <property name=” serv iceBean ” r e f=”DgeWsCommunicatorBean”/>
83 <property name=” s e r v i c e C l a s s ”
84 value=” pl . cy f r one t . v i r o l a b . protos . dge . i n t e r f a c e s .
85 IDataGathering ”/>
86 <property name=”name” value=” DgeService ”/>
87 <property name=” inHandlers ”>
88 < l i s t>
89 <r e f bean=” address ingHandler ”/>
90 </ l i s t>
91 </ property>
92 </bean>
93 < !−− Appl i ca t ion beans s e c t i o n −−>
94 <bean id=”DreWsCommunicatorBean”
95 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dre . WSCommunicator”>
96 <property name=” implementation ” r e f=”DreBean”/>
97 </bean>
98 <bean id=”DgeWsCommunicatorBean”
99 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dge . WSCommunicator”>

100 <property name=” implementation ” r e f=”DgeBean”/>
101 </bean>
102 <bean id=”DreBean” c l a s s=
103 ” p l . cy f r one t . v i r o l a b . protos . dre . impl . DataRetr ieval Implementat ion ”
104 i n i t−method=” s t a r t ” destroy−method=” stop ”>
105 <property name=” dss ” r e f=”DssBean”/>

132

B.2. Configuration settings

106 <property name=” prov ide r ”>
107 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . dre . impl .
108 XMLConfigurationProvider ”>
109 <property name=”beanKey” value=”dreBean”/>
110 <property name=” c las spathResource ” value=” beansConf ig . xml”/>
111 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>
112 <property name=” strategyClassName ” value=” pl . cy f r one t .
113 v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
114 </bean>
115 </ property>
116 <property name=” fo rmat t e r s ”>
117 < l i s t>
118 <value>pl . cy f r one t . v i r o l a b . protos . dre . f o rmat t e r s .
119 BasicQueryResultFormatter</ value>
120 </ l i s t>
121 </ property>
122 <property name=” hand le r s ”>
123 < l i s t>
124 <value>pl . cy f r one t . v i r o l a b . protos . dre . hand le r s .
125 SimpleXqueryHandler</ value>
126 </ l i s t>
127 </ property>
128 <property name=” v a l i d a t o r s ”>
129 < l i s t></ l i s t>
130 </ property>
131 </bean>
132 <bean id=”DgeBean” c l a s s=
133 ” p l . cy f r one t . v i r o l a b . protos . dge . impl . DataGatheringImplementation ”
134 i n i t−method=” s t a r t ” destroy−method=” stop ”>
135 <property name=” dss ” r e f=”DssBean”/>
136 <property name=” prov ide r ”>
137 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . dge . impl .
138 XMLConfigurationProvider ”>
139 <property name=”beanKey” value=”dgeBean”/>
140 <property name=” c las spathResource ” value=” beansConf ig . xml”/>
141 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>
142 <property name=” strategyClassName ” value=” pl . cy f r one t .
143 v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
144 </bean>
145 </ property>
146 <property name=” v a l i d a t o r s ”>
147 < l i s t>
148 <value>pl . cy f r one t . v i r o l a b . protos . dge . v a l i d a t o r s .
149 RequiredAnnotatedEventValidator</ value>
150 <value>pl . cy f r one t . v i r o l a b . protos . dge . v a l i d a t o r s .
151 SimpleEventFie ldsVal idator</ value>
152 </ l i s t>
153 </ property>

133

B.2. Configuration settings

154 <property name=” hand le r s ”>
155 < l i s t>
156 <value>pl . cy f r one t . v i r o l a b . protos . dge . hand le r s .
157 SimpleAnnotatedEventHandler</ value>
158 </ l i s t>
159 </ property>
160 </bean>
161 <bean id=”DssBean”
162 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dss . impl . S to rageSuperv i so r ”
163 i n i t−method=” s t a r t ” destroy−method=” stop ”>
164 <property name=” prov ide r ”>
165 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . dss . impl .
166 XMLConfigurationProvider ”>
167 <property name=”beanKey” value=”dssBean”/>
168 <property name=” c las spathResource ” value=” beansConf ig . xml”/>
169 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>
170 <property name=” strategyClassName ” value=” pl . cy f r one t .
171 v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
172 </bean>
173 </ property>
174 <property name=” s ta t eProv ide r ”>
175 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . p s to r e . l o c a l .
176 L o c a l S e r i a l i z a b l e S t o r a g e ”>
177 <property name=” r e s o u r c e s ”>
178 <map>
179 <entry>
180 <key><value>CLASS PATH</ value></key>
181 <value>DssState . xml</ value>
182 </ entry>
183 </map>
184 </ property>
185 <property name=” pre f e r r edResource ” value=”CLASS PATH”/>
186 </bean>
187 </ property>
188 <property name=” nodes ”>
189 <bean
190 c l a s s=” pl . cy f r one t . v i r o l a b . protos . dss . impl . NodesDataBase”/>
191 </ property>
192 <property name=” o n t o l o g i e s ”>
193 <bean c l a s s=
194 ” p l . cy f r one t . v i r o l a b . protos . onts . impl . OntologyDataBase”/>
195 </ property>
196 </bean>
197 </ beans>

Listing B.1. Example compile-time configuration of the Core application. This
configuration is full containing all beans required for application to run. All

134

B.2. Configuration settings

implementation used for configuring application are reference ones used for testing
purposes.

Configuration shown is pretty standard. Uses reference implementations for all
logic components. Details are covered in adequate section of configuration chapter
A. What is important from deployment point of view, JMX and RMI servers are
configured to listen at port 5099. This is done in lines 12 and 24-25. Full serviceUrl
as passed to the serverConnector shall be used in remote, JMX enabled configuration
of the Core application.

Node application

Listing B.2 shows compile-time configuration of the Node application.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN 2.0//EN”
3 ” h t t p : //www. springframework . org /dtd/ spr ing−beans . dtd”>
4

5 <beans>
6

7 < !−− JMX / RMI c o n f i g u r a t i o n s e c t i o n −−>
8 < !−− RMI r e g i s t r y f o r JMX connector −−>
9 <bean id=” r e g i s t r y ” c l a s s=” org . spr ingframework . remoting . rmi .

10 RmiRegistryFactoryBean ”>
11 <property name=” port ” value=”3099”/>
12 <property name=” alwaysCreate ” value=” true ”/>
13 </bean>
14 < !−− JMX s e r v e r / connector−−>
15 <bean id=”mbeanServer”
16 c l a s s=” org . spr ingframework . jmx . support . MBeanServerFactoryBean”>
17 < !−− Will not c r e a t e new MBeanServer each time −−>
18 <property name=” l o c a t e E x i s t i n g S e r v e r I f P o s s i b l e ” va lue=” true ”/>
19 </bean>
20 <bean id=” serverConnector ” c l a s s=
21 ” org . spr ingframework . jmx . support . ConnectorServerFactoryBean ”>
22 <property name=” s e r v i c e U r l ”
23 value=” s e r v i c e : j m x : r m i : / / 1 2 7 . 0 . 0 . 1 / j n d i /
24 rmi : / / 1 2 7 . 0 . 0 . 1 :3099 / Conf igurat ion ”/>
25 <property name=” s e r v e r ” r e f=”mbeanServer”/>
26 </bean>
27 < !−− BEANS to be exported −−>
28 <bean id=”JmxExporter” c l a s s=
29 ” org . spr ingframework . jmx . export . MBeanExporter”
30 lazy− i n i t=” f a l s e ”>
31 <property name=” beans ”>
32 <map>
33 <entry key=” protos . conf ig :name=SsnBean”
34 value−r e f=”SsnBean”/>
35 <entry key=” connector:name=Conf igurat ion ”
36 value−r e f=” serverConnector ”/>

135

B.2. Configuration settings

37 </map>
38 </ property>
39 <property name=” assembler ”>
40 <bean c l a s s=” org . springframework . jmx . export . assembler .
41 InterfaceBasedMBeanInfoAssembler ”>
42 <property name=” inter faceMappings ”>
43 <props>
44 <prop key=” protos . conf ig :name=SsnBean”>
45 pl . cy f r one t . v i r o l a b . protos . sn . i n t e r f a c e s . IConf igurat ionAPI
46 </prop>
47 </ props>
48 </ property>
49 </bean>
50 </ property>
51 <property name=” s e r v e r ” r e f=”mbeanServer”/>
52 </bean>
53 < !−− RMI app support s e c t i o n −−>
54 <bean id=”RmiExporter”
55 c l a s s=” org . spr ingframework . remoting . rmi . RmiServiceExporter ”>
56 <property name=” serviceName ” value=” StoragePeer ”/>
57 <property name=” s e r v i c e ” r e f=”SsnBean”/>
58 < !−− use same Reg i s t ry as f o r JMX −−>
59 <property name=” r e g i s t r y ” r e f=” r e g i s t r y ”/>
60 </bean>
61 < !−− App BEANS s e c t i o n −−>
62 <bean id=”RmiCommunicator”
63 c l a s s=” pl . cy f r one t . v i r o l a b . protos . sn . ssn . RMICommunicator”>
64 <property name=” core ”>
65 <r e f bean=”SsnBean”/>
66 </ property>
67 </bean>
68 <bean id=”SsnBean” c l a s s=” pl . cy f r one t . v i r o l a b . protos .
69 sn . ssn . impl . StorageSuperNode ”>
70 <property name=” prov ide r ”>
71 <bean c l a s s=
72 ” p l . cy f r one t . v i r o l a b . protos . sn . ssn . impl .
73 XMLConfigurationProvider ”>
74 <property name=”beanKey” value=”ssnBean”/>
75 <property name=” c las spathResource ” value=” beansConf ig . xml”/>
76 <property name=” f i l eSys temResource ”
77 value=” . / beansConf ig . xml”/>
78 <property name=” pre f e r r edResource ” value=”FILE SYSTEM”/>
79 <property name=” strategyClassName ” value=” pl . cy f r one t .
80 v i r o l a b . protos . c o n f i g . xstream . OneFi leStrategy ”/>
81 </bean>
82 </ property>
83 <property name=” s ta t eProv ide r ”>
84 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . p s to r e . l o c a l .

136

B.2. Configuration settings

85 L o c a l S e r i a l i z a b l e S t o r a g e ”>
86 <property name=” r e s o u r c e s ”>
87 <map>
88 <entry>
89 <key><value>CLASS PATH</ value></key>
90 <value>SsnState . s t a t e</ value>
91 </ entry>
92 <entry>
93 <key><value>FILESYSTEM</ value></key>
94 <value>. / SsnState . s t a t e</ value>
95 </ entry>
96 </map>
97 </ property>
98 <property name=” pre f e r r edResource ” value=”FILESYSTEM”/>
99 </bean>

100 </ property>
101 <property name=” r e c o n f i g u r a t i o n ” >
102 <bean c l a s s=” pl . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g .
103 Reconf igurat ionContext ”>
104 <property name=” r e c o n f i g u r a t o r ”>
105 <bean c l a s s=
106 ” p l . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . ba s i c .
107 Bas i cRecon f i gura to r ”>
108 <property name=” d e f a u l t C o l l e c t i o n ”>
109 <value>provenanceTests</ value>
110 </ property>
111 </bean>
112 </ property>
113 </bean>
114 </ property>
115 </bean>
116 </ beans>

Listing B.2. Node’s example compile-time configuration. Contains all beans necessary
for running full-blown Node application. All implementations used are reference ones

designed for testing usage.

Also in the case of Node compile-time configuration it is straight-forward, with
reference implementation used. RMI and JMX servers are configured to serve on
port 3099 (lines 11 and 23-24). Thus, parallel deployment of Node and Core on
one machine is possible. Also, in line 56 name of the service as exported by RMI is
configured. This will later be used for Core configuration.

B.2.2. Run-time configuration

Section presents full run-time configuration of PROToS components. Description
provided is brief, as full reference can be found in respective section A.

137

B.2. Configuration settings

Core at machine A

As presented on the listing B.1, run-time configuration of the Core application is
to be placed in the beanConfig.xml file found in application’s class path.
Listing B.3 presents run-time configuration of the Core running at machine A.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <beans>
3 <bean name=”dssBean”>
4 <pl . cy f r one t . v i r o l a b . protos . dss . impl . Conf igurat ionBean>
5 <r easonerFactoryClas s>
6 com . hp . hpl . j ena . r ea sone r . r u l e s y s . OWLMicroReasonerFactory
7 </ reasonerFactoryClas s>
8 <a l lMode l sUr l s>
9 <s t r i n g>

10 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−upper . owl
11 </ s t r i n g>
12 <s t r i n g>
13 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−geno2drs−protos . owl
14 </ s t r i n g>
15 <s t r i n g>
16 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−drs−protos . owl
17 </ s t r i n g>
18 </ a l lMode l sUr l s>
19 <experimentModelUrl>
20 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−exp−protos . owl
21 </ experimentModelUrl>
22 <al lDataModelsUr ls>
23 <s t r i n g>
24 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−data . owl
25 </ s t r i n g>
26 <s t r i n g>
27 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−data−protos . owl
28 </ s t r i n g>
29 </ al lDataModelsUr ls>
30 <storageNodesAddresses>
31 <s t r i n g>rmi :192 . 1 6 8 . 1 . 1 0 2 : 3099 :S to ragePee r</ s t r i n g>
32 <s t r i n g>rmi :192 . 1 6 8 . 1 . 1 0 3 : 3099 :S to ragePee r</ s t r i n g>
33 </ storageNodesAddresses>
34 </ p l . cy f r one t . v i r o l a b . protos . dss . impl . Conf igurat ionBean>
35 </bean>
36 </ beans>

Listing B.3. Run-time configuration of the Core application running on machine A.
Apart from ontology models to be used contains also addresses of Nodes constituting

distributed storage of the PROToS.

In lines 5-29 ontology properties are configured. For convenience, presented con-
figuration includes current experiment, data and domain models developed for the
ViroLab. Lines 31-32 are most important from deployment point of view. Those

138

B.2. Configuration settings

lines set up Nodes to be used in the PROToS distributed storage. As shown, Core
configuration is using service URLs as set in Node compile-time config.

Node at machine B

As presented on nth listing B.2, run-time configuration of the Node is to be stored
in the beansConfig.xml file from application’s folder in the file system.
Listing B.4 presents contents of the Node configuration file.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <beans>
3

4 <bean name=”ssnBean”>
5 <pl . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . Conf igurat ionBean>
6 <s to ragePeer sAddres se s>
7 <s t r i n g>e x i s t : : 1 9 2 . 1 6 8 . 1 . 1 0 1 : 2 0 0 8 0 : e x i s t /xmlrpc/db</ s t r i n g>
8 <s t r i n g>e x i s t : : 1 9 2 . 1 6 8 . 1 . 1 0 2 : 2 0 0 8 0 : e x i s t /xmlrpc/db</ s t r i n g>
9 </ s toragePeer sAddres se s>

10 <a l lMode l sUr l s>
11 <s t r i n g>
12 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−drs−protos . owl
13 </ s t r i n g>
14 <s t r i n g>
15 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−exp−protos . owl
16 </ s t r i n g>
17 <s t r i n g>
18 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−data . owl
19 </ s t r i n g>
20 <s t r i n g>
21 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−data−protos . owl
22 </ s t r i n g>
23 </ a l lMode l sUr l s>
24 <supportedUr is>
25 <s t r i n g>h t t p : //www. v i r o l a b . org /onto</s t r i ng >
26 </ supportedUris>
27 <inferenceMode> f a l s e</ inferenceMode>
28 </ p l . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . Conf igurat ionBean>
29 </bean>
30 </ beans>

Listing B.4. Run-time configuration of the Node application running on the machine
B. Contains addresses of the Peers running on machines A and B. Also domain models

assigned to this Node are configured.

Lines 7-8 configures peers part of the Node. Passed addresses contains all informa-
tion needed by Node’s logic - type of peer (pure eXist in this case), transport protocol
(exist’s native), URL (machines B and A) and exact service (XML:RPC managed
db). In lines 10-23 ontology model designated for this Node are configured. What
should be noted, only one domain model in assigned to this node - the vlom-drs-protos.
Experiment and data models are also present.

139

B.2. Configuration settings

Node at machine C

As in the previous example, this Node also uses beansConfig.xml file for storing
run-time configuration. Listing B.5 presents contents of this file.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <beans>
3

4 <bean name=”ssnBean”>
5 <pl . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . Conf igurat ionBean>
6 <s to ragePeer sAddres se s>
7 <s t r i n g>e x i s t : : 1 9 2 . 1 6 8 . 1 . 1 0 3 : 2 0 0 8 0 : e x i s t /xmlrpc/db</ s t r i n g>
8 </ s toragePeer sAddres se s>
9 <a l lMode l sUr l s>

10 <s t r i n g>
11 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−exp−protos . owl
12 </ s t r i n g>
13 <s t r i n g>
14 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−geno2drs−protos . owl
15 </ s t r i n g>
16 <s t r i n g>
17 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−data . owl
18 </ s t r i n g>
19 <s t r i n g>
20 h t t p : // v i r o l a b . cy f r one t . p l / onto /vlom−data−protos . owl
21 </ s t r i n g>
22 </ a l lMode l sUr l s>
23 <supportedUr is>
24 <s t r i n g>h t t p : //www. v i r o l a b . org /onto</s t r i ng >
25 </ supportedUris>
26 <inferenceMode> f a l s e</ inferenceMode>
27 </ p l . cy f r one t . v i r o l a b . protos . sn . ssn . c o n f i g . Conf igurat ionBean>
28 </bean>
29 </ beans>

Listing B.5. Run-time configuration of the Node application running on the machine
C. Contains configuration of domain models and Peer designated for this Node.

In line 7 one Peer is configured. Lines 9-22 configures ontology models used. Again,
only one domain model is assigned, but this time it is the vlom-geno2drs-protos. This
way, all domain models configured for the PROToS in listing B.3 are assigned to
adequate Nodes.

Peer

In the example, Peer component in implemented by the protos-sp-standalone
module. It wraps pure eXist instance, so service URLs used in previous listings begins
with exist type prefix.
Configuration of this type Peer is only compile-time, residing typically in file jetty.xml.
It is presented on listing B.6.

140

B.2. Configuration settings

1 <?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>
2 <WrapperConfig>
3 <Port>20080</Port>
4 <Port>8091</Port>
5 <WarPath>c l a s s p a t h : e x i s t . war</WarPath>
6 <ContextPath>/ e x i s t</ContextPath>
7 </WrapperConfig>

Listing B.6. Compile-time configuration of the Peer application based on the
sp-standalone implementation.

Lines 3-4 configures ports, where server will be listening for incoming connection.
First port - 20080 - is reckoned as primary and second one - 8091 - as backup. All
Node instances are configured to use primary Peer ports. Configuration allows for
adding as many ports as needed. Next line (5) selects eXist [9] instance to be run by
this Peer. In line 6 last important property is configured - context path where eXist
will be served. As presented on the listing B.5, context path is part of the service
name.

Appendix C

Administrator manual

Following manuals constitute guide for system’s Administrators, interested in using
PROToS provenance tracking system. Topics covered by manuals are:
• Prerequisites for PROToS - section C.1
• Obtaining PROToS - section C.2
• Building PROToS - section C.3
• Installing PROToS - section C.4
• Configuring PROToS - section C.5

Some aspects are covered in greater details in other sections. In those cases, refer-
ences to applicable pages are present.

C.1. Environment prerequisites

Successful build and installation of the PROToS system requires several other
components to be present in the target system. They are as follows:

• for the PROToS Core application
— Java Servlet 2.5 compliant container (only one is necessary), such as:

— Tomcat 6.0.14 - [5]
— Jetty 6 (lightweight solution) - [19]

• for all components and applications:
— Java JDK 6.0 - [16]
— Apache Maven 2.0.7 - [23]
— Apache Ant 1.7.0 - [1]

• environmental variables
— M2 HOME - Maven 2 installation directory
— M2 REPO - Maven 2 local artifact repository
— alter PATH variable to include Maven 2 and Ant binaries

142

C.2. Obtaining: package and source

Installation instruction for external software components could be found in respec-
tive manual pages, usually shipped with the software or available on the web.

C.2. Obtaining: package and source

C.2.1. Binary package

Binary distributions of the PROToS can be fetched from address: http://virolab.-
cyfronet.pl/trac/protos/downloads. Each release archive contains following directo-
ries:

• Core, with release WAR archive representing Core application
• SSN, containing runnable SSN JAR archive, run-time files (state persistence file

and configuration) and ANT run script
• SP, containing runnable SP-stand alone JAR along with ANT run script

C.2.2. Source package

PROToS system source code is managed by the Cyfronet’s GForge server [7].
To obtain full sources, one should download it from the server. Currently, only reg-
istered users of the Cyfronet’s Gforge are able to do this, by using PROToS SVN
repository. Using command line, one should enter following:

1 svn checkout −−username developername
2 https : // g f o rg e . cy f r one t . p l / svn/protosPROToS/ trunk /

Listing C.1. PROToS SVN checkout

C.3. Building from source

C.3.1. With ANT

PROToS is bundled with set of ANT scripts, helpful in building, deployment and
running of system components. This section shows how to build PROToS with usage
of those scripts.
Following steps are required:

1. Download current sources of the PROToS.
2. Navigate to the download folder/protos-core/protos-interfaces and run following

commands:

1 ant c lean−a l l
2 ant bui ld−a l l

Listing C.2. PROToS build all

This will clean build whole project and build WAR archive of the PROToS Core
application.

3. Navigate to the download folder/protos-core/protos-ssn folder and run command:

143

C.3. Building from source

1 ant bu i ld

Listing C.3. PROToS SSN build

Above command will build runnable JAR of the Node application.
4. Navigate to the download folder/protos-core/protos-sp/protos-sp-standalone folder

and run command:

1 ant bu i ld

Listing C.4. PROToS SP build

This will build runnable JAR of the Peer application, implemented by the SP-stand
alone PROToS component.

C.3.2. Without ANT

Following instruction shows how to build / install PROToS components without
using ANT scripts.

1. Download current sources of the PROToS.
2. Navigate to the download folder/protos-core and run following commands:

1 mvn c l ean
2 mvn i n s t a l l

Listing C.5. PROToS build

Above command should have built whole project class code. Now we could move
to building final archives of the PROToS components.

3. Navigate to the download folder/protos-core/protos-interfaces and run following
command:

1 mvn i n s t a l l war : war

Listing C.6. PROToS Interfaces build

This should have built the PROToS core - WAR archive in the download folder -
/protos-core/protos-interfaces/target folder. It is named protos-interfaces-current
version.war.

4. PROToS Storage Super Node is located in the download folder/protos-core/protos-ssn.
Because this component doesn’t need servlet container to run, it is distributed as
standard Java archive - JAR. It could be found in the target sub-folder, named
protos-ssn-current version.jar. Because of the library compatibility issues it is
strongly advised to use unpacked form with Java CLASS PATH set to a folder con-
taining all necessary JARs. Startup class is Bootstrap from package pl.cyfronet.-
virolab.protos.sn.ssn.bootstrap.

Installation tips:
• Maven option -Dmaven.test.skip=true could speed-up building process a bit.
• Another option is -o, which causes Maven to run in off-line mode is also useful.

144

C.4. Installation instructions

C.4. Installation instructions

C.4.1. From binaries with ANT support

Binaries with PROToS components contain also convenience ANT running scripts.
Following instructions apply to runnable JAR versions fetched as binaries.

• PROToS Core application
1. Navigate to the folder with WAR archive
2. Copy archive to the suitable servlet container’s application directory
3. Restart your servlet container (Tomcat users: shutdown and then startup).

• PROToS SSN application
1. Navigate to the folder where SSN content was copied
2. Enter command:

1 ant run

Listing C.7. PROToS SSN run

• PROToS SP application
1. Navigate to the folder where SP content was copied
2. Enter command:

1 ant run

Listing C.8. PROToS SP run

C.4.2. From source with ANT support

Bundled ANT scripts could also help in running PROToS components. Following
instructions apply to runnable JAR versions build from sources.

• PROToS Core application
1. Navigate to the download folder/protos-core/protos-interfaces folder
2. Enter command:

1 ant deploy

Listing C.9. PROToS Core deploy

3. Afterwards restart your servlet container (Tomcat users: shutdown and then
startup).

• PROToS SSN application
1. Navigate to the download folder/protos-core/protos-ssn folder
2. Enter command:

1 ant run

Listing C.10. PROToS SSN deploy

Above command will copy all necessary resources and start runnable JAR con-
taining SSN logic.

145

C.5. Sample configuration

• PROToS SP application
1. Navigate to the download folder/protos-core/protos-sp/protos-sp-standalone folder
2. Enter command:

1 ant run

Listing C.11. PROToS SP deploy

This will start SP instance using runnable JAR.

C.4.3. For source without ANT support

Following instructions apply to non-runnable JARs, build from sources.

• PROToS Core
1. Copy newly built WAR archive to the webapp folder of machine’s servlet con-

tainer - in the case of the Tomcat it would be webapps folder.
2. Restart your server (Tomcat users: shutdown and then startup). After restart

PROToS core should be up and running.
• PROToS Storage Super Node

1. Navigate to the folder with unpacked SSN. In case of the default, build folder
it would be the download folder/protos-core/protos-ssn/target

2. Run command:

1 java −cp { f o l d e r with dependency j a r s }
2 pl . cy f r one t . v i r o l a b . protos . sn . ssn . boots t rap . Bootstrap

Listing C.12. PROToS SSN run

SSN should be up and running.
• PROToS Storage Peer

— SP-standalone component
1. Navigate to the download folder/protos-core/protos-sp/protos-sp-standalone

folder
2. Enter command:

1 java −cp {SP j a r }
2 pl . cy f r one t . v i r o l a b . protos . sn . sp . s imple . ExistWrapper

Listing C.13. PROToS SP run

SP should be up and running.
— as stated in the architecture manual role of the SP could be fulfilled by any

software implementing the XML:DB interface, such as eXist [9]. Instructions
how to run chosen software could be found in its manual.

C.5. Sample configuration

Given distributed nature of the PROToS and it’s complexity, configuration is very
important and not easy task. Deep thorough guide for configuring running instances
of PROToS components is available in section A.

146

C.5. Sample configuration

For quick start up with PROToS, full exemplary configuration of PROToS instance
can be found in section B.2 and especially section’s XML listings.

Appendix D

User manual

PROToS entry-point application - the Core presents its external interfaces -
IDataGatering and IDataRetrieval as simple stateless Web Services. Therefore, access
to those services is possible with any WS client. Because current PROToS services are
built with XFire stack [47], all examples are based of the XFire client API. Additional
advantage coming from XFire usage is simplicity and as few technical details (SOAP,
WSDL) as possible.
Following external information is needed for provided test clients:
• application URL - in the example PROToS is deployed under protos-inter-

faces-1.0.0 name on localhost’s port 20090
• Interfaces definitions - coming from adequate packages and available in Maven

artifacts.

D.1. Storing data

Listing D.1 presents example WS client for the PROToS gathering interface.

1 package pl . cy f r one t . v i r o l a b . protos . example ;
2

3 import java . u t i l . Arrays ;
4

5 import org . apache . l o g 4 j . Logger ;
6 import org . codehaus . x f i r e . c l i e n t . XFireProxyFactory ;
7 import org . codehaus . x f i r e . s e r v i c e . S e r v i c e ;
8 import org . codehaus . x f i r e . s e r v i c e . b inding . ObjectServ iceFactory ;
9

10 import pl . cy f r one t . v i r o l a b . protos . common . Event ;
11 import pl . cy f r one t . v i r o l a b . protos . common . events . SimpleEvent ;
12 import pl . cy f r one t . v i r o l a b . protos . dge . i n t e r f a c e s . IDataGathering ;
13

148

D.1. Storing data

14 /∗∗
15 ∗ Test c l i e n t f o r PROToS WS gather ing i n t e r f a c e .
16 ∗
17 ∗ @author qba
18 ∗
19 ∗/
20 public class DgeWsTest {
21

22 private stat ic f ina l Logger l og =
23 Logger . getLogger (DgeWsTest . class) ;
24

25 private stat ic St r ing s e r v i c e =
26 ” http :// l o c a l h o s t :20090/ protos−i n t e r f a c e s −1.0.0/ DgeService ” ;
27

28 public stat ic void main (St r ing [] a rgs)
29 throws Exception {
30

31 // c r e a t e WS c l i e n t
32 S e r v i c e serv iceMode l = new
33 ObjectServ i ceFactory () . c r e a t e (IDataGathering . class) ;
34 IDataGathering dge = (IDataGathering)new
35 XFireProxyFactory () . c r e a t e (serv iceModel , s e r v i c e) ;
36 Class c l a z z =
37 cy f r one t . v i r o l a b . geno2drs . Nucleot ideSequenceSubtyping . class ;
38

39 // prepare example data
40 Event event = new SimpleEvent () ;
41 event . getOntologyComponents () . add (
42 ” http ://www. v i r o l a b . org / onto /
43 geno2drs−protos / Nucleot ideSequenceSubtyping ”) ;
44 event . setEventClass (c l a z z . getCanonicalName ()) ;
45 event . getDatatypePropert i e s () . put (”ID” , Arrays . a s L i s t (
46 new St r ing [] {” http :// i n d i v i d u a l . id ” })) ;
47

48 // and execute
49 dge . s toreEvent (event) ;
50 l og . i n f o (”Event sent without problems . ”) ;
51 // no except ion s h a l l be thrown
52 }
53 }

Listing D.1. Example PROToS data storage client. It uses WebService interface and
is based on XFire framework. Stores event from the geno2drs domain ontology.

Client starts by initializing standard, XFire WS client, created from Java interface
definition of the IDataGathering (lines 31- 34 of the listing). Next, in lines 35-36
actual class of the PROToS event is taken. In lines 39-44 new event is instantiated and
initialized. Example use convenience class - SimpleEvent, with attributes collections

149

D.2. Retrieving data

and options already set. Line 47 executes call on remote PROToS interface, finishing
the data storage sequence.

D.2. Retrieving data

Listing D.2 presents example WS client used for retrieving data from the PROToS
system.

1 package pl . cy f r one t . v i r o l a b . protos . example ;
2

3 import org . apache . l o g 4 j . Logger ;
4 import org . codehaus . x f i r e . c l i e n t . XFireProxyFactory ;
5 import org . codehaus . x f i r e . s e r v i c e . S e r v i c e ;
6 import org . codehaus . x f i r e . s e r v i c e . b inding . ObjectServ iceFactory ;
7

8 import pl . cy f r one t . v i r o l a b . protos . common . Query ;
9 import pl . cy f r one t . v i r o l a b . protos . common . QueryResult ;

10 import pl . cy f r one t . v i r o l a b . protos . common . q u e r i e s . SimpleXQuery ;
11 import pl . cy f r one t . v i r o l a b . protos . dre . i n t e r f a c e s . IDataRetr i eva l ;
12

13 /∗∗
14 ∗ Test c l i e n t f o r PROToS WS r e t r i e v a l i n t e r f a c e .
15 ∗
16 ∗ @author qba
17 ∗
18 ∗/
19 public class DreWsTest {
20

21 private stat ic f ina l Logger l og =
22 Logger . getLogger (DreWsTest . class) ;
23 private stat ic St r ing s e r v i c e = ” http :// v i r o l a b . cy f r one t . p l ”+
24 ” :20090/ protos−i n t e r f a c e s −1.0.0/ DreServ ice ” ;
25

26 private stat ic St r ing query =
27 ” d e c l a r e namespace j .0=\” http ://www. v i r o l a b . org / onto / t e s t 1 /\”+
28 ” ; d e c l a r e namespace rd f=\” http ://www. w3 . org /1999/02/22− rdf−”+
29 ” syntax−ns #\”; f o r $ rd f in // rd f :RDF[j . 0 : t e s t 1] ”+
30 ” return $rd f ” ;
31

32 public stat ic void main (St r ing [] a rgs)
33 throws Exception {
34

35 // prepare c l i e n t
36 S e r v i c e serv iceMode l = new
37 ObjectServ i ceFactory () . c r e a t e (IDataRetr i eva l . class) ;
38 IDataRetr i eva l dre = (IDataRetr i eva l)new
39 XFireProxyFactory () . c r e a t e (serv iceModel , s e r v i c e) ;
40

41 // prepare query

150

D.2. Retrieving data

42 Query query = new SimpleXQuery () ;
43 query . setQuery (DreWsTest . query) ;
44

45 // execute and r e t r i e v e r e s u l t
46 QueryResult r e s u l t = dre . executeQuery (query) ;
47 l og . i n f o (”Got re sponse : ”) ;
48 l og . i n f o (r e s u l t . getHolder () . ge tResu l t ()) ;
49 }
50 }

Listing D.2. Example PROToS data retrieval client. Makes use of WebService
interfaces and is based on XFire framework. Query send is of type simple and written

in XQuery language.

In lines 26-30 of the listing D.2 XQuery string is declared. It is simple query
retrieving all individuals named test1 from adequate namespace. Client execution
code starts in lines 36-39, where WS endpoint is instantiated and initialized. Next,
in lines 42-43 query holder is prepared with predefined XQuery string. Example uses
convenience SimpleXQuery class, defining language and type used. In line 46 execution
of remote method commences. Finally, lines 47-48 logs obtained query result, extracted
from QueryResult instance.

List of Figures

2.1 Conceptual layers of the ViroLab virtual laboratory. Figure does not reflect
real, complex architecture of the VLvl, but rather presents how components are
grouped. 13

2.2 Typical Grid system architecture virtual tiers. This is rather virtual model
presenting which components should be present in a Grid system and they
should be grouped. 19

4.1 Environment of the PROToS. Figure includes all external components of the
virtual laboratory, cooperating in tracking of provenance data. Most important
omponents are Monitoring - feeding PROToS with data and Presentation -
processing provenance queries. 29

5.1 Example PROToS ontology models. Diagram contains example for each group
- data, domain and experiment. Also, model’s concepts are linked by object
properties and inheritance relation. 34

5.2 Example three-level storage hierarchy of the PROToS. Storage depicted consists
of one root, two nodes and five peers creating tree-like structure. 35

5.3 Proposed PROToS architecture as UML component diagram. Diagram depicts
core components - applications and sub-components encapsulating particular
functionalities. Also, main interfaces are presented, with IDataGatehring and
IDataRetrieval constituting system’s external interface. 36

5.4 DRE component Use Case UML diagram. Figure presents core use cases, bound
to DREs functionalities. 38

5.5 DGE component Use Case UML diagram. Figure depicts core component’s
functionalities. 39

5.6 PROToS core application Use Case UML diagram. Diagram presents
configuration functionalities of the component. 40

5.7 PROToS node application Use Case UML diagram. Diagram depicts
configuration functionalities of the application component. 41

5.8 Hierarchy of PROToS modules as defined in Maven2 POMs. Diagram includes
only inheritance relation between modules, defining branches in module tree.
Dependencies are shown on other diagrams. 43

5.9 Interdependencies in PROToS modules hierarchy. Dependencies are transitive,
hence only direct dependencies are depicted. 45

152

List of Figures

6.1 UML class diagram of DRE’s core interfaces. Diagram models behaviour of the
component in main three aspects: configuration attributes, configuration model
and retrieval functionality. Also, reference implementation of DRE is shown. . . 47

6.2 DRE implementation as UML class diagram. Diagram presents particulars
of reference implementation (apart from core interface’s methods) along with
configuration-specific classes - property holder and provider. 48

6.3 UML class diagram depicting DRE’s utilities. Classes are partitioned on three
functional groups: query handlers, query validators and result formatters. Each
group - interface and implementations is encapsulated in separate package. . . . 49

6.4 External dependencies of the PROToS DRE component. Depicted one -
spring-context - is used for tight integration with Spring’s lifecycle. 49

6.5 DGE interfaces on UML class diagram. Interfaces represent core functionalities:
configuration setting, configuration management and data gathering. Reference
implementation facade of the component is also depicted. 50

6.6 DGE implementation UML class diagram. Reference implementation along
with configuration utilities (attribute holder, provider) are presented. Also,
non-interface methods and attributes of the component are shown. 51

6.7 UML class diagram of DGE’s utilities, handling two important responsibilities
of the component: validating and handling incoming events. Each utility group
is encapsulated in a separate package. 52

6.8 External dependencies of the PROToS DGE component. Diagram include
spring-context for Spring’s Lifecycle interface and Jena ontology framework. . . 53

6.9 DSS essential interfaces as UML class diagram. Apart from reference
implementation, behaviour in following aspects is modelled: common
configuration attributes, ontology configuration attributes, configuration
management, ontology management and distributed storage communication. . . 54

6.10 UML class diagram of DSS reference implementation. Particulars of facade
implementation are shown along with configuration data holder and suitable
configuration provider. 55

6.11 UML class diagram of DSS component’s utilities. Classes presented include very
important Nodes database (interface and reference implementation) and node
reference management. The latter is build around Abstract Factory pattern,
including core AbstractNodeReferenceFactory and interface for factories
handling particular protocols. Also, reference implementation of factory for
RMI is depicted. 56

6.12 PROToS DSS external dependencies component diagram. Diagram includes
Jena ontology framework and Spring lifecycle integration. 57

6.13 Storage Node interfaces as UML class diagram. Interfaces model behaviour
in following aspects: configuration properties and management, ontology
management, storage and querying functionalities. Also, diagram presents
two Node facades: full as used by the DSS component and communicator as
presented to other components. 58

6.14 SSN implementation as UML class diagram. Diagram contains reference
implementation of the full facade interface with its non-interface properties.
Also, critical implementation groups - Configurables and State are presented. . . 59

153

List of Figures

6.15 UML class diagram of the SSN reconfiguration model. Model is based on
Strategy design pattern and consists of following: ReconfigurationContext
defining common algorithm steps and IReconfigurator interface, defining
algorithm’s particulars. Also, SSN configuration holder and configurables are
part of the model. 61

6.16 PROToS SSN external dependencies as UML component diagram. Diagram
includes Spring’s lifecycle integration, Jena ontology framework and XML:DB
communication library. 62

6.17 SP API interfaces as UML class diagram. API consists of interface defining
configuration behaviour and facade to be implemented by all SP components.
Facade is provided in case another aspects of SP behaviour were introduced. . . 64

6.18 SP stand-alone reference implementation on UML class diagram. Diagram
includes main eXist wrapping class along with associated IConfigurator. Also,
reference configurator implementation, based on XML files, is provided. 65

6.19 PROToS SP external dependencies as UML component diagram. Diagram
includes two jetty components responsible for providing servlet container for
eXist and XML JDOM library. 66

6.20 UML class diagram of PROToS common data model. This include classes
for representing provenance events, provenance-mining queries and query
results. Model is prepared to fit requirements of Web Services and RMI-type
communications. 67

6.21 Common data model helper classes and enumerations at UML class diagram.
Helpers includes options defined for queries and events. Enumerations includes
for example query languages and event types supported. 68

6.22 Current annotated data model on UML class diagram. Model defines
annotations representing all needed ontology particulars: OWL class, datatype
property, object property and individual id. Also, required feature used for
validation purposes is included. 70

6.23 UML class diagram of common data model utilities. Most important classes
from this group handles processing and handling of annotated provenance events. 71

6.24 PROToS Data external dependencies as UML component diagram. Diagram
includes only commons-beanutils package. 72

6.25 WebService communicators on UML class diagram. Communicators implement
external interfaces - IDataGathering and IDataRetrieval and delegate
functionality to adequate components (implementation properties). 72

6.26 PROToS interface external dependencies on UML component diagram. Diagram
includes Spring’s integration, XFire WebService framework, and JDOM for
XML processing. Also, geno2drs events are provided for testing purposes. 73

6.27 Config component core classes on UML class diagram. Model consists of main
configuration manager interface IConfiguartionProvider along with reference
implementation - GenericXMLProvider and its helper classes. 74

6.28 PROToS Config external dependencies as UML component diagram. Most
important dependency is xstream component, responsible for object to XML
mapping. 75

6.29 PROToS onts module core on UML class diagram. Model includes ontology
databases, utility for checking ontology db state and Abstract Factory - based
ontology model reference retriever. 76

154

List of Figures

6.30 UML class diagram of onts core reference implementation. Diagram includes
factories for ontology models accessible by HTTP protocol and class path. . . . 77

6.31 PROToS onts common data model utilities as UML class diagram. Depicted
classes provides conversion from common data model (events) to Jena ontology
model (Individual, OntModel classes). Only annotated events are processed by
these converters. 78

6.32 PROToS Onts external dependencies as UML component diagram. Apart from
typical Jena and JDOM components, experiment and geno2drs event libraries
are provided for testing purposes. 79

6.33 P-store core classes on UML class diagram. Diagram consists of main interface
- IStorageProvider, reference implementation - LocalSerializableStorage and
common helper classes. 80

6.34 PROToS P-store external dependencies as UML component diagram. Diagram
includes standard JDOM for XML processing and ws-common-util component
for Base64 encoding. 81

6.35 PROToS Xmldb endpoint model as UML class diagram. Diagram consists
of classes representing endpoint and Abstract Factory based loaders. Also,
reference implementation of factory - DefaultEndpointFactory - is presented. . . 82

6.36 PROToS xmldb services model as UML class diagram. Diagram includes
common model in form of IExecutor, AbstractQuery and ServiceType along
with implementations for XQuery and XUpdate languages. 83

6.37 Simplified UML class diagram of the PROToS Xmldb model for XUpdate.
Model allows for creating any XUpdate queries supported by specification. . . . 84

6.38 PROToS XML:DB module external dependencies as UML component diagram.
Model includes JDOM for XML processing and xmldb-api for communication
with XML:DB endpoints. 85

7.1 Ontology models currently deployed in the ViroLab virtual laboratory. Diagram
includes experiment, data and domain specific models, along with special model
- upper. Presented models are tightly integrated by multiple inheritance and
object property relations. 90

7.2 Overview of QUaTRO GUI. GUI consists of three main parts: query tree,
storage and result view. First panel allows for defining mining queries, using
ontologies, data entities and operators. Second one is responsible for managing
persistent query storage. Last part presents retrieved query results. 92

7.3 Sample query constructed with usage of QUaTRO GUI. Query consists of three
concepts, connected by object properties and one datatype property (id) using
arithmetic operator. 94

7.4 Deployment diagram of the PROToS, prepared for preliminary performance
testing. 96

7.5 Results of the DRE performance testing for three typical queries of different
complexity. Tests were performed using PROToS deployment configuration as
presented earlier. 97

A.1 Example dependency injection container in work. First layer of the
diagram presents dependencies between interfaces used in application and
available implementations. Middle layer models DI container, using provided
configuration to wire application’s components. Third layer depicts application
in run-time. 106

155

A.2 Model of the example configuration-enabled stateful component. It consists of
one ’Bean’ interface, defining configuration attributes and one ’API’ interface,
defining configuration management behaviour. 107

A.3 Example screen of Console connected to the remote SSN component. As
depicted, all configuration attributes and methods are described and available. . 113

A.4 PROToS DSS component configuration model. Model is composed of two Bean
interfaces - for common and ontology configuration along with one standard
API interface. 119

A.5 PROToS DRE component configuration model. Model consists of two interfaces
- bean-type and API-type. The latter is common one, shared by all PROToS
stateful components. 122

A.6 PROToS DGE component configuration model, composed of IConfigurationBean
(defining configuration properties) and common ICnfiguration (defining
management behaviour). 125

A.7 PROToS SSN component configuration model. Model is composed of
IConfigurationBean interface, defining configuration properties of the SSN and
common IConfigurationAPI interface. 128

B.1 PROToS example UML deployment diagram. Diagram presents PROToS with
distributed storage composed of two Node and three Peer applications. All
components are deployed on three physical machines in a way yielding best
performance. 130

Listings

A.1 Example component configuration. Represents config provider for the SSN
component instance. 108

A.2 Example output of the XStream Java to XML streamer. Presents SSN
ConfigurationBean instance in XML. 109

A.3 Example configuration of the MBean server instance. Sets up factory class
to be used along with some configuration properties. 110

A.4 Configuration of the factory for JMX ConnectorServer’s. Sets up adequate
class and bunch of required properties. 110

A.5 Example configuration of the MBean Exporter bean. Configures class serving
functionality and sets up MBean Server that should be used. 111

A.6 Configuration of JMX-enabled component’s export. Uses previously
described Exporter bean and new Assembler component. The latter
configures which interfaces of JMX beans shall be externally accessible. . . . 111

A.7 Common configuration of the Core application. Contains only application
specific beans without logic serving components. Also already described
JMX beans are omitted. 114

A.8 Example configuration of the Node application. Contains only application’s
configuration. Beans constituting application’s logic and JMX configuration
are omitted. 116

A.9 Example compile-time configuration of the DSS Bean used in the Core
application. Sets up implementation class along with critical properties as
nodes and ontology databases. 117

A.10 Example DRE Bean’s compile-time configuration. Sets up implementation of
the IDataGathering interface along with implementation-specific properties. . 120

A.11 DGE Bean’s compile-time configuration example. Sets up reference
implementation of the IDataRetrieval interface along with implementation’s
specific properties. 123

A.12 Example compile-time configuration of the SSN Bean coming from the
Node application. Configures usage of reference implementation along with
required properties. Most important property is reconfiguration algorithm to
be used. 126

B.1 Example compile-time configuration of the Core application. This
configuration is full containing all beans required for application to run. All
implementation used for configuring application are reference ones used for
testing purposes. 130

157

Listings

B.2 Node’s example compile-time configuration. Contains all beans necessary for
running full-blown Node application. All implementations used are reference
ones designed for testing usage. 135

B.3 Run-time configuration of the Core application running on machine A.
Apart from ontology models to be used contains also addresses of Nodes
constituting distributed storage of the PROToS. 138

B.4 Run-time configuration of the Node application running on the machine B.
Contains addresses of the Peers running on machines A and B. Also domain
models assigned to this Node are configured. 139

B.5 Run-time configuration of the Node application running on the machine C.
Contains configuration of domain models and Peer designated for this Node. . 140

B.6 Compile-time configuration of the Peer application based on the sp-standalone
implementation. 140

C.1 PROToS SVN checkout . 143
C.2 PROToS build all . 143
C.3 PROToS SSN build . 144
C.4 PROToS SP build . 144
C.5 PROToS build . 144
C.6 PROToS Interfaces build . 144
C.7 PROToS SSN run . 145
C.8 PROToS SP run . 145
C.9 PROToS Core deploy . 145
C.10 PROToS SSN deploy . 145
C.11 PROToS SP deploy . 146
C.12 PROToS SSN run . 146
C.13 PROToS SP run . 146
D.1 Example PROToS data storage client. It uses WebService interface and is

based on XFire framework. Stores event from the geno2drs domain ontology. 148
D.2 Example PROToS data retrieval client. Makes use of WebService interfaces

and is based on XFire framework. Query send is of type simple and written
in XQuery language. 150

List of Tables

5.1 PROToS dictionary . 32

159

List of Tables

Publications

1. Balis B., Bubak M.,Pelczar M., Wach J.:Provenance querying for end-users: A drug
resistance case study. Bubak M.,Albada G.D. van, Dongarra J., Sloot P.M.A.,
editors, ICCS(3),vol 5103 of Lecture Notes in Computer Science, pages 80-89.
Springer,2008.

2. Balis B., Bubak M., Pelczar M., Wach J.: Provenance tracking and quering in
ViroLab. Cracow’07 Grid Workshop, pages 71-76. ACC Cyfronet AGH, 2008.

3. Balis B., Bubak M., Pelczar M., Wach J.: Provenance tracking and querying in the
ViroLab virtual laboratory. CCGRID, pages 675-680. IEEE Computer Society,
2008.

4. Balis B., Bubak M., Wach J.: User-oriented querying over repositories of data
and provenance. E-SCIENCE ’07: Proceedings of the Third IEEE International
Conference on e-Science and Grid Computing, pages 187-194, Washington, DC,
USA, 2007. IEEE Computer Society.

5. Balis B., Bubak M., Wach J.:P rovenance tracking in the ViroLab virtual labora-
tory. Lecture Notes i nComputer Science, Parallel Processing and Applied Math-
ematics: 7th International Conference, PPAM2007, pages 50-60. Springer,2008.

160

	Abstract
	Chapter 1. Introduction
	Motivation
	Objectives
	Organization of this document

	Chapter 2. Background
	Virtual laboratories
	ViroLab
	Introduction
	Virtual Laboratory
	Virtual Laboratory Applications

	Provenance
	Definition
	Possible applications of provenance in virtual laboratories

	Grid computing

	Chapter 3. Overview of provenance systems
	Existing provenance systems
	Discussion

	Chapter 4. Requirements specification for provenance sub-system
	Requirements
	Preliminary assumptions
	System's environment overview

	Chapter 5. PROToS architecture
	Dictionary
	Core concepts
	Architecture overview
	PROToS Use Cases
	DRE component
	DGE component
	Core application
	Node application

	Project organization
	Maven introduction
	PROToS modules

	Chapter 6. PROToS design and implementation
	Modules detailed design
	Conventions
	Protos-dre component
	Protos-dge component
	Protos-dss component
	Protos-ssn component
	Protos-sp component
	Protos-data component
	Protos-interfaces component
	Protos-config component
	Protos-onts component
	Protos-pstore component
	Protos-xmldb component

	Technologies used
	Stadards applied
	Solutions used

	Chapter 7. Feasibility study
	Ontologies for the provenance system
	Provenance usage
	QUery TRanslation tOols - QUaTRO
	Introduction
	Overview
	Query construction

	Sample scenarios
	Drug Resistance

	Performance evaluation

	Chapter 8. Conclusions and future work
	Bibliography
	Appendix A. System configuration
	Compile-time
	Run-time
	XML configuration files
	Remote configuration by JMX

	Detailed system configuration
	PROToS Core application
	PROToS Node application
	DSS component
	DRE component
	DGE component
	SSN component

	Appendix B. Sample deployment
	Physical component layout
	Configuration settings
	Compile-time configuration
	Run-time configuration

	Appendix C. Administrator manual
	Environment prerequisites
	Obtaining: package and source
	Binary package
	Source package

	Building from source
	With ANT
	Without ANT

	Installation instructions
	From binaries with ANT support
	From source with ANT support
	For source without ANT support

	Sample configuration

	Appendix D. User manual
	Storing data
	Retrieving data

	List of Figures
	List of Tables

