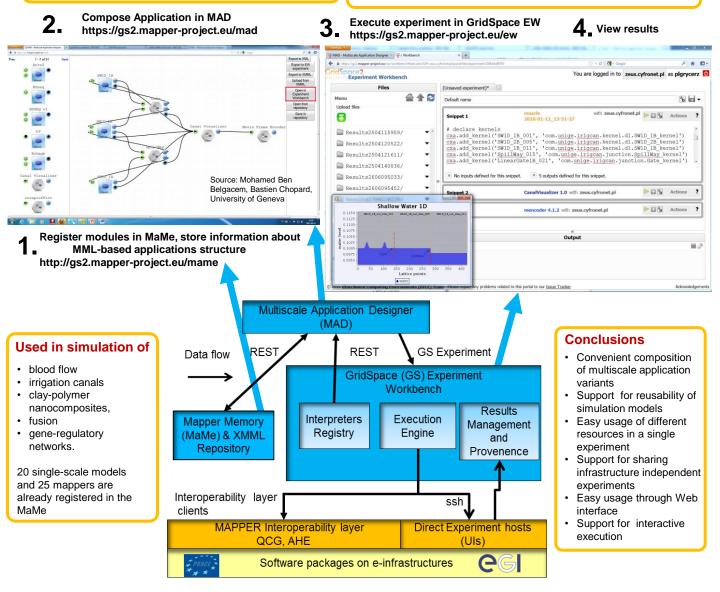
Programming and Execution of Multiscale Applications

Katarzyna Rycerz¹, Eryk Ciepiela², Tomasz Gubała^{2,3}, Daniel Harężlak², Grzegorz Dyk², Jan Meizner², and Marian Bubak^{1,2,3}

¹AGH University of Science and Technology, Department of Computer Science, Krakow, Poland ²AGH University of Science and Technology, ACC CYFRONET AGH, Krakow, Poland ³Informatics Institute, University of Amsterdam, The Netherlands


http://dice.cyfronet.pl

Goal

- The environment for composing multiscale applications
 built from single scale models implemented as scientific software components
 - distributed in various European e-infrastructures
- Applications structure described in the Multiscale Modelling Language (MML)
 - single scale sub-modules
 - scaleless mappers
 - the coupling topology describing their connections

- MAPPER Memory is a semantic-aware persistence store to record metadata about model and scales
- Multiscale Application Designer is a user-friendly visual composition tool transforming high level MML description into executable GridSpace experiment
- GridSpace Experiment Workbench supports execution and result management of generated experiments on infrastructures via interoperability layers
- Provenence Tracking System supports storing and providing detailed information about experiments execution and results

References

1. E. Ciepiela et al.: Exploratory Programming in the Virtual Laboratory, Proceedings of the International Multiconference on Computer Science and Information Technology p. 621–628, 2010 2. K. Rycerz and M. Bubak: Component Approach to Distributed Multiscale Simulations, SIMULTECH 2011, Noordwijkerhout, pp. 122-127, The Netherlands, 29-31 July, 2011 3.K. Rycerz et al.: An Environment for Programming and Execution of Multiscale Applications, ACM Transactions on Modeling and Computer Simulation, in review

Acknowledgements

This research was partially supported by the EU ICT MAPPER project (grant 261507). The authors thank A.G. Hoekstra, J. Borgdorff, C. Bona Casas, E. Lorenz, M. Ben Belgacem, and B. Chopard.

