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Abstract. This paper introduces a cost optimization model for scien-
tific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We
assume multiple IaaS clouds with heterogeneous VM instances, with lim-
ited number of instances per cloud and hourly billing. Input and output
data are stored on a Cloud Object Store such as Amazon S3. Applica-
tions are scientific workflows modeled as DAGs as in the Pegasus Work-
flow Management System. We assume that tasks in the workflows are
grouped into levels of identical tasks. Our model is specified in AMPL
modeling language and allows us to minimize the cost of workflow exe-
cution under deadline constraints. We present results obtained using our
model and the benchmark workflows representing real scientific applica-
tions such as Montage, Epigenomics, LIGO. We indicate how this model
can be used for scenarios that require resource planning for scientific
workflows and their ensembles.
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1 Introduction

Nowadays, science requires processing of large amounts of data and use of hosted
services for compute-intensive tasks [1]. Cloud services are used not only to
provide resources, but also for hosting scientific datasets, as in the case of AWS
public datasets [2]. Scientific applications that run on these clouds have often
the structure of workflows or workflow ensembles that are groups of inter-related
workflows [3]. Infrastructure as a Service (IaaS) cloud providers offer services,
where virtual machine instances differ by performance and price [4]. Planning



scientific experiments requires optimization decisions that take into account both
execution time and cost.

Research presented in this paper can be seen as a step towards developing a cloud
resource calculator for scientific applications in the hosted science model [1].
Specifically, we address the cost optimization problem of large-scale scientific
workflows running on multiple heterogeneous clouds, using mathematical mod-
eling with AMPL [5] and mixed integer programming. This approach allows
to describe the model mathematically and use a set of available optimization
solvers. On the other hand, an attempt to apply this method to the general
problem of scheduling large-scale workflows on heterogeneous cloud resources
would be impractical due to the problem complexity, therefore simplified models
need to be developed. In our previous work [6], we used a similar technique to
solve the problem where the application consists of tasks that are either identical
or vary in size within a small range. As observed in [7] and [8], large-scale sci-
entific workflows often consist of multiple parallel stages or levels, each of which
has a structure of bag of tasks, i.e. the tasks in each level are similar. In the case
of large workflows, when the number of tasks in the level is high, it becomes
more practical to optimize the execution of the whole level instead of looking
at each task individually, as many scheduling algorithms do [9]. Therefore, in
this paper, we extend our model to deal with applications that are workflows
represented as DAGs consisting of levels or layers of uniform tasks.

After outlining the related work in Section 2, we introduce the application and
infrastructure model in Section 3. In Section 4 we provide the problem formu-
lation in AMPL. Section 5 describes the evaluation of our model on a set of
benchmark workflows, while Section 6 gives conclusions and future work.

2 Related work

Our work is related to heuristic algorithms for workflow scheduling on IaaS
clouds, such as the ones described in [10,9,11,12]. Our infrastructure model differs
in that we assume multiple heterogeneous clouds with object storage attached to
them, instead of individual machines with peer-to-peer data transfers between
them. Instead of scheduling each task individually, our approach proposes a
global optimization of placement of workflow tasks and data.

The deadline-constrained cost optimization of scientific workloads on hetero-
geneous IaaS described in [13] addresses multiple providers and data transfers
between them, where the application is a bag of tasks. The global cost minimiza-
tion problem on clouds, addressed in [14] focuses on data transfer costs and does
not address workflows. Other approaches presented in [15] and [16] consider un-
predictable dynamic workloads on IaaS clouds and optimize the objectives such
as cost, runtime or utility function by autoscaling the resource pool at runtime.



Pipelined workflows consisting of stages are addressed in [17], where the pro-
cessing model is a data flow and multitple instances of the same workflow are
executed on the same set of cloud resources. Our work is different in that our
goal is cost optimization instead of meeting the QoS constraints.

3 Application and infrastructure model

Fig. 1: Example application struc-
ture

We assume that a workflow is divided into
several levels (layers) that can be executed
sequentially and tasks within one level do
not depend on each other (see Fig. 1). Each
layer represents a bag of tasks that can
be partitioned in several groups (e.g. ap-
plication A, B, etc.) that share computa-
tional cost and input/output size. We as-
sume that only one task group is executed
on a specific cloud instance (VM). This for-
bids instance sharing between multiple lay-
ers, which means that each application needs
its own specific VM template.

Similarly as in [6], we assume multiple het-
erogeneous cloud IaaS infrastructures such
as Amazon EC2, RackSpace or ElasticHosts.
Clouds have heterogeneous VM instance
types, with limits on the number of instances
per cloud, e.g. 20 for EC2, 15 for RackSpace,
etc. Input and output data are stored on Cloud Object Store such as Amazon
S3 or RackSpace CloudFiles. In our model, all VM instances are billed per hour
of usage, and there are fees for data transfers. In the model we can also have a
private cloud where costs are set to 0.

4 Problem formulation using AMPL

To perform optimization of the total cost, Mixed Integer Problem (MIP) is for-
mulated and implemented in A Mathematical Programming Language (AMPL) [5].
AMPL requires us to specify input data sets and variables to define the search
space, as well as constraints and objective function to be optimized.

Input data The formulation requires the following input sets, which represent
the infrastructure model, in a similar way as we approached the problem in [6]:



– S = {s3, cloudfiles} – defines available cloud storage sites,
– P = {amazon, rackspace, . . . } – defines possible computing cloud providers,
– I = {m1.small, . . . , gg.1gb, . . . } – defines instance types,
– PIp ⊂ I – instances that belong to provider Pp,
– LSs ⊂ P – compute cloud providers that are local to storage platform Ss.

Each instance type Ii is described by the following parameters:

– pIi – fee in $ for running instance Ii for one hour,
– ccui – performance of instance in CloudHarmony Compute Units (CCU) [18],
– pIouti and pIini – price for non-local data transfer to and from the instance,

in $ per MiB (1 MiB = 1024 ∗ 1024 Bytes)

Storage sites are characterized by:

– pSout
s and pSin

s characterize price in $ per MiB for non local data transfer.

Additionally we need to provide data transfer rates in MiB per second between
storage and instances by defining function ri,s > 0 .

Our application model is different from the one in [6] because it groups tasks
into layers:

– L – set of layers,
– G – set of tasks groups,
– Gl – set of tasks groups belonging to layer l,
– Atot

t – number of tasks in group t,
– txt – execution time in hours of a single task of group t on 1 CCU machine,
– dint and doutt – data size for input and output of one task t in MiB,
– pR – price per request for queuing service, such as Amazon SQS, required

to execute a single task,
– tD – total time for completing workflow (deadline).

Auxiliary parameters A set of precomputed parameters, which are derived from
the main input parameters of the model includes:

– tneti,s = din+dout

ri,s·3600 – transfer time: time for data transfer between Ii and Ss,

– tui,s = tx

ccui
+ tneti,s – unit time: time for processing a task on instance Ii using

storage Ss that includes computing and data transfer time (in hours),
– cTi,s = (dout · (pIouti + pSin

s ) + din · (pSout
s + pIini )) – cost of data transfer

between instance Ii and storage Ss,
– Iidxi – set of possible instance Ii indexes (from 0 to nImax

i − 1).



Variables Variables that will be optimized and define the solution space are:

– At,i,x – binary, 1 iif (if and only if) instance Ii with index x is launched to
process task group Gt, otherwise 0;

– Ht,i,x – int, for how many hours is instance launched;
– Tt,i,x – int, how many tasks of Gt are processed on that instance,
– Dt

l – actual computation time for Ll,
– Dl – int, maximal number of hours that instances are allowed to run in Ll.

Objectives Cost of running one task including instance and transfer cost is:

(
tnet + tu

)
· pI + din ·

(
pSout + pIin

)
+ dout ·

(
pIout + pSin

)
+ pR, (1)

while the objective function represents the total cost of running multiple tasks
of the application on the cloud infrastructure is defined as:

minimize
total cost

∑
t∈G,i∈I,x∈Iidx

i

((pIi ∗Ht,i,x + pR + cTi,s) ∗ Tt,i,x),
(2)

subject to the constraints:

1.
∑

l∈L Dl ≤ tD ensures that workflow finishes in the given deadline,
2. to fix that D = dDte we require that: ∀l∈LDt

l ≤ Dl ≤ Dt
l + 1,

3. ∀t∈G,i∈I,x∈Iidx
i

At,i,x ≤ Ht,i,x ≤ At,i,x · tD ensures that H may be allocated
only iif A is 1,

4. ∀t∈G,i∈I,x∈Iidx
i

At,i,x ≤ Tt,i,xAt,i,x ·Atot
t ensures that T may be allocated only

iif A is 1,
5. ∀t∈G,i∈I,x∈Iidx

i
Ht,i,x ≤ Dl enforces layer deadline on instances runtime,

6. ∀l∈L,t∈Gl,i∈I,x∈Iidx
i

Tt,i,x · tut,i,s ≤ Dt
l enforces that a layer finishes work in Dt,

7. to make sure that all the instances run for enough time to process all tasks
allocated to them we require: ∀t∈G,i∈I,x∈Iidx

i
Tt,i,x ·tut,i,s ≤ Ht,i,xTt,i,x ·tut,i,s+1,

wich adjusts H respectively to T ,
8. ∀t∈G

∑
i∈I,x∈Iidx

i
Tt,i,x = Atot

t ensures that all tasks are processed,

9. To reject symmetric solutions, we add three constraints:
(a) ∀t∈G,i∈I,x∈{1..(nImax

i −1)}Ht,i,x ≤ Ht,i,x−1,

(b) ∀t∈G,i∈I,x∈{1..(nImax
i −1)}At,i,x ≤ At,i,x−1, and:

(c) ∀t∈G,i∈I,x∈{1..(nImax
i −1)}Tt,i,x ≤ Tt,i,x−1.

10. ∀l∈L,p∈P
∑

i∈PIp,t∈Gl,x∈Iidx
i

At,i,x ≤ nPmax
p enforces instance limits per cloud.



To keep this model in MIP class we had to take a different approach than in previ-
ous model, and schedule each virtual machine instance separately. The drawback
of this approach is that we need to increase the number of decision variables.
We also divided the search space by storage provider. Additionally, the deadline
becomes a variable with upper bound as it may happen that shorter deadline
may actually give a cheaper solution (see Fig. 3 and its discussion).

5 Evaluation

To evaluate our model on realistic data, we use CloudHarmony [18] bench-
marks to parameterize the infrastructure model, and we use the Workflow Gen-
erator Gallery workflows [7] as test applications. In the infrastructure model
we assumed that we have 4 public cloud providers (Amazon EC2, RackSpace,
GoGrid and ElasticHosts) and a private cloud with 0 cost. The infrastructure
has two storage services, S3 that is local to EC2 and CloudFiles that is local to
RackSpace, so data transfers between local compute and storage are free. We
tested our model with all applications from the gallery: Montage, CyberShake,
Epigenomics, LIGO and SIPHT for all available workflow sizes (from 50 to 1000
tasks per workflows, up to 5000 tasks in the case of SIPHT workflow). We varied
the deadline from 1 to 30 hours with 1-hour increment. We solve the problem
for two cases, depending on whether the data is stored on S3 or on CloudFiles.

Fig. 2 shows the example results obtained for the Epigenomics application and
workflows of two sizes (400 and 500 tasks). For longer deadlines the private cloud
instances and the cheapest RackSpace instances are used so the cost is low when
using CloudFiles. For shorter deadlines the cost grows rapidly, since we reach
the limit of 15 instances per cloud and additional instances must be spawned on
a different provider, making the transfer costs higher. This effect is amplified in
Fig. 2b, which differs from Fig. 2a not only by the number of tasks but also by
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Fig. 2: Result of the optimization procedure for the Epigenomics application.
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Fig. 3: Ratio of actual completion time to deadline for Epigenomics workflow
with 500 tasks.

the data size of one layer. This means that the transfer costs are growing more
rapidly, so it becomes more economical to store the data on Amazon EC2 that
provides more powerful instances required for short deadlines.

One interesting feature of our model is that for longer deadlines it can find the
cost-optimal solutions that have a shorter workflow completion time than the
requested deadline. This effect can be observed in Fig. 3 and is caused by the
fact that for long deadlines the simple solution is to run the application on a set
of the least expensive machines.

Figures 4a to 4d show results obtained for other workflows. These workflows are
relatively small and even for short deadlines the model is able to schedule tasks
on cheapest instances on a single cloud, thus resulting in flat characteristics.

To investigate how the model behaves for workflows with the same structure,
but with much longer run times of tasks, we run the optimization for Montage
workflow with tasks 1000× longer. This corresponds to the scenario where tasks
are in the order of hours instead of seconds. The sample results in Fig. 5a show
how the cost increases much steeply with shorter deadlines, illustrating the trade-
off between time and cost. The difference between Figs. 4c and 5a illustrates
that the model is more useful for workflows when tasks are of granularity that
is similar to the granularity of the (hourly) billing cycle of cloud providers.
Additionally, Fig. 5a shows how the optimal cost depends on the cloud available.

The run time of the optimization algorithm for workflows with up to 1000 tasks
ranges from few seconds up to 4 minutes using the CPLEX [19] solver running
on a server with 4 16-core 2.3 GHz AMD Opteron processors (model 6276), with
a limit set to 32 cores. Fig. 6a shows that the time becomes much higher for
shorter deadlines and increases for very long deadlines. This is correlated with
size of search space: the longer the deadline, the search space is larger, while
for shorter deadlines the problem has a very small set of acceptable solutions.
The problem becomes more severe for bigger and more complex workflows like
SIPHT as optimization time becomes very high (Fig. 6b).



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
o
s
t 
($ 

 )

Time limit (hours)

Amazon S3

Rackspace Cloud Files

Optimal

(a) CyberShake, 500 tasks

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  2  4  6  8  10  12  14

C
o
s
t 
($ 

 )

Time limit (hours)

Amazon S3

Rackspace Cloud Files

Optimal

(b) LIGO, 500 tasks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14

C
o
s
t 
($ 

 )

Time limit (hours)

Amazon S3

Rackspace Cloud Files

Optimal

(c) Montage, 500 tasks

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14

C
o
s
t 
($ 

 )

Time limit (hours)

Amazon S3

Rackspace Cloud Files

Optimal

(d) SIPHT, 5000 tasks

Fig. 4: Optimal cost found by the model for different applications.

Fig. 5b illustrates how the optimization time depends on MIP gap solver set-
ting [19]. Applying a relative MIP gap of 1% or 5% instead of default 0.01%
shortens optimization time in orders of magnitude. Increasing the MIP gap to
5% did not decrease the quality of the result noticeably: the minimum cost ob-
tained for the gap of 5% was higher only by 3.63% in the worst case.

6 Conclusions and future work

In this paper, we presented a cost optimization model for scientific workflows
executing on multiple heterogeneous clouds. The model, formulated in AMPL,
allows us to find the optimal assignment of workflow tasks, grouped into layers,
to cloud instances. We tested our model on a set of benchmark workflows and
we observed that it gives useful solutions in a reasonable amount of computing
time. By solving the model for multiple deadlines, we can produce trade-off
plots, showing how the cost depends on the deadline. We believe that such plots
are a step towards a scientific cloud workflow calculator, supporting resource
management decisions for both end-users and workflow-as-a-service providers.
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Fig. 5: Results obtained by the model for Montage 500 workflow with tasks run-
times artificailly multiplied by 1000 for different cloud infrastructures.
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Fig. 6: Solver execution wall time.

In future work we plan to apply this model to the problem of provisioning cloud
resources for workflow ensembles [3], where the optimization of cost can drive
the workflow admission decisions. We also plan to refine the model to better
support smaller workflows by reusing instances between layers, to fine-tune the
model, and to test different solver configurations to reduce the computing time.
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