Towards Real-Time Transaortic Pressure Gradient Computation

M. Hoeijmakers^{1,2*}, M. Rochette², M. Kasztelnik³, J. Weese⁴, D.R. Hose⁵, F.N. van de Vosse¹

¹Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. ²ANSYS Inc, Lyon, France. ³Academic Computer Centre Cyfronet, AGH University of Science and Technology, Kraków, Poland. ⁴Philips Research Laboratories, Hamburg, Germany. ⁵Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield.

* Correspondence: m.j.m.m.hoeijmakers@tue.nl. Eindhoven University of Technology, Postbus 513, 5600MB Eindhoven

1. Introduction

Recent developments in cardiac imaging and automatic segmentation allow for patient-specific three-dimensional computational fluid dynamics (CFD) models of the aortic valve [1,2]. However, 3D CFD models are compute intensive, often requiring minutes or hours to complete. The objective of this study is to reduce the parameterized 3D CFD simulations to a surrogate meta model.

2. Materials and Methods

Parameterized structured surface meshes of the aortic valve and left ventricle m(w) are constructed by:

$$m(w) = m_0 + \sum_{i=1}^{11} w_i m_i \quad w \in R^{11}$$
 (1)

With \boldsymbol{w} the weight vector, \boldsymbol{m}_i physically meaningful modes, and \boldsymbol{m}_0 a mean mesh. Surface meshes $\boldsymbol{m}(\boldsymbol{w})$ are truncated at the left ventricular outflow tract and converted to polyhedral meshes. Blood is modelled as an incompressible fluid with density $1060 \text{ kg} \cdot \text{m-3}$, dynamic viscosity of $0.004 \text{ Pa} \cdot \text{s}$ and the SST k- ω turbulence model for turbulence. A zeropressure outlet is considered. Simulations are performed on the ACC Cyfronet AGH Prometheus supercomputer with ANSYS Fluent (Release 18.2).

A simulation workflow is integrated with ANSYS DesignXplorer. A Central Composite Design (CCD) is used with parameters w_4 , w_6 and steady-state flow rate (Q). The net pressure gradient across the valve (Δp) and the meta model, $\Delta p_{\rm M}(w_4, w_6, Q)$, are computed. The metamodel is build with $2^{\rm nd}$ order polynomials.

3. Results

From figure 1 it is observed that w_4 and w_6 transition from a linear (5 L/min) to an exponential relationship (25 L/min). Figure 2

illustrates good agreement between $\Delta p_{M}(w_4, w_6, Q)$ and CFD results.

Figure 1: Response of Δp to w_4 and w_6 .

Figure 2: Difference between Δp_M and CFD. Left: for learning points. Right: for verification points.

4. Discussion and Conclusions

This study demonstrates that a meta model can replace full 3D CFD simulations of the aortic valve. Such meta models can be used to investigate parameter sensitivity.

5. References

- 1. Weese, J., et al., (2017). Med. Phys. 44(6)
- 2. Ecabert, O., et al., (2011). Med. Im. Anal. 15.

Acknowledgements:

This research was supported in part by PLGrid Infrastructure. The authors thank T. Gubała³, L. Flis³ and I. Waechter-Stehle⁴ for their support. Finally, the authors thank the European Research Council (Grant no: 689617) for financial support.